1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * raid1.c : Multiple Devices driver for Linux 4 * 5 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat 6 * 7 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman 8 * 9 * RAID-1 management functions. 10 * 11 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000 12 * 13 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk> 14 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au> 15 * 16 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support 17 * bitmapped intelligence in resync: 18 * 19 * - bitmap marked during normal i/o 20 * - bitmap used to skip nondirty blocks during sync 21 * 22 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology: 23 * - persistent bitmap code 24 */ 25 26 #include <linux/slab.h> 27 #include <linux/delay.h> 28 #include <linux/blkdev.h> 29 #include <linux/module.h> 30 #include <linux/seq_file.h> 31 #include <linux/ratelimit.h> 32 #include <linux/interval_tree_generic.h> 33 34 #include <trace/events/block.h> 35 36 #include "md.h" 37 #include "raid1.h" 38 #include "md-bitmap.h" 39 40 #define UNSUPPORTED_MDDEV_FLAGS \ 41 ((1L << MD_HAS_JOURNAL) | \ 42 (1L << MD_JOURNAL_CLEAN) | \ 43 (1L << MD_HAS_PPL) | \ 44 (1L << MD_HAS_MULTIPLE_PPLS)) 45 46 static void allow_barrier(struct r1conf *conf, sector_t sector_nr); 47 static void lower_barrier(struct r1conf *conf, sector_t sector_nr); 48 49 #define raid1_log(md, fmt, args...) \ 50 do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid1 " fmt, ##args); } while (0) 51 52 #include "raid1-10.c" 53 54 #define START(node) ((node)->start) 55 #define LAST(node) ((node)->last) 56 INTERVAL_TREE_DEFINE(struct serial_info, node, sector_t, _subtree_last, 57 START, LAST, static inline, raid1_rb); 58 59 static int check_and_add_serial(struct md_rdev *rdev, struct r1bio *r1_bio, 60 struct serial_info *si, int idx) 61 { 62 unsigned long flags; 63 int ret = 0; 64 sector_t lo = r1_bio->sector; 65 sector_t hi = lo + r1_bio->sectors; 66 struct serial_in_rdev *serial = &rdev->serial[idx]; 67 68 spin_lock_irqsave(&serial->serial_lock, flags); 69 /* collision happened */ 70 if (raid1_rb_iter_first(&serial->serial_rb, lo, hi)) 71 ret = -EBUSY; 72 else { 73 si->start = lo; 74 si->last = hi; 75 raid1_rb_insert(si, &serial->serial_rb); 76 } 77 spin_unlock_irqrestore(&serial->serial_lock, flags); 78 79 return ret; 80 } 81 82 static void wait_for_serialization(struct md_rdev *rdev, struct r1bio *r1_bio) 83 { 84 struct mddev *mddev = rdev->mddev; 85 struct serial_info *si; 86 int idx = sector_to_idx(r1_bio->sector); 87 struct serial_in_rdev *serial = &rdev->serial[idx]; 88 89 if (WARN_ON(!mddev->serial_info_pool)) 90 return; 91 si = mempool_alloc(mddev->serial_info_pool, GFP_NOIO); 92 wait_event(serial->serial_io_wait, 93 check_and_add_serial(rdev, r1_bio, si, idx) == 0); 94 } 95 96 static void remove_serial(struct md_rdev *rdev, sector_t lo, sector_t hi) 97 { 98 struct serial_info *si; 99 unsigned long flags; 100 int found = 0; 101 struct mddev *mddev = rdev->mddev; 102 int idx = sector_to_idx(lo); 103 struct serial_in_rdev *serial = &rdev->serial[idx]; 104 105 spin_lock_irqsave(&serial->serial_lock, flags); 106 for (si = raid1_rb_iter_first(&serial->serial_rb, lo, hi); 107 si; si = raid1_rb_iter_next(si, lo, hi)) { 108 if (si->start == lo && si->last == hi) { 109 raid1_rb_remove(si, &serial->serial_rb); 110 mempool_free(si, mddev->serial_info_pool); 111 found = 1; 112 break; 113 } 114 } 115 if (!found) 116 WARN(1, "The write IO is not recorded for serialization\n"); 117 spin_unlock_irqrestore(&serial->serial_lock, flags); 118 wake_up(&serial->serial_io_wait); 119 } 120 121 /* 122 * for resync bio, r1bio pointer can be retrieved from the per-bio 123 * 'struct resync_pages'. 124 */ 125 static inline struct r1bio *get_resync_r1bio(struct bio *bio) 126 { 127 return get_resync_pages(bio)->raid_bio; 128 } 129 130 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data) 131 { 132 struct pool_info *pi = data; 133 int size = offsetof(struct r1bio, bios[pi->raid_disks]); 134 135 /* allocate a r1bio with room for raid_disks entries in the bios array */ 136 return kzalloc(size, gfp_flags); 137 } 138 139 #define RESYNC_DEPTH 32 140 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9) 141 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH) 142 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9) 143 #define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW) 144 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9) 145 146 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data) 147 { 148 struct pool_info *pi = data; 149 struct r1bio *r1_bio; 150 struct bio *bio; 151 int need_pages; 152 int j; 153 struct resync_pages *rps; 154 155 r1_bio = r1bio_pool_alloc(gfp_flags, pi); 156 if (!r1_bio) 157 return NULL; 158 159 rps = kmalloc_array(pi->raid_disks, sizeof(struct resync_pages), 160 gfp_flags); 161 if (!rps) 162 goto out_free_r1bio; 163 164 /* 165 * Allocate bios : 1 for reading, n-1 for writing 166 */ 167 for (j = pi->raid_disks ; j-- ; ) { 168 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES); 169 if (!bio) 170 goto out_free_bio; 171 r1_bio->bios[j] = bio; 172 } 173 /* 174 * Allocate RESYNC_PAGES data pages and attach them to 175 * the first bio. 176 * If this is a user-requested check/repair, allocate 177 * RESYNC_PAGES for each bio. 178 */ 179 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) 180 need_pages = pi->raid_disks; 181 else 182 need_pages = 1; 183 for (j = 0; j < pi->raid_disks; j++) { 184 struct resync_pages *rp = &rps[j]; 185 186 bio = r1_bio->bios[j]; 187 188 if (j < need_pages) { 189 if (resync_alloc_pages(rp, gfp_flags)) 190 goto out_free_pages; 191 } else { 192 memcpy(rp, &rps[0], sizeof(*rp)); 193 resync_get_all_pages(rp); 194 } 195 196 rp->raid_bio = r1_bio; 197 bio->bi_private = rp; 198 } 199 200 r1_bio->master_bio = NULL; 201 202 return r1_bio; 203 204 out_free_pages: 205 while (--j >= 0) 206 resync_free_pages(&rps[j]); 207 208 out_free_bio: 209 while (++j < pi->raid_disks) 210 bio_put(r1_bio->bios[j]); 211 kfree(rps); 212 213 out_free_r1bio: 214 rbio_pool_free(r1_bio, data); 215 return NULL; 216 } 217 218 static void r1buf_pool_free(void *__r1_bio, void *data) 219 { 220 struct pool_info *pi = data; 221 int i; 222 struct r1bio *r1bio = __r1_bio; 223 struct resync_pages *rp = NULL; 224 225 for (i = pi->raid_disks; i--; ) { 226 rp = get_resync_pages(r1bio->bios[i]); 227 resync_free_pages(rp); 228 bio_put(r1bio->bios[i]); 229 } 230 231 /* resync pages array stored in the 1st bio's .bi_private */ 232 kfree(rp); 233 234 rbio_pool_free(r1bio, data); 235 } 236 237 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio) 238 { 239 int i; 240 241 for (i = 0; i < conf->raid_disks * 2; i++) { 242 struct bio **bio = r1_bio->bios + i; 243 if (!BIO_SPECIAL(*bio)) 244 bio_put(*bio); 245 *bio = NULL; 246 } 247 } 248 249 static void free_r1bio(struct r1bio *r1_bio) 250 { 251 struct r1conf *conf = r1_bio->mddev->private; 252 253 put_all_bios(conf, r1_bio); 254 mempool_free(r1_bio, &conf->r1bio_pool); 255 } 256 257 static void put_buf(struct r1bio *r1_bio) 258 { 259 struct r1conf *conf = r1_bio->mddev->private; 260 sector_t sect = r1_bio->sector; 261 int i; 262 263 for (i = 0; i < conf->raid_disks * 2; i++) { 264 struct bio *bio = r1_bio->bios[i]; 265 if (bio->bi_end_io) 266 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev); 267 } 268 269 mempool_free(r1_bio, &conf->r1buf_pool); 270 271 lower_barrier(conf, sect); 272 } 273 274 static void reschedule_retry(struct r1bio *r1_bio) 275 { 276 unsigned long flags; 277 struct mddev *mddev = r1_bio->mddev; 278 struct r1conf *conf = mddev->private; 279 int idx; 280 281 idx = sector_to_idx(r1_bio->sector); 282 spin_lock_irqsave(&conf->device_lock, flags); 283 list_add(&r1_bio->retry_list, &conf->retry_list); 284 atomic_inc(&conf->nr_queued[idx]); 285 spin_unlock_irqrestore(&conf->device_lock, flags); 286 287 wake_up(&conf->wait_barrier); 288 md_wakeup_thread(mddev->thread); 289 } 290 291 /* 292 * raid_end_bio_io() is called when we have finished servicing a mirrored 293 * operation and are ready to return a success/failure code to the buffer 294 * cache layer. 295 */ 296 static void call_bio_endio(struct r1bio *r1_bio) 297 { 298 struct bio *bio = r1_bio->master_bio; 299 300 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) 301 bio->bi_status = BLK_STS_IOERR; 302 303 if (blk_queue_io_stat(bio->bi_bdev->bd_disk->queue)) 304 bio_end_io_acct(bio, r1_bio->start_time); 305 bio_endio(bio); 306 } 307 308 static void raid_end_bio_io(struct r1bio *r1_bio) 309 { 310 struct bio *bio = r1_bio->master_bio; 311 struct r1conf *conf = r1_bio->mddev->private; 312 313 /* if nobody has done the final endio yet, do it now */ 314 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) { 315 pr_debug("raid1: sync end %s on sectors %llu-%llu\n", 316 (bio_data_dir(bio) == WRITE) ? "write" : "read", 317 (unsigned long long) bio->bi_iter.bi_sector, 318 (unsigned long long) bio_end_sector(bio) - 1); 319 320 call_bio_endio(r1_bio); 321 } 322 /* 323 * Wake up any possible resync thread that waits for the device 324 * to go idle. All I/Os, even write-behind writes, are done. 325 */ 326 allow_barrier(conf, r1_bio->sector); 327 328 free_r1bio(r1_bio); 329 } 330 331 /* 332 * Update disk head position estimator based on IRQ completion info. 333 */ 334 static inline void update_head_pos(int disk, struct r1bio *r1_bio) 335 { 336 struct r1conf *conf = r1_bio->mddev->private; 337 338 conf->mirrors[disk].head_position = 339 r1_bio->sector + (r1_bio->sectors); 340 } 341 342 /* 343 * Find the disk number which triggered given bio 344 */ 345 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio) 346 { 347 int mirror; 348 struct r1conf *conf = r1_bio->mddev->private; 349 int raid_disks = conf->raid_disks; 350 351 for (mirror = 0; mirror < raid_disks * 2; mirror++) 352 if (r1_bio->bios[mirror] == bio) 353 break; 354 355 BUG_ON(mirror == raid_disks * 2); 356 update_head_pos(mirror, r1_bio); 357 358 return mirror; 359 } 360 361 static void raid1_end_read_request(struct bio *bio) 362 { 363 int uptodate = !bio->bi_status; 364 struct r1bio *r1_bio = bio->bi_private; 365 struct r1conf *conf = r1_bio->mddev->private; 366 struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev; 367 368 /* 369 * this branch is our 'one mirror IO has finished' event handler: 370 */ 371 update_head_pos(r1_bio->read_disk, r1_bio); 372 373 if (uptodate) 374 set_bit(R1BIO_Uptodate, &r1_bio->state); 375 else if (test_bit(FailFast, &rdev->flags) && 376 test_bit(R1BIO_FailFast, &r1_bio->state)) 377 /* This was a fail-fast read so we definitely 378 * want to retry */ 379 ; 380 else { 381 /* If all other devices have failed, we want to return 382 * the error upwards rather than fail the last device. 383 * Here we redefine "uptodate" to mean "Don't want to retry" 384 */ 385 unsigned long flags; 386 spin_lock_irqsave(&conf->device_lock, flags); 387 if (r1_bio->mddev->degraded == conf->raid_disks || 388 (r1_bio->mddev->degraded == conf->raid_disks-1 && 389 test_bit(In_sync, &rdev->flags))) 390 uptodate = 1; 391 spin_unlock_irqrestore(&conf->device_lock, flags); 392 } 393 394 if (uptodate) { 395 raid_end_bio_io(r1_bio); 396 rdev_dec_pending(rdev, conf->mddev); 397 } else { 398 /* 399 * oops, read error: 400 */ 401 char b[BDEVNAME_SIZE]; 402 pr_err_ratelimited("md/raid1:%s: %s: rescheduling sector %llu\n", 403 mdname(conf->mddev), 404 bdevname(rdev->bdev, b), 405 (unsigned long long)r1_bio->sector); 406 set_bit(R1BIO_ReadError, &r1_bio->state); 407 reschedule_retry(r1_bio); 408 /* don't drop the reference on read_disk yet */ 409 } 410 } 411 412 static void close_write(struct r1bio *r1_bio) 413 { 414 /* it really is the end of this request */ 415 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) { 416 bio_free_pages(r1_bio->behind_master_bio); 417 bio_put(r1_bio->behind_master_bio); 418 r1_bio->behind_master_bio = NULL; 419 } 420 /* clear the bitmap if all writes complete successfully */ 421 md_bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector, 422 r1_bio->sectors, 423 !test_bit(R1BIO_Degraded, &r1_bio->state), 424 test_bit(R1BIO_BehindIO, &r1_bio->state)); 425 md_write_end(r1_bio->mddev); 426 } 427 428 static void r1_bio_write_done(struct r1bio *r1_bio) 429 { 430 if (!atomic_dec_and_test(&r1_bio->remaining)) 431 return; 432 433 if (test_bit(R1BIO_WriteError, &r1_bio->state)) 434 reschedule_retry(r1_bio); 435 else { 436 close_write(r1_bio); 437 if (test_bit(R1BIO_MadeGood, &r1_bio->state)) 438 reschedule_retry(r1_bio); 439 else 440 raid_end_bio_io(r1_bio); 441 } 442 } 443 444 static void raid1_end_write_request(struct bio *bio) 445 { 446 struct r1bio *r1_bio = bio->bi_private; 447 int behind = test_bit(R1BIO_BehindIO, &r1_bio->state); 448 struct r1conf *conf = r1_bio->mddev->private; 449 struct bio *to_put = NULL; 450 int mirror = find_bio_disk(r1_bio, bio); 451 struct md_rdev *rdev = conf->mirrors[mirror].rdev; 452 bool discard_error; 453 sector_t lo = r1_bio->sector; 454 sector_t hi = r1_bio->sector + r1_bio->sectors; 455 456 discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD; 457 458 /* 459 * 'one mirror IO has finished' event handler: 460 */ 461 if (bio->bi_status && !discard_error) { 462 set_bit(WriteErrorSeen, &rdev->flags); 463 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 464 set_bit(MD_RECOVERY_NEEDED, & 465 conf->mddev->recovery); 466 467 if (test_bit(FailFast, &rdev->flags) && 468 (bio->bi_opf & MD_FAILFAST) && 469 /* We never try FailFast to WriteMostly devices */ 470 !test_bit(WriteMostly, &rdev->flags)) { 471 md_error(r1_bio->mddev, rdev); 472 } 473 474 /* 475 * When the device is faulty, it is not necessary to 476 * handle write error. 477 */ 478 if (!test_bit(Faulty, &rdev->flags)) 479 set_bit(R1BIO_WriteError, &r1_bio->state); 480 else { 481 /* Fail the request */ 482 set_bit(R1BIO_Degraded, &r1_bio->state); 483 /* Finished with this branch */ 484 r1_bio->bios[mirror] = NULL; 485 to_put = bio; 486 } 487 } else { 488 /* 489 * Set R1BIO_Uptodate in our master bio, so that we 490 * will return a good error code for to the higher 491 * levels even if IO on some other mirrored buffer 492 * fails. 493 * 494 * The 'master' represents the composite IO operation 495 * to user-side. So if something waits for IO, then it 496 * will wait for the 'master' bio. 497 */ 498 sector_t first_bad; 499 int bad_sectors; 500 501 r1_bio->bios[mirror] = NULL; 502 to_put = bio; 503 /* 504 * Do not set R1BIO_Uptodate if the current device is 505 * rebuilding or Faulty. This is because we cannot use 506 * such device for properly reading the data back (we could 507 * potentially use it, if the current write would have felt 508 * before rdev->recovery_offset, but for simplicity we don't 509 * check this here. 510 */ 511 if (test_bit(In_sync, &rdev->flags) && 512 !test_bit(Faulty, &rdev->flags)) 513 set_bit(R1BIO_Uptodate, &r1_bio->state); 514 515 /* Maybe we can clear some bad blocks. */ 516 if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors, 517 &first_bad, &bad_sectors) && !discard_error) { 518 r1_bio->bios[mirror] = IO_MADE_GOOD; 519 set_bit(R1BIO_MadeGood, &r1_bio->state); 520 } 521 } 522 523 if (behind) { 524 if (test_bit(CollisionCheck, &rdev->flags)) 525 remove_serial(rdev, lo, hi); 526 if (test_bit(WriteMostly, &rdev->flags)) 527 atomic_dec(&r1_bio->behind_remaining); 528 529 /* 530 * In behind mode, we ACK the master bio once the I/O 531 * has safely reached all non-writemostly 532 * disks. Setting the Returned bit ensures that this 533 * gets done only once -- we don't ever want to return 534 * -EIO here, instead we'll wait 535 */ 536 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) && 537 test_bit(R1BIO_Uptodate, &r1_bio->state)) { 538 /* Maybe we can return now */ 539 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) { 540 struct bio *mbio = r1_bio->master_bio; 541 pr_debug("raid1: behind end write sectors" 542 " %llu-%llu\n", 543 (unsigned long long) mbio->bi_iter.bi_sector, 544 (unsigned long long) bio_end_sector(mbio) - 1); 545 call_bio_endio(r1_bio); 546 } 547 } 548 } else if (rdev->mddev->serialize_policy) 549 remove_serial(rdev, lo, hi); 550 if (r1_bio->bios[mirror] == NULL) 551 rdev_dec_pending(rdev, conf->mddev); 552 553 /* 554 * Let's see if all mirrored write operations have finished 555 * already. 556 */ 557 r1_bio_write_done(r1_bio); 558 559 if (to_put) 560 bio_put(to_put); 561 } 562 563 static sector_t align_to_barrier_unit_end(sector_t start_sector, 564 sector_t sectors) 565 { 566 sector_t len; 567 568 WARN_ON(sectors == 0); 569 /* 570 * len is the number of sectors from start_sector to end of the 571 * barrier unit which start_sector belongs to. 572 */ 573 len = round_up(start_sector + 1, BARRIER_UNIT_SECTOR_SIZE) - 574 start_sector; 575 576 if (len > sectors) 577 len = sectors; 578 579 return len; 580 } 581 582 /* 583 * This routine returns the disk from which the requested read should 584 * be done. There is a per-array 'next expected sequential IO' sector 585 * number - if this matches on the next IO then we use the last disk. 586 * There is also a per-disk 'last know head position' sector that is 587 * maintained from IRQ contexts, both the normal and the resync IO 588 * completion handlers update this position correctly. If there is no 589 * perfect sequential match then we pick the disk whose head is closest. 590 * 591 * If there are 2 mirrors in the same 2 devices, performance degrades 592 * because position is mirror, not device based. 593 * 594 * The rdev for the device selected will have nr_pending incremented. 595 */ 596 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors) 597 { 598 const sector_t this_sector = r1_bio->sector; 599 int sectors; 600 int best_good_sectors; 601 int best_disk, best_dist_disk, best_pending_disk; 602 int has_nonrot_disk; 603 int disk; 604 sector_t best_dist; 605 unsigned int min_pending; 606 struct md_rdev *rdev; 607 int choose_first; 608 int choose_next_idle; 609 610 rcu_read_lock(); 611 /* 612 * Check if we can balance. We can balance on the whole 613 * device if no resync is going on, or below the resync window. 614 * We take the first readable disk when above the resync window. 615 */ 616 retry: 617 sectors = r1_bio->sectors; 618 best_disk = -1; 619 best_dist_disk = -1; 620 best_dist = MaxSector; 621 best_pending_disk = -1; 622 min_pending = UINT_MAX; 623 best_good_sectors = 0; 624 has_nonrot_disk = 0; 625 choose_next_idle = 0; 626 clear_bit(R1BIO_FailFast, &r1_bio->state); 627 628 if ((conf->mddev->recovery_cp < this_sector + sectors) || 629 (mddev_is_clustered(conf->mddev) && 630 md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector, 631 this_sector + sectors))) 632 choose_first = 1; 633 else 634 choose_first = 0; 635 636 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) { 637 sector_t dist; 638 sector_t first_bad; 639 int bad_sectors; 640 unsigned int pending; 641 bool nonrot; 642 643 rdev = rcu_dereference(conf->mirrors[disk].rdev); 644 if (r1_bio->bios[disk] == IO_BLOCKED 645 || rdev == NULL 646 || test_bit(Faulty, &rdev->flags)) 647 continue; 648 if (!test_bit(In_sync, &rdev->flags) && 649 rdev->recovery_offset < this_sector + sectors) 650 continue; 651 if (test_bit(WriteMostly, &rdev->flags)) { 652 /* Don't balance among write-mostly, just 653 * use the first as a last resort */ 654 if (best_dist_disk < 0) { 655 if (is_badblock(rdev, this_sector, sectors, 656 &first_bad, &bad_sectors)) { 657 if (first_bad <= this_sector) 658 /* Cannot use this */ 659 continue; 660 best_good_sectors = first_bad - this_sector; 661 } else 662 best_good_sectors = sectors; 663 best_dist_disk = disk; 664 best_pending_disk = disk; 665 } 666 continue; 667 } 668 /* This is a reasonable device to use. It might 669 * even be best. 670 */ 671 if (is_badblock(rdev, this_sector, sectors, 672 &first_bad, &bad_sectors)) { 673 if (best_dist < MaxSector) 674 /* already have a better device */ 675 continue; 676 if (first_bad <= this_sector) { 677 /* cannot read here. If this is the 'primary' 678 * device, then we must not read beyond 679 * bad_sectors from another device.. 680 */ 681 bad_sectors -= (this_sector - first_bad); 682 if (choose_first && sectors > bad_sectors) 683 sectors = bad_sectors; 684 if (best_good_sectors > sectors) 685 best_good_sectors = sectors; 686 687 } else { 688 sector_t good_sectors = first_bad - this_sector; 689 if (good_sectors > best_good_sectors) { 690 best_good_sectors = good_sectors; 691 best_disk = disk; 692 } 693 if (choose_first) 694 break; 695 } 696 continue; 697 } else { 698 if ((sectors > best_good_sectors) && (best_disk >= 0)) 699 best_disk = -1; 700 best_good_sectors = sectors; 701 } 702 703 if (best_disk >= 0) 704 /* At least two disks to choose from so failfast is OK */ 705 set_bit(R1BIO_FailFast, &r1_bio->state); 706 707 nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev)); 708 has_nonrot_disk |= nonrot; 709 pending = atomic_read(&rdev->nr_pending); 710 dist = abs(this_sector - conf->mirrors[disk].head_position); 711 if (choose_first) { 712 best_disk = disk; 713 break; 714 } 715 /* Don't change to another disk for sequential reads */ 716 if (conf->mirrors[disk].next_seq_sect == this_sector 717 || dist == 0) { 718 int opt_iosize = bdev_io_opt(rdev->bdev) >> 9; 719 struct raid1_info *mirror = &conf->mirrors[disk]; 720 721 best_disk = disk; 722 /* 723 * If buffered sequential IO size exceeds optimal 724 * iosize, check if there is idle disk. If yes, choose 725 * the idle disk. read_balance could already choose an 726 * idle disk before noticing it's a sequential IO in 727 * this disk. This doesn't matter because this disk 728 * will idle, next time it will be utilized after the 729 * first disk has IO size exceeds optimal iosize. In 730 * this way, iosize of the first disk will be optimal 731 * iosize at least. iosize of the second disk might be 732 * small, but not a big deal since when the second disk 733 * starts IO, the first disk is likely still busy. 734 */ 735 if (nonrot && opt_iosize > 0 && 736 mirror->seq_start != MaxSector && 737 mirror->next_seq_sect > opt_iosize && 738 mirror->next_seq_sect - opt_iosize >= 739 mirror->seq_start) { 740 choose_next_idle = 1; 741 continue; 742 } 743 break; 744 } 745 746 if (choose_next_idle) 747 continue; 748 749 if (min_pending > pending) { 750 min_pending = pending; 751 best_pending_disk = disk; 752 } 753 754 if (dist < best_dist) { 755 best_dist = dist; 756 best_dist_disk = disk; 757 } 758 } 759 760 /* 761 * If all disks are rotational, choose the closest disk. If any disk is 762 * non-rotational, choose the disk with less pending request even the 763 * disk is rotational, which might/might not be optimal for raids with 764 * mixed ratation/non-rotational disks depending on workload. 765 */ 766 if (best_disk == -1) { 767 if (has_nonrot_disk || min_pending == 0) 768 best_disk = best_pending_disk; 769 else 770 best_disk = best_dist_disk; 771 } 772 773 if (best_disk >= 0) { 774 rdev = rcu_dereference(conf->mirrors[best_disk].rdev); 775 if (!rdev) 776 goto retry; 777 atomic_inc(&rdev->nr_pending); 778 sectors = best_good_sectors; 779 780 if (conf->mirrors[best_disk].next_seq_sect != this_sector) 781 conf->mirrors[best_disk].seq_start = this_sector; 782 783 conf->mirrors[best_disk].next_seq_sect = this_sector + sectors; 784 } 785 rcu_read_unlock(); 786 *max_sectors = sectors; 787 788 return best_disk; 789 } 790 791 static void flush_bio_list(struct r1conf *conf, struct bio *bio) 792 { 793 /* flush any pending bitmap writes to disk before proceeding w/ I/O */ 794 md_bitmap_unplug(conf->mddev->bitmap); 795 wake_up(&conf->wait_barrier); 796 797 while (bio) { /* submit pending writes */ 798 struct bio *next = bio->bi_next; 799 struct md_rdev *rdev = (void *)bio->bi_bdev; 800 bio->bi_next = NULL; 801 bio_set_dev(bio, rdev->bdev); 802 if (test_bit(Faulty, &rdev->flags)) { 803 bio_io_error(bio); 804 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) && 805 !blk_queue_discard(bio->bi_bdev->bd_disk->queue))) 806 /* Just ignore it */ 807 bio_endio(bio); 808 else 809 submit_bio_noacct(bio); 810 bio = next; 811 cond_resched(); 812 } 813 } 814 815 static void flush_pending_writes(struct r1conf *conf) 816 { 817 /* Any writes that have been queued but are awaiting 818 * bitmap updates get flushed here. 819 */ 820 spin_lock_irq(&conf->device_lock); 821 822 if (conf->pending_bio_list.head) { 823 struct blk_plug plug; 824 struct bio *bio; 825 826 bio = bio_list_get(&conf->pending_bio_list); 827 conf->pending_count = 0; 828 spin_unlock_irq(&conf->device_lock); 829 830 /* 831 * As this is called in a wait_event() loop (see freeze_array), 832 * current->state might be TASK_UNINTERRUPTIBLE which will 833 * cause a warning when we prepare to wait again. As it is 834 * rare that this path is taken, it is perfectly safe to force 835 * us to go around the wait_event() loop again, so the warning 836 * is a false-positive. Silence the warning by resetting 837 * thread state 838 */ 839 __set_current_state(TASK_RUNNING); 840 blk_start_plug(&plug); 841 flush_bio_list(conf, bio); 842 blk_finish_plug(&plug); 843 } else 844 spin_unlock_irq(&conf->device_lock); 845 } 846 847 /* Barriers.... 848 * Sometimes we need to suspend IO while we do something else, 849 * either some resync/recovery, or reconfigure the array. 850 * To do this we raise a 'barrier'. 851 * The 'barrier' is a counter that can be raised multiple times 852 * to count how many activities are happening which preclude 853 * normal IO. 854 * We can only raise the barrier if there is no pending IO. 855 * i.e. if nr_pending == 0. 856 * We choose only to raise the barrier if no-one is waiting for the 857 * barrier to go down. This means that as soon as an IO request 858 * is ready, no other operations which require a barrier will start 859 * until the IO request has had a chance. 860 * 861 * So: regular IO calls 'wait_barrier'. When that returns there 862 * is no backgroup IO happening, It must arrange to call 863 * allow_barrier when it has finished its IO. 864 * backgroup IO calls must call raise_barrier. Once that returns 865 * there is no normal IO happeing. It must arrange to call 866 * lower_barrier when the particular background IO completes. 867 * 868 * If resync/recovery is interrupted, returns -EINTR; 869 * Otherwise, returns 0. 870 */ 871 static int raise_barrier(struct r1conf *conf, sector_t sector_nr) 872 { 873 int idx = sector_to_idx(sector_nr); 874 875 spin_lock_irq(&conf->resync_lock); 876 877 /* Wait until no block IO is waiting */ 878 wait_event_lock_irq(conf->wait_barrier, 879 !atomic_read(&conf->nr_waiting[idx]), 880 conf->resync_lock); 881 882 /* block any new IO from starting */ 883 atomic_inc(&conf->barrier[idx]); 884 /* 885 * In raise_barrier() we firstly increase conf->barrier[idx] then 886 * check conf->nr_pending[idx]. In _wait_barrier() we firstly 887 * increase conf->nr_pending[idx] then check conf->barrier[idx]. 888 * A memory barrier here to make sure conf->nr_pending[idx] won't 889 * be fetched before conf->barrier[idx] is increased. Otherwise 890 * there will be a race between raise_barrier() and _wait_barrier(). 891 */ 892 smp_mb__after_atomic(); 893 894 /* For these conditions we must wait: 895 * A: while the array is in frozen state 896 * B: while conf->nr_pending[idx] is not 0, meaning regular I/O 897 * existing in corresponding I/O barrier bucket. 898 * C: while conf->barrier[idx] >= RESYNC_DEPTH, meaning reaches 899 * max resync count which allowed on current I/O barrier bucket. 900 */ 901 wait_event_lock_irq(conf->wait_barrier, 902 (!conf->array_frozen && 903 !atomic_read(&conf->nr_pending[idx]) && 904 atomic_read(&conf->barrier[idx]) < RESYNC_DEPTH) || 905 test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery), 906 conf->resync_lock); 907 908 if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) { 909 atomic_dec(&conf->barrier[idx]); 910 spin_unlock_irq(&conf->resync_lock); 911 wake_up(&conf->wait_barrier); 912 return -EINTR; 913 } 914 915 atomic_inc(&conf->nr_sync_pending); 916 spin_unlock_irq(&conf->resync_lock); 917 918 return 0; 919 } 920 921 static void lower_barrier(struct r1conf *conf, sector_t sector_nr) 922 { 923 int idx = sector_to_idx(sector_nr); 924 925 BUG_ON(atomic_read(&conf->barrier[idx]) <= 0); 926 927 atomic_dec(&conf->barrier[idx]); 928 atomic_dec(&conf->nr_sync_pending); 929 wake_up(&conf->wait_barrier); 930 } 931 932 static void _wait_barrier(struct r1conf *conf, int idx) 933 { 934 /* 935 * We need to increase conf->nr_pending[idx] very early here, 936 * then raise_barrier() can be blocked when it waits for 937 * conf->nr_pending[idx] to be 0. Then we can avoid holding 938 * conf->resync_lock when there is no barrier raised in same 939 * barrier unit bucket. Also if the array is frozen, I/O 940 * should be blocked until array is unfrozen. 941 */ 942 atomic_inc(&conf->nr_pending[idx]); 943 /* 944 * In _wait_barrier() we firstly increase conf->nr_pending[idx], then 945 * check conf->barrier[idx]. In raise_barrier() we firstly increase 946 * conf->barrier[idx], then check conf->nr_pending[idx]. A memory 947 * barrier is necessary here to make sure conf->barrier[idx] won't be 948 * fetched before conf->nr_pending[idx] is increased. Otherwise there 949 * will be a race between _wait_barrier() and raise_barrier(). 950 */ 951 smp_mb__after_atomic(); 952 953 /* 954 * Don't worry about checking two atomic_t variables at same time 955 * here. If during we check conf->barrier[idx], the array is 956 * frozen (conf->array_frozen is 1), and chonf->barrier[idx] is 957 * 0, it is safe to return and make the I/O continue. Because the 958 * array is frozen, all I/O returned here will eventually complete 959 * or be queued, no race will happen. See code comment in 960 * frozen_array(). 961 */ 962 if (!READ_ONCE(conf->array_frozen) && 963 !atomic_read(&conf->barrier[idx])) 964 return; 965 966 /* 967 * After holding conf->resync_lock, conf->nr_pending[idx] 968 * should be decreased before waiting for barrier to drop. 969 * Otherwise, we may encounter a race condition because 970 * raise_barrer() might be waiting for conf->nr_pending[idx] 971 * to be 0 at same time. 972 */ 973 spin_lock_irq(&conf->resync_lock); 974 atomic_inc(&conf->nr_waiting[idx]); 975 atomic_dec(&conf->nr_pending[idx]); 976 /* 977 * In case freeze_array() is waiting for 978 * get_unqueued_pending() == extra 979 */ 980 wake_up(&conf->wait_barrier); 981 /* Wait for the barrier in same barrier unit bucket to drop. */ 982 wait_event_lock_irq(conf->wait_barrier, 983 !conf->array_frozen && 984 !atomic_read(&conf->barrier[idx]), 985 conf->resync_lock); 986 atomic_inc(&conf->nr_pending[idx]); 987 atomic_dec(&conf->nr_waiting[idx]); 988 spin_unlock_irq(&conf->resync_lock); 989 } 990 991 static void wait_read_barrier(struct r1conf *conf, sector_t sector_nr) 992 { 993 int idx = sector_to_idx(sector_nr); 994 995 /* 996 * Very similar to _wait_barrier(). The difference is, for read 997 * I/O we don't need wait for sync I/O, but if the whole array 998 * is frozen, the read I/O still has to wait until the array is 999 * unfrozen. Since there is no ordering requirement with 1000 * conf->barrier[idx] here, memory barrier is unnecessary as well. 1001 */ 1002 atomic_inc(&conf->nr_pending[idx]); 1003 1004 if (!READ_ONCE(conf->array_frozen)) 1005 return; 1006 1007 spin_lock_irq(&conf->resync_lock); 1008 atomic_inc(&conf->nr_waiting[idx]); 1009 atomic_dec(&conf->nr_pending[idx]); 1010 /* 1011 * In case freeze_array() is waiting for 1012 * get_unqueued_pending() == extra 1013 */ 1014 wake_up(&conf->wait_barrier); 1015 /* Wait for array to be unfrozen */ 1016 wait_event_lock_irq(conf->wait_barrier, 1017 !conf->array_frozen, 1018 conf->resync_lock); 1019 atomic_inc(&conf->nr_pending[idx]); 1020 atomic_dec(&conf->nr_waiting[idx]); 1021 spin_unlock_irq(&conf->resync_lock); 1022 } 1023 1024 static void wait_barrier(struct r1conf *conf, sector_t sector_nr) 1025 { 1026 int idx = sector_to_idx(sector_nr); 1027 1028 _wait_barrier(conf, idx); 1029 } 1030 1031 static void _allow_barrier(struct r1conf *conf, int idx) 1032 { 1033 atomic_dec(&conf->nr_pending[idx]); 1034 wake_up(&conf->wait_barrier); 1035 } 1036 1037 static void allow_barrier(struct r1conf *conf, sector_t sector_nr) 1038 { 1039 int idx = sector_to_idx(sector_nr); 1040 1041 _allow_barrier(conf, idx); 1042 } 1043 1044 /* conf->resync_lock should be held */ 1045 static int get_unqueued_pending(struct r1conf *conf) 1046 { 1047 int idx, ret; 1048 1049 ret = atomic_read(&conf->nr_sync_pending); 1050 for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++) 1051 ret += atomic_read(&conf->nr_pending[idx]) - 1052 atomic_read(&conf->nr_queued[idx]); 1053 1054 return ret; 1055 } 1056 1057 static void freeze_array(struct r1conf *conf, int extra) 1058 { 1059 /* Stop sync I/O and normal I/O and wait for everything to 1060 * go quiet. 1061 * This is called in two situations: 1062 * 1) management command handlers (reshape, remove disk, quiesce). 1063 * 2) one normal I/O request failed. 1064 1065 * After array_frozen is set to 1, new sync IO will be blocked at 1066 * raise_barrier(), and new normal I/O will blocked at _wait_barrier() 1067 * or wait_read_barrier(). The flying I/Os will either complete or be 1068 * queued. When everything goes quite, there are only queued I/Os left. 1069 1070 * Every flying I/O contributes to a conf->nr_pending[idx], idx is the 1071 * barrier bucket index which this I/O request hits. When all sync and 1072 * normal I/O are queued, sum of all conf->nr_pending[] will match sum 1073 * of all conf->nr_queued[]. But normal I/O failure is an exception, 1074 * in handle_read_error(), we may call freeze_array() before trying to 1075 * fix the read error. In this case, the error read I/O is not queued, 1076 * so get_unqueued_pending() == 1. 1077 * 1078 * Therefore before this function returns, we need to wait until 1079 * get_unqueued_pendings(conf) gets equal to extra. For 1080 * normal I/O context, extra is 1, in rested situations extra is 0. 1081 */ 1082 spin_lock_irq(&conf->resync_lock); 1083 conf->array_frozen = 1; 1084 raid1_log(conf->mddev, "wait freeze"); 1085 wait_event_lock_irq_cmd( 1086 conf->wait_barrier, 1087 get_unqueued_pending(conf) == extra, 1088 conf->resync_lock, 1089 flush_pending_writes(conf)); 1090 spin_unlock_irq(&conf->resync_lock); 1091 } 1092 static void unfreeze_array(struct r1conf *conf) 1093 { 1094 /* reverse the effect of the freeze */ 1095 spin_lock_irq(&conf->resync_lock); 1096 conf->array_frozen = 0; 1097 spin_unlock_irq(&conf->resync_lock); 1098 wake_up(&conf->wait_barrier); 1099 } 1100 1101 static void alloc_behind_master_bio(struct r1bio *r1_bio, 1102 struct bio *bio) 1103 { 1104 int size = bio->bi_iter.bi_size; 1105 unsigned vcnt = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; 1106 int i = 0; 1107 struct bio *behind_bio = NULL; 1108 1109 behind_bio = bio_alloc_bioset(GFP_NOIO, vcnt, &r1_bio->mddev->bio_set); 1110 if (!behind_bio) 1111 return; 1112 1113 /* discard op, we don't support writezero/writesame yet */ 1114 if (!bio_has_data(bio)) { 1115 behind_bio->bi_iter.bi_size = size; 1116 goto skip_copy; 1117 } 1118 1119 behind_bio->bi_write_hint = bio->bi_write_hint; 1120 1121 while (i < vcnt && size) { 1122 struct page *page; 1123 int len = min_t(int, PAGE_SIZE, size); 1124 1125 page = alloc_page(GFP_NOIO); 1126 if (unlikely(!page)) 1127 goto free_pages; 1128 1129 bio_add_page(behind_bio, page, len, 0); 1130 1131 size -= len; 1132 i++; 1133 } 1134 1135 bio_copy_data(behind_bio, bio); 1136 skip_copy: 1137 r1_bio->behind_master_bio = behind_bio; 1138 set_bit(R1BIO_BehindIO, &r1_bio->state); 1139 1140 return; 1141 1142 free_pages: 1143 pr_debug("%dB behind alloc failed, doing sync I/O\n", 1144 bio->bi_iter.bi_size); 1145 bio_free_pages(behind_bio); 1146 bio_put(behind_bio); 1147 } 1148 1149 struct raid1_plug_cb { 1150 struct blk_plug_cb cb; 1151 struct bio_list pending; 1152 int pending_cnt; 1153 }; 1154 1155 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule) 1156 { 1157 struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb, 1158 cb); 1159 struct mddev *mddev = plug->cb.data; 1160 struct r1conf *conf = mddev->private; 1161 struct bio *bio; 1162 1163 if (from_schedule || current->bio_list) { 1164 spin_lock_irq(&conf->device_lock); 1165 bio_list_merge(&conf->pending_bio_list, &plug->pending); 1166 conf->pending_count += plug->pending_cnt; 1167 spin_unlock_irq(&conf->device_lock); 1168 wake_up(&conf->wait_barrier); 1169 md_wakeup_thread(mddev->thread); 1170 kfree(plug); 1171 return; 1172 } 1173 1174 /* we aren't scheduling, so we can do the write-out directly. */ 1175 bio = bio_list_get(&plug->pending); 1176 flush_bio_list(conf, bio); 1177 kfree(plug); 1178 } 1179 1180 static void init_r1bio(struct r1bio *r1_bio, struct mddev *mddev, struct bio *bio) 1181 { 1182 r1_bio->master_bio = bio; 1183 r1_bio->sectors = bio_sectors(bio); 1184 r1_bio->state = 0; 1185 r1_bio->mddev = mddev; 1186 r1_bio->sector = bio->bi_iter.bi_sector; 1187 } 1188 1189 static inline struct r1bio * 1190 alloc_r1bio(struct mddev *mddev, struct bio *bio) 1191 { 1192 struct r1conf *conf = mddev->private; 1193 struct r1bio *r1_bio; 1194 1195 r1_bio = mempool_alloc(&conf->r1bio_pool, GFP_NOIO); 1196 /* Ensure no bio records IO_BLOCKED */ 1197 memset(r1_bio->bios, 0, conf->raid_disks * sizeof(r1_bio->bios[0])); 1198 init_r1bio(r1_bio, mddev, bio); 1199 return r1_bio; 1200 } 1201 1202 static void raid1_read_request(struct mddev *mddev, struct bio *bio, 1203 int max_read_sectors, struct r1bio *r1_bio) 1204 { 1205 struct r1conf *conf = mddev->private; 1206 struct raid1_info *mirror; 1207 struct bio *read_bio; 1208 struct bitmap *bitmap = mddev->bitmap; 1209 const int op = bio_op(bio); 1210 const unsigned long do_sync = (bio->bi_opf & REQ_SYNC); 1211 int max_sectors; 1212 int rdisk; 1213 bool r1bio_existed = !!r1_bio; 1214 char b[BDEVNAME_SIZE]; 1215 1216 /* 1217 * If r1_bio is set, we are blocking the raid1d thread 1218 * so there is a tiny risk of deadlock. So ask for 1219 * emergency memory if needed. 1220 */ 1221 gfp_t gfp = r1_bio ? (GFP_NOIO | __GFP_HIGH) : GFP_NOIO; 1222 1223 if (r1bio_existed) { 1224 /* Need to get the block device name carefully */ 1225 struct md_rdev *rdev; 1226 rcu_read_lock(); 1227 rdev = rcu_dereference(conf->mirrors[r1_bio->read_disk].rdev); 1228 if (rdev) 1229 bdevname(rdev->bdev, b); 1230 else 1231 strcpy(b, "???"); 1232 rcu_read_unlock(); 1233 } 1234 1235 /* 1236 * Still need barrier for READ in case that whole 1237 * array is frozen. 1238 */ 1239 wait_read_barrier(conf, bio->bi_iter.bi_sector); 1240 1241 if (!r1_bio) 1242 r1_bio = alloc_r1bio(mddev, bio); 1243 else 1244 init_r1bio(r1_bio, mddev, bio); 1245 r1_bio->sectors = max_read_sectors; 1246 1247 /* 1248 * make_request() can abort the operation when read-ahead is being 1249 * used and no empty request is available. 1250 */ 1251 rdisk = read_balance(conf, r1_bio, &max_sectors); 1252 1253 if (rdisk < 0) { 1254 /* couldn't find anywhere to read from */ 1255 if (r1bio_existed) { 1256 pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n", 1257 mdname(mddev), 1258 b, 1259 (unsigned long long)r1_bio->sector); 1260 } 1261 raid_end_bio_io(r1_bio); 1262 return; 1263 } 1264 mirror = conf->mirrors + rdisk; 1265 1266 if (r1bio_existed) 1267 pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %s\n", 1268 mdname(mddev), 1269 (unsigned long long)r1_bio->sector, 1270 bdevname(mirror->rdev->bdev, b)); 1271 1272 if (test_bit(WriteMostly, &mirror->rdev->flags) && 1273 bitmap) { 1274 /* 1275 * Reading from a write-mostly device must take care not to 1276 * over-take any writes that are 'behind' 1277 */ 1278 raid1_log(mddev, "wait behind writes"); 1279 wait_event(bitmap->behind_wait, 1280 atomic_read(&bitmap->behind_writes) == 0); 1281 } 1282 1283 if (max_sectors < bio_sectors(bio)) { 1284 struct bio *split = bio_split(bio, max_sectors, 1285 gfp, &conf->bio_split); 1286 bio_chain(split, bio); 1287 submit_bio_noacct(bio); 1288 bio = split; 1289 r1_bio->master_bio = bio; 1290 r1_bio->sectors = max_sectors; 1291 } 1292 1293 r1_bio->read_disk = rdisk; 1294 1295 if (!r1bio_existed && blk_queue_io_stat(bio->bi_bdev->bd_disk->queue)) 1296 r1_bio->start_time = bio_start_io_acct(bio); 1297 1298 read_bio = bio_clone_fast(bio, gfp, &mddev->bio_set); 1299 1300 r1_bio->bios[rdisk] = read_bio; 1301 1302 read_bio->bi_iter.bi_sector = r1_bio->sector + 1303 mirror->rdev->data_offset; 1304 bio_set_dev(read_bio, mirror->rdev->bdev); 1305 read_bio->bi_end_io = raid1_end_read_request; 1306 bio_set_op_attrs(read_bio, op, do_sync); 1307 if (test_bit(FailFast, &mirror->rdev->flags) && 1308 test_bit(R1BIO_FailFast, &r1_bio->state)) 1309 read_bio->bi_opf |= MD_FAILFAST; 1310 read_bio->bi_private = r1_bio; 1311 1312 if (mddev->gendisk) 1313 trace_block_bio_remap(read_bio, disk_devt(mddev->gendisk), 1314 r1_bio->sector); 1315 1316 submit_bio_noacct(read_bio); 1317 } 1318 1319 static void raid1_write_request(struct mddev *mddev, struct bio *bio, 1320 int max_write_sectors) 1321 { 1322 struct r1conf *conf = mddev->private; 1323 struct r1bio *r1_bio; 1324 int i, disks; 1325 struct bitmap *bitmap = mddev->bitmap; 1326 unsigned long flags; 1327 struct md_rdev *blocked_rdev; 1328 struct blk_plug_cb *cb; 1329 struct raid1_plug_cb *plug = NULL; 1330 int first_clone; 1331 int max_sectors; 1332 bool write_behind = false; 1333 1334 if (mddev_is_clustered(mddev) && 1335 md_cluster_ops->area_resyncing(mddev, WRITE, 1336 bio->bi_iter.bi_sector, bio_end_sector(bio))) { 1337 1338 DEFINE_WAIT(w); 1339 for (;;) { 1340 prepare_to_wait(&conf->wait_barrier, 1341 &w, TASK_IDLE); 1342 if (!md_cluster_ops->area_resyncing(mddev, WRITE, 1343 bio->bi_iter.bi_sector, 1344 bio_end_sector(bio))) 1345 break; 1346 schedule(); 1347 } 1348 finish_wait(&conf->wait_barrier, &w); 1349 } 1350 1351 /* 1352 * Register the new request and wait if the reconstruction 1353 * thread has put up a bar for new requests. 1354 * Continue immediately if no resync is active currently. 1355 */ 1356 wait_barrier(conf, bio->bi_iter.bi_sector); 1357 1358 r1_bio = alloc_r1bio(mddev, bio); 1359 r1_bio->sectors = max_write_sectors; 1360 1361 if (conf->pending_count >= max_queued_requests) { 1362 md_wakeup_thread(mddev->thread); 1363 raid1_log(mddev, "wait queued"); 1364 wait_event(conf->wait_barrier, 1365 conf->pending_count < max_queued_requests); 1366 } 1367 /* first select target devices under rcu_lock and 1368 * inc refcount on their rdev. Record them by setting 1369 * bios[x] to bio 1370 * If there are known/acknowledged bad blocks on any device on 1371 * which we have seen a write error, we want to avoid writing those 1372 * blocks. 1373 * This potentially requires several writes to write around 1374 * the bad blocks. Each set of writes gets it's own r1bio 1375 * with a set of bios attached. 1376 */ 1377 1378 disks = conf->raid_disks * 2; 1379 retry_write: 1380 blocked_rdev = NULL; 1381 rcu_read_lock(); 1382 max_sectors = r1_bio->sectors; 1383 for (i = 0; i < disks; i++) { 1384 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 1385 1386 /* 1387 * The write-behind io is only attempted on drives marked as 1388 * write-mostly, which means we could allocate write behind 1389 * bio later. 1390 */ 1391 if (rdev && test_bit(WriteMostly, &rdev->flags)) 1392 write_behind = true; 1393 1394 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) { 1395 atomic_inc(&rdev->nr_pending); 1396 blocked_rdev = rdev; 1397 break; 1398 } 1399 r1_bio->bios[i] = NULL; 1400 if (!rdev || test_bit(Faulty, &rdev->flags)) { 1401 if (i < conf->raid_disks) 1402 set_bit(R1BIO_Degraded, &r1_bio->state); 1403 continue; 1404 } 1405 1406 atomic_inc(&rdev->nr_pending); 1407 if (test_bit(WriteErrorSeen, &rdev->flags)) { 1408 sector_t first_bad; 1409 int bad_sectors; 1410 int is_bad; 1411 1412 is_bad = is_badblock(rdev, r1_bio->sector, max_sectors, 1413 &first_bad, &bad_sectors); 1414 if (is_bad < 0) { 1415 /* mustn't write here until the bad block is 1416 * acknowledged*/ 1417 set_bit(BlockedBadBlocks, &rdev->flags); 1418 blocked_rdev = rdev; 1419 break; 1420 } 1421 if (is_bad && first_bad <= r1_bio->sector) { 1422 /* Cannot write here at all */ 1423 bad_sectors -= (r1_bio->sector - first_bad); 1424 if (bad_sectors < max_sectors) 1425 /* mustn't write more than bad_sectors 1426 * to other devices yet 1427 */ 1428 max_sectors = bad_sectors; 1429 rdev_dec_pending(rdev, mddev); 1430 /* We don't set R1BIO_Degraded as that 1431 * only applies if the disk is 1432 * missing, so it might be re-added, 1433 * and we want to know to recover this 1434 * chunk. 1435 * In this case the device is here, 1436 * and the fact that this chunk is not 1437 * in-sync is recorded in the bad 1438 * block log 1439 */ 1440 continue; 1441 } 1442 if (is_bad) { 1443 int good_sectors = first_bad - r1_bio->sector; 1444 if (good_sectors < max_sectors) 1445 max_sectors = good_sectors; 1446 } 1447 } 1448 r1_bio->bios[i] = bio; 1449 } 1450 rcu_read_unlock(); 1451 1452 if (unlikely(blocked_rdev)) { 1453 /* Wait for this device to become unblocked */ 1454 int j; 1455 1456 for (j = 0; j < i; j++) 1457 if (r1_bio->bios[j]) 1458 rdev_dec_pending(conf->mirrors[j].rdev, mddev); 1459 r1_bio->state = 0; 1460 allow_barrier(conf, bio->bi_iter.bi_sector); 1461 raid1_log(mddev, "wait rdev %d blocked", blocked_rdev->raid_disk); 1462 md_wait_for_blocked_rdev(blocked_rdev, mddev); 1463 wait_barrier(conf, bio->bi_iter.bi_sector); 1464 goto retry_write; 1465 } 1466 1467 /* 1468 * When using a bitmap, we may call alloc_behind_master_bio below. 1469 * alloc_behind_master_bio allocates a copy of the data payload a page 1470 * at a time and thus needs a new bio that can fit the whole payload 1471 * this bio in page sized chunks. 1472 */ 1473 if (write_behind && bitmap) 1474 max_sectors = min_t(int, max_sectors, 1475 BIO_MAX_VECS * (PAGE_SIZE >> 9)); 1476 if (max_sectors < bio_sectors(bio)) { 1477 struct bio *split = bio_split(bio, max_sectors, 1478 GFP_NOIO, &conf->bio_split); 1479 bio_chain(split, bio); 1480 submit_bio_noacct(bio); 1481 bio = split; 1482 r1_bio->master_bio = bio; 1483 r1_bio->sectors = max_sectors; 1484 } 1485 1486 if (blk_queue_io_stat(bio->bi_bdev->bd_disk->queue)) 1487 r1_bio->start_time = bio_start_io_acct(bio); 1488 atomic_set(&r1_bio->remaining, 1); 1489 atomic_set(&r1_bio->behind_remaining, 0); 1490 1491 first_clone = 1; 1492 1493 for (i = 0; i < disks; i++) { 1494 struct bio *mbio = NULL; 1495 struct md_rdev *rdev = conf->mirrors[i].rdev; 1496 if (!r1_bio->bios[i]) 1497 continue; 1498 1499 if (first_clone && test_bit(WriteMostly, &rdev->flags)) { 1500 /* do behind I/O ? 1501 * Not if there are too many, or cannot 1502 * allocate memory, or a reader on WriteMostly 1503 * is waiting for behind writes to flush */ 1504 if (bitmap && 1505 (atomic_read(&bitmap->behind_writes) 1506 < mddev->bitmap_info.max_write_behind) && 1507 !waitqueue_active(&bitmap->behind_wait)) { 1508 alloc_behind_master_bio(r1_bio, bio); 1509 } 1510 1511 md_bitmap_startwrite(bitmap, r1_bio->sector, r1_bio->sectors, 1512 test_bit(R1BIO_BehindIO, &r1_bio->state)); 1513 first_clone = 0; 1514 } 1515 1516 if (r1_bio->behind_master_bio) 1517 mbio = bio_clone_fast(r1_bio->behind_master_bio, 1518 GFP_NOIO, &mddev->bio_set); 1519 else 1520 mbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set); 1521 1522 if (r1_bio->behind_master_bio) { 1523 if (test_bit(CollisionCheck, &rdev->flags)) 1524 wait_for_serialization(rdev, r1_bio); 1525 if (test_bit(WriteMostly, &rdev->flags)) 1526 atomic_inc(&r1_bio->behind_remaining); 1527 } else if (mddev->serialize_policy) 1528 wait_for_serialization(rdev, r1_bio); 1529 1530 r1_bio->bios[i] = mbio; 1531 1532 mbio->bi_iter.bi_sector = (r1_bio->sector + rdev->data_offset); 1533 bio_set_dev(mbio, rdev->bdev); 1534 mbio->bi_end_io = raid1_end_write_request; 1535 mbio->bi_opf = bio_op(bio) | (bio->bi_opf & (REQ_SYNC | REQ_FUA)); 1536 if (test_bit(FailFast, &rdev->flags) && 1537 !test_bit(WriteMostly, &rdev->flags) && 1538 conf->raid_disks - mddev->degraded > 1) 1539 mbio->bi_opf |= MD_FAILFAST; 1540 mbio->bi_private = r1_bio; 1541 1542 atomic_inc(&r1_bio->remaining); 1543 1544 if (mddev->gendisk) 1545 trace_block_bio_remap(mbio, disk_devt(mddev->gendisk), 1546 r1_bio->sector); 1547 /* flush_pending_writes() needs access to the rdev so...*/ 1548 mbio->bi_bdev = (void *)rdev; 1549 1550 cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug)); 1551 if (cb) 1552 plug = container_of(cb, struct raid1_plug_cb, cb); 1553 else 1554 plug = NULL; 1555 if (plug) { 1556 bio_list_add(&plug->pending, mbio); 1557 plug->pending_cnt++; 1558 } else { 1559 spin_lock_irqsave(&conf->device_lock, flags); 1560 bio_list_add(&conf->pending_bio_list, mbio); 1561 conf->pending_count++; 1562 spin_unlock_irqrestore(&conf->device_lock, flags); 1563 md_wakeup_thread(mddev->thread); 1564 } 1565 } 1566 1567 r1_bio_write_done(r1_bio); 1568 1569 /* In case raid1d snuck in to freeze_array */ 1570 wake_up(&conf->wait_barrier); 1571 } 1572 1573 static bool raid1_make_request(struct mddev *mddev, struct bio *bio) 1574 { 1575 sector_t sectors; 1576 1577 if (unlikely(bio->bi_opf & REQ_PREFLUSH) 1578 && md_flush_request(mddev, bio)) 1579 return true; 1580 1581 /* 1582 * There is a limit to the maximum size, but 1583 * the read/write handler might find a lower limit 1584 * due to bad blocks. To avoid multiple splits, 1585 * we pass the maximum number of sectors down 1586 * and let the lower level perform the split. 1587 */ 1588 sectors = align_to_barrier_unit_end( 1589 bio->bi_iter.bi_sector, bio_sectors(bio)); 1590 1591 if (bio_data_dir(bio) == READ) 1592 raid1_read_request(mddev, bio, sectors, NULL); 1593 else { 1594 if (!md_write_start(mddev,bio)) 1595 return false; 1596 raid1_write_request(mddev, bio, sectors); 1597 } 1598 return true; 1599 } 1600 1601 static void raid1_status(struct seq_file *seq, struct mddev *mddev) 1602 { 1603 struct r1conf *conf = mddev->private; 1604 int i; 1605 1606 seq_printf(seq, " [%d/%d] [", conf->raid_disks, 1607 conf->raid_disks - mddev->degraded); 1608 rcu_read_lock(); 1609 for (i = 0; i < conf->raid_disks; i++) { 1610 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 1611 seq_printf(seq, "%s", 1612 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_"); 1613 } 1614 rcu_read_unlock(); 1615 seq_printf(seq, "]"); 1616 } 1617 1618 static void raid1_error(struct mddev *mddev, struct md_rdev *rdev) 1619 { 1620 char b[BDEVNAME_SIZE]; 1621 struct r1conf *conf = mddev->private; 1622 unsigned long flags; 1623 1624 /* 1625 * If it is not operational, then we have already marked it as dead 1626 * else if it is the last working disks with "fail_last_dev == false", 1627 * ignore the error, let the next level up know. 1628 * else mark the drive as failed 1629 */ 1630 spin_lock_irqsave(&conf->device_lock, flags); 1631 if (test_bit(In_sync, &rdev->flags) && !mddev->fail_last_dev 1632 && (conf->raid_disks - mddev->degraded) == 1) { 1633 /* 1634 * Don't fail the drive, act as though we were just a 1635 * normal single drive. 1636 * However don't try a recovery from this drive as 1637 * it is very likely to fail. 1638 */ 1639 conf->recovery_disabled = mddev->recovery_disabled; 1640 spin_unlock_irqrestore(&conf->device_lock, flags); 1641 return; 1642 } 1643 set_bit(Blocked, &rdev->flags); 1644 if (test_and_clear_bit(In_sync, &rdev->flags)) 1645 mddev->degraded++; 1646 set_bit(Faulty, &rdev->flags); 1647 spin_unlock_irqrestore(&conf->device_lock, flags); 1648 /* 1649 * if recovery is running, make sure it aborts. 1650 */ 1651 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 1652 set_mask_bits(&mddev->sb_flags, 0, 1653 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING)); 1654 pr_crit("md/raid1:%s: Disk failure on %s, disabling device.\n" 1655 "md/raid1:%s: Operation continuing on %d devices.\n", 1656 mdname(mddev), bdevname(rdev->bdev, b), 1657 mdname(mddev), conf->raid_disks - mddev->degraded); 1658 } 1659 1660 static void print_conf(struct r1conf *conf) 1661 { 1662 int i; 1663 1664 pr_debug("RAID1 conf printout:\n"); 1665 if (!conf) { 1666 pr_debug("(!conf)\n"); 1667 return; 1668 } 1669 pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded, 1670 conf->raid_disks); 1671 1672 rcu_read_lock(); 1673 for (i = 0; i < conf->raid_disks; i++) { 1674 char b[BDEVNAME_SIZE]; 1675 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 1676 if (rdev) 1677 pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n", 1678 i, !test_bit(In_sync, &rdev->flags), 1679 !test_bit(Faulty, &rdev->flags), 1680 bdevname(rdev->bdev,b)); 1681 } 1682 rcu_read_unlock(); 1683 } 1684 1685 static void close_sync(struct r1conf *conf) 1686 { 1687 int idx; 1688 1689 for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++) { 1690 _wait_barrier(conf, idx); 1691 _allow_barrier(conf, idx); 1692 } 1693 1694 mempool_exit(&conf->r1buf_pool); 1695 } 1696 1697 static int raid1_spare_active(struct mddev *mddev) 1698 { 1699 int i; 1700 struct r1conf *conf = mddev->private; 1701 int count = 0; 1702 unsigned long flags; 1703 1704 /* 1705 * Find all failed disks within the RAID1 configuration 1706 * and mark them readable. 1707 * Called under mddev lock, so rcu protection not needed. 1708 * device_lock used to avoid races with raid1_end_read_request 1709 * which expects 'In_sync' flags and ->degraded to be consistent. 1710 */ 1711 spin_lock_irqsave(&conf->device_lock, flags); 1712 for (i = 0; i < conf->raid_disks; i++) { 1713 struct md_rdev *rdev = conf->mirrors[i].rdev; 1714 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev; 1715 if (repl 1716 && !test_bit(Candidate, &repl->flags) 1717 && repl->recovery_offset == MaxSector 1718 && !test_bit(Faulty, &repl->flags) 1719 && !test_and_set_bit(In_sync, &repl->flags)) { 1720 /* replacement has just become active */ 1721 if (!rdev || 1722 !test_and_clear_bit(In_sync, &rdev->flags)) 1723 count++; 1724 if (rdev) { 1725 /* Replaced device not technically 1726 * faulty, but we need to be sure 1727 * it gets removed and never re-added 1728 */ 1729 set_bit(Faulty, &rdev->flags); 1730 sysfs_notify_dirent_safe( 1731 rdev->sysfs_state); 1732 } 1733 } 1734 if (rdev 1735 && rdev->recovery_offset == MaxSector 1736 && !test_bit(Faulty, &rdev->flags) 1737 && !test_and_set_bit(In_sync, &rdev->flags)) { 1738 count++; 1739 sysfs_notify_dirent_safe(rdev->sysfs_state); 1740 } 1741 } 1742 mddev->degraded -= count; 1743 spin_unlock_irqrestore(&conf->device_lock, flags); 1744 1745 print_conf(conf); 1746 return count; 1747 } 1748 1749 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev) 1750 { 1751 struct r1conf *conf = mddev->private; 1752 int err = -EEXIST; 1753 int mirror = 0; 1754 struct raid1_info *p; 1755 int first = 0; 1756 int last = conf->raid_disks - 1; 1757 1758 if (mddev->recovery_disabled == conf->recovery_disabled) 1759 return -EBUSY; 1760 1761 if (md_integrity_add_rdev(rdev, mddev)) 1762 return -ENXIO; 1763 1764 if (rdev->raid_disk >= 0) 1765 first = last = rdev->raid_disk; 1766 1767 /* 1768 * find the disk ... but prefer rdev->saved_raid_disk 1769 * if possible. 1770 */ 1771 if (rdev->saved_raid_disk >= 0 && 1772 rdev->saved_raid_disk >= first && 1773 rdev->saved_raid_disk < conf->raid_disks && 1774 conf->mirrors[rdev->saved_raid_disk].rdev == NULL) 1775 first = last = rdev->saved_raid_disk; 1776 1777 for (mirror = first; mirror <= last; mirror++) { 1778 p = conf->mirrors + mirror; 1779 if (!p->rdev) { 1780 if (mddev->gendisk) 1781 disk_stack_limits(mddev->gendisk, rdev->bdev, 1782 rdev->data_offset << 9); 1783 1784 p->head_position = 0; 1785 rdev->raid_disk = mirror; 1786 err = 0; 1787 /* As all devices are equivalent, we don't need a full recovery 1788 * if this was recently any drive of the array 1789 */ 1790 if (rdev->saved_raid_disk < 0) 1791 conf->fullsync = 1; 1792 rcu_assign_pointer(p->rdev, rdev); 1793 break; 1794 } 1795 if (test_bit(WantReplacement, &p->rdev->flags) && 1796 p[conf->raid_disks].rdev == NULL) { 1797 /* Add this device as a replacement */ 1798 clear_bit(In_sync, &rdev->flags); 1799 set_bit(Replacement, &rdev->flags); 1800 rdev->raid_disk = mirror; 1801 err = 0; 1802 conf->fullsync = 1; 1803 rcu_assign_pointer(p[conf->raid_disks].rdev, rdev); 1804 break; 1805 } 1806 } 1807 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev))) 1808 blk_queue_flag_set(QUEUE_FLAG_DISCARD, mddev->queue); 1809 print_conf(conf); 1810 return err; 1811 } 1812 1813 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev) 1814 { 1815 struct r1conf *conf = mddev->private; 1816 int err = 0; 1817 int number = rdev->raid_disk; 1818 struct raid1_info *p = conf->mirrors + number; 1819 1820 if (rdev != p->rdev) 1821 p = conf->mirrors + conf->raid_disks + number; 1822 1823 print_conf(conf); 1824 if (rdev == p->rdev) { 1825 if (test_bit(In_sync, &rdev->flags) || 1826 atomic_read(&rdev->nr_pending)) { 1827 err = -EBUSY; 1828 goto abort; 1829 } 1830 /* Only remove non-faulty devices if recovery 1831 * is not possible. 1832 */ 1833 if (!test_bit(Faulty, &rdev->flags) && 1834 mddev->recovery_disabled != conf->recovery_disabled && 1835 mddev->degraded < conf->raid_disks) { 1836 err = -EBUSY; 1837 goto abort; 1838 } 1839 p->rdev = NULL; 1840 if (!test_bit(RemoveSynchronized, &rdev->flags)) { 1841 synchronize_rcu(); 1842 if (atomic_read(&rdev->nr_pending)) { 1843 /* lost the race, try later */ 1844 err = -EBUSY; 1845 p->rdev = rdev; 1846 goto abort; 1847 } 1848 } 1849 if (conf->mirrors[conf->raid_disks + number].rdev) { 1850 /* We just removed a device that is being replaced. 1851 * Move down the replacement. We drain all IO before 1852 * doing this to avoid confusion. 1853 */ 1854 struct md_rdev *repl = 1855 conf->mirrors[conf->raid_disks + number].rdev; 1856 freeze_array(conf, 0); 1857 if (atomic_read(&repl->nr_pending)) { 1858 /* It means that some queued IO of retry_list 1859 * hold repl. Thus, we cannot set replacement 1860 * as NULL, avoiding rdev NULL pointer 1861 * dereference in sync_request_write and 1862 * handle_write_finished. 1863 */ 1864 err = -EBUSY; 1865 unfreeze_array(conf); 1866 goto abort; 1867 } 1868 clear_bit(Replacement, &repl->flags); 1869 p->rdev = repl; 1870 conf->mirrors[conf->raid_disks + number].rdev = NULL; 1871 unfreeze_array(conf); 1872 } 1873 1874 clear_bit(WantReplacement, &rdev->flags); 1875 err = md_integrity_register(mddev); 1876 } 1877 abort: 1878 1879 print_conf(conf); 1880 return err; 1881 } 1882 1883 static void end_sync_read(struct bio *bio) 1884 { 1885 struct r1bio *r1_bio = get_resync_r1bio(bio); 1886 1887 update_head_pos(r1_bio->read_disk, r1_bio); 1888 1889 /* 1890 * we have read a block, now it needs to be re-written, 1891 * or re-read if the read failed. 1892 * We don't do much here, just schedule handling by raid1d 1893 */ 1894 if (!bio->bi_status) 1895 set_bit(R1BIO_Uptodate, &r1_bio->state); 1896 1897 if (atomic_dec_and_test(&r1_bio->remaining)) 1898 reschedule_retry(r1_bio); 1899 } 1900 1901 static void abort_sync_write(struct mddev *mddev, struct r1bio *r1_bio) 1902 { 1903 sector_t sync_blocks = 0; 1904 sector_t s = r1_bio->sector; 1905 long sectors_to_go = r1_bio->sectors; 1906 1907 /* make sure these bits don't get cleared. */ 1908 do { 1909 md_bitmap_end_sync(mddev->bitmap, s, &sync_blocks, 1); 1910 s += sync_blocks; 1911 sectors_to_go -= sync_blocks; 1912 } while (sectors_to_go > 0); 1913 } 1914 1915 static void put_sync_write_buf(struct r1bio *r1_bio, int uptodate) 1916 { 1917 if (atomic_dec_and_test(&r1_bio->remaining)) { 1918 struct mddev *mddev = r1_bio->mddev; 1919 int s = r1_bio->sectors; 1920 1921 if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 1922 test_bit(R1BIO_WriteError, &r1_bio->state)) 1923 reschedule_retry(r1_bio); 1924 else { 1925 put_buf(r1_bio); 1926 md_done_sync(mddev, s, uptodate); 1927 } 1928 } 1929 } 1930 1931 static void end_sync_write(struct bio *bio) 1932 { 1933 int uptodate = !bio->bi_status; 1934 struct r1bio *r1_bio = get_resync_r1bio(bio); 1935 struct mddev *mddev = r1_bio->mddev; 1936 struct r1conf *conf = mddev->private; 1937 sector_t first_bad; 1938 int bad_sectors; 1939 struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev; 1940 1941 if (!uptodate) { 1942 abort_sync_write(mddev, r1_bio); 1943 set_bit(WriteErrorSeen, &rdev->flags); 1944 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 1945 set_bit(MD_RECOVERY_NEEDED, & 1946 mddev->recovery); 1947 set_bit(R1BIO_WriteError, &r1_bio->state); 1948 } else if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors, 1949 &first_bad, &bad_sectors) && 1950 !is_badblock(conf->mirrors[r1_bio->read_disk].rdev, 1951 r1_bio->sector, 1952 r1_bio->sectors, 1953 &first_bad, &bad_sectors) 1954 ) 1955 set_bit(R1BIO_MadeGood, &r1_bio->state); 1956 1957 put_sync_write_buf(r1_bio, uptodate); 1958 } 1959 1960 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector, 1961 int sectors, struct page *page, int rw) 1962 { 1963 if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false)) 1964 /* success */ 1965 return 1; 1966 if (rw == WRITE) { 1967 set_bit(WriteErrorSeen, &rdev->flags); 1968 if (!test_and_set_bit(WantReplacement, 1969 &rdev->flags)) 1970 set_bit(MD_RECOVERY_NEEDED, & 1971 rdev->mddev->recovery); 1972 } 1973 /* need to record an error - either for the block or the device */ 1974 if (!rdev_set_badblocks(rdev, sector, sectors, 0)) 1975 md_error(rdev->mddev, rdev); 1976 return 0; 1977 } 1978 1979 static int fix_sync_read_error(struct r1bio *r1_bio) 1980 { 1981 /* Try some synchronous reads of other devices to get 1982 * good data, much like with normal read errors. Only 1983 * read into the pages we already have so we don't 1984 * need to re-issue the read request. 1985 * We don't need to freeze the array, because being in an 1986 * active sync request, there is no normal IO, and 1987 * no overlapping syncs. 1988 * We don't need to check is_badblock() again as we 1989 * made sure that anything with a bad block in range 1990 * will have bi_end_io clear. 1991 */ 1992 struct mddev *mddev = r1_bio->mddev; 1993 struct r1conf *conf = mddev->private; 1994 struct bio *bio = r1_bio->bios[r1_bio->read_disk]; 1995 struct page **pages = get_resync_pages(bio)->pages; 1996 sector_t sect = r1_bio->sector; 1997 int sectors = r1_bio->sectors; 1998 int idx = 0; 1999 struct md_rdev *rdev; 2000 2001 rdev = conf->mirrors[r1_bio->read_disk].rdev; 2002 if (test_bit(FailFast, &rdev->flags)) { 2003 /* Don't try recovering from here - just fail it 2004 * ... unless it is the last working device of course */ 2005 md_error(mddev, rdev); 2006 if (test_bit(Faulty, &rdev->flags)) 2007 /* Don't try to read from here, but make sure 2008 * put_buf does it's thing 2009 */ 2010 bio->bi_end_io = end_sync_write; 2011 } 2012 2013 while(sectors) { 2014 int s = sectors; 2015 int d = r1_bio->read_disk; 2016 int success = 0; 2017 int start; 2018 2019 if (s > (PAGE_SIZE>>9)) 2020 s = PAGE_SIZE >> 9; 2021 do { 2022 if (r1_bio->bios[d]->bi_end_io == end_sync_read) { 2023 /* No rcu protection needed here devices 2024 * can only be removed when no resync is 2025 * active, and resync is currently active 2026 */ 2027 rdev = conf->mirrors[d].rdev; 2028 if (sync_page_io(rdev, sect, s<<9, 2029 pages[idx], 2030 REQ_OP_READ, 0, false)) { 2031 success = 1; 2032 break; 2033 } 2034 } 2035 d++; 2036 if (d == conf->raid_disks * 2) 2037 d = 0; 2038 } while (!success && d != r1_bio->read_disk); 2039 2040 if (!success) { 2041 char b[BDEVNAME_SIZE]; 2042 int abort = 0; 2043 /* Cannot read from anywhere, this block is lost. 2044 * Record a bad block on each device. If that doesn't 2045 * work just disable and interrupt the recovery. 2046 * Don't fail devices as that won't really help. 2047 */ 2048 pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n", 2049 mdname(mddev), bio_devname(bio, b), 2050 (unsigned long long)r1_bio->sector); 2051 for (d = 0; d < conf->raid_disks * 2; d++) { 2052 rdev = conf->mirrors[d].rdev; 2053 if (!rdev || test_bit(Faulty, &rdev->flags)) 2054 continue; 2055 if (!rdev_set_badblocks(rdev, sect, s, 0)) 2056 abort = 1; 2057 } 2058 if (abort) { 2059 conf->recovery_disabled = 2060 mddev->recovery_disabled; 2061 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 2062 md_done_sync(mddev, r1_bio->sectors, 0); 2063 put_buf(r1_bio); 2064 return 0; 2065 } 2066 /* Try next page */ 2067 sectors -= s; 2068 sect += s; 2069 idx++; 2070 continue; 2071 } 2072 2073 start = d; 2074 /* write it back and re-read */ 2075 while (d != r1_bio->read_disk) { 2076 if (d == 0) 2077 d = conf->raid_disks * 2; 2078 d--; 2079 if (r1_bio->bios[d]->bi_end_io != end_sync_read) 2080 continue; 2081 rdev = conf->mirrors[d].rdev; 2082 if (r1_sync_page_io(rdev, sect, s, 2083 pages[idx], 2084 WRITE) == 0) { 2085 r1_bio->bios[d]->bi_end_io = NULL; 2086 rdev_dec_pending(rdev, mddev); 2087 } 2088 } 2089 d = start; 2090 while (d != r1_bio->read_disk) { 2091 if (d == 0) 2092 d = conf->raid_disks * 2; 2093 d--; 2094 if (r1_bio->bios[d]->bi_end_io != end_sync_read) 2095 continue; 2096 rdev = conf->mirrors[d].rdev; 2097 if (r1_sync_page_io(rdev, sect, s, 2098 pages[idx], 2099 READ) != 0) 2100 atomic_add(s, &rdev->corrected_errors); 2101 } 2102 sectors -= s; 2103 sect += s; 2104 idx ++; 2105 } 2106 set_bit(R1BIO_Uptodate, &r1_bio->state); 2107 bio->bi_status = 0; 2108 return 1; 2109 } 2110 2111 static void process_checks(struct r1bio *r1_bio) 2112 { 2113 /* We have read all readable devices. If we haven't 2114 * got the block, then there is no hope left. 2115 * If we have, then we want to do a comparison 2116 * and skip the write if everything is the same. 2117 * If any blocks failed to read, then we need to 2118 * attempt an over-write 2119 */ 2120 struct mddev *mddev = r1_bio->mddev; 2121 struct r1conf *conf = mddev->private; 2122 int primary; 2123 int i; 2124 int vcnt; 2125 2126 /* Fix variable parts of all bios */ 2127 vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9); 2128 for (i = 0; i < conf->raid_disks * 2; i++) { 2129 blk_status_t status; 2130 struct bio *b = r1_bio->bios[i]; 2131 struct resync_pages *rp = get_resync_pages(b); 2132 if (b->bi_end_io != end_sync_read) 2133 continue; 2134 /* fixup the bio for reuse, but preserve errno */ 2135 status = b->bi_status; 2136 bio_reset(b); 2137 b->bi_status = status; 2138 b->bi_iter.bi_sector = r1_bio->sector + 2139 conf->mirrors[i].rdev->data_offset; 2140 bio_set_dev(b, conf->mirrors[i].rdev->bdev); 2141 b->bi_end_io = end_sync_read; 2142 rp->raid_bio = r1_bio; 2143 b->bi_private = rp; 2144 2145 /* initialize bvec table again */ 2146 md_bio_reset_resync_pages(b, rp, r1_bio->sectors << 9); 2147 } 2148 for (primary = 0; primary < conf->raid_disks * 2; primary++) 2149 if (r1_bio->bios[primary]->bi_end_io == end_sync_read && 2150 !r1_bio->bios[primary]->bi_status) { 2151 r1_bio->bios[primary]->bi_end_io = NULL; 2152 rdev_dec_pending(conf->mirrors[primary].rdev, mddev); 2153 break; 2154 } 2155 r1_bio->read_disk = primary; 2156 for (i = 0; i < conf->raid_disks * 2; i++) { 2157 int j = 0; 2158 struct bio *pbio = r1_bio->bios[primary]; 2159 struct bio *sbio = r1_bio->bios[i]; 2160 blk_status_t status = sbio->bi_status; 2161 struct page **ppages = get_resync_pages(pbio)->pages; 2162 struct page **spages = get_resync_pages(sbio)->pages; 2163 struct bio_vec *bi; 2164 int page_len[RESYNC_PAGES] = { 0 }; 2165 struct bvec_iter_all iter_all; 2166 2167 if (sbio->bi_end_io != end_sync_read) 2168 continue; 2169 /* Now we can 'fixup' the error value */ 2170 sbio->bi_status = 0; 2171 2172 bio_for_each_segment_all(bi, sbio, iter_all) 2173 page_len[j++] = bi->bv_len; 2174 2175 if (!status) { 2176 for (j = vcnt; j-- ; ) { 2177 if (memcmp(page_address(ppages[j]), 2178 page_address(spages[j]), 2179 page_len[j])) 2180 break; 2181 } 2182 } else 2183 j = 0; 2184 if (j >= 0) 2185 atomic64_add(r1_bio->sectors, &mddev->resync_mismatches); 2186 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery) 2187 && !status)) { 2188 /* No need to write to this device. */ 2189 sbio->bi_end_io = NULL; 2190 rdev_dec_pending(conf->mirrors[i].rdev, mddev); 2191 continue; 2192 } 2193 2194 bio_copy_data(sbio, pbio); 2195 } 2196 } 2197 2198 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio) 2199 { 2200 struct r1conf *conf = mddev->private; 2201 int i; 2202 int disks = conf->raid_disks * 2; 2203 struct bio *wbio; 2204 2205 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) 2206 /* ouch - failed to read all of that. */ 2207 if (!fix_sync_read_error(r1_bio)) 2208 return; 2209 2210 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 2211 process_checks(r1_bio); 2212 2213 /* 2214 * schedule writes 2215 */ 2216 atomic_set(&r1_bio->remaining, 1); 2217 for (i = 0; i < disks ; i++) { 2218 wbio = r1_bio->bios[i]; 2219 if (wbio->bi_end_io == NULL || 2220 (wbio->bi_end_io == end_sync_read && 2221 (i == r1_bio->read_disk || 2222 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery)))) 2223 continue; 2224 if (test_bit(Faulty, &conf->mirrors[i].rdev->flags)) { 2225 abort_sync_write(mddev, r1_bio); 2226 continue; 2227 } 2228 2229 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0); 2230 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags)) 2231 wbio->bi_opf |= MD_FAILFAST; 2232 2233 wbio->bi_end_io = end_sync_write; 2234 atomic_inc(&r1_bio->remaining); 2235 md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio)); 2236 2237 submit_bio_noacct(wbio); 2238 } 2239 2240 put_sync_write_buf(r1_bio, 1); 2241 } 2242 2243 /* 2244 * This is a kernel thread which: 2245 * 2246 * 1. Retries failed read operations on working mirrors. 2247 * 2. Updates the raid superblock when problems encounter. 2248 * 3. Performs writes following reads for array synchronising. 2249 */ 2250 2251 static void fix_read_error(struct r1conf *conf, int read_disk, 2252 sector_t sect, int sectors) 2253 { 2254 struct mddev *mddev = conf->mddev; 2255 while(sectors) { 2256 int s = sectors; 2257 int d = read_disk; 2258 int success = 0; 2259 int start; 2260 struct md_rdev *rdev; 2261 2262 if (s > (PAGE_SIZE>>9)) 2263 s = PAGE_SIZE >> 9; 2264 2265 do { 2266 sector_t first_bad; 2267 int bad_sectors; 2268 2269 rcu_read_lock(); 2270 rdev = rcu_dereference(conf->mirrors[d].rdev); 2271 if (rdev && 2272 (test_bit(In_sync, &rdev->flags) || 2273 (!test_bit(Faulty, &rdev->flags) && 2274 rdev->recovery_offset >= sect + s)) && 2275 is_badblock(rdev, sect, s, 2276 &first_bad, &bad_sectors) == 0) { 2277 atomic_inc(&rdev->nr_pending); 2278 rcu_read_unlock(); 2279 if (sync_page_io(rdev, sect, s<<9, 2280 conf->tmppage, REQ_OP_READ, 0, false)) 2281 success = 1; 2282 rdev_dec_pending(rdev, mddev); 2283 if (success) 2284 break; 2285 } else 2286 rcu_read_unlock(); 2287 d++; 2288 if (d == conf->raid_disks * 2) 2289 d = 0; 2290 } while (!success && d != read_disk); 2291 2292 if (!success) { 2293 /* Cannot read from anywhere - mark it bad */ 2294 struct md_rdev *rdev = conf->mirrors[read_disk].rdev; 2295 if (!rdev_set_badblocks(rdev, sect, s, 0)) 2296 md_error(mddev, rdev); 2297 break; 2298 } 2299 /* write it back and re-read */ 2300 start = d; 2301 while (d != read_disk) { 2302 if (d==0) 2303 d = conf->raid_disks * 2; 2304 d--; 2305 rcu_read_lock(); 2306 rdev = rcu_dereference(conf->mirrors[d].rdev); 2307 if (rdev && 2308 !test_bit(Faulty, &rdev->flags)) { 2309 atomic_inc(&rdev->nr_pending); 2310 rcu_read_unlock(); 2311 r1_sync_page_io(rdev, sect, s, 2312 conf->tmppage, WRITE); 2313 rdev_dec_pending(rdev, mddev); 2314 } else 2315 rcu_read_unlock(); 2316 } 2317 d = start; 2318 while (d != read_disk) { 2319 char b[BDEVNAME_SIZE]; 2320 if (d==0) 2321 d = conf->raid_disks * 2; 2322 d--; 2323 rcu_read_lock(); 2324 rdev = rcu_dereference(conf->mirrors[d].rdev); 2325 if (rdev && 2326 !test_bit(Faulty, &rdev->flags)) { 2327 atomic_inc(&rdev->nr_pending); 2328 rcu_read_unlock(); 2329 if (r1_sync_page_io(rdev, sect, s, 2330 conf->tmppage, READ)) { 2331 atomic_add(s, &rdev->corrected_errors); 2332 pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %s)\n", 2333 mdname(mddev), s, 2334 (unsigned long long)(sect + 2335 rdev->data_offset), 2336 bdevname(rdev->bdev, b)); 2337 } 2338 rdev_dec_pending(rdev, mddev); 2339 } else 2340 rcu_read_unlock(); 2341 } 2342 sectors -= s; 2343 sect += s; 2344 } 2345 } 2346 2347 static int narrow_write_error(struct r1bio *r1_bio, int i) 2348 { 2349 struct mddev *mddev = r1_bio->mddev; 2350 struct r1conf *conf = mddev->private; 2351 struct md_rdev *rdev = conf->mirrors[i].rdev; 2352 2353 /* bio has the data to be written to device 'i' where 2354 * we just recently had a write error. 2355 * We repeatedly clone the bio and trim down to one block, 2356 * then try the write. Where the write fails we record 2357 * a bad block. 2358 * It is conceivable that the bio doesn't exactly align with 2359 * blocks. We must handle this somehow. 2360 * 2361 * We currently own a reference on the rdev. 2362 */ 2363 2364 int block_sectors; 2365 sector_t sector; 2366 int sectors; 2367 int sect_to_write = r1_bio->sectors; 2368 int ok = 1; 2369 2370 if (rdev->badblocks.shift < 0) 2371 return 0; 2372 2373 block_sectors = roundup(1 << rdev->badblocks.shift, 2374 bdev_logical_block_size(rdev->bdev) >> 9); 2375 sector = r1_bio->sector; 2376 sectors = ((sector + block_sectors) 2377 & ~(sector_t)(block_sectors - 1)) 2378 - sector; 2379 2380 while (sect_to_write) { 2381 struct bio *wbio; 2382 if (sectors > sect_to_write) 2383 sectors = sect_to_write; 2384 /* Write at 'sector' for 'sectors'*/ 2385 2386 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) { 2387 wbio = bio_clone_fast(r1_bio->behind_master_bio, 2388 GFP_NOIO, 2389 &mddev->bio_set); 2390 } else { 2391 wbio = bio_clone_fast(r1_bio->master_bio, GFP_NOIO, 2392 &mddev->bio_set); 2393 } 2394 2395 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0); 2396 wbio->bi_iter.bi_sector = r1_bio->sector; 2397 wbio->bi_iter.bi_size = r1_bio->sectors << 9; 2398 2399 bio_trim(wbio, sector - r1_bio->sector, sectors); 2400 wbio->bi_iter.bi_sector += rdev->data_offset; 2401 bio_set_dev(wbio, rdev->bdev); 2402 2403 if (submit_bio_wait(wbio) < 0) 2404 /* failure! */ 2405 ok = rdev_set_badblocks(rdev, sector, 2406 sectors, 0) 2407 && ok; 2408 2409 bio_put(wbio); 2410 sect_to_write -= sectors; 2411 sector += sectors; 2412 sectors = block_sectors; 2413 } 2414 return ok; 2415 } 2416 2417 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio) 2418 { 2419 int m; 2420 int s = r1_bio->sectors; 2421 for (m = 0; m < conf->raid_disks * 2 ; m++) { 2422 struct md_rdev *rdev = conf->mirrors[m].rdev; 2423 struct bio *bio = r1_bio->bios[m]; 2424 if (bio->bi_end_io == NULL) 2425 continue; 2426 if (!bio->bi_status && 2427 test_bit(R1BIO_MadeGood, &r1_bio->state)) { 2428 rdev_clear_badblocks(rdev, r1_bio->sector, s, 0); 2429 } 2430 if (bio->bi_status && 2431 test_bit(R1BIO_WriteError, &r1_bio->state)) { 2432 if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0)) 2433 md_error(conf->mddev, rdev); 2434 } 2435 } 2436 put_buf(r1_bio); 2437 md_done_sync(conf->mddev, s, 1); 2438 } 2439 2440 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio) 2441 { 2442 int m, idx; 2443 bool fail = false; 2444 2445 for (m = 0; m < conf->raid_disks * 2 ; m++) 2446 if (r1_bio->bios[m] == IO_MADE_GOOD) { 2447 struct md_rdev *rdev = conf->mirrors[m].rdev; 2448 rdev_clear_badblocks(rdev, 2449 r1_bio->sector, 2450 r1_bio->sectors, 0); 2451 rdev_dec_pending(rdev, conf->mddev); 2452 } else if (r1_bio->bios[m] != NULL) { 2453 /* This drive got a write error. We need to 2454 * narrow down and record precise write 2455 * errors. 2456 */ 2457 fail = true; 2458 if (!narrow_write_error(r1_bio, m)) { 2459 md_error(conf->mddev, 2460 conf->mirrors[m].rdev); 2461 /* an I/O failed, we can't clear the bitmap */ 2462 set_bit(R1BIO_Degraded, &r1_bio->state); 2463 } 2464 rdev_dec_pending(conf->mirrors[m].rdev, 2465 conf->mddev); 2466 } 2467 if (fail) { 2468 spin_lock_irq(&conf->device_lock); 2469 list_add(&r1_bio->retry_list, &conf->bio_end_io_list); 2470 idx = sector_to_idx(r1_bio->sector); 2471 atomic_inc(&conf->nr_queued[idx]); 2472 spin_unlock_irq(&conf->device_lock); 2473 /* 2474 * In case freeze_array() is waiting for condition 2475 * get_unqueued_pending() == extra to be true. 2476 */ 2477 wake_up(&conf->wait_barrier); 2478 md_wakeup_thread(conf->mddev->thread); 2479 } else { 2480 if (test_bit(R1BIO_WriteError, &r1_bio->state)) 2481 close_write(r1_bio); 2482 raid_end_bio_io(r1_bio); 2483 } 2484 } 2485 2486 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio) 2487 { 2488 struct mddev *mddev = conf->mddev; 2489 struct bio *bio; 2490 struct md_rdev *rdev; 2491 2492 clear_bit(R1BIO_ReadError, &r1_bio->state); 2493 /* we got a read error. Maybe the drive is bad. Maybe just 2494 * the block and we can fix it. 2495 * We freeze all other IO, and try reading the block from 2496 * other devices. When we find one, we re-write 2497 * and check it that fixes the read error. 2498 * This is all done synchronously while the array is 2499 * frozen 2500 */ 2501 2502 bio = r1_bio->bios[r1_bio->read_disk]; 2503 bio_put(bio); 2504 r1_bio->bios[r1_bio->read_disk] = NULL; 2505 2506 rdev = conf->mirrors[r1_bio->read_disk].rdev; 2507 if (mddev->ro == 0 2508 && !test_bit(FailFast, &rdev->flags)) { 2509 freeze_array(conf, 1); 2510 fix_read_error(conf, r1_bio->read_disk, 2511 r1_bio->sector, r1_bio->sectors); 2512 unfreeze_array(conf); 2513 } else if (mddev->ro == 0 && test_bit(FailFast, &rdev->flags)) { 2514 md_error(mddev, rdev); 2515 } else { 2516 r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED; 2517 } 2518 2519 rdev_dec_pending(rdev, conf->mddev); 2520 allow_barrier(conf, r1_bio->sector); 2521 bio = r1_bio->master_bio; 2522 2523 /* Reuse the old r1_bio so that the IO_BLOCKED settings are preserved */ 2524 r1_bio->state = 0; 2525 raid1_read_request(mddev, bio, r1_bio->sectors, r1_bio); 2526 } 2527 2528 static void raid1d(struct md_thread *thread) 2529 { 2530 struct mddev *mddev = thread->mddev; 2531 struct r1bio *r1_bio; 2532 unsigned long flags; 2533 struct r1conf *conf = mddev->private; 2534 struct list_head *head = &conf->retry_list; 2535 struct blk_plug plug; 2536 int idx; 2537 2538 md_check_recovery(mddev); 2539 2540 if (!list_empty_careful(&conf->bio_end_io_list) && 2541 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) { 2542 LIST_HEAD(tmp); 2543 spin_lock_irqsave(&conf->device_lock, flags); 2544 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) 2545 list_splice_init(&conf->bio_end_io_list, &tmp); 2546 spin_unlock_irqrestore(&conf->device_lock, flags); 2547 while (!list_empty(&tmp)) { 2548 r1_bio = list_first_entry(&tmp, struct r1bio, 2549 retry_list); 2550 list_del(&r1_bio->retry_list); 2551 idx = sector_to_idx(r1_bio->sector); 2552 atomic_dec(&conf->nr_queued[idx]); 2553 if (mddev->degraded) 2554 set_bit(R1BIO_Degraded, &r1_bio->state); 2555 if (test_bit(R1BIO_WriteError, &r1_bio->state)) 2556 close_write(r1_bio); 2557 raid_end_bio_io(r1_bio); 2558 } 2559 } 2560 2561 blk_start_plug(&plug); 2562 for (;;) { 2563 2564 flush_pending_writes(conf); 2565 2566 spin_lock_irqsave(&conf->device_lock, flags); 2567 if (list_empty(head)) { 2568 spin_unlock_irqrestore(&conf->device_lock, flags); 2569 break; 2570 } 2571 r1_bio = list_entry(head->prev, struct r1bio, retry_list); 2572 list_del(head->prev); 2573 idx = sector_to_idx(r1_bio->sector); 2574 atomic_dec(&conf->nr_queued[idx]); 2575 spin_unlock_irqrestore(&conf->device_lock, flags); 2576 2577 mddev = r1_bio->mddev; 2578 conf = mddev->private; 2579 if (test_bit(R1BIO_IsSync, &r1_bio->state)) { 2580 if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 2581 test_bit(R1BIO_WriteError, &r1_bio->state)) 2582 handle_sync_write_finished(conf, r1_bio); 2583 else 2584 sync_request_write(mddev, r1_bio); 2585 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 2586 test_bit(R1BIO_WriteError, &r1_bio->state)) 2587 handle_write_finished(conf, r1_bio); 2588 else if (test_bit(R1BIO_ReadError, &r1_bio->state)) 2589 handle_read_error(conf, r1_bio); 2590 else 2591 WARN_ON_ONCE(1); 2592 2593 cond_resched(); 2594 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING)) 2595 md_check_recovery(mddev); 2596 } 2597 blk_finish_plug(&plug); 2598 } 2599 2600 static int init_resync(struct r1conf *conf) 2601 { 2602 int buffs; 2603 2604 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE; 2605 BUG_ON(mempool_initialized(&conf->r1buf_pool)); 2606 2607 return mempool_init(&conf->r1buf_pool, buffs, r1buf_pool_alloc, 2608 r1buf_pool_free, conf->poolinfo); 2609 } 2610 2611 static struct r1bio *raid1_alloc_init_r1buf(struct r1conf *conf) 2612 { 2613 struct r1bio *r1bio = mempool_alloc(&conf->r1buf_pool, GFP_NOIO); 2614 struct resync_pages *rps; 2615 struct bio *bio; 2616 int i; 2617 2618 for (i = conf->poolinfo->raid_disks; i--; ) { 2619 bio = r1bio->bios[i]; 2620 rps = bio->bi_private; 2621 bio_reset(bio); 2622 bio->bi_private = rps; 2623 } 2624 r1bio->master_bio = NULL; 2625 return r1bio; 2626 } 2627 2628 /* 2629 * perform a "sync" on one "block" 2630 * 2631 * We need to make sure that no normal I/O request - particularly write 2632 * requests - conflict with active sync requests. 2633 * 2634 * This is achieved by tracking pending requests and a 'barrier' concept 2635 * that can be installed to exclude normal IO requests. 2636 */ 2637 2638 static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr, 2639 int *skipped) 2640 { 2641 struct r1conf *conf = mddev->private; 2642 struct r1bio *r1_bio; 2643 struct bio *bio; 2644 sector_t max_sector, nr_sectors; 2645 int disk = -1; 2646 int i; 2647 int wonly = -1; 2648 int write_targets = 0, read_targets = 0; 2649 sector_t sync_blocks; 2650 int still_degraded = 0; 2651 int good_sectors = RESYNC_SECTORS; 2652 int min_bad = 0; /* number of sectors that are bad in all devices */ 2653 int idx = sector_to_idx(sector_nr); 2654 int page_idx = 0; 2655 2656 if (!mempool_initialized(&conf->r1buf_pool)) 2657 if (init_resync(conf)) 2658 return 0; 2659 2660 max_sector = mddev->dev_sectors; 2661 if (sector_nr >= max_sector) { 2662 /* If we aborted, we need to abort the 2663 * sync on the 'current' bitmap chunk (there will 2664 * only be one in raid1 resync. 2665 * We can find the current addess in mddev->curr_resync 2666 */ 2667 if (mddev->curr_resync < max_sector) /* aborted */ 2668 md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 2669 &sync_blocks, 1); 2670 else /* completed sync */ 2671 conf->fullsync = 0; 2672 2673 md_bitmap_close_sync(mddev->bitmap); 2674 close_sync(conf); 2675 2676 if (mddev_is_clustered(mddev)) { 2677 conf->cluster_sync_low = 0; 2678 conf->cluster_sync_high = 0; 2679 } 2680 return 0; 2681 } 2682 2683 if (mddev->bitmap == NULL && 2684 mddev->recovery_cp == MaxSector && 2685 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 2686 conf->fullsync == 0) { 2687 *skipped = 1; 2688 return max_sector - sector_nr; 2689 } 2690 /* before building a request, check if we can skip these blocks.. 2691 * This call the bitmap_start_sync doesn't actually record anything 2692 */ 2693 if (!md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) && 2694 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 2695 /* We can skip this block, and probably several more */ 2696 *skipped = 1; 2697 return sync_blocks; 2698 } 2699 2700 /* 2701 * If there is non-resync activity waiting for a turn, then let it 2702 * though before starting on this new sync request. 2703 */ 2704 if (atomic_read(&conf->nr_waiting[idx])) 2705 schedule_timeout_uninterruptible(1); 2706 2707 /* we are incrementing sector_nr below. To be safe, we check against 2708 * sector_nr + two times RESYNC_SECTORS 2709 */ 2710 2711 md_bitmap_cond_end_sync(mddev->bitmap, sector_nr, 2712 mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high)); 2713 2714 2715 if (raise_barrier(conf, sector_nr)) 2716 return 0; 2717 2718 r1_bio = raid1_alloc_init_r1buf(conf); 2719 2720 rcu_read_lock(); 2721 /* 2722 * If we get a correctably read error during resync or recovery, 2723 * we might want to read from a different device. So we 2724 * flag all drives that could conceivably be read from for READ, 2725 * and any others (which will be non-In_sync devices) for WRITE. 2726 * If a read fails, we try reading from something else for which READ 2727 * is OK. 2728 */ 2729 2730 r1_bio->mddev = mddev; 2731 r1_bio->sector = sector_nr; 2732 r1_bio->state = 0; 2733 set_bit(R1BIO_IsSync, &r1_bio->state); 2734 /* make sure good_sectors won't go across barrier unit boundary */ 2735 good_sectors = align_to_barrier_unit_end(sector_nr, good_sectors); 2736 2737 for (i = 0; i < conf->raid_disks * 2; i++) { 2738 struct md_rdev *rdev; 2739 bio = r1_bio->bios[i]; 2740 2741 rdev = rcu_dereference(conf->mirrors[i].rdev); 2742 if (rdev == NULL || 2743 test_bit(Faulty, &rdev->flags)) { 2744 if (i < conf->raid_disks) 2745 still_degraded = 1; 2746 } else if (!test_bit(In_sync, &rdev->flags)) { 2747 bio_set_op_attrs(bio, REQ_OP_WRITE, 0); 2748 bio->bi_end_io = end_sync_write; 2749 write_targets ++; 2750 } else { 2751 /* may need to read from here */ 2752 sector_t first_bad = MaxSector; 2753 int bad_sectors; 2754 2755 if (is_badblock(rdev, sector_nr, good_sectors, 2756 &first_bad, &bad_sectors)) { 2757 if (first_bad > sector_nr) 2758 good_sectors = first_bad - sector_nr; 2759 else { 2760 bad_sectors -= (sector_nr - first_bad); 2761 if (min_bad == 0 || 2762 min_bad > bad_sectors) 2763 min_bad = bad_sectors; 2764 } 2765 } 2766 if (sector_nr < first_bad) { 2767 if (test_bit(WriteMostly, &rdev->flags)) { 2768 if (wonly < 0) 2769 wonly = i; 2770 } else { 2771 if (disk < 0) 2772 disk = i; 2773 } 2774 bio_set_op_attrs(bio, REQ_OP_READ, 0); 2775 bio->bi_end_io = end_sync_read; 2776 read_targets++; 2777 } else if (!test_bit(WriteErrorSeen, &rdev->flags) && 2778 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && 2779 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) { 2780 /* 2781 * The device is suitable for reading (InSync), 2782 * but has bad block(s) here. Let's try to correct them, 2783 * if we are doing resync or repair. Otherwise, leave 2784 * this device alone for this sync request. 2785 */ 2786 bio_set_op_attrs(bio, REQ_OP_WRITE, 0); 2787 bio->bi_end_io = end_sync_write; 2788 write_targets++; 2789 } 2790 } 2791 if (rdev && bio->bi_end_io) { 2792 atomic_inc(&rdev->nr_pending); 2793 bio->bi_iter.bi_sector = sector_nr + rdev->data_offset; 2794 bio_set_dev(bio, rdev->bdev); 2795 if (test_bit(FailFast, &rdev->flags)) 2796 bio->bi_opf |= MD_FAILFAST; 2797 } 2798 } 2799 rcu_read_unlock(); 2800 if (disk < 0) 2801 disk = wonly; 2802 r1_bio->read_disk = disk; 2803 2804 if (read_targets == 0 && min_bad > 0) { 2805 /* These sectors are bad on all InSync devices, so we 2806 * need to mark them bad on all write targets 2807 */ 2808 int ok = 1; 2809 for (i = 0 ; i < conf->raid_disks * 2 ; i++) 2810 if (r1_bio->bios[i]->bi_end_io == end_sync_write) { 2811 struct md_rdev *rdev = conf->mirrors[i].rdev; 2812 ok = rdev_set_badblocks(rdev, sector_nr, 2813 min_bad, 0 2814 ) && ok; 2815 } 2816 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2817 *skipped = 1; 2818 put_buf(r1_bio); 2819 2820 if (!ok) { 2821 /* Cannot record the badblocks, so need to 2822 * abort the resync. 2823 * If there are multiple read targets, could just 2824 * fail the really bad ones ??? 2825 */ 2826 conf->recovery_disabled = mddev->recovery_disabled; 2827 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 2828 return 0; 2829 } else 2830 return min_bad; 2831 2832 } 2833 if (min_bad > 0 && min_bad < good_sectors) { 2834 /* only resync enough to reach the next bad->good 2835 * transition */ 2836 good_sectors = min_bad; 2837 } 2838 2839 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0) 2840 /* extra read targets are also write targets */ 2841 write_targets += read_targets-1; 2842 2843 if (write_targets == 0 || read_targets == 0) { 2844 /* There is nowhere to write, so all non-sync 2845 * drives must be failed - so we are finished 2846 */ 2847 sector_t rv; 2848 if (min_bad > 0) 2849 max_sector = sector_nr + min_bad; 2850 rv = max_sector - sector_nr; 2851 *skipped = 1; 2852 put_buf(r1_bio); 2853 return rv; 2854 } 2855 2856 if (max_sector > mddev->resync_max) 2857 max_sector = mddev->resync_max; /* Don't do IO beyond here */ 2858 if (max_sector > sector_nr + good_sectors) 2859 max_sector = sector_nr + good_sectors; 2860 nr_sectors = 0; 2861 sync_blocks = 0; 2862 do { 2863 struct page *page; 2864 int len = PAGE_SIZE; 2865 if (sector_nr + (len>>9) > max_sector) 2866 len = (max_sector - sector_nr) << 9; 2867 if (len == 0) 2868 break; 2869 if (sync_blocks == 0) { 2870 if (!md_bitmap_start_sync(mddev->bitmap, sector_nr, 2871 &sync_blocks, still_degraded) && 2872 !conf->fullsync && 2873 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 2874 break; 2875 if ((len >> 9) > sync_blocks) 2876 len = sync_blocks<<9; 2877 } 2878 2879 for (i = 0 ; i < conf->raid_disks * 2; i++) { 2880 struct resync_pages *rp; 2881 2882 bio = r1_bio->bios[i]; 2883 rp = get_resync_pages(bio); 2884 if (bio->bi_end_io) { 2885 page = resync_fetch_page(rp, page_idx); 2886 2887 /* 2888 * won't fail because the vec table is big 2889 * enough to hold all these pages 2890 */ 2891 bio_add_page(bio, page, len, 0); 2892 } 2893 } 2894 nr_sectors += len>>9; 2895 sector_nr += len>>9; 2896 sync_blocks -= (len>>9); 2897 } while (++page_idx < RESYNC_PAGES); 2898 2899 r1_bio->sectors = nr_sectors; 2900 2901 if (mddev_is_clustered(mddev) && 2902 conf->cluster_sync_high < sector_nr + nr_sectors) { 2903 conf->cluster_sync_low = mddev->curr_resync_completed; 2904 conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS; 2905 /* Send resync message */ 2906 md_cluster_ops->resync_info_update(mddev, 2907 conf->cluster_sync_low, 2908 conf->cluster_sync_high); 2909 } 2910 2911 /* For a user-requested sync, we read all readable devices and do a 2912 * compare 2913 */ 2914 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 2915 atomic_set(&r1_bio->remaining, read_targets); 2916 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) { 2917 bio = r1_bio->bios[i]; 2918 if (bio->bi_end_io == end_sync_read) { 2919 read_targets--; 2920 md_sync_acct_bio(bio, nr_sectors); 2921 if (read_targets == 1) 2922 bio->bi_opf &= ~MD_FAILFAST; 2923 submit_bio_noacct(bio); 2924 } 2925 } 2926 } else { 2927 atomic_set(&r1_bio->remaining, 1); 2928 bio = r1_bio->bios[r1_bio->read_disk]; 2929 md_sync_acct_bio(bio, nr_sectors); 2930 if (read_targets == 1) 2931 bio->bi_opf &= ~MD_FAILFAST; 2932 submit_bio_noacct(bio); 2933 } 2934 return nr_sectors; 2935 } 2936 2937 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks) 2938 { 2939 if (sectors) 2940 return sectors; 2941 2942 return mddev->dev_sectors; 2943 } 2944 2945 static struct r1conf *setup_conf(struct mddev *mddev) 2946 { 2947 struct r1conf *conf; 2948 int i; 2949 struct raid1_info *disk; 2950 struct md_rdev *rdev; 2951 int err = -ENOMEM; 2952 2953 conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL); 2954 if (!conf) 2955 goto abort; 2956 2957 conf->nr_pending = kcalloc(BARRIER_BUCKETS_NR, 2958 sizeof(atomic_t), GFP_KERNEL); 2959 if (!conf->nr_pending) 2960 goto abort; 2961 2962 conf->nr_waiting = kcalloc(BARRIER_BUCKETS_NR, 2963 sizeof(atomic_t), GFP_KERNEL); 2964 if (!conf->nr_waiting) 2965 goto abort; 2966 2967 conf->nr_queued = kcalloc(BARRIER_BUCKETS_NR, 2968 sizeof(atomic_t), GFP_KERNEL); 2969 if (!conf->nr_queued) 2970 goto abort; 2971 2972 conf->barrier = kcalloc(BARRIER_BUCKETS_NR, 2973 sizeof(atomic_t), GFP_KERNEL); 2974 if (!conf->barrier) 2975 goto abort; 2976 2977 conf->mirrors = kzalloc(array3_size(sizeof(struct raid1_info), 2978 mddev->raid_disks, 2), 2979 GFP_KERNEL); 2980 if (!conf->mirrors) 2981 goto abort; 2982 2983 conf->tmppage = alloc_page(GFP_KERNEL); 2984 if (!conf->tmppage) 2985 goto abort; 2986 2987 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL); 2988 if (!conf->poolinfo) 2989 goto abort; 2990 conf->poolinfo->raid_disks = mddev->raid_disks * 2; 2991 err = mempool_init(&conf->r1bio_pool, NR_RAID_BIOS, r1bio_pool_alloc, 2992 rbio_pool_free, conf->poolinfo); 2993 if (err) 2994 goto abort; 2995 2996 err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0); 2997 if (err) 2998 goto abort; 2999 3000 conf->poolinfo->mddev = mddev; 3001 3002 err = -EINVAL; 3003 spin_lock_init(&conf->device_lock); 3004 rdev_for_each(rdev, mddev) { 3005 int disk_idx = rdev->raid_disk; 3006 if (disk_idx >= mddev->raid_disks 3007 || disk_idx < 0) 3008 continue; 3009 if (test_bit(Replacement, &rdev->flags)) 3010 disk = conf->mirrors + mddev->raid_disks + disk_idx; 3011 else 3012 disk = conf->mirrors + disk_idx; 3013 3014 if (disk->rdev) 3015 goto abort; 3016 disk->rdev = rdev; 3017 disk->head_position = 0; 3018 disk->seq_start = MaxSector; 3019 } 3020 conf->raid_disks = mddev->raid_disks; 3021 conf->mddev = mddev; 3022 INIT_LIST_HEAD(&conf->retry_list); 3023 INIT_LIST_HEAD(&conf->bio_end_io_list); 3024 3025 spin_lock_init(&conf->resync_lock); 3026 init_waitqueue_head(&conf->wait_barrier); 3027 3028 bio_list_init(&conf->pending_bio_list); 3029 conf->pending_count = 0; 3030 conf->recovery_disabled = mddev->recovery_disabled - 1; 3031 3032 err = -EIO; 3033 for (i = 0; i < conf->raid_disks * 2; i++) { 3034 3035 disk = conf->mirrors + i; 3036 3037 if (i < conf->raid_disks && 3038 disk[conf->raid_disks].rdev) { 3039 /* This slot has a replacement. */ 3040 if (!disk->rdev) { 3041 /* No original, just make the replacement 3042 * a recovering spare 3043 */ 3044 disk->rdev = 3045 disk[conf->raid_disks].rdev; 3046 disk[conf->raid_disks].rdev = NULL; 3047 } else if (!test_bit(In_sync, &disk->rdev->flags)) 3048 /* Original is not in_sync - bad */ 3049 goto abort; 3050 } 3051 3052 if (!disk->rdev || 3053 !test_bit(In_sync, &disk->rdev->flags)) { 3054 disk->head_position = 0; 3055 if (disk->rdev && 3056 (disk->rdev->saved_raid_disk < 0)) 3057 conf->fullsync = 1; 3058 } 3059 } 3060 3061 err = -ENOMEM; 3062 conf->thread = md_register_thread(raid1d, mddev, "raid1"); 3063 if (!conf->thread) 3064 goto abort; 3065 3066 return conf; 3067 3068 abort: 3069 if (conf) { 3070 mempool_exit(&conf->r1bio_pool); 3071 kfree(conf->mirrors); 3072 safe_put_page(conf->tmppage); 3073 kfree(conf->poolinfo); 3074 kfree(conf->nr_pending); 3075 kfree(conf->nr_waiting); 3076 kfree(conf->nr_queued); 3077 kfree(conf->barrier); 3078 bioset_exit(&conf->bio_split); 3079 kfree(conf); 3080 } 3081 return ERR_PTR(err); 3082 } 3083 3084 static void raid1_free(struct mddev *mddev, void *priv); 3085 static int raid1_run(struct mddev *mddev) 3086 { 3087 struct r1conf *conf; 3088 int i; 3089 struct md_rdev *rdev; 3090 int ret; 3091 bool discard_supported = false; 3092 3093 if (mddev->level != 1) { 3094 pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n", 3095 mdname(mddev), mddev->level); 3096 return -EIO; 3097 } 3098 if (mddev->reshape_position != MaxSector) { 3099 pr_warn("md/raid1:%s: reshape_position set but not supported\n", 3100 mdname(mddev)); 3101 return -EIO; 3102 } 3103 if (mddev_init_writes_pending(mddev) < 0) 3104 return -ENOMEM; 3105 /* 3106 * copy the already verified devices into our private RAID1 3107 * bookkeeping area. [whatever we allocate in run(), 3108 * should be freed in raid1_free()] 3109 */ 3110 if (mddev->private == NULL) 3111 conf = setup_conf(mddev); 3112 else 3113 conf = mddev->private; 3114 3115 if (IS_ERR(conf)) 3116 return PTR_ERR(conf); 3117 3118 if (mddev->queue) { 3119 blk_queue_max_write_same_sectors(mddev->queue, 0); 3120 blk_queue_max_write_zeroes_sectors(mddev->queue, 0); 3121 } 3122 3123 rdev_for_each(rdev, mddev) { 3124 if (!mddev->gendisk) 3125 continue; 3126 disk_stack_limits(mddev->gendisk, rdev->bdev, 3127 rdev->data_offset << 9); 3128 if (blk_queue_discard(bdev_get_queue(rdev->bdev))) 3129 discard_supported = true; 3130 } 3131 3132 mddev->degraded = 0; 3133 for (i = 0; i < conf->raid_disks; i++) 3134 if (conf->mirrors[i].rdev == NULL || 3135 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) || 3136 test_bit(Faulty, &conf->mirrors[i].rdev->flags)) 3137 mddev->degraded++; 3138 /* 3139 * RAID1 needs at least one disk in active 3140 */ 3141 if (conf->raid_disks - mddev->degraded < 1) { 3142 ret = -EINVAL; 3143 goto abort; 3144 } 3145 3146 if (conf->raid_disks - mddev->degraded == 1) 3147 mddev->recovery_cp = MaxSector; 3148 3149 if (mddev->recovery_cp != MaxSector) 3150 pr_info("md/raid1:%s: not clean -- starting background reconstruction\n", 3151 mdname(mddev)); 3152 pr_info("md/raid1:%s: active with %d out of %d mirrors\n", 3153 mdname(mddev), mddev->raid_disks - mddev->degraded, 3154 mddev->raid_disks); 3155 3156 /* 3157 * Ok, everything is just fine now 3158 */ 3159 mddev->thread = conf->thread; 3160 conf->thread = NULL; 3161 mddev->private = conf; 3162 set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags); 3163 3164 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0)); 3165 3166 if (mddev->queue) { 3167 if (discard_supported) 3168 blk_queue_flag_set(QUEUE_FLAG_DISCARD, 3169 mddev->queue); 3170 else 3171 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, 3172 mddev->queue); 3173 } 3174 3175 ret = md_integrity_register(mddev); 3176 if (ret) { 3177 md_unregister_thread(&mddev->thread); 3178 goto abort; 3179 } 3180 return 0; 3181 3182 abort: 3183 raid1_free(mddev, conf); 3184 return ret; 3185 } 3186 3187 static void raid1_free(struct mddev *mddev, void *priv) 3188 { 3189 struct r1conf *conf = priv; 3190 3191 mempool_exit(&conf->r1bio_pool); 3192 kfree(conf->mirrors); 3193 safe_put_page(conf->tmppage); 3194 kfree(conf->poolinfo); 3195 kfree(conf->nr_pending); 3196 kfree(conf->nr_waiting); 3197 kfree(conf->nr_queued); 3198 kfree(conf->barrier); 3199 bioset_exit(&conf->bio_split); 3200 kfree(conf); 3201 } 3202 3203 static int raid1_resize(struct mddev *mddev, sector_t sectors) 3204 { 3205 /* no resync is happening, and there is enough space 3206 * on all devices, so we can resize. 3207 * We need to make sure resync covers any new space. 3208 * If the array is shrinking we should possibly wait until 3209 * any io in the removed space completes, but it hardly seems 3210 * worth it. 3211 */ 3212 sector_t newsize = raid1_size(mddev, sectors, 0); 3213 if (mddev->external_size && 3214 mddev->array_sectors > newsize) 3215 return -EINVAL; 3216 if (mddev->bitmap) { 3217 int ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0); 3218 if (ret) 3219 return ret; 3220 } 3221 md_set_array_sectors(mddev, newsize); 3222 if (sectors > mddev->dev_sectors && 3223 mddev->recovery_cp > mddev->dev_sectors) { 3224 mddev->recovery_cp = mddev->dev_sectors; 3225 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3226 } 3227 mddev->dev_sectors = sectors; 3228 mddev->resync_max_sectors = sectors; 3229 return 0; 3230 } 3231 3232 static int raid1_reshape(struct mddev *mddev) 3233 { 3234 /* We need to: 3235 * 1/ resize the r1bio_pool 3236 * 2/ resize conf->mirrors 3237 * 3238 * We allocate a new r1bio_pool if we can. 3239 * Then raise a device barrier and wait until all IO stops. 3240 * Then resize conf->mirrors and swap in the new r1bio pool. 3241 * 3242 * At the same time, we "pack" the devices so that all the missing 3243 * devices have the higher raid_disk numbers. 3244 */ 3245 mempool_t newpool, oldpool; 3246 struct pool_info *newpoolinfo; 3247 struct raid1_info *newmirrors; 3248 struct r1conf *conf = mddev->private; 3249 int cnt, raid_disks; 3250 unsigned long flags; 3251 int d, d2; 3252 int ret; 3253 3254 memset(&newpool, 0, sizeof(newpool)); 3255 memset(&oldpool, 0, sizeof(oldpool)); 3256 3257 /* Cannot change chunk_size, layout, or level */ 3258 if (mddev->chunk_sectors != mddev->new_chunk_sectors || 3259 mddev->layout != mddev->new_layout || 3260 mddev->level != mddev->new_level) { 3261 mddev->new_chunk_sectors = mddev->chunk_sectors; 3262 mddev->new_layout = mddev->layout; 3263 mddev->new_level = mddev->level; 3264 return -EINVAL; 3265 } 3266 3267 if (!mddev_is_clustered(mddev)) 3268 md_allow_write(mddev); 3269 3270 raid_disks = mddev->raid_disks + mddev->delta_disks; 3271 3272 if (raid_disks < conf->raid_disks) { 3273 cnt=0; 3274 for (d= 0; d < conf->raid_disks; d++) 3275 if (conf->mirrors[d].rdev) 3276 cnt++; 3277 if (cnt > raid_disks) 3278 return -EBUSY; 3279 } 3280 3281 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL); 3282 if (!newpoolinfo) 3283 return -ENOMEM; 3284 newpoolinfo->mddev = mddev; 3285 newpoolinfo->raid_disks = raid_disks * 2; 3286 3287 ret = mempool_init(&newpool, NR_RAID_BIOS, r1bio_pool_alloc, 3288 rbio_pool_free, newpoolinfo); 3289 if (ret) { 3290 kfree(newpoolinfo); 3291 return ret; 3292 } 3293 newmirrors = kzalloc(array3_size(sizeof(struct raid1_info), 3294 raid_disks, 2), 3295 GFP_KERNEL); 3296 if (!newmirrors) { 3297 kfree(newpoolinfo); 3298 mempool_exit(&newpool); 3299 return -ENOMEM; 3300 } 3301 3302 freeze_array(conf, 0); 3303 3304 /* ok, everything is stopped */ 3305 oldpool = conf->r1bio_pool; 3306 conf->r1bio_pool = newpool; 3307 3308 for (d = d2 = 0; d < conf->raid_disks; d++) { 3309 struct md_rdev *rdev = conf->mirrors[d].rdev; 3310 if (rdev && rdev->raid_disk != d2) { 3311 sysfs_unlink_rdev(mddev, rdev); 3312 rdev->raid_disk = d2; 3313 sysfs_unlink_rdev(mddev, rdev); 3314 if (sysfs_link_rdev(mddev, rdev)) 3315 pr_warn("md/raid1:%s: cannot register rd%d\n", 3316 mdname(mddev), rdev->raid_disk); 3317 } 3318 if (rdev) 3319 newmirrors[d2++].rdev = rdev; 3320 } 3321 kfree(conf->mirrors); 3322 conf->mirrors = newmirrors; 3323 kfree(conf->poolinfo); 3324 conf->poolinfo = newpoolinfo; 3325 3326 spin_lock_irqsave(&conf->device_lock, flags); 3327 mddev->degraded += (raid_disks - conf->raid_disks); 3328 spin_unlock_irqrestore(&conf->device_lock, flags); 3329 conf->raid_disks = mddev->raid_disks = raid_disks; 3330 mddev->delta_disks = 0; 3331 3332 unfreeze_array(conf); 3333 3334 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 3335 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3336 md_wakeup_thread(mddev->thread); 3337 3338 mempool_exit(&oldpool); 3339 return 0; 3340 } 3341 3342 static void raid1_quiesce(struct mddev *mddev, int quiesce) 3343 { 3344 struct r1conf *conf = mddev->private; 3345 3346 if (quiesce) 3347 freeze_array(conf, 0); 3348 else 3349 unfreeze_array(conf); 3350 } 3351 3352 static void *raid1_takeover(struct mddev *mddev) 3353 { 3354 /* raid1 can take over: 3355 * raid5 with 2 devices, any layout or chunk size 3356 */ 3357 if (mddev->level == 5 && mddev->raid_disks == 2) { 3358 struct r1conf *conf; 3359 mddev->new_level = 1; 3360 mddev->new_layout = 0; 3361 mddev->new_chunk_sectors = 0; 3362 conf = setup_conf(mddev); 3363 if (!IS_ERR(conf)) { 3364 /* Array must appear to be quiesced */ 3365 conf->array_frozen = 1; 3366 mddev_clear_unsupported_flags(mddev, 3367 UNSUPPORTED_MDDEV_FLAGS); 3368 } 3369 return conf; 3370 } 3371 return ERR_PTR(-EINVAL); 3372 } 3373 3374 static struct md_personality raid1_personality = 3375 { 3376 .name = "raid1", 3377 .level = 1, 3378 .owner = THIS_MODULE, 3379 .make_request = raid1_make_request, 3380 .run = raid1_run, 3381 .free = raid1_free, 3382 .status = raid1_status, 3383 .error_handler = raid1_error, 3384 .hot_add_disk = raid1_add_disk, 3385 .hot_remove_disk= raid1_remove_disk, 3386 .spare_active = raid1_spare_active, 3387 .sync_request = raid1_sync_request, 3388 .resize = raid1_resize, 3389 .size = raid1_size, 3390 .check_reshape = raid1_reshape, 3391 .quiesce = raid1_quiesce, 3392 .takeover = raid1_takeover, 3393 }; 3394 3395 static int __init raid_init(void) 3396 { 3397 return register_md_personality(&raid1_personality); 3398 } 3399 3400 static void raid_exit(void) 3401 { 3402 unregister_md_personality(&raid1_personality); 3403 } 3404 3405 module_init(raid_init); 3406 module_exit(raid_exit); 3407 MODULE_LICENSE("GPL"); 3408 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD"); 3409 MODULE_ALIAS("md-personality-3"); /* RAID1 */ 3410 MODULE_ALIAS("md-raid1"); 3411 MODULE_ALIAS("md-level-1"); 3412 3413 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR); 3414