xref: /openbmc/linux/drivers/md/raid10.c (revision 82b5d164)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * raid10.c : Multiple Devices driver for Linux
4  *
5  * Copyright (C) 2000-2004 Neil Brown
6  *
7  * RAID-10 support for md.
8  *
9  * Base on code in raid1.c.  See raid1.c for further copyright information.
10  */
11 
12 #include <linux/slab.h>
13 #include <linux/delay.h>
14 #include <linux/blkdev.h>
15 #include <linux/module.h>
16 #include <linux/seq_file.h>
17 #include <linux/ratelimit.h>
18 #include <linux/kthread.h>
19 #include <linux/raid/md_p.h>
20 #include <trace/events/block.h>
21 #include "md.h"
22 #include "raid10.h"
23 #include "raid0.h"
24 #include "md-bitmap.h"
25 
26 /*
27  * RAID10 provides a combination of RAID0 and RAID1 functionality.
28  * The layout of data is defined by
29  *    chunk_size
30  *    raid_disks
31  *    near_copies (stored in low byte of layout)
32  *    far_copies (stored in second byte of layout)
33  *    far_offset (stored in bit 16 of layout )
34  *    use_far_sets (stored in bit 17 of layout )
35  *    use_far_sets_bugfixed (stored in bit 18 of layout )
36  *
37  * The data to be stored is divided into chunks using chunksize.  Each device
38  * is divided into far_copies sections.   In each section, chunks are laid out
39  * in a style similar to raid0, but near_copies copies of each chunk is stored
40  * (each on a different drive).  The starting device for each section is offset
41  * near_copies from the starting device of the previous section.  Thus there
42  * are (near_copies * far_copies) of each chunk, and each is on a different
43  * drive.  near_copies and far_copies must be at least one, and their product
44  * is at most raid_disks.
45  *
46  * If far_offset is true, then the far_copies are handled a bit differently.
47  * The copies are still in different stripes, but instead of being very far
48  * apart on disk, there are adjacent stripes.
49  *
50  * The far and offset algorithms are handled slightly differently if
51  * 'use_far_sets' is true.  In this case, the array's devices are grouped into
52  * sets that are (near_copies * far_copies) in size.  The far copied stripes
53  * are still shifted by 'near_copies' devices, but this shifting stays confined
54  * to the set rather than the entire array.  This is done to improve the number
55  * of device combinations that can fail without causing the array to fail.
56  * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
57  * on a device):
58  *    A B C D    A B C D E
59  *      ...         ...
60  *    D A B C    E A B C D
61  * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
62  *    [A B] [C D]    [A B] [C D E]
63  *    |...| |...|    |...| | ... |
64  *    [B A] [D C]    [B A] [E C D]
65  */
66 
67 static void allow_barrier(struct r10conf *conf);
68 static void lower_barrier(struct r10conf *conf);
69 static int _enough(struct r10conf *conf, int previous, int ignore);
70 static int enough(struct r10conf *conf, int ignore);
71 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
72 				int *skipped);
73 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
74 static void end_reshape_write(struct bio *bio);
75 static void end_reshape(struct r10conf *conf);
76 
77 #define raid10_log(md, fmt, args...)				\
78 	do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid10 " fmt, ##args); } while (0)
79 
80 #include "raid1-10.c"
81 
82 /*
83  * for resync bio, r10bio pointer can be retrieved from the per-bio
84  * 'struct resync_pages'.
85  */
86 static inline struct r10bio *get_resync_r10bio(struct bio *bio)
87 {
88 	return get_resync_pages(bio)->raid_bio;
89 }
90 
91 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
92 {
93 	struct r10conf *conf = data;
94 	int size = offsetof(struct r10bio, devs[conf->copies]);
95 
96 	/* allocate a r10bio with room for raid_disks entries in the
97 	 * bios array */
98 	return kzalloc(size, gfp_flags);
99 }
100 
101 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
102 /* amount of memory to reserve for resync requests */
103 #define RESYNC_WINDOW (1024*1024)
104 /* maximum number of concurrent requests, memory permitting */
105 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
106 #define CLUSTER_RESYNC_WINDOW (32 * RESYNC_WINDOW)
107 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
108 
109 /*
110  * When performing a resync, we need to read and compare, so
111  * we need as many pages are there are copies.
112  * When performing a recovery, we need 2 bios, one for read,
113  * one for write (we recover only one drive per r10buf)
114  *
115  */
116 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
117 {
118 	struct r10conf *conf = data;
119 	struct r10bio *r10_bio;
120 	struct bio *bio;
121 	int j;
122 	int nalloc, nalloc_rp;
123 	struct resync_pages *rps;
124 
125 	r10_bio = r10bio_pool_alloc(gfp_flags, conf);
126 	if (!r10_bio)
127 		return NULL;
128 
129 	if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
130 	    test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
131 		nalloc = conf->copies; /* resync */
132 	else
133 		nalloc = 2; /* recovery */
134 
135 	/* allocate once for all bios */
136 	if (!conf->have_replacement)
137 		nalloc_rp = nalloc;
138 	else
139 		nalloc_rp = nalloc * 2;
140 	rps = kmalloc_array(nalloc_rp, sizeof(struct resync_pages), gfp_flags);
141 	if (!rps)
142 		goto out_free_r10bio;
143 
144 	/*
145 	 * Allocate bios.
146 	 */
147 	for (j = nalloc ; j-- ; ) {
148 		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
149 		if (!bio)
150 			goto out_free_bio;
151 		r10_bio->devs[j].bio = bio;
152 		if (!conf->have_replacement)
153 			continue;
154 		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
155 		if (!bio)
156 			goto out_free_bio;
157 		r10_bio->devs[j].repl_bio = bio;
158 	}
159 	/*
160 	 * Allocate RESYNC_PAGES data pages and attach them
161 	 * where needed.
162 	 */
163 	for (j = 0; j < nalloc; j++) {
164 		struct bio *rbio = r10_bio->devs[j].repl_bio;
165 		struct resync_pages *rp, *rp_repl;
166 
167 		rp = &rps[j];
168 		if (rbio)
169 			rp_repl = &rps[nalloc + j];
170 
171 		bio = r10_bio->devs[j].bio;
172 
173 		if (!j || test_bit(MD_RECOVERY_SYNC,
174 				   &conf->mddev->recovery)) {
175 			if (resync_alloc_pages(rp, gfp_flags))
176 				goto out_free_pages;
177 		} else {
178 			memcpy(rp, &rps[0], sizeof(*rp));
179 			resync_get_all_pages(rp);
180 		}
181 
182 		rp->raid_bio = r10_bio;
183 		bio->bi_private = rp;
184 		if (rbio) {
185 			memcpy(rp_repl, rp, sizeof(*rp));
186 			rbio->bi_private = rp_repl;
187 		}
188 	}
189 
190 	return r10_bio;
191 
192 out_free_pages:
193 	while (--j >= 0)
194 		resync_free_pages(&rps[j * 2]);
195 
196 	j = 0;
197 out_free_bio:
198 	for ( ; j < nalloc; j++) {
199 		if (r10_bio->devs[j].bio)
200 			bio_put(r10_bio->devs[j].bio);
201 		if (r10_bio->devs[j].repl_bio)
202 			bio_put(r10_bio->devs[j].repl_bio);
203 	}
204 	kfree(rps);
205 out_free_r10bio:
206 	rbio_pool_free(r10_bio, conf);
207 	return NULL;
208 }
209 
210 static void r10buf_pool_free(void *__r10_bio, void *data)
211 {
212 	struct r10conf *conf = data;
213 	struct r10bio *r10bio = __r10_bio;
214 	int j;
215 	struct resync_pages *rp = NULL;
216 
217 	for (j = conf->copies; j--; ) {
218 		struct bio *bio = r10bio->devs[j].bio;
219 
220 		if (bio) {
221 			rp = get_resync_pages(bio);
222 			resync_free_pages(rp);
223 			bio_put(bio);
224 		}
225 
226 		bio = r10bio->devs[j].repl_bio;
227 		if (bio)
228 			bio_put(bio);
229 	}
230 
231 	/* resync pages array stored in the 1st bio's .bi_private */
232 	kfree(rp);
233 
234 	rbio_pool_free(r10bio, conf);
235 }
236 
237 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
238 {
239 	int i;
240 
241 	for (i = 0; i < conf->copies; i++) {
242 		struct bio **bio = & r10_bio->devs[i].bio;
243 		if (!BIO_SPECIAL(*bio))
244 			bio_put(*bio);
245 		*bio = NULL;
246 		bio = &r10_bio->devs[i].repl_bio;
247 		if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
248 			bio_put(*bio);
249 		*bio = NULL;
250 	}
251 }
252 
253 static void free_r10bio(struct r10bio *r10_bio)
254 {
255 	struct r10conf *conf = r10_bio->mddev->private;
256 
257 	put_all_bios(conf, r10_bio);
258 	mempool_free(r10_bio, &conf->r10bio_pool);
259 }
260 
261 static void put_buf(struct r10bio *r10_bio)
262 {
263 	struct r10conf *conf = r10_bio->mddev->private;
264 
265 	mempool_free(r10_bio, &conf->r10buf_pool);
266 
267 	lower_barrier(conf);
268 }
269 
270 static void reschedule_retry(struct r10bio *r10_bio)
271 {
272 	unsigned long flags;
273 	struct mddev *mddev = r10_bio->mddev;
274 	struct r10conf *conf = mddev->private;
275 
276 	spin_lock_irqsave(&conf->device_lock, flags);
277 	list_add(&r10_bio->retry_list, &conf->retry_list);
278 	conf->nr_queued ++;
279 	spin_unlock_irqrestore(&conf->device_lock, flags);
280 
281 	/* wake up frozen array... */
282 	wake_up(&conf->wait_barrier);
283 
284 	md_wakeup_thread(mddev->thread);
285 }
286 
287 /*
288  * raid_end_bio_io() is called when we have finished servicing a mirrored
289  * operation and are ready to return a success/failure code to the buffer
290  * cache layer.
291  */
292 static void raid_end_bio_io(struct r10bio *r10_bio)
293 {
294 	struct bio *bio = r10_bio->master_bio;
295 	struct r10conf *conf = r10_bio->mddev->private;
296 
297 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
298 		bio->bi_status = BLK_STS_IOERR;
299 
300 	bio_endio(bio);
301 	/*
302 	 * Wake up any possible resync thread that waits for the device
303 	 * to go idle.
304 	 */
305 	allow_barrier(conf);
306 
307 	free_r10bio(r10_bio);
308 }
309 
310 /*
311  * Update disk head position estimator based on IRQ completion info.
312  */
313 static inline void update_head_pos(int slot, struct r10bio *r10_bio)
314 {
315 	struct r10conf *conf = r10_bio->mddev->private;
316 
317 	conf->mirrors[r10_bio->devs[slot].devnum].head_position =
318 		r10_bio->devs[slot].addr + (r10_bio->sectors);
319 }
320 
321 /*
322  * Find the disk number which triggered given bio
323  */
324 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
325 			 struct bio *bio, int *slotp, int *replp)
326 {
327 	int slot;
328 	int repl = 0;
329 
330 	for (slot = 0; slot < conf->copies; slot++) {
331 		if (r10_bio->devs[slot].bio == bio)
332 			break;
333 		if (r10_bio->devs[slot].repl_bio == bio) {
334 			repl = 1;
335 			break;
336 		}
337 	}
338 
339 	BUG_ON(slot == conf->copies);
340 	update_head_pos(slot, r10_bio);
341 
342 	if (slotp)
343 		*slotp = slot;
344 	if (replp)
345 		*replp = repl;
346 	return r10_bio->devs[slot].devnum;
347 }
348 
349 static void raid10_end_read_request(struct bio *bio)
350 {
351 	int uptodate = !bio->bi_status;
352 	struct r10bio *r10_bio = bio->bi_private;
353 	int slot;
354 	struct md_rdev *rdev;
355 	struct r10conf *conf = r10_bio->mddev->private;
356 
357 	slot = r10_bio->read_slot;
358 	rdev = r10_bio->devs[slot].rdev;
359 	/*
360 	 * this branch is our 'one mirror IO has finished' event handler:
361 	 */
362 	update_head_pos(slot, r10_bio);
363 
364 	if (uptodate) {
365 		/*
366 		 * Set R10BIO_Uptodate in our master bio, so that
367 		 * we will return a good error code to the higher
368 		 * levels even if IO on some other mirrored buffer fails.
369 		 *
370 		 * The 'master' represents the composite IO operation to
371 		 * user-side. So if something waits for IO, then it will
372 		 * wait for the 'master' bio.
373 		 */
374 		set_bit(R10BIO_Uptodate, &r10_bio->state);
375 	} else {
376 		/* If all other devices that store this block have
377 		 * failed, we want to return the error upwards rather
378 		 * than fail the last device.  Here we redefine
379 		 * "uptodate" to mean "Don't want to retry"
380 		 */
381 		if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state),
382 			     rdev->raid_disk))
383 			uptodate = 1;
384 	}
385 	if (uptodate) {
386 		raid_end_bio_io(r10_bio);
387 		rdev_dec_pending(rdev, conf->mddev);
388 	} else {
389 		/*
390 		 * oops, read error - keep the refcount on the rdev
391 		 */
392 		char b[BDEVNAME_SIZE];
393 		pr_err_ratelimited("md/raid10:%s: %s: rescheduling sector %llu\n",
394 				   mdname(conf->mddev),
395 				   bdevname(rdev->bdev, b),
396 				   (unsigned long long)r10_bio->sector);
397 		set_bit(R10BIO_ReadError, &r10_bio->state);
398 		reschedule_retry(r10_bio);
399 	}
400 }
401 
402 static void close_write(struct r10bio *r10_bio)
403 {
404 	/* clear the bitmap if all writes complete successfully */
405 	md_bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
406 			   r10_bio->sectors,
407 			   !test_bit(R10BIO_Degraded, &r10_bio->state),
408 			   0);
409 	md_write_end(r10_bio->mddev);
410 }
411 
412 static void one_write_done(struct r10bio *r10_bio)
413 {
414 	if (atomic_dec_and_test(&r10_bio->remaining)) {
415 		if (test_bit(R10BIO_WriteError, &r10_bio->state))
416 			reschedule_retry(r10_bio);
417 		else {
418 			close_write(r10_bio);
419 			if (test_bit(R10BIO_MadeGood, &r10_bio->state))
420 				reschedule_retry(r10_bio);
421 			else
422 				raid_end_bio_io(r10_bio);
423 		}
424 	}
425 }
426 
427 static void raid10_end_write_request(struct bio *bio)
428 {
429 	struct r10bio *r10_bio = bio->bi_private;
430 	int dev;
431 	int dec_rdev = 1;
432 	struct r10conf *conf = r10_bio->mddev->private;
433 	int slot, repl;
434 	struct md_rdev *rdev = NULL;
435 	struct bio *to_put = NULL;
436 	bool discard_error;
437 
438 	discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
439 
440 	dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
441 
442 	if (repl)
443 		rdev = conf->mirrors[dev].replacement;
444 	if (!rdev) {
445 		smp_rmb();
446 		repl = 0;
447 		rdev = conf->mirrors[dev].rdev;
448 	}
449 	/*
450 	 * this branch is our 'one mirror IO has finished' event handler:
451 	 */
452 	if (bio->bi_status && !discard_error) {
453 		if (repl)
454 			/* Never record new bad blocks to replacement,
455 			 * just fail it.
456 			 */
457 			md_error(rdev->mddev, rdev);
458 		else {
459 			set_bit(WriteErrorSeen,	&rdev->flags);
460 			if (!test_and_set_bit(WantReplacement, &rdev->flags))
461 				set_bit(MD_RECOVERY_NEEDED,
462 					&rdev->mddev->recovery);
463 
464 			dec_rdev = 0;
465 			if (test_bit(FailFast, &rdev->flags) &&
466 			    (bio->bi_opf & MD_FAILFAST)) {
467 				md_error(rdev->mddev, rdev);
468 			}
469 
470 			/*
471 			 * When the device is faulty, it is not necessary to
472 			 * handle write error.
473 			 * For failfast, this is the only remaining device,
474 			 * We need to retry the write without FailFast.
475 			 */
476 			if (!test_bit(Faulty, &rdev->flags))
477 				set_bit(R10BIO_WriteError, &r10_bio->state);
478 			else {
479 				r10_bio->devs[slot].bio = NULL;
480 				to_put = bio;
481 				dec_rdev = 1;
482 			}
483 		}
484 	} else {
485 		/*
486 		 * Set R10BIO_Uptodate in our master bio, so that
487 		 * we will return a good error code for to the higher
488 		 * levels even if IO on some other mirrored buffer fails.
489 		 *
490 		 * The 'master' represents the composite IO operation to
491 		 * user-side. So if something waits for IO, then it will
492 		 * wait for the 'master' bio.
493 		 */
494 		sector_t first_bad;
495 		int bad_sectors;
496 
497 		/*
498 		 * Do not set R10BIO_Uptodate if the current device is
499 		 * rebuilding or Faulty. This is because we cannot use
500 		 * such device for properly reading the data back (we could
501 		 * potentially use it, if the current write would have felt
502 		 * before rdev->recovery_offset, but for simplicity we don't
503 		 * check this here.
504 		 */
505 		if (test_bit(In_sync, &rdev->flags) &&
506 		    !test_bit(Faulty, &rdev->flags))
507 			set_bit(R10BIO_Uptodate, &r10_bio->state);
508 
509 		/* Maybe we can clear some bad blocks. */
510 		if (is_badblock(rdev,
511 				r10_bio->devs[slot].addr,
512 				r10_bio->sectors,
513 				&first_bad, &bad_sectors) && !discard_error) {
514 			bio_put(bio);
515 			if (repl)
516 				r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
517 			else
518 				r10_bio->devs[slot].bio = IO_MADE_GOOD;
519 			dec_rdev = 0;
520 			set_bit(R10BIO_MadeGood, &r10_bio->state);
521 		}
522 	}
523 
524 	/*
525 	 *
526 	 * Let's see if all mirrored write operations have finished
527 	 * already.
528 	 */
529 	one_write_done(r10_bio);
530 	if (dec_rdev)
531 		rdev_dec_pending(rdev, conf->mddev);
532 	if (to_put)
533 		bio_put(to_put);
534 }
535 
536 /*
537  * RAID10 layout manager
538  * As well as the chunksize and raid_disks count, there are two
539  * parameters: near_copies and far_copies.
540  * near_copies * far_copies must be <= raid_disks.
541  * Normally one of these will be 1.
542  * If both are 1, we get raid0.
543  * If near_copies == raid_disks, we get raid1.
544  *
545  * Chunks are laid out in raid0 style with near_copies copies of the
546  * first chunk, followed by near_copies copies of the next chunk and
547  * so on.
548  * If far_copies > 1, then after 1/far_copies of the array has been assigned
549  * as described above, we start again with a device offset of near_copies.
550  * So we effectively have another copy of the whole array further down all
551  * the drives, but with blocks on different drives.
552  * With this layout, and block is never stored twice on the one device.
553  *
554  * raid10_find_phys finds the sector offset of a given virtual sector
555  * on each device that it is on.
556  *
557  * raid10_find_virt does the reverse mapping, from a device and a
558  * sector offset to a virtual address
559  */
560 
561 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
562 {
563 	int n,f;
564 	sector_t sector;
565 	sector_t chunk;
566 	sector_t stripe;
567 	int dev;
568 	int slot = 0;
569 	int last_far_set_start, last_far_set_size;
570 
571 	last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
572 	last_far_set_start *= geo->far_set_size;
573 
574 	last_far_set_size = geo->far_set_size;
575 	last_far_set_size += (geo->raid_disks % geo->far_set_size);
576 
577 	/* now calculate first sector/dev */
578 	chunk = r10bio->sector >> geo->chunk_shift;
579 	sector = r10bio->sector & geo->chunk_mask;
580 
581 	chunk *= geo->near_copies;
582 	stripe = chunk;
583 	dev = sector_div(stripe, geo->raid_disks);
584 	if (geo->far_offset)
585 		stripe *= geo->far_copies;
586 
587 	sector += stripe << geo->chunk_shift;
588 
589 	/* and calculate all the others */
590 	for (n = 0; n < geo->near_copies; n++) {
591 		int d = dev;
592 		int set;
593 		sector_t s = sector;
594 		r10bio->devs[slot].devnum = d;
595 		r10bio->devs[slot].addr = s;
596 		slot++;
597 
598 		for (f = 1; f < geo->far_copies; f++) {
599 			set = d / geo->far_set_size;
600 			d += geo->near_copies;
601 
602 			if ((geo->raid_disks % geo->far_set_size) &&
603 			    (d > last_far_set_start)) {
604 				d -= last_far_set_start;
605 				d %= last_far_set_size;
606 				d += last_far_set_start;
607 			} else {
608 				d %= geo->far_set_size;
609 				d += geo->far_set_size * set;
610 			}
611 			s += geo->stride;
612 			r10bio->devs[slot].devnum = d;
613 			r10bio->devs[slot].addr = s;
614 			slot++;
615 		}
616 		dev++;
617 		if (dev >= geo->raid_disks) {
618 			dev = 0;
619 			sector += (geo->chunk_mask + 1);
620 		}
621 	}
622 }
623 
624 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
625 {
626 	struct geom *geo = &conf->geo;
627 
628 	if (conf->reshape_progress != MaxSector &&
629 	    ((r10bio->sector >= conf->reshape_progress) !=
630 	     conf->mddev->reshape_backwards)) {
631 		set_bit(R10BIO_Previous, &r10bio->state);
632 		geo = &conf->prev;
633 	} else
634 		clear_bit(R10BIO_Previous, &r10bio->state);
635 
636 	__raid10_find_phys(geo, r10bio);
637 }
638 
639 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
640 {
641 	sector_t offset, chunk, vchunk;
642 	/* Never use conf->prev as this is only called during resync
643 	 * or recovery, so reshape isn't happening
644 	 */
645 	struct geom *geo = &conf->geo;
646 	int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
647 	int far_set_size = geo->far_set_size;
648 	int last_far_set_start;
649 
650 	if (geo->raid_disks % geo->far_set_size) {
651 		last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
652 		last_far_set_start *= geo->far_set_size;
653 
654 		if (dev >= last_far_set_start) {
655 			far_set_size = geo->far_set_size;
656 			far_set_size += (geo->raid_disks % geo->far_set_size);
657 			far_set_start = last_far_set_start;
658 		}
659 	}
660 
661 	offset = sector & geo->chunk_mask;
662 	if (geo->far_offset) {
663 		int fc;
664 		chunk = sector >> geo->chunk_shift;
665 		fc = sector_div(chunk, geo->far_copies);
666 		dev -= fc * geo->near_copies;
667 		if (dev < far_set_start)
668 			dev += far_set_size;
669 	} else {
670 		while (sector >= geo->stride) {
671 			sector -= geo->stride;
672 			if (dev < (geo->near_copies + far_set_start))
673 				dev += far_set_size - geo->near_copies;
674 			else
675 				dev -= geo->near_copies;
676 		}
677 		chunk = sector >> geo->chunk_shift;
678 	}
679 	vchunk = chunk * geo->raid_disks + dev;
680 	sector_div(vchunk, geo->near_copies);
681 	return (vchunk << geo->chunk_shift) + offset;
682 }
683 
684 /*
685  * This routine returns the disk from which the requested read should
686  * be done. There is a per-array 'next expected sequential IO' sector
687  * number - if this matches on the next IO then we use the last disk.
688  * There is also a per-disk 'last know head position' sector that is
689  * maintained from IRQ contexts, both the normal and the resync IO
690  * completion handlers update this position correctly. If there is no
691  * perfect sequential match then we pick the disk whose head is closest.
692  *
693  * If there are 2 mirrors in the same 2 devices, performance degrades
694  * because position is mirror, not device based.
695  *
696  * The rdev for the device selected will have nr_pending incremented.
697  */
698 
699 /*
700  * FIXME: possibly should rethink readbalancing and do it differently
701  * depending on near_copies / far_copies geometry.
702  */
703 static struct md_rdev *read_balance(struct r10conf *conf,
704 				    struct r10bio *r10_bio,
705 				    int *max_sectors)
706 {
707 	const sector_t this_sector = r10_bio->sector;
708 	int disk, slot;
709 	int sectors = r10_bio->sectors;
710 	int best_good_sectors;
711 	sector_t new_distance, best_dist;
712 	struct md_rdev *best_dist_rdev, *best_pending_rdev, *rdev = NULL;
713 	int do_balance;
714 	int best_dist_slot, best_pending_slot;
715 	bool has_nonrot_disk = false;
716 	unsigned int min_pending;
717 	struct geom *geo = &conf->geo;
718 
719 	raid10_find_phys(conf, r10_bio);
720 	rcu_read_lock();
721 	best_dist_slot = -1;
722 	min_pending = UINT_MAX;
723 	best_dist_rdev = NULL;
724 	best_pending_rdev = NULL;
725 	best_dist = MaxSector;
726 	best_good_sectors = 0;
727 	do_balance = 1;
728 	clear_bit(R10BIO_FailFast, &r10_bio->state);
729 	/*
730 	 * Check if we can balance. We can balance on the whole
731 	 * device if no resync is going on (recovery is ok), or below
732 	 * the resync window. We take the first readable disk when
733 	 * above the resync window.
734 	 */
735 	if ((conf->mddev->recovery_cp < MaxSector
736 	     && (this_sector + sectors >= conf->next_resync)) ||
737 	    (mddev_is_clustered(conf->mddev) &&
738 	     md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
739 					    this_sector + sectors)))
740 		do_balance = 0;
741 
742 	for (slot = 0; slot < conf->copies ; slot++) {
743 		sector_t first_bad;
744 		int bad_sectors;
745 		sector_t dev_sector;
746 		unsigned int pending;
747 		bool nonrot;
748 
749 		if (r10_bio->devs[slot].bio == IO_BLOCKED)
750 			continue;
751 		disk = r10_bio->devs[slot].devnum;
752 		rdev = rcu_dereference(conf->mirrors[disk].replacement);
753 		if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
754 		    r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
755 			rdev = rcu_dereference(conf->mirrors[disk].rdev);
756 		if (rdev == NULL ||
757 		    test_bit(Faulty, &rdev->flags))
758 			continue;
759 		if (!test_bit(In_sync, &rdev->flags) &&
760 		    r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
761 			continue;
762 
763 		dev_sector = r10_bio->devs[slot].addr;
764 		if (is_badblock(rdev, dev_sector, sectors,
765 				&first_bad, &bad_sectors)) {
766 			if (best_dist < MaxSector)
767 				/* Already have a better slot */
768 				continue;
769 			if (first_bad <= dev_sector) {
770 				/* Cannot read here.  If this is the
771 				 * 'primary' device, then we must not read
772 				 * beyond 'bad_sectors' from another device.
773 				 */
774 				bad_sectors -= (dev_sector - first_bad);
775 				if (!do_balance && sectors > bad_sectors)
776 					sectors = bad_sectors;
777 				if (best_good_sectors > sectors)
778 					best_good_sectors = sectors;
779 			} else {
780 				sector_t good_sectors =
781 					first_bad - dev_sector;
782 				if (good_sectors > best_good_sectors) {
783 					best_good_sectors = good_sectors;
784 					best_dist_slot = slot;
785 					best_dist_rdev = rdev;
786 				}
787 				if (!do_balance)
788 					/* Must read from here */
789 					break;
790 			}
791 			continue;
792 		} else
793 			best_good_sectors = sectors;
794 
795 		if (!do_balance)
796 			break;
797 
798 		nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
799 		has_nonrot_disk |= nonrot;
800 		pending = atomic_read(&rdev->nr_pending);
801 		if (min_pending > pending && nonrot) {
802 			min_pending = pending;
803 			best_pending_slot = slot;
804 			best_pending_rdev = rdev;
805 		}
806 
807 		if (best_dist_slot >= 0)
808 			/* At least 2 disks to choose from so failfast is OK */
809 			set_bit(R10BIO_FailFast, &r10_bio->state);
810 		/* This optimisation is debatable, and completely destroys
811 		 * sequential read speed for 'far copies' arrays.  So only
812 		 * keep it for 'near' arrays, and review those later.
813 		 */
814 		if (geo->near_copies > 1 && !pending)
815 			new_distance = 0;
816 
817 		/* for far > 1 always use the lowest address */
818 		else if (geo->far_copies > 1)
819 			new_distance = r10_bio->devs[slot].addr;
820 		else
821 			new_distance = abs(r10_bio->devs[slot].addr -
822 					   conf->mirrors[disk].head_position);
823 
824 		if (new_distance < best_dist) {
825 			best_dist = new_distance;
826 			best_dist_slot = slot;
827 			best_dist_rdev = rdev;
828 		}
829 	}
830 	if (slot >= conf->copies) {
831 		if (has_nonrot_disk) {
832 			slot = best_pending_slot;
833 			rdev = best_pending_rdev;
834 		} else {
835 			slot = best_dist_slot;
836 			rdev = best_dist_rdev;
837 		}
838 	}
839 
840 	if (slot >= 0) {
841 		atomic_inc(&rdev->nr_pending);
842 		r10_bio->read_slot = slot;
843 	} else
844 		rdev = NULL;
845 	rcu_read_unlock();
846 	*max_sectors = best_good_sectors;
847 
848 	return rdev;
849 }
850 
851 static int raid10_congested(struct mddev *mddev, int bits)
852 {
853 	struct r10conf *conf = mddev->private;
854 	int i, ret = 0;
855 
856 	if ((bits & (1 << WB_async_congested)) &&
857 	    conf->pending_count >= max_queued_requests)
858 		return 1;
859 
860 	rcu_read_lock();
861 	for (i = 0;
862 	     (i < conf->geo.raid_disks || i < conf->prev.raid_disks)
863 		     && ret == 0;
864 	     i++) {
865 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
866 		if (rdev && !test_bit(Faulty, &rdev->flags)) {
867 			struct request_queue *q = bdev_get_queue(rdev->bdev);
868 
869 			ret |= bdi_congested(q->backing_dev_info, bits);
870 		}
871 	}
872 	rcu_read_unlock();
873 	return ret;
874 }
875 
876 static void flush_pending_writes(struct r10conf *conf)
877 {
878 	/* Any writes that have been queued but are awaiting
879 	 * bitmap updates get flushed here.
880 	 */
881 	spin_lock_irq(&conf->device_lock);
882 
883 	if (conf->pending_bio_list.head) {
884 		struct blk_plug plug;
885 		struct bio *bio;
886 
887 		bio = bio_list_get(&conf->pending_bio_list);
888 		conf->pending_count = 0;
889 		spin_unlock_irq(&conf->device_lock);
890 
891 		/*
892 		 * As this is called in a wait_event() loop (see freeze_array),
893 		 * current->state might be TASK_UNINTERRUPTIBLE which will
894 		 * cause a warning when we prepare to wait again.  As it is
895 		 * rare that this path is taken, it is perfectly safe to force
896 		 * us to go around the wait_event() loop again, so the warning
897 		 * is a false-positive. Silence the warning by resetting
898 		 * thread state
899 		 */
900 		__set_current_state(TASK_RUNNING);
901 
902 		blk_start_plug(&plug);
903 		/* flush any pending bitmap writes to disk
904 		 * before proceeding w/ I/O */
905 		md_bitmap_unplug(conf->mddev->bitmap);
906 		wake_up(&conf->wait_barrier);
907 
908 		while (bio) { /* submit pending writes */
909 			struct bio *next = bio->bi_next;
910 			struct md_rdev *rdev = (void*)bio->bi_disk;
911 			bio->bi_next = NULL;
912 			bio_set_dev(bio, rdev->bdev);
913 			if (test_bit(Faulty, &rdev->flags)) {
914 				bio_io_error(bio);
915 			} else if (unlikely((bio_op(bio) ==  REQ_OP_DISCARD) &&
916 					    !blk_queue_discard(bio->bi_disk->queue)))
917 				/* Just ignore it */
918 				bio_endio(bio);
919 			else
920 				generic_make_request(bio);
921 			bio = next;
922 		}
923 		blk_finish_plug(&plug);
924 	} else
925 		spin_unlock_irq(&conf->device_lock);
926 }
927 
928 /* Barriers....
929  * Sometimes we need to suspend IO while we do something else,
930  * either some resync/recovery, or reconfigure the array.
931  * To do this we raise a 'barrier'.
932  * The 'barrier' is a counter that can be raised multiple times
933  * to count how many activities are happening which preclude
934  * normal IO.
935  * We can only raise the barrier if there is no pending IO.
936  * i.e. if nr_pending == 0.
937  * We choose only to raise the barrier if no-one is waiting for the
938  * barrier to go down.  This means that as soon as an IO request
939  * is ready, no other operations which require a barrier will start
940  * until the IO request has had a chance.
941  *
942  * So: regular IO calls 'wait_barrier'.  When that returns there
943  *    is no backgroup IO happening,  It must arrange to call
944  *    allow_barrier when it has finished its IO.
945  * backgroup IO calls must call raise_barrier.  Once that returns
946  *    there is no normal IO happeing.  It must arrange to call
947  *    lower_barrier when the particular background IO completes.
948  */
949 
950 static void raise_barrier(struct r10conf *conf, int force)
951 {
952 	BUG_ON(force && !conf->barrier);
953 	spin_lock_irq(&conf->resync_lock);
954 
955 	/* Wait until no block IO is waiting (unless 'force') */
956 	wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
957 			    conf->resync_lock);
958 
959 	/* block any new IO from starting */
960 	conf->barrier++;
961 
962 	/* Now wait for all pending IO to complete */
963 	wait_event_lock_irq(conf->wait_barrier,
964 			    !atomic_read(&conf->nr_pending) && conf->barrier < RESYNC_DEPTH,
965 			    conf->resync_lock);
966 
967 	spin_unlock_irq(&conf->resync_lock);
968 }
969 
970 static void lower_barrier(struct r10conf *conf)
971 {
972 	unsigned long flags;
973 	spin_lock_irqsave(&conf->resync_lock, flags);
974 	conf->barrier--;
975 	spin_unlock_irqrestore(&conf->resync_lock, flags);
976 	wake_up(&conf->wait_barrier);
977 }
978 
979 static void wait_barrier(struct r10conf *conf)
980 {
981 	spin_lock_irq(&conf->resync_lock);
982 	if (conf->barrier) {
983 		conf->nr_waiting++;
984 		/* Wait for the barrier to drop.
985 		 * However if there are already pending
986 		 * requests (preventing the barrier from
987 		 * rising completely), and the
988 		 * pre-process bio queue isn't empty,
989 		 * then don't wait, as we need to empty
990 		 * that queue to get the nr_pending
991 		 * count down.
992 		 */
993 		raid10_log(conf->mddev, "wait barrier");
994 		wait_event_lock_irq(conf->wait_barrier,
995 				    !conf->barrier ||
996 				    (atomic_read(&conf->nr_pending) &&
997 				     current->bio_list &&
998 				     (!bio_list_empty(&current->bio_list[0]) ||
999 				      !bio_list_empty(&current->bio_list[1]))),
1000 				    conf->resync_lock);
1001 		conf->nr_waiting--;
1002 		if (!conf->nr_waiting)
1003 			wake_up(&conf->wait_barrier);
1004 	}
1005 	atomic_inc(&conf->nr_pending);
1006 	spin_unlock_irq(&conf->resync_lock);
1007 }
1008 
1009 static void allow_barrier(struct r10conf *conf)
1010 {
1011 	if ((atomic_dec_and_test(&conf->nr_pending)) ||
1012 			(conf->array_freeze_pending))
1013 		wake_up(&conf->wait_barrier);
1014 }
1015 
1016 static void freeze_array(struct r10conf *conf, int extra)
1017 {
1018 	/* stop syncio and normal IO and wait for everything to
1019 	 * go quiet.
1020 	 * We increment barrier and nr_waiting, and then
1021 	 * wait until nr_pending match nr_queued+extra
1022 	 * This is called in the context of one normal IO request
1023 	 * that has failed. Thus any sync request that might be pending
1024 	 * will be blocked by nr_pending, and we need to wait for
1025 	 * pending IO requests to complete or be queued for re-try.
1026 	 * Thus the number queued (nr_queued) plus this request (extra)
1027 	 * must match the number of pending IOs (nr_pending) before
1028 	 * we continue.
1029 	 */
1030 	spin_lock_irq(&conf->resync_lock);
1031 	conf->array_freeze_pending++;
1032 	conf->barrier++;
1033 	conf->nr_waiting++;
1034 	wait_event_lock_irq_cmd(conf->wait_barrier,
1035 				atomic_read(&conf->nr_pending) == conf->nr_queued+extra,
1036 				conf->resync_lock,
1037 				flush_pending_writes(conf));
1038 
1039 	conf->array_freeze_pending--;
1040 	spin_unlock_irq(&conf->resync_lock);
1041 }
1042 
1043 static void unfreeze_array(struct r10conf *conf)
1044 {
1045 	/* reverse the effect of the freeze */
1046 	spin_lock_irq(&conf->resync_lock);
1047 	conf->barrier--;
1048 	conf->nr_waiting--;
1049 	wake_up(&conf->wait_barrier);
1050 	spin_unlock_irq(&conf->resync_lock);
1051 }
1052 
1053 static sector_t choose_data_offset(struct r10bio *r10_bio,
1054 				   struct md_rdev *rdev)
1055 {
1056 	if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1057 	    test_bit(R10BIO_Previous, &r10_bio->state))
1058 		return rdev->data_offset;
1059 	else
1060 		return rdev->new_data_offset;
1061 }
1062 
1063 struct raid10_plug_cb {
1064 	struct blk_plug_cb	cb;
1065 	struct bio_list		pending;
1066 	int			pending_cnt;
1067 };
1068 
1069 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1070 {
1071 	struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb,
1072 						   cb);
1073 	struct mddev *mddev = plug->cb.data;
1074 	struct r10conf *conf = mddev->private;
1075 	struct bio *bio;
1076 
1077 	if (from_schedule || current->bio_list) {
1078 		spin_lock_irq(&conf->device_lock);
1079 		bio_list_merge(&conf->pending_bio_list, &plug->pending);
1080 		conf->pending_count += plug->pending_cnt;
1081 		spin_unlock_irq(&conf->device_lock);
1082 		wake_up(&conf->wait_barrier);
1083 		md_wakeup_thread(mddev->thread);
1084 		kfree(plug);
1085 		return;
1086 	}
1087 
1088 	/* we aren't scheduling, so we can do the write-out directly. */
1089 	bio = bio_list_get(&plug->pending);
1090 	md_bitmap_unplug(mddev->bitmap);
1091 	wake_up(&conf->wait_barrier);
1092 
1093 	while (bio) { /* submit pending writes */
1094 		struct bio *next = bio->bi_next;
1095 		struct md_rdev *rdev = (void*)bio->bi_disk;
1096 		bio->bi_next = NULL;
1097 		bio_set_dev(bio, rdev->bdev);
1098 		if (test_bit(Faulty, &rdev->flags)) {
1099 			bio_io_error(bio);
1100 		} else if (unlikely((bio_op(bio) ==  REQ_OP_DISCARD) &&
1101 				    !blk_queue_discard(bio->bi_disk->queue)))
1102 			/* Just ignore it */
1103 			bio_endio(bio);
1104 		else
1105 			generic_make_request(bio);
1106 		bio = next;
1107 	}
1108 	kfree(plug);
1109 }
1110 
1111 /*
1112  * 1. Register the new request and wait if the reconstruction thread has put
1113  * up a bar for new requests. Continue immediately if no resync is active
1114  * currently.
1115  * 2. If IO spans the reshape position.  Need to wait for reshape to pass.
1116  */
1117 static void regular_request_wait(struct mddev *mddev, struct r10conf *conf,
1118 				 struct bio *bio, sector_t sectors)
1119 {
1120 	wait_barrier(conf);
1121 	while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1122 	    bio->bi_iter.bi_sector < conf->reshape_progress &&
1123 	    bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1124 		raid10_log(conf->mddev, "wait reshape");
1125 		allow_barrier(conf);
1126 		wait_event(conf->wait_barrier,
1127 			   conf->reshape_progress <= bio->bi_iter.bi_sector ||
1128 			   conf->reshape_progress >= bio->bi_iter.bi_sector +
1129 			   sectors);
1130 		wait_barrier(conf);
1131 	}
1132 }
1133 
1134 static void raid10_read_request(struct mddev *mddev, struct bio *bio,
1135 				struct r10bio *r10_bio)
1136 {
1137 	struct r10conf *conf = mddev->private;
1138 	struct bio *read_bio;
1139 	const int op = bio_op(bio);
1140 	const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1141 	int max_sectors;
1142 	struct md_rdev *rdev;
1143 	char b[BDEVNAME_SIZE];
1144 	int slot = r10_bio->read_slot;
1145 	struct md_rdev *err_rdev = NULL;
1146 	gfp_t gfp = GFP_NOIO;
1147 
1148 	if (r10_bio->devs[slot].rdev) {
1149 		/*
1150 		 * This is an error retry, but we cannot
1151 		 * safely dereference the rdev in the r10_bio,
1152 		 * we must use the one in conf.
1153 		 * If it has already been disconnected (unlikely)
1154 		 * we lose the device name in error messages.
1155 		 */
1156 		int disk;
1157 		/*
1158 		 * As we are blocking raid10, it is a little safer to
1159 		 * use __GFP_HIGH.
1160 		 */
1161 		gfp = GFP_NOIO | __GFP_HIGH;
1162 
1163 		rcu_read_lock();
1164 		disk = r10_bio->devs[slot].devnum;
1165 		err_rdev = rcu_dereference(conf->mirrors[disk].rdev);
1166 		if (err_rdev)
1167 			bdevname(err_rdev->bdev, b);
1168 		else {
1169 			strcpy(b, "???");
1170 			/* This never gets dereferenced */
1171 			err_rdev = r10_bio->devs[slot].rdev;
1172 		}
1173 		rcu_read_unlock();
1174 	}
1175 
1176 	regular_request_wait(mddev, conf, bio, r10_bio->sectors);
1177 	rdev = read_balance(conf, r10_bio, &max_sectors);
1178 	if (!rdev) {
1179 		if (err_rdev) {
1180 			pr_crit_ratelimited("md/raid10:%s: %s: unrecoverable I/O read error for block %llu\n",
1181 					    mdname(mddev), b,
1182 					    (unsigned long long)r10_bio->sector);
1183 		}
1184 		raid_end_bio_io(r10_bio);
1185 		return;
1186 	}
1187 	if (err_rdev)
1188 		pr_err_ratelimited("md/raid10:%s: %s: redirecting sector %llu to another mirror\n",
1189 				   mdname(mddev),
1190 				   bdevname(rdev->bdev, b),
1191 				   (unsigned long long)r10_bio->sector);
1192 	if (max_sectors < bio_sectors(bio)) {
1193 		struct bio *split = bio_split(bio, max_sectors,
1194 					      gfp, &conf->bio_split);
1195 		bio_chain(split, bio);
1196 		allow_barrier(conf);
1197 		generic_make_request(bio);
1198 		wait_barrier(conf);
1199 		bio = split;
1200 		r10_bio->master_bio = bio;
1201 		r10_bio->sectors = max_sectors;
1202 	}
1203 	slot = r10_bio->read_slot;
1204 
1205 	read_bio = bio_clone_fast(bio, gfp, &mddev->bio_set);
1206 
1207 	r10_bio->devs[slot].bio = read_bio;
1208 	r10_bio->devs[slot].rdev = rdev;
1209 
1210 	read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr +
1211 		choose_data_offset(r10_bio, rdev);
1212 	bio_set_dev(read_bio, rdev->bdev);
1213 	read_bio->bi_end_io = raid10_end_read_request;
1214 	bio_set_op_attrs(read_bio, op, do_sync);
1215 	if (test_bit(FailFast, &rdev->flags) &&
1216 	    test_bit(R10BIO_FailFast, &r10_bio->state))
1217 	        read_bio->bi_opf |= MD_FAILFAST;
1218 	read_bio->bi_private = r10_bio;
1219 
1220 	if (mddev->gendisk)
1221 	        trace_block_bio_remap(read_bio->bi_disk->queue,
1222 	                              read_bio, disk_devt(mddev->gendisk),
1223 	                              r10_bio->sector);
1224 	generic_make_request(read_bio);
1225 	return;
1226 }
1227 
1228 static void raid10_write_one_disk(struct mddev *mddev, struct r10bio *r10_bio,
1229 				  struct bio *bio, bool replacement,
1230 				  int n_copy)
1231 {
1232 	const int op = bio_op(bio);
1233 	const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1234 	const unsigned long do_fua = (bio->bi_opf & REQ_FUA);
1235 	unsigned long flags;
1236 	struct blk_plug_cb *cb;
1237 	struct raid10_plug_cb *plug = NULL;
1238 	struct r10conf *conf = mddev->private;
1239 	struct md_rdev *rdev;
1240 	int devnum = r10_bio->devs[n_copy].devnum;
1241 	struct bio *mbio;
1242 
1243 	if (replacement) {
1244 		rdev = conf->mirrors[devnum].replacement;
1245 		if (rdev == NULL) {
1246 			/* Replacement just got moved to main 'rdev' */
1247 			smp_mb();
1248 			rdev = conf->mirrors[devnum].rdev;
1249 		}
1250 	} else
1251 		rdev = conf->mirrors[devnum].rdev;
1252 
1253 	mbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set);
1254 	if (replacement)
1255 		r10_bio->devs[n_copy].repl_bio = mbio;
1256 	else
1257 		r10_bio->devs[n_copy].bio = mbio;
1258 
1259 	mbio->bi_iter.bi_sector	= (r10_bio->devs[n_copy].addr +
1260 				   choose_data_offset(r10_bio, rdev));
1261 	bio_set_dev(mbio, rdev->bdev);
1262 	mbio->bi_end_io	= raid10_end_write_request;
1263 	bio_set_op_attrs(mbio, op, do_sync | do_fua);
1264 	if (!replacement && test_bit(FailFast,
1265 				     &conf->mirrors[devnum].rdev->flags)
1266 			 && enough(conf, devnum))
1267 		mbio->bi_opf |= MD_FAILFAST;
1268 	mbio->bi_private = r10_bio;
1269 
1270 	if (conf->mddev->gendisk)
1271 		trace_block_bio_remap(mbio->bi_disk->queue,
1272 				      mbio, disk_devt(conf->mddev->gendisk),
1273 				      r10_bio->sector);
1274 	/* flush_pending_writes() needs access to the rdev so...*/
1275 	mbio->bi_disk = (void *)rdev;
1276 
1277 	atomic_inc(&r10_bio->remaining);
1278 
1279 	cb = blk_check_plugged(raid10_unplug, mddev, sizeof(*plug));
1280 	if (cb)
1281 		plug = container_of(cb, struct raid10_plug_cb, cb);
1282 	else
1283 		plug = NULL;
1284 	if (plug) {
1285 		bio_list_add(&plug->pending, mbio);
1286 		plug->pending_cnt++;
1287 	} else {
1288 		spin_lock_irqsave(&conf->device_lock, flags);
1289 		bio_list_add(&conf->pending_bio_list, mbio);
1290 		conf->pending_count++;
1291 		spin_unlock_irqrestore(&conf->device_lock, flags);
1292 		md_wakeup_thread(mddev->thread);
1293 	}
1294 }
1295 
1296 static void raid10_write_request(struct mddev *mddev, struct bio *bio,
1297 				 struct r10bio *r10_bio)
1298 {
1299 	struct r10conf *conf = mddev->private;
1300 	int i;
1301 	struct md_rdev *blocked_rdev;
1302 	sector_t sectors;
1303 	int max_sectors;
1304 
1305 	if ((mddev_is_clustered(mddev) &&
1306 	     md_cluster_ops->area_resyncing(mddev, WRITE,
1307 					    bio->bi_iter.bi_sector,
1308 					    bio_end_sector(bio)))) {
1309 		DEFINE_WAIT(w);
1310 		for (;;) {
1311 			prepare_to_wait(&conf->wait_barrier,
1312 					&w, TASK_IDLE);
1313 			if (!md_cluster_ops->area_resyncing(mddev, WRITE,
1314 				 bio->bi_iter.bi_sector, bio_end_sector(bio)))
1315 				break;
1316 			schedule();
1317 		}
1318 		finish_wait(&conf->wait_barrier, &w);
1319 	}
1320 
1321 	sectors = r10_bio->sectors;
1322 	regular_request_wait(mddev, conf, bio, sectors);
1323 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1324 	    (mddev->reshape_backwards
1325 	     ? (bio->bi_iter.bi_sector < conf->reshape_safe &&
1326 		bio->bi_iter.bi_sector + sectors > conf->reshape_progress)
1327 	     : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe &&
1328 		bio->bi_iter.bi_sector < conf->reshape_progress))) {
1329 		/* Need to update reshape_position in metadata */
1330 		mddev->reshape_position = conf->reshape_progress;
1331 		set_mask_bits(&mddev->sb_flags, 0,
1332 			      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1333 		md_wakeup_thread(mddev->thread);
1334 		raid10_log(conf->mddev, "wait reshape metadata");
1335 		wait_event(mddev->sb_wait,
1336 			   !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
1337 
1338 		conf->reshape_safe = mddev->reshape_position;
1339 	}
1340 
1341 	if (conf->pending_count >= max_queued_requests) {
1342 		md_wakeup_thread(mddev->thread);
1343 		raid10_log(mddev, "wait queued");
1344 		wait_event(conf->wait_barrier,
1345 			   conf->pending_count < max_queued_requests);
1346 	}
1347 	/* first select target devices under rcu_lock and
1348 	 * inc refcount on their rdev.  Record them by setting
1349 	 * bios[x] to bio
1350 	 * If there are known/acknowledged bad blocks on any device
1351 	 * on which we have seen a write error, we want to avoid
1352 	 * writing to those blocks.  This potentially requires several
1353 	 * writes to write around the bad blocks.  Each set of writes
1354 	 * gets its own r10_bio with a set of bios attached.
1355 	 */
1356 
1357 	r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1358 	raid10_find_phys(conf, r10_bio);
1359 retry_write:
1360 	blocked_rdev = NULL;
1361 	rcu_read_lock();
1362 	max_sectors = r10_bio->sectors;
1363 
1364 	for (i = 0;  i < conf->copies; i++) {
1365 		int d = r10_bio->devs[i].devnum;
1366 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
1367 		struct md_rdev *rrdev = rcu_dereference(
1368 			conf->mirrors[d].replacement);
1369 		if (rdev == rrdev)
1370 			rrdev = NULL;
1371 		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1372 			atomic_inc(&rdev->nr_pending);
1373 			blocked_rdev = rdev;
1374 			break;
1375 		}
1376 		if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1377 			atomic_inc(&rrdev->nr_pending);
1378 			blocked_rdev = rrdev;
1379 			break;
1380 		}
1381 		if (rdev && (test_bit(Faulty, &rdev->flags)))
1382 			rdev = NULL;
1383 		if (rrdev && (test_bit(Faulty, &rrdev->flags)))
1384 			rrdev = NULL;
1385 
1386 		r10_bio->devs[i].bio = NULL;
1387 		r10_bio->devs[i].repl_bio = NULL;
1388 
1389 		if (!rdev && !rrdev) {
1390 			set_bit(R10BIO_Degraded, &r10_bio->state);
1391 			continue;
1392 		}
1393 		if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1394 			sector_t first_bad;
1395 			sector_t dev_sector = r10_bio->devs[i].addr;
1396 			int bad_sectors;
1397 			int is_bad;
1398 
1399 			is_bad = is_badblock(rdev, dev_sector, max_sectors,
1400 					     &first_bad, &bad_sectors);
1401 			if (is_bad < 0) {
1402 				/* Mustn't write here until the bad block
1403 				 * is acknowledged
1404 				 */
1405 				atomic_inc(&rdev->nr_pending);
1406 				set_bit(BlockedBadBlocks, &rdev->flags);
1407 				blocked_rdev = rdev;
1408 				break;
1409 			}
1410 			if (is_bad && first_bad <= dev_sector) {
1411 				/* Cannot write here at all */
1412 				bad_sectors -= (dev_sector - first_bad);
1413 				if (bad_sectors < max_sectors)
1414 					/* Mustn't write more than bad_sectors
1415 					 * to other devices yet
1416 					 */
1417 					max_sectors = bad_sectors;
1418 				/* We don't set R10BIO_Degraded as that
1419 				 * only applies if the disk is missing,
1420 				 * so it might be re-added, and we want to
1421 				 * know to recover this chunk.
1422 				 * In this case the device is here, and the
1423 				 * fact that this chunk is not in-sync is
1424 				 * recorded in the bad block log.
1425 				 */
1426 				continue;
1427 			}
1428 			if (is_bad) {
1429 				int good_sectors = first_bad - dev_sector;
1430 				if (good_sectors < max_sectors)
1431 					max_sectors = good_sectors;
1432 			}
1433 		}
1434 		if (rdev) {
1435 			r10_bio->devs[i].bio = bio;
1436 			atomic_inc(&rdev->nr_pending);
1437 		}
1438 		if (rrdev) {
1439 			r10_bio->devs[i].repl_bio = bio;
1440 			atomic_inc(&rrdev->nr_pending);
1441 		}
1442 	}
1443 	rcu_read_unlock();
1444 
1445 	if (unlikely(blocked_rdev)) {
1446 		/* Have to wait for this device to get unblocked, then retry */
1447 		int j;
1448 		int d;
1449 
1450 		for (j = 0; j < i; j++) {
1451 			if (r10_bio->devs[j].bio) {
1452 				d = r10_bio->devs[j].devnum;
1453 				rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1454 			}
1455 			if (r10_bio->devs[j].repl_bio) {
1456 				struct md_rdev *rdev;
1457 				d = r10_bio->devs[j].devnum;
1458 				rdev = conf->mirrors[d].replacement;
1459 				if (!rdev) {
1460 					/* Race with remove_disk */
1461 					smp_mb();
1462 					rdev = conf->mirrors[d].rdev;
1463 				}
1464 				rdev_dec_pending(rdev, mddev);
1465 			}
1466 		}
1467 		allow_barrier(conf);
1468 		raid10_log(conf->mddev, "wait rdev %d blocked", blocked_rdev->raid_disk);
1469 		md_wait_for_blocked_rdev(blocked_rdev, mddev);
1470 		wait_barrier(conf);
1471 		goto retry_write;
1472 	}
1473 
1474 	if (max_sectors < r10_bio->sectors)
1475 		r10_bio->sectors = max_sectors;
1476 
1477 	if (r10_bio->sectors < bio_sectors(bio)) {
1478 		struct bio *split = bio_split(bio, r10_bio->sectors,
1479 					      GFP_NOIO, &conf->bio_split);
1480 		bio_chain(split, bio);
1481 		allow_barrier(conf);
1482 		generic_make_request(bio);
1483 		wait_barrier(conf);
1484 		bio = split;
1485 		r10_bio->master_bio = bio;
1486 	}
1487 
1488 	atomic_set(&r10_bio->remaining, 1);
1489 	md_bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1490 
1491 	for (i = 0; i < conf->copies; i++) {
1492 		if (r10_bio->devs[i].bio)
1493 			raid10_write_one_disk(mddev, r10_bio, bio, false, i);
1494 		if (r10_bio->devs[i].repl_bio)
1495 			raid10_write_one_disk(mddev, r10_bio, bio, true, i);
1496 	}
1497 	one_write_done(r10_bio);
1498 }
1499 
1500 static void __make_request(struct mddev *mddev, struct bio *bio, int sectors)
1501 {
1502 	struct r10conf *conf = mddev->private;
1503 	struct r10bio *r10_bio;
1504 
1505 	r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO);
1506 
1507 	r10_bio->master_bio = bio;
1508 	r10_bio->sectors = sectors;
1509 
1510 	r10_bio->mddev = mddev;
1511 	r10_bio->sector = bio->bi_iter.bi_sector;
1512 	r10_bio->state = 0;
1513 	memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) * conf->copies);
1514 
1515 	if (bio_data_dir(bio) == READ)
1516 		raid10_read_request(mddev, bio, r10_bio);
1517 	else
1518 		raid10_write_request(mddev, bio, r10_bio);
1519 }
1520 
1521 static bool raid10_make_request(struct mddev *mddev, struct bio *bio)
1522 {
1523 	struct r10conf *conf = mddev->private;
1524 	sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1525 	int chunk_sects = chunk_mask + 1;
1526 	int sectors = bio_sectors(bio);
1527 
1528 	if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1529 		md_flush_request(mddev, bio);
1530 		return true;
1531 	}
1532 
1533 	if (!md_write_start(mddev, bio))
1534 		return false;
1535 
1536 	/*
1537 	 * If this request crosses a chunk boundary, we need to split
1538 	 * it.
1539 	 */
1540 	if (unlikely((bio->bi_iter.bi_sector & chunk_mask) +
1541 		     sectors > chunk_sects
1542 		     && (conf->geo.near_copies < conf->geo.raid_disks
1543 			 || conf->prev.near_copies <
1544 			 conf->prev.raid_disks)))
1545 		sectors = chunk_sects -
1546 			(bio->bi_iter.bi_sector &
1547 			 (chunk_sects - 1));
1548 	__make_request(mddev, bio, sectors);
1549 
1550 	/* In case raid10d snuck in to freeze_array */
1551 	wake_up(&conf->wait_barrier);
1552 	return true;
1553 }
1554 
1555 static void raid10_status(struct seq_file *seq, struct mddev *mddev)
1556 {
1557 	struct r10conf *conf = mddev->private;
1558 	int i;
1559 
1560 	if (conf->geo.near_copies < conf->geo.raid_disks)
1561 		seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1562 	if (conf->geo.near_copies > 1)
1563 		seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1564 	if (conf->geo.far_copies > 1) {
1565 		if (conf->geo.far_offset)
1566 			seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1567 		else
1568 			seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1569 		if (conf->geo.far_set_size != conf->geo.raid_disks)
1570 			seq_printf(seq, " %d devices per set", conf->geo.far_set_size);
1571 	}
1572 	seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1573 					conf->geo.raid_disks - mddev->degraded);
1574 	rcu_read_lock();
1575 	for (i = 0; i < conf->geo.raid_disks; i++) {
1576 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1577 		seq_printf(seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1578 	}
1579 	rcu_read_unlock();
1580 	seq_printf(seq, "]");
1581 }
1582 
1583 /* check if there are enough drives for
1584  * every block to appear on atleast one.
1585  * Don't consider the device numbered 'ignore'
1586  * as we might be about to remove it.
1587  */
1588 static int _enough(struct r10conf *conf, int previous, int ignore)
1589 {
1590 	int first = 0;
1591 	int has_enough = 0;
1592 	int disks, ncopies;
1593 	if (previous) {
1594 		disks = conf->prev.raid_disks;
1595 		ncopies = conf->prev.near_copies;
1596 	} else {
1597 		disks = conf->geo.raid_disks;
1598 		ncopies = conf->geo.near_copies;
1599 	}
1600 
1601 	rcu_read_lock();
1602 	do {
1603 		int n = conf->copies;
1604 		int cnt = 0;
1605 		int this = first;
1606 		while (n--) {
1607 			struct md_rdev *rdev;
1608 			if (this != ignore &&
1609 			    (rdev = rcu_dereference(conf->mirrors[this].rdev)) &&
1610 			    test_bit(In_sync, &rdev->flags))
1611 				cnt++;
1612 			this = (this+1) % disks;
1613 		}
1614 		if (cnt == 0)
1615 			goto out;
1616 		first = (first + ncopies) % disks;
1617 	} while (first != 0);
1618 	has_enough = 1;
1619 out:
1620 	rcu_read_unlock();
1621 	return has_enough;
1622 }
1623 
1624 static int enough(struct r10conf *conf, int ignore)
1625 {
1626 	/* when calling 'enough', both 'prev' and 'geo' must
1627 	 * be stable.
1628 	 * This is ensured if ->reconfig_mutex or ->device_lock
1629 	 * is held.
1630 	 */
1631 	return _enough(conf, 0, ignore) &&
1632 		_enough(conf, 1, ignore);
1633 }
1634 
1635 static void raid10_error(struct mddev *mddev, struct md_rdev *rdev)
1636 {
1637 	char b[BDEVNAME_SIZE];
1638 	struct r10conf *conf = mddev->private;
1639 	unsigned long flags;
1640 
1641 	/*
1642 	 * If it is not operational, then we have already marked it as dead
1643 	 * else if it is the last working disks with "fail_last_dev == false",
1644 	 * ignore the error, let the next level up know.
1645 	 * else mark the drive as failed
1646 	 */
1647 	spin_lock_irqsave(&conf->device_lock, flags);
1648 	if (test_bit(In_sync, &rdev->flags) && !mddev->fail_last_dev
1649 	    && !enough(conf, rdev->raid_disk)) {
1650 		/*
1651 		 * Don't fail the drive, just return an IO error.
1652 		 */
1653 		spin_unlock_irqrestore(&conf->device_lock, flags);
1654 		return;
1655 	}
1656 	if (test_and_clear_bit(In_sync, &rdev->flags))
1657 		mddev->degraded++;
1658 	/*
1659 	 * If recovery is running, make sure it aborts.
1660 	 */
1661 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1662 	set_bit(Blocked, &rdev->flags);
1663 	set_bit(Faulty, &rdev->flags);
1664 	set_mask_bits(&mddev->sb_flags, 0,
1665 		      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1666 	spin_unlock_irqrestore(&conf->device_lock, flags);
1667 	pr_crit("md/raid10:%s: Disk failure on %s, disabling device.\n"
1668 		"md/raid10:%s: Operation continuing on %d devices.\n",
1669 		mdname(mddev), bdevname(rdev->bdev, b),
1670 		mdname(mddev), conf->geo.raid_disks - mddev->degraded);
1671 }
1672 
1673 static void print_conf(struct r10conf *conf)
1674 {
1675 	int i;
1676 	struct md_rdev *rdev;
1677 
1678 	pr_debug("RAID10 conf printout:\n");
1679 	if (!conf) {
1680 		pr_debug("(!conf)\n");
1681 		return;
1682 	}
1683 	pr_debug(" --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
1684 		 conf->geo.raid_disks);
1685 
1686 	/* This is only called with ->reconfix_mutex held, so
1687 	 * rcu protection of rdev is not needed */
1688 	for (i = 0; i < conf->geo.raid_disks; i++) {
1689 		char b[BDEVNAME_SIZE];
1690 		rdev = conf->mirrors[i].rdev;
1691 		if (rdev)
1692 			pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
1693 				 i, !test_bit(In_sync, &rdev->flags),
1694 				 !test_bit(Faulty, &rdev->flags),
1695 				 bdevname(rdev->bdev,b));
1696 	}
1697 }
1698 
1699 static void close_sync(struct r10conf *conf)
1700 {
1701 	wait_barrier(conf);
1702 	allow_barrier(conf);
1703 
1704 	mempool_exit(&conf->r10buf_pool);
1705 }
1706 
1707 static int raid10_spare_active(struct mddev *mddev)
1708 {
1709 	int i;
1710 	struct r10conf *conf = mddev->private;
1711 	struct raid10_info *tmp;
1712 	int count = 0;
1713 	unsigned long flags;
1714 
1715 	/*
1716 	 * Find all non-in_sync disks within the RAID10 configuration
1717 	 * and mark them in_sync
1718 	 */
1719 	for (i = 0; i < conf->geo.raid_disks; i++) {
1720 		tmp = conf->mirrors + i;
1721 		if (tmp->replacement
1722 		    && tmp->replacement->recovery_offset == MaxSector
1723 		    && !test_bit(Faulty, &tmp->replacement->flags)
1724 		    && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
1725 			/* Replacement has just become active */
1726 			if (!tmp->rdev
1727 			    || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
1728 				count++;
1729 			if (tmp->rdev) {
1730 				/* Replaced device not technically faulty,
1731 				 * but we need to be sure it gets removed
1732 				 * and never re-added.
1733 				 */
1734 				set_bit(Faulty, &tmp->rdev->flags);
1735 				sysfs_notify_dirent_safe(
1736 					tmp->rdev->sysfs_state);
1737 			}
1738 			sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
1739 		} else if (tmp->rdev
1740 			   && tmp->rdev->recovery_offset == MaxSector
1741 			   && !test_bit(Faulty, &tmp->rdev->flags)
1742 			   && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1743 			count++;
1744 			sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1745 		}
1746 	}
1747 	spin_lock_irqsave(&conf->device_lock, flags);
1748 	mddev->degraded -= count;
1749 	spin_unlock_irqrestore(&conf->device_lock, flags);
1750 
1751 	print_conf(conf);
1752 	return count;
1753 }
1754 
1755 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1756 {
1757 	struct r10conf *conf = mddev->private;
1758 	int err = -EEXIST;
1759 	int mirror;
1760 	int first = 0;
1761 	int last = conf->geo.raid_disks - 1;
1762 
1763 	if (mddev->recovery_cp < MaxSector)
1764 		/* only hot-add to in-sync arrays, as recovery is
1765 		 * very different from resync
1766 		 */
1767 		return -EBUSY;
1768 	if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1))
1769 		return -EINVAL;
1770 
1771 	if (md_integrity_add_rdev(rdev, mddev))
1772 		return -ENXIO;
1773 
1774 	if (rdev->raid_disk >= 0)
1775 		first = last = rdev->raid_disk;
1776 
1777 	if (rdev->saved_raid_disk >= first &&
1778 	    rdev->saved_raid_disk < conf->geo.raid_disks &&
1779 	    conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1780 		mirror = rdev->saved_raid_disk;
1781 	else
1782 		mirror = first;
1783 	for ( ; mirror <= last ; mirror++) {
1784 		struct raid10_info *p = &conf->mirrors[mirror];
1785 		if (p->recovery_disabled == mddev->recovery_disabled)
1786 			continue;
1787 		if (p->rdev) {
1788 			if (!test_bit(WantReplacement, &p->rdev->flags) ||
1789 			    p->replacement != NULL)
1790 				continue;
1791 			clear_bit(In_sync, &rdev->flags);
1792 			set_bit(Replacement, &rdev->flags);
1793 			rdev->raid_disk = mirror;
1794 			err = 0;
1795 			if (mddev->gendisk)
1796 				disk_stack_limits(mddev->gendisk, rdev->bdev,
1797 						  rdev->data_offset << 9);
1798 			conf->fullsync = 1;
1799 			rcu_assign_pointer(p->replacement, rdev);
1800 			break;
1801 		}
1802 
1803 		if (mddev->gendisk)
1804 			disk_stack_limits(mddev->gendisk, rdev->bdev,
1805 					  rdev->data_offset << 9);
1806 
1807 		p->head_position = 0;
1808 		p->recovery_disabled = mddev->recovery_disabled - 1;
1809 		rdev->raid_disk = mirror;
1810 		err = 0;
1811 		if (rdev->saved_raid_disk != mirror)
1812 			conf->fullsync = 1;
1813 		rcu_assign_pointer(p->rdev, rdev);
1814 		break;
1815 	}
1816 	if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1817 		blk_queue_flag_set(QUEUE_FLAG_DISCARD, mddev->queue);
1818 
1819 	print_conf(conf);
1820 	return err;
1821 }
1822 
1823 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1824 {
1825 	struct r10conf *conf = mddev->private;
1826 	int err = 0;
1827 	int number = rdev->raid_disk;
1828 	struct md_rdev **rdevp;
1829 	struct raid10_info *p = conf->mirrors + number;
1830 
1831 	print_conf(conf);
1832 	if (rdev == p->rdev)
1833 		rdevp = &p->rdev;
1834 	else if (rdev == p->replacement)
1835 		rdevp = &p->replacement;
1836 	else
1837 		return 0;
1838 
1839 	if (test_bit(In_sync, &rdev->flags) ||
1840 	    atomic_read(&rdev->nr_pending)) {
1841 		err = -EBUSY;
1842 		goto abort;
1843 	}
1844 	/* Only remove non-faulty devices if recovery
1845 	 * is not possible.
1846 	 */
1847 	if (!test_bit(Faulty, &rdev->flags) &&
1848 	    mddev->recovery_disabled != p->recovery_disabled &&
1849 	    (!p->replacement || p->replacement == rdev) &&
1850 	    number < conf->geo.raid_disks &&
1851 	    enough(conf, -1)) {
1852 		err = -EBUSY;
1853 		goto abort;
1854 	}
1855 	*rdevp = NULL;
1856 	if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1857 		synchronize_rcu();
1858 		if (atomic_read(&rdev->nr_pending)) {
1859 			/* lost the race, try later */
1860 			err = -EBUSY;
1861 			*rdevp = rdev;
1862 			goto abort;
1863 		}
1864 	}
1865 	if (p->replacement) {
1866 		/* We must have just cleared 'rdev' */
1867 		p->rdev = p->replacement;
1868 		clear_bit(Replacement, &p->replacement->flags);
1869 		smp_mb(); /* Make sure other CPUs may see both as identical
1870 			   * but will never see neither -- if they are careful.
1871 			   */
1872 		p->replacement = NULL;
1873 	}
1874 
1875 	clear_bit(WantReplacement, &rdev->flags);
1876 	err = md_integrity_register(mddev);
1877 
1878 abort:
1879 
1880 	print_conf(conf);
1881 	return err;
1882 }
1883 
1884 static void __end_sync_read(struct r10bio *r10_bio, struct bio *bio, int d)
1885 {
1886 	struct r10conf *conf = r10_bio->mddev->private;
1887 
1888 	if (!bio->bi_status)
1889 		set_bit(R10BIO_Uptodate, &r10_bio->state);
1890 	else
1891 		/* The write handler will notice the lack of
1892 		 * R10BIO_Uptodate and record any errors etc
1893 		 */
1894 		atomic_add(r10_bio->sectors,
1895 			   &conf->mirrors[d].rdev->corrected_errors);
1896 
1897 	/* for reconstruct, we always reschedule after a read.
1898 	 * for resync, only after all reads
1899 	 */
1900 	rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1901 	if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1902 	    atomic_dec_and_test(&r10_bio->remaining)) {
1903 		/* we have read all the blocks,
1904 		 * do the comparison in process context in raid10d
1905 		 */
1906 		reschedule_retry(r10_bio);
1907 	}
1908 }
1909 
1910 static void end_sync_read(struct bio *bio)
1911 {
1912 	struct r10bio *r10_bio = get_resync_r10bio(bio);
1913 	struct r10conf *conf = r10_bio->mddev->private;
1914 	int d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
1915 
1916 	__end_sync_read(r10_bio, bio, d);
1917 }
1918 
1919 static void end_reshape_read(struct bio *bio)
1920 {
1921 	/* reshape read bio isn't allocated from r10buf_pool */
1922 	struct r10bio *r10_bio = bio->bi_private;
1923 
1924 	__end_sync_read(r10_bio, bio, r10_bio->read_slot);
1925 }
1926 
1927 static void end_sync_request(struct r10bio *r10_bio)
1928 {
1929 	struct mddev *mddev = r10_bio->mddev;
1930 
1931 	while (atomic_dec_and_test(&r10_bio->remaining)) {
1932 		if (r10_bio->master_bio == NULL) {
1933 			/* the primary of several recovery bios */
1934 			sector_t s = r10_bio->sectors;
1935 			if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1936 			    test_bit(R10BIO_WriteError, &r10_bio->state))
1937 				reschedule_retry(r10_bio);
1938 			else
1939 				put_buf(r10_bio);
1940 			md_done_sync(mddev, s, 1);
1941 			break;
1942 		} else {
1943 			struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
1944 			if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1945 			    test_bit(R10BIO_WriteError, &r10_bio->state))
1946 				reschedule_retry(r10_bio);
1947 			else
1948 				put_buf(r10_bio);
1949 			r10_bio = r10_bio2;
1950 		}
1951 	}
1952 }
1953 
1954 static void end_sync_write(struct bio *bio)
1955 {
1956 	struct r10bio *r10_bio = get_resync_r10bio(bio);
1957 	struct mddev *mddev = r10_bio->mddev;
1958 	struct r10conf *conf = mddev->private;
1959 	int d;
1960 	sector_t first_bad;
1961 	int bad_sectors;
1962 	int slot;
1963 	int repl;
1964 	struct md_rdev *rdev = NULL;
1965 
1966 	d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1967 	if (repl)
1968 		rdev = conf->mirrors[d].replacement;
1969 	else
1970 		rdev = conf->mirrors[d].rdev;
1971 
1972 	if (bio->bi_status) {
1973 		if (repl)
1974 			md_error(mddev, rdev);
1975 		else {
1976 			set_bit(WriteErrorSeen, &rdev->flags);
1977 			if (!test_and_set_bit(WantReplacement, &rdev->flags))
1978 				set_bit(MD_RECOVERY_NEEDED,
1979 					&rdev->mddev->recovery);
1980 			set_bit(R10BIO_WriteError, &r10_bio->state);
1981 		}
1982 	} else if (is_badblock(rdev,
1983 			     r10_bio->devs[slot].addr,
1984 			     r10_bio->sectors,
1985 			     &first_bad, &bad_sectors))
1986 		set_bit(R10BIO_MadeGood, &r10_bio->state);
1987 
1988 	rdev_dec_pending(rdev, mddev);
1989 
1990 	end_sync_request(r10_bio);
1991 }
1992 
1993 /*
1994  * Note: sync and recover and handled very differently for raid10
1995  * This code is for resync.
1996  * For resync, we read through virtual addresses and read all blocks.
1997  * If there is any error, we schedule a write.  The lowest numbered
1998  * drive is authoritative.
1999  * However requests come for physical address, so we need to map.
2000  * For every physical address there are raid_disks/copies virtual addresses,
2001  * which is always are least one, but is not necessarly an integer.
2002  * This means that a physical address can span multiple chunks, so we may
2003  * have to submit multiple io requests for a single sync request.
2004  */
2005 /*
2006  * We check if all blocks are in-sync and only write to blocks that
2007  * aren't in sync
2008  */
2009 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2010 {
2011 	struct r10conf *conf = mddev->private;
2012 	int i, first;
2013 	struct bio *tbio, *fbio;
2014 	int vcnt;
2015 	struct page **tpages, **fpages;
2016 
2017 	atomic_set(&r10_bio->remaining, 1);
2018 
2019 	/* find the first device with a block */
2020 	for (i=0; i<conf->copies; i++)
2021 		if (!r10_bio->devs[i].bio->bi_status)
2022 			break;
2023 
2024 	if (i == conf->copies)
2025 		goto done;
2026 
2027 	first = i;
2028 	fbio = r10_bio->devs[i].bio;
2029 	fbio->bi_iter.bi_size = r10_bio->sectors << 9;
2030 	fbio->bi_iter.bi_idx = 0;
2031 	fpages = get_resync_pages(fbio)->pages;
2032 
2033 	vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
2034 	/* now find blocks with errors */
2035 	for (i=0 ; i < conf->copies ; i++) {
2036 		int  j, d;
2037 		struct md_rdev *rdev;
2038 		struct resync_pages *rp;
2039 
2040 		tbio = r10_bio->devs[i].bio;
2041 
2042 		if (tbio->bi_end_io != end_sync_read)
2043 			continue;
2044 		if (i == first)
2045 			continue;
2046 
2047 		tpages = get_resync_pages(tbio)->pages;
2048 		d = r10_bio->devs[i].devnum;
2049 		rdev = conf->mirrors[d].rdev;
2050 		if (!r10_bio->devs[i].bio->bi_status) {
2051 			/* We know that the bi_io_vec layout is the same for
2052 			 * both 'first' and 'i', so we just compare them.
2053 			 * All vec entries are PAGE_SIZE;
2054 			 */
2055 			int sectors = r10_bio->sectors;
2056 			for (j = 0; j < vcnt; j++) {
2057 				int len = PAGE_SIZE;
2058 				if (sectors < (len / 512))
2059 					len = sectors * 512;
2060 				if (memcmp(page_address(fpages[j]),
2061 					   page_address(tpages[j]),
2062 					   len))
2063 					break;
2064 				sectors -= len/512;
2065 			}
2066 			if (j == vcnt)
2067 				continue;
2068 			atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
2069 			if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2070 				/* Don't fix anything. */
2071 				continue;
2072 		} else if (test_bit(FailFast, &rdev->flags)) {
2073 			/* Just give up on this device */
2074 			md_error(rdev->mddev, rdev);
2075 			continue;
2076 		}
2077 		/* Ok, we need to write this bio, either to correct an
2078 		 * inconsistency or to correct an unreadable block.
2079 		 * First we need to fixup bv_offset, bv_len and
2080 		 * bi_vecs, as the read request might have corrupted these
2081 		 */
2082 		rp = get_resync_pages(tbio);
2083 		bio_reset(tbio);
2084 
2085 		md_bio_reset_resync_pages(tbio, rp, fbio->bi_iter.bi_size);
2086 
2087 		rp->raid_bio = r10_bio;
2088 		tbio->bi_private = rp;
2089 		tbio->bi_iter.bi_sector = r10_bio->devs[i].addr;
2090 		tbio->bi_end_io = end_sync_write;
2091 		bio_set_op_attrs(tbio, REQ_OP_WRITE, 0);
2092 
2093 		bio_copy_data(tbio, fbio);
2094 
2095 		atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2096 		atomic_inc(&r10_bio->remaining);
2097 		md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio));
2098 
2099 		if (test_bit(FailFast, &conf->mirrors[d].rdev->flags))
2100 			tbio->bi_opf |= MD_FAILFAST;
2101 		tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset;
2102 		bio_set_dev(tbio, conf->mirrors[d].rdev->bdev);
2103 		generic_make_request(tbio);
2104 	}
2105 
2106 	/* Now write out to any replacement devices
2107 	 * that are active
2108 	 */
2109 	for (i = 0; i < conf->copies; i++) {
2110 		int d;
2111 
2112 		tbio = r10_bio->devs[i].repl_bio;
2113 		if (!tbio || !tbio->bi_end_io)
2114 			continue;
2115 		if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2116 		    && r10_bio->devs[i].bio != fbio)
2117 			bio_copy_data(tbio, fbio);
2118 		d = r10_bio->devs[i].devnum;
2119 		atomic_inc(&r10_bio->remaining);
2120 		md_sync_acct(conf->mirrors[d].replacement->bdev,
2121 			     bio_sectors(tbio));
2122 		generic_make_request(tbio);
2123 	}
2124 
2125 done:
2126 	if (atomic_dec_and_test(&r10_bio->remaining)) {
2127 		md_done_sync(mddev, r10_bio->sectors, 1);
2128 		put_buf(r10_bio);
2129 	}
2130 }
2131 
2132 /*
2133  * Now for the recovery code.
2134  * Recovery happens across physical sectors.
2135  * We recover all non-is_sync drives by finding the virtual address of
2136  * each, and then choose a working drive that also has that virt address.
2137  * There is a separate r10_bio for each non-in_sync drive.
2138  * Only the first two slots are in use. The first for reading,
2139  * The second for writing.
2140  *
2141  */
2142 static void fix_recovery_read_error(struct r10bio *r10_bio)
2143 {
2144 	/* We got a read error during recovery.
2145 	 * We repeat the read in smaller page-sized sections.
2146 	 * If a read succeeds, write it to the new device or record
2147 	 * a bad block if we cannot.
2148 	 * If a read fails, record a bad block on both old and
2149 	 * new devices.
2150 	 */
2151 	struct mddev *mddev = r10_bio->mddev;
2152 	struct r10conf *conf = mddev->private;
2153 	struct bio *bio = r10_bio->devs[0].bio;
2154 	sector_t sect = 0;
2155 	int sectors = r10_bio->sectors;
2156 	int idx = 0;
2157 	int dr = r10_bio->devs[0].devnum;
2158 	int dw = r10_bio->devs[1].devnum;
2159 	struct page **pages = get_resync_pages(bio)->pages;
2160 
2161 	while (sectors) {
2162 		int s = sectors;
2163 		struct md_rdev *rdev;
2164 		sector_t addr;
2165 		int ok;
2166 
2167 		if (s > (PAGE_SIZE>>9))
2168 			s = PAGE_SIZE >> 9;
2169 
2170 		rdev = conf->mirrors[dr].rdev;
2171 		addr = r10_bio->devs[0].addr + sect,
2172 		ok = sync_page_io(rdev,
2173 				  addr,
2174 				  s << 9,
2175 				  pages[idx],
2176 				  REQ_OP_READ, 0, false);
2177 		if (ok) {
2178 			rdev = conf->mirrors[dw].rdev;
2179 			addr = r10_bio->devs[1].addr + sect;
2180 			ok = sync_page_io(rdev,
2181 					  addr,
2182 					  s << 9,
2183 					  pages[idx],
2184 					  REQ_OP_WRITE, 0, false);
2185 			if (!ok) {
2186 				set_bit(WriteErrorSeen, &rdev->flags);
2187 				if (!test_and_set_bit(WantReplacement,
2188 						      &rdev->flags))
2189 					set_bit(MD_RECOVERY_NEEDED,
2190 						&rdev->mddev->recovery);
2191 			}
2192 		}
2193 		if (!ok) {
2194 			/* We don't worry if we cannot set a bad block -
2195 			 * it really is bad so there is no loss in not
2196 			 * recording it yet
2197 			 */
2198 			rdev_set_badblocks(rdev, addr, s, 0);
2199 
2200 			if (rdev != conf->mirrors[dw].rdev) {
2201 				/* need bad block on destination too */
2202 				struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2203 				addr = r10_bio->devs[1].addr + sect;
2204 				ok = rdev_set_badblocks(rdev2, addr, s, 0);
2205 				if (!ok) {
2206 					/* just abort the recovery */
2207 					pr_notice("md/raid10:%s: recovery aborted due to read error\n",
2208 						  mdname(mddev));
2209 
2210 					conf->mirrors[dw].recovery_disabled
2211 						= mddev->recovery_disabled;
2212 					set_bit(MD_RECOVERY_INTR,
2213 						&mddev->recovery);
2214 					break;
2215 				}
2216 			}
2217 		}
2218 
2219 		sectors -= s;
2220 		sect += s;
2221 		idx++;
2222 	}
2223 }
2224 
2225 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2226 {
2227 	struct r10conf *conf = mddev->private;
2228 	int d;
2229 	struct bio *wbio, *wbio2;
2230 
2231 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2232 		fix_recovery_read_error(r10_bio);
2233 		end_sync_request(r10_bio);
2234 		return;
2235 	}
2236 
2237 	/*
2238 	 * share the pages with the first bio
2239 	 * and submit the write request
2240 	 */
2241 	d = r10_bio->devs[1].devnum;
2242 	wbio = r10_bio->devs[1].bio;
2243 	wbio2 = r10_bio->devs[1].repl_bio;
2244 	/* Need to test wbio2->bi_end_io before we call
2245 	 * generic_make_request as if the former is NULL,
2246 	 * the latter is free to free wbio2.
2247 	 */
2248 	if (wbio2 && !wbio2->bi_end_io)
2249 		wbio2 = NULL;
2250 	if (wbio->bi_end_io) {
2251 		atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2252 		md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio));
2253 		generic_make_request(wbio);
2254 	}
2255 	if (wbio2) {
2256 		atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2257 		md_sync_acct(conf->mirrors[d].replacement->bdev,
2258 			     bio_sectors(wbio2));
2259 		generic_make_request(wbio2);
2260 	}
2261 }
2262 
2263 /*
2264  * Used by fix_read_error() to decay the per rdev read_errors.
2265  * We halve the read error count for every hour that has elapsed
2266  * since the last recorded read error.
2267  *
2268  */
2269 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
2270 {
2271 	long cur_time_mon;
2272 	unsigned long hours_since_last;
2273 	unsigned int read_errors = atomic_read(&rdev->read_errors);
2274 
2275 	cur_time_mon = ktime_get_seconds();
2276 
2277 	if (rdev->last_read_error == 0) {
2278 		/* first time we've seen a read error */
2279 		rdev->last_read_error = cur_time_mon;
2280 		return;
2281 	}
2282 
2283 	hours_since_last = (long)(cur_time_mon -
2284 			    rdev->last_read_error) / 3600;
2285 
2286 	rdev->last_read_error = cur_time_mon;
2287 
2288 	/*
2289 	 * if hours_since_last is > the number of bits in read_errors
2290 	 * just set read errors to 0. We do this to avoid
2291 	 * overflowing the shift of read_errors by hours_since_last.
2292 	 */
2293 	if (hours_since_last >= 8 * sizeof(read_errors))
2294 		atomic_set(&rdev->read_errors, 0);
2295 	else
2296 		atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2297 }
2298 
2299 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2300 			    int sectors, struct page *page, int rw)
2301 {
2302 	sector_t first_bad;
2303 	int bad_sectors;
2304 
2305 	if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2306 	    && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2307 		return -1;
2308 	if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
2309 		/* success */
2310 		return 1;
2311 	if (rw == WRITE) {
2312 		set_bit(WriteErrorSeen, &rdev->flags);
2313 		if (!test_and_set_bit(WantReplacement, &rdev->flags))
2314 			set_bit(MD_RECOVERY_NEEDED,
2315 				&rdev->mddev->recovery);
2316 	}
2317 	/* need to record an error - either for the block or the device */
2318 	if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2319 		md_error(rdev->mddev, rdev);
2320 	return 0;
2321 }
2322 
2323 /*
2324  * This is a kernel thread which:
2325  *
2326  *	1.	Retries failed read operations on working mirrors.
2327  *	2.	Updates the raid superblock when problems encounter.
2328  *	3.	Performs writes following reads for array synchronising.
2329  */
2330 
2331 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2332 {
2333 	int sect = 0; /* Offset from r10_bio->sector */
2334 	int sectors = r10_bio->sectors;
2335 	struct md_rdev *rdev;
2336 	int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
2337 	int d = r10_bio->devs[r10_bio->read_slot].devnum;
2338 
2339 	/* still own a reference to this rdev, so it cannot
2340 	 * have been cleared recently.
2341 	 */
2342 	rdev = conf->mirrors[d].rdev;
2343 
2344 	if (test_bit(Faulty, &rdev->flags))
2345 		/* drive has already been failed, just ignore any
2346 		   more fix_read_error() attempts */
2347 		return;
2348 
2349 	check_decay_read_errors(mddev, rdev);
2350 	atomic_inc(&rdev->read_errors);
2351 	if (atomic_read(&rdev->read_errors) > max_read_errors) {
2352 		char b[BDEVNAME_SIZE];
2353 		bdevname(rdev->bdev, b);
2354 
2355 		pr_notice("md/raid10:%s: %s: Raid device exceeded read_error threshold [cur %d:max %d]\n",
2356 			  mdname(mddev), b,
2357 			  atomic_read(&rdev->read_errors), max_read_errors);
2358 		pr_notice("md/raid10:%s: %s: Failing raid device\n",
2359 			  mdname(mddev), b);
2360 		md_error(mddev, rdev);
2361 		r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
2362 		return;
2363 	}
2364 
2365 	while(sectors) {
2366 		int s = sectors;
2367 		int sl = r10_bio->read_slot;
2368 		int success = 0;
2369 		int start;
2370 
2371 		if (s > (PAGE_SIZE>>9))
2372 			s = PAGE_SIZE >> 9;
2373 
2374 		rcu_read_lock();
2375 		do {
2376 			sector_t first_bad;
2377 			int bad_sectors;
2378 
2379 			d = r10_bio->devs[sl].devnum;
2380 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2381 			if (rdev &&
2382 			    test_bit(In_sync, &rdev->flags) &&
2383 			    !test_bit(Faulty, &rdev->flags) &&
2384 			    is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2385 					&first_bad, &bad_sectors) == 0) {
2386 				atomic_inc(&rdev->nr_pending);
2387 				rcu_read_unlock();
2388 				success = sync_page_io(rdev,
2389 						       r10_bio->devs[sl].addr +
2390 						       sect,
2391 						       s<<9,
2392 						       conf->tmppage,
2393 						       REQ_OP_READ, 0, false);
2394 				rdev_dec_pending(rdev, mddev);
2395 				rcu_read_lock();
2396 				if (success)
2397 					break;
2398 			}
2399 			sl++;
2400 			if (sl == conf->copies)
2401 				sl = 0;
2402 		} while (!success && sl != r10_bio->read_slot);
2403 		rcu_read_unlock();
2404 
2405 		if (!success) {
2406 			/* Cannot read from anywhere, just mark the block
2407 			 * as bad on the first device to discourage future
2408 			 * reads.
2409 			 */
2410 			int dn = r10_bio->devs[r10_bio->read_slot].devnum;
2411 			rdev = conf->mirrors[dn].rdev;
2412 
2413 			if (!rdev_set_badblocks(
2414 				    rdev,
2415 				    r10_bio->devs[r10_bio->read_slot].addr
2416 				    + sect,
2417 				    s, 0)) {
2418 				md_error(mddev, rdev);
2419 				r10_bio->devs[r10_bio->read_slot].bio
2420 					= IO_BLOCKED;
2421 			}
2422 			break;
2423 		}
2424 
2425 		start = sl;
2426 		/* write it back and re-read */
2427 		rcu_read_lock();
2428 		while (sl != r10_bio->read_slot) {
2429 			char b[BDEVNAME_SIZE];
2430 
2431 			if (sl==0)
2432 				sl = conf->copies;
2433 			sl--;
2434 			d = r10_bio->devs[sl].devnum;
2435 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2436 			if (!rdev ||
2437 			    test_bit(Faulty, &rdev->flags) ||
2438 			    !test_bit(In_sync, &rdev->flags))
2439 				continue;
2440 
2441 			atomic_inc(&rdev->nr_pending);
2442 			rcu_read_unlock();
2443 			if (r10_sync_page_io(rdev,
2444 					     r10_bio->devs[sl].addr +
2445 					     sect,
2446 					     s, conf->tmppage, WRITE)
2447 			    == 0) {
2448 				/* Well, this device is dead */
2449 				pr_notice("md/raid10:%s: read correction write failed (%d sectors at %llu on %s)\n",
2450 					  mdname(mddev), s,
2451 					  (unsigned long long)(
2452 						  sect +
2453 						  choose_data_offset(r10_bio,
2454 								     rdev)),
2455 					  bdevname(rdev->bdev, b));
2456 				pr_notice("md/raid10:%s: %s: failing drive\n",
2457 					  mdname(mddev),
2458 					  bdevname(rdev->bdev, b));
2459 			}
2460 			rdev_dec_pending(rdev, mddev);
2461 			rcu_read_lock();
2462 		}
2463 		sl = start;
2464 		while (sl != r10_bio->read_slot) {
2465 			char b[BDEVNAME_SIZE];
2466 
2467 			if (sl==0)
2468 				sl = conf->copies;
2469 			sl--;
2470 			d = r10_bio->devs[sl].devnum;
2471 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2472 			if (!rdev ||
2473 			    test_bit(Faulty, &rdev->flags) ||
2474 			    !test_bit(In_sync, &rdev->flags))
2475 				continue;
2476 
2477 			atomic_inc(&rdev->nr_pending);
2478 			rcu_read_unlock();
2479 			switch (r10_sync_page_io(rdev,
2480 					     r10_bio->devs[sl].addr +
2481 					     sect,
2482 					     s, conf->tmppage,
2483 						 READ)) {
2484 			case 0:
2485 				/* Well, this device is dead */
2486 				pr_notice("md/raid10:%s: unable to read back corrected sectors (%d sectors at %llu on %s)\n",
2487 				       mdname(mddev), s,
2488 				       (unsigned long long)(
2489 					       sect +
2490 					       choose_data_offset(r10_bio, rdev)),
2491 				       bdevname(rdev->bdev, b));
2492 				pr_notice("md/raid10:%s: %s: failing drive\n",
2493 				       mdname(mddev),
2494 				       bdevname(rdev->bdev, b));
2495 				break;
2496 			case 1:
2497 				pr_info("md/raid10:%s: read error corrected (%d sectors at %llu on %s)\n",
2498 				       mdname(mddev), s,
2499 				       (unsigned long long)(
2500 					       sect +
2501 					       choose_data_offset(r10_bio, rdev)),
2502 				       bdevname(rdev->bdev, b));
2503 				atomic_add(s, &rdev->corrected_errors);
2504 			}
2505 
2506 			rdev_dec_pending(rdev, mddev);
2507 			rcu_read_lock();
2508 		}
2509 		rcu_read_unlock();
2510 
2511 		sectors -= s;
2512 		sect += s;
2513 	}
2514 }
2515 
2516 static int narrow_write_error(struct r10bio *r10_bio, int i)
2517 {
2518 	struct bio *bio = r10_bio->master_bio;
2519 	struct mddev *mddev = r10_bio->mddev;
2520 	struct r10conf *conf = mddev->private;
2521 	struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2522 	/* bio has the data to be written to slot 'i' where
2523 	 * we just recently had a write error.
2524 	 * We repeatedly clone the bio and trim down to one block,
2525 	 * then try the write.  Where the write fails we record
2526 	 * a bad block.
2527 	 * It is conceivable that the bio doesn't exactly align with
2528 	 * blocks.  We must handle this.
2529 	 *
2530 	 * We currently own a reference to the rdev.
2531 	 */
2532 
2533 	int block_sectors;
2534 	sector_t sector;
2535 	int sectors;
2536 	int sect_to_write = r10_bio->sectors;
2537 	int ok = 1;
2538 
2539 	if (rdev->badblocks.shift < 0)
2540 		return 0;
2541 
2542 	block_sectors = roundup(1 << rdev->badblocks.shift,
2543 				bdev_logical_block_size(rdev->bdev) >> 9);
2544 	sector = r10_bio->sector;
2545 	sectors = ((r10_bio->sector + block_sectors)
2546 		   & ~(sector_t)(block_sectors - 1))
2547 		- sector;
2548 
2549 	while (sect_to_write) {
2550 		struct bio *wbio;
2551 		sector_t wsector;
2552 		if (sectors > sect_to_write)
2553 			sectors = sect_to_write;
2554 		/* Write at 'sector' for 'sectors' */
2555 		wbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set);
2556 		bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors);
2557 		wsector = r10_bio->devs[i].addr + (sector - r10_bio->sector);
2558 		wbio->bi_iter.bi_sector = wsector +
2559 				   choose_data_offset(r10_bio, rdev);
2560 		bio_set_dev(wbio, rdev->bdev);
2561 		bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2562 
2563 		if (submit_bio_wait(wbio) < 0)
2564 			/* Failure! */
2565 			ok = rdev_set_badblocks(rdev, wsector,
2566 						sectors, 0)
2567 				&& ok;
2568 
2569 		bio_put(wbio);
2570 		sect_to_write -= sectors;
2571 		sector += sectors;
2572 		sectors = block_sectors;
2573 	}
2574 	return ok;
2575 }
2576 
2577 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2578 {
2579 	int slot = r10_bio->read_slot;
2580 	struct bio *bio;
2581 	struct r10conf *conf = mddev->private;
2582 	struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2583 
2584 	/* we got a read error. Maybe the drive is bad.  Maybe just
2585 	 * the block and we can fix it.
2586 	 * We freeze all other IO, and try reading the block from
2587 	 * other devices.  When we find one, we re-write
2588 	 * and check it that fixes the read error.
2589 	 * This is all done synchronously while the array is
2590 	 * frozen.
2591 	 */
2592 	bio = r10_bio->devs[slot].bio;
2593 	bio_put(bio);
2594 	r10_bio->devs[slot].bio = NULL;
2595 
2596 	if (mddev->ro)
2597 		r10_bio->devs[slot].bio = IO_BLOCKED;
2598 	else if (!test_bit(FailFast, &rdev->flags)) {
2599 		freeze_array(conf, 1);
2600 		fix_read_error(conf, mddev, r10_bio);
2601 		unfreeze_array(conf);
2602 	} else
2603 		md_error(mddev, rdev);
2604 
2605 	rdev_dec_pending(rdev, mddev);
2606 	allow_barrier(conf);
2607 	r10_bio->state = 0;
2608 	raid10_read_request(mddev, r10_bio->master_bio, r10_bio);
2609 }
2610 
2611 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2612 {
2613 	/* Some sort of write request has finished and it
2614 	 * succeeded in writing where we thought there was a
2615 	 * bad block.  So forget the bad block.
2616 	 * Or possibly if failed and we need to record
2617 	 * a bad block.
2618 	 */
2619 	int m;
2620 	struct md_rdev *rdev;
2621 
2622 	if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2623 	    test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2624 		for (m = 0; m < conf->copies; m++) {
2625 			int dev = r10_bio->devs[m].devnum;
2626 			rdev = conf->mirrors[dev].rdev;
2627 			if (r10_bio->devs[m].bio == NULL ||
2628 				r10_bio->devs[m].bio->bi_end_io == NULL)
2629 				continue;
2630 			if (!r10_bio->devs[m].bio->bi_status) {
2631 				rdev_clear_badblocks(
2632 					rdev,
2633 					r10_bio->devs[m].addr,
2634 					r10_bio->sectors, 0);
2635 			} else {
2636 				if (!rdev_set_badblocks(
2637 					    rdev,
2638 					    r10_bio->devs[m].addr,
2639 					    r10_bio->sectors, 0))
2640 					md_error(conf->mddev, rdev);
2641 			}
2642 			rdev = conf->mirrors[dev].replacement;
2643 			if (r10_bio->devs[m].repl_bio == NULL ||
2644 				r10_bio->devs[m].repl_bio->bi_end_io == NULL)
2645 				continue;
2646 
2647 			if (!r10_bio->devs[m].repl_bio->bi_status) {
2648 				rdev_clear_badblocks(
2649 					rdev,
2650 					r10_bio->devs[m].addr,
2651 					r10_bio->sectors, 0);
2652 			} else {
2653 				if (!rdev_set_badblocks(
2654 					    rdev,
2655 					    r10_bio->devs[m].addr,
2656 					    r10_bio->sectors, 0))
2657 					md_error(conf->mddev, rdev);
2658 			}
2659 		}
2660 		put_buf(r10_bio);
2661 	} else {
2662 		bool fail = false;
2663 		for (m = 0; m < conf->copies; m++) {
2664 			int dev = r10_bio->devs[m].devnum;
2665 			struct bio *bio = r10_bio->devs[m].bio;
2666 			rdev = conf->mirrors[dev].rdev;
2667 			if (bio == IO_MADE_GOOD) {
2668 				rdev_clear_badblocks(
2669 					rdev,
2670 					r10_bio->devs[m].addr,
2671 					r10_bio->sectors, 0);
2672 				rdev_dec_pending(rdev, conf->mddev);
2673 			} else if (bio != NULL && bio->bi_status) {
2674 				fail = true;
2675 				if (!narrow_write_error(r10_bio, m)) {
2676 					md_error(conf->mddev, rdev);
2677 					set_bit(R10BIO_Degraded,
2678 						&r10_bio->state);
2679 				}
2680 				rdev_dec_pending(rdev, conf->mddev);
2681 			}
2682 			bio = r10_bio->devs[m].repl_bio;
2683 			rdev = conf->mirrors[dev].replacement;
2684 			if (rdev && bio == IO_MADE_GOOD) {
2685 				rdev_clear_badblocks(
2686 					rdev,
2687 					r10_bio->devs[m].addr,
2688 					r10_bio->sectors, 0);
2689 				rdev_dec_pending(rdev, conf->mddev);
2690 			}
2691 		}
2692 		if (fail) {
2693 			spin_lock_irq(&conf->device_lock);
2694 			list_add(&r10_bio->retry_list, &conf->bio_end_io_list);
2695 			conf->nr_queued++;
2696 			spin_unlock_irq(&conf->device_lock);
2697 			/*
2698 			 * In case freeze_array() is waiting for condition
2699 			 * nr_pending == nr_queued + extra to be true.
2700 			 */
2701 			wake_up(&conf->wait_barrier);
2702 			md_wakeup_thread(conf->mddev->thread);
2703 		} else {
2704 			if (test_bit(R10BIO_WriteError,
2705 				     &r10_bio->state))
2706 				close_write(r10_bio);
2707 			raid_end_bio_io(r10_bio);
2708 		}
2709 	}
2710 }
2711 
2712 static void raid10d(struct md_thread *thread)
2713 {
2714 	struct mddev *mddev = thread->mddev;
2715 	struct r10bio *r10_bio;
2716 	unsigned long flags;
2717 	struct r10conf *conf = mddev->private;
2718 	struct list_head *head = &conf->retry_list;
2719 	struct blk_plug plug;
2720 
2721 	md_check_recovery(mddev);
2722 
2723 	if (!list_empty_careful(&conf->bio_end_io_list) &&
2724 	    !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2725 		LIST_HEAD(tmp);
2726 		spin_lock_irqsave(&conf->device_lock, flags);
2727 		if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2728 			while (!list_empty(&conf->bio_end_io_list)) {
2729 				list_move(conf->bio_end_io_list.prev, &tmp);
2730 				conf->nr_queued--;
2731 			}
2732 		}
2733 		spin_unlock_irqrestore(&conf->device_lock, flags);
2734 		while (!list_empty(&tmp)) {
2735 			r10_bio = list_first_entry(&tmp, struct r10bio,
2736 						   retry_list);
2737 			list_del(&r10_bio->retry_list);
2738 			if (mddev->degraded)
2739 				set_bit(R10BIO_Degraded, &r10_bio->state);
2740 
2741 			if (test_bit(R10BIO_WriteError,
2742 				     &r10_bio->state))
2743 				close_write(r10_bio);
2744 			raid_end_bio_io(r10_bio);
2745 		}
2746 	}
2747 
2748 	blk_start_plug(&plug);
2749 	for (;;) {
2750 
2751 		flush_pending_writes(conf);
2752 
2753 		spin_lock_irqsave(&conf->device_lock, flags);
2754 		if (list_empty(head)) {
2755 			spin_unlock_irqrestore(&conf->device_lock, flags);
2756 			break;
2757 		}
2758 		r10_bio = list_entry(head->prev, struct r10bio, retry_list);
2759 		list_del(head->prev);
2760 		conf->nr_queued--;
2761 		spin_unlock_irqrestore(&conf->device_lock, flags);
2762 
2763 		mddev = r10_bio->mddev;
2764 		conf = mddev->private;
2765 		if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2766 		    test_bit(R10BIO_WriteError, &r10_bio->state))
2767 			handle_write_completed(conf, r10_bio);
2768 		else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
2769 			reshape_request_write(mddev, r10_bio);
2770 		else if (test_bit(R10BIO_IsSync, &r10_bio->state))
2771 			sync_request_write(mddev, r10_bio);
2772 		else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
2773 			recovery_request_write(mddev, r10_bio);
2774 		else if (test_bit(R10BIO_ReadError, &r10_bio->state))
2775 			handle_read_error(mddev, r10_bio);
2776 		else
2777 			WARN_ON_ONCE(1);
2778 
2779 		cond_resched();
2780 		if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
2781 			md_check_recovery(mddev);
2782 	}
2783 	blk_finish_plug(&plug);
2784 }
2785 
2786 static int init_resync(struct r10conf *conf)
2787 {
2788 	int ret, buffs, i;
2789 
2790 	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2791 	BUG_ON(mempool_initialized(&conf->r10buf_pool));
2792 	conf->have_replacement = 0;
2793 	for (i = 0; i < conf->geo.raid_disks; i++)
2794 		if (conf->mirrors[i].replacement)
2795 			conf->have_replacement = 1;
2796 	ret = mempool_init(&conf->r10buf_pool, buffs,
2797 			   r10buf_pool_alloc, r10buf_pool_free, conf);
2798 	if (ret)
2799 		return ret;
2800 	conf->next_resync = 0;
2801 	return 0;
2802 }
2803 
2804 static struct r10bio *raid10_alloc_init_r10buf(struct r10conf *conf)
2805 {
2806 	struct r10bio *r10bio = mempool_alloc(&conf->r10buf_pool, GFP_NOIO);
2807 	struct rsync_pages *rp;
2808 	struct bio *bio;
2809 	int nalloc;
2810 	int i;
2811 
2812 	if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
2813 	    test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
2814 		nalloc = conf->copies; /* resync */
2815 	else
2816 		nalloc = 2; /* recovery */
2817 
2818 	for (i = 0; i < nalloc; i++) {
2819 		bio = r10bio->devs[i].bio;
2820 		rp = bio->bi_private;
2821 		bio_reset(bio);
2822 		bio->bi_private = rp;
2823 		bio = r10bio->devs[i].repl_bio;
2824 		if (bio) {
2825 			rp = bio->bi_private;
2826 			bio_reset(bio);
2827 			bio->bi_private = rp;
2828 		}
2829 	}
2830 	return r10bio;
2831 }
2832 
2833 /*
2834  * Set cluster_sync_high since we need other nodes to add the
2835  * range [cluster_sync_low, cluster_sync_high] to suspend list.
2836  */
2837 static void raid10_set_cluster_sync_high(struct r10conf *conf)
2838 {
2839 	sector_t window_size;
2840 	int extra_chunk, chunks;
2841 
2842 	/*
2843 	 * First, here we define "stripe" as a unit which across
2844 	 * all member devices one time, so we get chunks by use
2845 	 * raid_disks / near_copies. Otherwise, if near_copies is
2846 	 * close to raid_disks, then resync window could increases
2847 	 * linearly with the increase of raid_disks, which means
2848 	 * we will suspend a really large IO window while it is not
2849 	 * necessary. If raid_disks is not divisible by near_copies,
2850 	 * an extra chunk is needed to ensure the whole "stripe" is
2851 	 * covered.
2852 	 */
2853 
2854 	chunks = conf->geo.raid_disks / conf->geo.near_copies;
2855 	if (conf->geo.raid_disks % conf->geo.near_copies == 0)
2856 		extra_chunk = 0;
2857 	else
2858 		extra_chunk = 1;
2859 	window_size = (chunks + extra_chunk) * conf->mddev->chunk_sectors;
2860 
2861 	/*
2862 	 * At least use a 32M window to align with raid1's resync window
2863 	 */
2864 	window_size = (CLUSTER_RESYNC_WINDOW_SECTORS > window_size) ?
2865 			CLUSTER_RESYNC_WINDOW_SECTORS : window_size;
2866 
2867 	conf->cluster_sync_high = conf->cluster_sync_low + window_size;
2868 }
2869 
2870 /*
2871  * perform a "sync" on one "block"
2872  *
2873  * We need to make sure that no normal I/O request - particularly write
2874  * requests - conflict with active sync requests.
2875  *
2876  * This is achieved by tracking pending requests and a 'barrier' concept
2877  * that can be installed to exclude normal IO requests.
2878  *
2879  * Resync and recovery are handled very differently.
2880  * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2881  *
2882  * For resync, we iterate over virtual addresses, read all copies,
2883  * and update if there are differences.  If only one copy is live,
2884  * skip it.
2885  * For recovery, we iterate over physical addresses, read a good
2886  * value for each non-in_sync drive, and over-write.
2887  *
2888  * So, for recovery we may have several outstanding complex requests for a
2889  * given address, one for each out-of-sync device.  We model this by allocating
2890  * a number of r10_bio structures, one for each out-of-sync device.
2891  * As we setup these structures, we collect all bio's together into a list
2892  * which we then process collectively to add pages, and then process again
2893  * to pass to generic_make_request.
2894  *
2895  * The r10_bio structures are linked using a borrowed master_bio pointer.
2896  * This link is counted in ->remaining.  When the r10_bio that points to NULL
2897  * has its remaining count decremented to 0, the whole complex operation
2898  * is complete.
2899  *
2900  */
2901 
2902 static sector_t raid10_sync_request(struct mddev *mddev, sector_t sector_nr,
2903 			     int *skipped)
2904 {
2905 	struct r10conf *conf = mddev->private;
2906 	struct r10bio *r10_bio;
2907 	struct bio *biolist = NULL, *bio;
2908 	sector_t max_sector, nr_sectors;
2909 	int i;
2910 	int max_sync;
2911 	sector_t sync_blocks;
2912 	sector_t sectors_skipped = 0;
2913 	int chunks_skipped = 0;
2914 	sector_t chunk_mask = conf->geo.chunk_mask;
2915 	int page_idx = 0;
2916 
2917 	if (!mempool_initialized(&conf->r10buf_pool))
2918 		if (init_resync(conf))
2919 			return 0;
2920 
2921 	/*
2922 	 * Allow skipping a full rebuild for incremental assembly
2923 	 * of a clean array, like RAID1 does.
2924 	 */
2925 	if (mddev->bitmap == NULL &&
2926 	    mddev->recovery_cp == MaxSector &&
2927 	    mddev->reshape_position == MaxSector &&
2928 	    !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2929 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2930 	    !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
2931 	    conf->fullsync == 0) {
2932 		*skipped = 1;
2933 		return mddev->dev_sectors - sector_nr;
2934 	}
2935 
2936  skipped:
2937 	max_sector = mddev->dev_sectors;
2938 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
2939 	    test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2940 		max_sector = mddev->resync_max_sectors;
2941 	if (sector_nr >= max_sector) {
2942 		conf->cluster_sync_low = 0;
2943 		conf->cluster_sync_high = 0;
2944 
2945 		/* If we aborted, we need to abort the
2946 		 * sync on the 'current' bitmap chucks (there can
2947 		 * be several when recovering multiple devices).
2948 		 * as we may have started syncing it but not finished.
2949 		 * We can find the current address in
2950 		 * mddev->curr_resync, but for recovery,
2951 		 * we need to convert that to several
2952 		 * virtual addresses.
2953 		 */
2954 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
2955 			end_reshape(conf);
2956 			close_sync(conf);
2957 			return 0;
2958 		}
2959 
2960 		if (mddev->curr_resync < max_sector) { /* aborted */
2961 			if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2962 				md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2963 						   &sync_blocks, 1);
2964 			else for (i = 0; i < conf->geo.raid_disks; i++) {
2965 				sector_t sect =
2966 					raid10_find_virt(conf, mddev->curr_resync, i);
2967 				md_bitmap_end_sync(mddev->bitmap, sect,
2968 						   &sync_blocks, 1);
2969 			}
2970 		} else {
2971 			/* completed sync */
2972 			if ((!mddev->bitmap || conf->fullsync)
2973 			    && conf->have_replacement
2974 			    && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2975 				/* Completed a full sync so the replacements
2976 				 * are now fully recovered.
2977 				 */
2978 				rcu_read_lock();
2979 				for (i = 0; i < conf->geo.raid_disks; i++) {
2980 					struct md_rdev *rdev =
2981 						rcu_dereference(conf->mirrors[i].replacement);
2982 					if (rdev)
2983 						rdev->recovery_offset = MaxSector;
2984 				}
2985 				rcu_read_unlock();
2986 			}
2987 			conf->fullsync = 0;
2988 		}
2989 		md_bitmap_close_sync(mddev->bitmap);
2990 		close_sync(conf);
2991 		*skipped = 1;
2992 		return sectors_skipped;
2993 	}
2994 
2995 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2996 		return reshape_request(mddev, sector_nr, skipped);
2997 
2998 	if (chunks_skipped >= conf->geo.raid_disks) {
2999 		/* if there has been nothing to do on any drive,
3000 		 * then there is nothing to do at all..
3001 		 */
3002 		*skipped = 1;
3003 		return (max_sector - sector_nr) + sectors_skipped;
3004 	}
3005 
3006 	if (max_sector > mddev->resync_max)
3007 		max_sector = mddev->resync_max; /* Don't do IO beyond here */
3008 
3009 	/* make sure whole request will fit in a chunk - if chunks
3010 	 * are meaningful
3011 	 */
3012 	if (conf->geo.near_copies < conf->geo.raid_disks &&
3013 	    max_sector > (sector_nr | chunk_mask))
3014 		max_sector = (sector_nr | chunk_mask) + 1;
3015 
3016 	/*
3017 	 * If there is non-resync activity waiting for a turn, then let it
3018 	 * though before starting on this new sync request.
3019 	 */
3020 	if (conf->nr_waiting)
3021 		schedule_timeout_uninterruptible(1);
3022 
3023 	/* Again, very different code for resync and recovery.
3024 	 * Both must result in an r10bio with a list of bios that
3025 	 * have bi_end_io, bi_sector, bi_disk set,
3026 	 * and bi_private set to the r10bio.
3027 	 * For recovery, we may actually create several r10bios
3028 	 * with 2 bios in each, that correspond to the bios in the main one.
3029 	 * In this case, the subordinate r10bios link back through a
3030 	 * borrowed master_bio pointer, and the counter in the master
3031 	 * includes a ref from each subordinate.
3032 	 */
3033 	/* First, we decide what to do and set ->bi_end_io
3034 	 * To end_sync_read if we want to read, and
3035 	 * end_sync_write if we will want to write.
3036 	 */
3037 
3038 	max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
3039 	if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3040 		/* recovery... the complicated one */
3041 		int j;
3042 		r10_bio = NULL;
3043 
3044 		for (i = 0 ; i < conf->geo.raid_disks; i++) {
3045 			int still_degraded;
3046 			struct r10bio *rb2;
3047 			sector_t sect;
3048 			int must_sync;
3049 			int any_working;
3050 			int need_recover = 0;
3051 			int need_replace = 0;
3052 			struct raid10_info *mirror = &conf->mirrors[i];
3053 			struct md_rdev *mrdev, *mreplace;
3054 
3055 			rcu_read_lock();
3056 			mrdev = rcu_dereference(mirror->rdev);
3057 			mreplace = rcu_dereference(mirror->replacement);
3058 
3059 			if (mrdev != NULL &&
3060 			    !test_bit(Faulty, &mrdev->flags) &&
3061 			    !test_bit(In_sync, &mrdev->flags))
3062 				need_recover = 1;
3063 			if (mreplace != NULL &&
3064 			    !test_bit(Faulty, &mreplace->flags))
3065 				need_replace = 1;
3066 
3067 			if (!need_recover && !need_replace) {
3068 				rcu_read_unlock();
3069 				continue;
3070 			}
3071 
3072 			still_degraded = 0;
3073 			/* want to reconstruct this device */
3074 			rb2 = r10_bio;
3075 			sect = raid10_find_virt(conf, sector_nr, i);
3076 			if (sect >= mddev->resync_max_sectors) {
3077 				/* last stripe is not complete - don't
3078 				 * try to recover this sector.
3079 				 */
3080 				rcu_read_unlock();
3081 				continue;
3082 			}
3083 			if (mreplace && test_bit(Faulty, &mreplace->flags))
3084 				mreplace = NULL;
3085 			/* Unless we are doing a full sync, or a replacement
3086 			 * we only need to recover the block if it is set in
3087 			 * the bitmap
3088 			 */
3089 			must_sync = md_bitmap_start_sync(mddev->bitmap, sect,
3090 							 &sync_blocks, 1);
3091 			if (sync_blocks < max_sync)
3092 				max_sync = sync_blocks;
3093 			if (!must_sync &&
3094 			    mreplace == NULL &&
3095 			    !conf->fullsync) {
3096 				/* yep, skip the sync_blocks here, but don't assume
3097 				 * that there will never be anything to do here
3098 				 */
3099 				chunks_skipped = -1;
3100 				rcu_read_unlock();
3101 				continue;
3102 			}
3103 			atomic_inc(&mrdev->nr_pending);
3104 			if (mreplace)
3105 				atomic_inc(&mreplace->nr_pending);
3106 			rcu_read_unlock();
3107 
3108 			r10_bio = raid10_alloc_init_r10buf(conf);
3109 			r10_bio->state = 0;
3110 			raise_barrier(conf, rb2 != NULL);
3111 			atomic_set(&r10_bio->remaining, 0);
3112 
3113 			r10_bio->master_bio = (struct bio*)rb2;
3114 			if (rb2)
3115 				atomic_inc(&rb2->remaining);
3116 			r10_bio->mddev = mddev;
3117 			set_bit(R10BIO_IsRecover, &r10_bio->state);
3118 			r10_bio->sector = sect;
3119 
3120 			raid10_find_phys(conf, r10_bio);
3121 
3122 			/* Need to check if the array will still be
3123 			 * degraded
3124 			 */
3125 			rcu_read_lock();
3126 			for (j = 0; j < conf->geo.raid_disks; j++) {
3127 				struct md_rdev *rdev = rcu_dereference(
3128 					conf->mirrors[j].rdev);
3129 				if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3130 					still_degraded = 1;
3131 					break;
3132 				}
3133 			}
3134 
3135 			must_sync = md_bitmap_start_sync(mddev->bitmap, sect,
3136 							 &sync_blocks, still_degraded);
3137 
3138 			any_working = 0;
3139 			for (j=0; j<conf->copies;j++) {
3140 				int k;
3141 				int d = r10_bio->devs[j].devnum;
3142 				sector_t from_addr, to_addr;
3143 				struct md_rdev *rdev =
3144 					rcu_dereference(conf->mirrors[d].rdev);
3145 				sector_t sector, first_bad;
3146 				int bad_sectors;
3147 				if (!rdev ||
3148 				    !test_bit(In_sync, &rdev->flags))
3149 					continue;
3150 				/* This is where we read from */
3151 				any_working = 1;
3152 				sector = r10_bio->devs[j].addr;
3153 
3154 				if (is_badblock(rdev, sector, max_sync,
3155 						&first_bad, &bad_sectors)) {
3156 					if (first_bad > sector)
3157 						max_sync = first_bad - sector;
3158 					else {
3159 						bad_sectors -= (sector
3160 								- first_bad);
3161 						if (max_sync > bad_sectors)
3162 							max_sync = bad_sectors;
3163 						continue;
3164 					}
3165 				}
3166 				bio = r10_bio->devs[0].bio;
3167 				bio->bi_next = biolist;
3168 				biolist = bio;
3169 				bio->bi_end_io = end_sync_read;
3170 				bio_set_op_attrs(bio, REQ_OP_READ, 0);
3171 				if (test_bit(FailFast, &rdev->flags))
3172 					bio->bi_opf |= MD_FAILFAST;
3173 				from_addr = r10_bio->devs[j].addr;
3174 				bio->bi_iter.bi_sector = from_addr +
3175 					rdev->data_offset;
3176 				bio_set_dev(bio, rdev->bdev);
3177 				atomic_inc(&rdev->nr_pending);
3178 				/* and we write to 'i' (if not in_sync) */
3179 
3180 				for (k=0; k<conf->copies; k++)
3181 					if (r10_bio->devs[k].devnum == i)
3182 						break;
3183 				BUG_ON(k == conf->copies);
3184 				to_addr = r10_bio->devs[k].addr;
3185 				r10_bio->devs[0].devnum = d;
3186 				r10_bio->devs[0].addr = from_addr;
3187 				r10_bio->devs[1].devnum = i;
3188 				r10_bio->devs[1].addr = to_addr;
3189 
3190 				if (need_recover) {
3191 					bio = r10_bio->devs[1].bio;
3192 					bio->bi_next = biolist;
3193 					biolist = bio;
3194 					bio->bi_end_io = end_sync_write;
3195 					bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3196 					bio->bi_iter.bi_sector = to_addr
3197 						+ mrdev->data_offset;
3198 					bio_set_dev(bio, mrdev->bdev);
3199 					atomic_inc(&r10_bio->remaining);
3200 				} else
3201 					r10_bio->devs[1].bio->bi_end_io = NULL;
3202 
3203 				/* and maybe write to replacement */
3204 				bio = r10_bio->devs[1].repl_bio;
3205 				if (bio)
3206 					bio->bi_end_io = NULL;
3207 				/* Note: if need_replace, then bio
3208 				 * cannot be NULL as r10buf_pool_alloc will
3209 				 * have allocated it.
3210 				 */
3211 				if (!need_replace)
3212 					break;
3213 				bio->bi_next = biolist;
3214 				biolist = bio;
3215 				bio->bi_end_io = end_sync_write;
3216 				bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3217 				bio->bi_iter.bi_sector = to_addr +
3218 					mreplace->data_offset;
3219 				bio_set_dev(bio, mreplace->bdev);
3220 				atomic_inc(&r10_bio->remaining);
3221 				break;
3222 			}
3223 			rcu_read_unlock();
3224 			if (j == conf->copies) {
3225 				/* Cannot recover, so abort the recovery or
3226 				 * record a bad block */
3227 				if (any_working) {
3228 					/* problem is that there are bad blocks
3229 					 * on other device(s)
3230 					 */
3231 					int k;
3232 					for (k = 0; k < conf->copies; k++)
3233 						if (r10_bio->devs[k].devnum == i)
3234 							break;
3235 					if (!test_bit(In_sync,
3236 						      &mrdev->flags)
3237 					    && !rdev_set_badblocks(
3238 						    mrdev,
3239 						    r10_bio->devs[k].addr,
3240 						    max_sync, 0))
3241 						any_working = 0;
3242 					if (mreplace &&
3243 					    !rdev_set_badblocks(
3244 						    mreplace,
3245 						    r10_bio->devs[k].addr,
3246 						    max_sync, 0))
3247 						any_working = 0;
3248 				}
3249 				if (!any_working)  {
3250 					if (!test_and_set_bit(MD_RECOVERY_INTR,
3251 							      &mddev->recovery))
3252 						pr_warn("md/raid10:%s: insufficient working devices for recovery.\n",
3253 						       mdname(mddev));
3254 					mirror->recovery_disabled
3255 						= mddev->recovery_disabled;
3256 				}
3257 				put_buf(r10_bio);
3258 				if (rb2)
3259 					atomic_dec(&rb2->remaining);
3260 				r10_bio = rb2;
3261 				rdev_dec_pending(mrdev, mddev);
3262 				if (mreplace)
3263 					rdev_dec_pending(mreplace, mddev);
3264 				break;
3265 			}
3266 			rdev_dec_pending(mrdev, mddev);
3267 			if (mreplace)
3268 				rdev_dec_pending(mreplace, mddev);
3269 			if (r10_bio->devs[0].bio->bi_opf & MD_FAILFAST) {
3270 				/* Only want this if there is elsewhere to
3271 				 * read from. 'j' is currently the first
3272 				 * readable copy.
3273 				 */
3274 				int targets = 1;
3275 				for (; j < conf->copies; j++) {
3276 					int d = r10_bio->devs[j].devnum;
3277 					if (conf->mirrors[d].rdev &&
3278 					    test_bit(In_sync,
3279 						      &conf->mirrors[d].rdev->flags))
3280 						targets++;
3281 				}
3282 				if (targets == 1)
3283 					r10_bio->devs[0].bio->bi_opf
3284 						&= ~MD_FAILFAST;
3285 			}
3286 		}
3287 		if (biolist == NULL) {
3288 			while (r10_bio) {
3289 				struct r10bio *rb2 = r10_bio;
3290 				r10_bio = (struct r10bio*) rb2->master_bio;
3291 				rb2->master_bio = NULL;
3292 				put_buf(rb2);
3293 			}
3294 			goto giveup;
3295 		}
3296 	} else {
3297 		/* resync. Schedule a read for every block at this virt offset */
3298 		int count = 0;
3299 
3300 		/*
3301 		 * Since curr_resync_completed could probably not update in
3302 		 * time, and we will set cluster_sync_low based on it.
3303 		 * Let's check against "sector_nr + 2 * RESYNC_SECTORS" for
3304 		 * safety reason, which ensures curr_resync_completed is
3305 		 * updated in bitmap_cond_end_sync.
3306 		 */
3307 		md_bitmap_cond_end_sync(mddev->bitmap, sector_nr,
3308 					mddev_is_clustered(mddev) &&
3309 					(sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
3310 
3311 		if (!md_bitmap_start_sync(mddev->bitmap, sector_nr,
3312 					  &sync_blocks, mddev->degraded) &&
3313 		    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3314 						 &mddev->recovery)) {
3315 			/* We can skip this block */
3316 			*skipped = 1;
3317 			return sync_blocks + sectors_skipped;
3318 		}
3319 		if (sync_blocks < max_sync)
3320 			max_sync = sync_blocks;
3321 		r10_bio = raid10_alloc_init_r10buf(conf);
3322 		r10_bio->state = 0;
3323 
3324 		r10_bio->mddev = mddev;
3325 		atomic_set(&r10_bio->remaining, 0);
3326 		raise_barrier(conf, 0);
3327 		conf->next_resync = sector_nr;
3328 
3329 		r10_bio->master_bio = NULL;
3330 		r10_bio->sector = sector_nr;
3331 		set_bit(R10BIO_IsSync, &r10_bio->state);
3332 		raid10_find_phys(conf, r10_bio);
3333 		r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3334 
3335 		for (i = 0; i < conf->copies; i++) {
3336 			int d = r10_bio->devs[i].devnum;
3337 			sector_t first_bad, sector;
3338 			int bad_sectors;
3339 			struct md_rdev *rdev;
3340 
3341 			if (r10_bio->devs[i].repl_bio)
3342 				r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3343 
3344 			bio = r10_bio->devs[i].bio;
3345 			bio->bi_status = BLK_STS_IOERR;
3346 			rcu_read_lock();
3347 			rdev = rcu_dereference(conf->mirrors[d].rdev);
3348 			if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3349 				rcu_read_unlock();
3350 				continue;
3351 			}
3352 			sector = r10_bio->devs[i].addr;
3353 			if (is_badblock(rdev, sector, max_sync,
3354 					&first_bad, &bad_sectors)) {
3355 				if (first_bad > sector)
3356 					max_sync = first_bad - sector;
3357 				else {
3358 					bad_sectors -= (sector - first_bad);
3359 					if (max_sync > bad_sectors)
3360 						max_sync = bad_sectors;
3361 					rcu_read_unlock();
3362 					continue;
3363 				}
3364 			}
3365 			atomic_inc(&rdev->nr_pending);
3366 			atomic_inc(&r10_bio->remaining);
3367 			bio->bi_next = biolist;
3368 			biolist = bio;
3369 			bio->bi_end_io = end_sync_read;
3370 			bio_set_op_attrs(bio, REQ_OP_READ, 0);
3371 			if (test_bit(FailFast, &rdev->flags))
3372 				bio->bi_opf |= MD_FAILFAST;
3373 			bio->bi_iter.bi_sector = sector + rdev->data_offset;
3374 			bio_set_dev(bio, rdev->bdev);
3375 			count++;
3376 
3377 			rdev = rcu_dereference(conf->mirrors[d].replacement);
3378 			if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3379 				rcu_read_unlock();
3380 				continue;
3381 			}
3382 			atomic_inc(&rdev->nr_pending);
3383 
3384 			/* Need to set up for writing to the replacement */
3385 			bio = r10_bio->devs[i].repl_bio;
3386 			bio->bi_status = BLK_STS_IOERR;
3387 
3388 			sector = r10_bio->devs[i].addr;
3389 			bio->bi_next = biolist;
3390 			biolist = bio;
3391 			bio->bi_end_io = end_sync_write;
3392 			bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3393 			if (test_bit(FailFast, &rdev->flags))
3394 				bio->bi_opf |= MD_FAILFAST;
3395 			bio->bi_iter.bi_sector = sector + rdev->data_offset;
3396 			bio_set_dev(bio, rdev->bdev);
3397 			count++;
3398 			rcu_read_unlock();
3399 		}
3400 
3401 		if (count < 2) {
3402 			for (i=0; i<conf->copies; i++) {
3403 				int d = r10_bio->devs[i].devnum;
3404 				if (r10_bio->devs[i].bio->bi_end_io)
3405 					rdev_dec_pending(conf->mirrors[d].rdev,
3406 							 mddev);
3407 				if (r10_bio->devs[i].repl_bio &&
3408 				    r10_bio->devs[i].repl_bio->bi_end_io)
3409 					rdev_dec_pending(
3410 						conf->mirrors[d].replacement,
3411 						mddev);
3412 			}
3413 			put_buf(r10_bio);
3414 			biolist = NULL;
3415 			goto giveup;
3416 		}
3417 	}
3418 
3419 	nr_sectors = 0;
3420 	if (sector_nr + max_sync < max_sector)
3421 		max_sector = sector_nr + max_sync;
3422 	do {
3423 		struct page *page;
3424 		int len = PAGE_SIZE;
3425 		if (sector_nr + (len>>9) > max_sector)
3426 			len = (max_sector - sector_nr) << 9;
3427 		if (len == 0)
3428 			break;
3429 		for (bio= biolist ; bio ; bio=bio->bi_next) {
3430 			struct resync_pages *rp = get_resync_pages(bio);
3431 			page = resync_fetch_page(rp, page_idx);
3432 			/*
3433 			 * won't fail because the vec table is big enough
3434 			 * to hold all these pages
3435 			 */
3436 			bio_add_page(bio, page, len, 0);
3437 		}
3438 		nr_sectors += len>>9;
3439 		sector_nr += len>>9;
3440 	} while (++page_idx < RESYNC_PAGES);
3441 	r10_bio->sectors = nr_sectors;
3442 
3443 	if (mddev_is_clustered(mddev) &&
3444 	    test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3445 		/* It is resync not recovery */
3446 		if (conf->cluster_sync_high < sector_nr + nr_sectors) {
3447 			conf->cluster_sync_low = mddev->curr_resync_completed;
3448 			raid10_set_cluster_sync_high(conf);
3449 			/* Send resync message */
3450 			md_cluster_ops->resync_info_update(mddev,
3451 						conf->cluster_sync_low,
3452 						conf->cluster_sync_high);
3453 		}
3454 	} else if (mddev_is_clustered(mddev)) {
3455 		/* This is recovery not resync */
3456 		sector_t sect_va1, sect_va2;
3457 		bool broadcast_msg = false;
3458 
3459 		for (i = 0; i < conf->geo.raid_disks; i++) {
3460 			/*
3461 			 * sector_nr is a device address for recovery, so we
3462 			 * need translate it to array address before compare
3463 			 * with cluster_sync_high.
3464 			 */
3465 			sect_va1 = raid10_find_virt(conf, sector_nr, i);
3466 
3467 			if (conf->cluster_sync_high < sect_va1 + nr_sectors) {
3468 				broadcast_msg = true;
3469 				/*
3470 				 * curr_resync_completed is similar as
3471 				 * sector_nr, so make the translation too.
3472 				 */
3473 				sect_va2 = raid10_find_virt(conf,
3474 					mddev->curr_resync_completed, i);
3475 
3476 				if (conf->cluster_sync_low == 0 ||
3477 				    conf->cluster_sync_low > sect_va2)
3478 					conf->cluster_sync_low = sect_va2;
3479 			}
3480 		}
3481 		if (broadcast_msg) {
3482 			raid10_set_cluster_sync_high(conf);
3483 			md_cluster_ops->resync_info_update(mddev,
3484 						conf->cluster_sync_low,
3485 						conf->cluster_sync_high);
3486 		}
3487 	}
3488 
3489 	while (biolist) {
3490 		bio = biolist;
3491 		biolist = biolist->bi_next;
3492 
3493 		bio->bi_next = NULL;
3494 		r10_bio = get_resync_r10bio(bio);
3495 		r10_bio->sectors = nr_sectors;
3496 
3497 		if (bio->bi_end_io == end_sync_read) {
3498 			md_sync_acct_bio(bio, nr_sectors);
3499 			bio->bi_status = 0;
3500 			generic_make_request(bio);
3501 		}
3502 	}
3503 
3504 	if (sectors_skipped)
3505 		/* pretend they weren't skipped, it makes
3506 		 * no important difference in this case
3507 		 */
3508 		md_done_sync(mddev, sectors_skipped, 1);
3509 
3510 	return sectors_skipped + nr_sectors;
3511  giveup:
3512 	/* There is nowhere to write, so all non-sync
3513 	 * drives must be failed or in resync, all drives
3514 	 * have a bad block, so try the next chunk...
3515 	 */
3516 	if (sector_nr + max_sync < max_sector)
3517 		max_sector = sector_nr + max_sync;
3518 
3519 	sectors_skipped += (max_sector - sector_nr);
3520 	chunks_skipped ++;
3521 	sector_nr = max_sector;
3522 	goto skipped;
3523 }
3524 
3525 static sector_t
3526 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3527 {
3528 	sector_t size;
3529 	struct r10conf *conf = mddev->private;
3530 
3531 	if (!raid_disks)
3532 		raid_disks = min(conf->geo.raid_disks,
3533 				 conf->prev.raid_disks);
3534 	if (!sectors)
3535 		sectors = conf->dev_sectors;
3536 
3537 	size = sectors >> conf->geo.chunk_shift;
3538 	sector_div(size, conf->geo.far_copies);
3539 	size = size * raid_disks;
3540 	sector_div(size, conf->geo.near_copies);
3541 
3542 	return size << conf->geo.chunk_shift;
3543 }
3544 
3545 static void calc_sectors(struct r10conf *conf, sector_t size)
3546 {
3547 	/* Calculate the number of sectors-per-device that will
3548 	 * actually be used, and set conf->dev_sectors and
3549 	 * conf->stride
3550 	 */
3551 
3552 	size = size >> conf->geo.chunk_shift;
3553 	sector_div(size, conf->geo.far_copies);
3554 	size = size * conf->geo.raid_disks;
3555 	sector_div(size, conf->geo.near_copies);
3556 	/* 'size' is now the number of chunks in the array */
3557 	/* calculate "used chunks per device" */
3558 	size = size * conf->copies;
3559 
3560 	/* We need to round up when dividing by raid_disks to
3561 	 * get the stride size.
3562 	 */
3563 	size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3564 
3565 	conf->dev_sectors = size << conf->geo.chunk_shift;
3566 
3567 	if (conf->geo.far_offset)
3568 		conf->geo.stride = 1 << conf->geo.chunk_shift;
3569 	else {
3570 		sector_div(size, conf->geo.far_copies);
3571 		conf->geo.stride = size << conf->geo.chunk_shift;
3572 	}
3573 }
3574 
3575 enum geo_type {geo_new, geo_old, geo_start};
3576 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3577 {
3578 	int nc, fc, fo;
3579 	int layout, chunk, disks;
3580 	switch (new) {
3581 	case geo_old:
3582 		layout = mddev->layout;
3583 		chunk = mddev->chunk_sectors;
3584 		disks = mddev->raid_disks - mddev->delta_disks;
3585 		break;
3586 	case geo_new:
3587 		layout = mddev->new_layout;
3588 		chunk = mddev->new_chunk_sectors;
3589 		disks = mddev->raid_disks;
3590 		break;
3591 	default: /* avoid 'may be unused' warnings */
3592 	case geo_start: /* new when starting reshape - raid_disks not
3593 			 * updated yet. */
3594 		layout = mddev->new_layout;
3595 		chunk = mddev->new_chunk_sectors;
3596 		disks = mddev->raid_disks + mddev->delta_disks;
3597 		break;
3598 	}
3599 	if (layout >> 19)
3600 		return -1;
3601 	if (chunk < (PAGE_SIZE >> 9) ||
3602 	    !is_power_of_2(chunk))
3603 		return -2;
3604 	nc = layout & 255;
3605 	fc = (layout >> 8) & 255;
3606 	fo = layout & (1<<16);
3607 	geo->raid_disks = disks;
3608 	geo->near_copies = nc;
3609 	geo->far_copies = fc;
3610 	geo->far_offset = fo;
3611 	switch (layout >> 17) {
3612 	case 0:	/* original layout.  simple but not always optimal */
3613 		geo->far_set_size = disks;
3614 		break;
3615 	case 1: /* "improved" layout which was buggy.  Hopefully no-one is
3616 		 * actually using this, but leave code here just in case.*/
3617 		geo->far_set_size = disks/fc;
3618 		WARN(geo->far_set_size < fc,
3619 		     "This RAID10 layout does not provide data safety - please backup and create new array\n");
3620 		break;
3621 	case 2: /* "improved" layout fixed to match documentation */
3622 		geo->far_set_size = fc * nc;
3623 		break;
3624 	default: /* Not a valid layout */
3625 		return -1;
3626 	}
3627 	geo->chunk_mask = chunk - 1;
3628 	geo->chunk_shift = ffz(~chunk);
3629 	return nc*fc;
3630 }
3631 
3632 static struct r10conf *setup_conf(struct mddev *mddev)
3633 {
3634 	struct r10conf *conf = NULL;
3635 	int err = -EINVAL;
3636 	struct geom geo;
3637 	int copies;
3638 
3639 	copies = setup_geo(&geo, mddev, geo_new);
3640 
3641 	if (copies == -2) {
3642 		pr_warn("md/raid10:%s: chunk size must be at least PAGE_SIZE(%ld) and be a power of 2.\n",
3643 			mdname(mddev), PAGE_SIZE);
3644 		goto out;
3645 	}
3646 
3647 	if (copies < 2 || copies > mddev->raid_disks) {
3648 		pr_warn("md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3649 			mdname(mddev), mddev->new_layout);
3650 		goto out;
3651 	}
3652 
3653 	err = -ENOMEM;
3654 	conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3655 	if (!conf)
3656 		goto out;
3657 
3658 	/* FIXME calc properly */
3659 	conf->mirrors = kcalloc(mddev->raid_disks + max(0, -mddev->delta_disks),
3660 				sizeof(struct raid10_info),
3661 				GFP_KERNEL);
3662 	if (!conf->mirrors)
3663 		goto out;
3664 
3665 	conf->tmppage = alloc_page(GFP_KERNEL);
3666 	if (!conf->tmppage)
3667 		goto out;
3668 
3669 	conf->geo = geo;
3670 	conf->copies = copies;
3671 	err = mempool_init(&conf->r10bio_pool, NR_RAID_BIOS, r10bio_pool_alloc,
3672 			   rbio_pool_free, conf);
3673 	if (err)
3674 		goto out;
3675 
3676 	err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
3677 	if (err)
3678 		goto out;
3679 
3680 	calc_sectors(conf, mddev->dev_sectors);
3681 	if (mddev->reshape_position == MaxSector) {
3682 		conf->prev = conf->geo;
3683 		conf->reshape_progress = MaxSector;
3684 	} else {
3685 		if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3686 			err = -EINVAL;
3687 			goto out;
3688 		}
3689 		conf->reshape_progress = mddev->reshape_position;
3690 		if (conf->prev.far_offset)
3691 			conf->prev.stride = 1 << conf->prev.chunk_shift;
3692 		else
3693 			/* far_copies must be 1 */
3694 			conf->prev.stride = conf->dev_sectors;
3695 	}
3696 	conf->reshape_safe = conf->reshape_progress;
3697 	spin_lock_init(&conf->device_lock);
3698 	INIT_LIST_HEAD(&conf->retry_list);
3699 	INIT_LIST_HEAD(&conf->bio_end_io_list);
3700 
3701 	spin_lock_init(&conf->resync_lock);
3702 	init_waitqueue_head(&conf->wait_barrier);
3703 	atomic_set(&conf->nr_pending, 0);
3704 
3705 	err = -ENOMEM;
3706 	conf->thread = md_register_thread(raid10d, mddev, "raid10");
3707 	if (!conf->thread)
3708 		goto out;
3709 
3710 	conf->mddev = mddev;
3711 	return conf;
3712 
3713  out:
3714 	if (conf) {
3715 		mempool_exit(&conf->r10bio_pool);
3716 		kfree(conf->mirrors);
3717 		safe_put_page(conf->tmppage);
3718 		bioset_exit(&conf->bio_split);
3719 		kfree(conf);
3720 	}
3721 	return ERR_PTR(err);
3722 }
3723 
3724 static int raid10_run(struct mddev *mddev)
3725 {
3726 	struct r10conf *conf;
3727 	int i, disk_idx, chunk_size;
3728 	struct raid10_info *disk;
3729 	struct md_rdev *rdev;
3730 	sector_t size;
3731 	sector_t min_offset_diff = 0;
3732 	int first = 1;
3733 	bool discard_supported = false;
3734 
3735 	if (mddev_init_writes_pending(mddev) < 0)
3736 		return -ENOMEM;
3737 
3738 	if (mddev->private == NULL) {
3739 		conf = setup_conf(mddev);
3740 		if (IS_ERR(conf))
3741 			return PTR_ERR(conf);
3742 		mddev->private = conf;
3743 	}
3744 	conf = mddev->private;
3745 	if (!conf)
3746 		goto out;
3747 
3748 	if (mddev_is_clustered(conf->mddev)) {
3749 		int fc, fo;
3750 
3751 		fc = (mddev->layout >> 8) & 255;
3752 		fo = mddev->layout & (1<<16);
3753 		if (fc > 1 || fo > 0) {
3754 			pr_err("only near layout is supported by clustered"
3755 				" raid10\n");
3756 			goto out_free_conf;
3757 		}
3758 	}
3759 
3760 	mddev->thread = conf->thread;
3761 	conf->thread = NULL;
3762 
3763 	chunk_size = mddev->chunk_sectors << 9;
3764 	if (mddev->queue) {
3765 		blk_queue_max_discard_sectors(mddev->queue,
3766 					      mddev->chunk_sectors);
3767 		blk_queue_max_write_same_sectors(mddev->queue, 0);
3768 		blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
3769 		blk_queue_io_min(mddev->queue, chunk_size);
3770 		if (conf->geo.raid_disks % conf->geo.near_copies)
3771 			blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks);
3772 		else
3773 			blk_queue_io_opt(mddev->queue, chunk_size *
3774 					 (conf->geo.raid_disks / conf->geo.near_copies));
3775 	}
3776 
3777 	rdev_for_each(rdev, mddev) {
3778 		long long diff;
3779 
3780 		disk_idx = rdev->raid_disk;
3781 		if (disk_idx < 0)
3782 			continue;
3783 		if (disk_idx >= conf->geo.raid_disks &&
3784 		    disk_idx >= conf->prev.raid_disks)
3785 			continue;
3786 		disk = conf->mirrors + disk_idx;
3787 
3788 		if (test_bit(Replacement, &rdev->flags)) {
3789 			if (disk->replacement)
3790 				goto out_free_conf;
3791 			disk->replacement = rdev;
3792 		} else {
3793 			if (disk->rdev)
3794 				goto out_free_conf;
3795 			disk->rdev = rdev;
3796 		}
3797 		diff = (rdev->new_data_offset - rdev->data_offset);
3798 		if (!mddev->reshape_backwards)
3799 			diff = -diff;
3800 		if (diff < 0)
3801 			diff = 0;
3802 		if (first || diff < min_offset_diff)
3803 			min_offset_diff = diff;
3804 
3805 		if (mddev->gendisk)
3806 			disk_stack_limits(mddev->gendisk, rdev->bdev,
3807 					  rdev->data_offset << 9);
3808 
3809 		disk->head_position = 0;
3810 
3811 		if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3812 			discard_supported = true;
3813 		first = 0;
3814 	}
3815 
3816 	if (mddev->queue) {
3817 		if (discard_supported)
3818 			blk_queue_flag_set(QUEUE_FLAG_DISCARD,
3819 						mddev->queue);
3820 		else
3821 			blk_queue_flag_clear(QUEUE_FLAG_DISCARD,
3822 						  mddev->queue);
3823 	}
3824 	/* need to check that every block has at least one working mirror */
3825 	if (!enough(conf, -1)) {
3826 		pr_err("md/raid10:%s: not enough operational mirrors.\n",
3827 		       mdname(mddev));
3828 		goto out_free_conf;
3829 	}
3830 
3831 	if (conf->reshape_progress != MaxSector) {
3832 		/* must ensure that shape change is supported */
3833 		if (conf->geo.far_copies != 1 &&
3834 		    conf->geo.far_offset == 0)
3835 			goto out_free_conf;
3836 		if (conf->prev.far_copies != 1 &&
3837 		    conf->prev.far_offset == 0)
3838 			goto out_free_conf;
3839 	}
3840 
3841 	mddev->degraded = 0;
3842 	for (i = 0;
3843 	     i < conf->geo.raid_disks
3844 		     || i < conf->prev.raid_disks;
3845 	     i++) {
3846 
3847 		disk = conf->mirrors + i;
3848 
3849 		if (!disk->rdev && disk->replacement) {
3850 			/* The replacement is all we have - use it */
3851 			disk->rdev = disk->replacement;
3852 			disk->replacement = NULL;
3853 			clear_bit(Replacement, &disk->rdev->flags);
3854 		}
3855 
3856 		if (!disk->rdev ||
3857 		    !test_bit(In_sync, &disk->rdev->flags)) {
3858 			disk->head_position = 0;
3859 			mddev->degraded++;
3860 			if (disk->rdev &&
3861 			    disk->rdev->saved_raid_disk < 0)
3862 				conf->fullsync = 1;
3863 		}
3864 
3865 		if (disk->replacement &&
3866 		    !test_bit(In_sync, &disk->replacement->flags) &&
3867 		    disk->replacement->saved_raid_disk < 0) {
3868 			conf->fullsync = 1;
3869 		}
3870 
3871 		disk->recovery_disabled = mddev->recovery_disabled - 1;
3872 	}
3873 
3874 	if (mddev->recovery_cp != MaxSector)
3875 		pr_notice("md/raid10:%s: not clean -- starting background reconstruction\n",
3876 			  mdname(mddev));
3877 	pr_info("md/raid10:%s: active with %d out of %d devices\n",
3878 		mdname(mddev), conf->geo.raid_disks - mddev->degraded,
3879 		conf->geo.raid_disks);
3880 	/*
3881 	 * Ok, everything is just fine now
3882 	 */
3883 	mddev->dev_sectors = conf->dev_sectors;
3884 	size = raid10_size(mddev, 0, 0);
3885 	md_set_array_sectors(mddev, size);
3886 	mddev->resync_max_sectors = size;
3887 	set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
3888 
3889 	if (mddev->queue) {
3890 		int stripe = conf->geo.raid_disks *
3891 			((mddev->chunk_sectors << 9) / PAGE_SIZE);
3892 
3893 		/* Calculate max read-ahead size.
3894 		 * We need to readahead at least twice a whole stripe....
3895 		 * maybe...
3896 		 */
3897 		stripe /= conf->geo.near_copies;
3898 		if (mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
3899 			mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
3900 	}
3901 
3902 	if (md_integrity_register(mddev))
3903 		goto out_free_conf;
3904 
3905 	if (conf->reshape_progress != MaxSector) {
3906 		unsigned long before_length, after_length;
3907 
3908 		before_length = ((1 << conf->prev.chunk_shift) *
3909 				 conf->prev.far_copies);
3910 		after_length = ((1 << conf->geo.chunk_shift) *
3911 				conf->geo.far_copies);
3912 
3913 		if (max(before_length, after_length) > min_offset_diff) {
3914 			/* This cannot work */
3915 			pr_warn("md/raid10: offset difference not enough to continue reshape\n");
3916 			goto out_free_conf;
3917 		}
3918 		conf->offset_diff = min_offset_diff;
3919 
3920 		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3921 		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3922 		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3923 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3924 		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3925 							"reshape");
3926 		if (!mddev->sync_thread)
3927 			goto out_free_conf;
3928 	}
3929 
3930 	return 0;
3931 
3932 out_free_conf:
3933 	md_unregister_thread(&mddev->thread);
3934 	mempool_exit(&conf->r10bio_pool);
3935 	safe_put_page(conf->tmppage);
3936 	kfree(conf->mirrors);
3937 	kfree(conf);
3938 	mddev->private = NULL;
3939 out:
3940 	return -EIO;
3941 }
3942 
3943 static void raid10_free(struct mddev *mddev, void *priv)
3944 {
3945 	struct r10conf *conf = priv;
3946 
3947 	mempool_exit(&conf->r10bio_pool);
3948 	safe_put_page(conf->tmppage);
3949 	kfree(conf->mirrors);
3950 	kfree(conf->mirrors_old);
3951 	kfree(conf->mirrors_new);
3952 	bioset_exit(&conf->bio_split);
3953 	kfree(conf);
3954 }
3955 
3956 static void raid10_quiesce(struct mddev *mddev, int quiesce)
3957 {
3958 	struct r10conf *conf = mddev->private;
3959 
3960 	if (quiesce)
3961 		raise_barrier(conf, 0);
3962 	else
3963 		lower_barrier(conf);
3964 }
3965 
3966 static int raid10_resize(struct mddev *mddev, sector_t sectors)
3967 {
3968 	/* Resize of 'far' arrays is not supported.
3969 	 * For 'near' and 'offset' arrays we can set the
3970 	 * number of sectors used to be an appropriate multiple
3971 	 * of the chunk size.
3972 	 * For 'offset', this is far_copies*chunksize.
3973 	 * For 'near' the multiplier is the LCM of
3974 	 * near_copies and raid_disks.
3975 	 * So if far_copies > 1 && !far_offset, fail.
3976 	 * Else find LCM(raid_disks, near_copy)*far_copies and
3977 	 * multiply by chunk_size.  Then round to this number.
3978 	 * This is mostly done by raid10_size()
3979 	 */
3980 	struct r10conf *conf = mddev->private;
3981 	sector_t oldsize, size;
3982 
3983 	if (mddev->reshape_position != MaxSector)
3984 		return -EBUSY;
3985 
3986 	if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
3987 		return -EINVAL;
3988 
3989 	oldsize = raid10_size(mddev, 0, 0);
3990 	size = raid10_size(mddev, sectors, 0);
3991 	if (mddev->external_size &&
3992 	    mddev->array_sectors > size)
3993 		return -EINVAL;
3994 	if (mddev->bitmap) {
3995 		int ret = md_bitmap_resize(mddev->bitmap, size, 0, 0);
3996 		if (ret)
3997 			return ret;
3998 	}
3999 	md_set_array_sectors(mddev, size);
4000 	if (sectors > mddev->dev_sectors &&
4001 	    mddev->recovery_cp > oldsize) {
4002 		mddev->recovery_cp = oldsize;
4003 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4004 	}
4005 	calc_sectors(conf, sectors);
4006 	mddev->dev_sectors = conf->dev_sectors;
4007 	mddev->resync_max_sectors = size;
4008 	return 0;
4009 }
4010 
4011 static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs)
4012 {
4013 	struct md_rdev *rdev;
4014 	struct r10conf *conf;
4015 
4016 	if (mddev->degraded > 0) {
4017 		pr_warn("md/raid10:%s: Error: degraded raid0!\n",
4018 			mdname(mddev));
4019 		return ERR_PTR(-EINVAL);
4020 	}
4021 	sector_div(size, devs);
4022 
4023 	/* Set new parameters */
4024 	mddev->new_level = 10;
4025 	/* new layout: far_copies = 1, near_copies = 2 */
4026 	mddev->new_layout = (1<<8) + 2;
4027 	mddev->new_chunk_sectors = mddev->chunk_sectors;
4028 	mddev->delta_disks = mddev->raid_disks;
4029 	mddev->raid_disks *= 2;
4030 	/* make sure it will be not marked as dirty */
4031 	mddev->recovery_cp = MaxSector;
4032 	mddev->dev_sectors = size;
4033 
4034 	conf = setup_conf(mddev);
4035 	if (!IS_ERR(conf)) {
4036 		rdev_for_each(rdev, mddev)
4037 			if (rdev->raid_disk >= 0) {
4038 				rdev->new_raid_disk = rdev->raid_disk * 2;
4039 				rdev->sectors = size;
4040 			}
4041 		conf->barrier = 1;
4042 	}
4043 
4044 	return conf;
4045 }
4046 
4047 static void *raid10_takeover(struct mddev *mddev)
4048 {
4049 	struct r0conf *raid0_conf;
4050 
4051 	/* raid10 can take over:
4052 	 *  raid0 - providing it has only two drives
4053 	 */
4054 	if (mddev->level == 0) {
4055 		/* for raid0 takeover only one zone is supported */
4056 		raid0_conf = mddev->private;
4057 		if (raid0_conf->nr_strip_zones > 1) {
4058 			pr_warn("md/raid10:%s: cannot takeover raid 0 with more than one zone.\n",
4059 				mdname(mddev));
4060 			return ERR_PTR(-EINVAL);
4061 		}
4062 		return raid10_takeover_raid0(mddev,
4063 			raid0_conf->strip_zone->zone_end,
4064 			raid0_conf->strip_zone->nb_dev);
4065 	}
4066 	return ERR_PTR(-EINVAL);
4067 }
4068 
4069 static int raid10_check_reshape(struct mddev *mddev)
4070 {
4071 	/* Called when there is a request to change
4072 	 * - layout (to ->new_layout)
4073 	 * - chunk size (to ->new_chunk_sectors)
4074 	 * - raid_disks (by delta_disks)
4075 	 * or when trying to restart a reshape that was ongoing.
4076 	 *
4077 	 * We need to validate the request and possibly allocate
4078 	 * space if that might be an issue later.
4079 	 *
4080 	 * Currently we reject any reshape of a 'far' mode array,
4081 	 * allow chunk size to change if new is generally acceptable,
4082 	 * allow raid_disks to increase, and allow
4083 	 * a switch between 'near' mode and 'offset' mode.
4084 	 */
4085 	struct r10conf *conf = mddev->private;
4086 	struct geom geo;
4087 
4088 	if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
4089 		return -EINVAL;
4090 
4091 	if (setup_geo(&geo, mddev, geo_start) != conf->copies)
4092 		/* mustn't change number of copies */
4093 		return -EINVAL;
4094 	if (geo.far_copies > 1 && !geo.far_offset)
4095 		/* Cannot switch to 'far' mode */
4096 		return -EINVAL;
4097 
4098 	if (mddev->array_sectors & geo.chunk_mask)
4099 			/* not factor of array size */
4100 			return -EINVAL;
4101 
4102 	if (!enough(conf, -1))
4103 		return -EINVAL;
4104 
4105 	kfree(conf->mirrors_new);
4106 	conf->mirrors_new = NULL;
4107 	if (mddev->delta_disks > 0) {
4108 		/* allocate new 'mirrors' list */
4109 		conf->mirrors_new =
4110 			kcalloc(mddev->raid_disks + mddev->delta_disks,
4111 				sizeof(struct raid10_info),
4112 				GFP_KERNEL);
4113 		if (!conf->mirrors_new)
4114 			return -ENOMEM;
4115 	}
4116 	return 0;
4117 }
4118 
4119 /*
4120  * Need to check if array has failed when deciding whether to:
4121  *  - start an array
4122  *  - remove non-faulty devices
4123  *  - add a spare
4124  *  - allow a reshape
4125  * This determination is simple when no reshape is happening.
4126  * However if there is a reshape, we need to carefully check
4127  * both the before and after sections.
4128  * This is because some failed devices may only affect one
4129  * of the two sections, and some non-in_sync devices may
4130  * be insync in the section most affected by failed devices.
4131  */
4132 static int calc_degraded(struct r10conf *conf)
4133 {
4134 	int degraded, degraded2;
4135 	int i;
4136 
4137 	rcu_read_lock();
4138 	degraded = 0;
4139 	/* 'prev' section first */
4140 	for (i = 0; i < conf->prev.raid_disks; i++) {
4141 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4142 		if (!rdev || test_bit(Faulty, &rdev->flags))
4143 			degraded++;
4144 		else if (!test_bit(In_sync, &rdev->flags))
4145 			/* When we can reduce the number of devices in
4146 			 * an array, this might not contribute to
4147 			 * 'degraded'.  It does now.
4148 			 */
4149 			degraded++;
4150 	}
4151 	rcu_read_unlock();
4152 	if (conf->geo.raid_disks == conf->prev.raid_disks)
4153 		return degraded;
4154 	rcu_read_lock();
4155 	degraded2 = 0;
4156 	for (i = 0; i < conf->geo.raid_disks; i++) {
4157 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4158 		if (!rdev || test_bit(Faulty, &rdev->flags))
4159 			degraded2++;
4160 		else if (!test_bit(In_sync, &rdev->flags)) {
4161 			/* If reshape is increasing the number of devices,
4162 			 * this section has already been recovered, so
4163 			 * it doesn't contribute to degraded.
4164 			 * else it does.
4165 			 */
4166 			if (conf->geo.raid_disks <= conf->prev.raid_disks)
4167 				degraded2++;
4168 		}
4169 	}
4170 	rcu_read_unlock();
4171 	if (degraded2 > degraded)
4172 		return degraded2;
4173 	return degraded;
4174 }
4175 
4176 static int raid10_start_reshape(struct mddev *mddev)
4177 {
4178 	/* A 'reshape' has been requested. This commits
4179 	 * the various 'new' fields and sets MD_RECOVER_RESHAPE
4180 	 * This also checks if there are enough spares and adds them
4181 	 * to the array.
4182 	 * We currently require enough spares to make the final
4183 	 * array non-degraded.  We also require that the difference
4184 	 * between old and new data_offset - on each device - is
4185 	 * enough that we never risk over-writing.
4186 	 */
4187 
4188 	unsigned long before_length, after_length;
4189 	sector_t min_offset_diff = 0;
4190 	int first = 1;
4191 	struct geom new;
4192 	struct r10conf *conf = mddev->private;
4193 	struct md_rdev *rdev;
4194 	int spares = 0;
4195 	int ret;
4196 
4197 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4198 		return -EBUSY;
4199 
4200 	if (setup_geo(&new, mddev, geo_start) != conf->copies)
4201 		return -EINVAL;
4202 
4203 	before_length = ((1 << conf->prev.chunk_shift) *
4204 			 conf->prev.far_copies);
4205 	after_length = ((1 << conf->geo.chunk_shift) *
4206 			conf->geo.far_copies);
4207 
4208 	rdev_for_each(rdev, mddev) {
4209 		if (!test_bit(In_sync, &rdev->flags)
4210 		    && !test_bit(Faulty, &rdev->flags))
4211 			spares++;
4212 		if (rdev->raid_disk >= 0) {
4213 			long long diff = (rdev->new_data_offset
4214 					  - rdev->data_offset);
4215 			if (!mddev->reshape_backwards)
4216 				diff = -diff;
4217 			if (diff < 0)
4218 				diff = 0;
4219 			if (first || diff < min_offset_diff)
4220 				min_offset_diff = diff;
4221 			first = 0;
4222 		}
4223 	}
4224 
4225 	if (max(before_length, after_length) > min_offset_diff)
4226 		return -EINVAL;
4227 
4228 	if (spares < mddev->delta_disks)
4229 		return -EINVAL;
4230 
4231 	conf->offset_diff = min_offset_diff;
4232 	spin_lock_irq(&conf->device_lock);
4233 	if (conf->mirrors_new) {
4234 		memcpy(conf->mirrors_new, conf->mirrors,
4235 		       sizeof(struct raid10_info)*conf->prev.raid_disks);
4236 		smp_mb();
4237 		kfree(conf->mirrors_old);
4238 		conf->mirrors_old = conf->mirrors;
4239 		conf->mirrors = conf->mirrors_new;
4240 		conf->mirrors_new = NULL;
4241 	}
4242 	setup_geo(&conf->geo, mddev, geo_start);
4243 	smp_mb();
4244 	if (mddev->reshape_backwards) {
4245 		sector_t size = raid10_size(mddev, 0, 0);
4246 		if (size < mddev->array_sectors) {
4247 			spin_unlock_irq(&conf->device_lock);
4248 			pr_warn("md/raid10:%s: array size must be reduce before number of disks\n",
4249 				mdname(mddev));
4250 			return -EINVAL;
4251 		}
4252 		mddev->resync_max_sectors = size;
4253 		conf->reshape_progress = size;
4254 	} else
4255 		conf->reshape_progress = 0;
4256 	conf->reshape_safe = conf->reshape_progress;
4257 	spin_unlock_irq(&conf->device_lock);
4258 
4259 	if (mddev->delta_disks && mddev->bitmap) {
4260 		struct mdp_superblock_1 *sb = NULL;
4261 		sector_t oldsize, newsize;
4262 
4263 		oldsize = raid10_size(mddev, 0, 0);
4264 		newsize = raid10_size(mddev, 0, conf->geo.raid_disks);
4265 
4266 		if (!mddev_is_clustered(mddev)) {
4267 			ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
4268 			if (ret)
4269 				goto abort;
4270 			else
4271 				goto out;
4272 		}
4273 
4274 		rdev_for_each(rdev, mddev) {
4275 			if (rdev->raid_disk > -1 &&
4276 			    !test_bit(Faulty, &rdev->flags))
4277 				sb = page_address(rdev->sb_page);
4278 		}
4279 
4280 		/*
4281 		 * some node is already performing reshape, and no need to
4282 		 * call md_bitmap_resize again since it should be called when
4283 		 * receiving BITMAP_RESIZE msg
4284 		 */
4285 		if ((sb && (le32_to_cpu(sb->feature_map) &
4286 			    MD_FEATURE_RESHAPE_ACTIVE)) || (oldsize == newsize))
4287 			goto out;
4288 
4289 		ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
4290 		if (ret)
4291 			goto abort;
4292 
4293 		ret = md_cluster_ops->resize_bitmaps(mddev, newsize, oldsize);
4294 		if (ret) {
4295 			md_bitmap_resize(mddev->bitmap, oldsize, 0, 0);
4296 			goto abort;
4297 		}
4298 	}
4299 out:
4300 	if (mddev->delta_disks > 0) {
4301 		rdev_for_each(rdev, mddev)
4302 			if (rdev->raid_disk < 0 &&
4303 			    !test_bit(Faulty, &rdev->flags)) {
4304 				if (raid10_add_disk(mddev, rdev) == 0) {
4305 					if (rdev->raid_disk >=
4306 					    conf->prev.raid_disks)
4307 						set_bit(In_sync, &rdev->flags);
4308 					else
4309 						rdev->recovery_offset = 0;
4310 
4311 					if (sysfs_link_rdev(mddev, rdev))
4312 						/* Failure here  is OK */;
4313 				}
4314 			} else if (rdev->raid_disk >= conf->prev.raid_disks
4315 				   && !test_bit(Faulty, &rdev->flags)) {
4316 				/* This is a spare that was manually added */
4317 				set_bit(In_sync, &rdev->flags);
4318 			}
4319 	}
4320 	/* When a reshape changes the number of devices,
4321 	 * ->degraded is measured against the larger of the
4322 	 * pre and  post numbers.
4323 	 */
4324 	spin_lock_irq(&conf->device_lock);
4325 	mddev->degraded = calc_degraded(conf);
4326 	spin_unlock_irq(&conf->device_lock);
4327 	mddev->raid_disks = conf->geo.raid_disks;
4328 	mddev->reshape_position = conf->reshape_progress;
4329 	set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4330 
4331 	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4332 	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4333 	clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
4334 	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4335 	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4336 
4337 	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4338 						"reshape");
4339 	if (!mddev->sync_thread) {
4340 		ret = -EAGAIN;
4341 		goto abort;
4342 	}
4343 	conf->reshape_checkpoint = jiffies;
4344 	md_wakeup_thread(mddev->sync_thread);
4345 	md_new_event(mddev);
4346 	return 0;
4347 
4348 abort:
4349 	mddev->recovery = 0;
4350 	spin_lock_irq(&conf->device_lock);
4351 	conf->geo = conf->prev;
4352 	mddev->raid_disks = conf->geo.raid_disks;
4353 	rdev_for_each(rdev, mddev)
4354 		rdev->new_data_offset = rdev->data_offset;
4355 	smp_wmb();
4356 	conf->reshape_progress = MaxSector;
4357 	conf->reshape_safe = MaxSector;
4358 	mddev->reshape_position = MaxSector;
4359 	spin_unlock_irq(&conf->device_lock);
4360 	return ret;
4361 }
4362 
4363 /* Calculate the last device-address that could contain
4364  * any block from the chunk that includes the array-address 's'
4365  * and report the next address.
4366  * i.e. the address returned will be chunk-aligned and after
4367  * any data that is in the chunk containing 's'.
4368  */
4369 static sector_t last_dev_address(sector_t s, struct geom *geo)
4370 {
4371 	s = (s | geo->chunk_mask) + 1;
4372 	s >>= geo->chunk_shift;
4373 	s *= geo->near_copies;
4374 	s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4375 	s *= geo->far_copies;
4376 	s <<= geo->chunk_shift;
4377 	return s;
4378 }
4379 
4380 /* Calculate the first device-address that could contain
4381  * any block from the chunk that includes the array-address 's'.
4382  * This too will be the start of a chunk
4383  */
4384 static sector_t first_dev_address(sector_t s, struct geom *geo)
4385 {
4386 	s >>= geo->chunk_shift;
4387 	s *= geo->near_copies;
4388 	sector_div(s, geo->raid_disks);
4389 	s *= geo->far_copies;
4390 	s <<= geo->chunk_shift;
4391 	return s;
4392 }
4393 
4394 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4395 				int *skipped)
4396 {
4397 	/* We simply copy at most one chunk (smallest of old and new)
4398 	 * at a time, possibly less if that exceeds RESYNC_PAGES,
4399 	 * or we hit a bad block or something.
4400 	 * This might mean we pause for normal IO in the middle of
4401 	 * a chunk, but that is not a problem as mddev->reshape_position
4402 	 * can record any location.
4403 	 *
4404 	 * If we will want to write to a location that isn't
4405 	 * yet recorded as 'safe' (i.e. in metadata on disk) then
4406 	 * we need to flush all reshape requests and update the metadata.
4407 	 *
4408 	 * When reshaping forwards (e.g. to more devices), we interpret
4409 	 * 'safe' as the earliest block which might not have been copied
4410 	 * down yet.  We divide this by previous stripe size and multiply
4411 	 * by previous stripe length to get lowest device offset that we
4412 	 * cannot write to yet.
4413 	 * We interpret 'sector_nr' as an address that we want to write to.
4414 	 * From this we use last_device_address() to find where we might
4415 	 * write to, and first_device_address on the  'safe' position.
4416 	 * If this 'next' write position is after the 'safe' position,
4417 	 * we must update the metadata to increase the 'safe' position.
4418 	 *
4419 	 * When reshaping backwards, we round in the opposite direction
4420 	 * and perform the reverse test:  next write position must not be
4421 	 * less than current safe position.
4422 	 *
4423 	 * In all this the minimum difference in data offsets
4424 	 * (conf->offset_diff - always positive) allows a bit of slack,
4425 	 * so next can be after 'safe', but not by more than offset_diff
4426 	 *
4427 	 * We need to prepare all the bios here before we start any IO
4428 	 * to ensure the size we choose is acceptable to all devices.
4429 	 * The means one for each copy for write-out and an extra one for
4430 	 * read-in.
4431 	 * We store the read-in bio in ->master_bio and the others in
4432 	 * ->devs[x].bio and ->devs[x].repl_bio.
4433 	 */
4434 	struct r10conf *conf = mddev->private;
4435 	struct r10bio *r10_bio;
4436 	sector_t next, safe, last;
4437 	int max_sectors;
4438 	int nr_sectors;
4439 	int s;
4440 	struct md_rdev *rdev;
4441 	int need_flush = 0;
4442 	struct bio *blist;
4443 	struct bio *bio, *read_bio;
4444 	int sectors_done = 0;
4445 	struct page **pages;
4446 
4447 	if (sector_nr == 0) {
4448 		/* If restarting in the middle, skip the initial sectors */
4449 		if (mddev->reshape_backwards &&
4450 		    conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4451 			sector_nr = (raid10_size(mddev, 0, 0)
4452 				     - conf->reshape_progress);
4453 		} else if (!mddev->reshape_backwards &&
4454 			   conf->reshape_progress > 0)
4455 			sector_nr = conf->reshape_progress;
4456 		if (sector_nr) {
4457 			mddev->curr_resync_completed = sector_nr;
4458 			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4459 			*skipped = 1;
4460 			return sector_nr;
4461 		}
4462 	}
4463 
4464 	/* We don't use sector_nr to track where we are up to
4465 	 * as that doesn't work well for ->reshape_backwards.
4466 	 * So just use ->reshape_progress.
4467 	 */
4468 	if (mddev->reshape_backwards) {
4469 		/* 'next' is the earliest device address that we might
4470 		 * write to for this chunk in the new layout
4471 		 */
4472 		next = first_dev_address(conf->reshape_progress - 1,
4473 					 &conf->geo);
4474 
4475 		/* 'safe' is the last device address that we might read from
4476 		 * in the old layout after a restart
4477 		 */
4478 		safe = last_dev_address(conf->reshape_safe - 1,
4479 					&conf->prev);
4480 
4481 		if (next + conf->offset_diff < safe)
4482 			need_flush = 1;
4483 
4484 		last = conf->reshape_progress - 1;
4485 		sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4486 					       & conf->prev.chunk_mask);
4487 		if (sector_nr + RESYNC_BLOCK_SIZE/512 < last)
4488 			sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512;
4489 	} else {
4490 		/* 'next' is after the last device address that we
4491 		 * might write to for this chunk in the new layout
4492 		 */
4493 		next = last_dev_address(conf->reshape_progress, &conf->geo);
4494 
4495 		/* 'safe' is the earliest device address that we might
4496 		 * read from in the old layout after a restart
4497 		 */
4498 		safe = first_dev_address(conf->reshape_safe, &conf->prev);
4499 
4500 		/* Need to update metadata if 'next' might be beyond 'safe'
4501 		 * as that would possibly corrupt data
4502 		 */
4503 		if (next > safe + conf->offset_diff)
4504 			need_flush = 1;
4505 
4506 		sector_nr = conf->reshape_progress;
4507 		last  = sector_nr | (conf->geo.chunk_mask
4508 				     & conf->prev.chunk_mask);
4509 
4510 		if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last)
4511 			last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1;
4512 	}
4513 
4514 	if (need_flush ||
4515 	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4516 		/* Need to update reshape_position in metadata */
4517 		wait_barrier(conf);
4518 		mddev->reshape_position = conf->reshape_progress;
4519 		if (mddev->reshape_backwards)
4520 			mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4521 				- conf->reshape_progress;
4522 		else
4523 			mddev->curr_resync_completed = conf->reshape_progress;
4524 		conf->reshape_checkpoint = jiffies;
4525 		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4526 		md_wakeup_thread(mddev->thread);
4527 		wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
4528 			   test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4529 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4530 			allow_barrier(conf);
4531 			return sectors_done;
4532 		}
4533 		conf->reshape_safe = mddev->reshape_position;
4534 		allow_barrier(conf);
4535 	}
4536 
4537 	raise_barrier(conf, 0);
4538 read_more:
4539 	/* Now schedule reads for blocks from sector_nr to last */
4540 	r10_bio = raid10_alloc_init_r10buf(conf);
4541 	r10_bio->state = 0;
4542 	raise_barrier(conf, 1);
4543 	atomic_set(&r10_bio->remaining, 0);
4544 	r10_bio->mddev = mddev;
4545 	r10_bio->sector = sector_nr;
4546 	set_bit(R10BIO_IsReshape, &r10_bio->state);
4547 	r10_bio->sectors = last - sector_nr + 1;
4548 	rdev = read_balance(conf, r10_bio, &max_sectors);
4549 	BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4550 
4551 	if (!rdev) {
4552 		/* Cannot read from here, so need to record bad blocks
4553 		 * on all the target devices.
4554 		 */
4555 		// FIXME
4556 		mempool_free(r10_bio, &conf->r10buf_pool);
4557 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4558 		return sectors_done;
4559 	}
4560 
4561 	read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev);
4562 
4563 	bio_set_dev(read_bio, rdev->bdev);
4564 	read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4565 			       + rdev->data_offset);
4566 	read_bio->bi_private = r10_bio;
4567 	read_bio->bi_end_io = end_reshape_read;
4568 	bio_set_op_attrs(read_bio, REQ_OP_READ, 0);
4569 	read_bio->bi_flags &= (~0UL << BIO_RESET_BITS);
4570 	read_bio->bi_status = 0;
4571 	read_bio->bi_vcnt = 0;
4572 	read_bio->bi_iter.bi_size = 0;
4573 	r10_bio->master_bio = read_bio;
4574 	r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4575 
4576 	/*
4577 	 * Broadcast RESYNC message to other nodes, so all nodes would not
4578 	 * write to the region to avoid conflict.
4579 	*/
4580 	if (mddev_is_clustered(mddev) && conf->cluster_sync_high <= sector_nr) {
4581 		struct mdp_superblock_1 *sb = NULL;
4582 		int sb_reshape_pos = 0;
4583 
4584 		conf->cluster_sync_low = sector_nr;
4585 		conf->cluster_sync_high = sector_nr + CLUSTER_RESYNC_WINDOW_SECTORS;
4586 		sb = page_address(rdev->sb_page);
4587 		if (sb) {
4588 			sb_reshape_pos = le64_to_cpu(sb->reshape_position);
4589 			/*
4590 			 * Set cluster_sync_low again if next address for array
4591 			 * reshape is less than cluster_sync_low. Since we can't
4592 			 * update cluster_sync_low until it has finished reshape.
4593 			 */
4594 			if (sb_reshape_pos < conf->cluster_sync_low)
4595 				conf->cluster_sync_low = sb_reshape_pos;
4596 		}
4597 
4598 		md_cluster_ops->resync_info_update(mddev, conf->cluster_sync_low,
4599 							  conf->cluster_sync_high);
4600 	}
4601 
4602 	/* Now find the locations in the new layout */
4603 	__raid10_find_phys(&conf->geo, r10_bio);
4604 
4605 	blist = read_bio;
4606 	read_bio->bi_next = NULL;
4607 
4608 	rcu_read_lock();
4609 	for (s = 0; s < conf->copies*2; s++) {
4610 		struct bio *b;
4611 		int d = r10_bio->devs[s/2].devnum;
4612 		struct md_rdev *rdev2;
4613 		if (s&1) {
4614 			rdev2 = rcu_dereference(conf->mirrors[d].replacement);
4615 			b = r10_bio->devs[s/2].repl_bio;
4616 		} else {
4617 			rdev2 = rcu_dereference(conf->mirrors[d].rdev);
4618 			b = r10_bio->devs[s/2].bio;
4619 		}
4620 		if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4621 			continue;
4622 
4623 		bio_set_dev(b, rdev2->bdev);
4624 		b->bi_iter.bi_sector = r10_bio->devs[s/2].addr +
4625 			rdev2->new_data_offset;
4626 		b->bi_end_io = end_reshape_write;
4627 		bio_set_op_attrs(b, REQ_OP_WRITE, 0);
4628 		b->bi_next = blist;
4629 		blist = b;
4630 	}
4631 
4632 	/* Now add as many pages as possible to all of these bios. */
4633 
4634 	nr_sectors = 0;
4635 	pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
4636 	for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4637 		struct page *page = pages[s / (PAGE_SIZE >> 9)];
4638 		int len = (max_sectors - s) << 9;
4639 		if (len > PAGE_SIZE)
4640 			len = PAGE_SIZE;
4641 		for (bio = blist; bio ; bio = bio->bi_next) {
4642 			/*
4643 			 * won't fail because the vec table is big enough
4644 			 * to hold all these pages
4645 			 */
4646 			bio_add_page(bio, page, len, 0);
4647 		}
4648 		sector_nr += len >> 9;
4649 		nr_sectors += len >> 9;
4650 	}
4651 	rcu_read_unlock();
4652 	r10_bio->sectors = nr_sectors;
4653 
4654 	/* Now submit the read */
4655 	md_sync_acct_bio(read_bio, r10_bio->sectors);
4656 	atomic_inc(&r10_bio->remaining);
4657 	read_bio->bi_next = NULL;
4658 	generic_make_request(read_bio);
4659 	sectors_done += nr_sectors;
4660 	if (sector_nr <= last)
4661 		goto read_more;
4662 
4663 	lower_barrier(conf);
4664 
4665 	/* Now that we have done the whole section we can
4666 	 * update reshape_progress
4667 	 */
4668 	if (mddev->reshape_backwards)
4669 		conf->reshape_progress -= sectors_done;
4670 	else
4671 		conf->reshape_progress += sectors_done;
4672 
4673 	return sectors_done;
4674 }
4675 
4676 static void end_reshape_request(struct r10bio *r10_bio);
4677 static int handle_reshape_read_error(struct mddev *mddev,
4678 				     struct r10bio *r10_bio);
4679 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4680 {
4681 	/* Reshape read completed.  Hopefully we have a block
4682 	 * to write out.
4683 	 * If we got a read error then we do sync 1-page reads from
4684 	 * elsewhere until we find the data - or give up.
4685 	 */
4686 	struct r10conf *conf = mddev->private;
4687 	int s;
4688 
4689 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4690 		if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4691 			/* Reshape has been aborted */
4692 			md_done_sync(mddev, r10_bio->sectors, 0);
4693 			return;
4694 		}
4695 
4696 	/* We definitely have the data in the pages, schedule the
4697 	 * writes.
4698 	 */
4699 	atomic_set(&r10_bio->remaining, 1);
4700 	for (s = 0; s < conf->copies*2; s++) {
4701 		struct bio *b;
4702 		int d = r10_bio->devs[s/2].devnum;
4703 		struct md_rdev *rdev;
4704 		rcu_read_lock();
4705 		if (s&1) {
4706 			rdev = rcu_dereference(conf->mirrors[d].replacement);
4707 			b = r10_bio->devs[s/2].repl_bio;
4708 		} else {
4709 			rdev = rcu_dereference(conf->mirrors[d].rdev);
4710 			b = r10_bio->devs[s/2].bio;
4711 		}
4712 		if (!rdev || test_bit(Faulty, &rdev->flags)) {
4713 			rcu_read_unlock();
4714 			continue;
4715 		}
4716 		atomic_inc(&rdev->nr_pending);
4717 		rcu_read_unlock();
4718 		md_sync_acct_bio(b, r10_bio->sectors);
4719 		atomic_inc(&r10_bio->remaining);
4720 		b->bi_next = NULL;
4721 		generic_make_request(b);
4722 	}
4723 	end_reshape_request(r10_bio);
4724 }
4725 
4726 static void end_reshape(struct r10conf *conf)
4727 {
4728 	if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
4729 		return;
4730 
4731 	spin_lock_irq(&conf->device_lock);
4732 	conf->prev = conf->geo;
4733 	md_finish_reshape(conf->mddev);
4734 	smp_wmb();
4735 	conf->reshape_progress = MaxSector;
4736 	conf->reshape_safe = MaxSector;
4737 	spin_unlock_irq(&conf->device_lock);
4738 
4739 	/* read-ahead size must cover two whole stripes, which is
4740 	 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4741 	 */
4742 	if (conf->mddev->queue) {
4743 		int stripe = conf->geo.raid_disks *
4744 			((conf->mddev->chunk_sectors << 9) / PAGE_SIZE);
4745 		stripe /= conf->geo.near_copies;
4746 		if (conf->mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
4747 			conf->mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
4748 	}
4749 	conf->fullsync = 0;
4750 }
4751 
4752 static void raid10_update_reshape_pos(struct mddev *mddev)
4753 {
4754 	struct r10conf *conf = mddev->private;
4755 	sector_t lo, hi;
4756 
4757 	md_cluster_ops->resync_info_get(mddev, &lo, &hi);
4758 	if (((mddev->reshape_position <= hi) && (mddev->reshape_position >= lo))
4759 	    || mddev->reshape_position == MaxSector)
4760 		conf->reshape_progress = mddev->reshape_position;
4761 	else
4762 		WARN_ON_ONCE(1);
4763 }
4764 
4765 static int handle_reshape_read_error(struct mddev *mddev,
4766 				     struct r10bio *r10_bio)
4767 {
4768 	/* Use sync reads to get the blocks from somewhere else */
4769 	int sectors = r10_bio->sectors;
4770 	struct r10conf *conf = mddev->private;
4771 	struct r10bio *r10b;
4772 	int slot = 0;
4773 	int idx = 0;
4774 	struct page **pages;
4775 
4776 	r10b = kmalloc(struct_size(r10b, devs, conf->copies), GFP_NOIO);
4777 	if (!r10b) {
4778 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4779 		return -ENOMEM;
4780 	}
4781 
4782 	/* reshape IOs share pages from .devs[0].bio */
4783 	pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
4784 
4785 	r10b->sector = r10_bio->sector;
4786 	__raid10_find_phys(&conf->prev, r10b);
4787 
4788 	while (sectors) {
4789 		int s = sectors;
4790 		int success = 0;
4791 		int first_slot = slot;
4792 
4793 		if (s > (PAGE_SIZE >> 9))
4794 			s = PAGE_SIZE >> 9;
4795 
4796 		rcu_read_lock();
4797 		while (!success) {
4798 			int d = r10b->devs[slot].devnum;
4799 			struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
4800 			sector_t addr;
4801 			if (rdev == NULL ||
4802 			    test_bit(Faulty, &rdev->flags) ||
4803 			    !test_bit(In_sync, &rdev->flags))
4804 				goto failed;
4805 
4806 			addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
4807 			atomic_inc(&rdev->nr_pending);
4808 			rcu_read_unlock();
4809 			success = sync_page_io(rdev,
4810 					       addr,
4811 					       s << 9,
4812 					       pages[idx],
4813 					       REQ_OP_READ, 0, false);
4814 			rdev_dec_pending(rdev, mddev);
4815 			rcu_read_lock();
4816 			if (success)
4817 				break;
4818 		failed:
4819 			slot++;
4820 			if (slot >= conf->copies)
4821 				slot = 0;
4822 			if (slot == first_slot)
4823 				break;
4824 		}
4825 		rcu_read_unlock();
4826 		if (!success) {
4827 			/* couldn't read this block, must give up */
4828 			set_bit(MD_RECOVERY_INTR,
4829 				&mddev->recovery);
4830 			kfree(r10b);
4831 			return -EIO;
4832 		}
4833 		sectors -= s;
4834 		idx++;
4835 	}
4836 	kfree(r10b);
4837 	return 0;
4838 }
4839 
4840 static void end_reshape_write(struct bio *bio)
4841 {
4842 	struct r10bio *r10_bio = get_resync_r10bio(bio);
4843 	struct mddev *mddev = r10_bio->mddev;
4844 	struct r10conf *conf = mddev->private;
4845 	int d;
4846 	int slot;
4847 	int repl;
4848 	struct md_rdev *rdev = NULL;
4849 
4850 	d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
4851 	if (repl)
4852 		rdev = conf->mirrors[d].replacement;
4853 	if (!rdev) {
4854 		smp_mb();
4855 		rdev = conf->mirrors[d].rdev;
4856 	}
4857 
4858 	if (bio->bi_status) {
4859 		/* FIXME should record badblock */
4860 		md_error(mddev, rdev);
4861 	}
4862 
4863 	rdev_dec_pending(rdev, mddev);
4864 	end_reshape_request(r10_bio);
4865 }
4866 
4867 static void end_reshape_request(struct r10bio *r10_bio)
4868 {
4869 	if (!atomic_dec_and_test(&r10_bio->remaining))
4870 		return;
4871 	md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
4872 	bio_put(r10_bio->master_bio);
4873 	put_buf(r10_bio);
4874 }
4875 
4876 static void raid10_finish_reshape(struct mddev *mddev)
4877 {
4878 	struct r10conf *conf = mddev->private;
4879 
4880 	if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4881 		return;
4882 
4883 	if (mddev->delta_disks > 0) {
4884 		if (mddev->recovery_cp > mddev->resync_max_sectors) {
4885 			mddev->recovery_cp = mddev->resync_max_sectors;
4886 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4887 		}
4888 		mddev->resync_max_sectors = mddev->array_sectors;
4889 	} else {
4890 		int d;
4891 		rcu_read_lock();
4892 		for (d = conf->geo.raid_disks ;
4893 		     d < conf->geo.raid_disks - mddev->delta_disks;
4894 		     d++) {
4895 			struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
4896 			if (rdev)
4897 				clear_bit(In_sync, &rdev->flags);
4898 			rdev = rcu_dereference(conf->mirrors[d].replacement);
4899 			if (rdev)
4900 				clear_bit(In_sync, &rdev->flags);
4901 		}
4902 		rcu_read_unlock();
4903 	}
4904 	mddev->layout = mddev->new_layout;
4905 	mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
4906 	mddev->reshape_position = MaxSector;
4907 	mddev->delta_disks = 0;
4908 	mddev->reshape_backwards = 0;
4909 }
4910 
4911 static struct md_personality raid10_personality =
4912 {
4913 	.name		= "raid10",
4914 	.level		= 10,
4915 	.owner		= THIS_MODULE,
4916 	.make_request	= raid10_make_request,
4917 	.run		= raid10_run,
4918 	.free		= raid10_free,
4919 	.status		= raid10_status,
4920 	.error_handler	= raid10_error,
4921 	.hot_add_disk	= raid10_add_disk,
4922 	.hot_remove_disk= raid10_remove_disk,
4923 	.spare_active	= raid10_spare_active,
4924 	.sync_request	= raid10_sync_request,
4925 	.quiesce	= raid10_quiesce,
4926 	.size		= raid10_size,
4927 	.resize		= raid10_resize,
4928 	.takeover	= raid10_takeover,
4929 	.check_reshape	= raid10_check_reshape,
4930 	.start_reshape	= raid10_start_reshape,
4931 	.finish_reshape	= raid10_finish_reshape,
4932 	.update_reshape_pos = raid10_update_reshape_pos,
4933 	.congested	= raid10_congested,
4934 };
4935 
4936 static int __init raid_init(void)
4937 {
4938 	return register_md_personality(&raid10_personality);
4939 }
4940 
4941 static void raid_exit(void)
4942 {
4943 	unregister_md_personality(&raid10_personality);
4944 }
4945 
4946 module_init(raid_init);
4947 module_exit(raid_exit);
4948 MODULE_LICENSE("GPL");
4949 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
4950 MODULE_ALIAS("md-personality-9"); /* RAID10 */
4951 MODULE_ALIAS("md-raid10");
4952 MODULE_ALIAS("md-level-10");
4953 
4954 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
4955