1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2015 Shaohua Li <shli@fb.com>
4 * Copyright (C) 2016 Song Liu <songliubraving@fb.com>
5 */
6 #include <linux/kernel.h>
7 #include <linux/wait.h>
8 #include <linux/blkdev.h>
9 #include <linux/slab.h>
10 #include <linux/raid/md_p.h>
11 #include <linux/crc32c.h>
12 #include <linux/random.h>
13 #include <linux/kthread.h>
14 #include <linux/types.h>
15 #include "md.h"
16 #include "raid5.h"
17 #include "md-bitmap.h"
18 #include "raid5-log.h"
19
20 /*
21 * metadata/data stored in disk with 4k size unit (a block) regardless
22 * underneath hardware sector size. only works with PAGE_SIZE == 4096
23 */
24 #define BLOCK_SECTORS (8)
25 #define BLOCK_SECTOR_SHIFT (3)
26
27 /*
28 * log->max_free_space is min(1/4 disk size, 10G reclaimable space).
29 *
30 * In write through mode, the reclaim runs every log->max_free_space.
31 * This can prevent the recovery scans for too long
32 */
33 #define RECLAIM_MAX_FREE_SPACE (10 * 1024 * 1024 * 2) /* sector */
34 #define RECLAIM_MAX_FREE_SPACE_SHIFT (2)
35
36 /* wake up reclaim thread periodically */
37 #define R5C_RECLAIM_WAKEUP_INTERVAL (30 * HZ)
38 /* start flush with these full stripes */
39 #define R5C_FULL_STRIPE_FLUSH_BATCH(conf) (conf->max_nr_stripes / 4)
40 /* reclaim stripes in groups */
41 #define R5C_RECLAIM_STRIPE_GROUP (NR_STRIPE_HASH_LOCKS * 2)
42
43 /*
44 * We only need 2 bios per I/O unit to make progress, but ensure we
45 * have a few more available to not get too tight.
46 */
47 #define R5L_POOL_SIZE 4
48
49 static char *r5c_journal_mode_str[] = {"write-through",
50 "write-back"};
51 /*
52 * raid5 cache state machine
53 *
54 * With the RAID cache, each stripe works in two phases:
55 * - caching phase
56 * - writing-out phase
57 *
58 * These two phases are controlled by bit STRIPE_R5C_CACHING:
59 * if STRIPE_R5C_CACHING == 0, the stripe is in writing-out phase
60 * if STRIPE_R5C_CACHING == 1, the stripe is in caching phase
61 *
62 * When there is no journal, or the journal is in write-through mode,
63 * the stripe is always in writing-out phase.
64 *
65 * For write-back journal, the stripe is sent to caching phase on write
66 * (r5c_try_caching_write). r5c_make_stripe_write_out() kicks off
67 * the write-out phase by clearing STRIPE_R5C_CACHING.
68 *
69 * Stripes in caching phase do not write the raid disks. Instead, all
70 * writes are committed from the log device. Therefore, a stripe in
71 * caching phase handles writes as:
72 * - write to log device
73 * - return IO
74 *
75 * Stripes in writing-out phase handle writes as:
76 * - calculate parity
77 * - write pending data and parity to journal
78 * - write data and parity to raid disks
79 * - return IO for pending writes
80 */
81
82 struct r5l_log {
83 struct md_rdev *rdev;
84
85 u32 uuid_checksum;
86
87 sector_t device_size; /* log device size, round to
88 * BLOCK_SECTORS */
89 sector_t max_free_space; /* reclaim run if free space is at
90 * this size */
91
92 sector_t last_checkpoint; /* log tail. where recovery scan
93 * starts from */
94 u64 last_cp_seq; /* log tail sequence */
95
96 sector_t log_start; /* log head. where new data appends */
97 u64 seq; /* log head sequence */
98
99 sector_t next_checkpoint;
100
101 struct mutex io_mutex;
102 struct r5l_io_unit *current_io; /* current io_unit accepting new data */
103
104 spinlock_t io_list_lock;
105 struct list_head running_ios; /* io_units which are still running,
106 * and have not yet been completely
107 * written to the log */
108 struct list_head io_end_ios; /* io_units which have been completely
109 * written to the log but not yet written
110 * to the RAID */
111 struct list_head flushing_ios; /* io_units which are waiting for log
112 * cache flush */
113 struct list_head finished_ios; /* io_units which settle down in log disk */
114 struct bio flush_bio;
115
116 struct list_head no_mem_stripes; /* pending stripes, -ENOMEM */
117
118 struct kmem_cache *io_kc;
119 mempool_t io_pool;
120 struct bio_set bs;
121 mempool_t meta_pool;
122
123 struct md_thread __rcu *reclaim_thread;
124 unsigned long reclaim_target; /* number of space that need to be
125 * reclaimed. if it's 0, reclaim spaces
126 * used by io_units which are in
127 * IO_UNIT_STRIPE_END state (eg, reclaim
128 * doesn't wait for specific io_unit
129 * switching to IO_UNIT_STRIPE_END
130 * state) */
131 wait_queue_head_t iounit_wait;
132
133 struct list_head no_space_stripes; /* pending stripes, log has no space */
134 spinlock_t no_space_stripes_lock;
135
136 bool need_cache_flush;
137
138 /* for r5c_cache */
139 enum r5c_journal_mode r5c_journal_mode;
140
141 /* all stripes in r5cache, in the order of seq at sh->log_start */
142 struct list_head stripe_in_journal_list;
143
144 spinlock_t stripe_in_journal_lock;
145 atomic_t stripe_in_journal_count;
146
147 /* to submit async io_units, to fulfill ordering of flush */
148 struct work_struct deferred_io_work;
149 /* to disable write back during in degraded mode */
150 struct work_struct disable_writeback_work;
151
152 /* to for chunk_aligned_read in writeback mode, details below */
153 spinlock_t tree_lock;
154 struct radix_tree_root big_stripe_tree;
155 };
156
157 /*
158 * Enable chunk_aligned_read() with write back cache.
159 *
160 * Each chunk may contain more than one stripe (for example, a 256kB
161 * chunk contains 64 4kB-page, so this chunk contain 64 stripes). For
162 * chunk_aligned_read, these stripes are grouped into one "big_stripe".
163 * For each big_stripe, we count how many stripes of this big_stripe
164 * are in the write back cache. These data are tracked in a radix tree
165 * (big_stripe_tree). We use radix_tree item pointer as the counter.
166 * r5c_tree_index() is used to calculate keys for the radix tree.
167 *
168 * chunk_aligned_read() calls r5c_big_stripe_cached() to look up
169 * big_stripe of each chunk in the tree. If this big_stripe is in the
170 * tree, chunk_aligned_read() aborts. This look up is protected by
171 * rcu_read_lock().
172 *
173 * It is necessary to remember whether a stripe is counted in
174 * big_stripe_tree. Instead of adding new flag, we reuses existing flags:
175 * STRIPE_R5C_PARTIAL_STRIPE and STRIPE_R5C_FULL_STRIPE. If either of these
176 * two flags are set, the stripe is counted in big_stripe_tree. This
177 * requires moving set_bit(STRIPE_R5C_PARTIAL_STRIPE) to
178 * r5c_try_caching_write(); and moving clear_bit of
179 * STRIPE_R5C_PARTIAL_STRIPE and STRIPE_R5C_FULL_STRIPE to
180 * r5c_finish_stripe_write_out().
181 */
182
183 /*
184 * radix tree requests lowest 2 bits of data pointer to be 2b'00.
185 * So it is necessary to left shift the counter by 2 bits before using it
186 * as data pointer of the tree.
187 */
188 #define R5C_RADIX_COUNT_SHIFT 2
189
190 /*
191 * calculate key for big_stripe_tree
192 *
193 * sect: align_bi->bi_iter.bi_sector or sh->sector
194 */
r5c_tree_index(struct r5conf * conf,sector_t sect)195 static inline sector_t r5c_tree_index(struct r5conf *conf,
196 sector_t sect)
197 {
198 sector_div(sect, conf->chunk_sectors);
199 return sect;
200 }
201
202 /*
203 * an IO range starts from a meta data block and end at the next meta data
204 * block. The io unit's the meta data block tracks data/parity followed it. io
205 * unit is written to log disk with normal write, as we always flush log disk
206 * first and then start move data to raid disks, there is no requirement to
207 * write io unit with FLUSH/FUA
208 */
209 struct r5l_io_unit {
210 struct r5l_log *log;
211
212 struct page *meta_page; /* store meta block */
213 int meta_offset; /* current offset in meta_page */
214
215 struct bio *current_bio;/* current_bio accepting new data */
216
217 atomic_t pending_stripe;/* how many stripes not flushed to raid */
218 u64 seq; /* seq number of the metablock */
219 sector_t log_start; /* where the io_unit starts */
220 sector_t log_end; /* where the io_unit ends */
221 struct list_head log_sibling; /* log->running_ios */
222 struct list_head stripe_list; /* stripes added to the io_unit */
223
224 int state;
225 bool need_split_bio;
226 struct bio *split_bio;
227
228 unsigned int has_flush:1; /* include flush request */
229 unsigned int has_fua:1; /* include fua request */
230 unsigned int has_null_flush:1; /* include null flush request */
231 unsigned int has_flush_payload:1; /* include flush payload */
232 /*
233 * io isn't sent yet, flush/fua request can only be submitted till it's
234 * the first IO in running_ios list
235 */
236 unsigned int io_deferred:1;
237
238 struct bio_list flush_barriers; /* size == 0 flush bios */
239 };
240
241 /* r5l_io_unit state */
242 enum r5l_io_unit_state {
243 IO_UNIT_RUNNING = 0, /* accepting new IO */
244 IO_UNIT_IO_START = 1, /* io_unit bio start writing to log,
245 * don't accepting new bio */
246 IO_UNIT_IO_END = 2, /* io_unit bio finish writing to log */
247 IO_UNIT_STRIPE_END = 3, /* stripes data finished writing to raid */
248 };
249
r5c_is_writeback(struct r5l_log * log)250 bool r5c_is_writeback(struct r5l_log *log)
251 {
252 return (log != NULL &&
253 log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_BACK);
254 }
255
r5l_ring_add(struct r5l_log * log,sector_t start,sector_t inc)256 static sector_t r5l_ring_add(struct r5l_log *log, sector_t start, sector_t inc)
257 {
258 start += inc;
259 if (start >= log->device_size)
260 start = start - log->device_size;
261 return start;
262 }
263
r5l_ring_distance(struct r5l_log * log,sector_t start,sector_t end)264 static sector_t r5l_ring_distance(struct r5l_log *log, sector_t start,
265 sector_t end)
266 {
267 if (end >= start)
268 return end - start;
269 else
270 return end + log->device_size - start;
271 }
272
r5l_has_free_space(struct r5l_log * log,sector_t size)273 static bool r5l_has_free_space(struct r5l_log *log, sector_t size)
274 {
275 sector_t used_size;
276
277 used_size = r5l_ring_distance(log, log->last_checkpoint,
278 log->log_start);
279
280 return log->device_size > used_size + size;
281 }
282
__r5l_set_io_unit_state(struct r5l_io_unit * io,enum r5l_io_unit_state state)283 static void __r5l_set_io_unit_state(struct r5l_io_unit *io,
284 enum r5l_io_unit_state state)
285 {
286 if (WARN_ON(io->state >= state))
287 return;
288 io->state = state;
289 }
290
291 static void
r5c_return_dev_pending_writes(struct r5conf * conf,struct r5dev * dev)292 r5c_return_dev_pending_writes(struct r5conf *conf, struct r5dev *dev)
293 {
294 struct bio *wbi, *wbi2;
295
296 wbi = dev->written;
297 dev->written = NULL;
298 while (wbi && wbi->bi_iter.bi_sector <
299 dev->sector + RAID5_STRIPE_SECTORS(conf)) {
300 wbi2 = r5_next_bio(conf, wbi, dev->sector);
301 md_write_end(conf->mddev);
302 bio_endio(wbi);
303 wbi = wbi2;
304 }
305 }
306
r5c_handle_cached_data_endio(struct r5conf * conf,struct stripe_head * sh,int disks)307 void r5c_handle_cached_data_endio(struct r5conf *conf,
308 struct stripe_head *sh, int disks)
309 {
310 int i;
311
312 for (i = sh->disks; i--; ) {
313 if (sh->dev[i].written) {
314 set_bit(R5_UPTODATE, &sh->dev[i].flags);
315 r5c_return_dev_pending_writes(conf, &sh->dev[i]);
316 md_bitmap_endwrite(conf->mddev->bitmap, sh->sector,
317 RAID5_STRIPE_SECTORS(conf),
318 !test_bit(STRIPE_DEGRADED, &sh->state),
319 0);
320 }
321 }
322 }
323
324 void r5l_wake_reclaim(struct r5l_log *log, sector_t space);
325
326 /* Check whether we should flush some stripes to free up stripe cache */
r5c_check_stripe_cache_usage(struct r5conf * conf)327 void r5c_check_stripe_cache_usage(struct r5conf *conf)
328 {
329 int total_cached;
330 struct r5l_log *log = READ_ONCE(conf->log);
331
332 if (!r5c_is_writeback(log))
333 return;
334
335 total_cached = atomic_read(&conf->r5c_cached_partial_stripes) +
336 atomic_read(&conf->r5c_cached_full_stripes);
337
338 /*
339 * The following condition is true for either of the following:
340 * - stripe cache pressure high:
341 * total_cached > 3/4 min_nr_stripes ||
342 * empty_inactive_list_nr > 0
343 * - stripe cache pressure moderate:
344 * total_cached > 1/2 min_nr_stripes
345 */
346 if (total_cached > conf->min_nr_stripes * 1 / 2 ||
347 atomic_read(&conf->empty_inactive_list_nr) > 0)
348 r5l_wake_reclaim(log, 0);
349 }
350
351 /*
352 * flush cache when there are R5C_FULL_STRIPE_FLUSH_BATCH or more full
353 * stripes in the cache
354 */
r5c_check_cached_full_stripe(struct r5conf * conf)355 void r5c_check_cached_full_stripe(struct r5conf *conf)
356 {
357 struct r5l_log *log = READ_ONCE(conf->log);
358
359 if (!r5c_is_writeback(log))
360 return;
361
362 /*
363 * wake up reclaim for R5C_FULL_STRIPE_FLUSH_BATCH cached stripes
364 * or a full stripe (chunk size / 4k stripes).
365 */
366 if (atomic_read(&conf->r5c_cached_full_stripes) >=
367 min(R5C_FULL_STRIPE_FLUSH_BATCH(conf),
368 conf->chunk_sectors >> RAID5_STRIPE_SHIFT(conf)))
369 r5l_wake_reclaim(log, 0);
370 }
371
372 /*
373 * Total log space (in sectors) needed to flush all data in cache
374 *
375 * To avoid deadlock due to log space, it is necessary to reserve log
376 * space to flush critical stripes (stripes that occupying log space near
377 * last_checkpoint). This function helps check how much log space is
378 * required to flush all cached stripes.
379 *
380 * To reduce log space requirements, two mechanisms are used to give cache
381 * flush higher priorities:
382 * 1. In handle_stripe_dirtying() and schedule_reconstruction(),
383 * stripes ALREADY in journal can be flushed w/o pending writes;
384 * 2. In r5l_write_stripe() and r5c_cache_data(), stripes NOT in journal
385 * can be delayed (r5l_add_no_space_stripe).
386 *
387 * In cache flush, the stripe goes through 1 and then 2. For a stripe that
388 * already passed 1, flushing it requires at most (conf->max_degraded + 1)
389 * pages of journal space. For stripes that has not passed 1, flushing it
390 * requires (conf->raid_disks + 1) pages of journal space. There are at
391 * most (conf->group_cnt + 1) stripe that passed 1. So total journal space
392 * required to flush all cached stripes (in pages) is:
393 *
394 * (stripe_in_journal_count - group_cnt - 1) * (max_degraded + 1) +
395 * (group_cnt + 1) * (raid_disks + 1)
396 * or
397 * (stripe_in_journal_count) * (max_degraded + 1) +
398 * (group_cnt + 1) * (raid_disks - max_degraded)
399 */
r5c_log_required_to_flush_cache(struct r5conf * conf)400 static sector_t r5c_log_required_to_flush_cache(struct r5conf *conf)
401 {
402 struct r5l_log *log = READ_ONCE(conf->log);
403
404 if (!r5c_is_writeback(log))
405 return 0;
406
407 return BLOCK_SECTORS *
408 ((conf->max_degraded + 1) * atomic_read(&log->stripe_in_journal_count) +
409 (conf->raid_disks - conf->max_degraded) * (conf->group_cnt + 1));
410 }
411
412 /*
413 * evaluate log space usage and update R5C_LOG_TIGHT and R5C_LOG_CRITICAL
414 *
415 * R5C_LOG_TIGHT is set when free space on the log device is less than 3x of
416 * reclaim_required_space. R5C_LOG_CRITICAL is set when free space on the log
417 * device is less than 2x of reclaim_required_space.
418 */
r5c_update_log_state(struct r5l_log * log)419 static inline void r5c_update_log_state(struct r5l_log *log)
420 {
421 struct r5conf *conf = log->rdev->mddev->private;
422 sector_t free_space;
423 sector_t reclaim_space;
424 bool wake_reclaim = false;
425
426 if (!r5c_is_writeback(log))
427 return;
428
429 free_space = r5l_ring_distance(log, log->log_start,
430 log->last_checkpoint);
431 reclaim_space = r5c_log_required_to_flush_cache(conf);
432 if (free_space < 2 * reclaim_space)
433 set_bit(R5C_LOG_CRITICAL, &conf->cache_state);
434 else {
435 if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state))
436 wake_reclaim = true;
437 clear_bit(R5C_LOG_CRITICAL, &conf->cache_state);
438 }
439 if (free_space < 3 * reclaim_space)
440 set_bit(R5C_LOG_TIGHT, &conf->cache_state);
441 else
442 clear_bit(R5C_LOG_TIGHT, &conf->cache_state);
443
444 if (wake_reclaim)
445 r5l_wake_reclaim(log, 0);
446 }
447
448 /*
449 * Put the stripe into writing-out phase by clearing STRIPE_R5C_CACHING.
450 * This function should only be called in write-back mode.
451 */
r5c_make_stripe_write_out(struct stripe_head * sh)452 void r5c_make_stripe_write_out(struct stripe_head *sh)
453 {
454 struct r5conf *conf = sh->raid_conf;
455 struct r5l_log *log = READ_ONCE(conf->log);
456
457 BUG_ON(!r5c_is_writeback(log));
458
459 WARN_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state));
460 clear_bit(STRIPE_R5C_CACHING, &sh->state);
461
462 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
463 atomic_inc(&conf->preread_active_stripes);
464 }
465
r5c_handle_data_cached(struct stripe_head * sh)466 static void r5c_handle_data_cached(struct stripe_head *sh)
467 {
468 int i;
469
470 for (i = sh->disks; i--; )
471 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
472 set_bit(R5_InJournal, &sh->dev[i].flags);
473 clear_bit(R5_LOCKED, &sh->dev[i].flags);
474 }
475 clear_bit(STRIPE_LOG_TRAPPED, &sh->state);
476 }
477
478 /*
479 * this journal write must contain full parity,
480 * it may also contain some data pages
481 */
r5c_handle_parity_cached(struct stripe_head * sh)482 static void r5c_handle_parity_cached(struct stripe_head *sh)
483 {
484 int i;
485
486 for (i = sh->disks; i--; )
487 if (test_bit(R5_InJournal, &sh->dev[i].flags))
488 set_bit(R5_Wantwrite, &sh->dev[i].flags);
489 }
490
491 /*
492 * Setting proper flags after writing (or flushing) data and/or parity to the
493 * log device. This is called from r5l_log_endio() or r5l_log_flush_endio().
494 */
r5c_finish_cache_stripe(struct stripe_head * sh)495 static void r5c_finish_cache_stripe(struct stripe_head *sh)
496 {
497 struct r5l_log *log = READ_ONCE(sh->raid_conf->log);
498
499 if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) {
500 BUG_ON(test_bit(STRIPE_R5C_CACHING, &sh->state));
501 /*
502 * Set R5_InJournal for parity dev[pd_idx]. This means
503 * all data AND parity in the journal. For RAID 6, it is
504 * NOT necessary to set the flag for dev[qd_idx], as the
505 * two parities are written out together.
506 */
507 set_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags);
508 } else if (test_bit(STRIPE_R5C_CACHING, &sh->state)) {
509 r5c_handle_data_cached(sh);
510 } else {
511 r5c_handle_parity_cached(sh);
512 set_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags);
513 }
514 }
515
r5l_io_run_stripes(struct r5l_io_unit * io)516 static void r5l_io_run_stripes(struct r5l_io_unit *io)
517 {
518 struct stripe_head *sh, *next;
519
520 list_for_each_entry_safe(sh, next, &io->stripe_list, log_list) {
521 list_del_init(&sh->log_list);
522
523 r5c_finish_cache_stripe(sh);
524
525 set_bit(STRIPE_HANDLE, &sh->state);
526 raid5_release_stripe(sh);
527 }
528 }
529
r5l_log_run_stripes(struct r5l_log * log)530 static void r5l_log_run_stripes(struct r5l_log *log)
531 {
532 struct r5l_io_unit *io, *next;
533
534 lockdep_assert_held(&log->io_list_lock);
535
536 list_for_each_entry_safe(io, next, &log->running_ios, log_sibling) {
537 /* don't change list order */
538 if (io->state < IO_UNIT_IO_END)
539 break;
540
541 list_move_tail(&io->log_sibling, &log->finished_ios);
542 r5l_io_run_stripes(io);
543 }
544 }
545
r5l_move_to_end_ios(struct r5l_log * log)546 static void r5l_move_to_end_ios(struct r5l_log *log)
547 {
548 struct r5l_io_unit *io, *next;
549
550 lockdep_assert_held(&log->io_list_lock);
551
552 list_for_each_entry_safe(io, next, &log->running_ios, log_sibling) {
553 /* don't change list order */
554 if (io->state < IO_UNIT_IO_END)
555 break;
556 list_move_tail(&io->log_sibling, &log->io_end_ios);
557 }
558 }
559
560 static void __r5l_stripe_write_finished(struct r5l_io_unit *io);
r5l_log_endio(struct bio * bio)561 static void r5l_log_endio(struct bio *bio)
562 {
563 struct r5l_io_unit *io = bio->bi_private;
564 struct r5l_io_unit *io_deferred;
565 struct r5l_log *log = io->log;
566 unsigned long flags;
567 bool has_null_flush;
568 bool has_flush_payload;
569
570 if (bio->bi_status)
571 md_error(log->rdev->mddev, log->rdev);
572
573 bio_put(bio);
574 mempool_free(io->meta_page, &log->meta_pool);
575
576 spin_lock_irqsave(&log->io_list_lock, flags);
577 __r5l_set_io_unit_state(io, IO_UNIT_IO_END);
578
579 /*
580 * if the io doesn't not have null_flush or flush payload,
581 * it is not safe to access it after releasing io_list_lock.
582 * Therefore, it is necessary to check the condition with
583 * the lock held.
584 */
585 has_null_flush = io->has_null_flush;
586 has_flush_payload = io->has_flush_payload;
587
588 if (log->need_cache_flush && !list_empty(&io->stripe_list))
589 r5l_move_to_end_ios(log);
590 else
591 r5l_log_run_stripes(log);
592 if (!list_empty(&log->running_ios)) {
593 /*
594 * FLUSH/FUA io_unit is deferred because of ordering, now we
595 * can dispatch it
596 */
597 io_deferred = list_first_entry(&log->running_ios,
598 struct r5l_io_unit, log_sibling);
599 if (io_deferred->io_deferred)
600 schedule_work(&log->deferred_io_work);
601 }
602
603 spin_unlock_irqrestore(&log->io_list_lock, flags);
604
605 if (log->need_cache_flush)
606 md_wakeup_thread(log->rdev->mddev->thread);
607
608 /* finish flush only io_unit and PAYLOAD_FLUSH only io_unit */
609 if (has_null_flush) {
610 struct bio *bi;
611
612 WARN_ON(bio_list_empty(&io->flush_barriers));
613 while ((bi = bio_list_pop(&io->flush_barriers)) != NULL) {
614 bio_endio(bi);
615 if (atomic_dec_and_test(&io->pending_stripe)) {
616 __r5l_stripe_write_finished(io);
617 return;
618 }
619 }
620 }
621 /* decrease pending_stripe for flush payload */
622 if (has_flush_payload)
623 if (atomic_dec_and_test(&io->pending_stripe))
624 __r5l_stripe_write_finished(io);
625 }
626
r5l_do_submit_io(struct r5l_log * log,struct r5l_io_unit * io)627 static void r5l_do_submit_io(struct r5l_log *log, struct r5l_io_unit *io)
628 {
629 unsigned long flags;
630
631 spin_lock_irqsave(&log->io_list_lock, flags);
632 __r5l_set_io_unit_state(io, IO_UNIT_IO_START);
633 spin_unlock_irqrestore(&log->io_list_lock, flags);
634
635 /*
636 * In case of journal device failures, submit_bio will get error
637 * and calls endio, then active stripes will continue write
638 * process. Therefore, it is not necessary to check Faulty bit
639 * of journal device here.
640 *
641 * We can't check split_bio after current_bio is submitted. If
642 * io->split_bio is null, after current_bio is submitted, current_bio
643 * might already be completed and the io_unit is freed. We submit
644 * split_bio first to avoid the issue.
645 */
646 if (io->split_bio) {
647 if (io->has_flush)
648 io->split_bio->bi_opf |= REQ_PREFLUSH;
649 if (io->has_fua)
650 io->split_bio->bi_opf |= REQ_FUA;
651 submit_bio(io->split_bio);
652 }
653
654 if (io->has_flush)
655 io->current_bio->bi_opf |= REQ_PREFLUSH;
656 if (io->has_fua)
657 io->current_bio->bi_opf |= REQ_FUA;
658 submit_bio(io->current_bio);
659 }
660
661 /* deferred io_unit will be dispatched here */
r5l_submit_io_async(struct work_struct * work)662 static void r5l_submit_io_async(struct work_struct *work)
663 {
664 struct r5l_log *log = container_of(work, struct r5l_log,
665 deferred_io_work);
666 struct r5l_io_unit *io = NULL;
667 unsigned long flags;
668
669 spin_lock_irqsave(&log->io_list_lock, flags);
670 if (!list_empty(&log->running_ios)) {
671 io = list_first_entry(&log->running_ios, struct r5l_io_unit,
672 log_sibling);
673 if (!io->io_deferred)
674 io = NULL;
675 else
676 io->io_deferred = 0;
677 }
678 spin_unlock_irqrestore(&log->io_list_lock, flags);
679 if (io)
680 r5l_do_submit_io(log, io);
681 }
682
r5c_disable_writeback_async(struct work_struct * work)683 static void r5c_disable_writeback_async(struct work_struct *work)
684 {
685 struct r5l_log *log = container_of(work, struct r5l_log,
686 disable_writeback_work);
687 struct mddev *mddev = log->rdev->mddev;
688 struct r5conf *conf = mddev->private;
689 int locked = 0;
690
691 if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH)
692 return;
693 pr_info("md/raid:%s: Disabling writeback cache for degraded array.\n",
694 mdname(mddev));
695
696 /* wait superblock change before suspend */
697 wait_event(mddev->sb_wait,
698 !READ_ONCE(conf->log) ||
699 (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags) &&
700 (locked = mddev_trylock(mddev))));
701 if (locked) {
702 mddev_suspend(mddev);
703 log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_THROUGH;
704 mddev_resume(mddev);
705 mddev_unlock(mddev);
706 }
707 }
708
r5l_submit_current_io(struct r5l_log * log)709 static void r5l_submit_current_io(struct r5l_log *log)
710 {
711 struct r5l_io_unit *io = log->current_io;
712 struct r5l_meta_block *block;
713 unsigned long flags;
714 u32 crc;
715 bool do_submit = true;
716
717 if (!io)
718 return;
719
720 block = page_address(io->meta_page);
721 block->meta_size = cpu_to_le32(io->meta_offset);
722 crc = crc32c_le(log->uuid_checksum, block, PAGE_SIZE);
723 block->checksum = cpu_to_le32(crc);
724
725 log->current_io = NULL;
726 spin_lock_irqsave(&log->io_list_lock, flags);
727 if (io->has_flush || io->has_fua) {
728 if (io != list_first_entry(&log->running_ios,
729 struct r5l_io_unit, log_sibling)) {
730 io->io_deferred = 1;
731 do_submit = false;
732 }
733 }
734 spin_unlock_irqrestore(&log->io_list_lock, flags);
735 if (do_submit)
736 r5l_do_submit_io(log, io);
737 }
738
r5l_bio_alloc(struct r5l_log * log)739 static struct bio *r5l_bio_alloc(struct r5l_log *log)
740 {
741 struct bio *bio = bio_alloc_bioset(log->rdev->bdev, BIO_MAX_VECS,
742 REQ_OP_WRITE, GFP_NOIO, &log->bs);
743
744 bio->bi_iter.bi_sector = log->rdev->data_offset + log->log_start;
745
746 return bio;
747 }
748
r5_reserve_log_entry(struct r5l_log * log,struct r5l_io_unit * io)749 static void r5_reserve_log_entry(struct r5l_log *log, struct r5l_io_unit *io)
750 {
751 log->log_start = r5l_ring_add(log, log->log_start, BLOCK_SECTORS);
752
753 r5c_update_log_state(log);
754 /*
755 * If we filled up the log device start from the beginning again,
756 * which will require a new bio.
757 *
758 * Note: for this to work properly the log size needs to me a multiple
759 * of BLOCK_SECTORS.
760 */
761 if (log->log_start == 0)
762 io->need_split_bio = true;
763
764 io->log_end = log->log_start;
765 }
766
r5l_new_meta(struct r5l_log * log)767 static struct r5l_io_unit *r5l_new_meta(struct r5l_log *log)
768 {
769 struct r5l_io_unit *io;
770 struct r5l_meta_block *block;
771
772 io = mempool_alloc(&log->io_pool, GFP_ATOMIC);
773 if (!io)
774 return NULL;
775 memset(io, 0, sizeof(*io));
776
777 io->log = log;
778 INIT_LIST_HEAD(&io->log_sibling);
779 INIT_LIST_HEAD(&io->stripe_list);
780 bio_list_init(&io->flush_barriers);
781 io->state = IO_UNIT_RUNNING;
782
783 io->meta_page = mempool_alloc(&log->meta_pool, GFP_NOIO);
784 block = page_address(io->meta_page);
785 clear_page(block);
786 block->magic = cpu_to_le32(R5LOG_MAGIC);
787 block->version = R5LOG_VERSION;
788 block->seq = cpu_to_le64(log->seq);
789 block->position = cpu_to_le64(log->log_start);
790
791 io->log_start = log->log_start;
792 io->meta_offset = sizeof(struct r5l_meta_block);
793 io->seq = log->seq++;
794
795 io->current_bio = r5l_bio_alloc(log);
796 io->current_bio->bi_end_io = r5l_log_endio;
797 io->current_bio->bi_private = io;
798 __bio_add_page(io->current_bio, io->meta_page, PAGE_SIZE, 0);
799
800 r5_reserve_log_entry(log, io);
801
802 spin_lock_irq(&log->io_list_lock);
803 list_add_tail(&io->log_sibling, &log->running_ios);
804 spin_unlock_irq(&log->io_list_lock);
805
806 return io;
807 }
808
r5l_get_meta(struct r5l_log * log,unsigned int payload_size)809 static int r5l_get_meta(struct r5l_log *log, unsigned int payload_size)
810 {
811 if (log->current_io &&
812 log->current_io->meta_offset + payload_size > PAGE_SIZE)
813 r5l_submit_current_io(log);
814
815 if (!log->current_io) {
816 log->current_io = r5l_new_meta(log);
817 if (!log->current_io)
818 return -ENOMEM;
819 }
820
821 return 0;
822 }
823
r5l_append_payload_meta(struct r5l_log * log,u16 type,sector_t location,u32 checksum1,u32 checksum2,bool checksum2_valid)824 static void r5l_append_payload_meta(struct r5l_log *log, u16 type,
825 sector_t location,
826 u32 checksum1, u32 checksum2,
827 bool checksum2_valid)
828 {
829 struct r5l_io_unit *io = log->current_io;
830 struct r5l_payload_data_parity *payload;
831
832 payload = page_address(io->meta_page) + io->meta_offset;
833 payload->header.type = cpu_to_le16(type);
834 payload->header.flags = cpu_to_le16(0);
835 payload->size = cpu_to_le32((1 + !!checksum2_valid) <<
836 (PAGE_SHIFT - 9));
837 payload->location = cpu_to_le64(location);
838 payload->checksum[0] = cpu_to_le32(checksum1);
839 if (checksum2_valid)
840 payload->checksum[1] = cpu_to_le32(checksum2);
841
842 io->meta_offset += sizeof(struct r5l_payload_data_parity) +
843 sizeof(__le32) * (1 + !!checksum2_valid);
844 }
845
r5l_append_payload_page(struct r5l_log * log,struct page * page)846 static void r5l_append_payload_page(struct r5l_log *log, struct page *page)
847 {
848 struct r5l_io_unit *io = log->current_io;
849
850 if (io->need_split_bio) {
851 BUG_ON(io->split_bio);
852 io->split_bio = io->current_bio;
853 io->current_bio = r5l_bio_alloc(log);
854 bio_chain(io->current_bio, io->split_bio);
855 io->need_split_bio = false;
856 }
857
858 if (!bio_add_page(io->current_bio, page, PAGE_SIZE, 0))
859 BUG();
860
861 r5_reserve_log_entry(log, io);
862 }
863
r5l_append_flush_payload(struct r5l_log * log,sector_t sect)864 static void r5l_append_flush_payload(struct r5l_log *log, sector_t sect)
865 {
866 struct mddev *mddev = log->rdev->mddev;
867 struct r5conf *conf = mddev->private;
868 struct r5l_io_unit *io;
869 struct r5l_payload_flush *payload;
870 int meta_size;
871
872 /*
873 * payload_flush requires extra writes to the journal.
874 * To avoid handling the extra IO in quiesce, just skip
875 * flush_payload
876 */
877 if (conf->quiesce)
878 return;
879
880 mutex_lock(&log->io_mutex);
881 meta_size = sizeof(struct r5l_payload_flush) + sizeof(__le64);
882
883 if (r5l_get_meta(log, meta_size)) {
884 mutex_unlock(&log->io_mutex);
885 return;
886 }
887
888 /* current implementation is one stripe per flush payload */
889 io = log->current_io;
890 payload = page_address(io->meta_page) + io->meta_offset;
891 payload->header.type = cpu_to_le16(R5LOG_PAYLOAD_FLUSH);
892 payload->header.flags = cpu_to_le16(0);
893 payload->size = cpu_to_le32(sizeof(__le64));
894 payload->flush_stripes[0] = cpu_to_le64(sect);
895 io->meta_offset += meta_size;
896 /* multiple flush payloads count as one pending_stripe */
897 if (!io->has_flush_payload) {
898 io->has_flush_payload = 1;
899 atomic_inc(&io->pending_stripe);
900 }
901 mutex_unlock(&log->io_mutex);
902 }
903
r5l_log_stripe(struct r5l_log * log,struct stripe_head * sh,int data_pages,int parity_pages)904 static int r5l_log_stripe(struct r5l_log *log, struct stripe_head *sh,
905 int data_pages, int parity_pages)
906 {
907 int i;
908 int meta_size;
909 int ret;
910 struct r5l_io_unit *io;
911
912 meta_size =
913 ((sizeof(struct r5l_payload_data_parity) + sizeof(__le32))
914 * data_pages) +
915 sizeof(struct r5l_payload_data_parity) +
916 sizeof(__le32) * parity_pages;
917
918 ret = r5l_get_meta(log, meta_size);
919 if (ret)
920 return ret;
921
922 io = log->current_io;
923
924 if (test_and_clear_bit(STRIPE_R5C_PREFLUSH, &sh->state))
925 io->has_flush = 1;
926
927 for (i = 0; i < sh->disks; i++) {
928 if (!test_bit(R5_Wantwrite, &sh->dev[i].flags) ||
929 test_bit(R5_InJournal, &sh->dev[i].flags))
930 continue;
931 if (i == sh->pd_idx || i == sh->qd_idx)
932 continue;
933 if (test_bit(R5_WantFUA, &sh->dev[i].flags) &&
934 log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_BACK) {
935 io->has_fua = 1;
936 /*
937 * we need to flush journal to make sure recovery can
938 * reach the data with fua flag
939 */
940 io->has_flush = 1;
941 }
942 r5l_append_payload_meta(log, R5LOG_PAYLOAD_DATA,
943 raid5_compute_blocknr(sh, i, 0),
944 sh->dev[i].log_checksum, 0, false);
945 r5l_append_payload_page(log, sh->dev[i].page);
946 }
947
948 if (parity_pages == 2) {
949 r5l_append_payload_meta(log, R5LOG_PAYLOAD_PARITY,
950 sh->sector, sh->dev[sh->pd_idx].log_checksum,
951 sh->dev[sh->qd_idx].log_checksum, true);
952 r5l_append_payload_page(log, sh->dev[sh->pd_idx].page);
953 r5l_append_payload_page(log, sh->dev[sh->qd_idx].page);
954 } else if (parity_pages == 1) {
955 r5l_append_payload_meta(log, R5LOG_PAYLOAD_PARITY,
956 sh->sector, sh->dev[sh->pd_idx].log_checksum,
957 0, false);
958 r5l_append_payload_page(log, sh->dev[sh->pd_idx].page);
959 } else /* Just writing data, not parity, in caching phase */
960 BUG_ON(parity_pages != 0);
961
962 list_add_tail(&sh->log_list, &io->stripe_list);
963 atomic_inc(&io->pending_stripe);
964 sh->log_io = io;
965
966 if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH)
967 return 0;
968
969 if (sh->log_start == MaxSector) {
970 BUG_ON(!list_empty(&sh->r5c));
971 sh->log_start = io->log_start;
972 spin_lock_irq(&log->stripe_in_journal_lock);
973 list_add_tail(&sh->r5c,
974 &log->stripe_in_journal_list);
975 spin_unlock_irq(&log->stripe_in_journal_lock);
976 atomic_inc(&log->stripe_in_journal_count);
977 }
978 return 0;
979 }
980
981 /* add stripe to no_space_stripes, and then wake up reclaim */
r5l_add_no_space_stripe(struct r5l_log * log,struct stripe_head * sh)982 static inline void r5l_add_no_space_stripe(struct r5l_log *log,
983 struct stripe_head *sh)
984 {
985 spin_lock(&log->no_space_stripes_lock);
986 list_add_tail(&sh->log_list, &log->no_space_stripes);
987 spin_unlock(&log->no_space_stripes_lock);
988 }
989
990 /*
991 * running in raid5d, where reclaim could wait for raid5d too (when it flushes
992 * data from log to raid disks), so we shouldn't wait for reclaim here
993 */
r5l_write_stripe(struct r5l_log * log,struct stripe_head * sh)994 int r5l_write_stripe(struct r5l_log *log, struct stripe_head *sh)
995 {
996 struct r5conf *conf = sh->raid_conf;
997 int write_disks = 0;
998 int data_pages, parity_pages;
999 int reserve;
1000 int i;
1001 int ret = 0;
1002 bool wake_reclaim = false;
1003
1004 if (!log)
1005 return -EAGAIN;
1006 /* Don't support stripe batch */
1007 if (sh->log_io || !test_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags) ||
1008 test_bit(STRIPE_SYNCING, &sh->state)) {
1009 /* the stripe is written to log, we start writing it to raid */
1010 clear_bit(STRIPE_LOG_TRAPPED, &sh->state);
1011 return -EAGAIN;
1012 }
1013
1014 WARN_ON(test_bit(STRIPE_R5C_CACHING, &sh->state));
1015
1016 for (i = 0; i < sh->disks; i++) {
1017 void *addr;
1018
1019 if (!test_bit(R5_Wantwrite, &sh->dev[i].flags) ||
1020 test_bit(R5_InJournal, &sh->dev[i].flags))
1021 continue;
1022
1023 write_disks++;
1024 /* checksum is already calculated in last run */
1025 if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
1026 continue;
1027 addr = kmap_atomic(sh->dev[i].page);
1028 sh->dev[i].log_checksum = crc32c_le(log->uuid_checksum,
1029 addr, PAGE_SIZE);
1030 kunmap_atomic(addr);
1031 }
1032 parity_pages = 1 + !!(sh->qd_idx >= 0);
1033 data_pages = write_disks - parity_pages;
1034
1035 set_bit(STRIPE_LOG_TRAPPED, &sh->state);
1036 /*
1037 * The stripe must enter state machine again to finish the write, so
1038 * don't delay.
1039 */
1040 clear_bit(STRIPE_DELAYED, &sh->state);
1041 atomic_inc(&sh->count);
1042
1043 mutex_lock(&log->io_mutex);
1044 /* meta + data */
1045 reserve = (1 + write_disks) << (PAGE_SHIFT - 9);
1046
1047 if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) {
1048 if (!r5l_has_free_space(log, reserve)) {
1049 r5l_add_no_space_stripe(log, sh);
1050 wake_reclaim = true;
1051 } else {
1052 ret = r5l_log_stripe(log, sh, data_pages, parity_pages);
1053 if (ret) {
1054 spin_lock_irq(&log->io_list_lock);
1055 list_add_tail(&sh->log_list,
1056 &log->no_mem_stripes);
1057 spin_unlock_irq(&log->io_list_lock);
1058 }
1059 }
1060 } else { /* R5C_JOURNAL_MODE_WRITE_BACK */
1061 /*
1062 * log space critical, do not process stripes that are
1063 * not in cache yet (sh->log_start == MaxSector).
1064 */
1065 if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) &&
1066 sh->log_start == MaxSector) {
1067 r5l_add_no_space_stripe(log, sh);
1068 wake_reclaim = true;
1069 reserve = 0;
1070 } else if (!r5l_has_free_space(log, reserve)) {
1071 if (sh->log_start == log->last_checkpoint)
1072 BUG();
1073 else
1074 r5l_add_no_space_stripe(log, sh);
1075 } else {
1076 ret = r5l_log_stripe(log, sh, data_pages, parity_pages);
1077 if (ret) {
1078 spin_lock_irq(&log->io_list_lock);
1079 list_add_tail(&sh->log_list,
1080 &log->no_mem_stripes);
1081 spin_unlock_irq(&log->io_list_lock);
1082 }
1083 }
1084 }
1085
1086 mutex_unlock(&log->io_mutex);
1087 if (wake_reclaim)
1088 r5l_wake_reclaim(log, reserve);
1089 return 0;
1090 }
1091
r5l_write_stripe_run(struct r5l_log * log)1092 void r5l_write_stripe_run(struct r5l_log *log)
1093 {
1094 if (!log)
1095 return;
1096 mutex_lock(&log->io_mutex);
1097 r5l_submit_current_io(log);
1098 mutex_unlock(&log->io_mutex);
1099 }
1100
r5l_handle_flush_request(struct r5l_log * log,struct bio * bio)1101 int r5l_handle_flush_request(struct r5l_log *log, struct bio *bio)
1102 {
1103 if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) {
1104 /*
1105 * in write through (journal only)
1106 * we flush log disk cache first, then write stripe data to
1107 * raid disks. So if bio is finished, the log disk cache is
1108 * flushed already. The recovery guarantees we can recovery
1109 * the bio from log disk, so we don't need to flush again
1110 */
1111 if (bio->bi_iter.bi_size == 0) {
1112 bio_endio(bio);
1113 return 0;
1114 }
1115 bio->bi_opf &= ~REQ_PREFLUSH;
1116 } else {
1117 /* write back (with cache) */
1118 if (bio->bi_iter.bi_size == 0) {
1119 mutex_lock(&log->io_mutex);
1120 r5l_get_meta(log, 0);
1121 bio_list_add(&log->current_io->flush_barriers, bio);
1122 log->current_io->has_flush = 1;
1123 log->current_io->has_null_flush = 1;
1124 atomic_inc(&log->current_io->pending_stripe);
1125 r5l_submit_current_io(log);
1126 mutex_unlock(&log->io_mutex);
1127 return 0;
1128 }
1129 }
1130 return -EAGAIN;
1131 }
1132
1133 /* This will run after log space is reclaimed */
r5l_run_no_space_stripes(struct r5l_log * log)1134 static void r5l_run_no_space_stripes(struct r5l_log *log)
1135 {
1136 struct stripe_head *sh;
1137
1138 spin_lock(&log->no_space_stripes_lock);
1139 while (!list_empty(&log->no_space_stripes)) {
1140 sh = list_first_entry(&log->no_space_stripes,
1141 struct stripe_head, log_list);
1142 list_del_init(&sh->log_list);
1143 set_bit(STRIPE_HANDLE, &sh->state);
1144 raid5_release_stripe(sh);
1145 }
1146 spin_unlock(&log->no_space_stripes_lock);
1147 }
1148
1149 /*
1150 * calculate new last_checkpoint
1151 * for write through mode, returns log->next_checkpoint
1152 * for write back, returns log_start of first sh in stripe_in_journal_list
1153 */
r5c_calculate_new_cp(struct r5conf * conf)1154 static sector_t r5c_calculate_new_cp(struct r5conf *conf)
1155 {
1156 struct stripe_head *sh;
1157 struct r5l_log *log = READ_ONCE(conf->log);
1158 sector_t new_cp;
1159 unsigned long flags;
1160
1161 if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH)
1162 return log->next_checkpoint;
1163
1164 spin_lock_irqsave(&log->stripe_in_journal_lock, flags);
1165 if (list_empty(&log->stripe_in_journal_list)) {
1166 /* all stripes flushed */
1167 spin_unlock_irqrestore(&log->stripe_in_journal_lock, flags);
1168 return log->next_checkpoint;
1169 }
1170 sh = list_first_entry(&log->stripe_in_journal_list,
1171 struct stripe_head, r5c);
1172 new_cp = sh->log_start;
1173 spin_unlock_irqrestore(&log->stripe_in_journal_lock, flags);
1174 return new_cp;
1175 }
1176
r5l_reclaimable_space(struct r5l_log * log)1177 static sector_t r5l_reclaimable_space(struct r5l_log *log)
1178 {
1179 struct r5conf *conf = log->rdev->mddev->private;
1180
1181 return r5l_ring_distance(log, log->last_checkpoint,
1182 r5c_calculate_new_cp(conf));
1183 }
1184
r5l_run_no_mem_stripe(struct r5l_log * log)1185 static void r5l_run_no_mem_stripe(struct r5l_log *log)
1186 {
1187 struct stripe_head *sh;
1188
1189 lockdep_assert_held(&log->io_list_lock);
1190
1191 if (!list_empty(&log->no_mem_stripes)) {
1192 sh = list_first_entry(&log->no_mem_stripes,
1193 struct stripe_head, log_list);
1194 list_del_init(&sh->log_list);
1195 set_bit(STRIPE_HANDLE, &sh->state);
1196 raid5_release_stripe(sh);
1197 }
1198 }
1199
r5l_complete_finished_ios(struct r5l_log * log)1200 static bool r5l_complete_finished_ios(struct r5l_log *log)
1201 {
1202 struct r5l_io_unit *io, *next;
1203 bool found = false;
1204
1205 lockdep_assert_held(&log->io_list_lock);
1206
1207 list_for_each_entry_safe(io, next, &log->finished_ios, log_sibling) {
1208 /* don't change list order */
1209 if (io->state < IO_UNIT_STRIPE_END)
1210 break;
1211
1212 log->next_checkpoint = io->log_start;
1213
1214 list_del(&io->log_sibling);
1215 mempool_free(io, &log->io_pool);
1216 r5l_run_no_mem_stripe(log);
1217
1218 found = true;
1219 }
1220
1221 return found;
1222 }
1223
__r5l_stripe_write_finished(struct r5l_io_unit * io)1224 static void __r5l_stripe_write_finished(struct r5l_io_unit *io)
1225 {
1226 struct r5l_log *log = io->log;
1227 struct r5conf *conf = log->rdev->mddev->private;
1228 unsigned long flags;
1229
1230 spin_lock_irqsave(&log->io_list_lock, flags);
1231 __r5l_set_io_unit_state(io, IO_UNIT_STRIPE_END);
1232
1233 if (!r5l_complete_finished_ios(log)) {
1234 spin_unlock_irqrestore(&log->io_list_lock, flags);
1235 return;
1236 }
1237
1238 if (r5l_reclaimable_space(log) > log->max_free_space ||
1239 test_bit(R5C_LOG_TIGHT, &conf->cache_state))
1240 r5l_wake_reclaim(log, 0);
1241
1242 spin_unlock_irqrestore(&log->io_list_lock, flags);
1243 wake_up(&log->iounit_wait);
1244 }
1245
r5l_stripe_write_finished(struct stripe_head * sh)1246 void r5l_stripe_write_finished(struct stripe_head *sh)
1247 {
1248 struct r5l_io_unit *io;
1249
1250 io = sh->log_io;
1251 sh->log_io = NULL;
1252
1253 if (io && atomic_dec_and_test(&io->pending_stripe))
1254 __r5l_stripe_write_finished(io);
1255 }
1256
r5l_log_flush_endio(struct bio * bio)1257 static void r5l_log_flush_endio(struct bio *bio)
1258 {
1259 struct r5l_log *log = container_of(bio, struct r5l_log,
1260 flush_bio);
1261 unsigned long flags;
1262 struct r5l_io_unit *io;
1263
1264 if (bio->bi_status)
1265 md_error(log->rdev->mddev, log->rdev);
1266 bio_uninit(bio);
1267
1268 spin_lock_irqsave(&log->io_list_lock, flags);
1269 list_for_each_entry(io, &log->flushing_ios, log_sibling)
1270 r5l_io_run_stripes(io);
1271 list_splice_tail_init(&log->flushing_ios, &log->finished_ios);
1272 spin_unlock_irqrestore(&log->io_list_lock, flags);
1273 }
1274
1275 /*
1276 * Starting dispatch IO to raid.
1277 * io_unit(meta) consists of a log. There is one situation we want to avoid. A
1278 * broken meta in the middle of a log causes recovery can't find meta at the
1279 * head of log. If operations require meta at the head persistent in log, we
1280 * must make sure meta before it persistent in log too. A case is:
1281 *
1282 * stripe data/parity is in log, we start write stripe to raid disks. stripe
1283 * data/parity must be persistent in log before we do the write to raid disks.
1284 *
1285 * The solution is we restrictly maintain io_unit list order. In this case, we
1286 * only write stripes of an io_unit to raid disks till the io_unit is the first
1287 * one whose data/parity is in log.
1288 */
r5l_flush_stripe_to_raid(struct r5l_log * log)1289 void r5l_flush_stripe_to_raid(struct r5l_log *log)
1290 {
1291 bool do_flush;
1292
1293 if (!log || !log->need_cache_flush)
1294 return;
1295
1296 spin_lock_irq(&log->io_list_lock);
1297 /* flush bio is running */
1298 if (!list_empty(&log->flushing_ios)) {
1299 spin_unlock_irq(&log->io_list_lock);
1300 return;
1301 }
1302 list_splice_tail_init(&log->io_end_ios, &log->flushing_ios);
1303 do_flush = !list_empty(&log->flushing_ios);
1304 spin_unlock_irq(&log->io_list_lock);
1305
1306 if (!do_flush)
1307 return;
1308 bio_init(&log->flush_bio, log->rdev->bdev, NULL, 0,
1309 REQ_OP_WRITE | REQ_PREFLUSH);
1310 log->flush_bio.bi_end_io = r5l_log_flush_endio;
1311 submit_bio(&log->flush_bio);
1312 }
1313
1314 static void r5l_write_super(struct r5l_log *log, sector_t cp);
r5l_write_super_and_discard_space(struct r5l_log * log,sector_t end)1315 static void r5l_write_super_and_discard_space(struct r5l_log *log,
1316 sector_t end)
1317 {
1318 struct block_device *bdev = log->rdev->bdev;
1319 struct mddev *mddev;
1320
1321 r5l_write_super(log, end);
1322
1323 if (!bdev_max_discard_sectors(bdev))
1324 return;
1325
1326 mddev = log->rdev->mddev;
1327 /*
1328 * Discard could zero data, so before discard we must make sure
1329 * superblock is updated to new log tail. Updating superblock (either
1330 * directly call md_update_sb() or depend on md thread) must hold
1331 * reconfig mutex. On the other hand, raid5_quiesce is called with
1332 * reconfig_mutex hold. The first step of raid5_quiesce() is waiting
1333 * for all IO finish, hence waiting for reclaim thread, while reclaim
1334 * thread is calling this function and waiting for reconfig mutex. So
1335 * there is a deadlock. We workaround this issue with a trylock.
1336 * FIXME: we could miss discard if we can't take reconfig mutex
1337 */
1338 set_mask_bits(&mddev->sb_flags, 0,
1339 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1340 if (!mddev_trylock(mddev))
1341 return;
1342 md_update_sb(mddev, 1);
1343 mddev_unlock(mddev);
1344
1345 /* discard IO error really doesn't matter, ignore it */
1346 if (log->last_checkpoint < end) {
1347 blkdev_issue_discard(bdev,
1348 log->last_checkpoint + log->rdev->data_offset,
1349 end - log->last_checkpoint, GFP_NOIO);
1350 } else {
1351 blkdev_issue_discard(bdev,
1352 log->last_checkpoint + log->rdev->data_offset,
1353 log->device_size - log->last_checkpoint,
1354 GFP_NOIO);
1355 blkdev_issue_discard(bdev, log->rdev->data_offset, end,
1356 GFP_NOIO);
1357 }
1358 }
1359
1360 /*
1361 * r5c_flush_stripe moves stripe from cached list to handle_list. When called,
1362 * the stripe must be on r5c_cached_full_stripes or r5c_cached_partial_stripes.
1363 *
1364 * must hold conf->device_lock
1365 */
r5c_flush_stripe(struct r5conf * conf,struct stripe_head * sh)1366 static void r5c_flush_stripe(struct r5conf *conf, struct stripe_head *sh)
1367 {
1368 BUG_ON(list_empty(&sh->lru));
1369 BUG_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state));
1370 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
1371
1372 /*
1373 * The stripe is not ON_RELEASE_LIST, so it is safe to call
1374 * raid5_release_stripe() while holding conf->device_lock
1375 */
1376 BUG_ON(test_bit(STRIPE_ON_RELEASE_LIST, &sh->state));
1377 lockdep_assert_held(&conf->device_lock);
1378
1379 list_del_init(&sh->lru);
1380 atomic_inc(&sh->count);
1381
1382 set_bit(STRIPE_HANDLE, &sh->state);
1383 atomic_inc(&conf->active_stripes);
1384 r5c_make_stripe_write_out(sh);
1385
1386 if (test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state))
1387 atomic_inc(&conf->r5c_flushing_partial_stripes);
1388 else
1389 atomic_inc(&conf->r5c_flushing_full_stripes);
1390 raid5_release_stripe(sh);
1391 }
1392
1393 /*
1394 * if num == 0, flush all full stripes
1395 * if num > 0, flush all full stripes. If less than num full stripes are
1396 * flushed, flush some partial stripes until totally num stripes are
1397 * flushed or there is no more cached stripes.
1398 */
r5c_flush_cache(struct r5conf * conf,int num)1399 void r5c_flush_cache(struct r5conf *conf, int num)
1400 {
1401 int count;
1402 struct stripe_head *sh, *next;
1403
1404 lockdep_assert_held(&conf->device_lock);
1405 if (!READ_ONCE(conf->log))
1406 return;
1407
1408 count = 0;
1409 list_for_each_entry_safe(sh, next, &conf->r5c_full_stripe_list, lru) {
1410 r5c_flush_stripe(conf, sh);
1411 count++;
1412 }
1413
1414 if (count >= num)
1415 return;
1416 list_for_each_entry_safe(sh, next,
1417 &conf->r5c_partial_stripe_list, lru) {
1418 r5c_flush_stripe(conf, sh);
1419 if (++count >= num)
1420 break;
1421 }
1422 }
1423
r5c_do_reclaim(struct r5conf * conf)1424 static void r5c_do_reclaim(struct r5conf *conf)
1425 {
1426 struct r5l_log *log = READ_ONCE(conf->log);
1427 struct stripe_head *sh;
1428 int count = 0;
1429 unsigned long flags;
1430 int total_cached;
1431 int stripes_to_flush;
1432 int flushing_partial, flushing_full;
1433
1434 if (!r5c_is_writeback(log))
1435 return;
1436
1437 flushing_partial = atomic_read(&conf->r5c_flushing_partial_stripes);
1438 flushing_full = atomic_read(&conf->r5c_flushing_full_stripes);
1439 total_cached = atomic_read(&conf->r5c_cached_partial_stripes) +
1440 atomic_read(&conf->r5c_cached_full_stripes) -
1441 flushing_full - flushing_partial;
1442
1443 if (total_cached > conf->min_nr_stripes * 3 / 4 ||
1444 atomic_read(&conf->empty_inactive_list_nr) > 0)
1445 /*
1446 * if stripe cache pressure high, flush all full stripes and
1447 * some partial stripes
1448 */
1449 stripes_to_flush = R5C_RECLAIM_STRIPE_GROUP;
1450 else if (total_cached > conf->min_nr_stripes * 1 / 2 ||
1451 atomic_read(&conf->r5c_cached_full_stripes) - flushing_full >
1452 R5C_FULL_STRIPE_FLUSH_BATCH(conf))
1453 /*
1454 * if stripe cache pressure moderate, or if there is many full
1455 * stripes,flush all full stripes
1456 */
1457 stripes_to_flush = 0;
1458 else
1459 /* no need to flush */
1460 stripes_to_flush = -1;
1461
1462 if (stripes_to_flush >= 0) {
1463 spin_lock_irqsave(&conf->device_lock, flags);
1464 r5c_flush_cache(conf, stripes_to_flush);
1465 spin_unlock_irqrestore(&conf->device_lock, flags);
1466 }
1467
1468 /* if log space is tight, flush stripes on stripe_in_journal_list */
1469 if (test_bit(R5C_LOG_TIGHT, &conf->cache_state)) {
1470 spin_lock_irqsave(&log->stripe_in_journal_lock, flags);
1471 spin_lock(&conf->device_lock);
1472 list_for_each_entry(sh, &log->stripe_in_journal_list, r5c) {
1473 /*
1474 * stripes on stripe_in_journal_list could be in any
1475 * state of the stripe_cache state machine. In this
1476 * case, we only want to flush stripe on
1477 * r5c_cached_full/partial_stripes. The following
1478 * condition makes sure the stripe is on one of the
1479 * two lists.
1480 */
1481 if (!list_empty(&sh->lru) &&
1482 !test_bit(STRIPE_HANDLE, &sh->state) &&
1483 atomic_read(&sh->count) == 0) {
1484 r5c_flush_stripe(conf, sh);
1485 if (count++ >= R5C_RECLAIM_STRIPE_GROUP)
1486 break;
1487 }
1488 }
1489 spin_unlock(&conf->device_lock);
1490 spin_unlock_irqrestore(&log->stripe_in_journal_lock, flags);
1491 }
1492
1493 if (!test_bit(R5C_LOG_CRITICAL, &conf->cache_state))
1494 r5l_run_no_space_stripes(log);
1495
1496 md_wakeup_thread(conf->mddev->thread);
1497 }
1498
r5l_do_reclaim(struct r5l_log * log)1499 static void r5l_do_reclaim(struct r5l_log *log)
1500 {
1501 struct r5conf *conf = log->rdev->mddev->private;
1502 sector_t reclaim_target = xchg(&log->reclaim_target, 0);
1503 sector_t reclaimable;
1504 sector_t next_checkpoint;
1505 bool write_super;
1506
1507 spin_lock_irq(&log->io_list_lock);
1508 write_super = r5l_reclaimable_space(log) > log->max_free_space ||
1509 reclaim_target != 0 || !list_empty(&log->no_space_stripes);
1510 /*
1511 * move proper io_unit to reclaim list. We should not change the order.
1512 * reclaimable/unreclaimable io_unit can be mixed in the list, we
1513 * shouldn't reuse space of an unreclaimable io_unit
1514 */
1515 while (1) {
1516 reclaimable = r5l_reclaimable_space(log);
1517 if (reclaimable >= reclaim_target ||
1518 (list_empty(&log->running_ios) &&
1519 list_empty(&log->io_end_ios) &&
1520 list_empty(&log->flushing_ios) &&
1521 list_empty(&log->finished_ios)))
1522 break;
1523
1524 md_wakeup_thread(log->rdev->mddev->thread);
1525 wait_event_lock_irq(log->iounit_wait,
1526 r5l_reclaimable_space(log) > reclaimable,
1527 log->io_list_lock);
1528 }
1529
1530 next_checkpoint = r5c_calculate_new_cp(conf);
1531 spin_unlock_irq(&log->io_list_lock);
1532
1533 if (reclaimable == 0 || !write_super)
1534 return;
1535
1536 /*
1537 * write_super will flush cache of each raid disk. We must write super
1538 * here, because the log area might be reused soon and we don't want to
1539 * confuse recovery
1540 */
1541 r5l_write_super_and_discard_space(log, next_checkpoint);
1542
1543 mutex_lock(&log->io_mutex);
1544 log->last_checkpoint = next_checkpoint;
1545 r5c_update_log_state(log);
1546 mutex_unlock(&log->io_mutex);
1547
1548 r5l_run_no_space_stripes(log);
1549 }
1550
r5l_reclaim_thread(struct md_thread * thread)1551 static void r5l_reclaim_thread(struct md_thread *thread)
1552 {
1553 struct mddev *mddev = thread->mddev;
1554 struct r5conf *conf = mddev->private;
1555 struct r5l_log *log = READ_ONCE(conf->log);
1556
1557 if (!log)
1558 return;
1559 r5c_do_reclaim(conf);
1560 r5l_do_reclaim(log);
1561 }
1562
r5l_wake_reclaim(struct r5l_log * log,sector_t space)1563 void r5l_wake_reclaim(struct r5l_log *log, sector_t space)
1564 {
1565 unsigned long target;
1566 unsigned long new = (unsigned long)space; /* overflow in theory */
1567
1568 if (!log)
1569 return;
1570
1571 target = READ_ONCE(log->reclaim_target);
1572 do {
1573 if (new < target)
1574 return;
1575 } while (!try_cmpxchg(&log->reclaim_target, &target, new));
1576 md_wakeup_thread(log->reclaim_thread);
1577 }
1578
r5l_quiesce(struct r5l_log * log,int quiesce)1579 void r5l_quiesce(struct r5l_log *log, int quiesce)
1580 {
1581 struct mddev *mddev = log->rdev->mddev;
1582 struct md_thread *thread = rcu_dereference_protected(
1583 log->reclaim_thread, lockdep_is_held(&mddev->reconfig_mutex));
1584
1585 if (quiesce) {
1586 /* make sure r5l_write_super_and_discard_space exits */
1587 wake_up(&mddev->sb_wait);
1588 kthread_park(thread->tsk);
1589 r5l_wake_reclaim(log, MaxSector);
1590 r5l_do_reclaim(log);
1591 } else
1592 kthread_unpark(thread->tsk);
1593 }
1594
r5l_log_disk_error(struct r5conf * conf)1595 bool r5l_log_disk_error(struct r5conf *conf)
1596 {
1597 struct r5l_log *log = READ_ONCE(conf->log);
1598
1599 /* don't allow write if journal disk is missing */
1600 if (!log)
1601 return test_bit(MD_HAS_JOURNAL, &conf->mddev->flags);
1602 else
1603 return test_bit(Faulty, &log->rdev->flags);
1604 }
1605
1606 #define R5L_RECOVERY_PAGE_POOL_SIZE 256
1607
1608 struct r5l_recovery_ctx {
1609 struct page *meta_page; /* current meta */
1610 sector_t meta_total_blocks; /* total size of current meta and data */
1611 sector_t pos; /* recovery position */
1612 u64 seq; /* recovery position seq */
1613 int data_parity_stripes; /* number of data_parity stripes */
1614 int data_only_stripes; /* number of data_only stripes */
1615 struct list_head cached_list;
1616
1617 /*
1618 * read ahead page pool (ra_pool)
1619 * in recovery, log is read sequentially. It is not efficient to
1620 * read every page with sync_page_io(). The read ahead page pool
1621 * reads multiple pages with one IO, so further log read can
1622 * just copy data from the pool.
1623 */
1624 struct page *ra_pool[R5L_RECOVERY_PAGE_POOL_SIZE];
1625 struct bio_vec ra_bvec[R5L_RECOVERY_PAGE_POOL_SIZE];
1626 sector_t pool_offset; /* offset of first page in the pool */
1627 int total_pages; /* total allocated pages */
1628 int valid_pages; /* pages with valid data */
1629 };
1630
r5l_recovery_allocate_ra_pool(struct r5l_log * log,struct r5l_recovery_ctx * ctx)1631 static int r5l_recovery_allocate_ra_pool(struct r5l_log *log,
1632 struct r5l_recovery_ctx *ctx)
1633 {
1634 struct page *page;
1635
1636 ctx->valid_pages = 0;
1637 ctx->total_pages = 0;
1638 while (ctx->total_pages < R5L_RECOVERY_PAGE_POOL_SIZE) {
1639 page = alloc_page(GFP_KERNEL);
1640
1641 if (!page)
1642 break;
1643 ctx->ra_pool[ctx->total_pages] = page;
1644 ctx->total_pages += 1;
1645 }
1646
1647 if (ctx->total_pages == 0)
1648 return -ENOMEM;
1649
1650 ctx->pool_offset = 0;
1651 return 0;
1652 }
1653
r5l_recovery_free_ra_pool(struct r5l_log * log,struct r5l_recovery_ctx * ctx)1654 static void r5l_recovery_free_ra_pool(struct r5l_log *log,
1655 struct r5l_recovery_ctx *ctx)
1656 {
1657 int i;
1658
1659 for (i = 0; i < ctx->total_pages; ++i)
1660 put_page(ctx->ra_pool[i]);
1661 }
1662
1663 /*
1664 * fetch ctx->valid_pages pages from offset
1665 * In normal cases, ctx->valid_pages == ctx->total_pages after the call.
1666 * However, if the offset is close to the end of the journal device,
1667 * ctx->valid_pages could be smaller than ctx->total_pages
1668 */
r5l_recovery_fetch_ra_pool(struct r5l_log * log,struct r5l_recovery_ctx * ctx,sector_t offset)1669 static int r5l_recovery_fetch_ra_pool(struct r5l_log *log,
1670 struct r5l_recovery_ctx *ctx,
1671 sector_t offset)
1672 {
1673 struct bio bio;
1674 int ret;
1675
1676 bio_init(&bio, log->rdev->bdev, ctx->ra_bvec,
1677 R5L_RECOVERY_PAGE_POOL_SIZE, REQ_OP_READ);
1678 bio.bi_iter.bi_sector = log->rdev->data_offset + offset;
1679
1680 ctx->valid_pages = 0;
1681 ctx->pool_offset = offset;
1682
1683 while (ctx->valid_pages < ctx->total_pages) {
1684 __bio_add_page(&bio, ctx->ra_pool[ctx->valid_pages], PAGE_SIZE,
1685 0);
1686 ctx->valid_pages += 1;
1687
1688 offset = r5l_ring_add(log, offset, BLOCK_SECTORS);
1689
1690 if (offset == 0) /* reached end of the device */
1691 break;
1692 }
1693
1694 ret = submit_bio_wait(&bio);
1695 bio_uninit(&bio);
1696 return ret;
1697 }
1698
1699 /*
1700 * try read a page from the read ahead page pool, if the page is not in the
1701 * pool, call r5l_recovery_fetch_ra_pool
1702 */
r5l_recovery_read_page(struct r5l_log * log,struct r5l_recovery_ctx * ctx,struct page * page,sector_t offset)1703 static int r5l_recovery_read_page(struct r5l_log *log,
1704 struct r5l_recovery_ctx *ctx,
1705 struct page *page,
1706 sector_t offset)
1707 {
1708 int ret;
1709
1710 if (offset < ctx->pool_offset ||
1711 offset >= ctx->pool_offset + ctx->valid_pages * BLOCK_SECTORS) {
1712 ret = r5l_recovery_fetch_ra_pool(log, ctx, offset);
1713 if (ret)
1714 return ret;
1715 }
1716
1717 BUG_ON(offset < ctx->pool_offset ||
1718 offset >= ctx->pool_offset + ctx->valid_pages * BLOCK_SECTORS);
1719
1720 memcpy(page_address(page),
1721 page_address(ctx->ra_pool[(offset - ctx->pool_offset) >>
1722 BLOCK_SECTOR_SHIFT]),
1723 PAGE_SIZE);
1724 return 0;
1725 }
1726
r5l_recovery_read_meta_block(struct r5l_log * log,struct r5l_recovery_ctx * ctx)1727 static int r5l_recovery_read_meta_block(struct r5l_log *log,
1728 struct r5l_recovery_ctx *ctx)
1729 {
1730 struct page *page = ctx->meta_page;
1731 struct r5l_meta_block *mb;
1732 u32 crc, stored_crc;
1733 int ret;
1734
1735 ret = r5l_recovery_read_page(log, ctx, page, ctx->pos);
1736 if (ret != 0)
1737 return ret;
1738
1739 mb = page_address(page);
1740 stored_crc = le32_to_cpu(mb->checksum);
1741 mb->checksum = 0;
1742
1743 if (le32_to_cpu(mb->magic) != R5LOG_MAGIC ||
1744 le64_to_cpu(mb->seq) != ctx->seq ||
1745 mb->version != R5LOG_VERSION ||
1746 le64_to_cpu(mb->position) != ctx->pos)
1747 return -EINVAL;
1748
1749 crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE);
1750 if (stored_crc != crc)
1751 return -EINVAL;
1752
1753 if (le32_to_cpu(mb->meta_size) > PAGE_SIZE)
1754 return -EINVAL;
1755
1756 ctx->meta_total_blocks = BLOCK_SECTORS;
1757
1758 return 0;
1759 }
1760
1761 static void
r5l_recovery_create_empty_meta_block(struct r5l_log * log,struct page * page,sector_t pos,u64 seq)1762 r5l_recovery_create_empty_meta_block(struct r5l_log *log,
1763 struct page *page,
1764 sector_t pos, u64 seq)
1765 {
1766 struct r5l_meta_block *mb;
1767
1768 mb = page_address(page);
1769 clear_page(mb);
1770 mb->magic = cpu_to_le32(R5LOG_MAGIC);
1771 mb->version = R5LOG_VERSION;
1772 mb->meta_size = cpu_to_le32(sizeof(struct r5l_meta_block));
1773 mb->seq = cpu_to_le64(seq);
1774 mb->position = cpu_to_le64(pos);
1775 }
1776
r5l_log_write_empty_meta_block(struct r5l_log * log,sector_t pos,u64 seq)1777 static int r5l_log_write_empty_meta_block(struct r5l_log *log, sector_t pos,
1778 u64 seq)
1779 {
1780 struct page *page;
1781 struct r5l_meta_block *mb;
1782
1783 page = alloc_page(GFP_KERNEL);
1784 if (!page)
1785 return -ENOMEM;
1786 r5l_recovery_create_empty_meta_block(log, page, pos, seq);
1787 mb = page_address(page);
1788 mb->checksum = cpu_to_le32(crc32c_le(log->uuid_checksum,
1789 mb, PAGE_SIZE));
1790 if (!sync_page_io(log->rdev, pos, PAGE_SIZE, page, REQ_OP_WRITE |
1791 REQ_SYNC | REQ_FUA, false)) {
1792 __free_page(page);
1793 return -EIO;
1794 }
1795 __free_page(page);
1796 return 0;
1797 }
1798
1799 /*
1800 * r5l_recovery_load_data and r5l_recovery_load_parity uses flag R5_Wantwrite
1801 * to mark valid (potentially not flushed) data in the journal.
1802 *
1803 * We already verified checksum in r5l_recovery_verify_data_checksum_for_mb,
1804 * so there should not be any mismatch here.
1805 */
r5l_recovery_load_data(struct r5l_log * log,struct stripe_head * sh,struct r5l_recovery_ctx * ctx,struct r5l_payload_data_parity * payload,sector_t log_offset)1806 static void r5l_recovery_load_data(struct r5l_log *log,
1807 struct stripe_head *sh,
1808 struct r5l_recovery_ctx *ctx,
1809 struct r5l_payload_data_parity *payload,
1810 sector_t log_offset)
1811 {
1812 struct mddev *mddev = log->rdev->mddev;
1813 struct r5conf *conf = mddev->private;
1814 int dd_idx;
1815
1816 raid5_compute_sector(conf,
1817 le64_to_cpu(payload->location), 0,
1818 &dd_idx, sh);
1819 r5l_recovery_read_page(log, ctx, sh->dev[dd_idx].page, log_offset);
1820 sh->dev[dd_idx].log_checksum =
1821 le32_to_cpu(payload->checksum[0]);
1822 ctx->meta_total_blocks += BLOCK_SECTORS;
1823
1824 set_bit(R5_Wantwrite, &sh->dev[dd_idx].flags);
1825 set_bit(STRIPE_R5C_CACHING, &sh->state);
1826 }
1827
r5l_recovery_load_parity(struct r5l_log * log,struct stripe_head * sh,struct r5l_recovery_ctx * ctx,struct r5l_payload_data_parity * payload,sector_t log_offset)1828 static void r5l_recovery_load_parity(struct r5l_log *log,
1829 struct stripe_head *sh,
1830 struct r5l_recovery_ctx *ctx,
1831 struct r5l_payload_data_parity *payload,
1832 sector_t log_offset)
1833 {
1834 struct mddev *mddev = log->rdev->mddev;
1835 struct r5conf *conf = mddev->private;
1836
1837 ctx->meta_total_blocks += BLOCK_SECTORS * conf->max_degraded;
1838 r5l_recovery_read_page(log, ctx, sh->dev[sh->pd_idx].page, log_offset);
1839 sh->dev[sh->pd_idx].log_checksum =
1840 le32_to_cpu(payload->checksum[0]);
1841 set_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags);
1842
1843 if (sh->qd_idx >= 0) {
1844 r5l_recovery_read_page(
1845 log, ctx, sh->dev[sh->qd_idx].page,
1846 r5l_ring_add(log, log_offset, BLOCK_SECTORS));
1847 sh->dev[sh->qd_idx].log_checksum =
1848 le32_to_cpu(payload->checksum[1]);
1849 set_bit(R5_Wantwrite, &sh->dev[sh->qd_idx].flags);
1850 }
1851 clear_bit(STRIPE_R5C_CACHING, &sh->state);
1852 }
1853
r5l_recovery_reset_stripe(struct stripe_head * sh)1854 static void r5l_recovery_reset_stripe(struct stripe_head *sh)
1855 {
1856 int i;
1857
1858 sh->state = 0;
1859 sh->log_start = MaxSector;
1860 for (i = sh->disks; i--; )
1861 sh->dev[i].flags = 0;
1862 }
1863
1864 static void
r5l_recovery_replay_one_stripe(struct r5conf * conf,struct stripe_head * sh,struct r5l_recovery_ctx * ctx)1865 r5l_recovery_replay_one_stripe(struct r5conf *conf,
1866 struct stripe_head *sh,
1867 struct r5l_recovery_ctx *ctx)
1868 {
1869 struct md_rdev *rdev, *rrdev;
1870 int disk_index;
1871 int data_count = 0;
1872
1873 for (disk_index = 0; disk_index < sh->disks; disk_index++) {
1874 if (!test_bit(R5_Wantwrite, &sh->dev[disk_index].flags))
1875 continue;
1876 if (disk_index == sh->qd_idx || disk_index == sh->pd_idx)
1877 continue;
1878 data_count++;
1879 }
1880
1881 /*
1882 * stripes that only have parity must have been flushed
1883 * before the crash that we are now recovering from, so
1884 * there is nothing more to recovery.
1885 */
1886 if (data_count == 0)
1887 goto out;
1888
1889 for (disk_index = 0; disk_index < sh->disks; disk_index++) {
1890 if (!test_bit(R5_Wantwrite, &sh->dev[disk_index].flags))
1891 continue;
1892
1893 /* in case device is broken */
1894 rcu_read_lock();
1895 rdev = rcu_dereference(conf->disks[disk_index].rdev);
1896 if (rdev) {
1897 atomic_inc(&rdev->nr_pending);
1898 rcu_read_unlock();
1899 sync_page_io(rdev, sh->sector, PAGE_SIZE,
1900 sh->dev[disk_index].page, REQ_OP_WRITE,
1901 false);
1902 rdev_dec_pending(rdev, rdev->mddev);
1903 rcu_read_lock();
1904 }
1905 rrdev = rcu_dereference(conf->disks[disk_index].replacement);
1906 if (rrdev) {
1907 atomic_inc(&rrdev->nr_pending);
1908 rcu_read_unlock();
1909 sync_page_io(rrdev, sh->sector, PAGE_SIZE,
1910 sh->dev[disk_index].page, REQ_OP_WRITE,
1911 false);
1912 rdev_dec_pending(rrdev, rrdev->mddev);
1913 rcu_read_lock();
1914 }
1915 rcu_read_unlock();
1916 }
1917 ctx->data_parity_stripes++;
1918 out:
1919 r5l_recovery_reset_stripe(sh);
1920 }
1921
1922 static struct stripe_head *
r5c_recovery_alloc_stripe(struct r5conf * conf,sector_t stripe_sect,int noblock)1923 r5c_recovery_alloc_stripe(
1924 struct r5conf *conf,
1925 sector_t stripe_sect,
1926 int noblock)
1927 {
1928 struct stripe_head *sh;
1929
1930 sh = raid5_get_active_stripe(conf, NULL, stripe_sect,
1931 noblock ? R5_GAS_NOBLOCK : 0);
1932 if (!sh)
1933 return NULL; /* no more stripe available */
1934
1935 r5l_recovery_reset_stripe(sh);
1936
1937 return sh;
1938 }
1939
1940 static struct stripe_head *
r5c_recovery_lookup_stripe(struct list_head * list,sector_t sect)1941 r5c_recovery_lookup_stripe(struct list_head *list, sector_t sect)
1942 {
1943 struct stripe_head *sh;
1944
1945 list_for_each_entry(sh, list, lru)
1946 if (sh->sector == sect)
1947 return sh;
1948 return NULL;
1949 }
1950
1951 static void
r5c_recovery_drop_stripes(struct list_head * cached_stripe_list,struct r5l_recovery_ctx * ctx)1952 r5c_recovery_drop_stripes(struct list_head *cached_stripe_list,
1953 struct r5l_recovery_ctx *ctx)
1954 {
1955 struct stripe_head *sh, *next;
1956
1957 list_for_each_entry_safe(sh, next, cached_stripe_list, lru) {
1958 r5l_recovery_reset_stripe(sh);
1959 list_del_init(&sh->lru);
1960 raid5_release_stripe(sh);
1961 }
1962 }
1963
1964 static void
r5c_recovery_replay_stripes(struct list_head * cached_stripe_list,struct r5l_recovery_ctx * ctx)1965 r5c_recovery_replay_stripes(struct list_head *cached_stripe_list,
1966 struct r5l_recovery_ctx *ctx)
1967 {
1968 struct stripe_head *sh, *next;
1969
1970 list_for_each_entry_safe(sh, next, cached_stripe_list, lru)
1971 if (!test_bit(STRIPE_R5C_CACHING, &sh->state)) {
1972 r5l_recovery_replay_one_stripe(sh->raid_conf, sh, ctx);
1973 list_del_init(&sh->lru);
1974 raid5_release_stripe(sh);
1975 }
1976 }
1977
1978 /* if matches return 0; otherwise return -EINVAL */
1979 static int
r5l_recovery_verify_data_checksum(struct r5l_log * log,struct r5l_recovery_ctx * ctx,struct page * page,sector_t log_offset,__le32 log_checksum)1980 r5l_recovery_verify_data_checksum(struct r5l_log *log,
1981 struct r5l_recovery_ctx *ctx,
1982 struct page *page,
1983 sector_t log_offset, __le32 log_checksum)
1984 {
1985 void *addr;
1986 u32 checksum;
1987
1988 r5l_recovery_read_page(log, ctx, page, log_offset);
1989 addr = kmap_atomic(page);
1990 checksum = crc32c_le(log->uuid_checksum, addr, PAGE_SIZE);
1991 kunmap_atomic(addr);
1992 return (le32_to_cpu(log_checksum) == checksum) ? 0 : -EINVAL;
1993 }
1994
1995 /*
1996 * before loading data to stripe cache, we need verify checksum for all data,
1997 * if there is mismatch for any data page, we drop all data in the mata block
1998 */
1999 static int
r5l_recovery_verify_data_checksum_for_mb(struct r5l_log * log,struct r5l_recovery_ctx * ctx)2000 r5l_recovery_verify_data_checksum_for_mb(struct r5l_log *log,
2001 struct r5l_recovery_ctx *ctx)
2002 {
2003 struct mddev *mddev = log->rdev->mddev;
2004 struct r5conf *conf = mddev->private;
2005 struct r5l_meta_block *mb = page_address(ctx->meta_page);
2006 sector_t mb_offset = sizeof(struct r5l_meta_block);
2007 sector_t log_offset = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
2008 struct page *page;
2009 struct r5l_payload_data_parity *payload;
2010 struct r5l_payload_flush *payload_flush;
2011
2012 page = alloc_page(GFP_KERNEL);
2013 if (!page)
2014 return -ENOMEM;
2015
2016 while (mb_offset < le32_to_cpu(mb->meta_size)) {
2017 payload = (void *)mb + mb_offset;
2018 payload_flush = (void *)mb + mb_offset;
2019
2020 if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_DATA) {
2021 if (r5l_recovery_verify_data_checksum(
2022 log, ctx, page, log_offset,
2023 payload->checksum[0]) < 0)
2024 goto mismatch;
2025 } else if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_PARITY) {
2026 if (r5l_recovery_verify_data_checksum(
2027 log, ctx, page, log_offset,
2028 payload->checksum[0]) < 0)
2029 goto mismatch;
2030 if (conf->max_degraded == 2 && /* q for RAID 6 */
2031 r5l_recovery_verify_data_checksum(
2032 log, ctx, page,
2033 r5l_ring_add(log, log_offset,
2034 BLOCK_SECTORS),
2035 payload->checksum[1]) < 0)
2036 goto mismatch;
2037 } else if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_FLUSH) {
2038 /* nothing to do for R5LOG_PAYLOAD_FLUSH here */
2039 } else /* not R5LOG_PAYLOAD_DATA/PARITY/FLUSH */
2040 goto mismatch;
2041
2042 if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_FLUSH) {
2043 mb_offset += sizeof(struct r5l_payload_flush) +
2044 le32_to_cpu(payload_flush->size);
2045 } else {
2046 /* DATA or PARITY payload */
2047 log_offset = r5l_ring_add(log, log_offset,
2048 le32_to_cpu(payload->size));
2049 mb_offset += sizeof(struct r5l_payload_data_parity) +
2050 sizeof(__le32) *
2051 (le32_to_cpu(payload->size) >> (PAGE_SHIFT - 9));
2052 }
2053
2054 }
2055
2056 put_page(page);
2057 return 0;
2058
2059 mismatch:
2060 put_page(page);
2061 return -EINVAL;
2062 }
2063
2064 /*
2065 * Analyze all data/parity pages in one meta block
2066 * Returns:
2067 * 0 for success
2068 * -EINVAL for unknown playload type
2069 * -EAGAIN for checksum mismatch of data page
2070 * -ENOMEM for run out of memory (alloc_page failed or run out of stripes)
2071 */
2072 static int
r5c_recovery_analyze_meta_block(struct r5l_log * log,struct r5l_recovery_ctx * ctx,struct list_head * cached_stripe_list)2073 r5c_recovery_analyze_meta_block(struct r5l_log *log,
2074 struct r5l_recovery_ctx *ctx,
2075 struct list_head *cached_stripe_list)
2076 {
2077 struct mddev *mddev = log->rdev->mddev;
2078 struct r5conf *conf = mddev->private;
2079 struct r5l_meta_block *mb;
2080 struct r5l_payload_data_parity *payload;
2081 struct r5l_payload_flush *payload_flush;
2082 int mb_offset;
2083 sector_t log_offset;
2084 sector_t stripe_sect;
2085 struct stripe_head *sh;
2086 int ret;
2087
2088 /*
2089 * for mismatch in data blocks, we will drop all data in this mb, but
2090 * we will still read next mb for other data with FLUSH flag, as
2091 * io_unit could finish out of order.
2092 */
2093 ret = r5l_recovery_verify_data_checksum_for_mb(log, ctx);
2094 if (ret == -EINVAL)
2095 return -EAGAIN;
2096 else if (ret)
2097 return ret; /* -ENOMEM duo to alloc_page() failed */
2098
2099 mb = page_address(ctx->meta_page);
2100 mb_offset = sizeof(struct r5l_meta_block);
2101 log_offset = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
2102
2103 while (mb_offset < le32_to_cpu(mb->meta_size)) {
2104 int dd;
2105
2106 payload = (void *)mb + mb_offset;
2107 payload_flush = (void *)mb + mb_offset;
2108
2109 if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_FLUSH) {
2110 int i, count;
2111
2112 count = le32_to_cpu(payload_flush->size) / sizeof(__le64);
2113 for (i = 0; i < count; ++i) {
2114 stripe_sect = le64_to_cpu(payload_flush->flush_stripes[i]);
2115 sh = r5c_recovery_lookup_stripe(cached_stripe_list,
2116 stripe_sect);
2117 if (sh) {
2118 WARN_ON(test_bit(STRIPE_R5C_CACHING, &sh->state));
2119 r5l_recovery_reset_stripe(sh);
2120 list_del_init(&sh->lru);
2121 raid5_release_stripe(sh);
2122 }
2123 }
2124
2125 mb_offset += sizeof(struct r5l_payload_flush) +
2126 le32_to_cpu(payload_flush->size);
2127 continue;
2128 }
2129
2130 /* DATA or PARITY payload */
2131 stripe_sect = (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_DATA) ?
2132 raid5_compute_sector(
2133 conf, le64_to_cpu(payload->location), 0, &dd,
2134 NULL)
2135 : le64_to_cpu(payload->location);
2136
2137 sh = r5c_recovery_lookup_stripe(cached_stripe_list,
2138 stripe_sect);
2139
2140 if (!sh) {
2141 sh = r5c_recovery_alloc_stripe(conf, stripe_sect, 1);
2142 /*
2143 * cannot get stripe from raid5_get_active_stripe
2144 * try replay some stripes
2145 */
2146 if (!sh) {
2147 r5c_recovery_replay_stripes(
2148 cached_stripe_list, ctx);
2149 sh = r5c_recovery_alloc_stripe(
2150 conf, stripe_sect, 1);
2151 }
2152 if (!sh) {
2153 int new_size = conf->min_nr_stripes * 2;
2154 pr_debug("md/raid:%s: Increasing stripe cache size to %d to recovery data on journal.\n",
2155 mdname(mddev),
2156 new_size);
2157 ret = raid5_set_cache_size(mddev, new_size);
2158 if (conf->min_nr_stripes <= new_size / 2) {
2159 pr_err("md/raid:%s: Cannot increase cache size, ret=%d, new_size=%d, min_nr_stripes=%d, max_nr_stripes=%d\n",
2160 mdname(mddev),
2161 ret,
2162 new_size,
2163 conf->min_nr_stripes,
2164 conf->max_nr_stripes);
2165 return -ENOMEM;
2166 }
2167 sh = r5c_recovery_alloc_stripe(
2168 conf, stripe_sect, 0);
2169 }
2170 if (!sh) {
2171 pr_err("md/raid:%s: Cannot get enough stripes due to memory pressure. Recovery failed.\n",
2172 mdname(mddev));
2173 return -ENOMEM;
2174 }
2175 list_add_tail(&sh->lru, cached_stripe_list);
2176 }
2177
2178 if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_DATA) {
2179 if (!test_bit(STRIPE_R5C_CACHING, &sh->state) &&
2180 test_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags)) {
2181 r5l_recovery_replay_one_stripe(conf, sh, ctx);
2182 list_move_tail(&sh->lru, cached_stripe_list);
2183 }
2184 r5l_recovery_load_data(log, sh, ctx, payload,
2185 log_offset);
2186 } else if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_PARITY)
2187 r5l_recovery_load_parity(log, sh, ctx, payload,
2188 log_offset);
2189 else
2190 return -EINVAL;
2191
2192 log_offset = r5l_ring_add(log, log_offset,
2193 le32_to_cpu(payload->size));
2194
2195 mb_offset += sizeof(struct r5l_payload_data_parity) +
2196 sizeof(__le32) *
2197 (le32_to_cpu(payload->size) >> (PAGE_SHIFT - 9));
2198 }
2199
2200 return 0;
2201 }
2202
2203 /*
2204 * Load the stripe into cache. The stripe will be written out later by
2205 * the stripe cache state machine.
2206 */
r5c_recovery_load_one_stripe(struct r5l_log * log,struct stripe_head * sh)2207 static void r5c_recovery_load_one_stripe(struct r5l_log *log,
2208 struct stripe_head *sh)
2209 {
2210 struct r5dev *dev;
2211 int i;
2212
2213 for (i = sh->disks; i--; ) {
2214 dev = sh->dev + i;
2215 if (test_and_clear_bit(R5_Wantwrite, &dev->flags)) {
2216 set_bit(R5_InJournal, &dev->flags);
2217 set_bit(R5_UPTODATE, &dev->flags);
2218 }
2219 }
2220 }
2221
2222 /*
2223 * Scan through the log for all to-be-flushed data
2224 *
2225 * For stripes with data and parity, namely Data-Parity stripe
2226 * (STRIPE_R5C_CACHING == 0), we simply replay all the writes.
2227 *
2228 * For stripes with only data, namely Data-Only stripe
2229 * (STRIPE_R5C_CACHING == 1), we load them to stripe cache state machine.
2230 *
2231 * For a stripe, if we see data after parity, we should discard all previous
2232 * data and parity for this stripe, as these data are already flushed to
2233 * the array.
2234 *
2235 * At the end of the scan, we return the new journal_tail, which points to
2236 * first data-only stripe on the journal device, or next invalid meta block.
2237 */
r5c_recovery_flush_log(struct r5l_log * log,struct r5l_recovery_ctx * ctx)2238 static int r5c_recovery_flush_log(struct r5l_log *log,
2239 struct r5l_recovery_ctx *ctx)
2240 {
2241 struct stripe_head *sh;
2242 int ret = 0;
2243
2244 /* scan through the log */
2245 while (1) {
2246 if (r5l_recovery_read_meta_block(log, ctx))
2247 break;
2248
2249 ret = r5c_recovery_analyze_meta_block(log, ctx,
2250 &ctx->cached_list);
2251 /*
2252 * -EAGAIN means mismatch in data block, in this case, we still
2253 * try scan the next metablock
2254 */
2255 if (ret && ret != -EAGAIN)
2256 break; /* ret == -EINVAL or -ENOMEM */
2257 ctx->seq++;
2258 ctx->pos = r5l_ring_add(log, ctx->pos, ctx->meta_total_blocks);
2259 }
2260
2261 if (ret == -ENOMEM) {
2262 r5c_recovery_drop_stripes(&ctx->cached_list, ctx);
2263 return ret;
2264 }
2265
2266 /* replay data-parity stripes */
2267 r5c_recovery_replay_stripes(&ctx->cached_list, ctx);
2268
2269 /* load data-only stripes to stripe cache */
2270 list_for_each_entry(sh, &ctx->cached_list, lru) {
2271 WARN_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state));
2272 r5c_recovery_load_one_stripe(log, sh);
2273 ctx->data_only_stripes++;
2274 }
2275
2276 return 0;
2277 }
2278
2279 /*
2280 * we did a recovery. Now ctx.pos points to an invalid meta block. New
2281 * log will start here. but we can't let superblock point to last valid
2282 * meta block. The log might looks like:
2283 * | meta 1| meta 2| meta 3|
2284 * meta 1 is valid, meta 2 is invalid. meta 3 could be valid. If
2285 * superblock points to meta 1, we write a new valid meta 2n. if crash
2286 * happens again, new recovery will start from meta 1. Since meta 2n is
2287 * valid now, recovery will think meta 3 is valid, which is wrong.
2288 * The solution is we create a new meta in meta2 with its seq == meta
2289 * 1's seq + 10000 and let superblock points to meta2. The same recovery
2290 * will not think meta 3 is a valid meta, because its seq doesn't match
2291 */
2292
2293 /*
2294 * Before recovery, the log looks like the following
2295 *
2296 * ---------------------------------------------
2297 * | valid log | invalid log |
2298 * ---------------------------------------------
2299 * ^
2300 * |- log->last_checkpoint
2301 * |- log->last_cp_seq
2302 *
2303 * Now we scan through the log until we see invalid entry
2304 *
2305 * ---------------------------------------------
2306 * | valid log | invalid log |
2307 * ---------------------------------------------
2308 * ^ ^
2309 * |- log->last_checkpoint |- ctx->pos
2310 * |- log->last_cp_seq |- ctx->seq
2311 *
2312 * From this point, we need to increase seq number by 10 to avoid
2313 * confusing next recovery.
2314 *
2315 * ---------------------------------------------
2316 * | valid log | invalid log |
2317 * ---------------------------------------------
2318 * ^ ^
2319 * |- log->last_checkpoint |- ctx->pos+1
2320 * |- log->last_cp_seq |- ctx->seq+10001
2321 *
2322 * However, it is not safe to start the state machine yet, because data only
2323 * parities are not yet secured in RAID. To save these data only parities, we
2324 * rewrite them from seq+11.
2325 *
2326 * -----------------------------------------------------------------
2327 * | valid log | data only stripes | invalid log |
2328 * -----------------------------------------------------------------
2329 * ^ ^
2330 * |- log->last_checkpoint |- ctx->pos+n
2331 * |- log->last_cp_seq |- ctx->seq+10000+n
2332 *
2333 * If failure happens again during this process, the recovery can safe start
2334 * again from log->last_checkpoint.
2335 *
2336 * Once data only stripes are rewritten to journal, we move log_tail
2337 *
2338 * -----------------------------------------------------------------
2339 * | old log | data only stripes | invalid log |
2340 * -----------------------------------------------------------------
2341 * ^ ^
2342 * |- log->last_checkpoint |- ctx->pos+n
2343 * |- log->last_cp_seq |- ctx->seq+10000+n
2344 *
2345 * Then we can safely start the state machine. If failure happens from this
2346 * point on, the recovery will start from new log->last_checkpoint.
2347 */
2348 static int
r5c_recovery_rewrite_data_only_stripes(struct r5l_log * log,struct r5l_recovery_ctx * ctx)2349 r5c_recovery_rewrite_data_only_stripes(struct r5l_log *log,
2350 struct r5l_recovery_ctx *ctx)
2351 {
2352 struct stripe_head *sh;
2353 struct mddev *mddev = log->rdev->mddev;
2354 struct page *page;
2355 sector_t next_checkpoint = MaxSector;
2356
2357 page = alloc_page(GFP_KERNEL);
2358 if (!page) {
2359 pr_err("md/raid:%s: cannot allocate memory to rewrite data only stripes\n",
2360 mdname(mddev));
2361 return -ENOMEM;
2362 }
2363
2364 WARN_ON(list_empty(&ctx->cached_list));
2365
2366 list_for_each_entry(sh, &ctx->cached_list, lru) {
2367 struct r5l_meta_block *mb;
2368 int i;
2369 int offset;
2370 sector_t write_pos;
2371
2372 WARN_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state));
2373 r5l_recovery_create_empty_meta_block(log, page,
2374 ctx->pos, ctx->seq);
2375 mb = page_address(page);
2376 offset = le32_to_cpu(mb->meta_size);
2377 write_pos = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
2378
2379 for (i = sh->disks; i--; ) {
2380 struct r5dev *dev = &sh->dev[i];
2381 struct r5l_payload_data_parity *payload;
2382 void *addr;
2383
2384 if (test_bit(R5_InJournal, &dev->flags)) {
2385 payload = (void *)mb + offset;
2386 payload->header.type = cpu_to_le16(
2387 R5LOG_PAYLOAD_DATA);
2388 payload->size = cpu_to_le32(BLOCK_SECTORS);
2389 payload->location = cpu_to_le64(
2390 raid5_compute_blocknr(sh, i, 0));
2391 addr = kmap_atomic(dev->page);
2392 payload->checksum[0] = cpu_to_le32(
2393 crc32c_le(log->uuid_checksum, addr,
2394 PAGE_SIZE));
2395 kunmap_atomic(addr);
2396 sync_page_io(log->rdev, write_pos, PAGE_SIZE,
2397 dev->page, REQ_OP_WRITE, false);
2398 write_pos = r5l_ring_add(log, write_pos,
2399 BLOCK_SECTORS);
2400 offset += sizeof(__le32) +
2401 sizeof(struct r5l_payload_data_parity);
2402
2403 }
2404 }
2405 mb->meta_size = cpu_to_le32(offset);
2406 mb->checksum = cpu_to_le32(crc32c_le(log->uuid_checksum,
2407 mb, PAGE_SIZE));
2408 sync_page_io(log->rdev, ctx->pos, PAGE_SIZE, page,
2409 REQ_OP_WRITE | REQ_SYNC | REQ_FUA, false);
2410 sh->log_start = ctx->pos;
2411 list_add_tail(&sh->r5c, &log->stripe_in_journal_list);
2412 atomic_inc(&log->stripe_in_journal_count);
2413 ctx->pos = write_pos;
2414 ctx->seq += 1;
2415 next_checkpoint = sh->log_start;
2416 }
2417 log->next_checkpoint = next_checkpoint;
2418 __free_page(page);
2419 return 0;
2420 }
2421
r5c_recovery_flush_data_only_stripes(struct r5l_log * log,struct r5l_recovery_ctx * ctx)2422 static void r5c_recovery_flush_data_only_stripes(struct r5l_log *log,
2423 struct r5l_recovery_ctx *ctx)
2424 {
2425 struct mddev *mddev = log->rdev->mddev;
2426 struct r5conf *conf = mddev->private;
2427 struct stripe_head *sh, *next;
2428 bool cleared_pending = false;
2429
2430 if (ctx->data_only_stripes == 0)
2431 return;
2432
2433 if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2434 cleared_pending = true;
2435 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
2436 }
2437 log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_BACK;
2438
2439 list_for_each_entry_safe(sh, next, &ctx->cached_list, lru) {
2440 r5c_make_stripe_write_out(sh);
2441 set_bit(STRIPE_HANDLE, &sh->state);
2442 list_del_init(&sh->lru);
2443 raid5_release_stripe(sh);
2444 }
2445
2446 /* reuse conf->wait_for_quiescent in recovery */
2447 wait_event(conf->wait_for_quiescent,
2448 atomic_read(&conf->active_stripes) == 0);
2449
2450 log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_THROUGH;
2451 if (cleared_pending)
2452 set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
2453 }
2454
r5l_recovery_log(struct r5l_log * log)2455 static int r5l_recovery_log(struct r5l_log *log)
2456 {
2457 struct mddev *mddev = log->rdev->mddev;
2458 struct r5l_recovery_ctx *ctx;
2459 int ret;
2460 sector_t pos;
2461
2462 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
2463 if (!ctx)
2464 return -ENOMEM;
2465
2466 ctx->pos = log->last_checkpoint;
2467 ctx->seq = log->last_cp_seq;
2468 INIT_LIST_HEAD(&ctx->cached_list);
2469 ctx->meta_page = alloc_page(GFP_KERNEL);
2470
2471 if (!ctx->meta_page) {
2472 ret = -ENOMEM;
2473 goto meta_page;
2474 }
2475
2476 if (r5l_recovery_allocate_ra_pool(log, ctx) != 0) {
2477 ret = -ENOMEM;
2478 goto ra_pool;
2479 }
2480
2481 ret = r5c_recovery_flush_log(log, ctx);
2482
2483 if (ret)
2484 goto error;
2485
2486 pos = ctx->pos;
2487 ctx->seq += 10000;
2488
2489 if ((ctx->data_only_stripes == 0) && (ctx->data_parity_stripes == 0))
2490 pr_info("md/raid:%s: starting from clean shutdown\n",
2491 mdname(mddev));
2492 else
2493 pr_info("md/raid:%s: recovering %d data-only stripes and %d data-parity stripes\n",
2494 mdname(mddev), ctx->data_only_stripes,
2495 ctx->data_parity_stripes);
2496
2497 if (ctx->data_only_stripes == 0) {
2498 log->next_checkpoint = ctx->pos;
2499 r5l_log_write_empty_meta_block(log, ctx->pos, ctx->seq++);
2500 ctx->pos = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
2501 } else if (r5c_recovery_rewrite_data_only_stripes(log, ctx)) {
2502 pr_err("md/raid:%s: failed to rewrite stripes to journal\n",
2503 mdname(mddev));
2504 ret = -EIO;
2505 goto error;
2506 }
2507
2508 log->log_start = ctx->pos;
2509 log->seq = ctx->seq;
2510 log->last_checkpoint = pos;
2511 r5l_write_super(log, pos);
2512
2513 r5c_recovery_flush_data_only_stripes(log, ctx);
2514 ret = 0;
2515 error:
2516 r5l_recovery_free_ra_pool(log, ctx);
2517 ra_pool:
2518 __free_page(ctx->meta_page);
2519 meta_page:
2520 kfree(ctx);
2521 return ret;
2522 }
2523
r5l_write_super(struct r5l_log * log,sector_t cp)2524 static void r5l_write_super(struct r5l_log *log, sector_t cp)
2525 {
2526 struct mddev *mddev = log->rdev->mddev;
2527
2528 log->rdev->journal_tail = cp;
2529 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2530 }
2531
r5c_journal_mode_show(struct mddev * mddev,char * page)2532 static ssize_t r5c_journal_mode_show(struct mddev *mddev, char *page)
2533 {
2534 struct r5conf *conf;
2535 int ret;
2536
2537 ret = mddev_lock(mddev);
2538 if (ret)
2539 return ret;
2540
2541 conf = mddev->private;
2542 if (!conf || !conf->log)
2543 goto out_unlock;
2544
2545 switch (conf->log->r5c_journal_mode) {
2546 case R5C_JOURNAL_MODE_WRITE_THROUGH:
2547 ret = snprintf(
2548 page, PAGE_SIZE, "[%s] %s\n",
2549 r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_THROUGH],
2550 r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_BACK]);
2551 break;
2552 case R5C_JOURNAL_MODE_WRITE_BACK:
2553 ret = snprintf(
2554 page, PAGE_SIZE, "%s [%s]\n",
2555 r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_THROUGH],
2556 r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_BACK]);
2557 break;
2558 default:
2559 ret = 0;
2560 }
2561
2562 out_unlock:
2563 mddev_unlock(mddev);
2564 return ret;
2565 }
2566
2567 /*
2568 * Set journal cache mode on @mddev (external API initially needed by dm-raid).
2569 *
2570 * @mode as defined in 'enum r5c_journal_mode'.
2571 *
2572 */
r5c_journal_mode_set(struct mddev * mddev,int mode)2573 int r5c_journal_mode_set(struct mddev *mddev, int mode)
2574 {
2575 struct r5conf *conf;
2576
2577 if (mode < R5C_JOURNAL_MODE_WRITE_THROUGH ||
2578 mode > R5C_JOURNAL_MODE_WRITE_BACK)
2579 return -EINVAL;
2580
2581 conf = mddev->private;
2582 if (!conf || !conf->log)
2583 return -ENODEV;
2584
2585 if (raid5_calc_degraded(conf) > 0 &&
2586 mode == R5C_JOURNAL_MODE_WRITE_BACK)
2587 return -EINVAL;
2588
2589 mddev_suspend(mddev);
2590 conf->log->r5c_journal_mode = mode;
2591 mddev_resume(mddev);
2592
2593 pr_debug("md/raid:%s: setting r5c cache mode to %d: %s\n",
2594 mdname(mddev), mode, r5c_journal_mode_str[mode]);
2595 return 0;
2596 }
2597 EXPORT_SYMBOL(r5c_journal_mode_set);
2598
r5c_journal_mode_store(struct mddev * mddev,const char * page,size_t length)2599 static ssize_t r5c_journal_mode_store(struct mddev *mddev,
2600 const char *page, size_t length)
2601 {
2602 int mode = ARRAY_SIZE(r5c_journal_mode_str);
2603 size_t len = length;
2604 int ret;
2605
2606 if (len < 2)
2607 return -EINVAL;
2608
2609 if (page[len - 1] == '\n')
2610 len--;
2611
2612 while (mode--)
2613 if (strlen(r5c_journal_mode_str[mode]) == len &&
2614 !strncmp(page, r5c_journal_mode_str[mode], len))
2615 break;
2616 ret = mddev_lock(mddev);
2617 if (ret)
2618 return ret;
2619 ret = r5c_journal_mode_set(mddev, mode);
2620 mddev_unlock(mddev);
2621 return ret ?: length;
2622 }
2623
2624 struct md_sysfs_entry
2625 r5c_journal_mode = __ATTR(journal_mode, 0644,
2626 r5c_journal_mode_show, r5c_journal_mode_store);
2627
2628 /*
2629 * Try handle write operation in caching phase. This function should only
2630 * be called in write-back mode.
2631 *
2632 * If all outstanding writes can be handled in caching phase, returns 0
2633 * If writes requires write-out phase, call r5c_make_stripe_write_out()
2634 * and returns -EAGAIN
2635 */
r5c_try_caching_write(struct r5conf * conf,struct stripe_head * sh,struct stripe_head_state * s,int disks)2636 int r5c_try_caching_write(struct r5conf *conf,
2637 struct stripe_head *sh,
2638 struct stripe_head_state *s,
2639 int disks)
2640 {
2641 struct r5l_log *log = READ_ONCE(conf->log);
2642 int i;
2643 struct r5dev *dev;
2644 int to_cache = 0;
2645 void __rcu **pslot;
2646 sector_t tree_index;
2647 int ret;
2648 uintptr_t refcount;
2649
2650 BUG_ON(!r5c_is_writeback(log));
2651
2652 if (!test_bit(STRIPE_R5C_CACHING, &sh->state)) {
2653 /*
2654 * There are two different scenarios here:
2655 * 1. The stripe has some data cached, and it is sent to
2656 * write-out phase for reclaim
2657 * 2. The stripe is clean, and this is the first write
2658 *
2659 * For 1, return -EAGAIN, so we continue with
2660 * handle_stripe_dirtying().
2661 *
2662 * For 2, set STRIPE_R5C_CACHING and continue with caching
2663 * write.
2664 */
2665
2666 /* case 1: anything injournal or anything in written */
2667 if (s->injournal > 0 || s->written > 0)
2668 return -EAGAIN;
2669 /* case 2 */
2670 set_bit(STRIPE_R5C_CACHING, &sh->state);
2671 }
2672
2673 /*
2674 * When run in degraded mode, array is set to write-through mode.
2675 * This check helps drain pending write safely in the transition to
2676 * write-through mode.
2677 *
2678 * When a stripe is syncing, the write is also handled in write
2679 * through mode.
2680 */
2681 if (s->failed || test_bit(STRIPE_SYNCING, &sh->state)) {
2682 r5c_make_stripe_write_out(sh);
2683 return -EAGAIN;
2684 }
2685
2686 for (i = disks; i--; ) {
2687 dev = &sh->dev[i];
2688 /* if non-overwrite, use writing-out phase */
2689 if (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags) &&
2690 !test_bit(R5_InJournal, &dev->flags)) {
2691 r5c_make_stripe_write_out(sh);
2692 return -EAGAIN;
2693 }
2694 }
2695
2696 /* if the stripe is not counted in big_stripe_tree, add it now */
2697 if (!test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) &&
2698 !test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) {
2699 tree_index = r5c_tree_index(conf, sh->sector);
2700 spin_lock(&log->tree_lock);
2701 pslot = radix_tree_lookup_slot(&log->big_stripe_tree,
2702 tree_index);
2703 if (pslot) {
2704 refcount = (uintptr_t)radix_tree_deref_slot_protected(
2705 pslot, &log->tree_lock) >>
2706 R5C_RADIX_COUNT_SHIFT;
2707 radix_tree_replace_slot(
2708 &log->big_stripe_tree, pslot,
2709 (void *)((refcount + 1) << R5C_RADIX_COUNT_SHIFT));
2710 } else {
2711 /*
2712 * this radix_tree_insert can fail safely, so no
2713 * need to call radix_tree_preload()
2714 */
2715 ret = radix_tree_insert(
2716 &log->big_stripe_tree, tree_index,
2717 (void *)(1 << R5C_RADIX_COUNT_SHIFT));
2718 if (ret) {
2719 spin_unlock(&log->tree_lock);
2720 r5c_make_stripe_write_out(sh);
2721 return -EAGAIN;
2722 }
2723 }
2724 spin_unlock(&log->tree_lock);
2725
2726 /*
2727 * set STRIPE_R5C_PARTIAL_STRIPE, this shows the stripe is
2728 * counted in the radix tree
2729 */
2730 set_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state);
2731 atomic_inc(&conf->r5c_cached_partial_stripes);
2732 }
2733
2734 for (i = disks; i--; ) {
2735 dev = &sh->dev[i];
2736 if (dev->towrite) {
2737 set_bit(R5_Wantwrite, &dev->flags);
2738 set_bit(R5_Wantdrain, &dev->flags);
2739 set_bit(R5_LOCKED, &dev->flags);
2740 to_cache++;
2741 }
2742 }
2743
2744 if (to_cache) {
2745 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2746 /*
2747 * set STRIPE_LOG_TRAPPED, which triggers r5c_cache_data()
2748 * in ops_run_io(). STRIPE_LOG_TRAPPED will be cleared in
2749 * r5c_handle_data_cached()
2750 */
2751 set_bit(STRIPE_LOG_TRAPPED, &sh->state);
2752 }
2753
2754 return 0;
2755 }
2756
2757 /*
2758 * free extra pages (orig_page) we allocated for prexor
2759 */
r5c_release_extra_page(struct stripe_head * sh)2760 void r5c_release_extra_page(struct stripe_head *sh)
2761 {
2762 struct r5conf *conf = sh->raid_conf;
2763 int i;
2764 bool using_disk_info_extra_page;
2765
2766 using_disk_info_extra_page =
2767 sh->dev[0].orig_page == conf->disks[0].extra_page;
2768
2769 for (i = sh->disks; i--; )
2770 if (sh->dev[i].page != sh->dev[i].orig_page) {
2771 struct page *p = sh->dev[i].orig_page;
2772
2773 sh->dev[i].orig_page = sh->dev[i].page;
2774 clear_bit(R5_OrigPageUPTDODATE, &sh->dev[i].flags);
2775
2776 if (!using_disk_info_extra_page)
2777 put_page(p);
2778 }
2779
2780 if (using_disk_info_extra_page) {
2781 clear_bit(R5C_EXTRA_PAGE_IN_USE, &conf->cache_state);
2782 md_wakeup_thread(conf->mddev->thread);
2783 }
2784 }
2785
r5c_use_extra_page(struct stripe_head * sh)2786 void r5c_use_extra_page(struct stripe_head *sh)
2787 {
2788 struct r5conf *conf = sh->raid_conf;
2789 int i;
2790 struct r5dev *dev;
2791
2792 for (i = sh->disks; i--; ) {
2793 dev = &sh->dev[i];
2794 if (dev->orig_page != dev->page)
2795 put_page(dev->orig_page);
2796 dev->orig_page = conf->disks[i].extra_page;
2797 }
2798 }
2799
2800 /*
2801 * clean up the stripe (clear R5_InJournal for dev[pd_idx] etc.) after the
2802 * stripe is committed to RAID disks.
2803 */
r5c_finish_stripe_write_out(struct r5conf * conf,struct stripe_head * sh,struct stripe_head_state * s)2804 void r5c_finish_stripe_write_out(struct r5conf *conf,
2805 struct stripe_head *sh,
2806 struct stripe_head_state *s)
2807 {
2808 struct r5l_log *log = READ_ONCE(conf->log);
2809 int i;
2810 int do_wakeup = 0;
2811 sector_t tree_index;
2812 void __rcu **pslot;
2813 uintptr_t refcount;
2814
2815 if (!log || !test_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags))
2816 return;
2817
2818 WARN_ON(test_bit(STRIPE_R5C_CACHING, &sh->state));
2819 clear_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags);
2820
2821 if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH)
2822 return;
2823
2824 for (i = sh->disks; i--; ) {
2825 clear_bit(R5_InJournal, &sh->dev[i].flags);
2826 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2827 do_wakeup = 1;
2828 }
2829
2830 /*
2831 * analyse_stripe() runs before r5c_finish_stripe_write_out(),
2832 * We updated R5_InJournal, so we also update s->injournal.
2833 */
2834 s->injournal = 0;
2835
2836 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2837 if (atomic_dec_and_test(&conf->pending_full_writes))
2838 md_wakeup_thread(conf->mddev->thread);
2839
2840 if (do_wakeup)
2841 wake_up(&conf->wait_for_overlap);
2842
2843 spin_lock_irq(&log->stripe_in_journal_lock);
2844 list_del_init(&sh->r5c);
2845 spin_unlock_irq(&log->stripe_in_journal_lock);
2846 sh->log_start = MaxSector;
2847
2848 atomic_dec(&log->stripe_in_journal_count);
2849 r5c_update_log_state(log);
2850
2851 /* stop counting this stripe in big_stripe_tree */
2852 if (test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) ||
2853 test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) {
2854 tree_index = r5c_tree_index(conf, sh->sector);
2855 spin_lock(&log->tree_lock);
2856 pslot = radix_tree_lookup_slot(&log->big_stripe_tree,
2857 tree_index);
2858 BUG_ON(pslot == NULL);
2859 refcount = (uintptr_t)radix_tree_deref_slot_protected(
2860 pslot, &log->tree_lock) >>
2861 R5C_RADIX_COUNT_SHIFT;
2862 if (refcount == 1)
2863 radix_tree_delete(&log->big_stripe_tree, tree_index);
2864 else
2865 radix_tree_replace_slot(
2866 &log->big_stripe_tree, pslot,
2867 (void *)((refcount - 1) << R5C_RADIX_COUNT_SHIFT));
2868 spin_unlock(&log->tree_lock);
2869 }
2870
2871 if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) {
2872 BUG_ON(atomic_read(&conf->r5c_cached_partial_stripes) == 0);
2873 atomic_dec(&conf->r5c_flushing_partial_stripes);
2874 atomic_dec(&conf->r5c_cached_partial_stripes);
2875 }
2876
2877 if (test_and_clear_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) {
2878 BUG_ON(atomic_read(&conf->r5c_cached_full_stripes) == 0);
2879 atomic_dec(&conf->r5c_flushing_full_stripes);
2880 atomic_dec(&conf->r5c_cached_full_stripes);
2881 }
2882
2883 r5l_append_flush_payload(log, sh->sector);
2884 /* stripe is flused to raid disks, we can do resync now */
2885 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
2886 set_bit(STRIPE_HANDLE, &sh->state);
2887 }
2888
r5c_cache_data(struct r5l_log * log,struct stripe_head * sh)2889 int r5c_cache_data(struct r5l_log *log, struct stripe_head *sh)
2890 {
2891 struct r5conf *conf = sh->raid_conf;
2892 int pages = 0;
2893 int reserve;
2894 int i;
2895 int ret = 0;
2896
2897 BUG_ON(!log);
2898
2899 for (i = 0; i < sh->disks; i++) {
2900 void *addr;
2901
2902 if (!test_bit(R5_Wantwrite, &sh->dev[i].flags))
2903 continue;
2904 addr = kmap_atomic(sh->dev[i].page);
2905 sh->dev[i].log_checksum = crc32c_le(log->uuid_checksum,
2906 addr, PAGE_SIZE);
2907 kunmap_atomic(addr);
2908 pages++;
2909 }
2910 WARN_ON(pages == 0);
2911
2912 /*
2913 * The stripe must enter state machine again to call endio, so
2914 * don't delay.
2915 */
2916 clear_bit(STRIPE_DELAYED, &sh->state);
2917 atomic_inc(&sh->count);
2918
2919 mutex_lock(&log->io_mutex);
2920 /* meta + data */
2921 reserve = (1 + pages) << (PAGE_SHIFT - 9);
2922
2923 if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) &&
2924 sh->log_start == MaxSector)
2925 r5l_add_no_space_stripe(log, sh);
2926 else if (!r5l_has_free_space(log, reserve)) {
2927 if (sh->log_start == log->last_checkpoint)
2928 BUG();
2929 else
2930 r5l_add_no_space_stripe(log, sh);
2931 } else {
2932 ret = r5l_log_stripe(log, sh, pages, 0);
2933 if (ret) {
2934 spin_lock_irq(&log->io_list_lock);
2935 list_add_tail(&sh->log_list, &log->no_mem_stripes);
2936 spin_unlock_irq(&log->io_list_lock);
2937 }
2938 }
2939
2940 mutex_unlock(&log->io_mutex);
2941 return 0;
2942 }
2943
2944 /* check whether this big stripe is in write back cache. */
r5c_big_stripe_cached(struct r5conf * conf,sector_t sect)2945 bool r5c_big_stripe_cached(struct r5conf *conf, sector_t sect)
2946 {
2947 struct r5l_log *log = READ_ONCE(conf->log);
2948 sector_t tree_index;
2949 void *slot;
2950
2951 if (!log)
2952 return false;
2953
2954 WARN_ON_ONCE(!rcu_read_lock_held());
2955 tree_index = r5c_tree_index(conf, sect);
2956 slot = radix_tree_lookup(&log->big_stripe_tree, tree_index);
2957 return slot != NULL;
2958 }
2959
r5l_load_log(struct r5l_log * log)2960 static int r5l_load_log(struct r5l_log *log)
2961 {
2962 struct md_rdev *rdev = log->rdev;
2963 struct page *page;
2964 struct r5l_meta_block *mb;
2965 sector_t cp = log->rdev->journal_tail;
2966 u32 stored_crc, expected_crc;
2967 bool create_super = false;
2968 int ret = 0;
2969
2970 /* Make sure it's valid */
2971 if (cp >= rdev->sectors || round_down(cp, BLOCK_SECTORS) != cp)
2972 cp = 0;
2973 page = alloc_page(GFP_KERNEL);
2974 if (!page)
2975 return -ENOMEM;
2976
2977 if (!sync_page_io(rdev, cp, PAGE_SIZE, page, REQ_OP_READ, false)) {
2978 ret = -EIO;
2979 goto ioerr;
2980 }
2981 mb = page_address(page);
2982
2983 if (le32_to_cpu(mb->magic) != R5LOG_MAGIC ||
2984 mb->version != R5LOG_VERSION) {
2985 create_super = true;
2986 goto create;
2987 }
2988 stored_crc = le32_to_cpu(mb->checksum);
2989 mb->checksum = 0;
2990 expected_crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE);
2991 if (stored_crc != expected_crc) {
2992 create_super = true;
2993 goto create;
2994 }
2995 if (le64_to_cpu(mb->position) != cp) {
2996 create_super = true;
2997 goto create;
2998 }
2999 create:
3000 if (create_super) {
3001 log->last_cp_seq = get_random_u32();
3002 cp = 0;
3003 r5l_log_write_empty_meta_block(log, cp, log->last_cp_seq);
3004 /*
3005 * Make sure super points to correct address. Log might have
3006 * data very soon. If super hasn't correct log tail address,
3007 * recovery can't find the log
3008 */
3009 r5l_write_super(log, cp);
3010 } else
3011 log->last_cp_seq = le64_to_cpu(mb->seq);
3012
3013 log->device_size = round_down(rdev->sectors, BLOCK_SECTORS);
3014 log->max_free_space = log->device_size >> RECLAIM_MAX_FREE_SPACE_SHIFT;
3015 if (log->max_free_space > RECLAIM_MAX_FREE_SPACE)
3016 log->max_free_space = RECLAIM_MAX_FREE_SPACE;
3017 log->last_checkpoint = cp;
3018
3019 __free_page(page);
3020
3021 if (create_super) {
3022 log->log_start = r5l_ring_add(log, cp, BLOCK_SECTORS);
3023 log->seq = log->last_cp_seq + 1;
3024 log->next_checkpoint = cp;
3025 } else
3026 ret = r5l_recovery_log(log);
3027
3028 r5c_update_log_state(log);
3029 return ret;
3030 ioerr:
3031 __free_page(page);
3032 return ret;
3033 }
3034
r5l_start(struct r5l_log * log)3035 int r5l_start(struct r5l_log *log)
3036 {
3037 int ret;
3038
3039 if (!log)
3040 return 0;
3041
3042 ret = r5l_load_log(log);
3043 if (ret) {
3044 struct mddev *mddev = log->rdev->mddev;
3045 struct r5conf *conf = mddev->private;
3046
3047 r5l_exit_log(conf);
3048 }
3049 return ret;
3050 }
3051
r5c_update_on_rdev_error(struct mddev * mddev,struct md_rdev * rdev)3052 void r5c_update_on_rdev_error(struct mddev *mddev, struct md_rdev *rdev)
3053 {
3054 struct r5conf *conf = mddev->private;
3055 struct r5l_log *log = READ_ONCE(conf->log);
3056
3057 if (!log)
3058 return;
3059
3060 if ((raid5_calc_degraded(conf) > 0 ||
3061 test_bit(Journal, &rdev->flags)) &&
3062 log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_BACK)
3063 schedule_work(&log->disable_writeback_work);
3064 }
3065
r5l_init_log(struct r5conf * conf,struct md_rdev * rdev)3066 int r5l_init_log(struct r5conf *conf, struct md_rdev *rdev)
3067 {
3068 struct r5l_log *log;
3069 struct md_thread *thread;
3070 int ret;
3071
3072 pr_debug("md/raid:%s: using device %pg as journal\n",
3073 mdname(conf->mddev), rdev->bdev);
3074
3075 if (PAGE_SIZE != 4096)
3076 return -EINVAL;
3077
3078 /*
3079 * The PAGE_SIZE must be big enough to hold 1 r5l_meta_block and
3080 * raid_disks r5l_payload_data_parity.
3081 *
3082 * Write journal and cache does not work for very big array
3083 * (raid_disks > 203)
3084 */
3085 if (sizeof(struct r5l_meta_block) +
3086 ((sizeof(struct r5l_payload_data_parity) + sizeof(__le32)) *
3087 conf->raid_disks) > PAGE_SIZE) {
3088 pr_err("md/raid:%s: write journal/cache doesn't work for array with %d disks\n",
3089 mdname(conf->mddev), conf->raid_disks);
3090 return -EINVAL;
3091 }
3092
3093 log = kzalloc(sizeof(*log), GFP_KERNEL);
3094 if (!log)
3095 return -ENOMEM;
3096 log->rdev = rdev;
3097 log->need_cache_flush = bdev_write_cache(rdev->bdev);
3098 log->uuid_checksum = crc32c_le(~0, rdev->mddev->uuid,
3099 sizeof(rdev->mddev->uuid));
3100
3101 mutex_init(&log->io_mutex);
3102
3103 spin_lock_init(&log->io_list_lock);
3104 INIT_LIST_HEAD(&log->running_ios);
3105 INIT_LIST_HEAD(&log->io_end_ios);
3106 INIT_LIST_HEAD(&log->flushing_ios);
3107 INIT_LIST_HEAD(&log->finished_ios);
3108
3109 log->io_kc = KMEM_CACHE(r5l_io_unit, 0);
3110 if (!log->io_kc)
3111 goto io_kc;
3112
3113 ret = mempool_init_slab_pool(&log->io_pool, R5L_POOL_SIZE, log->io_kc);
3114 if (ret)
3115 goto io_pool;
3116
3117 ret = bioset_init(&log->bs, R5L_POOL_SIZE, 0, BIOSET_NEED_BVECS);
3118 if (ret)
3119 goto io_bs;
3120
3121 ret = mempool_init_page_pool(&log->meta_pool, R5L_POOL_SIZE, 0);
3122 if (ret)
3123 goto out_mempool;
3124
3125 spin_lock_init(&log->tree_lock);
3126 INIT_RADIX_TREE(&log->big_stripe_tree, GFP_NOWAIT | __GFP_NOWARN);
3127
3128 thread = md_register_thread(r5l_reclaim_thread, log->rdev->mddev,
3129 "reclaim");
3130 if (!thread)
3131 goto reclaim_thread;
3132
3133 thread->timeout = R5C_RECLAIM_WAKEUP_INTERVAL;
3134 rcu_assign_pointer(log->reclaim_thread, thread);
3135
3136 init_waitqueue_head(&log->iounit_wait);
3137
3138 INIT_LIST_HEAD(&log->no_mem_stripes);
3139
3140 INIT_LIST_HEAD(&log->no_space_stripes);
3141 spin_lock_init(&log->no_space_stripes_lock);
3142
3143 INIT_WORK(&log->deferred_io_work, r5l_submit_io_async);
3144 INIT_WORK(&log->disable_writeback_work, r5c_disable_writeback_async);
3145
3146 log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_THROUGH;
3147 INIT_LIST_HEAD(&log->stripe_in_journal_list);
3148 spin_lock_init(&log->stripe_in_journal_lock);
3149 atomic_set(&log->stripe_in_journal_count, 0);
3150
3151 WRITE_ONCE(conf->log, log);
3152
3153 set_bit(MD_HAS_JOURNAL, &conf->mddev->flags);
3154 return 0;
3155
3156 reclaim_thread:
3157 mempool_exit(&log->meta_pool);
3158 out_mempool:
3159 bioset_exit(&log->bs);
3160 io_bs:
3161 mempool_exit(&log->io_pool);
3162 io_pool:
3163 kmem_cache_destroy(log->io_kc);
3164 io_kc:
3165 kfree(log);
3166 return -EINVAL;
3167 }
3168
r5l_exit_log(struct r5conf * conf)3169 void r5l_exit_log(struct r5conf *conf)
3170 {
3171 struct r5l_log *log = conf->log;
3172
3173 md_unregister_thread(conf->mddev, &log->reclaim_thread);
3174
3175 /*
3176 * 'reconfig_mutex' is held by caller, set 'confg->log' to NULL to
3177 * ensure disable_writeback_work wakes up and exits.
3178 */
3179 WRITE_ONCE(conf->log, NULL);
3180 wake_up(&conf->mddev->sb_wait);
3181 flush_work(&log->disable_writeback_work);
3182
3183 mempool_exit(&log->meta_pool);
3184 bioset_exit(&log->bs);
3185 mempool_exit(&log->io_pool);
3186 kmem_cache_destroy(log->io_kc);
3187 kfree(log);
3188 }
3189