1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * raid10.c : Multiple Devices driver for Linux 4 * 5 * Copyright (C) 2000-2004 Neil Brown 6 * 7 * RAID-10 support for md. 8 * 9 * Base on code in raid1.c. See raid1.c for further copyright information. 10 */ 11 12 #include <linux/slab.h> 13 #include <linux/delay.h> 14 #include <linux/blkdev.h> 15 #include <linux/module.h> 16 #include <linux/seq_file.h> 17 #include <linux/ratelimit.h> 18 #include <linux/kthread.h> 19 #include <linux/raid/md_p.h> 20 #include <trace/events/block.h> 21 #include "md.h" 22 #include "raid10.h" 23 #include "raid0.h" 24 #include "md-bitmap.h" 25 26 /* 27 * RAID10 provides a combination of RAID0 and RAID1 functionality. 28 * The layout of data is defined by 29 * chunk_size 30 * raid_disks 31 * near_copies (stored in low byte of layout) 32 * far_copies (stored in second byte of layout) 33 * far_offset (stored in bit 16 of layout ) 34 * use_far_sets (stored in bit 17 of layout ) 35 * use_far_sets_bugfixed (stored in bit 18 of layout ) 36 * 37 * The data to be stored is divided into chunks using chunksize. Each device 38 * is divided into far_copies sections. In each section, chunks are laid out 39 * in a style similar to raid0, but near_copies copies of each chunk is stored 40 * (each on a different drive). The starting device for each section is offset 41 * near_copies from the starting device of the previous section. Thus there 42 * are (near_copies * far_copies) of each chunk, and each is on a different 43 * drive. near_copies and far_copies must be at least one, and their product 44 * is at most raid_disks. 45 * 46 * If far_offset is true, then the far_copies are handled a bit differently. 47 * The copies are still in different stripes, but instead of being very far 48 * apart on disk, there are adjacent stripes. 49 * 50 * The far and offset algorithms are handled slightly differently if 51 * 'use_far_sets' is true. In this case, the array's devices are grouped into 52 * sets that are (near_copies * far_copies) in size. The far copied stripes 53 * are still shifted by 'near_copies' devices, but this shifting stays confined 54 * to the set rather than the entire array. This is done to improve the number 55 * of device combinations that can fail without causing the array to fail. 56 * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk 57 * on a device): 58 * A B C D A B C D E 59 * ... ... 60 * D A B C E A B C D 61 * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s): 62 * [A B] [C D] [A B] [C D E] 63 * |...| |...| |...| | ... | 64 * [B A] [D C] [B A] [E C D] 65 */ 66 67 static void allow_barrier(struct r10conf *conf); 68 static void lower_barrier(struct r10conf *conf); 69 static int _enough(struct r10conf *conf, int previous, int ignore); 70 static int enough(struct r10conf *conf, int ignore); 71 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, 72 int *skipped); 73 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio); 74 static void end_reshape_write(struct bio *bio); 75 static void end_reshape(struct r10conf *conf); 76 77 #define raid10_log(md, fmt, args...) \ 78 do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid10 " fmt, ##args); } while (0) 79 80 #include "raid1-10.c" 81 82 /* 83 * for resync bio, r10bio pointer can be retrieved from the per-bio 84 * 'struct resync_pages'. 85 */ 86 static inline struct r10bio *get_resync_r10bio(struct bio *bio) 87 { 88 return get_resync_pages(bio)->raid_bio; 89 } 90 91 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data) 92 { 93 struct r10conf *conf = data; 94 int size = offsetof(struct r10bio, devs[conf->copies]); 95 96 /* allocate a r10bio with room for raid_disks entries in the 97 * bios array */ 98 return kzalloc(size, gfp_flags); 99 } 100 101 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9) 102 /* amount of memory to reserve for resync requests */ 103 #define RESYNC_WINDOW (1024*1024) 104 /* maximum number of concurrent requests, memory permitting */ 105 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE) 106 #define CLUSTER_RESYNC_WINDOW (32 * RESYNC_WINDOW) 107 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9) 108 109 /* 110 * When performing a resync, we need to read and compare, so 111 * we need as many pages are there are copies. 112 * When performing a recovery, we need 2 bios, one for read, 113 * one for write (we recover only one drive per r10buf) 114 * 115 */ 116 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data) 117 { 118 struct r10conf *conf = data; 119 struct r10bio *r10_bio; 120 struct bio *bio; 121 int j; 122 int nalloc, nalloc_rp; 123 struct resync_pages *rps; 124 125 r10_bio = r10bio_pool_alloc(gfp_flags, conf); 126 if (!r10_bio) 127 return NULL; 128 129 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) || 130 test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery)) 131 nalloc = conf->copies; /* resync */ 132 else 133 nalloc = 2; /* recovery */ 134 135 /* allocate once for all bios */ 136 if (!conf->have_replacement) 137 nalloc_rp = nalloc; 138 else 139 nalloc_rp = nalloc * 2; 140 rps = kmalloc_array(nalloc_rp, sizeof(struct resync_pages), gfp_flags); 141 if (!rps) 142 goto out_free_r10bio; 143 144 /* 145 * Allocate bios. 146 */ 147 for (j = nalloc ; j-- ; ) { 148 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES); 149 if (!bio) 150 goto out_free_bio; 151 r10_bio->devs[j].bio = bio; 152 if (!conf->have_replacement) 153 continue; 154 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES); 155 if (!bio) 156 goto out_free_bio; 157 r10_bio->devs[j].repl_bio = bio; 158 } 159 /* 160 * Allocate RESYNC_PAGES data pages and attach them 161 * where needed. 162 */ 163 for (j = 0; j < nalloc; j++) { 164 struct bio *rbio = r10_bio->devs[j].repl_bio; 165 struct resync_pages *rp, *rp_repl; 166 167 rp = &rps[j]; 168 if (rbio) 169 rp_repl = &rps[nalloc + j]; 170 171 bio = r10_bio->devs[j].bio; 172 173 if (!j || test_bit(MD_RECOVERY_SYNC, 174 &conf->mddev->recovery)) { 175 if (resync_alloc_pages(rp, gfp_flags)) 176 goto out_free_pages; 177 } else { 178 memcpy(rp, &rps[0], sizeof(*rp)); 179 resync_get_all_pages(rp); 180 } 181 182 rp->raid_bio = r10_bio; 183 bio->bi_private = rp; 184 if (rbio) { 185 memcpy(rp_repl, rp, sizeof(*rp)); 186 rbio->bi_private = rp_repl; 187 } 188 } 189 190 return r10_bio; 191 192 out_free_pages: 193 while (--j >= 0) 194 resync_free_pages(&rps[j * 2]); 195 196 j = 0; 197 out_free_bio: 198 for ( ; j < nalloc; j++) { 199 if (r10_bio->devs[j].bio) 200 bio_put(r10_bio->devs[j].bio); 201 if (r10_bio->devs[j].repl_bio) 202 bio_put(r10_bio->devs[j].repl_bio); 203 } 204 kfree(rps); 205 out_free_r10bio: 206 rbio_pool_free(r10_bio, conf); 207 return NULL; 208 } 209 210 static void r10buf_pool_free(void *__r10_bio, void *data) 211 { 212 struct r10conf *conf = data; 213 struct r10bio *r10bio = __r10_bio; 214 int j; 215 struct resync_pages *rp = NULL; 216 217 for (j = conf->copies; j--; ) { 218 struct bio *bio = r10bio->devs[j].bio; 219 220 if (bio) { 221 rp = get_resync_pages(bio); 222 resync_free_pages(rp); 223 bio_put(bio); 224 } 225 226 bio = r10bio->devs[j].repl_bio; 227 if (bio) 228 bio_put(bio); 229 } 230 231 /* resync pages array stored in the 1st bio's .bi_private */ 232 kfree(rp); 233 234 rbio_pool_free(r10bio, conf); 235 } 236 237 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio) 238 { 239 int i; 240 241 for (i = 0; i < conf->copies; i++) { 242 struct bio **bio = & r10_bio->devs[i].bio; 243 if (!BIO_SPECIAL(*bio)) 244 bio_put(*bio); 245 *bio = NULL; 246 bio = &r10_bio->devs[i].repl_bio; 247 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio)) 248 bio_put(*bio); 249 *bio = NULL; 250 } 251 } 252 253 static void free_r10bio(struct r10bio *r10_bio) 254 { 255 struct r10conf *conf = r10_bio->mddev->private; 256 257 put_all_bios(conf, r10_bio); 258 mempool_free(r10_bio, &conf->r10bio_pool); 259 } 260 261 static void put_buf(struct r10bio *r10_bio) 262 { 263 struct r10conf *conf = r10_bio->mddev->private; 264 265 mempool_free(r10_bio, &conf->r10buf_pool); 266 267 lower_barrier(conf); 268 } 269 270 static void reschedule_retry(struct r10bio *r10_bio) 271 { 272 unsigned long flags; 273 struct mddev *mddev = r10_bio->mddev; 274 struct r10conf *conf = mddev->private; 275 276 spin_lock_irqsave(&conf->device_lock, flags); 277 list_add(&r10_bio->retry_list, &conf->retry_list); 278 conf->nr_queued ++; 279 spin_unlock_irqrestore(&conf->device_lock, flags); 280 281 /* wake up frozen array... */ 282 wake_up(&conf->wait_barrier); 283 284 md_wakeup_thread(mddev->thread); 285 } 286 287 /* 288 * raid_end_bio_io() is called when we have finished servicing a mirrored 289 * operation and are ready to return a success/failure code to the buffer 290 * cache layer. 291 */ 292 static void raid_end_bio_io(struct r10bio *r10_bio) 293 { 294 struct bio *bio = r10_bio->master_bio; 295 struct r10conf *conf = r10_bio->mddev->private; 296 297 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) 298 bio->bi_status = BLK_STS_IOERR; 299 300 bio_endio(bio); 301 /* 302 * Wake up any possible resync thread that waits for the device 303 * to go idle. 304 */ 305 allow_barrier(conf); 306 307 free_r10bio(r10_bio); 308 } 309 310 /* 311 * Update disk head position estimator based on IRQ completion info. 312 */ 313 static inline void update_head_pos(int slot, struct r10bio *r10_bio) 314 { 315 struct r10conf *conf = r10_bio->mddev->private; 316 317 conf->mirrors[r10_bio->devs[slot].devnum].head_position = 318 r10_bio->devs[slot].addr + (r10_bio->sectors); 319 } 320 321 /* 322 * Find the disk number which triggered given bio 323 */ 324 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio, 325 struct bio *bio, int *slotp, int *replp) 326 { 327 int slot; 328 int repl = 0; 329 330 for (slot = 0; slot < conf->copies; slot++) { 331 if (r10_bio->devs[slot].bio == bio) 332 break; 333 if (r10_bio->devs[slot].repl_bio == bio) { 334 repl = 1; 335 break; 336 } 337 } 338 339 BUG_ON(slot == conf->copies); 340 update_head_pos(slot, r10_bio); 341 342 if (slotp) 343 *slotp = slot; 344 if (replp) 345 *replp = repl; 346 return r10_bio->devs[slot].devnum; 347 } 348 349 static void raid10_end_read_request(struct bio *bio) 350 { 351 int uptodate = !bio->bi_status; 352 struct r10bio *r10_bio = bio->bi_private; 353 int slot; 354 struct md_rdev *rdev; 355 struct r10conf *conf = r10_bio->mddev->private; 356 357 slot = r10_bio->read_slot; 358 rdev = r10_bio->devs[slot].rdev; 359 /* 360 * this branch is our 'one mirror IO has finished' event handler: 361 */ 362 update_head_pos(slot, r10_bio); 363 364 if (uptodate) { 365 /* 366 * Set R10BIO_Uptodate in our master bio, so that 367 * we will return a good error code to the higher 368 * levels even if IO on some other mirrored buffer fails. 369 * 370 * The 'master' represents the composite IO operation to 371 * user-side. So if something waits for IO, then it will 372 * wait for the 'master' bio. 373 */ 374 set_bit(R10BIO_Uptodate, &r10_bio->state); 375 } else { 376 /* If all other devices that store this block have 377 * failed, we want to return the error upwards rather 378 * than fail the last device. Here we redefine 379 * "uptodate" to mean "Don't want to retry" 380 */ 381 if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state), 382 rdev->raid_disk)) 383 uptodate = 1; 384 } 385 if (uptodate) { 386 raid_end_bio_io(r10_bio); 387 rdev_dec_pending(rdev, conf->mddev); 388 } else { 389 /* 390 * oops, read error - keep the refcount on the rdev 391 */ 392 char b[BDEVNAME_SIZE]; 393 pr_err_ratelimited("md/raid10:%s: %s: rescheduling sector %llu\n", 394 mdname(conf->mddev), 395 bdevname(rdev->bdev, b), 396 (unsigned long long)r10_bio->sector); 397 set_bit(R10BIO_ReadError, &r10_bio->state); 398 reschedule_retry(r10_bio); 399 } 400 } 401 402 static void close_write(struct r10bio *r10_bio) 403 { 404 /* clear the bitmap if all writes complete successfully */ 405 md_bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector, 406 r10_bio->sectors, 407 !test_bit(R10BIO_Degraded, &r10_bio->state), 408 0); 409 md_write_end(r10_bio->mddev); 410 } 411 412 static void one_write_done(struct r10bio *r10_bio) 413 { 414 if (atomic_dec_and_test(&r10_bio->remaining)) { 415 if (test_bit(R10BIO_WriteError, &r10_bio->state)) 416 reschedule_retry(r10_bio); 417 else { 418 close_write(r10_bio); 419 if (test_bit(R10BIO_MadeGood, &r10_bio->state)) 420 reschedule_retry(r10_bio); 421 else 422 raid_end_bio_io(r10_bio); 423 } 424 } 425 } 426 427 static void raid10_end_write_request(struct bio *bio) 428 { 429 struct r10bio *r10_bio = bio->bi_private; 430 int dev; 431 int dec_rdev = 1; 432 struct r10conf *conf = r10_bio->mddev->private; 433 int slot, repl; 434 struct md_rdev *rdev = NULL; 435 struct bio *to_put = NULL; 436 bool discard_error; 437 438 discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD; 439 440 dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl); 441 442 if (repl) 443 rdev = conf->mirrors[dev].replacement; 444 if (!rdev) { 445 smp_rmb(); 446 repl = 0; 447 rdev = conf->mirrors[dev].rdev; 448 } 449 /* 450 * this branch is our 'one mirror IO has finished' event handler: 451 */ 452 if (bio->bi_status && !discard_error) { 453 if (repl) 454 /* Never record new bad blocks to replacement, 455 * just fail it. 456 */ 457 md_error(rdev->mddev, rdev); 458 else { 459 set_bit(WriteErrorSeen, &rdev->flags); 460 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 461 set_bit(MD_RECOVERY_NEEDED, 462 &rdev->mddev->recovery); 463 464 dec_rdev = 0; 465 if (test_bit(FailFast, &rdev->flags) && 466 (bio->bi_opf & MD_FAILFAST)) { 467 md_error(rdev->mddev, rdev); 468 } 469 470 /* 471 * When the device is faulty, it is not necessary to 472 * handle write error. 473 * For failfast, this is the only remaining device, 474 * We need to retry the write without FailFast. 475 */ 476 if (!test_bit(Faulty, &rdev->flags)) 477 set_bit(R10BIO_WriteError, &r10_bio->state); 478 else { 479 r10_bio->devs[slot].bio = NULL; 480 to_put = bio; 481 dec_rdev = 1; 482 } 483 } 484 } else { 485 /* 486 * Set R10BIO_Uptodate in our master bio, so that 487 * we will return a good error code for to the higher 488 * levels even if IO on some other mirrored buffer fails. 489 * 490 * The 'master' represents the composite IO operation to 491 * user-side. So if something waits for IO, then it will 492 * wait for the 'master' bio. 493 */ 494 sector_t first_bad; 495 int bad_sectors; 496 497 /* 498 * Do not set R10BIO_Uptodate if the current device is 499 * rebuilding or Faulty. This is because we cannot use 500 * such device for properly reading the data back (we could 501 * potentially use it, if the current write would have felt 502 * before rdev->recovery_offset, but for simplicity we don't 503 * check this here. 504 */ 505 if (test_bit(In_sync, &rdev->flags) && 506 !test_bit(Faulty, &rdev->flags)) 507 set_bit(R10BIO_Uptodate, &r10_bio->state); 508 509 /* Maybe we can clear some bad blocks. */ 510 if (is_badblock(rdev, 511 r10_bio->devs[slot].addr, 512 r10_bio->sectors, 513 &first_bad, &bad_sectors) && !discard_error) { 514 bio_put(bio); 515 if (repl) 516 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD; 517 else 518 r10_bio->devs[slot].bio = IO_MADE_GOOD; 519 dec_rdev = 0; 520 set_bit(R10BIO_MadeGood, &r10_bio->state); 521 } 522 } 523 524 /* 525 * 526 * Let's see if all mirrored write operations have finished 527 * already. 528 */ 529 one_write_done(r10_bio); 530 if (dec_rdev) 531 rdev_dec_pending(rdev, conf->mddev); 532 if (to_put) 533 bio_put(to_put); 534 } 535 536 /* 537 * RAID10 layout manager 538 * As well as the chunksize and raid_disks count, there are two 539 * parameters: near_copies and far_copies. 540 * near_copies * far_copies must be <= raid_disks. 541 * Normally one of these will be 1. 542 * If both are 1, we get raid0. 543 * If near_copies == raid_disks, we get raid1. 544 * 545 * Chunks are laid out in raid0 style with near_copies copies of the 546 * first chunk, followed by near_copies copies of the next chunk and 547 * so on. 548 * If far_copies > 1, then after 1/far_copies of the array has been assigned 549 * as described above, we start again with a device offset of near_copies. 550 * So we effectively have another copy of the whole array further down all 551 * the drives, but with blocks on different drives. 552 * With this layout, and block is never stored twice on the one device. 553 * 554 * raid10_find_phys finds the sector offset of a given virtual sector 555 * on each device that it is on. 556 * 557 * raid10_find_virt does the reverse mapping, from a device and a 558 * sector offset to a virtual address 559 */ 560 561 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio) 562 { 563 int n,f; 564 sector_t sector; 565 sector_t chunk; 566 sector_t stripe; 567 int dev; 568 int slot = 0; 569 int last_far_set_start, last_far_set_size; 570 571 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1; 572 last_far_set_start *= geo->far_set_size; 573 574 last_far_set_size = geo->far_set_size; 575 last_far_set_size += (geo->raid_disks % geo->far_set_size); 576 577 /* now calculate first sector/dev */ 578 chunk = r10bio->sector >> geo->chunk_shift; 579 sector = r10bio->sector & geo->chunk_mask; 580 581 chunk *= geo->near_copies; 582 stripe = chunk; 583 dev = sector_div(stripe, geo->raid_disks); 584 if (geo->far_offset) 585 stripe *= geo->far_copies; 586 587 sector += stripe << geo->chunk_shift; 588 589 /* and calculate all the others */ 590 for (n = 0; n < geo->near_copies; n++) { 591 int d = dev; 592 int set; 593 sector_t s = sector; 594 r10bio->devs[slot].devnum = d; 595 r10bio->devs[slot].addr = s; 596 slot++; 597 598 for (f = 1; f < geo->far_copies; f++) { 599 set = d / geo->far_set_size; 600 d += geo->near_copies; 601 602 if ((geo->raid_disks % geo->far_set_size) && 603 (d > last_far_set_start)) { 604 d -= last_far_set_start; 605 d %= last_far_set_size; 606 d += last_far_set_start; 607 } else { 608 d %= geo->far_set_size; 609 d += geo->far_set_size * set; 610 } 611 s += geo->stride; 612 r10bio->devs[slot].devnum = d; 613 r10bio->devs[slot].addr = s; 614 slot++; 615 } 616 dev++; 617 if (dev >= geo->raid_disks) { 618 dev = 0; 619 sector += (geo->chunk_mask + 1); 620 } 621 } 622 } 623 624 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio) 625 { 626 struct geom *geo = &conf->geo; 627 628 if (conf->reshape_progress != MaxSector && 629 ((r10bio->sector >= conf->reshape_progress) != 630 conf->mddev->reshape_backwards)) { 631 set_bit(R10BIO_Previous, &r10bio->state); 632 geo = &conf->prev; 633 } else 634 clear_bit(R10BIO_Previous, &r10bio->state); 635 636 __raid10_find_phys(geo, r10bio); 637 } 638 639 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev) 640 { 641 sector_t offset, chunk, vchunk; 642 /* Never use conf->prev as this is only called during resync 643 * or recovery, so reshape isn't happening 644 */ 645 struct geom *geo = &conf->geo; 646 int far_set_start = (dev / geo->far_set_size) * geo->far_set_size; 647 int far_set_size = geo->far_set_size; 648 int last_far_set_start; 649 650 if (geo->raid_disks % geo->far_set_size) { 651 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1; 652 last_far_set_start *= geo->far_set_size; 653 654 if (dev >= last_far_set_start) { 655 far_set_size = geo->far_set_size; 656 far_set_size += (geo->raid_disks % geo->far_set_size); 657 far_set_start = last_far_set_start; 658 } 659 } 660 661 offset = sector & geo->chunk_mask; 662 if (geo->far_offset) { 663 int fc; 664 chunk = sector >> geo->chunk_shift; 665 fc = sector_div(chunk, geo->far_copies); 666 dev -= fc * geo->near_copies; 667 if (dev < far_set_start) 668 dev += far_set_size; 669 } else { 670 while (sector >= geo->stride) { 671 sector -= geo->stride; 672 if (dev < (geo->near_copies + far_set_start)) 673 dev += far_set_size - geo->near_copies; 674 else 675 dev -= geo->near_copies; 676 } 677 chunk = sector >> geo->chunk_shift; 678 } 679 vchunk = chunk * geo->raid_disks + dev; 680 sector_div(vchunk, geo->near_copies); 681 return (vchunk << geo->chunk_shift) + offset; 682 } 683 684 /* 685 * This routine returns the disk from which the requested read should 686 * be done. There is a per-array 'next expected sequential IO' sector 687 * number - if this matches on the next IO then we use the last disk. 688 * There is also a per-disk 'last know head position' sector that is 689 * maintained from IRQ contexts, both the normal and the resync IO 690 * completion handlers update this position correctly. If there is no 691 * perfect sequential match then we pick the disk whose head is closest. 692 * 693 * If there are 2 mirrors in the same 2 devices, performance degrades 694 * because position is mirror, not device based. 695 * 696 * The rdev for the device selected will have nr_pending incremented. 697 */ 698 699 /* 700 * FIXME: possibly should rethink readbalancing and do it differently 701 * depending on near_copies / far_copies geometry. 702 */ 703 static struct md_rdev *read_balance(struct r10conf *conf, 704 struct r10bio *r10_bio, 705 int *max_sectors) 706 { 707 const sector_t this_sector = r10_bio->sector; 708 int disk, slot; 709 int sectors = r10_bio->sectors; 710 int best_good_sectors; 711 sector_t new_distance, best_dist; 712 struct md_rdev *best_dist_rdev, *best_pending_rdev, *rdev = NULL; 713 int do_balance; 714 int best_dist_slot, best_pending_slot; 715 bool has_nonrot_disk = false; 716 unsigned int min_pending; 717 struct geom *geo = &conf->geo; 718 719 raid10_find_phys(conf, r10_bio); 720 rcu_read_lock(); 721 best_dist_slot = -1; 722 min_pending = UINT_MAX; 723 best_dist_rdev = NULL; 724 best_pending_rdev = NULL; 725 best_dist = MaxSector; 726 best_good_sectors = 0; 727 do_balance = 1; 728 clear_bit(R10BIO_FailFast, &r10_bio->state); 729 /* 730 * Check if we can balance. We can balance on the whole 731 * device if no resync is going on (recovery is ok), or below 732 * the resync window. We take the first readable disk when 733 * above the resync window. 734 */ 735 if ((conf->mddev->recovery_cp < MaxSector 736 && (this_sector + sectors >= conf->next_resync)) || 737 (mddev_is_clustered(conf->mddev) && 738 md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector, 739 this_sector + sectors))) 740 do_balance = 0; 741 742 for (slot = 0; slot < conf->copies ; slot++) { 743 sector_t first_bad; 744 int bad_sectors; 745 sector_t dev_sector; 746 unsigned int pending; 747 bool nonrot; 748 749 if (r10_bio->devs[slot].bio == IO_BLOCKED) 750 continue; 751 disk = r10_bio->devs[slot].devnum; 752 rdev = rcu_dereference(conf->mirrors[disk].replacement); 753 if (rdev == NULL || test_bit(Faulty, &rdev->flags) || 754 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset) 755 rdev = rcu_dereference(conf->mirrors[disk].rdev); 756 if (rdev == NULL || 757 test_bit(Faulty, &rdev->flags)) 758 continue; 759 if (!test_bit(In_sync, &rdev->flags) && 760 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset) 761 continue; 762 763 dev_sector = r10_bio->devs[slot].addr; 764 if (is_badblock(rdev, dev_sector, sectors, 765 &first_bad, &bad_sectors)) { 766 if (best_dist < MaxSector) 767 /* Already have a better slot */ 768 continue; 769 if (first_bad <= dev_sector) { 770 /* Cannot read here. If this is the 771 * 'primary' device, then we must not read 772 * beyond 'bad_sectors' from another device. 773 */ 774 bad_sectors -= (dev_sector - first_bad); 775 if (!do_balance && sectors > bad_sectors) 776 sectors = bad_sectors; 777 if (best_good_sectors > sectors) 778 best_good_sectors = sectors; 779 } else { 780 sector_t good_sectors = 781 first_bad - dev_sector; 782 if (good_sectors > best_good_sectors) { 783 best_good_sectors = good_sectors; 784 best_dist_slot = slot; 785 best_dist_rdev = rdev; 786 } 787 if (!do_balance) 788 /* Must read from here */ 789 break; 790 } 791 continue; 792 } else 793 best_good_sectors = sectors; 794 795 if (!do_balance) 796 break; 797 798 nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev)); 799 has_nonrot_disk |= nonrot; 800 pending = atomic_read(&rdev->nr_pending); 801 if (min_pending > pending && nonrot) { 802 min_pending = pending; 803 best_pending_slot = slot; 804 best_pending_rdev = rdev; 805 } 806 807 if (best_dist_slot >= 0) 808 /* At least 2 disks to choose from so failfast is OK */ 809 set_bit(R10BIO_FailFast, &r10_bio->state); 810 /* This optimisation is debatable, and completely destroys 811 * sequential read speed for 'far copies' arrays. So only 812 * keep it for 'near' arrays, and review those later. 813 */ 814 if (geo->near_copies > 1 && !pending) 815 new_distance = 0; 816 817 /* for far > 1 always use the lowest address */ 818 else if (geo->far_copies > 1) 819 new_distance = r10_bio->devs[slot].addr; 820 else 821 new_distance = abs(r10_bio->devs[slot].addr - 822 conf->mirrors[disk].head_position); 823 824 if (new_distance < best_dist) { 825 best_dist = new_distance; 826 best_dist_slot = slot; 827 best_dist_rdev = rdev; 828 } 829 } 830 if (slot >= conf->copies) { 831 if (has_nonrot_disk) { 832 slot = best_pending_slot; 833 rdev = best_pending_rdev; 834 } else { 835 slot = best_dist_slot; 836 rdev = best_dist_rdev; 837 } 838 } 839 840 if (slot >= 0) { 841 atomic_inc(&rdev->nr_pending); 842 r10_bio->read_slot = slot; 843 } else 844 rdev = NULL; 845 rcu_read_unlock(); 846 *max_sectors = best_good_sectors; 847 848 return rdev; 849 } 850 851 static int raid10_congested(struct mddev *mddev, int bits) 852 { 853 struct r10conf *conf = mddev->private; 854 int i, ret = 0; 855 856 if ((bits & (1 << WB_async_congested)) && 857 conf->pending_count >= max_queued_requests) 858 return 1; 859 860 rcu_read_lock(); 861 for (i = 0; 862 (i < conf->geo.raid_disks || i < conf->prev.raid_disks) 863 && ret == 0; 864 i++) { 865 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 866 if (rdev && !test_bit(Faulty, &rdev->flags)) { 867 struct request_queue *q = bdev_get_queue(rdev->bdev); 868 869 ret |= bdi_congested(q->backing_dev_info, bits); 870 } 871 } 872 rcu_read_unlock(); 873 return ret; 874 } 875 876 static void flush_pending_writes(struct r10conf *conf) 877 { 878 /* Any writes that have been queued but are awaiting 879 * bitmap updates get flushed here. 880 */ 881 spin_lock_irq(&conf->device_lock); 882 883 if (conf->pending_bio_list.head) { 884 struct blk_plug plug; 885 struct bio *bio; 886 887 bio = bio_list_get(&conf->pending_bio_list); 888 conf->pending_count = 0; 889 spin_unlock_irq(&conf->device_lock); 890 891 /* 892 * As this is called in a wait_event() loop (see freeze_array), 893 * current->state might be TASK_UNINTERRUPTIBLE which will 894 * cause a warning when we prepare to wait again. As it is 895 * rare that this path is taken, it is perfectly safe to force 896 * us to go around the wait_event() loop again, so the warning 897 * is a false-positive. Silence the warning by resetting 898 * thread state 899 */ 900 __set_current_state(TASK_RUNNING); 901 902 blk_start_plug(&plug); 903 /* flush any pending bitmap writes to disk 904 * before proceeding w/ I/O */ 905 md_bitmap_unplug(conf->mddev->bitmap); 906 wake_up(&conf->wait_barrier); 907 908 while (bio) { /* submit pending writes */ 909 struct bio *next = bio->bi_next; 910 struct md_rdev *rdev = (void*)bio->bi_disk; 911 bio->bi_next = NULL; 912 bio_set_dev(bio, rdev->bdev); 913 if (test_bit(Faulty, &rdev->flags)) { 914 bio_io_error(bio); 915 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) && 916 !blk_queue_discard(bio->bi_disk->queue))) 917 /* Just ignore it */ 918 bio_endio(bio); 919 else 920 generic_make_request(bio); 921 bio = next; 922 } 923 blk_finish_plug(&plug); 924 } else 925 spin_unlock_irq(&conf->device_lock); 926 } 927 928 /* Barriers.... 929 * Sometimes we need to suspend IO while we do something else, 930 * either some resync/recovery, or reconfigure the array. 931 * To do this we raise a 'barrier'. 932 * The 'barrier' is a counter that can be raised multiple times 933 * to count how many activities are happening which preclude 934 * normal IO. 935 * We can only raise the barrier if there is no pending IO. 936 * i.e. if nr_pending == 0. 937 * We choose only to raise the barrier if no-one is waiting for the 938 * barrier to go down. This means that as soon as an IO request 939 * is ready, no other operations which require a barrier will start 940 * until the IO request has had a chance. 941 * 942 * So: regular IO calls 'wait_barrier'. When that returns there 943 * is no backgroup IO happening, It must arrange to call 944 * allow_barrier when it has finished its IO. 945 * backgroup IO calls must call raise_barrier. Once that returns 946 * there is no normal IO happeing. It must arrange to call 947 * lower_barrier when the particular background IO completes. 948 */ 949 950 static void raise_barrier(struct r10conf *conf, int force) 951 { 952 BUG_ON(force && !conf->barrier); 953 spin_lock_irq(&conf->resync_lock); 954 955 /* Wait until no block IO is waiting (unless 'force') */ 956 wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting, 957 conf->resync_lock); 958 959 /* block any new IO from starting */ 960 conf->barrier++; 961 962 /* Now wait for all pending IO to complete */ 963 wait_event_lock_irq(conf->wait_barrier, 964 !atomic_read(&conf->nr_pending) && conf->barrier < RESYNC_DEPTH, 965 conf->resync_lock); 966 967 spin_unlock_irq(&conf->resync_lock); 968 } 969 970 static void lower_barrier(struct r10conf *conf) 971 { 972 unsigned long flags; 973 spin_lock_irqsave(&conf->resync_lock, flags); 974 conf->barrier--; 975 spin_unlock_irqrestore(&conf->resync_lock, flags); 976 wake_up(&conf->wait_barrier); 977 } 978 979 static void wait_barrier(struct r10conf *conf) 980 { 981 spin_lock_irq(&conf->resync_lock); 982 if (conf->barrier) { 983 conf->nr_waiting++; 984 /* Wait for the barrier to drop. 985 * However if there are already pending 986 * requests (preventing the barrier from 987 * rising completely), and the 988 * pre-process bio queue isn't empty, 989 * then don't wait, as we need to empty 990 * that queue to get the nr_pending 991 * count down. 992 */ 993 raid10_log(conf->mddev, "wait barrier"); 994 wait_event_lock_irq(conf->wait_barrier, 995 !conf->barrier || 996 (atomic_read(&conf->nr_pending) && 997 current->bio_list && 998 (!bio_list_empty(¤t->bio_list[0]) || 999 !bio_list_empty(¤t->bio_list[1]))), 1000 conf->resync_lock); 1001 conf->nr_waiting--; 1002 if (!conf->nr_waiting) 1003 wake_up(&conf->wait_barrier); 1004 } 1005 atomic_inc(&conf->nr_pending); 1006 spin_unlock_irq(&conf->resync_lock); 1007 } 1008 1009 static void allow_barrier(struct r10conf *conf) 1010 { 1011 if ((atomic_dec_and_test(&conf->nr_pending)) || 1012 (conf->array_freeze_pending)) 1013 wake_up(&conf->wait_barrier); 1014 } 1015 1016 static void freeze_array(struct r10conf *conf, int extra) 1017 { 1018 /* stop syncio and normal IO and wait for everything to 1019 * go quiet. 1020 * We increment barrier and nr_waiting, and then 1021 * wait until nr_pending match nr_queued+extra 1022 * This is called in the context of one normal IO request 1023 * that has failed. Thus any sync request that might be pending 1024 * will be blocked by nr_pending, and we need to wait for 1025 * pending IO requests to complete or be queued for re-try. 1026 * Thus the number queued (nr_queued) plus this request (extra) 1027 * must match the number of pending IOs (nr_pending) before 1028 * we continue. 1029 */ 1030 spin_lock_irq(&conf->resync_lock); 1031 conf->array_freeze_pending++; 1032 conf->barrier++; 1033 conf->nr_waiting++; 1034 wait_event_lock_irq_cmd(conf->wait_barrier, 1035 atomic_read(&conf->nr_pending) == conf->nr_queued+extra, 1036 conf->resync_lock, 1037 flush_pending_writes(conf)); 1038 1039 conf->array_freeze_pending--; 1040 spin_unlock_irq(&conf->resync_lock); 1041 } 1042 1043 static void unfreeze_array(struct r10conf *conf) 1044 { 1045 /* reverse the effect of the freeze */ 1046 spin_lock_irq(&conf->resync_lock); 1047 conf->barrier--; 1048 conf->nr_waiting--; 1049 wake_up(&conf->wait_barrier); 1050 spin_unlock_irq(&conf->resync_lock); 1051 } 1052 1053 static sector_t choose_data_offset(struct r10bio *r10_bio, 1054 struct md_rdev *rdev) 1055 { 1056 if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) || 1057 test_bit(R10BIO_Previous, &r10_bio->state)) 1058 return rdev->data_offset; 1059 else 1060 return rdev->new_data_offset; 1061 } 1062 1063 struct raid10_plug_cb { 1064 struct blk_plug_cb cb; 1065 struct bio_list pending; 1066 int pending_cnt; 1067 }; 1068 1069 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule) 1070 { 1071 struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb, 1072 cb); 1073 struct mddev *mddev = plug->cb.data; 1074 struct r10conf *conf = mddev->private; 1075 struct bio *bio; 1076 1077 if (from_schedule || current->bio_list) { 1078 spin_lock_irq(&conf->device_lock); 1079 bio_list_merge(&conf->pending_bio_list, &plug->pending); 1080 conf->pending_count += plug->pending_cnt; 1081 spin_unlock_irq(&conf->device_lock); 1082 wake_up(&conf->wait_barrier); 1083 md_wakeup_thread(mddev->thread); 1084 kfree(plug); 1085 return; 1086 } 1087 1088 /* we aren't scheduling, so we can do the write-out directly. */ 1089 bio = bio_list_get(&plug->pending); 1090 md_bitmap_unplug(mddev->bitmap); 1091 wake_up(&conf->wait_barrier); 1092 1093 while (bio) { /* submit pending writes */ 1094 struct bio *next = bio->bi_next; 1095 struct md_rdev *rdev = (void*)bio->bi_disk; 1096 bio->bi_next = NULL; 1097 bio_set_dev(bio, rdev->bdev); 1098 if (test_bit(Faulty, &rdev->flags)) { 1099 bio_io_error(bio); 1100 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) && 1101 !blk_queue_discard(bio->bi_disk->queue))) 1102 /* Just ignore it */ 1103 bio_endio(bio); 1104 else 1105 generic_make_request(bio); 1106 bio = next; 1107 } 1108 kfree(plug); 1109 } 1110 1111 /* 1112 * 1. Register the new request and wait if the reconstruction thread has put 1113 * up a bar for new requests. Continue immediately if no resync is active 1114 * currently. 1115 * 2. If IO spans the reshape position. Need to wait for reshape to pass. 1116 */ 1117 static void regular_request_wait(struct mddev *mddev, struct r10conf *conf, 1118 struct bio *bio, sector_t sectors) 1119 { 1120 wait_barrier(conf); 1121 while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 1122 bio->bi_iter.bi_sector < conf->reshape_progress && 1123 bio->bi_iter.bi_sector + sectors > conf->reshape_progress) { 1124 raid10_log(conf->mddev, "wait reshape"); 1125 allow_barrier(conf); 1126 wait_event(conf->wait_barrier, 1127 conf->reshape_progress <= bio->bi_iter.bi_sector || 1128 conf->reshape_progress >= bio->bi_iter.bi_sector + 1129 sectors); 1130 wait_barrier(conf); 1131 } 1132 } 1133 1134 static void raid10_read_request(struct mddev *mddev, struct bio *bio, 1135 struct r10bio *r10_bio) 1136 { 1137 struct r10conf *conf = mddev->private; 1138 struct bio *read_bio; 1139 const int op = bio_op(bio); 1140 const unsigned long do_sync = (bio->bi_opf & REQ_SYNC); 1141 int max_sectors; 1142 struct md_rdev *rdev; 1143 char b[BDEVNAME_SIZE]; 1144 int slot = r10_bio->read_slot; 1145 struct md_rdev *err_rdev = NULL; 1146 gfp_t gfp = GFP_NOIO; 1147 1148 if (r10_bio->devs[slot].rdev) { 1149 /* 1150 * This is an error retry, but we cannot 1151 * safely dereference the rdev in the r10_bio, 1152 * we must use the one in conf. 1153 * If it has already been disconnected (unlikely) 1154 * we lose the device name in error messages. 1155 */ 1156 int disk; 1157 /* 1158 * As we are blocking raid10, it is a little safer to 1159 * use __GFP_HIGH. 1160 */ 1161 gfp = GFP_NOIO | __GFP_HIGH; 1162 1163 rcu_read_lock(); 1164 disk = r10_bio->devs[slot].devnum; 1165 err_rdev = rcu_dereference(conf->mirrors[disk].rdev); 1166 if (err_rdev) 1167 bdevname(err_rdev->bdev, b); 1168 else { 1169 strcpy(b, "???"); 1170 /* This never gets dereferenced */ 1171 err_rdev = r10_bio->devs[slot].rdev; 1172 } 1173 rcu_read_unlock(); 1174 } 1175 1176 regular_request_wait(mddev, conf, bio, r10_bio->sectors); 1177 rdev = read_balance(conf, r10_bio, &max_sectors); 1178 if (!rdev) { 1179 if (err_rdev) { 1180 pr_crit_ratelimited("md/raid10:%s: %s: unrecoverable I/O read error for block %llu\n", 1181 mdname(mddev), b, 1182 (unsigned long long)r10_bio->sector); 1183 } 1184 raid_end_bio_io(r10_bio); 1185 return; 1186 } 1187 if (err_rdev) 1188 pr_err_ratelimited("md/raid10:%s: %s: redirecting sector %llu to another mirror\n", 1189 mdname(mddev), 1190 bdevname(rdev->bdev, b), 1191 (unsigned long long)r10_bio->sector); 1192 if (max_sectors < bio_sectors(bio)) { 1193 struct bio *split = bio_split(bio, max_sectors, 1194 gfp, &conf->bio_split); 1195 bio_chain(split, bio); 1196 allow_barrier(conf); 1197 generic_make_request(bio); 1198 wait_barrier(conf); 1199 bio = split; 1200 r10_bio->master_bio = bio; 1201 r10_bio->sectors = max_sectors; 1202 } 1203 slot = r10_bio->read_slot; 1204 1205 read_bio = bio_clone_fast(bio, gfp, &mddev->bio_set); 1206 1207 r10_bio->devs[slot].bio = read_bio; 1208 r10_bio->devs[slot].rdev = rdev; 1209 1210 read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr + 1211 choose_data_offset(r10_bio, rdev); 1212 bio_set_dev(read_bio, rdev->bdev); 1213 read_bio->bi_end_io = raid10_end_read_request; 1214 bio_set_op_attrs(read_bio, op, do_sync); 1215 if (test_bit(FailFast, &rdev->flags) && 1216 test_bit(R10BIO_FailFast, &r10_bio->state)) 1217 read_bio->bi_opf |= MD_FAILFAST; 1218 read_bio->bi_private = r10_bio; 1219 1220 if (mddev->gendisk) 1221 trace_block_bio_remap(read_bio->bi_disk->queue, 1222 read_bio, disk_devt(mddev->gendisk), 1223 r10_bio->sector); 1224 generic_make_request(read_bio); 1225 return; 1226 } 1227 1228 static void raid10_write_one_disk(struct mddev *mddev, struct r10bio *r10_bio, 1229 struct bio *bio, bool replacement, 1230 int n_copy) 1231 { 1232 const int op = bio_op(bio); 1233 const unsigned long do_sync = (bio->bi_opf & REQ_SYNC); 1234 const unsigned long do_fua = (bio->bi_opf & REQ_FUA); 1235 unsigned long flags; 1236 struct blk_plug_cb *cb; 1237 struct raid10_plug_cb *plug = NULL; 1238 struct r10conf *conf = mddev->private; 1239 struct md_rdev *rdev; 1240 int devnum = r10_bio->devs[n_copy].devnum; 1241 struct bio *mbio; 1242 1243 if (replacement) { 1244 rdev = conf->mirrors[devnum].replacement; 1245 if (rdev == NULL) { 1246 /* Replacement just got moved to main 'rdev' */ 1247 smp_mb(); 1248 rdev = conf->mirrors[devnum].rdev; 1249 } 1250 } else 1251 rdev = conf->mirrors[devnum].rdev; 1252 1253 mbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set); 1254 if (replacement) 1255 r10_bio->devs[n_copy].repl_bio = mbio; 1256 else 1257 r10_bio->devs[n_copy].bio = mbio; 1258 1259 mbio->bi_iter.bi_sector = (r10_bio->devs[n_copy].addr + 1260 choose_data_offset(r10_bio, rdev)); 1261 bio_set_dev(mbio, rdev->bdev); 1262 mbio->bi_end_io = raid10_end_write_request; 1263 bio_set_op_attrs(mbio, op, do_sync | do_fua); 1264 if (!replacement && test_bit(FailFast, 1265 &conf->mirrors[devnum].rdev->flags) 1266 && enough(conf, devnum)) 1267 mbio->bi_opf |= MD_FAILFAST; 1268 mbio->bi_private = r10_bio; 1269 1270 if (conf->mddev->gendisk) 1271 trace_block_bio_remap(mbio->bi_disk->queue, 1272 mbio, disk_devt(conf->mddev->gendisk), 1273 r10_bio->sector); 1274 /* flush_pending_writes() needs access to the rdev so...*/ 1275 mbio->bi_disk = (void *)rdev; 1276 1277 atomic_inc(&r10_bio->remaining); 1278 1279 cb = blk_check_plugged(raid10_unplug, mddev, sizeof(*plug)); 1280 if (cb) 1281 plug = container_of(cb, struct raid10_plug_cb, cb); 1282 else 1283 plug = NULL; 1284 if (plug) { 1285 bio_list_add(&plug->pending, mbio); 1286 plug->pending_cnt++; 1287 } else { 1288 spin_lock_irqsave(&conf->device_lock, flags); 1289 bio_list_add(&conf->pending_bio_list, mbio); 1290 conf->pending_count++; 1291 spin_unlock_irqrestore(&conf->device_lock, flags); 1292 md_wakeup_thread(mddev->thread); 1293 } 1294 } 1295 1296 static void raid10_write_request(struct mddev *mddev, struct bio *bio, 1297 struct r10bio *r10_bio) 1298 { 1299 struct r10conf *conf = mddev->private; 1300 int i; 1301 struct md_rdev *blocked_rdev; 1302 sector_t sectors; 1303 int max_sectors; 1304 1305 if ((mddev_is_clustered(mddev) && 1306 md_cluster_ops->area_resyncing(mddev, WRITE, 1307 bio->bi_iter.bi_sector, 1308 bio_end_sector(bio)))) { 1309 DEFINE_WAIT(w); 1310 for (;;) { 1311 prepare_to_wait(&conf->wait_barrier, 1312 &w, TASK_IDLE); 1313 if (!md_cluster_ops->area_resyncing(mddev, WRITE, 1314 bio->bi_iter.bi_sector, bio_end_sector(bio))) 1315 break; 1316 schedule(); 1317 } 1318 finish_wait(&conf->wait_barrier, &w); 1319 } 1320 1321 sectors = r10_bio->sectors; 1322 regular_request_wait(mddev, conf, bio, sectors); 1323 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 1324 (mddev->reshape_backwards 1325 ? (bio->bi_iter.bi_sector < conf->reshape_safe && 1326 bio->bi_iter.bi_sector + sectors > conf->reshape_progress) 1327 : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe && 1328 bio->bi_iter.bi_sector < conf->reshape_progress))) { 1329 /* Need to update reshape_position in metadata */ 1330 mddev->reshape_position = conf->reshape_progress; 1331 set_mask_bits(&mddev->sb_flags, 0, 1332 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING)); 1333 md_wakeup_thread(mddev->thread); 1334 raid10_log(conf->mddev, "wait reshape metadata"); 1335 wait_event(mddev->sb_wait, 1336 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)); 1337 1338 conf->reshape_safe = mddev->reshape_position; 1339 } 1340 1341 if (conf->pending_count >= max_queued_requests) { 1342 md_wakeup_thread(mddev->thread); 1343 raid10_log(mddev, "wait queued"); 1344 wait_event(conf->wait_barrier, 1345 conf->pending_count < max_queued_requests); 1346 } 1347 /* first select target devices under rcu_lock and 1348 * inc refcount on their rdev. Record them by setting 1349 * bios[x] to bio 1350 * If there are known/acknowledged bad blocks on any device 1351 * on which we have seen a write error, we want to avoid 1352 * writing to those blocks. This potentially requires several 1353 * writes to write around the bad blocks. Each set of writes 1354 * gets its own r10_bio with a set of bios attached. 1355 */ 1356 1357 r10_bio->read_slot = -1; /* make sure repl_bio gets freed */ 1358 raid10_find_phys(conf, r10_bio); 1359 retry_write: 1360 blocked_rdev = NULL; 1361 rcu_read_lock(); 1362 max_sectors = r10_bio->sectors; 1363 1364 for (i = 0; i < conf->copies; i++) { 1365 int d = r10_bio->devs[i].devnum; 1366 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev); 1367 struct md_rdev *rrdev = rcu_dereference( 1368 conf->mirrors[d].replacement); 1369 if (rdev == rrdev) 1370 rrdev = NULL; 1371 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) { 1372 atomic_inc(&rdev->nr_pending); 1373 blocked_rdev = rdev; 1374 break; 1375 } 1376 if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) { 1377 atomic_inc(&rrdev->nr_pending); 1378 blocked_rdev = rrdev; 1379 break; 1380 } 1381 if (rdev && (test_bit(Faulty, &rdev->flags))) 1382 rdev = NULL; 1383 if (rrdev && (test_bit(Faulty, &rrdev->flags))) 1384 rrdev = NULL; 1385 1386 r10_bio->devs[i].bio = NULL; 1387 r10_bio->devs[i].repl_bio = NULL; 1388 1389 if (!rdev && !rrdev) { 1390 set_bit(R10BIO_Degraded, &r10_bio->state); 1391 continue; 1392 } 1393 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) { 1394 sector_t first_bad; 1395 sector_t dev_sector = r10_bio->devs[i].addr; 1396 int bad_sectors; 1397 int is_bad; 1398 1399 is_bad = is_badblock(rdev, dev_sector, max_sectors, 1400 &first_bad, &bad_sectors); 1401 if (is_bad < 0) { 1402 /* Mustn't write here until the bad block 1403 * is acknowledged 1404 */ 1405 atomic_inc(&rdev->nr_pending); 1406 set_bit(BlockedBadBlocks, &rdev->flags); 1407 blocked_rdev = rdev; 1408 break; 1409 } 1410 if (is_bad && first_bad <= dev_sector) { 1411 /* Cannot write here at all */ 1412 bad_sectors -= (dev_sector - first_bad); 1413 if (bad_sectors < max_sectors) 1414 /* Mustn't write more than bad_sectors 1415 * to other devices yet 1416 */ 1417 max_sectors = bad_sectors; 1418 /* We don't set R10BIO_Degraded as that 1419 * only applies if the disk is missing, 1420 * so it might be re-added, and we want to 1421 * know to recover this chunk. 1422 * In this case the device is here, and the 1423 * fact that this chunk is not in-sync is 1424 * recorded in the bad block log. 1425 */ 1426 continue; 1427 } 1428 if (is_bad) { 1429 int good_sectors = first_bad - dev_sector; 1430 if (good_sectors < max_sectors) 1431 max_sectors = good_sectors; 1432 } 1433 } 1434 if (rdev) { 1435 r10_bio->devs[i].bio = bio; 1436 atomic_inc(&rdev->nr_pending); 1437 } 1438 if (rrdev) { 1439 r10_bio->devs[i].repl_bio = bio; 1440 atomic_inc(&rrdev->nr_pending); 1441 } 1442 } 1443 rcu_read_unlock(); 1444 1445 if (unlikely(blocked_rdev)) { 1446 /* Have to wait for this device to get unblocked, then retry */ 1447 int j; 1448 int d; 1449 1450 for (j = 0; j < i; j++) { 1451 if (r10_bio->devs[j].bio) { 1452 d = r10_bio->devs[j].devnum; 1453 rdev_dec_pending(conf->mirrors[d].rdev, mddev); 1454 } 1455 if (r10_bio->devs[j].repl_bio) { 1456 struct md_rdev *rdev; 1457 d = r10_bio->devs[j].devnum; 1458 rdev = conf->mirrors[d].replacement; 1459 if (!rdev) { 1460 /* Race with remove_disk */ 1461 smp_mb(); 1462 rdev = conf->mirrors[d].rdev; 1463 } 1464 rdev_dec_pending(rdev, mddev); 1465 } 1466 } 1467 allow_barrier(conf); 1468 raid10_log(conf->mddev, "wait rdev %d blocked", blocked_rdev->raid_disk); 1469 md_wait_for_blocked_rdev(blocked_rdev, mddev); 1470 wait_barrier(conf); 1471 goto retry_write; 1472 } 1473 1474 if (max_sectors < r10_bio->sectors) 1475 r10_bio->sectors = max_sectors; 1476 1477 if (r10_bio->sectors < bio_sectors(bio)) { 1478 struct bio *split = bio_split(bio, r10_bio->sectors, 1479 GFP_NOIO, &conf->bio_split); 1480 bio_chain(split, bio); 1481 allow_barrier(conf); 1482 generic_make_request(bio); 1483 wait_barrier(conf); 1484 bio = split; 1485 r10_bio->master_bio = bio; 1486 } 1487 1488 atomic_set(&r10_bio->remaining, 1); 1489 md_bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0); 1490 1491 for (i = 0; i < conf->copies; i++) { 1492 if (r10_bio->devs[i].bio) 1493 raid10_write_one_disk(mddev, r10_bio, bio, false, i); 1494 if (r10_bio->devs[i].repl_bio) 1495 raid10_write_one_disk(mddev, r10_bio, bio, true, i); 1496 } 1497 one_write_done(r10_bio); 1498 } 1499 1500 static void __make_request(struct mddev *mddev, struct bio *bio, int sectors) 1501 { 1502 struct r10conf *conf = mddev->private; 1503 struct r10bio *r10_bio; 1504 1505 r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO); 1506 1507 r10_bio->master_bio = bio; 1508 r10_bio->sectors = sectors; 1509 1510 r10_bio->mddev = mddev; 1511 r10_bio->sector = bio->bi_iter.bi_sector; 1512 r10_bio->state = 0; 1513 memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) * conf->copies); 1514 1515 if (bio_data_dir(bio) == READ) 1516 raid10_read_request(mddev, bio, r10_bio); 1517 else 1518 raid10_write_request(mddev, bio, r10_bio); 1519 } 1520 1521 static bool raid10_make_request(struct mddev *mddev, struct bio *bio) 1522 { 1523 struct r10conf *conf = mddev->private; 1524 sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask); 1525 int chunk_sects = chunk_mask + 1; 1526 int sectors = bio_sectors(bio); 1527 1528 if (unlikely(bio->bi_opf & REQ_PREFLUSH)) { 1529 md_flush_request(mddev, bio); 1530 return true; 1531 } 1532 1533 if (!md_write_start(mddev, bio)) 1534 return false; 1535 1536 /* 1537 * If this request crosses a chunk boundary, we need to split 1538 * it. 1539 */ 1540 if (unlikely((bio->bi_iter.bi_sector & chunk_mask) + 1541 sectors > chunk_sects 1542 && (conf->geo.near_copies < conf->geo.raid_disks 1543 || conf->prev.near_copies < 1544 conf->prev.raid_disks))) 1545 sectors = chunk_sects - 1546 (bio->bi_iter.bi_sector & 1547 (chunk_sects - 1)); 1548 __make_request(mddev, bio, sectors); 1549 1550 /* In case raid10d snuck in to freeze_array */ 1551 wake_up(&conf->wait_barrier); 1552 return true; 1553 } 1554 1555 static void raid10_status(struct seq_file *seq, struct mddev *mddev) 1556 { 1557 struct r10conf *conf = mddev->private; 1558 int i; 1559 1560 if (conf->geo.near_copies < conf->geo.raid_disks) 1561 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2); 1562 if (conf->geo.near_copies > 1) 1563 seq_printf(seq, " %d near-copies", conf->geo.near_copies); 1564 if (conf->geo.far_copies > 1) { 1565 if (conf->geo.far_offset) 1566 seq_printf(seq, " %d offset-copies", conf->geo.far_copies); 1567 else 1568 seq_printf(seq, " %d far-copies", conf->geo.far_copies); 1569 if (conf->geo.far_set_size != conf->geo.raid_disks) 1570 seq_printf(seq, " %d devices per set", conf->geo.far_set_size); 1571 } 1572 seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks, 1573 conf->geo.raid_disks - mddev->degraded); 1574 rcu_read_lock(); 1575 for (i = 0; i < conf->geo.raid_disks; i++) { 1576 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 1577 seq_printf(seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_"); 1578 } 1579 rcu_read_unlock(); 1580 seq_printf(seq, "]"); 1581 } 1582 1583 /* check if there are enough drives for 1584 * every block to appear on atleast one. 1585 * Don't consider the device numbered 'ignore' 1586 * as we might be about to remove it. 1587 */ 1588 static int _enough(struct r10conf *conf, int previous, int ignore) 1589 { 1590 int first = 0; 1591 int has_enough = 0; 1592 int disks, ncopies; 1593 if (previous) { 1594 disks = conf->prev.raid_disks; 1595 ncopies = conf->prev.near_copies; 1596 } else { 1597 disks = conf->geo.raid_disks; 1598 ncopies = conf->geo.near_copies; 1599 } 1600 1601 rcu_read_lock(); 1602 do { 1603 int n = conf->copies; 1604 int cnt = 0; 1605 int this = first; 1606 while (n--) { 1607 struct md_rdev *rdev; 1608 if (this != ignore && 1609 (rdev = rcu_dereference(conf->mirrors[this].rdev)) && 1610 test_bit(In_sync, &rdev->flags)) 1611 cnt++; 1612 this = (this+1) % disks; 1613 } 1614 if (cnt == 0) 1615 goto out; 1616 first = (first + ncopies) % disks; 1617 } while (first != 0); 1618 has_enough = 1; 1619 out: 1620 rcu_read_unlock(); 1621 return has_enough; 1622 } 1623 1624 static int enough(struct r10conf *conf, int ignore) 1625 { 1626 /* when calling 'enough', both 'prev' and 'geo' must 1627 * be stable. 1628 * This is ensured if ->reconfig_mutex or ->device_lock 1629 * is held. 1630 */ 1631 return _enough(conf, 0, ignore) && 1632 _enough(conf, 1, ignore); 1633 } 1634 1635 static void raid10_error(struct mddev *mddev, struct md_rdev *rdev) 1636 { 1637 char b[BDEVNAME_SIZE]; 1638 struct r10conf *conf = mddev->private; 1639 unsigned long flags; 1640 1641 /* 1642 * If it is not operational, then we have already marked it as dead 1643 * else if it is the last working disks with "fail_last_dev == false", 1644 * ignore the error, let the next level up know. 1645 * else mark the drive as failed 1646 */ 1647 spin_lock_irqsave(&conf->device_lock, flags); 1648 if (test_bit(In_sync, &rdev->flags) && !mddev->fail_last_dev 1649 && !enough(conf, rdev->raid_disk)) { 1650 /* 1651 * Don't fail the drive, just return an IO error. 1652 */ 1653 spin_unlock_irqrestore(&conf->device_lock, flags); 1654 return; 1655 } 1656 if (test_and_clear_bit(In_sync, &rdev->flags)) 1657 mddev->degraded++; 1658 /* 1659 * If recovery is running, make sure it aborts. 1660 */ 1661 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 1662 set_bit(Blocked, &rdev->flags); 1663 set_bit(Faulty, &rdev->flags); 1664 set_mask_bits(&mddev->sb_flags, 0, 1665 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING)); 1666 spin_unlock_irqrestore(&conf->device_lock, flags); 1667 pr_crit("md/raid10:%s: Disk failure on %s, disabling device.\n" 1668 "md/raid10:%s: Operation continuing on %d devices.\n", 1669 mdname(mddev), bdevname(rdev->bdev, b), 1670 mdname(mddev), conf->geo.raid_disks - mddev->degraded); 1671 } 1672 1673 static void print_conf(struct r10conf *conf) 1674 { 1675 int i; 1676 struct md_rdev *rdev; 1677 1678 pr_debug("RAID10 conf printout:\n"); 1679 if (!conf) { 1680 pr_debug("(!conf)\n"); 1681 return; 1682 } 1683 pr_debug(" --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded, 1684 conf->geo.raid_disks); 1685 1686 /* This is only called with ->reconfix_mutex held, so 1687 * rcu protection of rdev is not needed */ 1688 for (i = 0; i < conf->geo.raid_disks; i++) { 1689 char b[BDEVNAME_SIZE]; 1690 rdev = conf->mirrors[i].rdev; 1691 if (rdev) 1692 pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n", 1693 i, !test_bit(In_sync, &rdev->flags), 1694 !test_bit(Faulty, &rdev->flags), 1695 bdevname(rdev->bdev,b)); 1696 } 1697 } 1698 1699 static void close_sync(struct r10conf *conf) 1700 { 1701 wait_barrier(conf); 1702 allow_barrier(conf); 1703 1704 mempool_exit(&conf->r10buf_pool); 1705 } 1706 1707 static int raid10_spare_active(struct mddev *mddev) 1708 { 1709 int i; 1710 struct r10conf *conf = mddev->private; 1711 struct raid10_info *tmp; 1712 int count = 0; 1713 unsigned long flags; 1714 1715 /* 1716 * Find all non-in_sync disks within the RAID10 configuration 1717 * and mark them in_sync 1718 */ 1719 for (i = 0; i < conf->geo.raid_disks; i++) { 1720 tmp = conf->mirrors + i; 1721 if (tmp->replacement 1722 && tmp->replacement->recovery_offset == MaxSector 1723 && !test_bit(Faulty, &tmp->replacement->flags) 1724 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) { 1725 /* Replacement has just become active */ 1726 if (!tmp->rdev 1727 || !test_and_clear_bit(In_sync, &tmp->rdev->flags)) 1728 count++; 1729 if (tmp->rdev) { 1730 /* Replaced device not technically faulty, 1731 * but we need to be sure it gets removed 1732 * and never re-added. 1733 */ 1734 set_bit(Faulty, &tmp->rdev->flags); 1735 sysfs_notify_dirent_safe( 1736 tmp->rdev->sysfs_state); 1737 } 1738 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state); 1739 } else if (tmp->rdev 1740 && tmp->rdev->recovery_offset == MaxSector 1741 && !test_bit(Faulty, &tmp->rdev->flags) 1742 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) { 1743 count++; 1744 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state); 1745 } 1746 } 1747 spin_lock_irqsave(&conf->device_lock, flags); 1748 mddev->degraded -= count; 1749 spin_unlock_irqrestore(&conf->device_lock, flags); 1750 1751 print_conf(conf); 1752 return count; 1753 } 1754 1755 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev) 1756 { 1757 struct r10conf *conf = mddev->private; 1758 int err = -EEXIST; 1759 int mirror; 1760 int first = 0; 1761 int last = conf->geo.raid_disks - 1; 1762 1763 if (mddev->recovery_cp < MaxSector) 1764 /* only hot-add to in-sync arrays, as recovery is 1765 * very different from resync 1766 */ 1767 return -EBUSY; 1768 if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1)) 1769 return -EINVAL; 1770 1771 if (md_integrity_add_rdev(rdev, mddev)) 1772 return -ENXIO; 1773 1774 if (rdev->raid_disk >= 0) 1775 first = last = rdev->raid_disk; 1776 1777 if (rdev->saved_raid_disk >= first && 1778 rdev->saved_raid_disk < conf->geo.raid_disks && 1779 conf->mirrors[rdev->saved_raid_disk].rdev == NULL) 1780 mirror = rdev->saved_raid_disk; 1781 else 1782 mirror = first; 1783 for ( ; mirror <= last ; mirror++) { 1784 struct raid10_info *p = &conf->mirrors[mirror]; 1785 if (p->recovery_disabled == mddev->recovery_disabled) 1786 continue; 1787 if (p->rdev) { 1788 if (!test_bit(WantReplacement, &p->rdev->flags) || 1789 p->replacement != NULL) 1790 continue; 1791 clear_bit(In_sync, &rdev->flags); 1792 set_bit(Replacement, &rdev->flags); 1793 rdev->raid_disk = mirror; 1794 err = 0; 1795 if (mddev->gendisk) 1796 disk_stack_limits(mddev->gendisk, rdev->bdev, 1797 rdev->data_offset << 9); 1798 conf->fullsync = 1; 1799 rcu_assign_pointer(p->replacement, rdev); 1800 break; 1801 } 1802 1803 if (mddev->gendisk) 1804 disk_stack_limits(mddev->gendisk, rdev->bdev, 1805 rdev->data_offset << 9); 1806 1807 p->head_position = 0; 1808 p->recovery_disabled = mddev->recovery_disabled - 1; 1809 rdev->raid_disk = mirror; 1810 err = 0; 1811 if (rdev->saved_raid_disk != mirror) 1812 conf->fullsync = 1; 1813 rcu_assign_pointer(p->rdev, rdev); 1814 break; 1815 } 1816 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev))) 1817 blk_queue_flag_set(QUEUE_FLAG_DISCARD, mddev->queue); 1818 1819 print_conf(conf); 1820 return err; 1821 } 1822 1823 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev) 1824 { 1825 struct r10conf *conf = mddev->private; 1826 int err = 0; 1827 int number = rdev->raid_disk; 1828 struct md_rdev **rdevp; 1829 struct raid10_info *p = conf->mirrors + number; 1830 1831 print_conf(conf); 1832 if (rdev == p->rdev) 1833 rdevp = &p->rdev; 1834 else if (rdev == p->replacement) 1835 rdevp = &p->replacement; 1836 else 1837 return 0; 1838 1839 if (test_bit(In_sync, &rdev->flags) || 1840 atomic_read(&rdev->nr_pending)) { 1841 err = -EBUSY; 1842 goto abort; 1843 } 1844 /* Only remove non-faulty devices if recovery 1845 * is not possible. 1846 */ 1847 if (!test_bit(Faulty, &rdev->flags) && 1848 mddev->recovery_disabled != p->recovery_disabled && 1849 (!p->replacement || p->replacement == rdev) && 1850 number < conf->geo.raid_disks && 1851 enough(conf, -1)) { 1852 err = -EBUSY; 1853 goto abort; 1854 } 1855 *rdevp = NULL; 1856 if (!test_bit(RemoveSynchronized, &rdev->flags)) { 1857 synchronize_rcu(); 1858 if (atomic_read(&rdev->nr_pending)) { 1859 /* lost the race, try later */ 1860 err = -EBUSY; 1861 *rdevp = rdev; 1862 goto abort; 1863 } 1864 } 1865 if (p->replacement) { 1866 /* We must have just cleared 'rdev' */ 1867 p->rdev = p->replacement; 1868 clear_bit(Replacement, &p->replacement->flags); 1869 smp_mb(); /* Make sure other CPUs may see both as identical 1870 * but will never see neither -- if they are careful. 1871 */ 1872 p->replacement = NULL; 1873 } 1874 1875 clear_bit(WantReplacement, &rdev->flags); 1876 err = md_integrity_register(mddev); 1877 1878 abort: 1879 1880 print_conf(conf); 1881 return err; 1882 } 1883 1884 static void __end_sync_read(struct r10bio *r10_bio, struct bio *bio, int d) 1885 { 1886 struct r10conf *conf = r10_bio->mddev->private; 1887 1888 if (!bio->bi_status) 1889 set_bit(R10BIO_Uptodate, &r10_bio->state); 1890 else 1891 /* The write handler will notice the lack of 1892 * R10BIO_Uptodate and record any errors etc 1893 */ 1894 atomic_add(r10_bio->sectors, 1895 &conf->mirrors[d].rdev->corrected_errors); 1896 1897 /* for reconstruct, we always reschedule after a read. 1898 * for resync, only after all reads 1899 */ 1900 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev); 1901 if (test_bit(R10BIO_IsRecover, &r10_bio->state) || 1902 atomic_dec_and_test(&r10_bio->remaining)) { 1903 /* we have read all the blocks, 1904 * do the comparison in process context in raid10d 1905 */ 1906 reschedule_retry(r10_bio); 1907 } 1908 } 1909 1910 static void end_sync_read(struct bio *bio) 1911 { 1912 struct r10bio *r10_bio = get_resync_r10bio(bio); 1913 struct r10conf *conf = r10_bio->mddev->private; 1914 int d = find_bio_disk(conf, r10_bio, bio, NULL, NULL); 1915 1916 __end_sync_read(r10_bio, bio, d); 1917 } 1918 1919 static void end_reshape_read(struct bio *bio) 1920 { 1921 /* reshape read bio isn't allocated from r10buf_pool */ 1922 struct r10bio *r10_bio = bio->bi_private; 1923 1924 __end_sync_read(r10_bio, bio, r10_bio->read_slot); 1925 } 1926 1927 static void end_sync_request(struct r10bio *r10_bio) 1928 { 1929 struct mddev *mddev = r10_bio->mddev; 1930 1931 while (atomic_dec_and_test(&r10_bio->remaining)) { 1932 if (r10_bio->master_bio == NULL) { 1933 /* the primary of several recovery bios */ 1934 sector_t s = r10_bio->sectors; 1935 if (test_bit(R10BIO_MadeGood, &r10_bio->state) || 1936 test_bit(R10BIO_WriteError, &r10_bio->state)) 1937 reschedule_retry(r10_bio); 1938 else 1939 put_buf(r10_bio); 1940 md_done_sync(mddev, s, 1); 1941 break; 1942 } else { 1943 struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio; 1944 if (test_bit(R10BIO_MadeGood, &r10_bio->state) || 1945 test_bit(R10BIO_WriteError, &r10_bio->state)) 1946 reschedule_retry(r10_bio); 1947 else 1948 put_buf(r10_bio); 1949 r10_bio = r10_bio2; 1950 } 1951 } 1952 } 1953 1954 static void end_sync_write(struct bio *bio) 1955 { 1956 struct r10bio *r10_bio = get_resync_r10bio(bio); 1957 struct mddev *mddev = r10_bio->mddev; 1958 struct r10conf *conf = mddev->private; 1959 int d; 1960 sector_t first_bad; 1961 int bad_sectors; 1962 int slot; 1963 int repl; 1964 struct md_rdev *rdev = NULL; 1965 1966 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl); 1967 if (repl) 1968 rdev = conf->mirrors[d].replacement; 1969 else 1970 rdev = conf->mirrors[d].rdev; 1971 1972 if (bio->bi_status) { 1973 if (repl) 1974 md_error(mddev, rdev); 1975 else { 1976 set_bit(WriteErrorSeen, &rdev->flags); 1977 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 1978 set_bit(MD_RECOVERY_NEEDED, 1979 &rdev->mddev->recovery); 1980 set_bit(R10BIO_WriteError, &r10_bio->state); 1981 } 1982 } else if (is_badblock(rdev, 1983 r10_bio->devs[slot].addr, 1984 r10_bio->sectors, 1985 &first_bad, &bad_sectors)) 1986 set_bit(R10BIO_MadeGood, &r10_bio->state); 1987 1988 rdev_dec_pending(rdev, mddev); 1989 1990 end_sync_request(r10_bio); 1991 } 1992 1993 /* 1994 * Note: sync and recover and handled very differently for raid10 1995 * This code is for resync. 1996 * For resync, we read through virtual addresses and read all blocks. 1997 * If there is any error, we schedule a write. The lowest numbered 1998 * drive is authoritative. 1999 * However requests come for physical address, so we need to map. 2000 * For every physical address there are raid_disks/copies virtual addresses, 2001 * which is always are least one, but is not necessarly an integer. 2002 * This means that a physical address can span multiple chunks, so we may 2003 * have to submit multiple io requests for a single sync request. 2004 */ 2005 /* 2006 * We check if all blocks are in-sync and only write to blocks that 2007 * aren't in sync 2008 */ 2009 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio) 2010 { 2011 struct r10conf *conf = mddev->private; 2012 int i, first; 2013 struct bio *tbio, *fbio; 2014 int vcnt; 2015 struct page **tpages, **fpages; 2016 2017 atomic_set(&r10_bio->remaining, 1); 2018 2019 /* find the first device with a block */ 2020 for (i=0; i<conf->copies; i++) 2021 if (!r10_bio->devs[i].bio->bi_status) 2022 break; 2023 2024 if (i == conf->copies) 2025 goto done; 2026 2027 first = i; 2028 fbio = r10_bio->devs[i].bio; 2029 fbio->bi_iter.bi_size = r10_bio->sectors << 9; 2030 fbio->bi_iter.bi_idx = 0; 2031 fpages = get_resync_pages(fbio)->pages; 2032 2033 vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9); 2034 /* now find blocks with errors */ 2035 for (i=0 ; i < conf->copies ; i++) { 2036 int j, d; 2037 struct md_rdev *rdev; 2038 struct resync_pages *rp; 2039 2040 tbio = r10_bio->devs[i].bio; 2041 2042 if (tbio->bi_end_io != end_sync_read) 2043 continue; 2044 if (i == first) 2045 continue; 2046 2047 tpages = get_resync_pages(tbio)->pages; 2048 d = r10_bio->devs[i].devnum; 2049 rdev = conf->mirrors[d].rdev; 2050 if (!r10_bio->devs[i].bio->bi_status) { 2051 /* We know that the bi_io_vec layout is the same for 2052 * both 'first' and 'i', so we just compare them. 2053 * All vec entries are PAGE_SIZE; 2054 */ 2055 int sectors = r10_bio->sectors; 2056 for (j = 0; j < vcnt; j++) { 2057 int len = PAGE_SIZE; 2058 if (sectors < (len / 512)) 2059 len = sectors * 512; 2060 if (memcmp(page_address(fpages[j]), 2061 page_address(tpages[j]), 2062 len)) 2063 break; 2064 sectors -= len/512; 2065 } 2066 if (j == vcnt) 2067 continue; 2068 atomic64_add(r10_bio->sectors, &mddev->resync_mismatches); 2069 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) 2070 /* Don't fix anything. */ 2071 continue; 2072 } else if (test_bit(FailFast, &rdev->flags)) { 2073 /* Just give up on this device */ 2074 md_error(rdev->mddev, rdev); 2075 continue; 2076 } 2077 /* Ok, we need to write this bio, either to correct an 2078 * inconsistency or to correct an unreadable block. 2079 * First we need to fixup bv_offset, bv_len and 2080 * bi_vecs, as the read request might have corrupted these 2081 */ 2082 rp = get_resync_pages(tbio); 2083 bio_reset(tbio); 2084 2085 md_bio_reset_resync_pages(tbio, rp, fbio->bi_iter.bi_size); 2086 2087 rp->raid_bio = r10_bio; 2088 tbio->bi_private = rp; 2089 tbio->bi_iter.bi_sector = r10_bio->devs[i].addr; 2090 tbio->bi_end_io = end_sync_write; 2091 bio_set_op_attrs(tbio, REQ_OP_WRITE, 0); 2092 2093 bio_copy_data(tbio, fbio); 2094 2095 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 2096 atomic_inc(&r10_bio->remaining); 2097 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio)); 2098 2099 if (test_bit(FailFast, &conf->mirrors[d].rdev->flags)) 2100 tbio->bi_opf |= MD_FAILFAST; 2101 tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset; 2102 bio_set_dev(tbio, conf->mirrors[d].rdev->bdev); 2103 generic_make_request(tbio); 2104 } 2105 2106 /* Now write out to any replacement devices 2107 * that are active 2108 */ 2109 for (i = 0; i < conf->copies; i++) { 2110 int d; 2111 2112 tbio = r10_bio->devs[i].repl_bio; 2113 if (!tbio || !tbio->bi_end_io) 2114 continue; 2115 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write 2116 && r10_bio->devs[i].bio != fbio) 2117 bio_copy_data(tbio, fbio); 2118 d = r10_bio->devs[i].devnum; 2119 atomic_inc(&r10_bio->remaining); 2120 md_sync_acct(conf->mirrors[d].replacement->bdev, 2121 bio_sectors(tbio)); 2122 generic_make_request(tbio); 2123 } 2124 2125 done: 2126 if (atomic_dec_and_test(&r10_bio->remaining)) { 2127 md_done_sync(mddev, r10_bio->sectors, 1); 2128 put_buf(r10_bio); 2129 } 2130 } 2131 2132 /* 2133 * Now for the recovery code. 2134 * Recovery happens across physical sectors. 2135 * We recover all non-is_sync drives by finding the virtual address of 2136 * each, and then choose a working drive that also has that virt address. 2137 * There is a separate r10_bio for each non-in_sync drive. 2138 * Only the first two slots are in use. The first for reading, 2139 * The second for writing. 2140 * 2141 */ 2142 static void fix_recovery_read_error(struct r10bio *r10_bio) 2143 { 2144 /* We got a read error during recovery. 2145 * We repeat the read in smaller page-sized sections. 2146 * If a read succeeds, write it to the new device or record 2147 * a bad block if we cannot. 2148 * If a read fails, record a bad block on both old and 2149 * new devices. 2150 */ 2151 struct mddev *mddev = r10_bio->mddev; 2152 struct r10conf *conf = mddev->private; 2153 struct bio *bio = r10_bio->devs[0].bio; 2154 sector_t sect = 0; 2155 int sectors = r10_bio->sectors; 2156 int idx = 0; 2157 int dr = r10_bio->devs[0].devnum; 2158 int dw = r10_bio->devs[1].devnum; 2159 struct page **pages = get_resync_pages(bio)->pages; 2160 2161 while (sectors) { 2162 int s = sectors; 2163 struct md_rdev *rdev; 2164 sector_t addr; 2165 int ok; 2166 2167 if (s > (PAGE_SIZE>>9)) 2168 s = PAGE_SIZE >> 9; 2169 2170 rdev = conf->mirrors[dr].rdev; 2171 addr = r10_bio->devs[0].addr + sect, 2172 ok = sync_page_io(rdev, 2173 addr, 2174 s << 9, 2175 pages[idx], 2176 REQ_OP_READ, 0, false); 2177 if (ok) { 2178 rdev = conf->mirrors[dw].rdev; 2179 addr = r10_bio->devs[1].addr + sect; 2180 ok = sync_page_io(rdev, 2181 addr, 2182 s << 9, 2183 pages[idx], 2184 REQ_OP_WRITE, 0, false); 2185 if (!ok) { 2186 set_bit(WriteErrorSeen, &rdev->flags); 2187 if (!test_and_set_bit(WantReplacement, 2188 &rdev->flags)) 2189 set_bit(MD_RECOVERY_NEEDED, 2190 &rdev->mddev->recovery); 2191 } 2192 } 2193 if (!ok) { 2194 /* We don't worry if we cannot set a bad block - 2195 * it really is bad so there is no loss in not 2196 * recording it yet 2197 */ 2198 rdev_set_badblocks(rdev, addr, s, 0); 2199 2200 if (rdev != conf->mirrors[dw].rdev) { 2201 /* need bad block on destination too */ 2202 struct md_rdev *rdev2 = conf->mirrors[dw].rdev; 2203 addr = r10_bio->devs[1].addr + sect; 2204 ok = rdev_set_badblocks(rdev2, addr, s, 0); 2205 if (!ok) { 2206 /* just abort the recovery */ 2207 pr_notice("md/raid10:%s: recovery aborted due to read error\n", 2208 mdname(mddev)); 2209 2210 conf->mirrors[dw].recovery_disabled 2211 = mddev->recovery_disabled; 2212 set_bit(MD_RECOVERY_INTR, 2213 &mddev->recovery); 2214 break; 2215 } 2216 } 2217 } 2218 2219 sectors -= s; 2220 sect += s; 2221 idx++; 2222 } 2223 } 2224 2225 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio) 2226 { 2227 struct r10conf *conf = mddev->private; 2228 int d; 2229 struct bio *wbio, *wbio2; 2230 2231 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) { 2232 fix_recovery_read_error(r10_bio); 2233 end_sync_request(r10_bio); 2234 return; 2235 } 2236 2237 /* 2238 * share the pages with the first bio 2239 * and submit the write request 2240 */ 2241 d = r10_bio->devs[1].devnum; 2242 wbio = r10_bio->devs[1].bio; 2243 wbio2 = r10_bio->devs[1].repl_bio; 2244 /* Need to test wbio2->bi_end_io before we call 2245 * generic_make_request as if the former is NULL, 2246 * the latter is free to free wbio2. 2247 */ 2248 if (wbio2 && !wbio2->bi_end_io) 2249 wbio2 = NULL; 2250 if (wbio->bi_end_io) { 2251 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 2252 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio)); 2253 generic_make_request(wbio); 2254 } 2255 if (wbio2) { 2256 atomic_inc(&conf->mirrors[d].replacement->nr_pending); 2257 md_sync_acct(conf->mirrors[d].replacement->bdev, 2258 bio_sectors(wbio2)); 2259 generic_make_request(wbio2); 2260 } 2261 } 2262 2263 /* 2264 * Used by fix_read_error() to decay the per rdev read_errors. 2265 * We halve the read error count for every hour that has elapsed 2266 * since the last recorded read error. 2267 * 2268 */ 2269 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev) 2270 { 2271 long cur_time_mon; 2272 unsigned long hours_since_last; 2273 unsigned int read_errors = atomic_read(&rdev->read_errors); 2274 2275 cur_time_mon = ktime_get_seconds(); 2276 2277 if (rdev->last_read_error == 0) { 2278 /* first time we've seen a read error */ 2279 rdev->last_read_error = cur_time_mon; 2280 return; 2281 } 2282 2283 hours_since_last = (long)(cur_time_mon - 2284 rdev->last_read_error) / 3600; 2285 2286 rdev->last_read_error = cur_time_mon; 2287 2288 /* 2289 * if hours_since_last is > the number of bits in read_errors 2290 * just set read errors to 0. We do this to avoid 2291 * overflowing the shift of read_errors by hours_since_last. 2292 */ 2293 if (hours_since_last >= 8 * sizeof(read_errors)) 2294 atomic_set(&rdev->read_errors, 0); 2295 else 2296 atomic_set(&rdev->read_errors, read_errors >> hours_since_last); 2297 } 2298 2299 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector, 2300 int sectors, struct page *page, int rw) 2301 { 2302 sector_t first_bad; 2303 int bad_sectors; 2304 2305 if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors) 2306 && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags))) 2307 return -1; 2308 if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false)) 2309 /* success */ 2310 return 1; 2311 if (rw == WRITE) { 2312 set_bit(WriteErrorSeen, &rdev->flags); 2313 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 2314 set_bit(MD_RECOVERY_NEEDED, 2315 &rdev->mddev->recovery); 2316 } 2317 /* need to record an error - either for the block or the device */ 2318 if (!rdev_set_badblocks(rdev, sector, sectors, 0)) 2319 md_error(rdev->mddev, rdev); 2320 return 0; 2321 } 2322 2323 /* 2324 * This is a kernel thread which: 2325 * 2326 * 1. Retries failed read operations on working mirrors. 2327 * 2. Updates the raid superblock when problems encounter. 2328 * 3. Performs writes following reads for array synchronising. 2329 */ 2330 2331 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio) 2332 { 2333 int sect = 0; /* Offset from r10_bio->sector */ 2334 int sectors = r10_bio->sectors; 2335 struct md_rdev *rdev; 2336 int max_read_errors = atomic_read(&mddev->max_corr_read_errors); 2337 int d = r10_bio->devs[r10_bio->read_slot].devnum; 2338 2339 /* still own a reference to this rdev, so it cannot 2340 * have been cleared recently. 2341 */ 2342 rdev = conf->mirrors[d].rdev; 2343 2344 if (test_bit(Faulty, &rdev->flags)) 2345 /* drive has already been failed, just ignore any 2346 more fix_read_error() attempts */ 2347 return; 2348 2349 check_decay_read_errors(mddev, rdev); 2350 atomic_inc(&rdev->read_errors); 2351 if (atomic_read(&rdev->read_errors) > max_read_errors) { 2352 char b[BDEVNAME_SIZE]; 2353 bdevname(rdev->bdev, b); 2354 2355 pr_notice("md/raid10:%s: %s: Raid device exceeded read_error threshold [cur %d:max %d]\n", 2356 mdname(mddev), b, 2357 atomic_read(&rdev->read_errors), max_read_errors); 2358 pr_notice("md/raid10:%s: %s: Failing raid device\n", 2359 mdname(mddev), b); 2360 md_error(mddev, rdev); 2361 r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED; 2362 return; 2363 } 2364 2365 while(sectors) { 2366 int s = sectors; 2367 int sl = r10_bio->read_slot; 2368 int success = 0; 2369 int start; 2370 2371 if (s > (PAGE_SIZE>>9)) 2372 s = PAGE_SIZE >> 9; 2373 2374 rcu_read_lock(); 2375 do { 2376 sector_t first_bad; 2377 int bad_sectors; 2378 2379 d = r10_bio->devs[sl].devnum; 2380 rdev = rcu_dereference(conf->mirrors[d].rdev); 2381 if (rdev && 2382 test_bit(In_sync, &rdev->flags) && 2383 !test_bit(Faulty, &rdev->flags) && 2384 is_badblock(rdev, r10_bio->devs[sl].addr + sect, s, 2385 &first_bad, &bad_sectors) == 0) { 2386 atomic_inc(&rdev->nr_pending); 2387 rcu_read_unlock(); 2388 success = sync_page_io(rdev, 2389 r10_bio->devs[sl].addr + 2390 sect, 2391 s<<9, 2392 conf->tmppage, 2393 REQ_OP_READ, 0, false); 2394 rdev_dec_pending(rdev, mddev); 2395 rcu_read_lock(); 2396 if (success) 2397 break; 2398 } 2399 sl++; 2400 if (sl == conf->copies) 2401 sl = 0; 2402 } while (!success && sl != r10_bio->read_slot); 2403 rcu_read_unlock(); 2404 2405 if (!success) { 2406 /* Cannot read from anywhere, just mark the block 2407 * as bad on the first device to discourage future 2408 * reads. 2409 */ 2410 int dn = r10_bio->devs[r10_bio->read_slot].devnum; 2411 rdev = conf->mirrors[dn].rdev; 2412 2413 if (!rdev_set_badblocks( 2414 rdev, 2415 r10_bio->devs[r10_bio->read_slot].addr 2416 + sect, 2417 s, 0)) { 2418 md_error(mddev, rdev); 2419 r10_bio->devs[r10_bio->read_slot].bio 2420 = IO_BLOCKED; 2421 } 2422 break; 2423 } 2424 2425 start = sl; 2426 /* write it back and re-read */ 2427 rcu_read_lock(); 2428 while (sl != r10_bio->read_slot) { 2429 char b[BDEVNAME_SIZE]; 2430 2431 if (sl==0) 2432 sl = conf->copies; 2433 sl--; 2434 d = r10_bio->devs[sl].devnum; 2435 rdev = rcu_dereference(conf->mirrors[d].rdev); 2436 if (!rdev || 2437 test_bit(Faulty, &rdev->flags) || 2438 !test_bit(In_sync, &rdev->flags)) 2439 continue; 2440 2441 atomic_inc(&rdev->nr_pending); 2442 rcu_read_unlock(); 2443 if (r10_sync_page_io(rdev, 2444 r10_bio->devs[sl].addr + 2445 sect, 2446 s, conf->tmppage, WRITE) 2447 == 0) { 2448 /* Well, this device is dead */ 2449 pr_notice("md/raid10:%s: read correction write failed (%d sectors at %llu on %s)\n", 2450 mdname(mddev), s, 2451 (unsigned long long)( 2452 sect + 2453 choose_data_offset(r10_bio, 2454 rdev)), 2455 bdevname(rdev->bdev, b)); 2456 pr_notice("md/raid10:%s: %s: failing drive\n", 2457 mdname(mddev), 2458 bdevname(rdev->bdev, b)); 2459 } 2460 rdev_dec_pending(rdev, mddev); 2461 rcu_read_lock(); 2462 } 2463 sl = start; 2464 while (sl != r10_bio->read_slot) { 2465 char b[BDEVNAME_SIZE]; 2466 2467 if (sl==0) 2468 sl = conf->copies; 2469 sl--; 2470 d = r10_bio->devs[sl].devnum; 2471 rdev = rcu_dereference(conf->mirrors[d].rdev); 2472 if (!rdev || 2473 test_bit(Faulty, &rdev->flags) || 2474 !test_bit(In_sync, &rdev->flags)) 2475 continue; 2476 2477 atomic_inc(&rdev->nr_pending); 2478 rcu_read_unlock(); 2479 switch (r10_sync_page_io(rdev, 2480 r10_bio->devs[sl].addr + 2481 sect, 2482 s, conf->tmppage, 2483 READ)) { 2484 case 0: 2485 /* Well, this device is dead */ 2486 pr_notice("md/raid10:%s: unable to read back corrected sectors (%d sectors at %llu on %s)\n", 2487 mdname(mddev), s, 2488 (unsigned long long)( 2489 sect + 2490 choose_data_offset(r10_bio, rdev)), 2491 bdevname(rdev->bdev, b)); 2492 pr_notice("md/raid10:%s: %s: failing drive\n", 2493 mdname(mddev), 2494 bdevname(rdev->bdev, b)); 2495 break; 2496 case 1: 2497 pr_info("md/raid10:%s: read error corrected (%d sectors at %llu on %s)\n", 2498 mdname(mddev), s, 2499 (unsigned long long)( 2500 sect + 2501 choose_data_offset(r10_bio, rdev)), 2502 bdevname(rdev->bdev, b)); 2503 atomic_add(s, &rdev->corrected_errors); 2504 } 2505 2506 rdev_dec_pending(rdev, mddev); 2507 rcu_read_lock(); 2508 } 2509 rcu_read_unlock(); 2510 2511 sectors -= s; 2512 sect += s; 2513 } 2514 } 2515 2516 static int narrow_write_error(struct r10bio *r10_bio, int i) 2517 { 2518 struct bio *bio = r10_bio->master_bio; 2519 struct mddev *mddev = r10_bio->mddev; 2520 struct r10conf *conf = mddev->private; 2521 struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev; 2522 /* bio has the data to be written to slot 'i' where 2523 * we just recently had a write error. 2524 * We repeatedly clone the bio and trim down to one block, 2525 * then try the write. Where the write fails we record 2526 * a bad block. 2527 * It is conceivable that the bio doesn't exactly align with 2528 * blocks. We must handle this. 2529 * 2530 * We currently own a reference to the rdev. 2531 */ 2532 2533 int block_sectors; 2534 sector_t sector; 2535 int sectors; 2536 int sect_to_write = r10_bio->sectors; 2537 int ok = 1; 2538 2539 if (rdev->badblocks.shift < 0) 2540 return 0; 2541 2542 block_sectors = roundup(1 << rdev->badblocks.shift, 2543 bdev_logical_block_size(rdev->bdev) >> 9); 2544 sector = r10_bio->sector; 2545 sectors = ((r10_bio->sector + block_sectors) 2546 & ~(sector_t)(block_sectors - 1)) 2547 - sector; 2548 2549 while (sect_to_write) { 2550 struct bio *wbio; 2551 sector_t wsector; 2552 if (sectors > sect_to_write) 2553 sectors = sect_to_write; 2554 /* Write at 'sector' for 'sectors' */ 2555 wbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set); 2556 bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors); 2557 wsector = r10_bio->devs[i].addr + (sector - r10_bio->sector); 2558 wbio->bi_iter.bi_sector = wsector + 2559 choose_data_offset(r10_bio, rdev); 2560 bio_set_dev(wbio, rdev->bdev); 2561 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0); 2562 2563 if (submit_bio_wait(wbio) < 0) 2564 /* Failure! */ 2565 ok = rdev_set_badblocks(rdev, wsector, 2566 sectors, 0) 2567 && ok; 2568 2569 bio_put(wbio); 2570 sect_to_write -= sectors; 2571 sector += sectors; 2572 sectors = block_sectors; 2573 } 2574 return ok; 2575 } 2576 2577 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio) 2578 { 2579 int slot = r10_bio->read_slot; 2580 struct bio *bio; 2581 struct r10conf *conf = mddev->private; 2582 struct md_rdev *rdev = r10_bio->devs[slot].rdev; 2583 2584 /* we got a read error. Maybe the drive is bad. Maybe just 2585 * the block and we can fix it. 2586 * We freeze all other IO, and try reading the block from 2587 * other devices. When we find one, we re-write 2588 * and check it that fixes the read error. 2589 * This is all done synchronously while the array is 2590 * frozen. 2591 */ 2592 bio = r10_bio->devs[slot].bio; 2593 bio_put(bio); 2594 r10_bio->devs[slot].bio = NULL; 2595 2596 if (mddev->ro) 2597 r10_bio->devs[slot].bio = IO_BLOCKED; 2598 else if (!test_bit(FailFast, &rdev->flags)) { 2599 freeze_array(conf, 1); 2600 fix_read_error(conf, mddev, r10_bio); 2601 unfreeze_array(conf); 2602 } else 2603 md_error(mddev, rdev); 2604 2605 rdev_dec_pending(rdev, mddev); 2606 allow_barrier(conf); 2607 r10_bio->state = 0; 2608 raid10_read_request(mddev, r10_bio->master_bio, r10_bio); 2609 } 2610 2611 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio) 2612 { 2613 /* Some sort of write request has finished and it 2614 * succeeded in writing where we thought there was a 2615 * bad block. So forget the bad block. 2616 * Or possibly if failed and we need to record 2617 * a bad block. 2618 */ 2619 int m; 2620 struct md_rdev *rdev; 2621 2622 if (test_bit(R10BIO_IsSync, &r10_bio->state) || 2623 test_bit(R10BIO_IsRecover, &r10_bio->state)) { 2624 for (m = 0; m < conf->copies; m++) { 2625 int dev = r10_bio->devs[m].devnum; 2626 rdev = conf->mirrors[dev].rdev; 2627 if (r10_bio->devs[m].bio == NULL || 2628 r10_bio->devs[m].bio->bi_end_io == NULL) 2629 continue; 2630 if (!r10_bio->devs[m].bio->bi_status) { 2631 rdev_clear_badblocks( 2632 rdev, 2633 r10_bio->devs[m].addr, 2634 r10_bio->sectors, 0); 2635 } else { 2636 if (!rdev_set_badblocks( 2637 rdev, 2638 r10_bio->devs[m].addr, 2639 r10_bio->sectors, 0)) 2640 md_error(conf->mddev, rdev); 2641 } 2642 rdev = conf->mirrors[dev].replacement; 2643 if (r10_bio->devs[m].repl_bio == NULL || 2644 r10_bio->devs[m].repl_bio->bi_end_io == NULL) 2645 continue; 2646 2647 if (!r10_bio->devs[m].repl_bio->bi_status) { 2648 rdev_clear_badblocks( 2649 rdev, 2650 r10_bio->devs[m].addr, 2651 r10_bio->sectors, 0); 2652 } else { 2653 if (!rdev_set_badblocks( 2654 rdev, 2655 r10_bio->devs[m].addr, 2656 r10_bio->sectors, 0)) 2657 md_error(conf->mddev, rdev); 2658 } 2659 } 2660 put_buf(r10_bio); 2661 } else { 2662 bool fail = false; 2663 for (m = 0; m < conf->copies; m++) { 2664 int dev = r10_bio->devs[m].devnum; 2665 struct bio *bio = r10_bio->devs[m].bio; 2666 rdev = conf->mirrors[dev].rdev; 2667 if (bio == IO_MADE_GOOD) { 2668 rdev_clear_badblocks( 2669 rdev, 2670 r10_bio->devs[m].addr, 2671 r10_bio->sectors, 0); 2672 rdev_dec_pending(rdev, conf->mddev); 2673 } else if (bio != NULL && bio->bi_status) { 2674 fail = true; 2675 if (!narrow_write_error(r10_bio, m)) { 2676 md_error(conf->mddev, rdev); 2677 set_bit(R10BIO_Degraded, 2678 &r10_bio->state); 2679 } 2680 rdev_dec_pending(rdev, conf->mddev); 2681 } 2682 bio = r10_bio->devs[m].repl_bio; 2683 rdev = conf->mirrors[dev].replacement; 2684 if (rdev && bio == IO_MADE_GOOD) { 2685 rdev_clear_badblocks( 2686 rdev, 2687 r10_bio->devs[m].addr, 2688 r10_bio->sectors, 0); 2689 rdev_dec_pending(rdev, conf->mddev); 2690 } 2691 } 2692 if (fail) { 2693 spin_lock_irq(&conf->device_lock); 2694 list_add(&r10_bio->retry_list, &conf->bio_end_io_list); 2695 conf->nr_queued++; 2696 spin_unlock_irq(&conf->device_lock); 2697 /* 2698 * In case freeze_array() is waiting for condition 2699 * nr_pending == nr_queued + extra to be true. 2700 */ 2701 wake_up(&conf->wait_barrier); 2702 md_wakeup_thread(conf->mddev->thread); 2703 } else { 2704 if (test_bit(R10BIO_WriteError, 2705 &r10_bio->state)) 2706 close_write(r10_bio); 2707 raid_end_bio_io(r10_bio); 2708 } 2709 } 2710 } 2711 2712 static void raid10d(struct md_thread *thread) 2713 { 2714 struct mddev *mddev = thread->mddev; 2715 struct r10bio *r10_bio; 2716 unsigned long flags; 2717 struct r10conf *conf = mddev->private; 2718 struct list_head *head = &conf->retry_list; 2719 struct blk_plug plug; 2720 2721 md_check_recovery(mddev); 2722 2723 if (!list_empty_careful(&conf->bio_end_io_list) && 2724 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) { 2725 LIST_HEAD(tmp); 2726 spin_lock_irqsave(&conf->device_lock, flags); 2727 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) { 2728 while (!list_empty(&conf->bio_end_io_list)) { 2729 list_move(conf->bio_end_io_list.prev, &tmp); 2730 conf->nr_queued--; 2731 } 2732 } 2733 spin_unlock_irqrestore(&conf->device_lock, flags); 2734 while (!list_empty(&tmp)) { 2735 r10_bio = list_first_entry(&tmp, struct r10bio, 2736 retry_list); 2737 list_del(&r10_bio->retry_list); 2738 if (mddev->degraded) 2739 set_bit(R10BIO_Degraded, &r10_bio->state); 2740 2741 if (test_bit(R10BIO_WriteError, 2742 &r10_bio->state)) 2743 close_write(r10_bio); 2744 raid_end_bio_io(r10_bio); 2745 } 2746 } 2747 2748 blk_start_plug(&plug); 2749 for (;;) { 2750 2751 flush_pending_writes(conf); 2752 2753 spin_lock_irqsave(&conf->device_lock, flags); 2754 if (list_empty(head)) { 2755 spin_unlock_irqrestore(&conf->device_lock, flags); 2756 break; 2757 } 2758 r10_bio = list_entry(head->prev, struct r10bio, retry_list); 2759 list_del(head->prev); 2760 conf->nr_queued--; 2761 spin_unlock_irqrestore(&conf->device_lock, flags); 2762 2763 mddev = r10_bio->mddev; 2764 conf = mddev->private; 2765 if (test_bit(R10BIO_MadeGood, &r10_bio->state) || 2766 test_bit(R10BIO_WriteError, &r10_bio->state)) 2767 handle_write_completed(conf, r10_bio); 2768 else if (test_bit(R10BIO_IsReshape, &r10_bio->state)) 2769 reshape_request_write(mddev, r10_bio); 2770 else if (test_bit(R10BIO_IsSync, &r10_bio->state)) 2771 sync_request_write(mddev, r10_bio); 2772 else if (test_bit(R10BIO_IsRecover, &r10_bio->state)) 2773 recovery_request_write(mddev, r10_bio); 2774 else if (test_bit(R10BIO_ReadError, &r10_bio->state)) 2775 handle_read_error(mddev, r10_bio); 2776 else 2777 WARN_ON_ONCE(1); 2778 2779 cond_resched(); 2780 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING)) 2781 md_check_recovery(mddev); 2782 } 2783 blk_finish_plug(&plug); 2784 } 2785 2786 static int init_resync(struct r10conf *conf) 2787 { 2788 int ret, buffs, i; 2789 2790 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE; 2791 BUG_ON(mempool_initialized(&conf->r10buf_pool)); 2792 conf->have_replacement = 0; 2793 for (i = 0; i < conf->geo.raid_disks; i++) 2794 if (conf->mirrors[i].replacement) 2795 conf->have_replacement = 1; 2796 ret = mempool_init(&conf->r10buf_pool, buffs, 2797 r10buf_pool_alloc, r10buf_pool_free, conf); 2798 if (ret) 2799 return ret; 2800 conf->next_resync = 0; 2801 return 0; 2802 } 2803 2804 static struct r10bio *raid10_alloc_init_r10buf(struct r10conf *conf) 2805 { 2806 struct r10bio *r10bio = mempool_alloc(&conf->r10buf_pool, GFP_NOIO); 2807 struct rsync_pages *rp; 2808 struct bio *bio; 2809 int nalloc; 2810 int i; 2811 2812 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) || 2813 test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery)) 2814 nalloc = conf->copies; /* resync */ 2815 else 2816 nalloc = 2; /* recovery */ 2817 2818 for (i = 0; i < nalloc; i++) { 2819 bio = r10bio->devs[i].bio; 2820 rp = bio->bi_private; 2821 bio_reset(bio); 2822 bio->bi_private = rp; 2823 bio = r10bio->devs[i].repl_bio; 2824 if (bio) { 2825 rp = bio->bi_private; 2826 bio_reset(bio); 2827 bio->bi_private = rp; 2828 } 2829 } 2830 return r10bio; 2831 } 2832 2833 /* 2834 * Set cluster_sync_high since we need other nodes to add the 2835 * range [cluster_sync_low, cluster_sync_high] to suspend list. 2836 */ 2837 static void raid10_set_cluster_sync_high(struct r10conf *conf) 2838 { 2839 sector_t window_size; 2840 int extra_chunk, chunks; 2841 2842 /* 2843 * First, here we define "stripe" as a unit which across 2844 * all member devices one time, so we get chunks by use 2845 * raid_disks / near_copies. Otherwise, if near_copies is 2846 * close to raid_disks, then resync window could increases 2847 * linearly with the increase of raid_disks, which means 2848 * we will suspend a really large IO window while it is not 2849 * necessary. If raid_disks is not divisible by near_copies, 2850 * an extra chunk is needed to ensure the whole "stripe" is 2851 * covered. 2852 */ 2853 2854 chunks = conf->geo.raid_disks / conf->geo.near_copies; 2855 if (conf->geo.raid_disks % conf->geo.near_copies == 0) 2856 extra_chunk = 0; 2857 else 2858 extra_chunk = 1; 2859 window_size = (chunks + extra_chunk) * conf->mddev->chunk_sectors; 2860 2861 /* 2862 * At least use a 32M window to align with raid1's resync window 2863 */ 2864 window_size = (CLUSTER_RESYNC_WINDOW_SECTORS > window_size) ? 2865 CLUSTER_RESYNC_WINDOW_SECTORS : window_size; 2866 2867 conf->cluster_sync_high = conf->cluster_sync_low + window_size; 2868 } 2869 2870 /* 2871 * perform a "sync" on one "block" 2872 * 2873 * We need to make sure that no normal I/O request - particularly write 2874 * requests - conflict with active sync requests. 2875 * 2876 * This is achieved by tracking pending requests and a 'barrier' concept 2877 * that can be installed to exclude normal IO requests. 2878 * 2879 * Resync and recovery are handled very differently. 2880 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery. 2881 * 2882 * For resync, we iterate over virtual addresses, read all copies, 2883 * and update if there are differences. If only one copy is live, 2884 * skip it. 2885 * For recovery, we iterate over physical addresses, read a good 2886 * value for each non-in_sync drive, and over-write. 2887 * 2888 * So, for recovery we may have several outstanding complex requests for a 2889 * given address, one for each out-of-sync device. We model this by allocating 2890 * a number of r10_bio structures, one for each out-of-sync device. 2891 * As we setup these structures, we collect all bio's together into a list 2892 * which we then process collectively to add pages, and then process again 2893 * to pass to generic_make_request. 2894 * 2895 * The r10_bio structures are linked using a borrowed master_bio pointer. 2896 * This link is counted in ->remaining. When the r10_bio that points to NULL 2897 * has its remaining count decremented to 0, the whole complex operation 2898 * is complete. 2899 * 2900 */ 2901 2902 static sector_t raid10_sync_request(struct mddev *mddev, sector_t sector_nr, 2903 int *skipped) 2904 { 2905 struct r10conf *conf = mddev->private; 2906 struct r10bio *r10_bio; 2907 struct bio *biolist = NULL, *bio; 2908 sector_t max_sector, nr_sectors; 2909 int i; 2910 int max_sync; 2911 sector_t sync_blocks; 2912 sector_t sectors_skipped = 0; 2913 int chunks_skipped = 0; 2914 sector_t chunk_mask = conf->geo.chunk_mask; 2915 int page_idx = 0; 2916 2917 if (!mempool_initialized(&conf->r10buf_pool)) 2918 if (init_resync(conf)) 2919 return 0; 2920 2921 /* 2922 * Allow skipping a full rebuild for incremental assembly 2923 * of a clean array, like RAID1 does. 2924 */ 2925 if (mddev->bitmap == NULL && 2926 mddev->recovery_cp == MaxSector && 2927 mddev->reshape_position == MaxSector && 2928 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && 2929 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 2930 !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 2931 conf->fullsync == 0) { 2932 *skipped = 1; 2933 return mddev->dev_sectors - sector_nr; 2934 } 2935 2936 skipped: 2937 max_sector = mddev->dev_sectors; 2938 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 2939 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 2940 max_sector = mddev->resync_max_sectors; 2941 if (sector_nr >= max_sector) { 2942 conf->cluster_sync_low = 0; 2943 conf->cluster_sync_high = 0; 2944 2945 /* If we aborted, we need to abort the 2946 * sync on the 'current' bitmap chucks (there can 2947 * be several when recovering multiple devices). 2948 * as we may have started syncing it but not finished. 2949 * We can find the current address in 2950 * mddev->curr_resync, but for recovery, 2951 * we need to convert that to several 2952 * virtual addresses. 2953 */ 2954 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) { 2955 end_reshape(conf); 2956 close_sync(conf); 2957 return 0; 2958 } 2959 2960 if (mddev->curr_resync < max_sector) { /* aborted */ 2961 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 2962 md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 2963 &sync_blocks, 1); 2964 else for (i = 0; i < conf->geo.raid_disks; i++) { 2965 sector_t sect = 2966 raid10_find_virt(conf, mddev->curr_resync, i); 2967 md_bitmap_end_sync(mddev->bitmap, sect, 2968 &sync_blocks, 1); 2969 } 2970 } else { 2971 /* completed sync */ 2972 if ((!mddev->bitmap || conf->fullsync) 2973 && conf->have_replacement 2974 && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 2975 /* Completed a full sync so the replacements 2976 * are now fully recovered. 2977 */ 2978 rcu_read_lock(); 2979 for (i = 0; i < conf->geo.raid_disks; i++) { 2980 struct md_rdev *rdev = 2981 rcu_dereference(conf->mirrors[i].replacement); 2982 if (rdev) 2983 rdev->recovery_offset = MaxSector; 2984 } 2985 rcu_read_unlock(); 2986 } 2987 conf->fullsync = 0; 2988 } 2989 md_bitmap_close_sync(mddev->bitmap); 2990 close_sync(conf); 2991 *skipped = 1; 2992 return sectors_skipped; 2993 } 2994 2995 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 2996 return reshape_request(mddev, sector_nr, skipped); 2997 2998 if (chunks_skipped >= conf->geo.raid_disks) { 2999 /* if there has been nothing to do on any drive, 3000 * then there is nothing to do at all.. 3001 */ 3002 *skipped = 1; 3003 return (max_sector - sector_nr) + sectors_skipped; 3004 } 3005 3006 if (max_sector > mddev->resync_max) 3007 max_sector = mddev->resync_max; /* Don't do IO beyond here */ 3008 3009 /* make sure whole request will fit in a chunk - if chunks 3010 * are meaningful 3011 */ 3012 if (conf->geo.near_copies < conf->geo.raid_disks && 3013 max_sector > (sector_nr | chunk_mask)) 3014 max_sector = (sector_nr | chunk_mask) + 1; 3015 3016 /* 3017 * If there is non-resync activity waiting for a turn, then let it 3018 * though before starting on this new sync request. 3019 */ 3020 if (conf->nr_waiting) 3021 schedule_timeout_uninterruptible(1); 3022 3023 /* Again, very different code for resync and recovery. 3024 * Both must result in an r10bio with a list of bios that 3025 * have bi_end_io, bi_sector, bi_disk set, 3026 * and bi_private set to the r10bio. 3027 * For recovery, we may actually create several r10bios 3028 * with 2 bios in each, that correspond to the bios in the main one. 3029 * In this case, the subordinate r10bios link back through a 3030 * borrowed master_bio pointer, and the counter in the master 3031 * includes a ref from each subordinate. 3032 */ 3033 /* First, we decide what to do and set ->bi_end_io 3034 * To end_sync_read if we want to read, and 3035 * end_sync_write if we will want to write. 3036 */ 3037 3038 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9); 3039 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 3040 /* recovery... the complicated one */ 3041 int j; 3042 r10_bio = NULL; 3043 3044 for (i = 0 ; i < conf->geo.raid_disks; i++) { 3045 int still_degraded; 3046 struct r10bio *rb2; 3047 sector_t sect; 3048 int must_sync; 3049 int any_working; 3050 int need_recover = 0; 3051 int need_replace = 0; 3052 struct raid10_info *mirror = &conf->mirrors[i]; 3053 struct md_rdev *mrdev, *mreplace; 3054 3055 rcu_read_lock(); 3056 mrdev = rcu_dereference(mirror->rdev); 3057 mreplace = rcu_dereference(mirror->replacement); 3058 3059 if (mrdev != NULL && 3060 !test_bit(Faulty, &mrdev->flags) && 3061 !test_bit(In_sync, &mrdev->flags)) 3062 need_recover = 1; 3063 if (mreplace != NULL && 3064 !test_bit(Faulty, &mreplace->flags)) 3065 need_replace = 1; 3066 3067 if (!need_recover && !need_replace) { 3068 rcu_read_unlock(); 3069 continue; 3070 } 3071 3072 still_degraded = 0; 3073 /* want to reconstruct this device */ 3074 rb2 = r10_bio; 3075 sect = raid10_find_virt(conf, sector_nr, i); 3076 if (sect >= mddev->resync_max_sectors) { 3077 /* last stripe is not complete - don't 3078 * try to recover this sector. 3079 */ 3080 rcu_read_unlock(); 3081 continue; 3082 } 3083 if (mreplace && test_bit(Faulty, &mreplace->flags)) 3084 mreplace = NULL; 3085 /* Unless we are doing a full sync, or a replacement 3086 * we only need to recover the block if it is set in 3087 * the bitmap 3088 */ 3089 must_sync = md_bitmap_start_sync(mddev->bitmap, sect, 3090 &sync_blocks, 1); 3091 if (sync_blocks < max_sync) 3092 max_sync = sync_blocks; 3093 if (!must_sync && 3094 mreplace == NULL && 3095 !conf->fullsync) { 3096 /* yep, skip the sync_blocks here, but don't assume 3097 * that there will never be anything to do here 3098 */ 3099 chunks_skipped = -1; 3100 rcu_read_unlock(); 3101 continue; 3102 } 3103 atomic_inc(&mrdev->nr_pending); 3104 if (mreplace) 3105 atomic_inc(&mreplace->nr_pending); 3106 rcu_read_unlock(); 3107 3108 r10_bio = raid10_alloc_init_r10buf(conf); 3109 r10_bio->state = 0; 3110 raise_barrier(conf, rb2 != NULL); 3111 atomic_set(&r10_bio->remaining, 0); 3112 3113 r10_bio->master_bio = (struct bio*)rb2; 3114 if (rb2) 3115 atomic_inc(&rb2->remaining); 3116 r10_bio->mddev = mddev; 3117 set_bit(R10BIO_IsRecover, &r10_bio->state); 3118 r10_bio->sector = sect; 3119 3120 raid10_find_phys(conf, r10_bio); 3121 3122 /* Need to check if the array will still be 3123 * degraded 3124 */ 3125 rcu_read_lock(); 3126 for (j = 0; j < conf->geo.raid_disks; j++) { 3127 struct md_rdev *rdev = rcu_dereference( 3128 conf->mirrors[j].rdev); 3129 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) { 3130 still_degraded = 1; 3131 break; 3132 } 3133 } 3134 3135 must_sync = md_bitmap_start_sync(mddev->bitmap, sect, 3136 &sync_blocks, still_degraded); 3137 3138 any_working = 0; 3139 for (j=0; j<conf->copies;j++) { 3140 int k; 3141 int d = r10_bio->devs[j].devnum; 3142 sector_t from_addr, to_addr; 3143 struct md_rdev *rdev = 3144 rcu_dereference(conf->mirrors[d].rdev); 3145 sector_t sector, first_bad; 3146 int bad_sectors; 3147 if (!rdev || 3148 !test_bit(In_sync, &rdev->flags)) 3149 continue; 3150 /* This is where we read from */ 3151 any_working = 1; 3152 sector = r10_bio->devs[j].addr; 3153 3154 if (is_badblock(rdev, sector, max_sync, 3155 &first_bad, &bad_sectors)) { 3156 if (first_bad > sector) 3157 max_sync = first_bad - sector; 3158 else { 3159 bad_sectors -= (sector 3160 - first_bad); 3161 if (max_sync > bad_sectors) 3162 max_sync = bad_sectors; 3163 continue; 3164 } 3165 } 3166 bio = r10_bio->devs[0].bio; 3167 bio->bi_next = biolist; 3168 biolist = bio; 3169 bio->bi_end_io = end_sync_read; 3170 bio_set_op_attrs(bio, REQ_OP_READ, 0); 3171 if (test_bit(FailFast, &rdev->flags)) 3172 bio->bi_opf |= MD_FAILFAST; 3173 from_addr = r10_bio->devs[j].addr; 3174 bio->bi_iter.bi_sector = from_addr + 3175 rdev->data_offset; 3176 bio_set_dev(bio, rdev->bdev); 3177 atomic_inc(&rdev->nr_pending); 3178 /* and we write to 'i' (if not in_sync) */ 3179 3180 for (k=0; k<conf->copies; k++) 3181 if (r10_bio->devs[k].devnum == i) 3182 break; 3183 BUG_ON(k == conf->copies); 3184 to_addr = r10_bio->devs[k].addr; 3185 r10_bio->devs[0].devnum = d; 3186 r10_bio->devs[0].addr = from_addr; 3187 r10_bio->devs[1].devnum = i; 3188 r10_bio->devs[1].addr = to_addr; 3189 3190 if (need_recover) { 3191 bio = r10_bio->devs[1].bio; 3192 bio->bi_next = biolist; 3193 biolist = bio; 3194 bio->bi_end_io = end_sync_write; 3195 bio_set_op_attrs(bio, REQ_OP_WRITE, 0); 3196 bio->bi_iter.bi_sector = to_addr 3197 + mrdev->data_offset; 3198 bio_set_dev(bio, mrdev->bdev); 3199 atomic_inc(&r10_bio->remaining); 3200 } else 3201 r10_bio->devs[1].bio->bi_end_io = NULL; 3202 3203 /* and maybe write to replacement */ 3204 bio = r10_bio->devs[1].repl_bio; 3205 if (bio) 3206 bio->bi_end_io = NULL; 3207 /* Note: if need_replace, then bio 3208 * cannot be NULL as r10buf_pool_alloc will 3209 * have allocated it. 3210 */ 3211 if (!need_replace) 3212 break; 3213 bio->bi_next = biolist; 3214 biolist = bio; 3215 bio->bi_end_io = end_sync_write; 3216 bio_set_op_attrs(bio, REQ_OP_WRITE, 0); 3217 bio->bi_iter.bi_sector = to_addr + 3218 mreplace->data_offset; 3219 bio_set_dev(bio, mreplace->bdev); 3220 atomic_inc(&r10_bio->remaining); 3221 break; 3222 } 3223 rcu_read_unlock(); 3224 if (j == conf->copies) { 3225 /* Cannot recover, so abort the recovery or 3226 * record a bad block */ 3227 if (any_working) { 3228 /* problem is that there are bad blocks 3229 * on other device(s) 3230 */ 3231 int k; 3232 for (k = 0; k < conf->copies; k++) 3233 if (r10_bio->devs[k].devnum == i) 3234 break; 3235 if (!test_bit(In_sync, 3236 &mrdev->flags) 3237 && !rdev_set_badblocks( 3238 mrdev, 3239 r10_bio->devs[k].addr, 3240 max_sync, 0)) 3241 any_working = 0; 3242 if (mreplace && 3243 !rdev_set_badblocks( 3244 mreplace, 3245 r10_bio->devs[k].addr, 3246 max_sync, 0)) 3247 any_working = 0; 3248 } 3249 if (!any_working) { 3250 if (!test_and_set_bit(MD_RECOVERY_INTR, 3251 &mddev->recovery)) 3252 pr_warn("md/raid10:%s: insufficient working devices for recovery.\n", 3253 mdname(mddev)); 3254 mirror->recovery_disabled 3255 = mddev->recovery_disabled; 3256 } 3257 put_buf(r10_bio); 3258 if (rb2) 3259 atomic_dec(&rb2->remaining); 3260 r10_bio = rb2; 3261 rdev_dec_pending(mrdev, mddev); 3262 if (mreplace) 3263 rdev_dec_pending(mreplace, mddev); 3264 break; 3265 } 3266 rdev_dec_pending(mrdev, mddev); 3267 if (mreplace) 3268 rdev_dec_pending(mreplace, mddev); 3269 if (r10_bio->devs[0].bio->bi_opf & MD_FAILFAST) { 3270 /* Only want this if there is elsewhere to 3271 * read from. 'j' is currently the first 3272 * readable copy. 3273 */ 3274 int targets = 1; 3275 for (; j < conf->copies; j++) { 3276 int d = r10_bio->devs[j].devnum; 3277 if (conf->mirrors[d].rdev && 3278 test_bit(In_sync, 3279 &conf->mirrors[d].rdev->flags)) 3280 targets++; 3281 } 3282 if (targets == 1) 3283 r10_bio->devs[0].bio->bi_opf 3284 &= ~MD_FAILFAST; 3285 } 3286 } 3287 if (biolist == NULL) { 3288 while (r10_bio) { 3289 struct r10bio *rb2 = r10_bio; 3290 r10_bio = (struct r10bio*) rb2->master_bio; 3291 rb2->master_bio = NULL; 3292 put_buf(rb2); 3293 } 3294 goto giveup; 3295 } 3296 } else { 3297 /* resync. Schedule a read for every block at this virt offset */ 3298 int count = 0; 3299 3300 /* 3301 * Since curr_resync_completed could probably not update in 3302 * time, and we will set cluster_sync_low based on it. 3303 * Let's check against "sector_nr + 2 * RESYNC_SECTORS" for 3304 * safety reason, which ensures curr_resync_completed is 3305 * updated in bitmap_cond_end_sync. 3306 */ 3307 md_bitmap_cond_end_sync(mddev->bitmap, sector_nr, 3308 mddev_is_clustered(mddev) && 3309 (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high)); 3310 3311 if (!md_bitmap_start_sync(mddev->bitmap, sector_nr, 3312 &sync_blocks, mddev->degraded) && 3313 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, 3314 &mddev->recovery)) { 3315 /* We can skip this block */ 3316 *skipped = 1; 3317 return sync_blocks + sectors_skipped; 3318 } 3319 if (sync_blocks < max_sync) 3320 max_sync = sync_blocks; 3321 r10_bio = raid10_alloc_init_r10buf(conf); 3322 r10_bio->state = 0; 3323 3324 r10_bio->mddev = mddev; 3325 atomic_set(&r10_bio->remaining, 0); 3326 raise_barrier(conf, 0); 3327 conf->next_resync = sector_nr; 3328 3329 r10_bio->master_bio = NULL; 3330 r10_bio->sector = sector_nr; 3331 set_bit(R10BIO_IsSync, &r10_bio->state); 3332 raid10_find_phys(conf, r10_bio); 3333 r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1; 3334 3335 for (i = 0; i < conf->copies; i++) { 3336 int d = r10_bio->devs[i].devnum; 3337 sector_t first_bad, sector; 3338 int bad_sectors; 3339 struct md_rdev *rdev; 3340 3341 if (r10_bio->devs[i].repl_bio) 3342 r10_bio->devs[i].repl_bio->bi_end_io = NULL; 3343 3344 bio = r10_bio->devs[i].bio; 3345 bio->bi_status = BLK_STS_IOERR; 3346 rcu_read_lock(); 3347 rdev = rcu_dereference(conf->mirrors[d].rdev); 3348 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) { 3349 rcu_read_unlock(); 3350 continue; 3351 } 3352 sector = r10_bio->devs[i].addr; 3353 if (is_badblock(rdev, sector, max_sync, 3354 &first_bad, &bad_sectors)) { 3355 if (first_bad > sector) 3356 max_sync = first_bad - sector; 3357 else { 3358 bad_sectors -= (sector - first_bad); 3359 if (max_sync > bad_sectors) 3360 max_sync = bad_sectors; 3361 rcu_read_unlock(); 3362 continue; 3363 } 3364 } 3365 atomic_inc(&rdev->nr_pending); 3366 atomic_inc(&r10_bio->remaining); 3367 bio->bi_next = biolist; 3368 biolist = bio; 3369 bio->bi_end_io = end_sync_read; 3370 bio_set_op_attrs(bio, REQ_OP_READ, 0); 3371 if (test_bit(FailFast, &rdev->flags)) 3372 bio->bi_opf |= MD_FAILFAST; 3373 bio->bi_iter.bi_sector = sector + rdev->data_offset; 3374 bio_set_dev(bio, rdev->bdev); 3375 count++; 3376 3377 rdev = rcu_dereference(conf->mirrors[d].replacement); 3378 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) { 3379 rcu_read_unlock(); 3380 continue; 3381 } 3382 atomic_inc(&rdev->nr_pending); 3383 3384 /* Need to set up for writing to the replacement */ 3385 bio = r10_bio->devs[i].repl_bio; 3386 bio->bi_status = BLK_STS_IOERR; 3387 3388 sector = r10_bio->devs[i].addr; 3389 bio->bi_next = biolist; 3390 biolist = bio; 3391 bio->bi_end_io = end_sync_write; 3392 bio_set_op_attrs(bio, REQ_OP_WRITE, 0); 3393 if (test_bit(FailFast, &rdev->flags)) 3394 bio->bi_opf |= MD_FAILFAST; 3395 bio->bi_iter.bi_sector = sector + rdev->data_offset; 3396 bio_set_dev(bio, rdev->bdev); 3397 count++; 3398 rcu_read_unlock(); 3399 } 3400 3401 if (count < 2) { 3402 for (i=0; i<conf->copies; i++) { 3403 int d = r10_bio->devs[i].devnum; 3404 if (r10_bio->devs[i].bio->bi_end_io) 3405 rdev_dec_pending(conf->mirrors[d].rdev, 3406 mddev); 3407 if (r10_bio->devs[i].repl_bio && 3408 r10_bio->devs[i].repl_bio->bi_end_io) 3409 rdev_dec_pending( 3410 conf->mirrors[d].replacement, 3411 mddev); 3412 } 3413 put_buf(r10_bio); 3414 biolist = NULL; 3415 goto giveup; 3416 } 3417 } 3418 3419 nr_sectors = 0; 3420 if (sector_nr + max_sync < max_sector) 3421 max_sector = sector_nr + max_sync; 3422 do { 3423 struct page *page; 3424 int len = PAGE_SIZE; 3425 if (sector_nr + (len>>9) > max_sector) 3426 len = (max_sector - sector_nr) << 9; 3427 if (len == 0) 3428 break; 3429 for (bio= biolist ; bio ; bio=bio->bi_next) { 3430 struct resync_pages *rp = get_resync_pages(bio); 3431 page = resync_fetch_page(rp, page_idx); 3432 /* 3433 * won't fail because the vec table is big enough 3434 * to hold all these pages 3435 */ 3436 bio_add_page(bio, page, len, 0); 3437 } 3438 nr_sectors += len>>9; 3439 sector_nr += len>>9; 3440 } while (++page_idx < RESYNC_PAGES); 3441 r10_bio->sectors = nr_sectors; 3442 3443 if (mddev_is_clustered(mddev) && 3444 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 3445 /* It is resync not recovery */ 3446 if (conf->cluster_sync_high < sector_nr + nr_sectors) { 3447 conf->cluster_sync_low = mddev->curr_resync_completed; 3448 raid10_set_cluster_sync_high(conf); 3449 /* Send resync message */ 3450 md_cluster_ops->resync_info_update(mddev, 3451 conf->cluster_sync_low, 3452 conf->cluster_sync_high); 3453 } 3454 } else if (mddev_is_clustered(mddev)) { 3455 /* This is recovery not resync */ 3456 sector_t sect_va1, sect_va2; 3457 bool broadcast_msg = false; 3458 3459 for (i = 0; i < conf->geo.raid_disks; i++) { 3460 /* 3461 * sector_nr is a device address for recovery, so we 3462 * need translate it to array address before compare 3463 * with cluster_sync_high. 3464 */ 3465 sect_va1 = raid10_find_virt(conf, sector_nr, i); 3466 3467 if (conf->cluster_sync_high < sect_va1 + nr_sectors) { 3468 broadcast_msg = true; 3469 /* 3470 * curr_resync_completed is similar as 3471 * sector_nr, so make the translation too. 3472 */ 3473 sect_va2 = raid10_find_virt(conf, 3474 mddev->curr_resync_completed, i); 3475 3476 if (conf->cluster_sync_low == 0 || 3477 conf->cluster_sync_low > sect_va2) 3478 conf->cluster_sync_low = sect_va2; 3479 } 3480 } 3481 if (broadcast_msg) { 3482 raid10_set_cluster_sync_high(conf); 3483 md_cluster_ops->resync_info_update(mddev, 3484 conf->cluster_sync_low, 3485 conf->cluster_sync_high); 3486 } 3487 } 3488 3489 while (biolist) { 3490 bio = biolist; 3491 biolist = biolist->bi_next; 3492 3493 bio->bi_next = NULL; 3494 r10_bio = get_resync_r10bio(bio); 3495 r10_bio->sectors = nr_sectors; 3496 3497 if (bio->bi_end_io == end_sync_read) { 3498 md_sync_acct_bio(bio, nr_sectors); 3499 bio->bi_status = 0; 3500 generic_make_request(bio); 3501 } 3502 } 3503 3504 if (sectors_skipped) 3505 /* pretend they weren't skipped, it makes 3506 * no important difference in this case 3507 */ 3508 md_done_sync(mddev, sectors_skipped, 1); 3509 3510 return sectors_skipped + nr_sectors; 3511 giveup: 3512 /* There is nowhere to write, so all non-sync 3513 * drives must be failed or in resync, all drives 3514 * have a bad block, so try the next chunk... 3515 */ 3516 if (sector_nr + max_sync < max_sector) 3517 max_sector = sector_nr + max_sync; 3518 3519 sectors_skipped += (max_sector - sector_nr); 3520 chunks_skipped ++; 3521 sector_nr = max_sector; 3522 goto skipped; 3523 } 3524 3525 static sector_t 3526 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks) 3527 { 3528 sector_t size; 3529 struct r10conf *conf = mddev->private; 3530 3531 if (!raid_disks) 3532 raid_disks = min(conf->geo.raid_disks, 3533 conf->prev.raid_disks); 3534 if (!sectors) 3535 sectors = conf->dev_sectors; 3536 3537 size = sectors >> conf->geo.chunk_shift; 3538 sector_div(size, conf->geo.far_copies); 3539 size = size * raid_disks; 3540 sector_div(size, conf->geo.near_copies); 3541 3542 return size << conf->geo.chunk_shift; 3543 } 3544 3545 static void calc_sectors(struct r10conf *conf, sector_t size) 3546 { 3547 /* Calculate the number of sectors-per-device that will 3548 * actually be used, and set conf->dev_sectors and 3549 * conf->stride 3550 */ 3551 3552 size = size >> conf->geo.chunk_shift; 3553 sector_div(size, conf->geo.far_copies); 3554 size = size * conf->geo.raid_disks; 3555 sector_div(size, conf->geo.near_copies); 3556 /* 'size' is now the number of chunks in the array */ 3557 /* calculate "used chunks per device" */ 3558 size = size * conf->copies; 3559 3560 /* We need to round up when dividing by raid_disks to 3561 * get the stride size. 3562 */ 3563 size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks); 3564 3565 conf->dev_sectors = size << conf->geo.chunk_shift; 3566 3567 if (conf->geo.far_offset) 3568 conf->geo.stride = 1 << conf->geo.chunk_shift; 3569 else { 3570 sector_div(size, conf->geo.far_copies); 3571 conf->geo.stride = size << conf->geo.chunk_shift; 3572 } 3573 } 3574 3575 enum geo_type {geo_new, geo_old, geo_start}; 3576 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new) 3577 { 3578 int nc, fc, fo; 3579 int layout, chunk, disks; 3580 switch (new) { 3581 case geo_old: 3582 layout = mddev->layout; 3583 chunk = mddev->chunk_sectors; 3584 disks = mddev->raid_disks - mddev->delta_disks; 3585 break; 3586 case geo_new: 3587 layout = mddev->new_layout; 3588 chunk = mddev->new_chunk_sectors; 3589 disks = mddev->raid_disks; 3590 break; 3591 default: /* avoid 'may be unused' warnings */ 3592 case geo_start: /* new when starting reshape - raid_disks not 3593 * updated yet. */ 3594 layout = mddev->new_layout; 3595 chunk = mddev->new_chunk_sectors; 3596 disks = mddev->raid_disks + mddev->delta_disks; 3597 break; 3598 } 3599 if (layout >> 19) 3600 return -1; 3601 if (chunk < (PAGE_SIZE >> 9) || 3602 !is_power_of_2(chunk)) 3603 return -2; 3604 nc = layout & 255; 3605 fc = (layout >> 8) & 255; 3606 fo = layout & (1<<16); 3607 geo->raid_disks = disks; 3608 geo->near_copies = nc; 3609 geo->far_copies = fc; 3610 geo->far_offset = fo; 3611 switch (layout >> 17) { 3612 case 0: /* original layout. simple but not always optimal */ 3613 geo->far_set_size = disks; 3614 break; 3615 case 1: /* "improved" layout which was buggy. Hopefully no-one is 3616 * actually using this, but leave code here just in case.*/ 3617 geo->far_set_size = disks/fc; 3618 WARN(geo->far_set_size < fc, 3619 "This RAID10 layout does not provide data safety - please backup and create new array\n"); 3620 break; 3621 case 2: /* "improved" layout fixed to match documentation */ 3622 geo->far_set_size = fc * nc; 3623 break; 3624 default: /* Not a valid layout */ 3625 return -1; 3626 } 3627 geo->chunk_mask = chunk - 1; 3628 geo->chunk_shift = ffz(~chunk); 3629 return nc*fc; 3630 } 3631 3632 static struct r10conf *setup_conf(struct mddev *mddev) 3633 { 3634 struct r10conf *conf = NULL; 3635 int err = -EINVAL; 3636 struct geom geo; 3637 int copies; 3638 3639 copies = setup_geo(&geo, mddev, geo_new); 3640 3641 if (copies == -2) { 3642 pr_warn("md/raid10:%s: chunk size must be at least PAGE_SIZE(%ld) and be a power of 2.\n", 3643 mdname(mddev), PAGE_SIZE); 3644 goto out; 3645 } 3646 3647 if (copies < 2 || copies > mddev->raid_disks) { 3648 pr_warn("md/raid10:%s: unsupported raid10 layout: 0x%8x\n", 3649 mdname(mddev), mddev->new_layout); 3650 goto out; 3651 } 3652 3653 err = -ENOMEM; 3654 conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL); 3655 if (!conf) 3656 goto out; 3657 3658 /* FIXME calc properly */ 3659 conf->mirrors = kcalloc(mddev->raid_disks + max(0, -mddev->delta_disks), 3660 sizeof(struct raid10_info), 3661 GFP_KERNEL); 3662 if (!conf->mirrors) 3663 goto out; 3664 3665 conf->tmppage = alloc_page(GFP_KERNEL); 3666 if (!conf->tmppage) 3667 goto out; 3668 3669 conf->geo = geo; 3670 conf->copies = copies; 3671 err = mempool_init(&conf->r10bio_pool, NR_RAID_BIOS, r10bio_pool_alloc, 3672 rbio_pool_free, conf); 3673 if (err) 3674 goto out; 3675 3676 err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0); 3677 if (err) 3678 goto out; 3679 3680 calc_sectors(conf, mddev->dev_sectors); 3681 if (mddev->reshape_position == MaxSector) { 3682 conf->prev = conf->geo; 3683 conf->reshape_progress = MaxSector; 3684 } else { 3685 if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) { 3686 err = -EINVAL; 3687 goto out; 3688 } 3689 conf->reshape_progress = mddev->reshape_position; 3690 if (conf->prev.far_offset) 3691 conf->prev.stride = 1 << conf->prev.chunk_shift; 3692 else 3693 /* far_copies must be 1 */ 3694 conf->prev.stride = conf->dev_sectors; 3695 } 3696 conf->reshape_safe = conf->reshape_progress; 3697 spin_lock_init(&conf->device_lock); 3698 INIT_LIST_HEAD(&conf->retry_list); 3699 INIT_LIST_HEAD(&conf->bio_end_io_list); 3700 3701 spin_lock_init(&conf->resync_lock); 3702 init_waitqueue_head(&conf->wait_barrier); 3703 atomic_set(&conf->nr_pending, 0); 3704 3705 err = -ENOMEM; 3706 conf->thread = md_register_thread(raid10d, mddev, "raid10"); 3707 if (!conf->thread) 3708 goto out; 3709 3710 conf->mddev = mddev; 3711 return conf; 3712 3713 out: 3714 if (conf) { 3715 mempool_exit(&conf->r10bio_pool); 3716 kfree(conf->mirrors); 3717 safe_put_page(conf->tmppage); 3718 bioset_exit(&conf->bio_split); 3719 kfree(conf); 3720 } 3721 return ERR_PTR(err); 3722 } 3723 3724 static int raid10_run(struct mddev *mddev) 3725 { 3726 struct r10conf *conf; 3727 int i, disk_idx, chunk_size; 3728 struct raid10_info *disk; 3729 struct md_rdev *rdev; 3730 sector_t size; 3731 sector_t min_offset_diff = 0; 3732 int first = 1; 3733 bool discard_supported = false; 3734 3735 if (mddev_init_writes_pending(mddev) < 0) 3736 return -ENOMEM; 3737 3738 if (mddev->private == NULL) { 3739 conf = setup_conf(mddev); 3740 if (IS_ERR(conf)) 3741 return PTR_ERR(conf); 3742 mddev->private = conf; 3743 } 3744 conf = mddev->private; 3745 if (!conf) 3746 goto out; 3747 3748 if (mddev_is_clustered(conf->mddev)) { 3749 int fc, fo; 3750 3751 fc = (mddev->layout >> 8) & 255; 3752 fo = mddev->layout & (1<<16); 3753 if (fc > 1 || fo > 0) { 3754 pr_err("only near layout is supported by clustered" 3755 " raid10\n"); 3756 goto out_free_conf; 3757 } 3758 } 3759 3760 mddev->thread = conf->thread; 3761 conf->thread = NULL; 3762 3763 chunk_size = mddev->chunk_sectors << 9; 3764 if (mddev->queue) { 3765 blk_queue_max_discard_sectors(mddev->queue, 3766 mddev->chunk_sectors); 3767 blk_queue_max_write_same_sectors(mddev->queue, 0); 3768 blk_queue_max_write_zeroes_sectors(mddev->queue, 0); 3769 blk_queue_io_min(mddev->queue, chunk_size); 3770 if (conf->geo.raid_disks % conf->geo.near_copies) 3771 blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks); 3772 else 3773 blk_queue_io_opt(mddev->queue, chunk_size * 3774 (conf->geo.raid_disks / conf->geo.near_copies)); 3775 } 3776 3777 rdev_for_each(rdev, mddev) { 3778 long long diff; 3779 3780 disk_idx = rdev->raid_disk; 3781 if (disk_idx < 0) 3782 continue; 3783 if (disk_idx >= conf->geo.raid_disks && 3784 disk_idx >= conf->prev.raid_disks) 3785 continue; 3786 disk = conf->mirrors + disk_idx; 3787 3788 if (test_bit(Replacement, &rdev->flags)) { 3789 if (disk->replacement) 3790 goto out_free_conf; 3791 disk->replacement = rdev; 3792 } else { 3793 if (disk->rdev) 3794 goto out_free_conf; 3795 disk->rdev = rdev; 3796 } 3797 diff = (rdev->new_data_offset - rdev->data_offset); 3798 if (!mddev->reshape_backwards) 3799 diff = -diff; 3800 if (diff < 0) 3801 diff = 0; 3802 if (first || diff < min_offset_diff) 3803 min_offset_diff = diff; 3804 3805 if (mddev->gendisk) 3806 disk_stack_limits(mddev->gendisk, rdev->bdev, 3807 rdev->data_offset << 9); 3808 3809 disk->head_position = 0; 3810 3811 if (blk_queue_discard(bdev_get_queue(rdev->bdev))) 3812 discard_supported = true; 3813 first = 0; 3814 } 3815 3816 if (mddev->queue) { 3817 if (discard_supported) 3818 blk_queue_flag_set(QUEUE_FLAG_DISCARD, 3819 mddev->queue); 3820 else 3821 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, 3822 mddev->queue); 3823 } 3824 /* need to check that every block has at least one working mirror */ 3825 if (!enough(conf, -1)) { 3826 pr_err("md/raid10:%s: not enough operational mirrors.\n", 3827 mdname(mddev)); 3828 goto out_free_conf; 3829 } 3830 3831 if (conf->reshape_progress != MaxSector) { 3832 /* must ensure that shape change is supported */ 3833 if (conf->geo.far_copies != 1 && 3834 conf->geo.far_offset == 0) 3835 goto out_free_conf; 3836 if (conf->prev.far_copies != 1 && 3837 conf->prev.far_offset == 0) 3838 goto out_free_conf; 3839 } 3840 3841 mddev->degraded = 0; 3842 for (i = 0; 3843 i < conf->geo.raid_disks 3844 || i < conf->prev.raid_disks; 3845 i++) { 3846 3847 disk = conf->mirrors + i; 3848 3849 if (!disk->rdev && disk->replacement) { 3850 /* The replacement is all we have - use it */ 3851 disk->rdev = disk->replacement; 3852 disk->replacement = NULL; 3853 clear_bit(Replacement, &disk->rdev->flags); 3854 } 3855 3856 if (!disk->rdev || 3857 !test_bit(In_sync, &disk->rdev->flags)) { 3858 disk->head_position = 0; 3859 mddev->degraded++; 3860 if (disk->rdev && 3861 disk->rdev->saved_raid_disk < 0) 3862 conf->fullsync = 1; 3863 } 3864 3865 if (disk->replacement && 3866 !test_bit(In_sync, &disk->replacement->flags) && 3867 disk->replacement->saved_raid_disk < 0) { 3868 conf->fullsync = 1; 3869 } 3870 3871 disk->recovery_disabled = mddev->recovery_disabled - 1; 3872 } 3873 3874 if (mddev->recovery_cp != MaxSector) 3875 pr_notice("md/raid10:%s: not clean -- starting background reconstruction\n", 3876 mdname(mddev)); 3877 pr_info("md/raid10:%s: active with %d out of %d devices\n", 3878 mdname(mddev), conf->geo.raid_disks - mddev->degraded, 3879 conf->geo.raid_disks); 3880 /* 3881 * Ok, everything is just fine now 3882 */ 3883 mddev->dev_sectors = conf->dev_sectors; 3884 size = raid10_size(mddev, 0, 0); 3885 md_set_array_sectors(mddev, size); 3886 mddev->resync_max_sectors = size; 3887 set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags); 3888 3889 if (mddev->queue) { 3890 int stripe = conf->geo.raid_disks * 3891 ((mddev->chunk_sectors << 9) / PAGE_SIZE); 3892 3893 /* Calculate max read-ahead size. 3894 * We need to readahead at least twice a whole stripe.... 3895 * maybe... 3896 */ 3897 stripe /= conf->geo.near_copies; 3898 if (mddev->queue->backing_dev_info->ra_pages < 2 * stripe) 3899 mddev->queue->backing_dev_info->ra_pages = 2 * stripe; 3900 } 3901 3902 if (md_integrity_register(mddev)) 3903 goto out_free_conf; 3904 3905 if (conf->reshape_progress != MaxSector) { 3906 unsigned long before_length, after_length; 3907 3908 before_length = ((1 << conf->prev.chunk_shift) * 3909 conf->prev.far_copies); 3910 after_length = ((1 << conf->geo.chunk_shift) * 3911 conf->geo.far_copies); 3912 3913 if (max(before_length, after_length) > min_offset_diff) { 3914 /* This cannot work */ 3915 pr_warn("md/raid10: offset difference not enough to continue reshape\n"); 3916 goto out_free_conf; 3917 } 3918 conf->offset_diff = min_offset_diff; 3919 3920 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 3921 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 3922 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 3923 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 3924 mddev->sync_thread = md_register_thread(md_do_sync, mddev, 3925 "reshape"); 3926 if (!mddev->sync_thread) 3927 goto out_free_conf; 3928 } 3929 3930 return 0; 3931 3932 out_free_conf: 3933 md_unregister_thread(&mddev->thread); 3934 mempool_exit(&conf->r10bio_pool); 3935 safe_put_page(conf->tmppage); 3936 kfree(conf->mirrors); 3937 kfree(conf); 3938 mddev->private = NULL; 3939 out: 3940 return -EIO; 3941 } 3942 3943 static void raid10_free(struct mddev *mddev, void *priv) 3944 { 3945 struct r10conf *conf = priv; 3946 3947 mempool_exit(&conf->r10bio_pool); 3948 safe_put_page(conf->tmppage); 3949 kfree(conf->mirrors); 3950 kfree(conf->mirrors_old); 3951 kfree(conf->mirrors_new); 3952 bioset_exit(&conf->bio_split); 3953 kfree(conf); 3954 } 3955 3956 static void raid10_quiesce(struct mddev *mddev, int quiesce) 3957 { 3958 struct r10conf *conf = mddev->private; 3959 3960 if (quiesce) 3961 raise_barrier(conf, 0); 3962 else 3963 lower_barrier(conf); 3964 } 3965 3966 static int raid10_resize(struct mddev *mddev, sector_t sectors) 3967 { 3968 /* Resize of 'far' arrays is not supported. 3969 * For 'near' and 'offset' arrays we can set the 3970 * number of sectors used to be an appropriate multiple 3971 * of the chunk size. 3972 * For 'offset', this is far_copies*chunksize. 3973 * For 'near' the multiplier is the LCM of 3974 * near_copies and raid_disks. 3975 * So if far_copies > 1 && !far_offset, fail. 3976 * Else find LCM(raid_disks, near_copy)*far_copies and 3977 * multiply by chunk_size. Then round to this number. 3978 * This is mostly done by raid10_size() 3979 */ 3980 struct r10conf *conf = mddev->private; 3981 sector_t oldsize, size; 3982 3983 if (mddev->reshape_position != MaxSector) 3984 return -EBUSY; 3985 3986 if (conf->geo.far_copies > 1 && !conf->geo.far_offset) 3987 return -EINVAL; 3988 3989 oldsize = raid10_size(mddev, 0, 0); 3990 size = raid10_size(mddev, sectors, 0); 3991 if (mddev->external_size && 3992 mddev->array_sectors > size) 3993 return -EINVAL; 3994 if (mddev->bitmap) { 3995 int ret = md_bitmap_resize(mddev->bitmap, size, 0, 0); 3996 if (ret) 3997 return ret; 3998 } 3999 md_set_array_sectors(mddev, size); 4000 if (sectors > mddev->dev_sectors && 4001 mddev->recovery_cp > oldsize) { 4002 mddev->recovery_cp = oldsize; 4003 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4004 } 4005 calc_sectors(conf, sectors); 4006 mddev->dev_sectors = conf->dev_sectors; 4007 mddev->resync_max_sectors = size; 4008 return 0; 4009 } 4010 4011 static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs) 4012 { 4013 struct md_rdev *rdev; 4014 struct r10conf *conf; 4015 4016 if (mddev->degraded > 0) { 4017 pr_warn("md/raid10:%s: Error: degraded raid0!\n", 4018 mdname(mddev)); 4019 return ERR_PTR(-EINVAL); 4020 } 4021 sector_div(size, devs); 4022 4023 /* Set new parameters */ 4024 mddev->new_level = 10; 4025 /* new layout: far_copies = 1, near_copies = 2 */ 4026 mddev->new_layout = (1<<8) + 2; 4027 mddev->new_chunk_sectors = mddev->chunk_sectors; 4028 mddev->delta_disks = mddev->raid_disks; 4029 mddev->raid_disks *= 2; 4030 /* make sure it will be not marked as dirty */ 4031 mddev->recovery_cp = MaxSector; 4032 mddev->dev_sectors = size; 4033 4034 conf = setup_conf(mddev); 4035 if (!IS_ERR(conf)) { 4036 rdev_for_each(rdev, mddev) 4037 if (rdev->raid_disk >= 0) { 4038 rdev->new_raid_disk = rdev->raid_disk * 2; 4039 rdev->sectors = size; 4040 } 4041 conf->barrier = 1; 4042 } 4043 4044 return conf; 4045 } 4046 4047 static void *raid10_takeover(struct mddev *mddev) 4048 { 4049 struct r0conf *raid0_conf; 4050 4051 /* raid10 can take over: 4052 * raid0 - providing it has only two drives 4053 */ 4054 if (mddev->level == 0) { 4055 /* for raid0 takeover only one zone is supported */ 4056 raid0_conf = mddev->private; 4057 if (raid0_conf->nr_strip_zones > 1) { 4058 pr_warn("md/raid10:%s: cannot takeover raid 0 with more than one zone.\n", 4059 mdname(mddev)); 4060 return ERR_PTR(-EINVAL); 4061 } 4062 return raid10_takeover_raid0(mddev, 4063 raid0_conf->strip_zone->zone_end, 4064 raid0_conf->strip_zone->nb_dev); 4065 } 4066 return ERR_PTR(-EINVAL); 4067 } 4068 4069 static int raid10_check_reshape(struct mddev *mddev) 4070 { 4071 /* Called when there is a request to change 4072 * - layout (to ->new_layout) 4073 * - chunk size (to ->new_chunk_sectors) 4074 * - raid_disks (by delta_disks) 4075 * or when trying to restart a reshape that was ongoing. 4076 * 4077 * We need to validate the request and possibly allocate 4078 * space if that might be an issue later. 4079 * 4080 * Currently we reject any reshape of a 'far' mode array, 4081 * allow chunk size to change if new is generally acceptable, 4082 * allow raid_disks to increase, and allow 4083 * a switch between 'near' mode and 'offset' mode. 4084 */ 4085 struct r10conf *conf = mddev->private; 4086 struct geom geo; 4087 4088 if (conf->geo.far_copies != 1 && !conf->geo.far_offset) 4089 return -EINVAL; 4090 4091 if (setup_geo(&geo, mddev, geo_start) != conf->copies) 4092 /* mustn't change number of copies */ 4093 return -EINVAL; 4094 if (geo.far_copies > 1 && !geo.far_offset) 4095 /* Cannot switch to 'far' mode */ 4096 return -EINVAL; 4097 4098 if (mddev->array_sectors & geo.chunk_mask) 4099 /* not factor of array size */ 4100 return -EINVAL; 4101 4102 if (!enough(conf, -1)) 4103 return -EINVAL; 4104 4105 kfree(conf->mirrors_new); 4106 conf->mirrors_new = NULL; 4107 if (mddev->delta_disks > 0) { 4108 /* allocate new 'mirrors' list */ 4109 conf->mirrors_new = 4110 kcalloc(mddev->raid_disks + mddev->delta_disks, 4111 sizeof(struct raid10_info), 4112 GFP_KERNEL); 4113 if (!conf->mirrors_new) 4114 return -ENOMEM; 4115 } 4116 return 0; 4117 } 4118 4119 /* 4120 * Need to check if array has failed when deciding whether to: 4121 * - start an array 4122 * - remove non-faulty devices 4123 * - add a spare 4124 * - allow a reshape 4125 * This determination is simple when no reshape is happening. 4126 * However if there is a reshape, we need to carefully check 4127 * both the before and after sections. 4128 * This is because some failed devices may only affect one 4129 * of the two sections, and some non-in_sync devices may 4130 * be insync in the section most affected by failed devices. 4131 */ 4132 static int calc_degraded(struct r10conf *conf) 4133 { 4134 int degraded, degraded2; 4135 int i; 4136 4137 rcu_read_lock(); 4138 degraded = 0; 4139 /* 'prev' section first */ 4140 for (i = 0; i < conf->prev.raid_disks; i++) { 4141 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 4142 if (!rdev || test_bit(Faulty, &rdev->flags)) 4143 degraded++; 4144 else if (!test_bit(In_sync, &rdev->flags)) 4145 /* When we can reduce the number of devices in 4146 * an array, this might not contribute to 4147 * 'degraded'. It does now. 4148 */ 4149 degraded++; 4150 } 4151 rcu_read_unlock(); 4152 if (conf->geo.raid_disks == conf->prev.raid_disks) 4153 return degraded; 4154 rcu_read_lock(); 4155 degraded2 = 0; 4156 for (i = 0; i < conf->geo.raid_disks; i++) { 4157 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 4158 if (!rdev || test_bit(Faulty, &rdev->flags)) 4159 degraded2++; 4160 else if (!test_bit(In_sync, &rdev->flags)) { 4161 /* If reshape is increasing the number of devices, 4162 * this section has already been recovered, so 4163 * it doesn't contribute to degraded. 4164 * else it does. 4165 */ 4166 if (conf->geo.raid_disks <= conf->prev.raid_disks) 4167 degraded2++; 4168 } 4169 } 4170 rcu_read_unlock(); 4171 if (degraded2 > degraded) 4172 return degraded2; 4173 return degraded; 4174 } 4175 4176 static int raid10_start_reshape(struct mddev *mddev) 4177 { 4178 /* A 'reshape' has been requested. This commits 4179 * the various 'new' fields and sets MD_RECOVER_RESHAPE 4180 * This also checks if there are enough spares and adds them 4181 * to the array. 4182 * We currently require enough spares to make the final 4183 * array non-degraded. We also require that the difference 4184 * between old and new data_offset - on each device - is 4185 * enough that we never risk over-writing. 4186 */ 4187 4188 unsigned long before_length, after_length; 4189 sector_t min_offset_diff = 0; 4190 int first = 1; 4191 struct geom new; 4192 struct r10conf *conf = mddev->private; 4193 struct md_rdev *rdev; 4194 int spares = 0; 4195 int ret; 4196 4197 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4198 return -EBUSY; 4199 4200 if (setup_geo(&new, mddev, geo_start) != conf->copies) 4201 return -EINVAL; 4202 4203 before_length = ((1 << conf->prev.chunk_shift) * 4204 conf->prev.far_copies); 4205 after_length = ((1 << conf->geo.chunk_shift) * 4206 conf->geo.far_copies); 4207 4208 rdev_for_each(rdev, mddev) { 4209 if (!test_bit(In_sync, &rdev->flags) 4210 && !test_bit(Faulty, &rdev->flags)) 4211 spares++; 4212 if (rdev->raid_disk >= 0) { 4213 long long diff = (rdev->new_data_offset 4214 - rdev->data_offset); 4215 if (!mddev->reshape_backwards) 4216 diff = -diff; 4217 if (diff < 0) 4218 diff = 0; 4219 if (first || diff < min_offset_diff) 4220 min_offset_diff = diff; 4221 first = 0; 4222 } 4223 } 4224 4225 if (max(before_length, after_length) > min_offset_diff) 4226 return -EINVAL; 4227 4228 if (spares < mddev->delta_disks) 4229 return -EINVAL; 4230 4231 conf->offset_diff = min_offset_diff; 4232 spin_lock_irq(&conf->device_lock); 4233 if (conf->mirrors_new) { 4234 memcpy(conf->mirrors_new, conf->mirrors, 4235 sizeof(struct raid10_info)*conf->prev.raid_disks); 4236 smp_mb(); 4237 kfree(conf->mirrors_old); 4238 conf->mirrors_old = conf->mirrors; 4239 conf->mirrors = conf->mirrors_new; 4240 conf->mirrors_new = NULL; 4241 } 4242 setup_geo(&conf->geo, mddev, geo_start); 4243 smp_mb(); 4244 if (mddev->reshape_backwards) { 4245 sector_t size = raid10_size(mddev, 0, 0); 4246 if (size < mddev->array_sectors) { 4247 spin_unlock_irq(&conf->device_lock); 4248 pr_warn("md/raid10:%s: array size must be reduce before number of disks\n", 4249 mdname(mddev)); 4250 return -EINVAL; 4251 } 4252 mddev->resync_max_sectors = size; 4253 conf->reshape_progress = size; 4254 } else 4255 conf->reshape_progress = 0; 4256 conf->reshape_safe = conf->reshape_progress; 4257 spin_unlock_irq(&conf->device_lock); 4258 4259 if (mddev->delta_disks && mddev->bitmap) { 4260 struct mdp_superblock_1 *sb = NULL; 4261 sector_t oldsize, newsize; 4262 4263 oldsize = raid10_size(mddev, 0, 0); 4264 newsize = raid10_size(mddev, 0, conf->geo.raid_disks); 4265 4266 if (!mddev_is_clustered(mddev)) { 4267 ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0); 4268 if (ret) 4269 goto abort; 4270 else 4271 goto out; 4272 } 4273 4274 rdev_for_each(rdev, mddev) { 4275 if (rdev->raid_disk > -1 && 4276 !test_bit(Faulty, &rdev->flags)) 4277 sb = page_address(rdev->sb_page); 4278 } 4279 4280 /* 4281 * some node is already performing reshape, and no need to 4282 * call md_bitmap_resize again since it should be called when 4283 * receiving BITMAP_RESIZE msg 4284 */ 4285 if ((sb && (le32_to_cpu(sb->feature_map) & 4286 MD_FEATURE_RESHAPE_ACTIVE)) || (oldsize == newsize)) 4287 goto out; 4288 4289 ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0); 4290 if (ret) 4291 goto abort; 4292 4293 ret = md_cluster_ops->resize_bitmaps(mddev, newsize, oldsize); 4294 if (ret) { 4295 md_bitmap_resize(mddev->bitmap, oldsize, 0, 0); 4296 goto abort; 4297 } 4298 } 4299 out: 4300 if (mddev->delta_disks > 0) { 4301 rdev_for_each(rdev, mddev) 4302 if (rdev->raid_disk < 0 && 4303 !test_bit(Faulty, &rdev->flags)) { 4304 if (raid10_add_disk(mddev, rdev) == 0) { 4305 if (rdev->raid_disk >= 4306 conf->prev.raid_disks) 4307 set_bit(In_sync, &rdev->flags); 4308 else 4309 rdev->recovery_offset = 0; 4310 4311 if (sysfs_link_rdev(mddev, rdev)) 4312 /* Failure here is OK */; 4313 } 4314 } else if (rdev->raid_disk >= conf->prev.raid_disks 4315 && !test_bit(Faulty, &rdev->flags)) { 4316 /* This is a spare that was manually added */ 4317 set_bit(In_sync, &rdev->flags); 4318 } 4319 } 4320 /* When a reshape changes the number of devices, 4321 * ->degraded is measured against the larger of the 4322 * pre and post numbers. 4323 */ 4324 spin_lock_irq(&conf->device_lock); 4325 mddev->degraded = calc_degraded(conf); 4326 spin_unlock_irq(&conf->device_lock); 4327 mddev->raid_disks = conf->geo.raid_disks; 4328 mddev->reshape_position = conf->reshape_progress; 4329 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 4330 4331 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 4332 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 4333 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 4334 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 4335 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 4336 4337 mddev->sync_thread = md_register_thread(md_do_sync, mddev, 4338 "reshape"); 4339 if (!mddev->sync_thread) { 4340 ret = -EAGAIN; 4341 goto abort; 4342 } 4343 conf->reshape_checkpoint = jiffies; 4344 md_wakeup_thread(mddev->sync_thread); 4345 md_new_event(mddev); 4346 return 0; 4347 4348 abort: 4349 mddev->recovery = 0; 4350 spin_lock_irq(&conf->device_lock); 4351 conf->geo = conf->prev; 4352 mddev->raid_disks = conf->geo.raid_disks; 4353 rdev_for_each(rdev, mddev) 4354 rdev->new_data_offset = rdev->data_offset; 4355 smp_wmb(); 4356 conf->reshape_progress = MaxSector; 4357 conf->reshape_safe = MaxSector; 4358 mddev->reshape_position = MaxSector; 4359 spin_unlock_irq(&conf->device_lock); 4360 return ret; 4361 } 4362 4363 /* Calculate the last device-address that could contain 4364 * any block from the chunk that includes the array-address 's' 4365 * and report the next address. 4366 * i.e. the address returned will be chunk-aligned and after 4367 * any data that is in the chunk containing 's'. 4368 */ 4369 static sector_t last_dev_address(sector_t s, struct geom *geo) 4370 { 4371 s = (s | geo->chunk_mask) + 1; 4372 s >>= geo->chunk_shift; 4373 s *= geo->near_copies; 4374 s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks); 4375 s *= geo->far_copies; 4376 s <<= geo->chunk_shift; 4377 return s; 4378 } 4379 4380 /* Calculate the first device-address that could contain 4381 * any block from the chunk that includes the array-address 's'. 4382 * This too will be the start of a chunk 4383 */ 4384 static sector_t first_dev_address(sector_t s, struct geom *geo) 4385 { 4386 s >>= geo->chunk_shift; 4387 s *= geo->near_copies; 4388 sector_div(s, geo->raid_disks); 4389 s *= geo->far_copies; 4390 s <<= geo->chunk_shift; 4391 return s; 4392 } 4393 4394 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, 4395 int *skipped) 4396 { 4397 /* We simply copy at most one chunk (smallest of old and new) 4398 * at a time, possibly less if that exceeds RESYNC_PAGES, 4399 * or we hit a bad block or something. 4400 * This might mean we pause for normal IO in the middle of 4401 * a chunk, but that is not a problem as mddev->reshape_position 4402 * can record any location. 4403 * 4404 * If we will want to write to a location that isn't 4405 * yet recorded as 'safe' (i.e. in metadata on disk) then 4406 * we need to flush all reshape requests and update the metadata. 4407 * 4408 * When reshaping forwards (e.g. to more devices), we interpret 4409 * 'safe' as the earliest block which might not have been copied 4410 * down yet. We divide this by previous stripe size and multiply 4411 * by previous stripe length to get lowest device offset that we 4412 * cannot write to yet. 4413 * We interpret 'sector_nr' as an address that we want to write to. 4414 * From this we use last_device_address() to find where we might 4415 * write to, and first_device_address on the 'safe' position. 4416 * If this 'next' write position is after the 'safe' position, 4417 * we must update the metadata to increase the 'safe' position. 4418 * 4419 * When reshaping backwards, we round in the opposite direction 4420 * and perform the reverse test: next write position must not be 4421 * less than current safe position. 4422 * 4423 * In all this the minimum difference in data offsets 4424 * (conf->offset_diff - always positive) allows a bit of slack, 4425 * so next can be after 'safe', but not by more than offset_diff 4426 * 4427 * We need to prepare all the bios here before we start any IO 4428 * to ensure the size we choose is acceptable to all devices. 4429 * The means one for each copy for write-out and an extra one for 4430 * read-in. 4431 * We store the read-in bio in ->master_bio and the others in 4432 * ->devs[x].bio and ->devs[x].repl_bio. 4433 */ 4434 struct r10conf *conf = mddev->private; 4435 struct r10bio *r10_bio; 4436 sector_t next, safe, last; 4437 int max_sectors; 4438 int nr_sectors; 4439 int s; 4440 struct md_rdev *rdev; 4441 int need_flush = 0; 4442 struct bio *blist; 4443 struct bio *bio, *read_bio; 4444 int sectors_done = 0; 4445 struct page **pages; 4446 4447 if (sector_nr == 0) { 4448 /* If restarting in the middle, skip the initial sectors */ 4449 if (mddev->reshape_backwards && 4450 conf->reshape_progress < raid10_size(mddev, 0, 0)) { 4451 sector_nr = (raid10_size(mddev, 0, 0) 4452 - conf->reshape_progress); 4453 } else if (!mddev->reshape_backwards && 4454 conf->reshape_progress > 0) 4455 sector_nr = conf->reshape_progress; 4456 if (sector_nr) { 4457 mddev->curr_resync_completed = sector_nr; 4458 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 4459 *skipped = 1; 4460 return sector_nr; 4461 } 4462 } 4463 4464 /* We don't use sector_nr to track where we are up to 4465 * as that doesn't work well for ->reshape_backwards. 4466 * So just use ->reshape_progress. 4467 */ 4468 if (mddev->reshape_backwards) { 4469 /* 'next' is the earliest device address that we might 4470 * write to for this chunk in the new layout 4471 */ 4472 next = first_dev_address(conf->reshape_progress - 1, 4473 &conf->geo); 4474 4475 /* 'safe' is the last device address that we might read from 4476 * in the old layout after a restart 4477 */ 4478 safe = last_dev_address(conf->reshape_safe - 1, 4479 &conf->prev); 4480 4481 if (next + conf->offset_diff < safe) 4482 need_flush = 1; 4483 4484 last = conf->reshape_progress - 1; 4485 sector_nr = last & ~(sector_t)(conf->geo.chunk_mask 4486 & conf->prev.chunk_mask); 4487 if (sector_nr + RESYNC_BLOCK_SIZE/512 < last) 4488 sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512; 4489 } else { 4490 /* 'next' is after the last device address that we 4491 * might write to for this chunk in the new layout 4492 */ 4493 next = last_dev_address(conf->reshape_progress, &conf->geo); 4494 4495 /* 'safe' is the earliest device address that we might 4496 * read from in the old layout after a restart 4497 */ 4498 safe = first_dev_address(conf->reshape_safe, &conf->prev); 4499 4500 /* Need to update metadata if 'next' might be beyond 'safe' 4501 * as that would possibly corrupt data 4502 */ 4503 if (next > safe + conf->offset_diff) 4504 need_flush = 1; 4505 4506 sector_nr = conf->reshape_progress; 4507 last = sector_nr | (conf->geo.chunk_mask 4508 & conf->prev.chunk_mask); 4509 4510 if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last) 4511 last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1; 4512 } 4513 4514 if (need_flush || 4515 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) { 4516 /* Need to update reshape_position in metadata */ 4517 wait_barrier(conf); 4518 mddev->reshape_position = conf->reshape_progress; 4519 if (mddev->reshape_backwards) 4520 mddev->curr_resync_completed = raid10_size(mddev, 0, 0) 4521 - conf->reshape_progress; 4522 else 4523 mddev->curr_resync_completed = conf->reshape_progress; 4524 conf->reshape_checkpoint = jiffies; 4525 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 4526 md_wakeup_thread(mddev->thread); 4527 wait_event(mddev->sb_wait, mddev->sb_flags == 0 || 4528 test_bit(MD_RECOVERY_INTR, &mddev->recovery)); 4529 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 4530 allow_barrier(conf); 4531 return sectors_done; 4532 } 4533 conf->reshape_safe = mddev->reshape_position; 4534 allow_barrier(conf); 4535 } 4536 4537 raise_barrier(conf, 0); 4538 read_more: 4539 /* Now schedule reads for blocks from sector_nr to last */ 4540 r10_bio = raid10_alloc_init_r10buf(conf); 4541 r10_bio->state = 0; 4542 raise_barrier(conf, 1); 4543 atomic_set(&r10_bio->remaining, 0); 4544 r10_bio->mddev = mddev; 4545 r10_bio->sector = sector_nr; 4546 set_bit(R10BIO_IsReshape, &r10_bio->state); 4547 r10_bio->sectors = last - sector_nr + 1; 4548 rdev = read_balance(conf, r10_bio, &max_sectors); 4549 BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state)); 4550 4551 if (!rdev) { 4552 /* Cannot read from here, so need to record bad blocks 4553 * on all the target devices. 4554 */ 4555 // FIXME 4556 mempool_free(r10_bio, &conf->r10buf_pool); 4557 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 4558 return sectors_done; 4559 } 4560 4561 read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev); 4562 4563 bio_set_dev(read_bio, rdev->bdev); 4564 read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr 4565 + rdev->data_offset); 4566 read_bio->bi_private = r10_bio; 4567 read_bio->bi_end_io = end_reshape_read; 4568 bio_set_op_attrs(read_bio, REQ_OP_READ, 0); 4569 read_bio->bi_flags &= (~0UL << BIO_RESET_BITS); 4570 read_bio->bi_status = 0; 4571 read_bio->bi_vcnt = 0; 4572 read_bio->bi_iter.bi_size = 0; 4573 r10_bio->master_bio = read_bio; 4574 r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum; 4575 4576 /* 4577 * Broadcast RESYNC message to other nodes, so all nodes would not 4578 * write to the region to avoid conflict. 4579 */ 4580 if (mddev_is_clustered(mddev) && conf->cluster_sync_high <= sector_nr) { 4581 struct mdp_superblock_1 *sb = NULL; 4582 int sb_reshape_pos = 0; 4583 4584 conf->cluster_sync_low = sector_nr; 4585 conf->cluster_sync_high = sector_nr + CLUSTER_RESYNC_WINDOW_SECTORS; 4586 sb = page_address(rdev->sb_page); 4587 if (sb) { 4588 sb_reshape_pos = le64_to_cpu(sb->reshape_position); 4589 /* 4590 * Set cluster_sync_low again if next address for array 4591 * reshape is less than cluster_sync_low. Since we can't 4592 * update cluster_sync_low until it has finished reshape. 4593 */ 4594 if (sb_reshape_pos < conf->cluster_sync_low) 4595 conf->cluster_sync_low = sb_reshape_pos; 4596 } 4597 4598 md_cluster_ops->resync_info_update(mddev, conf->cluster_sync_low, 4599 conf->cluster_sync_high); 4600 } 4601 4602 /* Now find the locations in the new layout */ 4603 __raid10_find_phys(&conf->geo, r10_bio); 4604 4605 blist = read_bio; 4606 read_bio->bi_next = NULL; 4607 4608 rcu_read_lock(); 4609 for (s = 0; s < conf->copies*2; s++) { 4610 struct bio *b; 4611 int d = r10_bio->devs[s/2].devnum; 4612 struct md_rdev *rdev2; 4613 if (s&1) { 4614 rdev2 = rcu_dereference(conf->mirrors[d].replacement); 4615 b = r10_bio->devs[s/2].repl_bio; 4616 } else { 4617 rdev2 = rcu_dereference(conf->mirrors[d].rdev); 4618 b = r10_bio->devs[s/2].bio; 4619 } 4620 if (!rdev2 || test_bit(Faulty, &rdev2->flags)) 4621 continue; 4622 4623 bio_set_dev(b, rdev2->bdev); 4624 b->bi_iter.bi_sector = r10_bio->devs[s/2].addr + 4625 rdev2->new_data_offset; 4626 b->bi_end_io = end_reshape_write; 4627 bio_set_op_attrs(b, REQ_OP_WRITE, 0); 4628 b->bi_next = blist; 4629 blist = b; 4630 } 4631 4632 /* Now add as many pages as possible to all of these bios. */ 4633 4634 nr_sectors = 0; 4635 pages = get_resync_pages(r10_bio->devs[0].bio)->pages; 4636 for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) { 4637 struct page *page = pages[s / (PAGE_SIZE >> 9)]; 4638 int len = (max_sectors - s) << 9; 4639 if (len > PAGE_SIZE) 4640 len = PAGE_SIZE; 4641 for (bio = blist; bio ; bio = bio->bi_next) { 4642 /* 4643 * won't fail because the vec table is big enough 4644 * to hold all these pages 4645 */ 4646 bio_add_page(bio, page, len, 0); 4647 } 4648 sector_nr += len >> 9; 4649 nr_sectors += len >> 9; 4650 } 4651 rcu_read_unlock(); 4652 r10_bio->sectors = nr_sectors; 4653 4654 /* Now submit the read */ 4655 md_sync_acct_bio(read_bio, r10_bio->sectors); 4656 atomic_inc(&r10_bio->remaining); 4657 read_bio->bi_next = NULL; 4658 generic_make_request(read_bio); 4659 sectors_done += nr_sectors; 4660 if (sector_nr <= last) 4661 goto read_more; 4662 4663 lower_barrier(conf); 4664 4665 /* Now that we have done the whole section we can 4666 * update reshape_progress 4667 */ 4668 if (mddev->reshape_backwards) 4669 conf->reshape_progress -= sectors_done; 4670 else 4671 conf->reshape_progress += sectors_done; 4672 4673 return sectors_done; 4674 } 4675 4676 static void end_reshape_request(struct r10bio *r10_bio); 4677 static int handle_reshape_read_error(struct mddev *mddev, 4678 struct r10bio *r10_bio); 4679 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio) 4680 { 4681 /* Reshape read completed. Hopefully we have a block 4682 * to write out. 4683 * If we got a read error then we do sync 1-page reads from 4684 * elsewhere until we find the data - or give up. 4685 */ 4686 struct r10conf *conf = mddev->private; 4687 int s; 4688 4689 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) 4690 if (handle_reshape_read_error(mddev, r10_bio) < 0) { 4691 /* Reshape has been aborted */ 4692 md_done_sync(mddev, r10_bio->sectors, 0); 4693 return; 4694 } 4695 4696 /* We definitely have the data in the pages, schedule the 4697 * writes. 4698 */ 4699 atomic_set(&r10_bio->remaining, 1); 4700 for (s = 0; s < conf->copies*2; s++) { 4701 struct bio *b; 4702 int d = r10_bio->devs[s/2].devnum; 4703 struct md_rdev *rdev; 4704 rcu_read_lock(); 4705 if (s&1) { 4706 rdev = rcu_dereference(conf->mirrors[d].replacement); 4707 b = r10_bio->devs[s/2].repl_bio; 4708 } else { 4709 rdev = rcu_dereference(conf->mirrors[d].rdev); 4710 b = r10_bio->devs[s/2].bio; 4711 } 4712 if (!rdev || test_bit(Faulty, &rdev->flags)) { 4713 rcu_read_unlock(); 4714 continue; 4715 } 4716 atomic_inc(&rdev->nr_pending); 4717 rcu_read_unlock(); 4718 md_sync_acct_bio(b, r10_bio->sectors); 4719 atomic_inc(&r10_bio->remaining); 4720 b->bi_next = NULL; 4721 generic_make_request(b); 4722 } 4723 end_reshape_request(r10_bio); 4724 } 4725 4726 static void end_reshape(struct r10conf *conf) 4727 { 4728 if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) 4729 return; 4730 4731 spin_lock_irq(&conf->device_lock); 4732 conf->prev = conf->geo; 4733 md_finish_reshape(conf->mddev); 4734 smp_wmb(); 4735 conf->reshape_progress = MaxSector; 4736 conf->reshape_safe = MaxSector; 4737 spin_unlock_irq(&conf->device_lock); 4738 4739 /* read-ahead size must cover two whole stripes, which is 4740 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices 4741 */ 4742 if (conf->mddev->queue) { 4743 int stripe = conf->geo.raid_disks * 4744 ((conf->mddev->chunk_sectors << 9) / PAGE_SIZE); 4745 stripe /= conf->geo.near_copies; 4746 if (conf->mddev->queue->backing_dev_info->ra_pages < 2 * stripe) 4747 conf->mddev->queue->backing_dev_info->ra_pages = 2 * stripe; 4748 } 4749 conf->fullsync = 0; 4750 } 4751 4752 static void raid10_update_reshape_pos(struct mddev *mddev) 4753 { 4754 struct r10conf *conf = mddev->private; 4755 sector_t lo, hi; 4756 4757 md_cluster_ops->resync_info_get(mddev, &lo, &hi); 4758 if (((mddev->reshape_position <= hi) && (mddev->reshape_position >= lo)) 4759 || mddev->reshape_position == MaxSector) 4760 conf->reshape_progress = mddev->reshape_position; 4761 else 4762 WARN_ON_ONCE(1); 4763 } 4764 4765 static int handle_reshape_read_error(struct mddev *mddev, 4766 struct r10bio *r10_bio) 4767 { 4768 /* Use sync reads to get the blocks from somewhere else */ 4769 int sectors = r10_bio->sectors; 4770 struct r10conf *conf = mddev->private; 4771 struct r10bio *r10b; 4772 int slot = 0; 4773 int idx = 0; 4774 struct page **pages; 4775 4776 r10b = kmalloc(struct_size(r10b, devs, conf->copies), GFP_NOIO); 4777 if (!r10b) { 4778 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 4779 return -ENOMEM; 4780 } 4781 4782 /* reshape IOs share pages from .devs[0].bio */ 4783 pages = get_resync_pages(r10_bio->devs[0].bio)->pages; 4784 4785 r10b->sector = r10_bio->sector; 4786 __raid10_find_phys(&conf->prev, r10b); 4787 4788 while (sectors) { 4789 int s = sectors; 4790 int success = 0; 4791 int first_slot = slot; 4792 4793 if (s > (PAGE_SIZE >> 9)) 4794 s = PAGE_SIZE >> 9; 4795 4796 rcu_read_lock(); 4797 while (!success) { 4798 int d = r10b->devs[slot].devnum; 4799 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev); 4800 sector_t addr; 4801 if (rdev == NULL || 4802 test_bit(Faulty, &rdev->flags) || 4803 !test_bit(In_sync, &rdev->flags)) 4804 goto failed; 4805 4806 addr = r10b->devs[slot].addr + idx * PAGE_SIZE; 4807 atomic_inc(&rdev->nr_pending); 4808 rcu_read_unlock(); 4809 success = sync_page_io(rdev, 4810 addr, 4811 s << 9, 4812 pages[idx], 4813 REQ_OP_READ, 0, false); 4814 rdev_dec_pending(rdev, mddev); 4815 rcu_read_lock(); 4816 if (success) 4817 break; 4818 failed: 4819 slot++; 4820 if (slot >= conf->copies) 4821 slot = 0; 4822 if (slot == first_slot) 4823 break; 4824 } 4825 rcu_read_unlock(); 4826 if (!success) { 4827 /* couldn't read this block, must give up */ 4828 set_bit(MD_RECOVERY_INTR, 4829 &mddev->recovery); 4830 kfree(r10b); 4831 return -EIO; 4832 } 4833 sectors -= s; 4834 idx++; 4835 } 4836 kfree(r10b); 4837 return 0; 4838 } 4839 4840 static void end_reshape_write(struct bio *bio) 4841 { 4842 struct r10bio *r10_bio = get_resync_r10bio(bio); 4843 struct mddev *mddev = r10_bio->mddev; 4844 struct r10conf *conf = mddev->private; 4845 int d; 4846 int slot; 4847 int repl; 4848 struct md_rdev *rdev = NULL; 4849 4850 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl); 4851 if (repl) 4852 rdev = conf->mirrors[d].replacement; 4853 if (!rdev) { 4854 smp_mb(); 4855 rdev = conf->mirrors[d].rdev; 4856 } 4857 4858 if (bio->bi_status) { 4859 /* FIXME should record badblock */ 4860 md_error(mddev, rdev); 4861 } 4862 4863 rdev_dec_pending(rdev, mddev); 4864 end_reshape_request(r10_bio); 4865 } 4866 4867 static void end_reshape_request(struct r10bio *r10_bio) 4868 { 4869 if (!atomic_dec_and_test(&r10_bio->remaining)) 4870 return; 4871 md_done_sync(r10_bio->mddev, r10_bio->sectors, 1); 4872 bio_put(r10_bio->master_bio); 4873 put_buf(r10_bio); 4874 } 4875 4876 static void raid10_finish_reshape(struct mddev *mddev) 4877 { 4878 struct r10conf *conf = mddev->private; 4879 4880 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 4881 return; 4882 4883 if (mddev->delta_disks > 0) { 4884 if (mddev->recovery_cp > mddev->resync_max_sectors) { 4885 mddev->recovery_cp = mddev->resync_max_sectors; 4886 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4887 } 4888 mddev->resync_max_sectors = mddev->array_sectors; 4889 } else { 4890 int d; 4891 rcu_read_lock(); 4892 for (d = conf->geo.raid_disks ; 4893 d < conf->geo.raid_disks - mddev->delta_disks; 4894 d++) { 4895 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev); 4896 if (rdev) 4897 clear_bit(In_sync, &rdev->flags); 4898 rdev = rcu_dereference(conf->mirrors[d].replacement); 4899 if (rdev) 4900 clear_bit(In_sync, &rdev->flags); 4901 } 4902 rcu_read_unlock(); 4903 } 4904 mddev->layout = mddev->new_layout; 4905 mddev->chunk_sectors = 1 << conf->geo.chunk_shift; 4906 mddev->reshape_position = MaxSector; 4907 mddev->delta_disks = 0; 4908 mddev->reshape_backwards = 0; 4909 } 4910 4911 static struct md_personality raid10_personality = 4912 { 4913 .name = "raid10", 4914 .level = 10, 4915 .owner = THIS_MODULE, 4916 .make_request = raid10_make_request, 4917 .run = raid10_run, 4918 .free = raid10_free, 4919 .status = raid10_status, 4920 .error_handler = raid10_error, 4921 .hot_add_disk = raid10_add_disk, 4922 .hot_remove_disk= raid10_remove_disk, 4923 .spare_active = raid10_spare_active, 4924 .sync_request = raid10_sync_request, 4925 .quiesce = raid10_quiesce, 4926 .size = raid10_size, 4927 .resize = raid10_resize, 4928 .takeover = raid10_takeover, 4929 .check_reshape = raid10_check_reshape, 4930 .start_reshape = raid10_start_reshape, 4931 .finish_reshape = raid10_finish_reshape, 4932 .update_reshape_pos = raid10_update_reshape_pos, 4933 .congested = raid10_congested, 4934 }; 4935 4936 static int __init raid_init(void) 4937 { 4938 return register_md_personality(&raid10_personality); 4939 } 4940 4941 static void raid_exit(void) 4942 { 4943 unregister_md_personality(&raid10_personality); 4944 } 4945 4946 module_init(raid_init); 4947 module_exit(raid_exit); 4948 MODULE_LICENSE("GPL"); 4949 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD"); 4950 MODULE_ALIAS("md-personality-9"); /* RAID10 */ 4951 MODULE_ALIAS("md-raid10"); 4952 MODULE_ALIAS("md-level-10"); 4953 4954 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR); 4955