xref: /openbmc/linux/drivers/md/raid5-cache.c (revision 174cd4b1)
1 /*
2  * Copyright (C) 2015 Shaohua Li <shli@fb.com>
3  * Copyright (C) 2016 Song Liu <songliubraving@fb.com>
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  */
15 #include <linux/kernel.h>
16 #include <linux/wait.h>
17 #include <linux/blkdev.h>
18 #include <linux/slab.h>
19 #include <linux/raid/md_p.h>
20 #include <linux/crc32c.h>
21 #include <linux/random.h>
22 #include <linux/kthread.h>
23 #include <linux/types.h>
24 #include "md.h"
25 #include "raid5.h"
26 #include "bitmap.h"
27 
28 /*
29  * metadata/data stored in disk with 4k size unit (a block) regardless
30  * underneath hardware sector size. only works with PAGE_SIZE == 4096
31  */
32 #define BLOCK_SECTORS (8)
33 
34 /*
35  * log->max_free_space is min(1/4 disk size, 10G reclaimable space).
36  *
37  * In write through mode, the reclaim runs every log->max_free_space.
38  * This can prevent the recovery scans for too long
39  */
40 #define RECLAIM_MAX_FREE_SPACE (10 * 1024 * 1024 * 2) /* sector */
41 #define RECLAIM_MAX_FREE_SPACE_SHIFT (2)
42 
43 /* wake up reclaim thread periodically */
44 #define R5C_RECLAIM_WAKEUP_INTERVAL (30 * HZ)
45 /* start flush with these full stripes */
46 #define R5C_FULL_STRIPE_FLUSH_BATCH 256
47 /* reclaim stripes in groups */
48 #define R5C_RECLAIM_STRIPE_GROUP (NR_STRIPE_HASH_LOCKS * 2)
49 
50 /*
51  * We only need 2 bios per I/O unit to make progress, but ensure we
52  * have a few more available to not get too tight.
53  */
54 #define R5L_POOL_SIZE	4
55 
56 /*
57  * r5c journal modes of the array: write-back or write-through.
58  * write-through mode has identical behavior as existing log only
59  * implementation.
60  */
61 enum r5c_journal_mode {
62 	R5C_JOURNAL_MODE_WRITE_THROUGH = 0,
63 	R5C_JOURNAL_MODE_WRITE_BACK = 1,
64 };
65 
66 static char *r5c_journal_mode_str[] = {"write-through",
67 				       "write-back"};
68 /*
69  * raid5 cache state machine
70  *
71  * With the RAID cache, each stripe works in two phases:
72  *	- caching phase
73  *	- writing-out phase
74  *
75  * These two phases are controlled by bit STRIPE_R5C_CACHING:
76  *   if STRIPE_R5C_CACHING == 0, the stripe is in writing-out phase
77  *   if STRIPE_R5C_CACHING == 1, the stripe is in caching phase
78  *
79  * When there is no journal, or the journal is in write-through mode,
80  * the stripe is always in writing-out phase.
81  *
82  * For write-back journal, the stripe is sent to caching phase on write
83  * (r5c_try_caching_write). r5c_make_stripe_write_out() kicks off
84  * the write-out phase by clearing STRIPE_R5C_CACHING.
85  *
86  * Stripes in caching phase do not write the raid disks. Instead, all
87  * writes are committed from the log device. Therefore, a stripe in
88  * caching phase handles writes as:
89  *	- write to log device
90  *	- return IO
91  *
92  * Stripes in writing-out phase handle writes as:
93  *	- calculate parity
94  *	- write pending data and parity to journal
95  *	- write data and parity to raid disks
96  *	- return IO for pending writes
97  */
98 
99 struct r5l_log {
100 	struct md_rdev *rdev;
101 
102 	u32 uuid_checksum;
103 
104 	sector_t device_size;		/* log device size, round to
105 					 * BLOCK_SECTORS */
106 	sector_t max_free_space;	/* reclaim run if free space is at
107 					 * this size */
108 
109 	sector_t last_checkpoint;	/* log tail. where recovery scan
110 					 * starts from */
111 	u64 last_cp_seq;		/* log tail sequence */
112 
113 	sector_t log_start;		/* log head. where new data appends */
114 	u64 seq;			/* log head sequence */
115 
116 	sector_t next_checkpoint;
117 
118 	struct mutex io_mutex;
119 	struct r5l_io_unit *current_io;	/* current io_unit accepting new data */
120 
121 	spinlock_t io_list_lock;
122 	struct list_head running_ios;	/* io_units which are still running,
123 					 * and have not yet been completely
124 					 * written to the log */
125 	struct list_head io_end_ios;	/* io_units which have been completely
126 					 * written to the log but not yet written
127 					 * to the RAID */
128 	struct list_head flushing_ios;	/* io_units which are waiting for log
129 					 * cache flush */
130 	struct list_head finished_ios;	/* io_units which settle down in log disk */
131 	struct bio flush_bio;
132 
133 	struct list_head no_mem_stripes;   /* pending stripes, -ENOMEM */
134 
135 	struct kmem_cache *io_kc;
136 	mempool_t *io_pool;
137 	struct bio_set *bs;
138 	mempool_t *meta_pool;
139 
140 	struct md_thread *reclaim_thread;
141 	unsigned long reclaim_target;	/* number of space that need to be
142 					 * reclaimed.  if it's 0, reclaim spaces
143 					 * used by io_units which are in
144 					 * IO_UNIT_STRIPE_END state (eg, reclaim
145 					 * dones't wait for specific io_unit
146 					 * switching to IO_UNIT_STRIPE_END
147 					 * state) */
148 	wait_queue_head_t iounit_wait;
149 
150 	struct list_head no_space_stripes; /* pending stripes, log has no space */
151 	spinlock_t no_space_stripes_lock;
152 
153 	bool need_cache_flush;
154 
155 	/* for r5c_cache */
156 	enum r5c_journal_mode r5c_journal_mode;
157 
158 	/* all stripes in r5cache, in the order of seq at sh->log_start */
159 	struct list_head stripe_in_journal_list;
160 
161 	spinlock_t stripe_in_journal_lock;
162 	atomic_t stripe_in_journal_count;
163 
164 	/* to submit async io_units, to fulfill ordering of flush */
165 	struct work_struct deferred_io_work;
166 	/* to disable write back during in degraded mode */
167 	struct work_struct disable_writeback_work;
168 
169 	/* to for chunk_aligned_read in writeback mode, details below */
170 	spinlock_t tree_lock;
171 	struct radix_tree_root big_stripe_tree;
172 };
173 
174 /*
175  * Enable chunk_aligned_read() with write back cache.
176  *
177  * Each chunk may contain more than one stripe (for example, a 256kB
178  * chunk contains 64 4kB-page, so this chunk contain 64 stripes). For
179  * chunk_aligned_read, these stripes are grouped into one "big_stripe".
180  * For each big_stripe, we count how many stripes of this big_stripe
181  * are in the write back cache. These data are tracked in a radix tree
182  * (big_stripe_tree). We use radix_tree item pointer as the counter.
183  * r5c_tree_index() is used to calculate keys for the radix tree.
184  *
185  * chunk_aligned_read() calls r5c_big_stripe_cached() to look up
186  * big_stripe of each chunk in the tree. If this big_stripe is in the
187  * tree, chunk_aligned_read() aborts. This look up is protected by
188  * rcu_read_lock().
189  *
190  * It is necessary to remember whether a stripe is counted in
191  * big_stripe_tree. Instead of adding new flag, we reuses existing flags:
192  * STRIPE_R5C_PARTIAL_STRIPE and STRIPE_R5C_FULL_STRIPE. If either of these
193  * two flags are set, the stripe is counted in big_stripe_tree. This
194  * requires moving set_bit(STRIPE_R5C_PARTIAL_STRIPE) to
195  * r5c_try_caching_write(); and moving clear_bit of
196  * STRIPE_R5C_PARTIAL_STRIPE and STRIPE_R5C_FULL_STRIPE to
197  * r5c_finish_stripe_write_out().
198  */
199 
200 /*
201  * radix tree requests lowest 2 bits of data pointer to be 2b'00.
202  * So it is necessary to left shift the counter by 2 bits before using it
203  * as data pointer of the tree.
204  */
205 #define R5C_RADIX_COUNT_SHIFT 2
206 
207 /*
208  * calculate key for big_stripe_tree
209  *
210  * sect: align_bi->bi_iter.bi_sector or sh->sector
211  */
212 static inline sector_t r5c_tree_index(struct r5conf *conf,
213 				      sector_t sect)
214 {
215 	sector_t offset;
216 
217 	offset = sector_div(sect, conf->chunk_sectors);
218 	return sect;
219 }
220 
221 /*
222  * an IO range starts from a meta data block and end at the next meta data
223  * block. The io unit's the meta data block tracks data/parity followed it. io
224  * unit is written to log disk with normal write, as we always flush log disk
225  * first and then start move data to raid disks, there is no requirement to
226  * write io unit with FLUSH/FUA
227  */
228 struct r5l_io_unit {
229 	struct r5l_log *log;
230 
231 	struct page *meta_page;	/* store meta block */
232 	int meta_offset;	/* current offset in meta_page */
233 
234 	struct bio *current_bio;/* current_bio accepting new data */
235 
236 	atomic_t pending_stripe;/* how many stripes not flushed to raid */
237 	u64 seq;		/* seq number of the metablock */
238 	sector_t log_start;	/* where the io_unit starts */
239 	sector_t log_end;	/* where the io_unit ends */
240 	struct list_head log_sibling; /* log->running_ios */
241 	struct list_head stripe_list; /* stripes added to the io_unit */
242 
243 	int state;
244 	bool need_split_bio;
245 	struct bio *split_bio;
246 
247 	unsigned int has_flush:1;      /* include flush request */
248 	unsigned int has_fua:1;        /* include fua request */
249 	unsigned int has_null_flush:1; /* include empty flush request */
250 	/*
251 	 * io isn't sent yet, flush/fua request can only be submitted till it's
252 	 * the first IO in running_ios list
253 	 */
254 	unsigned int io_deferred:1;
255 
256 	struct bio_list flush_barriers;   /* size == 0 flush bios */
257 };
258 
259 /* r5l_io_unit state */
260 enum r5l_io_unit_state {
261 	IO_UNIT_RUNNING = 0,	/* accepting new IO */
262 	IO_UNIT_IO_START = 1,	/* io_unit bio start writing to log,
263 				 * don't accepting new bio */
264 	IO_UNIT_IO_END = 2,	/* io_unit bio finish writing to log */
265 	IO_UNIT_STRIPE_END = 3,	/* stripes data finished writing to raid */
266 };
267 
268 bool r5c_is_writeback(struct r5l_log *log)
269 {
270 	return (log != NULL &&
271 		log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_BACK);
272 }
273 
274 static sector_t r5l_ring_add(struct r5l_log *log, sector_t start, sector_t inc)
275 {
276 	start += inc;
277 	if (start >= log->device_size)
278 		start = start - log->device_size;
279 	return start;
280 }
281 
282 static sector_t r5l_ring_distance(struct r5l_log *log, sector_t start,
283 				  sector_t end)
284 {
285 	if (end >= start)
286 		return end - start;
287 	else
288 		return end + log->device_size - start;
289 }
290 
291 static bool r5l_has_free_space(struct r5l_log *log, sector_t size)
292 {
293 	sector_t used_size;
294 
295 	used_size = r5l_ring_distance(log, log->last_checkpoint,
296 					log->log_start);
297 
298 	return log->device_size > used_size + size;
299 }
300 
301 static void __r5l_set_io_unit_state(struct r5l_io_unit *io,
302 				    enum r5l_io_unit_state state)
303 {
304 	if (WARN_ON(io->state >= state))
305 		return;
306 	io->state = state;
307 }
308 
309 static void
310 r5c_return_dev_pending_writes(struct r5conf *conf, struct r5dev *dev,
311 			      struct bio_list *return_bi)
312 {
313 	struct bio *wbi, *wbi2;
314 
315 	wbi = dev->written;
316 	dev->written = NULL;
317 	while (wbi && wbi->bi_iter.bi_sector <
318 	       dev->sector + STRIPE_SECTORS) {
319 		wbi2 = r5_next_bio(wbi, dev->sector);
320 		if (!raid5_dec_bi_active_stripes(wbi)) {
321 			md_write_end(conf->mddev);
322 			bio_list_add(return_bi, wbi);
323 		}
324 		wbi = wbi2;
325 	}
326 }
327 
328 void r5c_handle_cached_data_endio(struct r5conf *conf,
329 	  struct stripe_head *sh, int disks, struct bio_list *return_bi)
330 {
331 	int i;
332 
333 	for (i = sh->disks; i--; ) {
334 		if (sh->dev[i].written) {
335 			set_bit(R5_UPTODATE, &sh->dev[i].flags);
336 			r5c_return_dev_pending_writes(conf, &sh->dev[i],
337 						      return_bi);
338 			bitmap_endwrite(conf->mddev->bitmap, sh->sector,
339 					STRIPE_SECTORS,
340 					!test_bit(STRIPE_DEGRADED, &sh->state),
341 					0);
342 		}
343 	}
344 }
345 
346 /* Check whether we should flush some stripes to free up stripe cache */
347 void r5c_check_stripe_cache_usage(struct r5conf *conf)
348 {
349 	int total_cached;
350 
351 	if (!r5c_is_writeback(conf->log))
352 		return;
353 
354 	total_cached = atomic_read(&conf->r5c_cached_partial_stripes) +
355 		atomic_read(&conf->r5c_cached_full_stripes);
356 
357 	/*
358 	 * The following condition is true for either of the following:
359 	 *   - stripe cache pressure high:
360 	 *          total_cached > 3/4 min_nr_stripes ||
361 	 *          empty_inactive_list_nr > 0
362 	 *   - stripe cache pressure moderate:
363 	 *          total_cached > 1/2 min_nr_stripes
364 	 */
365 	if (total_cached > conf->min_nr_stripes * 1 / 2 ||
366 	    atomic_read(&conf->empty_inactive_list_nr) > 0)
367 		r5l_wake_reclaim(conf->log, 0);
368 }
369 
370 /*
371  * flush cache when there are R5C_FULL_STRIPE_FLUSH_BATCH or more full
372  * stripes in the cache
373  */
374 void r5c_check_cached_full_stripe(struct r5conf *conf)
375 {
376 	if (!r5c_is_writeback(conf->log))
377 		return;
378 
379 	/*
380 	 * wake up reclaim for R5C_FULL_STRIPE_FLUSH_BATCH cached stripes
381 	 * or a full stripe (chunk size / 4k stripes).
382 	 */
383 	if (atomic_read(&conf->r5c_cached_full_stripes) >=
384 	    min(R5C_FULL_STRIPE_FLUSH_BATCH,
385 		conf->chunk_sectors >> STRIPE_SHIFT))
386 		r5l_wake_reclaim(conf->log, 0);
387 }
388 
389 /*
390  * Total log space (in sectors) needed to flush all data in cache
391  *
392  * To avoid deadlock due to log space, it is necessary to reserve log
393  * space to flush critical stripes (stripes that occupying log space near
394  * last_checkpoint). This function helps check how much log space is
395  * required to flush all cached stripes.
396  *
397  * To reduce log space requirements, two mechanisms are used to give cache
398  * flush higher priorities:
399  *    1. In handle_stripe_dirtying() and schedule_reconstruction(),
400  *       stripes ALREADY in journal can be flushed w/o pending writes;
401  *    2. In r5l_write_stripe() and r5c_cache_data(), stripes NOT in journal
402  *       can be delayed (r5l_add_no_space_stripe).
403  *
404  * In cache flush, the stripe goes through 1 and then 2. For a stripe that
405  * already passed 1, flushing it requires at most (conf->max_degraded + 1)
406  * pages of journal space. For stripes that has not passed 1, flushing it
407  * requires (conf->raid_disks + 1) pages of journal space. There are at
408  * most (conf->group_cnt + 1) stripe that passed 1. So total journal space
409  * required to flush all cached stripes (in pages) is:
410  *
411  *     (stripe_in_journal_count - group_cnt - 1) * (max_degraded + 1) +
412  *     (group_cnt + 1) * (raid_disks + 1)
413  * or
414  *     (stripe_in_journal_count) * (max_degraded + 1) +
415  *     (group_cnt + 1) * (raid_disks - max_degraded)
416  */
417 static sector_t r5c_log_required_to_flush_cache(struct r5conf *conf)
418 {
419 	struct r5l_log *log = conf->log;
420 
421 	if (!r5c_is_writeback(log))
422 		return 0;
423 
424 	return BLOCK_SECTORS *
425 		((conf->max_degraded + 1) * atomic_read(&log->stripe_in_journal_count) +
426 		 (conf->raid_disks - conf->max_degraded) * (conf->group_cnt + 1));
427 }
428 
429 /*
430  * evaluate log space usage and update R5C_LOG_TIGHT and R5C_LOG_CRITICAL
431  *
432  * R5C_LOG_TIGHT is set when free space on the log device is less than 3x of
433  * reclaim_required_space. R5C_LOG_CRITICAL is set when free space on the log
434  * device is less than 2x of reclaim_required_space.
435  */
436 static inline void r5c_update_log_state(struct r5l_log *log)
437 {
438 	struct r5conf *conf = log->rdev->mddev->private;
439 	sector_t free_space;
440 	sector_t reclaim_space;
441 	bool wake_reclaim = false;
442 
443 	if (!r5c_is_writeback(log))
444 		return;
445 
446 	free_space = r5l_ring_distance(log, log->log_start,
447 				       log->last_checkpoint);
448 	reclaim_space = r5c_log_required_to_flush_cache(conf);
449 	if (free_space < 2 * reclaim_space)
450 		set_bit(R5C_LOG_CRITICAL, &conf->cache_state);
451 	else {
452 		if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state))
453 			wake_reclaim = true;
454 		clear_bit(R5C_LOG_CRITICAL, &conf->cache_state);
455 	}
456 	if (free_space < 3 * reclaim_space)
457 		set_bit(R5C_LOG_TIGHT, &conf->cache_state);
458 	else
459 		clear_bit(R5C_LOG_TIGHT, &conf->cache_state);
460 
461 	if (wake_reclaim)
462 		r5l_wake_reclaim(log, 0);
463 }
464 
465 /*
466  * Put the stripe into writing-out phase by clearing STRIPE_R5C_CACHING.
467  * This function should only be called in write-back mode.
468  */
469 void r5c_make_stripe_write_out(struct stripe_head *sh)
470 {
471 	struct r5conf *conf = sh->raid_conf;
472 	struct r5l_log *log = conf->log;
473 
474 	BUG_ON(!r5c_is_writeback(log));
475 
476 	WARN_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state));
477 	clear_bit(STRIPE_R5C_CACHING, &sh->state);
478 
479 	if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
480 		atomic_inc(&conf->preread_active_stripes);
481 }
482 
483 static void r5c_handle_data_cached(struct stripe_head *sh)
484 {
485 	int i;
486 
487 	for (i = sh->disks; i--; )
488 		if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
489 			set_bit(R5_InJournal, &sh->dev[i].flags);
490 			clear_bit(R5_LOCKED, &sh->dev[i].flags);
491 		}
492 	clear_bit(STRIPE_LOG_TRAPPED, &sh->state);
493 }
494 
495 /*
496  * this journal write must contain full parity,
497  * it may also contain some data pages
498  */
499 static void r5c_handle_parity_cached(struct stripe_head *sh)
500 {
501 	int i;
502 
503 	for (i = sh->disks; i--; )
504 		if (test_bit(R5_InJournal, &sh->dev[i].flags))
505 			set_bit(R5_Wantwrite, &sh->dev[i].flags);
506 }
507 
508 /*
509  * Setting proper flags after writing (or flushing) data and/or parity to the
510  * log device. This is called from r5l_log_endio() or r5l_log_flush_endio().
511  */
512 static void r5c_finish_cache_stripe(struct stripe_head *sh)
513 {
514 	struct r5l_log *log = sh->raid_conf->log;
515 
516 	if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) {
517 		BUG_ON(test_bit(STRIPE_R5C_CACHING, &sh->state));
518 		/*
519 		 * Set R5_InJournal for parity dev[pd_idx]. This means
520 		 * all data AND parity in the journal. For RAID 6, it is
521 		 * NOT necessary to set the flag for dev[qd_idx], as the
522 		 * two parities are written out together.
523 		 */
524 		set_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags);
525 	} else if (test_bit(STRIPE_R5C_CACHING, &sh->state)) {
526 		r5c_handle_data_cached(sh);
527 	} else {
528 		r5c_handle_parity_cached(sh);
529 		set_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags);
530 	}
531 }
532 
533 static void r5l_io_run_stripes(struct r5l_io_unit *io)
534 {
535 	struct stripe_head *sh, *next;
536 
537 	list_for_each_entry_safe(sh, next, &io->stripe_list, log_list) {
538 		list_del_init(&sh->log_list);
539 
540 		r5c_finish_cache_stripe(sh);
541 
542 		set_bit(STRIPE_HANDLE, &sh->state);
543 		raid5_release_stripe(sh);
544 	}
545 }
546 
547 static void r5l_log_run_stripes(struct r5l_log *log)
548 {
549 	struct r5l_io_unit *io, *next;
550 
551 	assert_spin_locked(&log->io_list_lock);
552 
553 	list_for_each_entry_safe(io, next, &log->running_ios, log_sibling) {
554 		/* don't change list order */
555 		if (io->state < IO_UNIT_IO_END)
556 			break;
557 
558 		list_move_tail(&io->log_sibling, &log->finished_ios);
559 		r5l_io_run_stripes(io);
560 	}
561 }
562 
563 static void r5l_move_to_end_ios(struct r5l_log *log)
564 {
565 	struct r5l_io_unit *io, *next;
566 
567 	assert_spin_locked(&log->io_list_lock);
568 
569 	list_for_each_entry_safe(io, next, &log->running_ios, log_sibling) {
570 		/* don't change list order */
571 		if (io->state < IO_UNIT_IO_END)
572 			break;
573 		list_move_tail(&io->log_sibling, &log->io_end_ios);
574 	}
575 }
576 
577 static void __r5l_stripe_write_finished(struct r5l_io_unit *io);
578 static void r5l_log_endio(struct bio *bio)
579 {
580 	struct r5l_io_unit *io = bio->bi_private;
581 	struct r5l_io_unit *io_deferred;
582 	struct r5l_log *log = io->log;
583 	unsigned long flags;
584 
585 	if (bio->bi_error)
586 		md_error(log->rdev->mddev, log->rdev);
587 
588 	bio_put(bio);
589 	mempool_free(io->meta_page, log->meta_pool);
590 
591 	spin_lock_irqsave(&log->io_list_lock, flags);
592 	__r5l_set_io_unit_state(io, IO_UNIT_IO_END);
593 	if (log->need_cache_flush)
594 		r5l_move_to_end_ios(log);
595 	else
596 		r5l_log_run_stripes(log);
597 	if (!list_empty(&log->running_ios)) {
598 		/*
599 		 * FLUSH/FUA io_unit is deferred because of ordering, now we
600 		 * can dispatch it
601 		 */
602 		io_deferred = list_first_entry(&log->running_ios,
603 					       struct r5l_io_unit, log_sibling);
604 		if (io_deferred->io_deferred)
605 			schedule_work(&log->deferred_io_work);
606 	}
607 
608 	spin_unlock_irqrestore(&log->io_list_lock, flags);
609 
610 	if (log->need_cache_flush)
611 		md_wakeup_thread(log->rdev->mddev->thread);
612 
613 	if (io->has_null_flush) {
614 		struct bio *bi;
615 
616 		WARN_ON(bio_list_empty(&io->flush_barriers));
617 		while ((bi = bio_list_pop(&io->flush_barriers)) != NULL) {
618 			bio_endio(bi);
619 			atomic_dec(&io->pending_stripe);
620 		}
621 		if (atomic_read(&io->pending_stripe) == 0)
622 			__r5l_stripe_write_finished(io);
623 	}
624 }
625 
626 static void r5l_do_submit_io(struct r5l_log *log, struct r5l_io_unit *io)
627 {
628 	unsigned long flags;
629 
630 	spin_lock_irqsave(&log->io_list_lock, flags);
631 	__r5l_set_io_unit_state(io, IO_UNIT_IO_START);
632 	spin_unlock_irqrestore(&log->io_list_lock, flags);
633 
634 	if (io->has_flush)
635 		io->current_bio->bi_opf |= REQ_PREFLUSH;
636 	if (io->has_fua)
637 		io->current_bio->bi_opf |= REQ_FUA;
638 	submit_bio(io->current_bio);
639 
640 	if (!io->split_bio)
641 		return;
642 
643 	if (io->has_flush)
644 		io->split_bio->bi_opf |= REQ_PREFLUSH;
645 	if (io->has_fua)
646 		io->split_bio->bi_opf |= REQ_FUA;
647 	submit_bio(io->split_bio);
648 }
649 
650 /* deferred io_unit will be dispatched here */
651 static void r5l_submit_io_async(struct work_struct *work)
652 {
653 	struct r5l_log *log = container_of(work, struct r5l_log,
654 					   deferred_io_work);
655 	struct r5l_io_unit *io = NULL;
656 	unsigned long flags;
657 
658 	spin_lock_irqsave(&log->io_list_lock, flags);
659 	if (!list_empty(&log->running_ios)) {
660 		io = list_first_entry(&log->running_ios, struct r5l_io_unit,
661 				      log_sibling);
662 		if (!io->io_deferred)
663 			io = NULL;
664 		else
665 			io->io_deferred = 0;
666 	}
667 	spin_unlock_irqrestore(&log->io_list_lock, flags);
668 	if (io)
669 		r5l_do_submit_io(log, io);
670 }
671 
672 static void r5c_disable_writeback_async(struct work_struct *work)
673 {
674 	struct r5l_log *log = container_of(work, struct r5l_log,
675 					   disable_writeback_work);
676 	struct mddev *mddev = log->rdev->mddev;
677 
678 	if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH)
679 		return;
680 	pr_info("md/raid:%s: Disabling writeback cache for degraded array.\n",
681 		mdname(mddev));
682 	mddev_suspend(mddev);
683 	log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_THROUGH;
684 	mddev_resume(mddev);
685 }
686 
687 static void r5l_submit_current_io(struct r5l_log *log)
688 {
689 	struct r5l_io_unit *io = log->current_io;
690 	struct bio *bio;
691 	struct r5l_meta_block *block;
692 	unsigned long flags;
693 	u32 crc;
694 	bool do_submit = true;
695 
696 	if (!io)
697 		return;
698 
699 	block = page_address(io->meta_page);
700 	block->meta_size = cpu_to_le32(io->meta_offset);
701 	crc = crc32c_le(log->uuid_checksum, block, PAGE_SIZE);
702 	block->checksum = cpu_to_le32(crc);
703 	bio = io->current_bio;
704 
705 	log->current_io = NULL;
706 	spin_lock_irqsave(&log->io_list_lock, flags);
707 	if (io->has_flush || io->has_fua) {
708 		if (io != list_first_entry(&log->running_ios,
709 					   struct r5l_io_unit, log_sibling)) {
710 			io->io_deferred = 1;
711 			do_submit = false;
712 		}
713 	}
714 	spin_unlock_irqrestore(&log->io_list_lock, flags);
715 	if (do_submit)
716 		r5l_do_submit_io(log, io);
717 }
718 
719 static struct bio *r5l_bio_alloc(struct r5l_log *log)
720 {
721 	struct bio *bio = bio_alloc_bioset(GFP_NOIO, BIO_MAX_PAGES, log->bs);
722 
723 	bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
724 	bio->bi_bdev = log->rdev->bdev;
725 	bio->bi_iter.bi_sector = log->rdev->data_offset + log->log_start;
726 
727 	return bio;
728 }
729 
730 static void r5_reserve_log_entry(struct r5l_log *log, struct r5l_io_unit *io)
731 {
732 	log->log_start = r5l_ring_add(log, log->log_start, BLOCK_SECTORS);
733 
734 	r5c_update_log_state(log);
735 	/*
736 	 * If we filled up the log device start from the beginning again,
737 	 * which will require a new bio.
738 	 *
739 	 * Note: for this to work properly the log size needs to me a multiple
740 	 * of BLOCK_SECTORS.
741 	 */
742 	if (log->log_start == 0)
743 		io->need_split_bio = true;
744 
745 	io->log_end = log->log_start;
746 }
747 
748 static struct r5l_io_unit *r5l_new_meta(struct r5l_log *log)
749 {
750 	struct r5l_io_unit *io;
751 	struct r5l_meta_block *block;
752 
753 	io = mempool_alloc(log->io_pool, GFP_ATOMIC);
754 	if (!io)
755 		return NULL;
756 	memset(io, 0, sizeof(*io));
757 
758 	io->log = log;
759 	INIT_LIST_HEAD(&io->log_sibling);
760 	INIT_LIST_HEAD(&io->stripe_list);
761 	bio_list_init(&io->flush_barriers);
762 	io->state = IO_UNIT_RUNNING;
763 
764 	io->meta_page = mempool_alloc(log->meta_pool, GFP_NOIO);
765 	block = page_address(io->meta_page);
766 	clear_page(block);
767 	block->magic = cpu_to_le32(R5LOG_MAGIC);
768 	block->version = R5LOG_VERSION;
769 	block->seq = cpu_to_le64(log->seq);
770 	block->position = cpu_to_le64(log->log_start);
771 
772 	io->log_start = log->log_start;
773 	io->meta_offset = sizeof(struct r5l_meta_block);
774 	io->seq = log->seq++;
775 
776 	io->current_bio = r5l_bio_alloc(log);
777 	io->current_bio->bi_end_io = r5l_log_endio;
778 	io->current_bio->bi_private = io;
779 	bio_add_page(io->current_bio, io->meta_page, PAGE_SIZE, 0);
780 
781 	r5_reserve_log_entry(log, io);
782 
783 	spin_lock_irq(&log->io_list_lock);
784 	list_add_tail(&io->log_sibling, &log->running_ios);
785 	spin_unlock_irq(&log->io_list_lock);
786 
787 	return io;
788 }
789 
790 static int r5l_get_meta(struct r5l_log *log, unsigned int payload_size)
791 {
792 	if (log->current_io &&
793 	    log->current_io->meta_offset + payload_size > PAGE_SIZE)
794 		r5l_submit_current_io(log);
795 
796 	if (!log->current_io) {
797 		log->current_io = r5l_new_meta(log);
798 		if (!log->current_io)
799 			return -ENOMEM;
800 	}
801 
802 	return 0;
803 }
804 
805 static void r5l_append_payload_meta(struct r5l_log *log, u16 type,
806 				    sector_t location,
807 				    u32 checksum1, u32 checksum2,
808 				    bool checksum2_valid)
809 {
810 	struct r5l_io_unit *io = log->current_io;
811 	struct r5l_payload_data_parity *payload;
812 
813 	payload = page_address(io->meta_page) + io->meta_offset;
814 	payload->header.type = cpu_to_le16(type);
815 	payload->header.flags = cpu_to_le16(0);
816 	payload->size = cpu_to_le32((1 + !!checksum2_valid) <<
817 				    (PAGE_SHIFT - 9));
818 	payload->location = cpu_to_le64(location);
819 	payload->checksum[0] = cpu_to_le32(checksum1);
820 	if (checksum2_valid)
821 		payload->checksum[1] = cpu_to_le32(checksum2);
822 
823 	io->meta_offset += sizeof(struct r5l_payload_data_parity) +
824 		sizeof(__le32) * (1 + !!checksum2_valid);
825 }
826 
827 static void r5l_append_payload_page(struct r5l_log *log, struct page *page)
828 {
829 	struct r5l_io_unit *io = log->current_io;
830 
831 	if (io->need_split_bio) {
832 		BUG_ON(io->split_bio);
833 		io->split_bio = io->current_bio;
834 		io->current_bio = r5l_bio_alloc(log);
835 		bio_chain(io->current_bio, io->split_bio);
836 		io->need_split_bio = false;
837 	}
838 
839 	if (!bio_add_page(io->current_bio, page, PAGE_SIZE, 0))
840 		BUG();
841 
842 	r5_reserve_log_entry(log, io);
843 }
844 
845 static int r5l_log_stripe(struct r5l_log *log, struct stripe_head *sh,
846 			   int data_pages, int parity_pages)
847 {
848 	int i;
849 	int meta_size;
850 	int ret;
851 	struct r5l_io_unit *io;
852 
853 	meta_size =
854 		((sizeof(struct r5l_payload_data_parity) + sizeof(__le32))
855 		 * data_pages) +
856 		sizeof(struct r5l_payload_data_parity) +
857 		sizeof(__le32) * parity_pages;
858 
859 	ret = r5l_get_meta(log, meta_size);
860 	if (ret)
861 		return ret;
862 
863 	io = log->current_io;
864 
865 	if (test_and_clear_bit(STRIPE_R5C_PREFLUSH, &sh->state))
866 		io->has_flush = 1;
867 
868 	for (i = 0; i < sh->disks; i++) {
869 		if (!test_bit(R5_Wantwrite, &sh->dev[i].flags) ||
870 		    test_bit(R5_InJournal, &sh->dev[i].flags))
871 			continue;
872 		if (i == sh->pd_idx || i == sh->qd_idx)
873 			continue;
874 		if (test_bit(R5_WantFUA, &sh->dev[i].flags) &&
875 		    log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_BACK) {
876 			io->has_fua = 1;
877 			/*
878 			 * we need to flush journal to make sure recovery can
879 			 * reach the data with fua flag
880 			 */
881 			io->has_flush = 1;
882 		}
883 		r5l_append_payload_meta(log, R5LOG_PAYLOAD_DATA,
884 					raid5_compute_blocknr(sh, i, 0),
885 					sh->dev[i].log_checksum, 0, false);
886 		r5l_append_payload_page(log, sh->dev[i].page);
887 	}
888 
889 	if (parity_pages == 2) {
890 		r5l_append_payload_meta(log, R5LOG_PAYLOAD_PARITY,
891 					sh->sector, sh->dev[sh->pd_idx].log_checksum,
892 					sh->dev[sh->qd_idx].log_checksum, true);
893 		r5l_append_payload_page(log, sh->dev[sh->pd_idx].page);
894 		r5l_append_payload_page(log, sh->dev[sh->qd_idx].page);
895 	} else if (parity_pages == 1) {
896 		r5l_append_payload_meta(log, R5LOG_PAYLOAD_PARITY,
897 					sh->sector, sh->dev[sh->pd_idx].log_checksum,
898 					0, false);
899 		r5l_append_payload_page(log, sh->dev[sh->pd_idx].page);
900 	} else  /* Just writing data, not parity, in caching phase */
901 		BUG_ON(parity_pages != 0);
902 
903 	list_add_tail(&sh->log_list, &io->stripe_list);
904 	atomic_inc(&io->pending_stripe);
905 	sh->log_io = io;
906 
907 	if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH)
908 		return 0;
909 
910 	if (sh->log_start == MaxSector) {
911 		BUG_ON(!list_empty(&sh->r5c));
912 		sh->log_start = io->log_start;
913 		spin_lock_irq(&log->stripe_in_journal_lock);
914 		list_add_tail(&sh->r5c,
915 			      &log->stripe_in_journal_list);
916 		spin_unlock_irq(&log->stripe_in_journal_lock);
917 		atomic_inc(&log->stripe_in_journal_count);
918 	}
919 	return 0;
920 }
921 
922 /* add stripe to no_space_stripes, and then wake up reclaim */
923 static inline void r5l_add_no_space_stripe(struct r5l_log *log,
924 					   struct stripe_head *sh)
925 {
926 	spin_lock(&log->no_space_stripes_lock);
927 	list_add_tail(&sh->log_list, &log->no_space_stripes);
928 	spin_unlock(&log->no_space_stripes_lock);
929 }
930 
931 /*
932  * running in raid5d, where reclaim could wait for raid5d too (when it flushes
933  * data from log to raid disks), so we shouldn't wait for reclaim here
934  */
935 int r5l_write_stripe(struct r5l_log *log, struct stripe_head *sh)
936 {
937 	struct r5conf *conf = sh->raid_conf;
938 	int write_disks = 0;
939 	int data_pages, parity_pages;
940 	int reserve;
941 	int i;
942 	int ret = 0;
943 	bool wake_reclaim = false;
944 
945 	if (!log)
946 		return -EAGAIN;
947 	/* Don't support stripe batch */
948 	if (sh->log_io || !test_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags) ||
949 	    test_bit(STRIPE_SYNCING, &sh->state)) {
950 		/* the stripe is written to log, we start writing it to raid */
951 		clear_bit(STRIPE_LOG_TRAPPED, &sh->state);
952 		return -EAGAIN;
953 	}
954 
955 	WARN_ON(test_bit(STRIPE_R5C_CACHING, &sh->state));
956 
957 	for (i = 0; i < sh->disks; i++) {
958 		void *addr;
959 
960 		if (!test_bit(R5_Wantwrite, &sh->dev[i].flags) ||
961 		    test_bit(R5_InJournal, &sh->dev[i].flags))
962 			continue;
963 
964 		write_disks++;
965 		/* checksum is already calculated in last run */
966 		if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
967 			continue;
968 		addr = kmap_atomic(sh->dev[i].page);
969 		sh->dev[i].log_checksum = crc32c_le(log->uuid_checksum,
970 						    addr, PAGE_SIZE);
971 		kunmap_atomic(addr);
972 	}
973 	parity_pages = 1 + !!(sh->qd_idx >= 0);
974 	data_pages = write_disks - parity_pages;
975 
976 	set_bit(STRIPE_LOG_TRAPPED, &sh->state);
977 	/*
978 	 * The stripe must enter state machine again to finish the write, so
979 	 * don't delay.
980 	 */
981 	clear_bit(STRIPE_DELAYED, &sh->state);
982 	atomic_inc(&sh->count);
983 
984 	mutex_lock(&log->io_mutex);
985 	/* meta + data */
986 	reserve = (1 + write_disks) << (PAGE_SHIFT - 9);
987 
988 	if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) {
989 		if (!r5l_has_free_space(log, reserve)) {
990 			r5l_add_no_space_stripe(log, sh);
991 			wake_reclaim = true;
992 		} else {
993 			ret = r5l_log_stripe(log, sh, data_pages, parity_pages);
994 			if (ret) {
995 				spin_lock_irq(&log->io_list_lock);
996 				list_add_tail(&sh->log_list,
997 					      &log->no_mem_stripes);
998 				spin_unlock_irq(&log->io_list_lock);
999 			}
1000 		}
1001 	} else {  /* R5C_JOURNAL_MODE_WRITE_BACK */
1002 		/*
1003 		 * log space critical, do not process stripes that are
1004 		 * not in cache yet (sh->log_start == MaxSector).
1005 		 */
1006 		if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) &&
1007 		    sh->log_start == MaxSector) {
1008 			r5l_add_no_space_stripe(log, sh);
1009 			wake_reclaim = true;
1010 			reserve = 0;
1011 		} else if (!r5l_has_free_space(log, reserve)) {
1012 			if (sh->log_start == log->last_checkpoint)
1013 				BUG();
1014 			else
1015 				r5l_add_no_space_stripe(log, sh);
1016 		} else {
1017 			ret = r5l_log_stripe(log, sh, data_pages, parity_pages);
1018 			if (ret) {
1019 				spin_lock_irq(&log->io_list_lock);
1020 				list_add_tail(&sh->log_list,
1021 					      &log->no_mem_stripes);
1022 				spin_unlock_irq(&log->io_list_lock);
1023 			}
1024 		}
1025 	}
1026 
1027 	mutex_unlock(&log->io_mutex);
1028 	if (wake_reclaim)
1029 		r5l_wake_reclaim(log, reserve);
1030 	return 0;
1031 }
1032 
1033 void r5l_write_stripe_run(struct r5l_log *log)
1034 {
1035 	if (!log)
1036 		return;
1037 	mutex_lock(&log->io_mutex);
1038 	r5l_submit_current_io(log);
1039 	mutex_unlock(&log->io_mutex);
1040 }
1041 
1042 int r5l_handle_flush_request(struct r5l_log *log, struct bio *bio)
1043 {
1044 	if (!log)
1045 		return -ENODEV;
1046 
1047 	if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) {
1048 		/*
1049 		 * in write through (journal only)
1050 		 * we flush log disk cache first, then write stripe data to
1051 		 * raid disks. So if bio is finished, the log disk cache is
1052 		 * flushed already. The recovery guarantees we can recovery
1053 		 * the bio from log disk, so we don't need to flush again
1054 		 */
1055 		if (bio->bi_iter.bi_size == 0) {
1056 			bio_endio(bio);
1057 			return 0;
1058 		}
1059 		bio->bi_opf &= ~REQ_PREFLUSH;
1060 	} else {
1061 		/* write back (with cache) */
1062 		if (bio->bi_iter.bi_size == 0) {
1063 			mutex_lock(&log->io_mutex);
1064 			r5l_get_meta(log, 0);
1065 			bio_list_add(&log->current_io->flush_barriers, bio);
1066 			log->current_io->has_flush = 1;
1067 			log->current_io->has_null_flush = 1;
1068 			atomic_inc(&log->current_io->pending_stripe);
1069 			r5l_submit_current_io(log);
1070 			mutex_unlock(&log->io_mutex);
1071 			return 0;
1072 		}
1073 	}
1074 	return -EAGAIN;
1075 }
1076 
1077 /* This will run after log space is reclaimed */
1078 static void r5l_run_no_space_stripes(struct r5l_log *log)
1079 {
1080 	struct stripe_head *sh;
1081 
1082 	spin_lock(&log->no_space_stripes_lock);
1083 	while (!list_empty(&log->no_space_stripes)) {
1084 		sh = list_first_entry(&log->no_space_stripes,
1085 				      struct stripe_head, log_list);
1086 		list_del_init(&sh->log_list);
1087 		set_bit(STRIPE_HANDLE, &sh->state);
1088 		raid5_release_stripe(sh);
1089 	}
1090 	spin_unlock(&log->no_space_stripes_lock);
1091 }
1092 
1093 /*
1094  * calculate new last_checkpoint
1095  * for write through mode, returns log->next_checkpoint
1096  * for write back, returns log_start of first sh in stripe_in_journal_list
1097  */
1098 static sector_t r5c_calculate_new_cp(struct r5conf *conf)
1099 {
1100 	struct stripe_head *sh;
1101 	struct r5l_log *log = conf->log;
1102 	sector_t new_cp;
1103 	unsigned long flags;
1104 
1105 	if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH)
1106 		return log->next_checkpoint;
1107 
1108 	spin_lock_irqsave(&log->stripe_in_journal_lock, flags);
1109 	if (list_empty(&conf->log->stripe_in_journal_list)) {
1110 		/* all stripes flushed */
1111 		spin_unlock_irqrestore(&log->stripe_in_journal_lock, flags);
1112 		return log->next_checkpoint;
1113 	}
1114 	sh = list_first_entry(&conf->log->stripe_in_journal_list,
1115 			      struct stripe_head, r5c);
1116 	new_cp = sh->log_start;
1117 	spin_unlock_irqrestore(&log->stripe_in_journal_lock, flags);
1118 	return new_cp;
1119 }
1120 
1121 static sector_t r5l_reclaimable_space(struct r5l_log *log)
1122 {
1123 	struct r5conf *conf = log->rdev->mddev->private;
1124 
1125 	return r5l_ring_distance(log, log->last_checkpoint,
1126 				 r5c_calculate_new_cp(conf));
1127 }
1128 
1129 static void r5l_run_no_mem_stripe(struct r5l_log *log)
1130 {
1131 	struct stripe_head *sh;
1132 
1133 	assert_spin_locked(&log->io_list_lock);
1134 
1135 	if (!list_empty(&log->no_mem_stripes)) {
1136 		sh = list_first_entry(&log->no_mem_stripes,
1137 				      struct stripe_head, log_list);
1138 		list_del_init(&sh->log_list);
1139 		set_bit(STRIPE_HANDLE, &sh->state);
1140 		raid5_release_stripe(sh);
1141 	}
1142 }
1143 
1144 static bool r5l_complete_finished_ios(struct r5l_log *log)
1145 {
1146 	struct r5l_io_unit *io, *next;
1147 	bool found = false;
1148 
1149 	assert_spin_locked(&log->io_list_lock);
1150 
1151 	list_for_each_entry_safe(io, next, &log->finished_ios, log_sibling) {
1152 		/* don't change list order */
1153 		if (io->state < IO_UNIT_STRIPE_END)
1154 			break;
1155 
1156 		log->next_checkpoint = io->log_start;
1157 
1158 		list_del(&io->log_sibling);
1159 		mempool_free(io, log->io_pool);
1160 		r5l_run_no_mem_stripe(log);
1161 
1162 		found = true;
1163 	}
1164 
1165 	return found;
1166 }
1167 
1168 static void __r5l_stripe_write_finished(struct r5l_io_unit *io)
1169 {
1170 	struct r5l_log *log = io->log;
1171 	struct r5conf *conf = log->rdev->mddev->private;
1172 	unsigned long flags;
1173 
1174 	spin_lock_irqsave(&log->io_list_lock, flags);
1175 	__r5l_set_io_unit_state(io, IO_UNIT_STRIPE_END);
1176 
1177 	if (!r5l_complete_finished_ios(log)) {
1178 		spin_unlock_irqrestore(&log->io_list_lock, flags);
1179 		return;
1180 	}
1181 
1182 	if (r5l_reclaimable_space(log) > log->max_free_space ||
1183 	    test_bit(R5C_LOG_TIGHT, &conf->cache_state))
1184 		r5l_wake_reclaim(log, 0);
1185 
1186 	spin_unlock_irqrestore(&log->io_list_lock, flags);
1187 	wake_up(&log->iounit_wait);
1188 }
1189 
1190 void r5l_stripe_write_finished(struct stripe_head *sh)
1191 {
1192 	struct r5l_io_unit *io;
1193 
1194 	io = sh->log_io;
1195 	sh->log_io = NULL;
1196 
1197 	if (io && atomic_dec_and_test(&io->pending_stripe))
1198 		__r5l_stripe_write_finished(io);
1199 }
1200 
1201 static void r5l_log_flush_endio(struct bio *bio)
1202 {
1203 	struct r5l_log *log = container_of(bio, struct r5l_log,
1204 		flush_bio);
1205 	unsigned long flags;
1206 	struct r5l_io_unit *io;
1207 
1208 	if (bio->bi_error)
1209 		md_error(log->rdev->mddev, log->rdev);
1210 
1211 	spin_lock_irqsave(&log->io_list_lock, flags);
1212 	list_for_each_entry(io, &log->flushing_ios, log_sibling)
1213 		r5l_io_run_stripes(io);
1214 	list_splice_tail_init(&log->flushing_ios, &log->finished_ios);
1215 	spin_unlock_irqrestore(&log->io_list_lock, flags);
1216 }
1217 
1218 /*
1219  * Starting dispatch IO to raid.
1220  * io_unit(meta) consists of a log. There is one situation we want to avoid. A
1221  * broken meta in the middle of a log causes recovery can't find meta at the
1222  * head of log. If operations require meta at the head persistent in log, we
1223  * must make sure meta before it persistent in log too. A case is:
1224  *
1225  * stripe data/parity is in log, we start write stripe to raid disks. stripe
1226  * data/parity must be persistent in log before we do the write to raid disks.
1227  *
1228  * The solution is we restrictly maintain io_unit list order. In this case, we
1229  * only write stripes of an io_unit to raid disks till the io_unit is the first
1230  * one whose data/parity is in log.
1231  */
1232 void r5l_flush_stripe_to_raid(struct r5l_log *log)
1233 {
1234 	bool do_flush;
1235 
1236 	if (!log || !log->need_cache_flush)
1237 		return;
1238 
1239 	spin_lock_irq(&log->io_list_lock);
1240 	/* flush bio is running */
1241 	if (!list_empty(&log->flushing_ios)) {
1242 		spin_unlock_irq(&log->io_list_lock);
1243 		return;
1244 	}
1245 	list_splice_tail_init(&log->io_end_ios, &log->flushing_ios);
1246 	do_flush = !list_empty(&log->flushing_ios);
1247 	spin_unlock_irq(&log->io_list_lock);
1248 
1249 	if (!do_flush)
1250 		return;
1251 	bio_reset(&log->flush_bio);
1252 	log->flush_bio.bi_bdev = log->rdev->bdev;
1253 	log->flush_bio.bi_end_io = r5l_log_flush_endio;
1254 	log->flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
1255 	submit_bio(&log->flush_bio);
1256 }
1257 
1258 static void r5l_write_super(struct r5l_log *log, sector_t cp);
1259 static void r5l_write_super_and_discard_space(struct r5l_log *log,
1260 	sector_t end)
1261 {
1262 	struct block_device *bdev = log->rdev->bdev;
1263 	struct mddev *mddev;
1264 
1265 	r5l_write_super(log, end);
1266 
1267 	if (!blk_queue_discard(bdev_get_queue(bdev)))
1268 		return;
1269 
1270 	mddev = log->rdev->mddev;
1271 	/*
1272 	 * Discard could zero data, so before discard we must make sure
1273 	 * superblock is updated to new log tail. Updating superblock (either
1274 	 * directly call md_update_sb() or depend on md thread) must hold
1275 	 * reconfig mutex. On the other hand, raid5_quiesce is called with
1276 	 * reconfig_mutex hold. The first step of raid5_quiesce() is waitting
1277 	 * for all IO finish, hence waitting for reclaim thread, while reclaim
1278 	 * thread is calling this function and waitting for reconfig mutex. So
1279 	 * there is a deadlock. We workaround this issue with a trylock.
1280 	 * FIXME: we could miss discard if we can't take reconfig mutex
1281 	 */
1282 	set_mask_bits(&mddev->sb_flags, 0,
1283 		BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1284 	if (!mddev_trylock(mddev))
1285 		return;
1286 	md_update_sb(mddev, 1);
1287 	mddev_unlock(mddev);
1288 
1289 	/* discard IO error really doesn't matter, ignore it */
1290 	if (log->last_checkpoint < end) {
1291 		blkdev_issue_discard(bdev,
1292 				log->last_checkpoint + log->rdev->data_offset,
1293 				end - log->last_checkpoint, GFP_NOIO, 0);
1294 	} else {
1295 		blkdev_issue_discard(bdev,
1296 				log->last_checkpoint + log->rdev->data_offset,
1297 				log->device_size - log->last_checkpoint,
1298 				GFP_NOIO, 0);
1299 		blkdev_issue_discard(bdev, log->rdev->data_offset, end,
1300 				GFP_NOIO, 0);
1301 	}
1302 }
1303 
1304 /*
1305  * r5c_flush_stripe moves stripe from cached list to handle_list. When called,
1306  * the stripe must be on r5c_cached_full_stripes or r5c_cached_partial_stripes.
1307  *
1308  * must hold conf->device_lock
1309  */
1310 static void r5c_flush_stripe(struct r5conf *conf, struct stripe_head *sh)
1311 {
1312 	BUG_ON(list_empty(&sh->lru));
1313 	BUG_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state));
1314 	BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
1315 
1316 	/*
1317 	 * The stripe is not ON_RELEASE_LIST, so it is safe to call
1318 	 * raid5_release_stripe() while holding conf->device_lock
1319 	 */
1320 	BUG_ON(test_bit(STRIPE_ON_RELEASE_LIST, &sh->state));
1321 	assert_spin_locked(&conf->device_lock);
1322 
1323 	list_del_init(&sh->lru);
1324 	atomic_inc(&sh->count);
1325 
1326 	set_bit(STRIPE_HANDLE, &sh->state);
1327 	atomic_inc(&conf->active_stripes);
1328 	r5c_make_stripe_write_out(sh);
1329 
1330 	if (test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state))
1331 		atomic_inc(&conf->r5c_flushing_partial_stripes);
1332 	else
1333 		atomic_inc(&conf->r5c_flushing_full_stripes);
1334 	raid5_release_stripe(sh);
1335 }
1336 
1337 /*
1338  * if num == 0, flush all full stripes
1339  * if num > 0, flush all full stripes. If less than num full stripes are
1340  *             flushed, flush some partial stripes until totally num stripes are
1341  *             flushed or there is no more cached stripes.
1342  */
1343 void r5c_flush_cache(struct r5conf *conf, int num)
1344 {
1345 	int count;
1346 	struct stripe_head *sh, *next;
1347 
1348 	assert_spin_locked(&conf->device_lock);
1349 	if (!conf->log)
1350 		return;
1351 
1352 	count = 0;
1353 	list_for_each_entry_safe(sh, next, &conf->r5c_full_stripe_list, lru) {
1354 		r5c_flush_stripe(conf, sh);
1355 		count++;
1356 	}
1357 
1358 	if (count >= num)
1359 		return;
1360 	list_for_each_entry_safe(sh, next,
1361 				 &conf->r5c_partial_stripe_list, lru) {
1362 		r5c_flush_stripe(conf, sh);
1363 		if (++count >= num)
1364 			break;
1365 	}
1366 }
1367 
1368 static void r5c_do_reclaim(struct r5conf *conf)
1369 {
1370 	struct r5l_log *log = conf->log;
1371 	struct stripe_head *sh;
1372 	int count = 0;
1373 	unsigned long flags;
1374 	int total_cached;
1375 	int stripes_to_flush;
1376 	int flushing_partial, flushing_full;
1377 
1378 	if (!r5c_is_writeback(log))
1379 		return;
1380 
1381 	flushing_partial = atomic_read(&conf->r5c_flushing_partial_stripes);
1382 	flushing_full = atomic_read(&conf->r5c_flushing_full_stripes);
1383 	total_cached = atomic_read(&conf->r5c_cached_partial_stripes) +
1384 		atomic_read(&conf->r5c_cached_full_stripes) -
1385 		flushing_full - flushing_partial;
1386 
1387 	if (total_cached > conf->min_nr_stripes * 3 / 4 ||
1388 	    atomic_read(&conf->empty_inactive_list_nr) > 0)
1389 		/*
1390 		 * if stripe cache pressure high, flush all full stripes and
1391 		 * some partial stripes
1392 		 */
1393 		stripes_to_flush = R5C_RECLAIM_STRIPE_GROUP;
1394 	else if (total_cached > conf->min_nr_stripes * 1 / 2 ||
1395 		 atomic_read(&conf->r5c_cached_full_stripes) - flushing_full >
1396 		 R5C_FULL_STRIPE_FLUSH_BATCH)
1397 		/*
1398 		 * if stripe cache pressure moderate, or if there is many full
1399 		 * stripes,flush all full stripes
1400 		 */
1401 		stripes_to_flush = 0;
1402 	else
1403 		/* no need to flush */
1404 		stripes_to_flush = -1;
1405 
1406 	if (stripes_to_flush >= 0) {
1407 		spin_lock_irqsave(&conf->device_lock, flags);
1408 		r5c_flush_cache(conf, stripes_to_flush);
1409 		spin_unlock_irqrestore(&conf->device_lock, flags);
1410 	}
1411 
1412 	/* if log space is tight, flush stripes on stripe_in_journal_list */
1413 	if (test_bit(R5C_LOG_TIGHT, &conf->cache_state)) {
1414 		spin_lock_irqsave(&log->stripe_in_journal_lock, flags);
1415 		spin_lock(&conf->device_lock);
1416 		list_for_each_entry(sh, &log->stripe_in_journal_list, r5c) {
1417 			/*
1418 			 * stripes on stripe_in_journal_list could be in any
1419 			 * state of the stripe_cache state machine. In this
1420 			 * case, we only want to flush stripe on
1421 			 * r5c_cached_full/partial_stripes. The following
1422 			 * condition makes sure the stripe is on one of the
1423 			 * two lists.
1424 			 */
1425 			if (!list_empty(&sh->lru) &&
1426 			    !test_bit(STRIPE_HANDLE, &sh->state) &&
1427 			    atomic_read(&sh->count) == 0) {
1428 				r5c_flush_stripe(conf, sh);
1429 				if (count++ >= R5C_RECLAIM_STRIPE_GROUP)
1430 					break;
1431 			}
1432 		}
1433 		spin_unlock(&conf->device_lock);
1434 		spin_unlock_irqrestore(&log->stripe_in_journal_lock, flags);
1435 	}
1436 
1437 	if (!test_bit(R5C_LOG_CRITICAL, &conf->cache_state))
1438 		r5l_run_no_space_stripes(log);
1439 
1440 	md_wakeup_thread(conf->mddev->thread);
1441 }
1442 
1443 static void r5l_do_reclaim(struct r5l_log *log)
1444 {
1445 	struct r5conf *conf = log->rdev->mddev->private;
1446 	sector_t reclaim_target = xchg(&log->reclaim_target, 0);
1447 	sector_t reclaimable;
1448 	sector_t next_checkpoint;
1449 	bool write_super;
1450 
1451 	spin_lock_irq(&log->io_list_lock);
1452 	write_super = r5l_reclaimable_space(log) > log->max_free_space ||
1453 		reclaim_target != 0 || !list_empty(&log->no_space_stripes);
1454 	/*
1455 	 * move proper io_unit to reclaim list. We should not change the order.
1456 	 * reclaimable/unreclaimable io_unit can be mixed in the list, we
1457 	 * shouldn't reuse space of an unreclaimable io_unit
1458 	 */
1459 	while (1) {
1460 		reclaimable = r5l_reclaimable_space(log);
1461 		if (reclaimable >= reclaim_target ||
1462 		    (list_empty(&log->running_ios) &&
1463 		     list_empty(&log->io_end_ios) &&
1464 		     list_empty(&log->flushing_ios) &&
1465 		     list_empty(&log->finished_ios)))
1466 			break;
1467 
1468 		md_wakeup_thread(log->rdev->mddev->thread);
1469 		wait_event_lock_irq(log->iounit_wait,
1470 				    r5l_reclaimable_space(log) > reclaimable,
1471 				    log->io_list_lock);
1472 	}
1473 
1474 	next_checkpoint = r5c_calculate_new_cp(conf);
1475 	spin_unlock_irq(&log->io_list_lock);
1476 
1477 	if (reclaimable == 0 || !write_super)
1478 		return;
1479 
1480 	/*
1481 	 * write_super will flush cache of each raid disk. We must write super
1482 	 * here, because the log area might be reused soon and we don't want to
1483 	 * confuse recovery
1484 	 */
1485 	r5l_write_super_and_discard_space(log, next_checkpoint);
1486 
1487 	mutex_lock(&log->io_mutex);
1488 	log->last_checkpoint = next_checkpoint;
1489 	r5c_update_log_state(log);
1490 	mutex_unlock(&log->io_mutex);
1491 
1492 	r5l_run_no_space_stripes(log);
1493 }
1494 
1495 static void r5l_reclaim_thread(struct md_thread *thread)
1496 {
1497 	struct mddev *mddev = thread->mddev;
1498 	struct r5conf *conf = mddev->private;
1499 	struct r5l_log *log = conf->log;
1500 
1501 	if (!log)
1502 		return;
1503 	r5c_do_reclaim(conf);
1504 	r5l_do_reclaim(log);
1505 }
1506 
1507 void r5l_wake_reclaim(struct r5l_log *log, sector_t space)
1508 {
1509 	unsigned long target;
1510 	unsigned long new = (unsigned long)space; /* overflow in theory */
1511 
1512 	if (!log)
1513 		return;
1514 	do {
1515 		target = log->reclaim_target;
1516 		if (new < target)
1517 			return;
1518 	} while (cmpxchg(&log->reclaim_target, target, new) != target);
1519 	md_wakeup_thread(log->reclaim_thread);
1520 }
1521 
1522 void r5l_quiesce(struct r5l_log *log, int state)
1523 {
1524 	struct mddev *mddev;
1525 	if (!log || state == 2)
1526 		return;
1527 	if (state == 0)
1528 		kthread_unpark(log->reclaim_thread->tsk);
1529 	else if (state == 1) {
1530 		/* make sure r5l_write_super_and_discard_space exits */
1531 		mddev = log->rdev->mddev;
1532 		wake_up(&mddev->sb_wait);
1533 		kthread_park(log->reclaim_thread->tsk);
1534 		r5l_wake_reclaim(log, MaxSector);
1535 		r5l_do_reclaim(log);
1536 	}
1537 }
1538 
1539 bool r5l_log_disk_error(struct r5conf *conf)
1540 {
1541 	struct r5l_log *log;
1542 	bool ret;
1543 	/* don't allow write if journal disk is missing */
1544 	rcu_read_lock();
1545 	log = rcu_dereference(conf->log);
1546 
1547 	if (!log)
1548 		ret = test_bit(MD_HAS_JOURNAL, &conf->mddev->flags);
1549 	else
1550 		ret = test_bit(Faulty, &log->rdev->flags);
1551 	rcu_read_unlock();
1552 	return ret;
1553 }
1554 
1555 struct r5l_recovery_ctx {
1556 	struct page *meta_page;		/* current meta */
1557 	sector_t meta_total_blocks;	/* total size of current meta and data */
1558 	sector_t pos;			/* recovery position */
1559 	u64 seq;			/* recovery position seq */
1560 	int data_parity_stripes;	/* number of data_parity stripes */
1561 	int data_only_stripes;		/* number of data_only stripes */
1562 	struct list_head cached_list;
1563 };
1564 
1565 static int r5l_recovery_read_meta_block(struct r5l_log *log,
1566 					struct r5l_recovery_ctx *ctx)
1567 {
1568 	struct page *page = ctx->meta_page;
1569 	struct r5l_meta_block *mb;
1570 	u32 crc, stored_crc;
1571 
1572 	if (!sync_page_io(log->rdev, ctx->pos, PAGE_SIZE, page, REQ_OP_READ, 0,
1573 			  false))
1574 		return -EIO;
1575 
1576 	mb = page_address(page);
1577 	stored_crc = le32_to_cpu(mb->checksum);
1578 	mb->checksum = 0;
1579 
1580 	if (le32_to_cpu(mb->magic) != R5LOG_MAGIC ||
1581 	    le64_to_cpu(mb->seq) != ctx->seq ||
1582 	    mb->version != R5LOG_VERSION ||
1583 	    le64_to_cpu(mb->position) != ctx->pos)
1584 		return -EINVAL;
1585 
1586 	crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE);
1587 	if (stored_crc != crc)
1588 		return -EINVAL;
1589 
1590 	if (le32_to_cpu(mb->meta_size) > PAGE_SIZE)
1591 		return -EINVAL;
1592 
1593 	ctx->meta_total_blocks = BLOCK_SECTORS;
1594 
1595 	return 0;
1596 }
1597 
1598 static void
1599 r5l_recovery_create_empty_meta_block(struct r5l_log *log,
1600 				     struct page *page,
1601 				     sector_t pos, u64 seq)
1602 {
1603 	struct r5l_meta_block *mb;
1604 
1605 	mb = page_address(page);
1606 	clear_page(mb);
1607 	mb->magic = cpu_to_le32(R5LOG_MAGIC);
1608 	mb->version = R5LOG_VERSION;
1609 	mb->meta_size = cpu_to_le32(sizeof(struct r5l_meta_block));
1610 	mb->seq = cpu_to_le64(seq);
1611 	mb->position = cpu_to_le64(pos);
1612 }
1613 
1614 static int r5l_log_write_empty_meta_block(struct r5l_log *log, sector_t pos,
1615 					  u64 seq)
1616 {
1617 	struct page *page;
1618 	struct r5l_meta_block *mb;
1619 
1620 	page = alloc_page(GFP_KERNEL);
1621 	if (!page)
1622 		return -ENOMEM;
1623 	r5l_recovery_create_empty_meta_block(log, page, pos, seq);
1624 	mb = page_address(page);
1625 	mb->checksum = cpu_to_le32(crc32c_le(log->uuid_checksum,
1626 					     mb, PAGE_SIZE));
1627 	if (!sync_page_io(log->rdev, pos, PAGE_SIZE, page, REQ_OP_WRITE,
1628 			  REQ_FUA, false)) {
1629 		__free_page(page);
1630 		return -EIO;
1631 	}
1632 	__free_page(page);
1633 	return 0;
1634 }
1635 
1636 /*
1637  * r5l_recovery_load_data and r5l_recovery_load_parity uses flag R5_Wantwrite
1638  * to mark valid (potentially not flushed) data in the journal.
1639  *
1640  * We already verified checksum in r5l_recovery_verify_data_checksum_for_mb,
1641  * so there should not be any mismatch here.
1642  */
1643 static void r5l_recovery_load_data(struct r5l_log *log,
1644 				   struct stripe_head *sh,
1645 				   struct r5l_recovery_ctx *ctx,
1646 				   struct r5l_payload_data_parity *payload,
1647 				   sector_t log_offset)
1648 {
1649 	struct mddev *mddev = log->rdev->mddev;
1650 	struct r5conf *conf = mddev->private;
1651 	int dd_idx;
1652 
1653 	raid5_compute_sector(conf,
1654 			     le64_to_cpu(payload->location), 0,
1655 			     &dd_idx, sh);
1656 	sync_page_io(log->rdev, log_offset, PAGE_SIZE,
1657 		     sh->dev[dd_idx].page, REQ_OP_READ, 0, false);
1658 	sh->dev[dd_idx].log_checksum =
1659 		le32_to_cpu(payload->checksum[0]);
1660 	ctx->meta_total_blocks += BLOCK_SECTORS;
1661 
1662 	set_bit(R5_Wantwrite, &sh->dev[dd_idx].flags);
1663 	set_bit(STRIPE_R5C_CACHING, &sh->state);
1664 }
1665 
1666 static void r5l_recovery_load_parity(struct r5l_log *log,
1667 				     struct stripe_head *sh,
1668 				     struct r5l_recovery_ctx *ctx,
1669 				     struct r5l_payload_data_parity *payload,
1670 				     sector_t log_offset)
1671 {
1672 	struct mddev *mddev = log->rdev->mddev;
1673 	struct r5conf *conf = mddev->private;
1674 
1675 	ctx->meta_total_blocks += BLOCK_SECTORS * conf->max_degraded;
1676 	sync_page_io(log->rdev, log_offset, PAGE_SIZE,
1677 		     sh->dev[sh->pd_idx].page, REQ_OP_READ, 0, false);
1678 	sh->dev[sh->pd_idx].log_checksum =
1679 		le32_to_cpu(payload->checksum[0]);
1680 	set_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags);
1681 
1682 	if (sh->qd_idx >= 0) {
1683 		sync_page_io(log->rdev,
1684 			     r5l_ring_add(log, log_offset, BLOCK_SECTORS),
1685 			     PAGE_SIZE, sh->dev[sh->qd_idx].page,
1686 			     REQ_OP_READ, 0, false);
1687 		sh->dev[sh->qd_idx].log_checksum =
1688 			le32_to_cpu(payload->checksum[1]);
1689 		set_bit(R5_Wantwrite, &sh->dev[sh->qd_idx].flags);
1690 	}
1691 	clear_bit(STRIPE_R5C_CACHING, &sh->state);
1692 }
1693 
1694 static void r5l_recovery_reset_stripe(struct stripe_head *sh)
1695 {
1696 	int i;
1697 
1698 	sh->state = 0;
1699 	sh->log_start = MaxSector;
1700 	for (i = sh->disks; i--; )
1701 		sh->dev[i].flags = 0;
1702 }
1703 
1704 static void
1705 r5l_recovery_replay_one_stripe(struct r5conf *conf,
1706 			       struct stripe_head *sh,
1707 			       struct r5l_recovery_ctx *ctx)
1708 {
1709 	struct md_rdev *rdev, *rrdev;
1710 	int disk_index;
1711 	int data_count = 0;
1712 
1713 	for (disk_index = 0; disk_index < sh->disks; disk_index++) {
1714 		if (!test_bit(R5_Wantwrite, &sh->dev[disk_index].flags))
1715 			continue;
1716 		if (disk_index == sh->qd_idx || disk_index == sh->pd_idx)
1717 			continue;
1718 		data_count++;
1719 	}
1720 
1721 	/*
1722 	 * stripes that only have parity must have been flushed
1723 	 * before the crash that we are now recovering from, so
1724 	 * there is nothing more to recovery.
1725 	 */
1726 	if (data_count == 0)
1727 		goto out;
1728 
1729 	for (disk_index = 0; disk_index < sh->disks; disk_index++) {
1730 		if (!test_bit(R5_Wantwrite, &sh->dev[disk_index].flags))
1731 			continue;
1732 
1733 		/* in case device is broken */
1734 		rcu_read_lock();
1735 		rdev = rcu_dereference(conf->disks[disk_index].rdev);
1736 		if (rdev) {
1737 			atomic_inc(&rdev->nr_pending);
1738 			rcu_read_unlock();
1739 			sync_page_io(rdev, sh->sector, PAGE_SIZE,
1740 				     sh->dev[disk_index].page, REQ_OP_WRITE, 0,
1741 				     false);
1742 			rdev_dec_pending(rdev, rdev->mddev);
1743 			rcu_read_lock();
1744 		}
1745 		rrdev = rcu_dereference(conf->disks[disk_index].replacement);
1746 		if (rrdev) {
1747 			atomic_inc(&rrdev->nr_pending);
1748 			rcu_read_unlock();
1749 			sync_page_io(rrdev, sh->sector, PAGE_SIZE,
1750 				     sh->dev[disk_index].page, REQ_OP_WRITE, 0,
1751 				     false);
1752 			rdev_dec_pending(rrdev, rrdev->mddev);
1753 			rcu_read_lock();
1754 		}
1755 		rcu_read_unlock();
1756 	}
1757 	ctx->data_parity_stripes++;
1758 out:
1759 	r5l_recovery_reset_stripe(sh);
1760 }
1761 
1762 static struct stripe_head *
1763 r5c_recovery_alloc_stripe(struct r5conf *conf,
1764 			  sector_t stripe_sect)
1765 {
1766 	struct stripe_head *sh;
1767 
1768 	sh = raid5_get_active_stripe(conf, stripe_sect, 0, 1, 0);
1769 	if (!sh)
1770 		return NULL;  /* no more stripe available */
1771 
1772 	r5l_recovery_reset_stripe(sh);
1773 
1774 	return sh;
1775 }
1776 
1777 static struct stripe_head *
1778 r5c_recovery_lookup_stripe(struct list_head *list, sector_t sect)
1779 {
1780 	struct stripe_head *sh;
1781 
1782 	list_for_each_entry(sh, list, lru)
1783 		if (sh->sector == sect)
1784 			return sh;
1785 	return NULL;
1786 }
1787 
1788 static void
1789 r5c_recovery_drop_stripes(struct list_head *cached_stripe_list,
1790 			  struct r5l_recovery_ctx *ctx)
1791 {
1792 	struct stripe_head *sh, *next;
1793 
1794 	list_for_each_entry_safe(sh, next, cached_stripe_list, lru) {
1795 		r5l_recovery_reset_stripe(sh);
1796 		list_del_init(&sh->lru);
1797 		raid5_release_stripe(sh);
1798 	}
1799 }
1800 
1801 static void
1802 r5c_recovery_replay_stripes(struct list_head *cached_stripe_list,
1803 			    struct r5l_recovery_ctx *ctx)
1804 {
1805 	struct stripe_head *sh, *next;
1806 
1807 	list_for_each_entry_safe(sh, next, cached_stripe_list, lru)
1808 		if (!test_bit(STRIPE_R5C_CACHING, &sh->state)) {
1809 			r5l_recovery_replay_one_stripe(sh->raid_conf, sh, ctx);
1810 			list_del_init(&sh->lru);
1811 			raid5_release_stripe(sh);
1812 		}
1813 }
1814 
1815 /* if matches return 0; otherwise return -EINVAL */
1816 static int
1817 r5l_recovery_verify_data_checksum(struct r5l_log *log, struct page *page,
1818 				  sector_t log_offset, __le32 log_checksum)
1819 {
1820 	void *addr;
1821 	u32 checksum;
1822 
1823 	sync_page_io(log->rdev, log_offset, PAGE_SIZE,
1824 		     page, REQ_OP_READ, 0, false);
1825 	addr = kmap_atomic(page);
1826 	checksum = crc32c_le(log->uuid_checksum, addr, PAGE_SIZE);
1827 	kunmap_atomic(addr);
1828 	return (le32_to_cpu(log_checksum) == checksum) ? 0 : -EINVAL;
1829 }
1830 
1831 /*
1832  * before loading data to stripe cache, we need verify checksum for all data,
1833  * if there is mismatch for any data page, we drop all data in the mata block
1834  */
1835 static int
1836 r5l_recovery_verify_data_checksum_for_mb(struct r5l_log *log,
1837 					 struct r5l_recovery_ctx *ctx)
1838 {
1839 	struct mddev *mddev = log->rdev->mddev;
1840 	struct r5conf *conf = mddev->private;
1841 	struct r5l_meta_block *mb = page_address(ctx->meta_page);
1842 	sector_t mb_offset = sizeof(struct r5l_meta_block);
1843 	sector_t log_offset = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
1844 	struct page *page;
1845 	struct r5l_payload_data_parity *payload;
1846 
1847 	page = alloc_page(GFP_KERNEL);
1848 	if (!page)
1849 		return -ENOMEM;
1850 
1851 	while (mb_offset < le32_to_cpu(mb->meta_size)) {
1852 		payload = (void *)mb + mb_offset;
1853 
1854 		if (payload->header.type == R5LOG_PAYLOAD_DATA) {
1855 			if (r5l_recovery_verify_data_checksum(
1856 				    log, page, log_offset,
1857 				    payload->checksum[0]) < 0)
1858 				goto mismatch;
1859 		} else if (payload->header.type == R5LOG_PAYLOAD_PARITY) {
1860 			if (r5l_recovery_verify_data_checksum(
1861 				    log, page, log_offset,
1862 				    payload->checksum[0]) < 0)
1863 				goto mismatch;
1864 			if (conf->max_degraded == 2 && /* q for RAID 6 */
1865 			    r5l_recovery_verify_data_checksum(
1866 				    log, page,
1867 				    r5l_ring_add(log, log_offset,
1868 						 BLOCK_SECTORS),
1869 				    payload->checksum[1]) < 0)
1870 				goto mismatch;
1871 		} else /* not R5LOG_PAYLOAD_DATA or R5LOG_PAYLOAD_PARITY */
1872 			goto mismatch;
1873 
1874 		log_offset = r5l_ring_add(log, log_offset,
1875 					  le32_to_cpu(payload->size));
1876 
1877 		mb_offset += sizeof(struct r5l_payload_data_parity) +
1878 			sizeof(__le32) *
1879 			(le32_to_cpu(payload->size) >> (PAGE_SHIFT - 9));
1880 	}
1881 
1882 	put_page(page);
1883 	return 0;
1884 
1885 mismatch:
1886 	put_page(page);
1887 	return -EINVAL;
1888 }
1889 
1890 /*
1891  * Analyze all data/parity pages in one meta block
1892  * Returns:
1893  * 0 for success
1894  * -EINVAL for unknown playload type
1895  * -EAGAIN for checksum mismatch of data page
1896  * -ENOMEM for run out of memory (alloc_page failed or run out of stripes)
1897  */
1898 static int
1899 r5c_recovery_analyze_meta_block(struct r5l_log *log,
1900 				struct r5l_recovery_ctx *ctx,
1901 				struct list_head *cached_stripe_list)
1902 {
1903 	struct mddev *mddev = log->rdev->mddev;
1904 	struct r5conf *conf = mddev->private;
1905 	struct r5l_meta_block *mb;
1906 	struct r5l_payload_data_parity *payload;
1907 	int mb_offset;
1908 	sector_t log_offset;
1909 	sector_t stripe_sect;
1910 	struct stripe_head *sh;
1911 	int ret;
1912 
1913 	/*
1914 	 * for mismatch in data blocks, we will drop all data in this mb, but
1915 	 * we will still read next mb for other data with FLUSH flag, as
1916 	 * io_unit could finish out of order.
1917 	 */
1918 	ret = r5l_recovery_verify_data_checksum_for_mb(log, ctx);
1919 	if (ret == -EINVAL)
1920 		return -EAGAIN;
1921 	else if (ret)
1922 		return ret;   /* -ENOMEM duo to alloc_page() failed */
1923 
1924 	mb = page_address(ctx->meta_page);
1925 	mb_offset = sizeof(struct r5l_meta_block);
1926 	log_offset = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
1927 
1928 	while (mb_offset < le32_to_cpu(mb->meta_size)) {
1929 		int dd;
1930 
1931 		payload = (void *)mb + mb_offset;
1932 		stripe_sect = (payload->header.type == R5LOG_PAYLOAD_DATA) ?
1933 			raid5_compute_sector(
1934 				conf, le64_to_cpu(payload->location), 0, &dd,
1935 				NULL)
1936 			: le64_to_cpu(payload->location);
1937 
1938 		sh = r5c_recovery_lookup_stripe(cached_stripe_list,
1939 						stripe_sect);
1940 
1941 		if (!sh) {
1942 			sh = r5c_recovery_alloc_stripe(conf, stripe_sect);
1943 			/*
1944 			 * cannot get stripe from raid5_get_active_stripe
1945 			 * try replay some stripes
1946 			 */
1947 			if (!sh) {
1948 				r5c_recovery_replay_stripes(
1949 					cached_stripe_list, ctx);
1950 				sh = r5c_recovery_alloc_stripe(
1951 					conf, stripe_sect);
1952 			}
1953 			if (!sh) {
1954 				pr_debug("md/raid:%s: Increasing stripe cache size to %d to recovery data on journal.\n",
1955 					mdname(mddev),
1956 					conf->min_nr_stripes * 2);
1957 				raid5_set_cache_size(mddev,
1958 						     conf->min_nr_stripes * 2);
1959 				sh = r5c_recovery_alloc_stripe(conf,
1960 							       stripe_sect);
1961 			}
1962 			if (!sh) {
1963 				pr_err("md/raid:%s: Cannot get enough stripes due to memory pressure. Recovery failed.\n",
1964 				       mdname(mddev));
1965 				return -ENOMEM;
1966 			}
1967 			list_add_tail(&sh->lru, cached_stripe_list);
1968 		}
1969 
1970 		if (payload->header.type == R5LOG_PAYLOAD_DATA) {
1971 			if (!test_bit(STRIPE_R5C_CACHING, &sh->state) &&
1972 			    test_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags)) {
1973 				r5l_recovery_replay_one_stripe(conf, sh, ctx);
1974 				list_move_tail(&sh->lru, cached_stripe_list);
1975 			}
1976 			r5l_recovery_load_data(log, sh, ctx, payload,
1977 					       log_offset);
1978 		} else if (payload->header.type == R5LOG_PAYLOAD_PARITY)
1979 			r5l_recovery_load_parity(log, sh, ctx, payload,
1980 						 log_offset);
1981 		else
1982 			return -EINVAL;
1983 
1984 		log_offset = r5l_ring_add(log, log_offset,
1985 					  le32_to_cpu(payload->size));
1986 
1987 		mb_offset += sizeof(struct r5l_payload_data_parity) +
1988 			sizeof(__le32) *
1989 			(le32_to_cpu(payload->size) >> (PAGE_SHIFT - 9));
1990 	}
1991 
1992 	return 0;
1993 }
1994 
1995 /*
1996  * Load the stripe into cache. The stripe will be written out later by
1997  * the stripe cache state machine.
1998  */
1999 static void r5c_recovery_load_one_stripe(struct r5l_log *log,
2000 					 struct stripe_head *sh)
2001 {
2002 	struct r5dev *dev;
2003 	int i;
2004 
2005 	for (i = sh->disks; i--; ) {
2006 		dev = sh->dev + i;
2007 		if (test_and_clear_bit(R5_Wantwrite, &dev->flags)) {
2008 			set_bit(R5_InJournal, &dev->flags);
2009 			set_bit(R5_UPTODATE, &dev->flags);
2010 		}
2011 	}
2012 }
2013 
2014 /*
2015  * Scan through the log for all to-be-flushed data
2016  *
2017  * For stripes with data and parity, namely Data-Parity stripe
2018  * (STRIPE_R5C_CACHING == 0), we simply replay all the writes.
2019  *
2020  * For stripes with only data, namely Data-Only stripe
2021  * (STRIPE_R5C_CACHING == 1), we load them to stripe cache state machine.
2022  *
2023  * For a stripe, if we see data after parity, we should discard all previous
2024  * data and parity for this stripe, as these data are already flushed to
2025  * the array.
2026  *
2027  * At the end of the scan, we return the new journal_tail, which points to
2028  * first data-only stripe on the journal device, or next invalid meta block.
2029  */
2030 static int r5c_recovery_flush_log(struct r5l_log *log,
2031 				  struct r5l_recovery_ctx *ctx)
2032 {
2033 	struct stripe_head *sh;
2034 	int ret = 0;
2035 
2036 	/* scan through the log */
2037 	while (1) {
2038 		if (r5l_recovery_read_meta_block(log, ctx))
2039 			break;
2040 
2041 		ret = r5c_recovery_analyze_meta_block(log, ctx,
2042 						      &ctx->cached_list);
2043 		/*
2044 		 * -EAGAIN means mismatch in data block, in this case, we still
2045 		 * try scan the next metablock
2046 		 */
2047 		if (ret && ret != -EAGAIN)
2048 			break;   /* ret == -EINVAL or -ENOMEM */
2049 		ctx->seq++;
2050 		ctx->pos = r5l_ring_add(log, ctx->pos, ctx->meta_total_blocks);
2051 	}
2052 
2053 	if (ret == -ENOMEM) {
2054 		r5c_recovery_drop_stripes(&ctx->cached_list, ctx);
2055 		return ret;
2056 	}
2057 
2058 	/* replay data-parity stripes */
2059 	r5c_recovery_replay_stripes(&ctx->cached_list, ctx);
2060 
2061 	/* load data-only stripes to stripe cache */
2062 	list_for_each_entry(sh, &ctx->cached_list, lru) {
2063 		WARN_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state));
2064 		r5c_recovery_load_one_stripe(log, sh);
2065 		ctx->data_only_stripes++;
2066 	}
2067 
2068 	return 0;
2069 }
2070 
2071 /*
2072  * we did a recovery. Now ctx.pos points to an invalid meta block. New
2073  * log will start here. but we can't let superblock point to last valid
2074  * meta block. The log might looks like:
2075  * | meta 1| meta 2| meta 3|
2076  * meta 1 is valid, meta 2 is invalid. meta 3 could be valid. If
2077  * superblock points to meta 1, we write a new valid meta 2n.  if crash
2078  * happens again, new recovery will start from meta 1. Since meta 2n is
2079  * valid now, recovery will think meta 3 is valid, which is wrong.
2080  * The solution is we create a new meta in meta2 with its seq == meta
2081  * 1's seq + 10000 and let superblock points to meta2. The same recovery
2082  * will not think meta 3 is a valid meta, because its seq doesn't match
2083  */
2084 
2085 /*
2086  * Before recovery, the log looks like the following
2087  *
2088  *   ---------------------------------------------
2089  *   |           valid log        | invalid log  |
2090  *   ---------------------------------------------
2091  *   ^
2092  *   |- log->last_checkpoint
2093  *   |- log->last_cp_seq
2094  *
2095  * Now we scan through the log until we see invalid entry
2096  *
2097  *   ---------------------------------------------
2098  *   |           valid log        | invalid log  |
2099  *   ---------------------------------------------
2100  *   ^                            ^
2101  *   |- log->last_checkpoint      |- ctx->pos
2102  *   |- log->last_cp_seq          |- ctx->seq
2103  *
2104  * From this point, we need to increase seq number by 10 to avoid
2105  * confusing next recovery.
2106  *
2107  *   ---------------------------------------------
2108  *   |           valid log        | invalid log  |
2109  *   ---------------------------------------------
2110  *   ^                              ^
2111  *   |- log->last_checkpoint        |- ctx->pos+1
2112  *   |- log->last_cp_seq            |- ctx->seq+10001
2113  *
2114  * However, it is not safe to start the state machine yet, because data only
2115  * parities are not yet secured in RAID. To save these data only parities, we
2116  * rewrite them from seq+11.
2117  *
2118  *   -----------------------------------------------------------------
2119  *   |           valid log        | data only stripes | invalid log  |
2120  *   -----------------------------------------------------------------
2121  *   ^                                                ^
2122  *   |- log->last_checkpoint                          |- ctx->pos+n
2123  *   |- log->last_cp_seq                              |- ctx->seq+10000+n
2124  *
2125  * If failure happens again during this process, the recovery can safe start
2126  * again from log->last_checkpoint.
2127  *
2128  * Once data only stripes are rewritten to journal, we move log_tail
2129  *
2130  *   -----------------------------------------------------------------
2131  *   |     old log        |    data only stripes    | invalid log  |
2132  *   -----------------------------------------------------------------
2133  *                        ^                         ^
2134  *                        |- log->last_checkpoint   |- ctx->pos+n
2135  *                        |- log->last_cp_seq       |- ctx->seq+10000+n
2136  *
2137  * Then we can safely start the state machine. If failure happens from this
2138  * point on, the recovery will start from new log->last_checkpoint.
2139  */
2140 static int
2141 r5c_recovery_rewrite_data_only_stripes(struct r5l_log *log,
2142 				       struct r5l_recovery_ctx *ctx)
2143 {
2144 	struct stripe_head *sh;
2145 	struct mddev *mddev = log->rdev->mddev;
2146 	struct page *page;
2147 	sector_t next_checkpoint = MaxSector;
2148 
2149 	page = alloc_page(GFP_KERNEL);
2150 	if (!page) {
2151 		pr_err("md/raid:%s: cannot allocate memory to rewrite data only stripes\n",
2152 		       mdname(mddev));
2153 		return -ENOMEM;
2154 	}
2155 
2156 	WARN_ON(list_empty(&ctx->cached_list));
2157 
2158 	list_for_each_entry(sh, &ctx->cached_list, lru) {
2159 		struct r5l_meta_block *mb;
2160 		int i;
2161 		int offset;
2162 		sector_t write_pos;
2163 
2164 		WARN_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state));
2165 		r5l_recovery_create_empty_meta_block(log, page,
2166 						     ctx->pos, ctx->seq);
2167 		mb = page_address(page);
2168 		offset = le32_to_cpu(mb->meta_size);
2169 		write_pos = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
2170 
2171 		for (i = sh->disks; i--; ) {
2172 			struct r5dev *dev = &sh->dev[i];
2173 			struct r5l_payload_data_parity *payload;
2174 			void *addr;
2175 
2176 			if (test_bit(R5_InJournal, &dev->flags)) {
2177 				payload = (void *)mb + offset;
2178 				payload->header.type = cpu_to_le16(
2179 					R5LOG_PAYLOAD_DATA);
2180 				payload->size = BLOCK_SECTORS;
2181 				payload->location = cpu_to_le64(
2182 					raid5_compute_blocknr(sh, i, 0));
2183 				addr = kmap_atomic(dev->page);
2184 				payload->checksum[0] = cpu_to_le32(
2185 					crc32c_le(log->uuid_checksum, addr,
2186 						  PAGE_SIZE));
2187 				kunmap_atomic(addr);
2188 				sync_page_io(log->rdev, write_pos, PAGE_SIZE,
2189 					     dev->page, REQ_OP_WRITE, 0, false);
2190 				write_pos = r5l_ring_add(log, write_pos,
2191 							 BLOCK_SECTORS);
2192 				offset += sizeof(__le32) +
2193 					sizeof(struct r5l_payload_data_parity);
2194 
2195 			}
2196 		}
2197 		mb->meta_size = cpu_to_le32(offset);
2198 		mb->checksum = cpu_to_le32(crc32c_le(log->uuid_checksum,
2199 						     mb, PAGE_SIZE));
2200 		sync_page_io(log->rdev, ctx->pos, PAGE_SIZE, page,
2201 			     REQ_OP_WRITE, REQ_FUA, false);
2202 		sh->log_start = ctx->pos;
2203 		list_add_tail(&sh->r5c, &log->stripe_in_journal_list);
2204 		atomic_inc(&log->stripe_in_journal_count);
2205 		ctx->pos = write_pos;
2206 		ctx->seq += 1;
2207 		next_checkpoint = sh->log_start;
2208 	}
2209 	log->next_checkpoint = next_checkpoint;
2210 	__free_page(page);
2211 	return 0;
2212 }
2213 
2214 static void r5c_recovery_flush_data_only_stripes(struct r5l_log *log,
2215 						 struct r5l_recovery_ctx *ctx)
2216 {
2217 	struct mddev *mddev = log->rdev->mddev;
2218 	struct r5conf *conf = mddev->private;
2219 	struct stripe_head *sh, *next;
2220 
2221 	if (ctx->data_only_stripes == 0)
2222 		return;
2223 
2224 	log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_BACK;
2225 
2226 	list_for_each_entry_safe(sh, next, &ctx->cached_list, lru) {
2227 		r5c_make_stripe_write_out(sh);
2228 		set_bit(STRIPE_HANDLE, &sh->state);
2229 		list_del_init(&sh->lru);
2230 		raid5_release_stripe(sh);
2231 	}
2232 
2233 	md_wakeup_thread(conf->mddev->thread);
2234 	/* reuse conf->wait_for_quiescent in recovery */
2235 	wait_event(conf->wait_for_quiescent,
2236 		   atomic_read(&conf->active_stripes) == 0);
2237 
2238 	log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_THROUGH;
2239 }
2240 
2241 static int r5l_recovery_log(struct r5l_log *log)
2242 {
2243 	struct mddev *mddev = log->rdev->mddev;
2244 	struct r5l_recovery_ctx ctx;
2245 	int ret;
2246 	sector_t pos;
2247 
2248 	ctx.pos = log->last_checkpoint;
2249 	ctx.seq = log->last_cp_seq;
2250 	ctx.meta_page = alloc_page(GFP_KERNEL);
2251 	ctx.data_only_stripes = 0;
2252 	ctx.data_parity_stripes = 0;
2253 	INIT_LIST_HEAD(&ctx.cached_list);
2254 
2255 	if (!ctx.meta_page)
2256 		return -ENOMEM;
2257 
2258 	ret = r5c_recovery_flush_log(log, &ctx);
2259 	__free_page(ctx.meta_page);
2260 
2261 	if (ret)
2262 		return ret;
2263 
2264 	pos = ctx.pos;
2265 	ctx.seq += 10000;
2266 
2267 
2268 	if ((ctx.data_only_stripes == 0) && (ctx.data_parity_stripes == 0))
2269 		pr_debug("md/raid:%s: starting from clean shutdown\n",
2270 			 mdname(mddev));
2271 	else
2272 		pr_debug("md/raid:%s: recovering %d data-only stripes and %d data-parity stripes\n",
2273 			 mdname(mddev), ctx.data_only_stripes,
2274 			 ctx.data_parity_stripes);
2275 
2276 	if (ctx.data_only_stripes == 0) {
2277 		log->next_checkpoint = ctx.pos;
2278 		r5l_log_write_empty_meta_block(log, ctx.pos, ctx.seq++);
2279 		ctx.pos = r5l_ring_add(log, ctx.pos, BLOCK_SECTORS);
2280 	} else if (r5c_recovery_rewrite_data_only_stripes(log, &ctx)) {
2281 		pr_err("md/raid:%s: failed to rewrite stripes to journal\n",
2282 		       mdname(mddev));
2283 		return -EIO;
2284 	}
2285 
2286 	log->log_start = ctx.pos;
2287 	log->seq = ctx.seq;
2288 	log->last_checkpoint = pos;
2289 	r5l_write_super(log, pos);
2290 
2291 	r5c_recovery_flush_data_only_stripes(log, &ctx);
2292 	return 0;
2293 }
2294 
2295 static void r5l_write_super(struct r5l_log *log, sector_t cp)
2296 {
2297 	struct mddev *mddev = log->rdev->mddev;
2298 
2299 	log->rdev->journal_tail = cp;
2300 	set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2301 }
2302 
2303 static ssize_t r5c_journal_mode_show(struct mddev *mddev, char *page)
2304 {
2305 	struct r5conf *conf = mddev->private;
2306 	int ret;
2307 
2308 	if (!conf->log)
2309 		return 0;
2310 
2311 	switch (conf->log->r5c_journal_mode) {
2312 	case R5C_JOURNAL_MODE_WRITE_THROUGH:
2313 		ret = snprintf(
2314 			page, PAGE_SIZE, "[%s] %s\n",
2315 			r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_THROUGH],
2316 			r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_BACK]);
2317 		break;
2318 	case R5C_JOURNAL_MODE_WRITE_BACK:
2319 		ret = snprintf(
2320 			page, PAGE_SIZE, "%s [%s]\n",
2321 			r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_THROUGH],
2322 			r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_BACK]);
2323 		break;
2324 	default:
2325 		ret = 0;
2326 	}
2327 	return ret;
2328 }
2329 
2330 static ssize_t r5c_journal_mode_store(struct mddev *mddev,
2331 				      const char *page, size_t length)
2332 {
2333 	struct r5conf *conf = mddev->private;
2334 	struct r5l_log *log = conf->log;
2335 	int val = -1, i;
2336 	int len = length;
2337 
2338 	if (!log)
2339 		return -ENODEV;
2340 
2341 	if (len && page[len - 1] == '\n')
2342 		len -= 1;
2343 	for (i = 0; i < ARRAY_SIZE(r5c_journal_mode_str); i++)
2344 		if (strlen(r5c_journal_mode_str[i]) == len &&
2345 		    strncmp(page, r5c_journal_mode_str[i], len) == 0) {
2346 			val = i;
2347 			break;
2348 		}
2349 	if (val < R5C_JOURNAL_MODE_WRITE_THROUGH ||
2350 	    val > R5C_JOURNAL_MODE_WRITE_BACK)
2351 		return -EINVAL;
2352 
2353 	if (raid5_calc_degraded(conf) > 0 &&
2354 	    val == R5C_JOURNAL_MODE_WRITE_BACK)
2355 		return -EINVAL;
2356 
2357 	mddev_suspend(mddev);
2358 	conf->log->r5c_journal_mode = val;
2359 	mddev_resume(mddev);
2360 
2361 	pr_debug("md/raid:%s: setting r5c cache mode to %d: %s\n",
2362 		 mdname(mddev), val, r5c_journal_mode_str[val]);
2363 	return length;
2364 }
2365 
2366 struct md_sysfs_entry
2367 r5c_journal_mode = __ATTR(journal_mode, 0644,
2368 			  r5c_journal_mode_show, r5c_journal_mode_store);
2369 
2370 /*
2371  * Try handle write operation in caching phase. This function should only
2372  * be called in write-back mode.
2373  *
2374  * If all outstanding writes can be handled in caching phase, returns 0
2375  * If writes requires write-out phase, call r5c_make_stripe_write_out()
2376  * and returns -EAGAIN
2377  */
2378 int r5c_try_caching_write(struct r5conf *conf,
2379 			  struct stripe_head *sh,
2380 			  struct stripe_head_state *s,
2381 			  int disks)
2382 {
2383 	struct r5l_log *log = conf->log;
2384 	int i;
2385 	struct r5dev *dev;
2386 	int to_cache = 0;
2387 	void **pslot;
2388 	sector_t tree_index;
2389 	int ret;
2390 	uintptr_t refcount;
2391 
2392 	BUG_ON(!r5c_is_writeback(log));
2393 
2394 	if (!test_bit(STRIPE_R5C_CACHING, &sh->state)) {
2395 		/*
2396 		 * There are two different scenarios here:
2397 		 *  1. The stripe has some data cached, and it is sent to
2398 		 *     write-out phase for reclaim
2399 		 *  2. The stripe is clean, and this is the first write
2400 		 *
2401 		 * For 1, return -EAGAIN, so we continue with
2402 		 * handle_stripe_dirtying().
2403 		 *
2404 		 * For 2, set STRIPE_R5C_CACHING and continue with caching
2405 		 * write.
2406 		 */
2407 
2408 		/* case 1: anything injournal or anything in written */
2409 		if (s->injournal > 0 || s->written > 0)
2410 			return -EAGAIN;
2411 		/* case 2 */
2412 		set_bit(STRIPE_R5C_CACHING, &sh->state);
2413 	}
2414 
2415 	/*
2416 	 * When run in degraded mode, array is set to write-through mode.
2417 	 * This check helps drain pending write safely in the transition to
2418 	 * write-through mode.
2419 	 */
2420 	if (s->failed) {
2421 		r5c_make_stripe_write_out(sh);
2422 		return -EAGAIN;
2423 	}
2424 
2425 	for (i = disks; i--; ) {
2426 		dev = &sh->dev[i];
2427 		/* if non-overwrite, use writing-out phase */
2428 		if (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags) &&
2429 		    !test_bit(R5_InJournal, &dev->flags)) {
2430 			r5c_make_stripe_write_out(sh);
2431 			return -EAGAIN;
2432 		}
2433 	}
2434 
2435 	/* if the stripe is not counted in big_stripe_tree, add it now */
2436 	if (!test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) &&
2437 	    !test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) {
2438 		tree_index = r5c_tree_index(conf, sh->sector);
2439 		spin_lock(&log->tree_lock);
2440 		pslot = radix_tree_lookup_slot(&log->big_stripe_tree,
2441 					       tree_index);
2442 		if (pslot) {
2443 			refcount = (uintptr_t)radix_tree_deref_slot_protected(
2444 				pslot, &log->tree_lock) >>
2445 				R5C_RADIX_COUNT_SHIFT;
2446 			radix_tree_replace_slot(
2447 				&log->big_stripe_tree, pslot,
2448 				(void *)((refcount + 1) << R5C_RADIX_COUNT_SHIFT));
2449 		} else {
2450 			/*
2451 			 * this radix_tree_insert can fail safely, so no
2452 			 * need to call radix_tree_preload()
2453 			 */
2454 			ret = radix_tree_insert(
2455 				&log->big_stripe_tree, tree_index,
2456 				(void *)(1 << R5C_RADIX_COUNT_SHIFT));
2457 			if (ret) {
2458 				spin_unlock(&log->tree_lock);
2459 				r5c_make_stripe_write_out(sh);
2460 				return -EAGAIN;
2461 			}
2462 		}
2463 		spin_unlock(&log->tree_lock);
2464 
2465 		/*
2466 		 * set STRIPE_R5C_PARTIAL_STRIPE, this shows the stripe is
2467 		 * counted in the radix tree
2468 		 */
2469 		set_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state);
2470 		atomic_inc(&conf->r5c_cached_partial_stripes);
2471 	}
2472 
2473 	for (i = disks; i--; ) {
2474 		dev = &sh->dev[i];
2475 		if (dev->towrite) {
2476 			set_bit(R5_Wantwrite, &dev->flags);
2477 			set_bit(R5_Wantdrain, &dev->flags);
2478 			set_bit(R5_LOCKED, &dev->flags);
2479 			to_cache++;
2480 		}
2481 	}
2482 
2483 	if (to_cache) {
2484 		set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2485 		/*
2486 		 * set STRIPE_LOG_TRAPPED, which triggers r5c_cache_data()
2487 		 * in ops_run_io(). STRIPE_LOG_TRAPPED will be cleared in
2488 		 * r5c_handle_data_cached()
2489 		 */
2490 		set_bit(STRIPE_LOG_TRAPPED, &sh->state);
2491 	}
2492 
2493 	return 0;
2494 }
2495 
2496 /*
2497  * free extra pages (orig_page) we allocated for prexor
2498  */
2499 void r5c_release_extra_page(struct stripe_head *sh)
2500 {
2501 	struct r5conf *conf = sh->raid_conf;
2502 	int i;
2503 	bool using_disk_info_extra_page;
2504 
2505 	using_disk_info_extra_page =
2506 		sh->dev[0].orig_page == conf->disks[0].extra_page;
2507 
2508 	for (i = sh->disks; i--; )
2509 		if (sh->dev[i].page != sh->dev[i].orig_page) {
2510 			struct page *p = sh->dev[i].orig_page;
2511 
2512 			sh->dev[i].orig_page = sh->dev[i].page;
2513 			clear_bit(R5_OrigPageUPTDODATE, &sh->dev[i].flags);
2514 
2515 			if (!using_disk_info_extra_page)
2516 				put_page(p);
2517 		}
2518 
2519 	if (using_disk_info_extra_page) {
2520 		clear_bit(R5C_EXTRA_PAGE_IN_USE, &conf->cache_state);
2521 		md_wakeup_thread(conf->mddev->thread);
2522 	}
2523 }
2524 
2525 void r5c_use_extra_page(struct stripe_head *sh)
2526 {
2527 	struct r5conf *conf = sh->raid_conf;
2528 	int i;
2529 	struct r5dev *dev;
2530 
2531 	for (i = sh->disks; i--; ) {
2532 		dev = &sh->dev[i];
2533 		if (dev->orig_page != dev->page)
2534 			put_page(dev->orig_page);
2535 		dev->orig_page = conf->disks[i].extra_page;
2536 	}
2537 }
2538 
2539 /*
2540  * clean up the stripe (clear R5_InJournal for dev[pd_idx] etc.) after the
2541  * stripe is committed to RAID disks.
2542  */
2543 void r5c_finish_stripe_write_out(struct r5conf *conf,
2544 				 struct stripe_head *sh,
2545 				 struct stripe_head_state *s)
2546 {
2547 	struct r5l_log *log = conf->log;
2548 	int i;
2549 	int do_wakeup = 0;
2550 	sector_t tree_index;
2551 	void **pslot;
2552 	uintptr_t refcount;
2553 
2554 	if (!log || !test_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags))
2555 		return;
2556 
2557 	WARN_ON(test_bit(STRIPE_R5C_CACHING, &sh->state));
2558 	clear_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags);
2559 
2560 	if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH)
2561 		return;
2562 
2563 	for (i = sh->disks; i--; ) {
2564 		clear_bit(R5_InJournal, &sh->dev[i].flags);
2565 		if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2566 			do_wakeup = 1;
2567 	}
2568 
2569 	/*
2570 	 * analyse_stripe() runs before r5c_finish_stripe_write_out(),
2571 	 * We updated R5_InJournal, so we also update s->injournal.
2572 	 */
2573 	s->injournal = 0;
2574 
2575 	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2576 		if (atomic_dec_and_test(&conf->pending_full_writes))
2577 			md_wakeup_thread(conf->mddev->thread);
2578 
2579 	if (do_wakeup)
2580 		wake_up(&conf->wait_for_overlap);
2581 
2582 	spin_lock_irq(&log->stripe_in_journal_lock);
2583 	list_del_init(&sh->r5c);
2584 	spin_unlock_irq(&log->stripe_in_journal_lock);
2585 	sh->log_start = MaxSector;
2586 
2587 	atomic_dec(&log->stripe_in_journal_count);
2588 	r5c_update_log_state(log);
2589 
2590 	/* stop counting this stripe in big_stripe_tree */
2591 	if (test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) ||
2592 	    test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) {
2593 		tree_index = r5c_tree_index(conf, sh->sector);
2594 		spin_lock(&log->tree_lock);
2595 		pslot = radix_tree_lookup_slot(&log->big_stripe_tree,
2596 					       tree_index);
2597 		BUG_ON(pslot == NULL);
2598 		refcount = (uintptr_t)radix_tree_deref_slot_protected(
2599 			pslot, &log->tree_lock) >>
2600 			R5C_RADIX_COUNT_SHIFT;
2601 		if (refcount == 1)
2602 			radix_tree_delete(&log->big_stripe_tree, tree_index);
2603 		else
2604 			radix_tree_replace_slot(
2605 				&log->big_stripe_tree, pslot,
2606 				(void *)((refcount - 1) << R5C_RADIX_COUNT_SHIFT));
2607 		spin_unlock(&log->tree_lock);
2608 	}
2609 
2610 	if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) {
2611 		BUG_ON(atomic_read(&conf->r5c_cached_partial_stripes) == 0);
2612 		atomic_dec(&conf->r5c_flushing_partial_stripes);
2613 		atomic_dec(&conf->r5c_cached_partial_stripes);
2614 	}
2615 
2616 	if (test_and_clear_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) {
2617 		BUG_ON(atomic_read(&conf->r5c_cached_full_stripes) == 0);
2618 		atomic_dec(&conf->r5c_flushing_full_stripes);
2619 		atomic_dec(&conf->r5c_cached_full_stripes);
2620 	}
2621 }
2622 
2623 int
2624 r5c_cache_data(struct r5l_log *log, struct stripe_head *sh,
2625 	       struct stripe_head_state *s)
2626 {
2627 	struct r5conf *conf = sh->raid_conf;
2628 	int pages = 0;
2629 	int reserve;
2630 	int i;
2631 	int ret = 0;
2632 
2633 	BUG_ON(!log);
2634 
2635 	for (i = 0; i < sh->disks; i++) {
2636 		void *addr;
2637 
2638 		if (!test_bit(R5_Wantwrite, &sh->dev[i].flags))
2639 			continue;
2640 		addr = kmap_atomic(sh->dev[i].page);
2641 		sh->dev[i].log_checksum = crc32c_le(log->uuid_checksum,
2642 						    addr, PAGE_SIZE);
2643 		kunmap_atomic(addr);
2644 		pages++;
2645 	}
2646 	WARN_ON(pages == 0);
2647 
2648 	/*
2649 	 * The stripe must enter state machine again to call endio, so
2650 	 * don't delay.
2651 	 */
2652 	clear_bit(STRIPE_DELAYED, &sh->state);
2653 	atomic_inc(&sh->count);
2654 
2655 	mutex_lock(&log->io_mutex);
2656 	/* meta + data */
2657 	reserve = (1 + pages) << (PAGE_SHIFT - 9);
2658 
2659 	if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) &&
2660 	    sh->log_start == MaxSector)
2661 		r5l_add_no_space_stripe(log, sh);
2662 	else if (!r5l_has_free_space(log, reserve)) {
2663 		if (sh->log_start == log->last_checkpoint)
2664 			BUG();
2665 		else
2666 			r5l_add_no_space_stripe(log, sh);
2667 	} else {
2668 		ret = r5l_log_stripe(log, sh, pages, 0);
2669 		if (ret) {
2670 			spin_lock_irq(&log->io_list_lock);
2671 			list_add_tail(&sh->log_list, &log->no_mem_stripes);
2672 			spin_unlock_irq(&log->io_list_lock);
2673 		}
2674 	}
2675 
2676 	mutex_unlock(&log->io_mutex);
2677 	return 0;
2678 }
2679 
2680 /* check whether this big stripe is in write back cache. */
2681 bool r5c_big_stripe_cached(struct r5conf *conf, sector_t sect)
2682 {
2683 	struct r5l_log *log = conf->log;
2684 	sector_t tree_index;
2685 	void *slot;
2686 
2687 	if (!log)
2688 		return false;
2689 
2690 	WARN_ON_ONCE(!rcu_read_lock_held());
2691 	tree_index = r5c_tree_index(conf, sect);
2692 	slot = radix_tree_lookup(&log->big_stripe_tree, tree_index);
2693 	return slot != NULL;
2694 }
2695 
2696 static int r5l_load_log(struct r5l_log *log)
2697 {
2698 	struct md_rdev *rdev = log->rdev;
2699 	struct page *page;
2700 	struct r5l_meta_block *mb;
2701 	sector_t cp = log->rdev->journal_tail;
2702 	u32 stored_crc, expected_crc;
2703 	bool create_super = false;
2704 	int ret = 0;
2705 
2706 	/* Make sure it's valid */
2707 	if (cp >= rdev->sectors || round_down(cp, BLOCK_SECTORS) != cp)
2708 		cp = 0;
2709 	page = alloc_page(GFP_KERNEL);
2710 	if (!page)
2711 		return -ENOMEM;
2712 
2713 	if (!sync_page_io(rdev, cp, PAGE_SIZE, page, REQ_OP_READ, 0, false)) {
2714 		ret = -EIO;
2715 		goto ioerr;
2716 	}
2717 	mb = page_address(page);
2718 
2719 	if (le32_to_cpu(mb->magic) != R5LOG_MAGIC ||
2720 	    mb->version != R5LOG_VERSION) {
2721 		create_super = true;
2722 		goto create;
2723 	}
2724 	stored_crc = le32_to_cpu(mb->checksum);
2725 	mb->checksum = 0;
2726 	expected_crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE);
2727 	if (stored_crc != expected_crc) {
2728 		create_super = true;
2729 		goto create;
2730 	}
2731 	if (le64_to_cpu(mb->position) != cp) {
2732 		create_super = true;
2733 		goto create;
2734 	}
2735 create:
2736 	if (create_super) {
2737 		log->last_cp_seq = prandom_u32();
2738 		cp = 0;
2739 		r5l_log_write_empty_meta_block(log, cp, log->last_cp_seq);
2740 		/*
2741 		 * Make sure super points to correct address. Log might have
2742 		 * data very soon. If super hasn't correct log tail address,
2743 		 * recovery can't find the log
2744 		 */
2745 		r5l_write_super(log, cp);
2746 	} else
2747 		log->last_cp_seq = le64_to_cpu(mb->seq);
2748 
2749 	log->device_size = round_down(rdev->sectors, BLOCK_SECTORS);
2750 	log->max_free_space = log->device_size >> RECLAIM_MAX_FREE_SPACE_SHIFT;
2751 	if (log->max_free_space > RECLAIM_MAX_FREE_SPACE)
2752 		log->max_free_space = RECLAIM_MAX_FREE_SPACE;
2753 	log->last_checkpoint = cp;
2754 
2755 	__free_page(page);
2756 
2757 	if (create_super) {
2758 		log->log_start = r5l_ring_add(log, cp, BLOCK_SECTORS);
2759 		log->seq = log->last_cp_seq + 1;
2760 		log->next_checkpoint = cp;
2761 	} else
2762 		ret = r5l_recovery_log(log);
2763 
2764 	r5c_update_log_state(log);
2765 	return ret;
2766 ioerr:
2767 	__free_page(page);
2768 	return ret;
2769 }
2770 
2771 void r5c_update_on_rdev_error(struct mddev *mddev)
2772 {
2773 	struct r5conf *conf = mddev->private;
2774 	struct r5l_log *log = conf->log;
2775 
2776 	if (!log)
2777 		return;
2778 
2779 	if (raid5_calc_degraded(conf) > 0 &&
2780 	    conf->log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_BACK)
2781 		schedule_work(&log->disable_writeback_work);
2782 }
2783 
2784 int r5l_init_log(struct r5conf *conf, struct md_rdev *rdev)
2785 {
2786 	struct request_queue *q = bdev_get_queue(rdev->bdev);
2787 	struct r5l_log *log;
2788 
2789 	if (PAGE_SIZE != 4096)
2790 		return -EINVAL;
2791 
2792 	/*
2793 	 * The PAGE_SIZE must be big enough to hold 1 r5l_meta_block and
2794 	 * raid_disks r5l_payload_data_parity.
2795 	 *
2796 	 * Write journal and cache does not work for very big array
2797 	 * (raid_disks > 203)
2798 	 */
2799 	if (sizeof(struct r5l_meta_block) +
2800 	    ((sizeof(struct r5l_payload_data_parity) + sizeof(__le32)) *
2801 	     conf->raid_disks) > PAGE_SIZE) {
2802 		pr_err("md/raid:%s: write journal/cache doesn't work for array with %d disks\n",
2803 		       mdname(conf->mddev), conf->raid_disks);
2804 		return -EINVAL;
2805 	}
2806 
2807 	log = kzalloc(sizeof(*log), GFP_KERNEL);
2808 	if (!log)
2809 		return -ENOMEM;
2810 	log->rdev = rdev;
2811 
2812 	log->need_cache_flush = test_bit(QUEUE_FLAG_WC, &q->queue_flags) != 0;
2813 
2814 	log->uuid_checksum = crc32c_le(~0, rdev->mddev->uuid,
2815 				       sizeof(rdev->mddev->uuid));
2816 
2817 	mutex_init(&log->io_mutex);
2818 
2819 	spin_lock_init(&log->io_list_lock);
2820 	INIT_LIST_HEAD(&log->running_ios);
2821 	INIT_LIST_HEAD(&log->io_end_ios);
2822 	INIT_LIST_HEAD(&log->flushing_ios);
2823 	INIT_LIST_HEAD(&log->finished_ios);
2824 	bio_init(&log->flush_bio, NULL, 0);
2825 
2826 	log->io_kc = KMEM_CACHE(r5l_io_unit, 0);
2827 	if (!log->io_kc)
2828 		goto io_kc;
2829 
2830 	log->io_pool = mempool_create_slab_pool(R5L_POOL_SIZE, log->io_kc);
2831 	if (!log->io_pool)
2832 		goto io_pool;
2833 
2834 	log->bs = bioset_create(R5L_POOL_SIZE, 0);
2835 	if (!log->bs)
2836 		goto io_bs;
2837 
2838 	log->meta_pool = mempool_create_page_pool(R5L_POOL_SIZE, 0);
2839 	if (!log->meta_pool)
2840 		goto out_mempool;
2841 
2842 	spin_lock_init(&log->tree_lock);
2843 	INIT_RADIX_TREE(&log->big_stripe_tree, GFP_NOWAIT | __GFP_NOWARN);
2844 
2845 	log->reclaim_thread = md_register_thread(r5l_reclaim_thread,
2846 						 log->rdev->mddev, "reclaim");
2847 	if (!log->reclaim_thread)
2848 		goto reclaim_thread;
2849 	log->reclaim_thread->timeout = R5C_RECLAIM_WAKEUP_INTERVAL;
2850 
2851 	init_waitqueue_head(&log->iounit_wait);
2852 
2853 	INIT_LIST_HEAD(&log->no_mem_stripes);
2854 
2855 	INIT_LIST_HEAD(&log->no_space_stripes);
2856 	spin_lock_init(&log->no_space_stripes_lock);
2857 
2858 	INIT_WORK(&log->deferred_io_work, r5l_submit_io_async);
2859 	INIT_WORK(&log->disable_writeback_work, r5c_disable_writeback_async);
2860 
2861 	log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_THROUGH;
2862 	INIT_LIST_HEAD(&log->stripe_in_journal_list);
2863 	spin_lock_init(&log->stripe_in_journal_lock);
2864 	atomic_set(&log->stripe_in_journal_count, 0);
2865 
2866 	rcu_assign_pointer(conf->log, log);
2867 
2868 	if (r5l_load_log(log))
2869 		goto error;
2870 
2871 	set_bit(MD_HAS_JOURNAL, &conf->mddev->flags);
2872 	return 0;
2873 
2874 error:
2875 	rcu_assign_pointer(conf->log, NULL);
2876 	md_unregister_thread(&log->reclaim_thread);
2877 reclaim_thread:
2878 	mempool_destroy(log->meta_pool);
2879 out_mempool:
2880 	bioset_free(log->bs);
2881 io_bs:
2882 	mempool_destroy(log->io_pool);
2883 io_pool:
2884 	kmem_cache_destroy(log->io_kc);
2885 io_kc:
2886 	kfree(log);
2887 	return -EINVAL;
2888 }
2889 
2890 void r5l_exit_log(struct r5l_log *log)
2891 {
2892 	flush_work(&log->disable_writeback_work);
2893 	md_unregister_thread(&log->reclaim_thread);
2894 	mempool_destroy(log->meta_pool);
2895 	bioset_free(log->bs);
2896 	mempool_destroy(log->io_pool);
2897 	kmem_cache_destroy(log->io_kc);
2898 	kfree(log);
2899 }
2900