xref: /openbmc/linux/drivers/md/raid1.c (revision f9a82c48)
1 /*
2  * raid1.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5  *
6  * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7  *
8  * RAID-1 management functions.
9  *
10  * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11  *
12  * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
13  * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14  *
15  * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16  * bitmapped intelligence in resync:
17  *
18  *      - bitmap marked during normal i/o
19  *      - bitmap used to skip nondirty blocks during sync
20  *
21  * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22  * - persistent bitmap code
23  *
24  * This program is free software; you can redistribute it and/or modify
25  * it under the terms of the GNU General Public License as published by
26  * the Free Software Foundation; either version 2, or (at your option)
27  * any later version.
28  *
29  * You should have received a copy of the GNU General Public License
30  * (for example /usr/src/linux/COPYING); if not, write to the Free
31  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32  */
33 
34 #include <linux/slab.h>
35 #include <linux/delay.h>
36 #include <linux/blkdev.h>
37 #include <linux/module.h>
38 #include <linux/seq_file.h>
39 #include <linux/ratelimit.h>
40 
41 #include <trace/events/block.h>
42 
43 #include "md.h"
44 #include "raid1.h"
45 #include "md-bitmap.h"
46 
47 #define UNSUPPORTED_MDDEV_FLAGS		\
48 	((1L << MD_HAS_JOURNAL) |	\
49 	 (1L << MD_JOURNAL_CLEAN) |	\
50 	 (1L << MD_HAS_PPL) |		\
51 	 (1L << MD_HAS_MULTIPLE_PPLS))
52 
53 /*
54  * Number of guaranteed r1bios in case of extreme VM load:
55  */
56 #define	NR_RAID1_BIOS 256
57 
58 /* when we get a read error on a read-only array, we redirect to another
59  * device without failing the first device, or trying to over-write to
60  * correct the read error.  To keep track of bad blocks on a per-bio
61  * level, we store IO_BLOCKED in the appropriate 'bios' pointer
62  */
63 #define IO_BLOCKED ((struct bio *)1)
64 /* When we successfully write to a known bad-block, we need to remove the
65  * bad-block marking which must be done from process context.  So we record
66  * the success by setting devs[n].bio to IO_MADE_GOOD
67  */
68 #define IO_MADE_GOOD ((struct bio *)2)
69 
70 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
71 
72 /* When there are this many requests queue to be written by
73  * the raid1 thread, we become 'congested' to provide back-pressure
74  * for writeback.
75  */
76 static int max_queued_requests = 1024;
77 
78 static void allow_barrier(struct r1conf *conf, sector_t sector_nr);
79 static void lower_barrier(struct r1conf *conf, sector_t sector_nr);
80 
81 #define raid1_log(md, fmt, args...)				\
82 	do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid1 " fmt, ##args); } while (0)
83 
84 #include "raid1-10.c"
85 
86 /*
87  * for resync bio, r1bio pointer can be retrieved from the per-bio
88  * 'struct resync_pages'.
89  */
90 static inline struct r1bio *get_resync_r1bio(struct bio *bio)
91 {
92 	return get_resync_pages(bio)->raid_bio;
93 }
94 
95 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
96 {
97 	struct pool_info *pi = data;
98 	int size = offsetof(struct r1bio, bios[pi->raid_disks]);
99 
100 	/* allocate a r1bio with room for raid_disks entries in the bios array */
101 	return kzalloc(size, gfp_flags);
102 }
103 
104 static void r1bio_pool_free(void *r1_bio, void *data)
105 {
106 	kfree(r1_bio);
107 }
108 
109 #define RESYNC_DEPTH 32
110 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
111 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
112 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
113 #define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
114 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
115 
116 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
117 {
118 	struct pool_info *pi = data;
119 	struct r1bio *r1_bio;
120 	struct bio *bio;
121 	int need_pages;
122 	int j;
123 	struct resync_pages *rps;
124 
125 	r1_bio = r1bio_pool_alloc(gfp_flags, pi);
126 	if (!r1_bio)
127 		return NULL;
128 
129 	rps = kmalloc_array(pi->raid_disks, sizeof(struct resync_pages),
130 			    gfp_flags);
131 	if (!rps)
132 		goto out_free_r1bio;
133 
134 	/*
135 	 * Allocate bios : 1 for reading, n-1 for writing
136 	 */
137 	for (j = pi->raid_disks ; j-- ; ) {
138 		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
139 		if (!bio)
140 			goto out_free_bio;
141 		r1_bio->bios[j] = bio;
142 	}
143 	/*
144 	 * Allocate RESYNC_PAGES data pages and attach them to
145 	 * the first bio.
146 	 * If this is a user-requested check/repair, allocate
147 	 * RESYNC_PAGES for each bio.
148 	 */
149 	if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
150 		need_pages = pi->raid_disks;
151 	else
152 		need_pages = 1;
153 	for (j = 0; j < pi->raid_disks; j++) {
154 		struct resync_pages *rp = &rps[j];
155 
156 		bio = r1_bio->bios[j];
157 
158 		if (j < need_pages) {
159 			if (resync_alloc_pages(rp, gfp_flags))
160 				goto out_free_pages;
161 		} else {
162 			memcpy(rp, &rps[0], sizeof(*rp));
163 			resync_get_all_pages(rp);
164 		}
165 
166 		rp->raid_bio = r1_bio;
167 		bio->bi_private = rp;
168 	}
169 
170 	r1_bio->master_bio = NULL;
171 
172 	return r1_bio;
173 
174 out_free_pages:
175 	while (--j >= 0)
176 		resync_free_pages(&rps[j]);
177 
178 out_free_bio:
179 	while (++j < pi->raid_disks)
180 		bio_put(r1_bio->bios[j]);
181 	kfree(rps);
182 
183 out_free_r1bio:
184 	r1bio_pool_free(r1_bio, data);
185 	return NULL;
186 }
187 
188 static void r1buf_pool_free(void *__r1_bio, void *data)
189 {
190 	struct pool_info *pi = data;
191 	int i;
192 	struct r1bio *r1bio = __r1_bio;
193 	struct resync_pages *rp = NULL;
194 
195 	for (i = pi->raid_disks; i--; ) {
196 		rp = get_resync_pages(r1bio->bios[i]);
197 		resync_free_pages(rp);
198 		bio_put(r1bio->bios[i]);
199 	}
200 
201 	/* resync pages array stored in the 1st bio's .bi_private */
202 	kfree(rp);
203 
204 	r1bio_pool_free(r1bio, data);
205 }
206 
207 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
208 {
209 	int i;
210 
211 	for (i = 0; i < conf->raid_disks * 2; i++) {
212 		struct bio **bio = r1_bio->bios + i;
213 		if (!BIO_SPECIAL(*bio))
214 			bio_put(*bio);
215 		*bio = NULL;
216 	}
217 }
218 
219 static void free_r1bio(struct r1bio *r1_bio)
220 {
221 	struct r1conf *conf = r1_bio->mddev->private;
222 
223 	put_all_bios(conf, r1_bio);
224 	mempool_free(r1_bio, &conf->r1bio_pool);
225 }
226 
227 static void put_buf(struct r1bio *r1_bio)
228 {
229 	struct r1conf *conf = r1_bio->mddev->private;
230 	sector_t sect = r1_bio->sector;
231 	int i;
232 
233 	for (i = 0; i < conf->raid_disks * 2; i++) {
234 		struct bio *bio = r1_bio->bios[i];
235 		if (bio->bi_end_io)
236 			rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
237 	}
238 
239 	mempool_free(r1_bio, &conf->r1buf_pool);
240 
241 	lower_barrier(conf, sect);
242 }
243 
244 static void reschedule_retry(struct r1bio *r1_bio)
245 {
246 	unsigned long flags;
247 	struct mddev *mddev = r1_bio->mddev;
248 	struct r1conf *conf = mddev->private;
249 	int idx;
250 
251 	idx = sector_to_idx(r1_bio->sector);
252 	spin_lock_irqsave(&conf->device_lock, flags);
253 	list_add(&r1_bio->retry_list, &conf->retry_list);
254 	atomic_inc(&conf->nr_queued[idx]);
255 	spin_unlock_irqrestore(&conf->device_lock, flags);
256 
257 	wake_up(&conf->wait_barrier);
258 	md_wakeup_thread(mddev->thread);
259 }
260 
261 /*
262  * raid_end_bio_io() is called when we have finished servicing a mirrored
263  * operation and are ready to return a success/failure code to the buffer
264  * cache layer.
265  */
266 static void call_bio_endio(struct r1bio *r1_bio)
267 {
268 	struct bio *bio = r1_bio->master_bio;
269 	struct r1conf *conf = r1_bio->mddev->private;
270 
271 	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
272 		bio->bi_status = BLK_STS_IOERR;
273 
274 	bio_endio(bio);
275 	/*
276 	 * Wake up any possible resync thread that waits for the device
277 	 * to go idle.
278 	 */
279 	allow_barrier(conf, r1_bio->sector);
280 }
281 
282 static void raid_end_bio_io(struct r1bio *r1_bio)
283 {
284 	struct bio *bio = r1_bio->master_bio;
285 
286 	/* if nobody has done the final endio yet, do it now */
287 	if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
288 		pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
289 			 (bio_data_dir(bio) == WRITE) ? "write" : "read",
290 			 (unsigned long long) bio->bi_iter.bi_sector,
291 			 (unsigned long long) bio_end_sector(bio) - 1);
292 
293 		call_bio_endio(r1_bio);
294 	}
295 	free_r1bio(r1_bio);
296 }
297 
298 /*
299  * Update disk head position estimator based on IRQ completion info.
300  */
301 static inline void update_head_pos(int disk, struct r1bio *r1_bio)
302 {
303 	struct r1conf *conf = r1_bio->mddev->private;
304 
305 	conf->mirrors[disk].head_position =
306 		r1_bio->sector + (r1_bio->sectors);
307 }
308 
309 /*
310  * Find the disk number which triggered given bio
311  */
312 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
313 {
314 	int mirror;
315 	struct r1conf *conf = r1_bio->mddev->private;
316 	int raid_disks = conf->raid_disks;
317 
318 	for (mirror = 0; mirror < raid_disks * 2; mirror++)
319 		if (r1_bio->bios[mirror] == bio)
320 			break;
321 
322 	BUG_ON(mirror == raid_disks * 2);
323 	update_head_pos(mirror, r1_bio);
324 
325 	return mirror;
326 }
327 
328 static void raid1_end_read_request(struct bio *bio)
329 {
330 	int uptodate = !bio->bi_status;
331 	struct r1bio *r1_bio = bio->bi_private;
332 	struct r1conf *conf = r1_bio->mddev->private;
333 	struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev;
334 
335 	/*
336 	 * this branch is our 'one mirror IO has finished' event handler:
337 	 */
338 	update_head_pos(r1_bio->read_disk, r1_bio);
339 
340 	if (uptodate)
341 		set_bit(R1BIO_Uptodate, &r1_bio->state);
342 	else if (test_bit(FailFast, &rdev->flags) &&
343 		 test_bit(R1BIO_FailFast, &r1_bio->state))
344 		/* This was a fail-fast read so we definitely
345 		 * want to retry */
346 		;
347 	else {
348 		/* If all other devices have failed, we want to return
349 		 * the error upwards rather than fail the last device.
350 		 * Here we redefine "uptodate" to mean "Don't want to retry"
351 		 */
352 		unsigned long flags;
353 		spin_lock_irqsave(&conf->device_lock, flags);
354 		if (r1_bio->mddev->degraded == conf->raid_disks ||
355 		    (r1_bio->mddev->degraded == conf->raid_disks-1 &&
356 		     test_bit(In_sync, &rdev->flags)))
357 			uptodate = 1;
358 		spin_unlock_irqrestore(&conf->device_lock, flags);
359 	}
360 
361 	if (uptodate) {
362 		raid_end_bio_io(r1_bio);
363 		rdev_dec_pending(rdev, conf->mddev);
364 	} else {
365 		/*
366 		 * oops, read error:
367 		 */
368 		char b[BDEVNAME_SIZE];
369 		pr_err_ratelimited("md/raid1:%s: %s: rescheduling sector %llu\n",
370 				   mdname(conf->mddev),
371 				   bdevname(rdev->bdev, b),
372 				   (unsigned long long)r1_bio->sector);
373 		set_bit(R1BIO_ReadError, &r1_bio->state);
374 		reschedule_retry(r1_bio);
375 		/* don't drop the reference on read_disk yet */
376 	}
377 }
378 
379 static void close_write(struct r1bio *r1_bio)
380 {
381 	/* it really is the end of this request */
382 	if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
383 		bio_free_pages(r1_bio->behind_master_bio);
384 		bio_put(r1_bio->behind_master_bio);
385 		r1_bio->behind_master_bio = NULL;
386 	}
387 	/* clear the bitmap if all writes complete successfully */
388 	md_bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
389 			   r1_bio->sectors,
390 			   !test_bit(R1BIO_Degraded, &r1_bio->state),
391 			   test_bit(R1BIO_BehindIO, &r1_bio->state));
392 	md_write_end(r1_bio->mddev);
393 }
394 
395 static void r1_bio_write_done(struct r1bio *r1_bio)
396 {
397 	if (!atomic_dec_and_test(&r1_bio->remaining))
398 		return;
399 
400 	if (test_bit(R1BIO_WriteError, &r1_bio->state))
401 		reschedule_retry(r1_bio);
402 	else {
403 		close_write(r1_bio);
404 		if (test_bit(R1BIO_MadeGood, &r1_bio->state))
405 			reschedule_retry(r1_bio);
406 		else
407 			raid_end_bio_io(r1_bio);
408 	}
409 }
410 
411 static void raid1_end_write_request(struct bio *bio)
412 {
413 	struct r1bio *r1_bio = bio->bi_private;
414 	int behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
415 	struct r1conf *conf = r1_bio->mddev->private;
416 	struct bio *to_put = NULL;
417 	int mirror = find_bio_disk(r1_bio, bio);
418 	struct md_rdev *rdev = conf->mirrors[mirror].rdev;
419 	bool discard_error;
420 
421 	discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
422 
423 	/*
424 	 * 'one mirror IO has finished' event handler:
425 	 */
426 	if (bio->bi_status && !discard_error) {
427 		set_bit(WriteErrorSeen,	&rdev->flags);
428 		if (!test_and_set_bit(WantReplacement, &rdev->flags))
429 			set_bit(MD_RECOVERY_NEEDED, &
430 				conf->mddev->recovery);
431 
432 		if (test_bit(FailFast, &rdev->flags) &&
433 		    (bio->bi_opf & MD_FAILFAST) &&
434 		    /* We never try FailFast to WriteMostly devices */
435 		    !test_bit(WriteMostly, &rdev->flags)) {
436 			md_error(r1_bio->mddev, rdev);
437 			if (!test_bit(Faulty, &rdev->flags))
438 				/* This is the only remaining device,
439 				 * We need to retry the write without
440 				 * FailFast
441 				 */
442 				set_bit(R1BIO_WriteError, &r1_bio->state);
443 			else {
444 				/* Finished with this branch */
445 				r1_bio->bios[mirror] = NULL;
446 				to_put = bio;
447 			}
448 		} else
449 			set_bit(R1BIO_WriteError, &r1_bio->state);
450 	} else {
451 		/*
452 		 * Set R1BIO_Uptodate in our master bio, so that we
453 		 * will return a good error code for to the higher
454 		 * levels even if IO on some other mirrored buffer
455 		 * fails.
456 		 *
457 		 * The 'master' represents the composite IO operation
458 		 * to user-side. So if something waits for IO, then it
459 		 * will wait for the 'master' bio.
460 		 */
461 		sector_t first_bad;
462 		int bad_sectors;
463 
464 		r1_bio->bios[mirror] = NULL;
465 		to_put = bio;
466 		/*
467 		 * Do not set R1BIO_Uptodate if the current device is
468 		 * rebuilding or Faulty. This is because we cannot use
469 		 * such device for properly reading the data back (we could
470 		 * potentially use it, if the current write would have felt
471 		 * before rdev->recovery_offset, but for simplicity we don't
472 		 * check this here.
473 		 */
474 		if (test_bit(In_sync, &rdev->flags) &&
475 		    !test_bit(Faulty, &rdev->flags))
476 			set_bit(R1BIO_Uptodate, &r1_bio->state);
477 
478 		/* Maybe we can clear some bad blocks. */
479 		if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
480 				&first_bad, &bad_sectors) && !discard_error) {
481 			r1_bio->bios[mirror] = IO_MADE_GOOD;
482 			set_bit(R1BIO_MadeGood, &r1_bio->state);
483 		}
484 	}
485 
486 	if (behind) {
487 		if (test_bit(WriteMostly, &rdev->flags))
488 			atomic_dec(&r1_bio->behind_remaining);
489 
490 		/*
491 		 * In behind mode, we ACK the master bio once the I/O
492 		 * has safely reached all non-writemostly
493 		 * disks. Setting the Returned bit ensures that this
494 		 * gets done only once -- we don't ever want to return
495 		 * -EIO here, instead we'll wait
496 		 */
497 		if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
498 		    test_bit(R1BIO_Uptodate, &r1_bio->state)) {
499 			/* Maybe we can return now */
500 			if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
501 				struct bio *mbio = r1_bio->master_bio;
502 				pr_debug("raid1: behind end write sectors"
503 					 " %llu-%llu\n",
504 					 (unsigned long long) mbio->bi_iter.bi_sector,
505 					 (unsigned long long) bio_end_sector(mbio) - 1);
506 				call_bio_endio(r1_bio);
507 			}
508 		}
509 	}
510 	if (r1_bio->bios[mirror] == NULL)
511 		rdev_dec_pending(rdev, conf->mddev);
512 
513 	/*
514 	 * Let's see if all mirrored write operations have finished
515 	 * already.
516 	 */
517 	r1_bio_write_done(r1_bio);
518 
519 	if (to_put)
520 		bio_put(to_put);
521 }
522 
523 static sector_t align_to_barrier_unit_end(sector_t start_sector,
524 					  sector_t sectors)
525 {
526 	sector_t len;
527 
528 	WARN_ON(sectors == 0);
529 	/*
530 	 * len is the number of sectors from start_sector to end of the
531 	 * barrier unit which start_sector belongs to.
532 	 */
533 	len = round_up(start_sector + 1, BARRIER_UNIT_SECTOR_SIZE) -
534 	      start_sector;
535 
536 	if (len > sectors)
537 		len = sectors;
538 
539 	return len;
540 }
541 
542 /*
543  * This routine returns the disk from which the requested read should
544  * be done. There is a per-array 'next expected sequential IO' sector
545  * number - if this matches on the next IO then we use the last disk.
546  * There is also a per-disk 'last know head position' sector that is
547  * maintained from IRQ contexts, both the normal and the resync IO
548  * completion handlers update this position correctly. If there is no
549  * perfect sequential match then we pick the disk whose head is closest.
550  *
551  * If there are 2 mirrors in the same 2 devices, performance degrades
552  * because position is mirror, not device based.
553  *
554  * The rdev for the device selected will have nr_pending incremented.
555  */
556 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
557 {
558 	const sector_t this_sector = r1_bio->sector;
559 	int sectors;
560 	int best_good_sectors;
561 	int best_disk, best_dist_disk, best_pending_disk;
562 	int has_nonrot_disk;
563 	int disk;
564 	sector_t best_dist;
565 	unsigned int min_pending;
566 	struct md_rdev *rdev;
567 	int choose_first;
568 	int choose_next_idle;
569 
570 	rcu_read_lock();
571 	/*
572 	 * Check if we can balance. We can balance on the whole
573 	 * device if no resync is going on, or below the resync window.
574 	 * We take the first readable disk when above the resync window.
575 	 */
576  retry:
577 	sectors = r1_bio->sectors;
578 	best_disk = -1;
579 	best_dist_disk = -1;
580 	best_dist = MaxSector;
581 	best_pending_disk = -1;
582 	min_pending = UINT_MAX;
583 	best_good_sectors = 0;
584 	has_nonrot_disk = 0;
585 	choose_next_idle = 0;
586 	clear_bit(R1BIO_FailFast, &r1_bio->state);
587 
588 	if ((conf->mddev->recovery_cp < this_sector + sectors) ||
589 	    (mddev_is_clustered(conf->mddev) &&
590 	    md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
591 		    this_sector + sectors)))
592 		choose_first = 1;
593 	else
594 		choose_first = 0;
595 
596 	for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
597 		sector_t dist;
598 		sector_t first_bad;
599 		int bad_sectors;
600 		unsigned int pending;
601 		bool nonrot;
602 
603 		rdev = rcu_dereference(conf->mirrors[disk].rdev);
604 		if (r1_bio->bios[disk] == IO_BLOCKED
605 		    || rdev == NULL
606 		    || test_bit(Faulty, &rdev->flags))
607 			continue;
608 		if (!test_bit(In_sync, &rdev->flags) &&
609 		    rdev->recovery_offset < this_sector + sectors)
610 			continue;
611 		if (test_bit(WriteMostly, &rdev->flags)) {
612 			/* Don't balance among write-mostly, just
613 			 * use the first as a last resort */
614 			if (best_dist_disk < 0) {
615 				if (is_badblock(rdev, this_sector, sectors,
616 						&first_bad, &bad_sectors)) {
617 					if (first_bad <= this_sector)
618 						/* Cannot use this */
619 						continue;
620 					best_good_sectors = first_bad - this_sector;
621 				} else
622 					best_good_sectors = sectors;
623 				best_dist_disk = disk;
624 				best_pending_disk = disk;
625 			}
626 			continue;
627 		}
628 		/* This is a reasonable device to use.  It might
629 		 * even be best.
630 		 */
631 		if (is_badblock(rdev, this_sector, sectors,
632 				&first_bad, &bad_sectors)) {
633 			if (best_dist < MaxSector)
634 				/* already have a better device */
635 				continue;
636 			if (first_bad <= this_sector) {
637 				/* cannot read here. If this is the 'primary'
638 				 * device, then we must not read beyond
639 				 * bad_sectors from another device..
640 				 */
641 				bad_sectors -= (this_sector - first_bad);
642 				if (choose_first && sectors > bad_sectors)
643 					sectors = bad_sectors;
644 				if (best_good_sectors > sectors)
645 					best_good_sectors = sectors;
646 
647 			} else {
648 				sector_t good_sectors = first_bad - this_sector;
649 				if (good_sectors > best_good_sectors) {
650 					best_good_sectors = good_sectors;
651 					best_disk = disk;
652 				}
653 				if (choose_first)
654 					break;
655 			}
656 			continue;
657 		} else {
658 			if ((sectors > best_good_sectors) && (best_disk >= 0))
659 				best_disk = -1;
660 			best_good_sectors = sectors;
661 		}
662 
663 		if (best_disk >= 0)
664 			/* At least two disks to choose from so failfast is OK */
665 			set_bit(R1BIO_FailFast, &r1_bio->state);
666 
667 		nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
668 		has_nonrot_disk |= nonrot;
669 		pending = atomic_read(&rdev->nr_pending);
670 		dist = abs(this_sector - conf->mirrors[disk].head_position);
671 		if (choose_first) {
672 			best_disk = disk;
673 			break;
674 		}
675 		/* Don't change to another disk for sequential reads */
676 		if (conf->mirrors[disk].next_seq_sect == this_sector
677 		    || dist == 0) {
678 			int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
679 			struct raid1_info *mirror = &conf->mirrors[disk];
680 
681 			best_disk = disk;
682 			/*
683 			 * If buffered sequential IO size exceeds optimal
684 			 * iosize, check if there is idle disk. If yes, choose
685 			 * the idle disk. read_balance could already choose an
686 			 * idle disk before noticing it's a sequential IO in
687 			 * this disk. This doesn't matter because this disk
688 			 * will idle, next time it will be utilized after the
689 			 * first disk has IO size exceeds optimal iosize. In
690 			 * this way, iosize of the first disk will be optimal
691 			 * iosize at least. iosize of the second disk might be
692 			 * small, but not a big deal since when the second disk
693 			 * starts IO, the first disk is likely still busy.
694 			 */
695 			if (nonrot && opt_iosize > 0 &&
696 			    mirror->seq_start != MaxSector &&
697 			    mirror->next_seq_sect > opt_iosize &&
698 			    mirror->next_seq_sect - opt_iosize >=
699 			    mirror->seq_start) {
700 				choose_next_idle = 1;
701 				continue;
702 			}
703 			break;
704 		}
705 
706 		if (choose_next_idle)
707 			continue;
708 
709 		if (min_pending > pending) {
710 			min_pending = pending;
711 			best_pending_disk = disk;
712 		}
713 
714 		if (dist < best_dist) {
715 			best_dist = dist;
716 			best_dist_disk = disk;
717 		}
718 	}
719 
720 	/*
721 	 * If all disks are rotational, choose the closest disk. If any disk is
722 	 * non-rotational, choose the disk with less pending request even the
723 	 * disk is rotational, which might/might not be optimal for raids with
724 	 * mixed ratation/non-rotational disks depending on workload.
725 	 */
726 	if (best_disk == -1) {
727 		if (has_nonrot_disk || min_pending == 0)
728 			best_disk = best_pending_disk;
729 		else
730 			best_disk = best_dist_disk;
731 	}
732 
733 	if (best_disk >= 0) {
734 		rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
735 		if (!rdev)
736 			goto retry;
737 		atomic_inc(&rdev->nr_pending);
738 		sectors = best_good_sectors;
739 
740 		if (conf->mirrors[best_disk].next_seq_sect != this_sector)
741 			conf->mirrors[best_disk].seq_start = this_sector;
742 
743 		conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
744 	}
745 	rcu_read_unlock();
746 	*max_sectors = sectors;
747 
748 	return best_disk;
749 }
750 
751 static int raid1_congested(struct mddev *mddev, int bits)
752 {
753 	struct r1conf *conf = mddev->private;
754 	int i, ret = 0;
755 
756 	if ((bits & (1 << WB_async_congested)) &&
757 	    conf->pending_count >= max_queued_requests)
758 		return 1;
759 
760 	rcu_read_lock();
761 	for (i = 0; i < conf->raid_disks * 2; i++) {
762 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
763 		if (rdev && !test_bit(Faulty, &rdev->flags)) {
764 			struct request_queue *q = bdev_get_queue(rdev->bdev);
765 
766 			BUG_ON(!q);
767 
768 			/* Note the '|| 1' - when read_balance prefers
769 			 * non-congested targets, it can be removed
770 			 */
771 			if ((bits & (1 << WB_async_congested)) || 1)
772 				ret |= bdi_congested(q->backing_dev_info, bits);
773 			else
774 				ret &= bdi_congested(q->backing_dev_info, bits);
775 		}
776 	}
777 	rcu_read_unlock();
778 	return ret;
779 }
780 
781 static void flush_bio_list(struct r1conf *conf, struct bio *bio)
782 {
783 	/* flush any pending bitmap writes to disk before proceeding w/ I/O */
784 	md_bitmap_unplug(conf->mddev->bitmap);
785 	wake_up(&conf->wait_barrier);
786 
787 	while (bio) { /* submit pending writes */
788 		struct bio *next = bio->bi_next;
789 		struct md_rdev *rdev = (void *)bio->bi_disk;
790 		bio->bi_next = NULL;
791 		bio_set_dev(bio, rdev->bdev);
792 		if (test_bit(Faulty, &rdev->flags)) {
793 			bio_io_error(bio);
794 		} else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
795 				    !blk_queue_discard(bio->bi_disk->queue)))
796 			/* Just ignore it */
797 			bio_endio(bio);
798 		else
799 			generic_make_request(bio);
800 		bio = next;
801 	}
802 }
803 
804 static void flush_pending_writes(struct r1conf *conf)
805 {
806 	/* Any writes that have been queued but are awaiting
807 	 * bitmap updates get flushed here.
808 	 */
809 	spin_lock_irq(&conf->device_lock);
810 
811 	if (conf->pending_bio_list.head) {
812 		struct blk_plug plug;
813 		struct bio *bio;
814 
815 		bio = bio_list_get(&conf->pending_bio_list);
816 		conf->pending_count = 0;
817 		spin_unlock_irq(&conf->device_lock);
818 
819 		/*
820 		 * As this is called in a wait_event() loop (see freeze_array),
821 		 * current->state might be TASK_UNINTERRUPTIBLE which will
822 		 * cause a warning when we prepare to wait again.  As it is
823 		 * rare that this path is taken, it is perfectly safe to force
824 		 * us to go around the wait_event() loop again, so the warning
825 		 * is a false-positive.  Silence the warning by resetting
826 		 * thread state
827 		 */
828 		__set_current_state(TASK_RUNNING);
829 		blk_start_plug(&plug);
830 		flush_bio_list(conf, bio);
831 		blk_finish_plug(&plug);
832 	} else
833 		spin_unlock_irq(&conf->device_lock);
834 }
835 
836 /* Barriers....
837  * Sometimes we need to suspend IO while we do something else,
838  * either some resync/recovery, or reconfigure the array.
839  * To do this we raise a 'barrier'.
840  * The 'barrier' is a counter that can be raised multiple times
841  * to count how many activities are happening which preclude
842  * normal IO.
843  * We can only raise the barrier if there is no pending IO.
844  * i.e. if nr_pending == 0.
845  * We choose only to raise the barrier if no-one is waiting for the
846  * barrier to go down.  This means that as soon as an IO request
847  * is ready, no other operations which require a barrier will start
848  * until the IO request has had a chance.
849  *
850  * So: regular IO calls 'wait_barrier'.  When that returns there
851  *    is no backgroup IO happening,  It must arrange to call
852  *    allow_barrier when it has finished its IO.
853  * backgroup IO calls must call raise_barrier.  Once that returns
854  *    there is no normal IO happeing.  It must arrange to call
855  *    lower_barrier when the particular background IO completes.
856  */
857 static sector_t raise_barrier(struct r1conf *conf, sector_t sector_nr)
858 {
859 	int idx = sector_to_idx(sector_nr);
860 
861 	spin_lock_irq(&conf->resync_lock);
862 
863 	/* Wait until no block IO is waiting */
864 	wait_event_lock_irq(conf->wait_barrier,
865 			    !atomic_read(&conf->nr_waiting[idx]),
866 			    conf->resync_lock);
867 
868 	/* block any new IO from starting */
869 	atomic_inc(&conf->barrier[idx]);
870 	/*
871 	 * In raise_barrier() we firstly increase conf->barrier[idx] then
872 	 * check conf->nr_pending[idx]. In _wait_barrier() we firstly
873 	 * increase conf->nr_pending[idx] then check conf->barrier[idx].
874 	 * A memory barrier here to make sure conf->nr_pending[idx] won't
875 	 * be fetched before conf->barrier[idx] is increased. Otherwise
876 	 * there will be a race between raise_barrier() and _wait_barrier().
877 	 */
878 	smp_mb__after_atomic();
879 
880 	/* For these conditions we must wait:
881 	 * A: while the array is in frozen state
882 	 * B: while conf->nr_pending[idx] is not 0, meaning regular I/O
883 	 *    existing in corresponding I/O barrier bucket.
884 	 * C: while conf->barrier[idx] >= RESYNC_DEPTH, meaning reaches
885 	 *    max resync count which allowed on current I/O barrier bucket.
886 	 */
887 	wait_event_lock_irq(conf->wait_barrier,
888 			    (!conf->array_frozen &&
889 			     !atomic_read(&conf->nr_pending[idx]) &&
890 			     atomic_read(&conf->barrier[idx]) < RESYNC_DEPTH) ||
891 				test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery),
892 			    conf->resync_lock);
893 
894 	if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
895 		atomic_dec(&conf->barrier[idx]);
896 		spin_unlock_irq(&conf->resync_lock);
897 		wake_up(&conf->wait_barrier);
898 		return -EINTR;
899 	}
900 
901 	atomic_inc(&conf->nr_sync_pending);
902 	spin_unlock_irq(&conf->resync_lock);
903 
904 	return 0;
905 }
906 
907 static void lower_barrier(struct r1conf *conf, sector_t sector_nr)
908 {
909 	int idx = sector_to_idx(sector_nr);
910 
911 	BUG_ON(atomic_read(&conf->barrier[idx]) <= 0);
912 
913 	atomic_dec(&conf->barrier[idx]);
914 	atomic_dec(&conf->nr_sync_pending);
915 	wake_up(&conf->wait_barrier);
916 }
917 
918 static void _wait_barrier(struct r1conf *conf, int idx)
919 {
920 	/*
921 	 * We need to increase conf->nr_pending[idx] very early here,
922 	 * then raise_barrier() can be blocked when it waits for
923 	 * conf->nr_pending[idx] to be 0. Then we can avoid holding
924 	 * conf->resync_lock when there is no barrier raised in same
925 	 * barrier unit bucket. Also if the array is frozen, I/O
926 	 * should be blocked until array is unfrozen.
927 	 */
928 	atomic_inc(&conf->nr_pending[idx]);
929 	/*
930 	 * In _wait_barrier() we firstly increase conf->nr_pending[idx], then
931 	 * check conf->barrier[idx]. In raise_barrier() we firstly increase
932 	 * conf->barrier[idx], then check conf->nr_pending[idx]. A memory
933 	 * barrier is necessary here to make sure conf->barrier[idx] won't be
934 	 * fetched before conf->nr_pending[idx] is increased. Otherwise there
935 	 * will be a race between _wait_barrier() and raise_barrier().
936 	 */
937 	smp_mb__after_atomic();
938 
939 	/*
940 	 * Don't worry about checking two atomic_t variables at same time
941 	 * here. If during we check conf->barrier[idx], the array is
942 	 * frozen (conf->array_frozen is 1), and chonf->barrier[idx] is
943 	 * 0, it is safe to return and make the I/O continue. Because the
944 	 * array is frozen, all I/O returned here will eventually complete
945 	 * or be queued, no race will happen. See code comment in
946 	 * frozen_array().
947 	 */
948 	if (!READ_ONCE(conf->array_frozen) &&
949 	    !atomic_read(&conf->barrier[idx]))
950 		return;
951 
952 	/*
953 	 * After holding conf->resync_lock, conf->nr_pending[idx]
954 	 * should be decreased before waiting for barrier to drop.
955 	 * Otherwise, we may encounter a race condition because
956 	 * raise_barrer() might be waiting for conf->nr_pending[idx]
957 	 * to be 0 at same time.
958 	 */
959 	spin_lock_irq(&conf->resync_lock);
960 	atomic_inc(&conf->nr_waiting[idx]);
961 	atomic_dec(&conf->nr_pending[idx]);
962 	/*
963 	 * In case freeze_array() is waiting for
964 	 * get_unqueued_pending() == extra
965 	 */
966 	wake_up(&conf->wait_barrier);
967 	/* Wait for the barrier in same barrier unit bucket to drop. */
968 	wait_event_lock_irq(conf->wait_barrier,
969 			    !conf->array_frozen &&
970 			     !atomic_read(&conf->barrier[idx]),
971 			    conf->resync_lock);
972 	atomic_inc(&conf->nr_pending[idx]);
973 	atomic_dec(&conf->nr_waiting[idx]);
974 	spin_unlock_irq(&conf->resync_lock);
975 }
976 
977 static void wait_read_barrier(struct r1conf *conf, sector_t sector_nr)
978 {
979 	int idx = sector_to_idx(sector_nr);
980 
981 	/*
982 	 * Very similar to _wait_barrier(). The difference is, for read
983 	 * I/O we don't need wait for sync I/O, but if the whole array
984 	 * is frozen, the read I/O still has to wait until the array is
985 	 * unfrozen. Since there is no ordering requirement with
986 	 * conf->barrier[idx] here, memory barrier is unnecessary as well.
987 	 */
988 	atomic_inc(&conf->nr_pending[idx]);
989 
990 	if (!READ_ONCE(conf->array_frozen))
991 		return;
992 
993 	spin_lock_irq(&conf->resync_lock);
994 	atomic_inc(&conf->nr_waiting[idx]);
995 	atomic_dec(&conf->nr_pending[idx]);
996 	/*
997 	 * In case freeze_array() is waiting for
998 	 * get_unqueued_pending() == extra
999 	 */
1000 	wake_up(&conf->wait_barrier);
1001 	/* Wait for array to be unfrozen */
1002 	wait_event_lock_irq(conf->wait_barrier,
1003 			    !conf->array_frozen,
1004 			    conf->resync_lock);
1005 	atomic_inc(&conf->nr_pending[idx]);
1006 	atomic_dec(&conf->nr_waiting[idx]);
1007 	spin_unlock_irq(&conf->resync_lock);
1008 }
1009 
1010 static void wait_barrier(struct r1conf *conf, sector_t sector_nr)
1011 {
1012 	int idx = sector_to_idx(sector_nr);
1013 
1014 	_wait_barrier(conf, idx);
1015 }
1016 
1017 static void _allow_barrier(struct r1conf *conf, int idx)
1018 {
1019 	atomic_dec(&conf->nr_pending[idx]);
1020 	wake_up(&conf->wait_barrier);
1021 }
1022 
1023 static void allow_barrier(struct r1conf *conf, sector_t sector_nr)
1024 {
1025 	int idx = sector_to_idx(sector_nr);
1026 
1027 	_allow_barrier(conf, idx);
1028 }
1029 
1030 /* conf->resync_lock should be held */
1031 static int get_unqueued_pending(struct r1conf *conf)
1032 {
1033 	int idx, ret;
1034 
1035 	ret = atomic_read(&conf->nr_sync_pending);
1036 	for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
1037 		ret += atomic_read(&conf->nr_pending[idx]) -
1038 			atomic_read(&conf->nr_queued[idx]);
1039 
1040 	return ret;
1041 }
1042 
1043 static void freeze_array(struct r1conf *conf, int extra)
1044 {
1045 	/* Stop sync I/O and normal I/O and wait for everything to
1046 	 * go quiet.
1047 	 * This is called in two situations:
1048 	 * 1) management command handlers (reshape, remove disk, quiesce).
1049 	 * 2) one normal I/O request failed.
1050 
1051 	 * After array_frozen is set to 1, new sync IO will be blocked at
1052 	 * raise_barrier(), and new normal I/O will blocked at _wait_barrier()
1053 	 * or wait_read_barrier(). The flying I/Os will either complete or be
1054 	 * queued. When everything goes quite, there are only queued I/Os left.
1055 
1056 	 * Every flying I/O contributes to a conf->nr_pending[idx], idx is the
1057 	 * barrier bucket index which this I/O request hits. When all sync and
1058 	 * normal I/O are queued, sum of all conf->nr_pending[] will match sum
1059 	 * of all conf->nr_queued[]. But normal I/O failure is an exception,
1060 	 * in handle_read_error(), we may call freeze_array() before trying to
1061 	 * fix the read error. In this case, the error read I/O is not queued,
1062 	 * so get_unqueued_pending() == 1.
1063 	 *
1064 	 * Therefore before this function returns, we need to wait until
1065 	 * get_unqueued_pendings(conf) gets equal to extra. For
1066 	 * normal I/O context, extra is 1, in rested situations extra is 0.
1067 	 */
1068 	spin_lock_irq(&conf->resync_lock);
1069 	conf->array_frozen = 1;
1070 	raid1_log(conf->mddev, "wait freeze");
1071 	wait_event_lock_irq_cmd(
1072 		conf->wait_barrier,
1073 		get_unqueued_pending(conf) == extra,
1074 		conf->resync_lock,
1075 		flush_pending_writes(conf));
1076 	spin_unlock_irq(&conf->resync_lock);
1077 }
1078 static void unfreeze_array(struct r1conf *conf)
1079 {
1080 	/* reverse the effect of the freeze */
1081 	spin_lock_irq(&conf->resync_lock);
1082 	conf->array_frozen = 0;
1083 	spin_unlock_irq(&conf->resync_lock);
1084 	wake_up(&conf->wait_barrier);
1085 }
1086 
1087 static void alloc_behind_master_bio(struct r1bio *r1_bio,
1088 					   struct bio *bio)
1089 {
1090 	int size = bio->bi_iter.bi_size;
1091 	unsigned vcnt = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1092 	int i = 0;
1093 	struct bio *behind_bio = NULL;
1094 
1095 	behind_bio = bio_alloc_mddev(GFP_NOIO, vcnt, r1_bio->mddev);
1096 	if (!behind_bio)
1097 		return;
1098 
1099 	/* discard op, we don't support writezero/writesame yet */
1100 	if (!bio_has_data(bio)) {
1101 		behind_bio->bi_iter.bi_size = size;
1102 		goto skip_copy;
1103 	}
1104 
1105 	behind_bio->bi_write_hint = bio->bi_write_hint;
1106 
1107 	while (i < vcnt && size) {
1108 		struct page *page;
1109 		int len = min_t(int, PAGE_SIZE, size);
1110 
1111 		page = alloc_page(GFP_NOIO);
1112 		if (unlikely(!page))
1113 			goto free_pages;
1114 
1115 		bio_add_page(behind_bio, page, len, 0);
1116 
1117 		size -= len;
1118 		i++;
1119 	}
1120 
1121 	bio_copy_data(behind_bio, bio);
1122 skip_copy:
1123 	r1_bio->behind_master_bio = behind_bio;
1124 	set_bit(R1BIO_BehindIO, &r1_bio->state);
1125 
1126 	return;
1127 
1128 free_pages:
1129 	pr_debug("%dB behind alloc failed, doing sync I/O\n",
1130 		 bio->bi_iter.bi_size);
1131 	bio_free_pages(behind_bio);
1132 	bio_put(behind_bio);
1133 }
1134 
1135 struct raid1_plug_cb {
1136 	struct blk_plug_cb	cb;
1137 	struct bio_list		pending;
1138 	int			pending_cnt;
1139 };
1140 
1141 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1142 {
1143 	struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1144 						  cb);
1145 	struct mddev *mddev = plug->cb.data;
1146 	struct r1conf *conf = mddev->private;
1147 	struct bio *bio;
1148 
1149 	if (from_schedule || current->bio_list) {
1150 		spin_lock_irq(&conf->device_lock);
1151 		bio_list_merge(&conf->pending_bio_list, &plug->pending);
1152 		conf->pending_count += plug->pending_cnt;
1153 		spin_unlock_irq(&conf->device_lock);
1154 		wake_up(&conf->wait_barrier);
1155 		md_wakeup_thread(mddev->thread);
1156 		kfree(plug);
1157 		return;
1158 	}
1159 
1160 	/* we aren't scheduling, so we can do the write-out directly. */
1161 	bio = bio_list_get(&plug->pending);
1162 	flush_bio_list(conf, bio);
1163 	kfree(plug);
1164 }
1165 
1166 static void init_r1bio(struct r1bio *r1_bio, struct mddev *mddev, struct bio *bio)
1167 {
1168 	r1_bio->master_bio = bio;
1169 	r1_bio->sectors = bio_sectors(bio);
1170 	r1_bio->state = 0;
1171 	r1_bio->mddev = mddev;
1172 	r1_bio->sector = bio->bi_iter.bi_sector;
1173 }
1174 
1175 static inline struct r1bio *
1176 alloc_r1bio(struct mddev *mddev, struct bio *bio)
1177 {
1178 	struct r1conf *conf = mddev->private;
1179 	struct r1bio *r1_bio;
1180 
1181 	r1_bio = mempool_alloc(&conf->r1bio_pool, GFP_NOIO);
1182 	/* Ensure no bio records IO_BLOCKED */
1183 	memset(r1_bio->bios, 0, conf->raid_disks * sizeof(r1_bio->bios[0]));
1184 	init_r1bio(r1_bio, mddev, bio);
1185 	return r1_bio;
1186 }
1187 
1188 static void raid1_read_request(struct mddev *mddev, struct bio *bio,
1189 			       int max_read_sectors, struct r1bio *r1_bio)
1190 {
1191 	struct r1conf *conf = mddev->private;
1192 	struct raid1_info *mirror;
1193 	struct bio *read_bio;
1194 	struct bitmap *bitmap = mddev->bitmap;
1195 	const int op = bio_op(bio);
1196 	const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1197 	int max_sectors;
1198 	int rdisk;
1199 	bool print_msg = !!r1_bio;
1200 	char b[BDEVNAME_SIZE];
1201 
1202 	/*
1203 	 * If r1_bio is set, we are blocking the raid1d thread
1204 	 * so there is a tiny risk of deadlock.  So ask for
1205 	 * emergency memory if needed.
1206 	 */
1207 	gfp_t gfp = r1_bio ? (GFP_NOIO | __GFP_HIGH) : GFP_NOIO;
1208 
1209 	if (print_msg) {
1210 		/* Need to get the block device name carefully */
1211 		struct md_rdev *rdev;
1212 		rcu_read_lock();
1213 		rdev = rcu_dereference(conf->mirrors[r1_bio->read_disk].rdev);
1214 		if (rdev)
1215 			bdevname(rdev->bdev, b);
1216 		else
1217 			strcpy(b, "???");
1218 		rcu_read_unlock();
1219 	}
1220 
1221 	/*
1222 	 * Still need barrier for READ in case that whole
1223 	 * array is frozen.
1224 	 */
1225 	wait_read_barrier(conf, bio->bi_iter.bi_sector);
1226 
1227 	if (!r1_bio)
1228 		r1_bio = alloc_r1bio(mddev, bio);
1229 	else
1230 		init_r1bio(r1_bio, mddev, bio);
1231 	r1_bio->sectors = max_read_sectors;
1232 
1233 	/*
1234 	 * make_request() can abort the operation when read-ahead is being
1235 	 * used and no empty request is available.
1236 	 */
1237 	rdisk = read_balance(conf, r1_bio, &max_sectors);
1238 
1239 	if (rdisk < 0) {
1240 		/* couldn't find anywhere to read from */
1241 		if (print_msg) {
1242 			pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
1243 					    mdname(mddev),
1244 					    b,
1245 					    (unsigned long long)r1_bio->sector);
1246 		}
1247 		raid_end_bio_io(r1_bio);
1248 		return;
1249 	}
1250 	mirror = conf->mirrors + rdisk;
1251 
1252 	if (print_msg)
1253 		pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %s\n",
1254 				    mdname(mddev),
1255 				    (unsigned long long)r1_bio->sector,
1256 				    bdevname(mirror->rdev->bdev, b));
1257 
1258 	if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1259 	    bitmap) {
1260 		/*
1261 		 * Reading from a write-mostly device must take care not to
1262 		 * over-take any writes that are 'behind'
1263 		 */
1264 		raid1_log(mddev, "wait behind writes");
1265 		wait_event(bitmap->behind_wait,
1266 			   atomic_read(&bitmap->behind_writes) == 0);
1267 	}
1268 
1269 	if (max_sectors < bio_sectors(bio)) {
1270 		struct bio *split = bio_split(bio, max_sectors,
1271 					      gfp, &conf->bio_split);
1272 		bio_chain(split, bio);
1273 		generic_make_request(bio);
1274 		bio = split;
1275 		r1_bio->master_bio = bio;
1276 		r1_bio->sectors = max_sectors;
1277 	}
1278 
1279 	r1_bio->read_disk = rdisk;
1280 
1281 	read_bio = bio_clone_fast(bio, gfp, &mddev->bio_set);
1282 
1283 	r1_bio->bios[rdisk] = read_bio;
1284 
1285 	read_bio->bi_iter.bi_sector = r1_bio->sector +
1286 		mirror->rdev->data_offset;
1287 	bio_set_dev(read_bio, mirror->rdev->bdev);
1288 	read_bio->bi_end_io = raid1_end_read_request;
1289 	bio_set_op_attrs(read_bio, op, do_sync);
1290 	if (test_bit(FailFast, &mirror->rdev->flags) &&
1291 	    test_bit(R1BIO_FailFast, &r1_bio->state))
1292 	        read_bio->bi_opf |= MD_FAILFAST;
1293 	read_bio->bi_private = r1_bio;
1294 
1295 	if (mddev->gendisk)
1296 	        trace_block_bio_remap(read_bio->bi_disk->queue, read_bio,
1297 				disk_devt(mddev->gendisk), r1_bio->sector);
1298 
1299 	generic_make_request(read_bio);
1300 }
1301 
1302 static void raid1_write_request(struct mddev *mddev, struct bio *bio,
1303 				int max_write_sectors)
1304 {
1305 	struct r1conf *conf = mddev->private;
1306 	struct r1bio *r1_bio;
1307 	int i, disks;
1308 	struct bitmap *bitmap = mddev->bitmap;
1309 	unsigned long flags;
1310 	struct md_rdev *blocked_rdev;
1311 	struct blk_plug_cb *cb;
1312 	struct raid1_plug_cb *plug = NULL;
1313 	int first_clone;
1314 	int max_sectors;
1315 
1316 	if (mddev_is_clustered(mddev) &&
1317 	     md_cluster_ops->area_resyncing(mddev, WRITE,
1318 		     bio->bi_iter.bi_sector, bio_end_sector(bio))) {
1319 
1320 		DEFINE_WAIT(w);
1321 		for (;;) {
1322 			prepare_to_wait(&conf->wait_barrier,
1323 					&w, TASK_IDLE);
1324 			if (!md_cluster_ops->area_resyncing(mddev, WRITE,
1325 							bio->bi_iter.bi_sector,
1326 							bio_end_sector(bio)))
1327 				break;
1328 			schedule();
1329 		}
1330 		finish_wait(&conf->wait_barrier, &w);
1331 	}
1332 
1333 	/*
1334 	 * Register the new request and wait if the reconstruction
1335 	 * thread has put up a bar for new requests.
1336 	 * Continue immediately if no resync is active currently.
1337 	 */
1338 	wait_barrier(conf, bio->bi_iter.bi_sector);
1339 
1340 	r1_bio = alloc_r1bio(mddev, bio);
1341 	r1_bio->sectors = max_write_sectors;
1342 
1343 	if (conf->pending_count >= max_queued_requests) {
1344 		md_wakeup_thread(mddev->thread);
1345 		raid1_log(mddev, "wait queued");
1346 		wait_event(conf->wait_barrier,
1347 			   conf->pending_count < max_queued_requests);
1348 	}
1349 	/* first select target devices under rcu_lock and
1350 	 * inc refcount on their rdev.  Record them by setting
1351 	 * bios[x] to bio
1352 	 * If there are known/acknowledged bad blocks on any device on
1353 	 * which we have seen a write error, we want to avoid writing those
1354 	 * blocks.
1355 	 * This potentially requires several writes to write around
1356 	 * the bad blocks.  Each set of writes gets it's own r1bio
1357 	 * with a set of bios attached.
1358 	 */
1359 
1360 	disks = conf->raid_disks * 2;
1361  retry_write:
1362 	blocked_rdev = NULL;
1363 	rcu_read_lock();
1364 	max_sectors = r1_bio->sectors;
1365 	for (i = 0;  i < disks; i++) {
1366 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1367 		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1368 			atomic_inc(&rdev->nr_pending);
1369 			blocked_rdev = rdev;
1370 			break;
1371 		}
1372 		r1_bio->bios[i] = NULL;
1373 		if (!rdev || test_bit(Faulty, &rdev->flags)) {
1374 			if (i < conf->raid_disks)
1375 				set_bit(R1BIO_Degraded, &r1_bio->state);
1376 			continue;
1377 		}
1378 
1379 		atomic_inc(&rdev->nr_pending);
1380 		if (test_bit(WriteErrorSeen, &rdev->flags)) {
1381 			sector_t first_bad;
1382 			int bad_sectors;
1383 			int is_bad;
1384 
1385 			is_bad = is_badblock(rdev, r1_bio->sector, max_sectors,
1386 					     &first_bad, &bad_sectors);
1387 			if (is_bad < 0) {
1388 				/* mustn't write here until the bad block is
1389 				 * acknowledged*/
1390 				set_bit(BlockedBadBlocks, &rdev->flags);
1391 				blocked_rdev = rdev;
1392 				break;
1393 			}
1394 			if (is_bad && first_bad <= r1_bio->sector) {
1395 				/* Cannot write here at all */
1396 				bad_sectors -= (r1_bio->sector - first_bad);
1397 				if (bad_sectors < max_sectors)
1398 					/* mustn't write more than bad_sectors
1399 					 * to other devices yet
1400 					 */
1401 					max_sectors = bad_sectors;
1402 				rdev_dec_pending(rdev, mddev);
1403 				/* We don't set R1BIO_Degraded as that
1404 				 * only applies if the disk is
1405 				 * missing, so it might be re-added,
1406 				 * and we want to know to recover this
1407 				 * chunk.
1408 				 * In this case the device is here,
1409 				 * and the fact that this chunk is not
1410 				 * in-sync is recorded in the bad
1411 				 * block log
1412 				 */
1413 				continue;
1414 			}
1415 			if (is_bad) {
1416 				int good_sectors = first_bad - r1_bio->sector;
1417 				if (good_sectors < max_sectors)
1418 					max_sectors = good_sectors;
1419 			}
1420 		}
1421 		r1_bio->bios[i] = bio;
1422 	}
1423 	rcu_read_unlock();
1424 
1425 	if (unlikely(blocked_rdev)) {
1426 		/* Wait for this device to become unblocked */
1427 		int j;
1428 
1429 		for (j = 0; j < i; j++)
1430 			if (r1_bio->bios[j])
1431 				rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1432 		r1_bio->state = 0;
1433 		allow_barrier(conf, bio->bi_iter.bi_sector);
1434 		raid1_log(mddev, "wait rdev %d blocked", blocked_rdev->raid_disk);
1435 		md_wait_for_blocked_rdev(blocked_rdev, mddev);
1436 		wait_barrier(conf, bio->bi_iter.bi_sector);
1437 		goto retry_write;
1438 	}
1439 
1440 	if (max_sectors < bio_sectors(bio)) {
1441 		struct bio *split = bio_split(bio, max_sectors,
1442 					      GFP_NOIO, &conf->bio_split);
1443 		bio_chain(split, bio);
1444 		generic_make_request(bio);
1445 		bio = split;
1446 		r1_bio->master_bio = bio;
1447 		r1_bio->sectors = max_sectors;
1448 	}
1449 
1450 	atomic_set(&r1_bio->remaining, 1);
1451 	atomic_set(&r1_bio->behind_remaining, 0);
1452 
1453 	first_clone = 1;
1454 
1455 	for (i = 0; i < disks; i++) {
1456 		struct bio *mbio = NULL;
1457 		if (!r1_bio->bios[i])
1458 			continue;
1459 
1460 
1461 		if (first_clone) {
1462 			/* do behind I/O ?
1463 			 * Not if there are too many, or cannot
1464 			 * allocate memory, or a reader on WriteMostly
1465 			 * is waiting for behind writes to flush */
1466 			if (bitmap &&
1467 			    (atomic_read(&bitmap->behind_writes)
1468 			     < mddev->bitmap_info.max_write_behind) &&
1469 			    !waitqueue_active(&bitmap->behind_wait)) {
1470 				alloc_behind_master_bio(r1_bio, bio);
1471 			}
1472 
1473 			md_bitmap_startwrite(bitmap, r1_bio->sector, r1_bio->sectors,
1474 					     test_bit(R1BIO_BehindIO, &r1_bio->state));
1475 			first_clone = 0;
1476 		}
1477 
1478 		if (r1_bio->behind_master_bio)
1479 			mbio = bio_clone_fast(r1_bio->behind_master_bio,
1480 					      GFP_NOIO, &mddev->bio_set);
1481 		else
1482 			mbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set);
1483 
1484 		if (r1_bio->behind_master_bio) {
1485 			if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1486 				atomic_inc(&r1_bio->behind_remaining);
1487 		}
1488 
1489 		r1_bio->bios[i] = mbio;
1490 
1491 		mbio->bi_iter.bi_sector	= (r1_bio->sector +
1492 				   conf->mirrors[i].rdev->data_offset);
1493 		bio_set_dev(mbio, conf->mirrors[i].rdev->bdev);
1494 		mbio->bi_end_io	= raid1_end_write_request;
1495 		mbio->bi_opf = bio_op(bio) | (bio->bi_opf & (REQ_SYNC | REQ_FUA));
1496 		if (test_bit(FailFast, &conf->mirrors[i].rdev->flags) &&
1497 		    !test_bit(WriteMostly, &conf->mirrors[i].rdev->flags) &&
1498 		    conf->raid_disks - mddev->degraded > 1)
1499 			mbio->bi_opf |= MD_FAILFAST;
1500 		mbio->bi_private = r1_bio;
1501 
1502 		atomic_inc(&r1_bio->remaining);
1503 
1504 		if (mddev->gendisk)
1505 			trace_block_bio_remap(mbio->bi_disk->queue,
1506 					      mbio, disk_devt(mddev->gendisk),
1507 					      r1_bio->sector);
1508 		/* flush_pending_writes() needs access to the rdev so...*/
1509 		mbio->bi_disk = (void *)conf->mirrors[i].rdev;
1510 
1511 		cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1512 		if (cb)
1513 			plug = container_of(cb, struct raid1_plug_cb, cb);
1514 		else
1515 			plug = NULL;
1516 		if (plug) {
1517 			bio_list_add(&plug->pending, mbio);
1518 			plug->pending_cnt++;
1519 		} else {
1520 			spin_lock_irqsave(&conf->device_lock, flags);
1521 			bio_list_add(&conf->pending_bio_list, mbio);
1522 			conf->pending_count++;
1523 			spin_unlock_irqrestore(&conf->device_lock, flags);
1524 			md_wakeup_thread(mddev->thread);
1525 		}
1526 	}
1527 
1528 	r1_bio_write_done(r1_bio);
1529 
1530 	/* In case raid1d snuck in to freeze_array */
1531 	wake_up(&conf->wait_barrier);
1532 }
1533 
1534 static bool raid1_make_request(struct mddev *mddev, struct bio *bio)
1535 {
1536 	sector_t sectors;
1537 
1538 	if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1539 		md_flush_request(mddev, bio);
1540 		return true;
1541 	}
1542 
1543 	/*
1544 	 * There is a limit to the maximum size, but
1545 	 * the read/write handler might find a lower limit
1546 	 * due to bad blocks.  To avoid multiple splits,
1547 	 * we pass the maximum number of sectors down
1548 	 * and let the lower level perform the split.
1549 	 */
1550 	sectors = align_to_barrier_unit_end(
1551 		bio->bi_iter.bi_sector, bio_sectors(bio));
1552 
1553 	if (bio_data_dir(bio) == READ)
1554 		raid1_read_request(mddev, bio, sectors, NULL);
1555 	else {
1556 		if (!md_write_start(mddev,bio))
1557 			return false;
1558 		raid1_write_request(mddev, bio, sectors);
1559 	}
1560 	return true;
1561 }
1562 
1563 static void raid1_status(struct seq_file *seq, struct mddev *mddev)
1564 {
1565 	struct r1conf *conf = mddev->private;
1566 	int i;
1567 
1568 	seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1569 		   conf->raid_disks - mddev->degraded);
1570 	rcu_read_lock();
1571 	for (i = 0; i < conf->raid_disks; i++) {
1572 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1573 		seq_printf(seq, "%s",
1574 			   rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1575 	}
1576 	rcu_read_unlock();
1577 	seq_printf(seq, "]");
1578 }
1579 
1580 static void raid1_error(struct mddev *mddev, struct md_rdev *rdev)
1581 {
1582 	char b[BDEVNAME_SIZE];
1583 	struct r1conf *conf = mddev->private;
1584 	unsigned long flags;
1585 
1586 	/*
1587 	 * If it is not operational, then we have already marked it as dead
1588 	 * else if it is the last working disks, ignore the error, let the
1589 	 * next level up know.
1590 	 * else mark the drive as failed
1591 	 */
1592 	spin_lock_irqsave(&conf->device_lock, flags);
1593 	if (test_bit(In_sync, &rdev->flags)
1594 	    && (conf->raid_disks - mddev->degraded) == 1) {
1595 		/*
1596 		 * Don't fail the drive, act as though we were just a
1597 		 * normal single drive.
1598 		 * However don't try a recovery from this drive as
1599 		 * it is very likely to fail.
1600 		 */
1601 		conf->recovery_disabled = mddev->recovery_disabled;
1602 		spin_unlock_irqrestore(&conf->device_lock, flags);
1603 		return;
1604 	}
1605 	set_bit(Blocked, &rdev->flags);
1606 	if (test_and_clear_bit(In_sync, &rdev->flags))
1607 		mddev->degraded++;
1608 	set_bit(Faulty, &rdev->flags);
1609 	spin_unlock_irqrestore(&conf->device_lock, flags);
1610 	/*
1611 	 * if recovery is running, make sure it aborts.
1612 	 */
1613 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1614 	set_mask_bits(&mddev->sb_flags, 0,
1615 		      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1616 	pr_crit("md/raid1:%s: Disk failure on %s, disabling device.\n"
1617 		"md/raid1:%s: Operation continuing on %d devices.\n",
1618 		mdname(mddev), bdevname(rdev->bdev, b),
1619 		mdname(mddev), conf->raid_disks - mddev->degraded);
1620 }
1621 
1622 static void print_conf(struct r1conf *conf)
1623 {
1624 	int i;
1625 
1626 	pr_debug("RAID1 conf printout:\n");
1627 	if (!conf) {
1628 		pr_debug("(!conf)\n");
1629 		return;
1630 	}
1631 	pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1632 		 conf->raid_disks);
1633 
1634 	rcu_read_lock();
1635 	for (i = 0; i < conf->raid_disks; i++) {
1636 		char b[BDEVNAME_SIZE];
1637 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1638 		if (rdev)
1639 			pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
1640 				 i, !test_bit(In_sync, &rdev->flags),
1641 				 !test_bit(Faulty, &rdev->flags),
1642 				 bdevname(rdev->bdev,b));
1643 	}
1644 	rcu_read_unlock();
1645 }
1646 
1647 static void close_sync(struct r1conf *conf)
1648 {
1649 	int idx;
1650 
1651 	for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++) {
1652 		_wait_barrier(conf, idx);
1653 		_allow_barrier(conf, idx);
1654 	}
1655 
1656 	mempool_exit(&conf->r1buf_pool);
1657 }
1658 
1659 static int raid1_spare_active(struct mddev *mddev)
1660 {
1661 	int i;
1662 	struct r1conf *conf = mddev->private;
1663 	int count = 0;
1664 	unsigned long flags;
1665 
1666 	/*
1667 	 * Find all failed disks within the RAID1 configuration
1668 	 * and mark them readable.
1669 	 * Called under mddev lock, so rcu protection not needed.
1670 	 * device_lock used to avoid races with raid1_end_read_request
1671 	 * which expects 'In_sync' flags and ->degraded to be consistent.
1672 	 */
1673 	spin_lock_irqsave(&conf->device_lock, flags);
1674 	for (i = 0; i < conf->raid_disks; i++) {
1675 		struct md_rdev *rdev = conf->mirrors[i].rdev;
1676 		struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1677 		if (repl
1678 		    && !test_bit(Candidate, &repl->flags)
1679 		    && repl->recovery_offset == MaxSector
1680 		    && !test_bit(Faulty, &repl->flags)
1681 		    && !test_and_set_bit(In_sync, &repl->flags)) {
1682 			/* replacement has just become active */
1683 			if (!rdev ||
1684 			    !test_and_clear_bit(In_sync, &rdev->flags))
1685 				count++;
1686 			if (rdev) {
1687 				/* Replaced device not technically
1688 				 * faulty, but we need to be sure
1689 				 * it gets removed and never re-added
1690 				 */
1691 				set_bit(Faulty, &rdev->flags);
1692 				sysfs_notify_dirent_safe(
1693 					rdev->sysfs_state);
1694 			}
1695 		}
1696 		if (rdev
1697 		    && rdev->recovery_offset == MaxSector
1698 		    && !test_bit(Faulty, &rdev->flags)
1699 		    && !test_and_set_bit(In_sync, &rdev->flags)) {
1700 			count++;
1701 			sysfs_notify_dirent_safe(rdev->sysfs_state);
1702 		}
1703 	}
1704 	mddev->degraded -= count;
1705 	spin_unlock_irqrestore(&conf->device_lock, flags);
1706 
1707 	print_conf(conf);
1708 	return count;
1709 }
1710 
1711 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1712 {
1713 	struct r1conf *conf = mddev->private;
1714 	int err = -EEXIST;
1715 	int mirror = 0;
1716 	struct raid1_info *p;
1717 	int first = 0;
1718 	int last = conf->raid_disks - 1;
1719 
1720 	if (mddev->recovery_disabled == conf->recovery_disabled)
1721 		return -EBUSY;
1722 
1723 	if (md_integrity_add_rdev(rdev, mddev))
1724 		return -ENXIO;
1725 
1726 	if (rdev->raid_disk >= 0)
1727 		first = last = rdev->raid_disk;
1728 
1729 	/*
1730 	 * find the disk ... but prefer rdev->saved_raid_disk
1731 	 * if possible.
1732 	 */
1733 	if (rdev->saved_raid_disk >= 0 &&
1734 	    rdev->saved_raid_disk >= first &&
1735 	    rdev->saved_raid_disk < conf->raid_disks &&
1736 	    conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1737 		first = last = rdev->saved_raid_disk;
1738 
1739 	for (mirror = first; mirror <= last; mirror++) {
1740 		p = conf->mirrors+mirror;
1741 		if (!p->rdev) {
1742 
1743 			if (mddev->gendisk)
1744 				disk_stack_limits(mddev->gendisk, rdev->bdev,
1745 						  rdev->data_offset << 9);
1746 
1747 			p->head_position = 0;
1748 			rdev->raid_disk = mirror;
1749 			err = 0;
1750 			/* As all devices are equivalent, we don't need a full recovery
1751 			 * if this was recently any drive of the array
1752 			 */
1753 			if (rdev->saved_raid_disk < 0)
1754 				conf->fullsync = 1;
1755 			rcu_assign_pointer(p->rdev, rdev);
1756 			break;
1757 		}
1758 		if (test_bit(WantReplacement, &p->rdev->flags) &&
1759 		    p[conf->raid_disks].rdev == NULL) {
1760 			/* Add this device as a replacement */
1761 			clear_bit(In_sync, &rdev->flags);
1762 			set_bit(Replacement, &rdev->flags);
1763 			rdev->raid_disk = mirror;
1764 			err = 0;
1765 			conf->fullsync = 1;
1766 			rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1767 			break;
1768 		}
1769 	}
1770 	if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1771 		blk_queue_flag_set(QUEUE_FLAG_DISCARD, mddev->queue);
1772 	print_conf(conf);
1773 	return err;
1774 }
1775 
1776 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1777 {
1778 	struct r1conf *conf = mddev->private;
1779 	int err = 0;
1780 	int number = rdev->raid_disk;
1781 	struct raid1_info *p = conf->mirrors + number;
1782 
1783 	if (rdev != p->rdev)
1784 		p = conf->mirrors + conf->raid_disks + number;
1785 
1786 	print_conf(conf);
1787 	if (rdev == p->rdev) {
1788 		if (test_bit(In_sync, &rdev->flags) ||
1789 		    atomic_read(&rdev->nr_pending)) {
1790 			err = -EBUSY;
1791 			goto abort;
1792 		}
1793 		/* Only remove non-faulty devices if recovery
1794 		 * is not possible.
1795 		 */
1796 		if (!test_bit(Faulty, &rdev->flags) &&
1797 		    mddev->recovery_disabled != conf->recovery_disabled &&
1798 		    mddev->degraded < conf->raid_disks) {
1799 			err = -EBUSY;
1800 			goto abort;
1801 		}
1802 		p->rdev = NULL;
1803 		if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1804 			synchronize_rcu();
1805 			if (atomic_read(&rdev->nr_pending)) {
1806 				/* lost the race, try later */
1807 				err = -EBUSY;
1808 				p->rdev = rdev;
1809 				goto abort;
1810 			}
1811 		}
1812 		if (conf->mirrors[conf->raid_disks + number].rdev) {
1813 			/* We just removed a device that is being replaced.
1814 			 * Move down the replacement.  We drain all IO before
1815 			 * doing this to avoid confusion.
1816 			 */
1817 			struct md_rdev *repl =
1818 				conf->mirrors[conf->raid_disks + number].rdev;
1819 			freeze_array(conf, 0);
1820 			if (atomic_read(&repl->nr_pending)) {
1821 				/* It means that some queued IO of retry_list
1822 				 * hold repl. Thus, we cannot set replacement
1823 				 * as NULL, avoiding rdev NULL pointer
1824 				 * dereference in sync_request_write and
1825 				 * handle_write_finished.
1826 				 */
1827 				err = -EBUSY;
1828 				unfreeze_array(conf);
1829 				goto abort;
1830 			}
1831 			clear_bit(Replacement, &repl->flags);
1832 			p->rdev = repl;
1833 			conf->mirrors[conf->raid_disks + number].rdev = NULL;
1834 			unfreeze_array(conf);
1835 		}
1836 
1837 		clear_bit(WantReplacement, &rdev->flags);
1838 		err = md_integrity_register(mddev);
1839 	}
1840 abort:
1841 
1842 	print_conf(conf);
1843 	return err;
1844 }
1845 
1846 static void end_sync_read(struct bio *bio)
1847 {
1848 	struct r1bio *r1_bio = get_resync_r1bio(bio);
1849 
1850 	update_head_pos(r1_bio->read_disk, r1_bio);
1851 
1852 	/*
1853 	 * we have read a block, now it needs to be re-written,
1854 	 * or re-read if the read failed.
1855 	 * We don't do much here, just schedule handling by raid1d
1856 	 */
1857 	if (!bio->bi_status)
1858 		set_bit(R1BIO_Uptodate, &r1_bio->state);
1859 
1860 	if (atomic_dec_and_test(&r1_bio->remaining))
1861 		reschedule_retry(r1_bio);
1862 }
1863 
1864 static void abort_sync_write(struct mddev *mddev, struct r1bio *r1_bio)
1865 {
1866 	sector_t sync_blocks = 0;
1867 	sector_t s = r1_bio->sector;
1868 	long sectors_to_go = r1_bio->sectors;
1869 
1870 	/* make sure these bits don't get cleared. */
1871 	do {
1872 		md_bitmap_end_sync(mddev->bitmap, s, &sync_blocks, 1);
1873 		s += sync_blocks;
1874 		sectors_to_go -= sync_blocks;
1875 	} while (sectors_to_go > 0);
1876 }
1877 
1878 static void end_sync_write(struct bio *bio)
1879 {
1880 	int uptodate = !bio->bi_status;
1881 	struct r1bio *r1_bio = get_resync_r1bio(bio);
1882 	struct mddev *mddev = r1_bio->mddev;
1883 	struct r1conf *conf = mddev->private;
1884 	sector_t first_bad;
1885 	int bad_sectors;
1886 	struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev;
1887 
1888 	if (!uptodate) {
1889 		abort_sync_write(mddev, r1_bio);
1890 		set_bit(WriteErrorSeen, &rdev->flags);
1891 		if (!test_and_set_bit(WantReplacement, &rdev->flags))
1892 			set_bit(MD_RECOVERY_NEEDED, &
1893 				mddev->recovery);
1894 		set_bit(R1BIO_WriteError, &r1_bio->state);
1895 	} else if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
1896 			       &first_bad, &bad_sectors) &&
1897 		   !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1898 				r1_bio->sector,
1899 				r1_bio->sectors,
1900 				&first_bad, &bad_sectors)
1901 		)
1902 		set_bit(R1BIO_MadeGood, &r1_bio->state);
1903 
1904 	if (atomic_dec_and_test(&r1_bio->remaining)) {
1905 		int s = r1_bio->sectors;
1906 		if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1907 		    test_bit(R1BIO_WriteError, &r1_bio->state))
1908 			reschedule_retry(r1_bio);
1909 		else {
1910 			put_buf(r1_bio);
1911 			md_done_sync(mddev, s, uptodate);
1912 		}
1913 	}
1914 }
1915 
1916 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1917 			    int sectors, struct page *page, int rw)
1918 {
1919 	if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
1920 		/* success */
1921 		return 1;
1922 	if (rw == WRITE) {
1923 		set_bit(WriteErrorSeen, &rdev->flags);
1924 		if (!test_and_set_bit(WantReplacement,
1925 				      &rdev->flags))
1926 			set_bit(MD_RECOVERY_NEEDED, &
1927 				rdev->mddev->recovery);
1928 	}
1929 	/* need to record an error - either for the block or the device */
1930 	if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1931 		md_error(rdev->mddev, rdev);
1932 	return 0;
1933 }
1934 
1935 static int fix_sync_read_error(struct r1bio *r1_bio)
1936 {
1937 	/* Try some synchronous reads of other devices to get
1938 	 * good data, much like with normal read errors.  Only
1939 	 * read into the pages we already have so we don't
1940 	 * need to re-issue the read request.
1941 	 * We don't need to freeze the array, because being in an
1942 	 * active sync request, there is no normal IO, and
1943 	 * no overlapping syncs.
1944 	 * We don't need to check is_badblock() again as we
1945 	 * made sure that anything with a bad block in range
1946 	 * will have bi_end_io clear.
1947 	 */
1948 	struct mddev *mddev = r1_bio->mddev;
1949 	struct r1conf *conf = mddev->private;
1950 	struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1951 	struct page **pages = get_resync_pages(bio)->pages;
1952 	sector_t sect = r1_bio->sector;
1953 	int sectors = r1_bio->sectors;
1954 	int idx = 0;
1955 	struct md_rdev *rdev;
1956 
1957 	rdev = conf->mirrors[r1_bio->read_disk].rdev;
1958 	if (test_bit(FailFast, &rdev->flags)) {
1959 		/* Don't try recovering from here - just fail it
1960 		 * ... unless it is the last working device of course */
1961 		md_error(mddev, rdev);
1962 		if (test_bit(Faulty, &rdev->flags))
1963 			/* Don't try to read from here, but make sure
1964 			 * put_buf does it's thing
1965 			 */
1966 			bio->bi_end_io = end_sync_write;
1967 	}
1968 
1969 	while(sectors) {
1970 		int s = sectors;
1971 		int d = r1_bio->read_disk;
1972 		int success = 0;
1973 		int start;
1974 
1975 		if (s > (PAGE_SIZE>>9))
1976 			s = PAGE_SIZE >> 9;
1977 		do {
1978 			if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1979 				/* No rcu protection needed here devices
1980 				 * can only be removed when no resync is
1981 				 * active, and resync is currently active
1982 				 */
1983 				rdev = conf->mirrors[d].rdev;
1984 				if (sync_page_io(rdev, sect, s<<9,
1985 						 pages[idx],
1986 						 REQ_OP_READ, 0, false)) {
1987 					success = 1;
1988 					break;
1989 				}
1990 			}
1991 			d++;
1992 			if (d == conf->raid_disks * 2)
1993 				d = 0;
1994 		} while (!success && d != r1_bio->read_disk);
1995 
1996 		if (!success) {
1997 			char b[BDEVNAME_SIZE];
1998 			int abort = 0;
1999 			/* Cannot read from anywhere, this block is lost.
2000 			 * Record a bad block on each device.  If that doesn't
2001 			 * work just disable and interrupt the recovery.
2002 			 * Don't fail devices as that won't really help.
2003 			 */
2004 			pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
2005 					    mdname(mddev), bio_devname(bio, b),
2006 					    (unsigned long long)r1_bio->sector);
2007 			for (d = 0; d < conf->raid_disks * 2; d++) {
2008 				rdev = conf->mirrors[d].rdev;
2009 				if (!rdev || test_bit(Faulty, &rdev->flags))
2010 					continue;
2011 				if (!rdev_set_badblocks(rdev, sect, s, 0))
2012 					abort = 1;
2013 			}
2014 			if (abort) {
2015 				conf->recovery_disabled =
2016 					mddev->recovery_disabled;
2017 				set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2018 				md_done_sync(mddev, r1_bio->sectors, 0);
2019 				put_buf(r1_bio);
2020 				return 0;
2021 			}
2022 			/* Try next page */
2023 			sectors -= s;
2024 			sect += s;
2025 			idx++;
2026 			continue;
2027 		}
2028 
2029 		start = d;
2030 		/* write it back and re-read */
2031 		while (d != r1_bio->read_disk) {
2032 			if (d == 0)
2033 				d = conf->raid_disks * 2;
2034 			d--;
2035 			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2036 				continue;
2037 			rdev = conf->mirrors[d].rdev;
2038 			if (r1_sync_page_io(rdev, sect, s,
2039 					    pages[idx],
2040 					    WRITE) == 0) {
2041 				r1_bio->bios[d]->bi_end_io = NULL;
2042 				rdev_dec_pending(rdev, mddev);
2043 			}
2044 		}
2045 		d = start;
2046 		while (d != r1_bio->read_disk) {
2047 			if (d == 0)
2048 				d = conf->raid_disks * 2;
2049 			d--;
2050 			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2051 				continue;
2052 			rdev = conf->mirrors[d].rdev;
2053 			if (r1_sync_page_io(rdev, sect, s,
2054 					    pages[idx],
2055 					    READ) != 0)
2056 				atomic_add(s, &rdev->corrected_errors);
2057 		}
2058 		sectors -= s;
2059 		sect += s;
2060 		idx ++;
2061 	}
2062 	set_bit(R1BIO_Uptodate, &r1_bio->state);
2063 	bio->bi_status = 0;
2064 	return 1;
2065 }
2066 
2067 static void process_checks(struct r1bio *r1_bio)
2068 {
2069 	/* We have read all readable devices.  If we haven't
2070 	 * got the block, then there is no hope left.
2071 	 * If we have, then we want to do a comparison
2072 	 * and skip the write if everything is the same.
2073 	 * If any blocks failed to read, then we need to
2074 	 * attempt an over-write
2075 	 */
2076 	struct mddev *mddev = r1_bio->mddev;
2077 	struct r1conf *conf = mddev->private;
2078 	int primary;
2079 	int i;
2080 	int vcnt;
2081 
2082 	/* Fix variable parts of all bios */
2083 	vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
2084 	for (i = 0; i < conf->raid_disks * 2; i++) {
2085 		blk_status_t status;
2086 		struct bio *b = r1_bio->bios[i];
2087 		struct resync_pages *rp = get_resync_pages(b);
2088 		if (b->bi_end_io != end_sync_read)
2089 			continue;
2090 		/* fixup the bio for reuse, but preserve errno */
2091 		status = b->bi_status;
2092 		bio_reset(b);
2093 		b->bi_status = status;
2094 		b->bi_iter.bi_sector = r1_bio->sector +
2095 			conf->mirrors[i].rdev->data_offset;
2096 		bio_set_dev(b, conf->mirrors[i].rdev->bdev);
2097 		b->bi_end_io = end_sync_read;
2098 		rp->raid_bio = r1_bio;
2099 		b->bi_private = rp;
2100 
2101 		/* initialize bvec table again */
2102 		md_bio_reset_resync_pages(b, rp, r1_bio->sectors << 9);
2103 	}
2104 	for (primary = 0; primary < conf->raid_disks * 2; primary++)
2105 		if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
2106 		    !r1_bio->bios[primary]->bi_status) {
2107 			r1_bio->bios[primary]->bi_end_io = NULL;
2108 			rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
2109 			break;
2110 		}
2111 	r1_bio->read_disk = primary;
2112 	for (i = 0; i < conf->raid_disks * 2; i++) {
2113 		int j;
2114 		struct bio *pbio = r1_bio->bios[primary];
2115 		struct bio *sbio = r1_bio->bios[i];
2116 		blk_status_t status = sbio->bi_status;
2117 		struct page **ppages = get_resync_pages(pbio)->pages;
2118 		struct page **spages = get_resync_pages(sbio)->pages;
2119 		struct bio_vec *bi;
2120 		int page_len[RESYNC_PAGES] = { 0 };
2121 		struct bvec_iter_all iter_all;
2122 
2123 		if (sbio->bi_end_io != end_sync_read)
2124 			continue;
2125 		/* Now we can 'fixup' the error value */
2126 		sbio->bi_status = 0;
2127 
2128 		bio_for_each_segment_all(bi, sbio, j, iter_all)
2129 			page_len[j] = bi->bv_len;
2130 
2131 		if (!status) {
2132 			for (j = vcnt; j-- ; ) {
2133 				if (memcmp(page_address(ppages[j]),
2134 					   page_address(spages[j]),
2135 					   page_len[j]))
2136 					break;
2137 			}
2138 		} else
2139 			j = 0;
2140 		if (j >= 0)
2141 			atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
2142 		if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
2143 			      && !status)) {
2144 			/* No need to write to this device. */
2145 			sbio->bi_end_io = NULL;
2146 			rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2147 			continue;
2148 		}
2149 
2150 		bio_copy_data(sbio, pbio);
2151 	}
2152 }
2153 
2154 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
2155 {
2156 	struct r1conf *conf = mddev->private;
2157 	int i;
2158 	int disks = conf->raid_disks * 2;
2159 	struct bio *wbio;
2160 
2161 	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2162 		/* ouch - failed to read all of that. */
2163 		if (!fix_sync_read_error(r1_bio))
2164 			return;
2165 
2166 	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2167 		process_checks(r1_bio);
2168 
2169 	/*
2170 	 * schedule writes
2171 	 */
2172 	atomic_set(&r1_bio->remaining, 1);
2173 	for (i = 0; i < disks ; i++) {
2174 		wbio = r1_bio->bios[i];
2175 		if (wbio->bi_end_io == NULL ||
2176 		    (wbio->bi_end_io == end_sync_read &&
2177 		     (i == r1_bio->read_disk ||
2178 		      !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2179 			continue;
2180 		if (test_bit(Faulty, &conf->mirrors[i].rdev->flags)) {
2181 			abort_sync_write(mddev, r1_bio);
2182 			continue;
2183 		}
2184 
2185 		bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2186 		if (test_bit(FailFast, &conf->mirrors[i].rdev->flags))
2187 			wbio->bi_opf |= MD_FAILFAST;
2188 
2189 		wbio->bi_end_io = end_sync_write;
2190 		atomic_inc(&r1_bio->remaining);
2191 		md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
2192 
2193 		generic_make_request(wbio);
2194 	}
2195 
2196 	if (atomic_dec_and_test(&r1_bio->remaining)) {
2197 		/* if we're here, all write(s) have completed, so clean up */
2198 		int s = r1_bio->sectors;
2199 		if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2200 		    test_bit(R1BIO_WriteError, &r1_bio->state))
2201 			reschedule_retry(r1_bio);
2202 		else {
2203 			put_buf(r1_bio);
2204 			md_done_sync(mddev, s, 1);
2205 		}
2206 	}
2207 }
2208 
2209 /*
2210  * This is a kernel thread which:
2211  *
2212  *	1.	Retries failed read operations on working mirrors.
2213  *	2.	Updates the raid superblock when problems encounter.
2214  *	3.	Performs writes following reads for array synchronising.
2215  */
2216 
2217 static void fix_read_error(struct r1conf *conf, int read_disk,
2218 			   sector_t sect, int sectors)
2219 {
2220 	struct mddev *mddev = conf->mddev;
2221 	while(sectors) {
2222 		int s = sectors;
2223 		int d = read_disk;
2224 		int success = 0;
2225 		int start;
2226 		struct md_rdev *rdev;
2227 
2228 		if (s > (PAGE_SIZE>>9))
2229 			s = PAGE_SIZE >> 9;
2230 
2231 		do {
2232 			sector_t first_bad;
2233 			int bad_sectors;
2234 
2235 			rcu_read_lock();
2236 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2237 			if (rdev &&
2238 			    (test_bit(In_sync, &rdev->flags) ||
2239 			     (!test_bit(Faulty, &rdev->flags) &&
2240 			      rdev->recovery_offset >= sect + s)) &&
2241 			    is_badblock(rdev, sect, s,
2242 					&first_bad, &bad_sectors) == 0) {
2243 				atomic_inc(&rdev->nr_pending);
2244 				rcu_read_unlock();
2245 				if (sync_page_io(rdev, sect, s<<9,
2246 					 conf->tmppage, REQ_OP_READ, 0, false))
2247 					success = 1;
2248 				rdev_dec_pending(rdev, mddev);
2249 				if (success)
2250 					break;
2251 			} else
2252 				rcu_read_unlock();
2253 			d++;
2254 			if (d == conf->raid_disks * 2)
2255 				d = 0;
2256 		} while (!success && d != read_disk);
2257 
2258 		if (!success) {
2259 			/* Cannot read from anywhere - mark it bad */
2260 			struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2261 			if (!rdev_set_badblocks(rdev, sect, s, 0))
2262 				md_error(mddev, rdev);
2263 			break;
2264 		}
2265 		/* write it back and re-read */
2266 		start = d;
2267 		while (d != read_disk) {
2268 			if (d==0)
2269 				d = conf->raid_disks * 2;
2270 			d--;
2271 			rcu_read_lock();
2272 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2273 			if (rdev &&
2274 			    !test_bit(Faulty, &rdev->flags)) {
2275 				atomic_inc(&rdev->nr_pending);
2276 				rcu_read_unlock();
2277 				r1_sync_page_io(rdev, sect, s,
2278 						conf->tmppage, WRITE);
2279 				rdev_dec_pending(rdev, mddev);
2280 			} else
2281 				rcu_read_unlock();
2282 		}
2283 		d = start;
2284 		while (d != read_disk) {
2285 			char b[BDEVNAME_SIZE];
2286 			if (d==0)
2287 				d = conf->raid_disks * 2;
2288 			d--;
2289 			rcu_read_lock();
2290 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2291 			if (rdev &&
2292 			    !test_bit(Faulty, &rdev->flags)) {
2293 				atomic_inc(&rdev->nr_pending);
2294 				rcu_read_unlock();
2295 				if (r1_sync_page_io(rdev, sect, s,
2296 						    conf->tmppage, READ)) {
2297 					atomic_add(s, &rdev->corrected_errors);
2298 					pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %s)\n",
2299 						mdname(mddev), s,
2300 						(unsigned long long)(sect +
2301 								     rdev->data_offset),
2302 						bdevname(rdev->bdev, b));
2303 				}
2304 				rdev_dec_pending(rdev, mddev);
2305 			} else
2306 				rcu_read_unlock();
2307 		}
2308 		sectors -= s;
2309 		sect += s;
2310 	}
2311 }
2312 
2313 static int narrow_write_error(struct r1bio *r1_bio, int i)
2314 {
2315 	struct mddev *mddev = r1_bio->mddev;
2316 	struct r1conf *conf = mddev->private;
2317 	struct md_rdev *rdev = conf->mirrors[i].rdev;
2318 
2319 	/* bio has the data to be written to device 'i' where
2320 	 * we just recently had a write error.
2321 	 * We repeatedly clone the bio and trim down to one block,
2322 	 * then try the write.  Where the write fails we record
2323 	 * a bad block.
2324 	 * It is conceivable that the bio doesn't exactly align with
2325 	 * blocks.  We must handle this somehow.
2326 	 *
2327 	 * We currently own a reference on the rdev.
2328 	 */
2329 
2330 	int block_sectors;
2331 	sector_t sector;
2332 	int sectors;
2333 	int sect_to_write = r1_bio->sectors;
2334 	int ok = 1;
2335 
2336 	if (rdev->badblocks.shift < 0)
2337 		return 0;
2338 
2339 	block_sectors = roundup(1 << rdev->badblocks.shift,
2340 				bdev_logical_block_size(rdev->bdev) >> 9);
2341 	sector = r1_bio->sector;
2342 	sectors = ((sector + block_sectors)
2343 		   & ~(sector_t)(block_sectors - 1))
2344 		- sector;
2345 
2346 	while (sect_to_write) {
2347 		struct bio *wbio;
2348 		if (sectors > sect_to_write)
2349 			sectors = sect_to_write;
2350 		/* Write at 'sector' for 'sectors'*/
2351 
2352 		if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2353 			wbio = bio_clone_fast(r1_bio->behind_master_bio,
2354 					      GFP_NOIO,
2355 					      &mddev->bio_set);
2356 		} else {
2357 			wbio = bio_clone_fast(r1_bio->master_bio, GFP_NOIO,
2358 					      &mddev->bio_set);
2359 		}
2360 
2361 		bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2362 		wbio->bi_iter.bi_sector = r1_bio->sector;
2363 		wbio->bi_iter.bi_size = r1_bio->sectors << 9;
2364 
2365 		bio_trim(wbio, sector - r1_bio->sector, sectors);
2366 		wbio->bi_iter.bi_sector += rdev->data_offset;
2367 		bio_set_dev(wbio, rdev->bdev);
2368 
2369 		if (submit_bio_wait(wbio) < 0)
2370 			/* failure! */
2371 			ok = rdev_set_badblocks(rdev, sector,
2372 						sectors, 0)
2373 				&& ok;
2374 
2375 		bio_put(wbio);
2376 		sect_to_write -= sectors;
2377 		sector += sectors;
2378 		sectors = block_sectors;
2379 	}
2380 	return ok;
2381 }
2382 
2383 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2384 {
2385 	int m;
2386 	int s = r1_bio->sectors;
2387 	for (m = 0; m < conf->raid_disks * 2 ; m++) {
2388 		struct md_rdev *rdev = conf->mirrors[m].rdev;
2389 		struct bio *bio = r1_bio->bios[m];
2390 		if (bio->bi_end_io == NULL)
2391 			continue;
2392 		if (!bio->bi_status &&
2393 		    test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2394 			rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2395 		}
2396 		if (bio->bi_status &&
2397 		    test_bit(R1BIO_WriteError, &r1_bio->state)) {
2398 			if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2399 				md_error(conf->mddev, rdev);
2400 		}
2401 	}
2402 	put_buf(r1_bio);
2403 	md_done_sync(conf->mddev, s, 1);
2404 }
2405 
2406 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2407 {
2408 	int m, idx;
2409 	bool fail = false;
2410 
2411 	for (m = 0; m < conf->raid_disks * 2 ; m++)
2412 		if (r1_bio->bios[m] == IO_MADE_GOOD) {
2413 			struct md_rdev *rdev = conf->mirrors[m].rdev;
2414 			rdev_clear_badblocks(rdev,
2415 					     r1_bio->sector,
2416 					     r1_bio->sectors, 0);
2417 			rdev_dec_pending(rdev, conf->mddev);
2418 		} else if (r1_bio->bios[m] != NULL) {
2419 			/* This drive got a write error.  We need to
2420 			 * narrow down and record precise write
2421 			 * errors.
2422 			 */
2423 			fail = true;
2424 			if (!narrow_write_error(r1_bio, m)) {
2425 				md_error(conf->mddev,
2426 					 conf->mirrors[m].rdev);
2427 				/* an I/O failed, we can't clear the bitmap */
2428 				set_bit(R1BIO_Degraded, &r1_bio->state);
2429 			}
2430 			rdev_dec_pending(conf->mirrors[m].rdev,
2431 					 conf->mddev);
2432 		}
2433 	if (fail) {
2434 		spin_lock_irq(&conf->device_lock);
2435 		list_add(&r1_bio->retry_list, &conf->bio_end_io_list);
2436 		idx = sector_to_idx(r1_bio->sector);
2437 		atomic_inc(&conf->nr_queued[idx]);
2438 		spin_unlock_irq(&conf->device_lock);
2439 		/*
2440 		 * In case freeze_array() is waiting for condition
2441 		 * get_unqueued_pending() == extra to be true.
2442 		 */
2443 		wake_up(&conf->wait_barrier);
2444 		md_wakeup_thread(conf->mddev->thread);
2445 	} else {
2446 		if (test_bit(R1BIO_WriteError, &r1_bio->state))
2447 			close_write(r1_bio);
2448 		raid_end_bio_io(r1_bio);
2449 	}
2450 }
2451 
2452 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2453 {
2454 	struct mddev *mddev = conf->mddev;
2455 	struct bio *bio;
2456 	struct md_rdev *rdev;
2457 
2458 	clear_bit(R1BIO_ReadError, &r1_bio->state);
2459 	/* we got a read error. Maybe the drive is bad.  Maybe just
2460 	 * the block and we can fix it.
2461 	 * We freeze all other IO, and try reading the block from
2462 	 * other devices.  When we find one, we re-write
2463 	 * and check it that fixes the read error.
2464 	 * This is all done synchronously while the array is
2465 	 * frozen
2466 	 */
2467 
2468 	bio = r1_bio->bios[r1_bio->read_disk];
2469 	bio_put(bio);
2470 	r1_bio->bios[r1_bio->read_disk] = NULL;
2471 
2472 	rdev = conf->mirrors[r1_bio->read_disk].rdev;
2473 	if (mddev->ro == 0
2474 	    && !test_bit(FailFast, &rdev->flags)) {
2475 		freeze_array(conf, 1);
2476 		fix_read_error(conf, r1_bio->read_disk,
2477 			       r1_bio->sector, r1_bio->sectors);
2478 		unfreeze_array(conf);
2479 	} else if (mddev->ro == 0 && test_bit(FailFast, &rdev->flags)) {
2480 		md_error(mddev, rdev);
2481 	} else {
2482 		r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED;
2483 	}
2484 
2485 	rdev_dec_pending(rdev, conf->mddev);
2486 	allow_barrier(conf, r1_bio->sector);
2487 	bio = r1_bio->master_bio;
2488 
2489 	/* Reuse the old r1_bio so that the IO_BLOCKED settings are preserved */
2490 	r1_bio->state = 0;
2491 	raid1_read_request(mddev, bio, r1_bio->sectors, r1_bio);
2492 }
2493 
2494 static void raid1d(struct md_thread *thread)
2495 {
2496 	struct mddev *mddev = thread->mddev;
2497 	struct r1bio *r1_bio;
2498 	unsigned long flags;
2499 	struct r1conf *conf = mddev->private;
2500 	struct list_head *head = &conf->retry_list;
2501 	struct blk_plug plug;
2502 	int idx;
2503 
2504 	md_check_recovery(mddev);
2505 
2506 	if (!list_empty_careful(&conf->bio_end_io_list) &&
2507 	    !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2508 		LIST_HEAD(tmp);
2509 		spin_lock_irqsave(&conf->device_lock, flags);
2510 		if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
2511 			list_splice_init(&conf->bio_end_io_list, &tmp);
2512 		spin_unlock_irqrestore(&conf->device_lock, flags);
2513 		while (!list_empty(&tmp)) {
2514 			r1_bio = list_first_entry(&tmp, struct r1bio,
2515 						  retry_list);
2516 			list_del(&r1_bio->retry_list);
2517 			idx = sector_to_idx(r1_bio->sector);
2518 			atomic_dec(&conf->nr_queued[idx]);
2519 			if (mddev->degraded)
2520 				set_bit(R1BIO_Degraded, &r1_bio->state);
2521 			if (test_bit(R1BIO_WriteError, &r1_bio->state))
2522 				close_write(r1_bio);
2523 			raid_end_bio_io(r1_bio);
2524 		}
2525 	}
2526 
2527 	blk_start_plug(&plug);
2528 	for (;;) {
2529 
2530 		flush_pending_writes(conf);
2531 
2532 		spin_lock_irqsave(&conf->device_lock, flags);
2533 		if (list_empty(head)) {
2534 			spin_unlock_irqrestore(&conf->device_lock, flags);
2535 			break;
2536 		}
2537 		r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2538 		list_del(head->prev);
2539 		idx = sector_to_idx(r1_bio->sector);
2540 		atomic_dec(&conf->nr_queued[idx]);
2541 		spin_unlock_irqrestore(&conf->device_lock, flags);
2542 
2543 		mddev = r1_bio->mddev;
2544 		conf = mddev->private;
2545 		if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2546 			if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2547 			    test_bit(R1BIO_WriteError, &r1_bio->state))
2548 				handle_sync_write_finished(conf, r1_bio);
2549 			else
2550 				sync_request_write(mddev, r1_bio);
2551 		} else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2552 			   test_bit(R1BIO_WriteError, &r1_bio->state))
2553 			handle_write_finished(conf, r1_bio);
2554 		else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2555 			handle_read_error(conf, r1_bio);
2556 		else
2557 			WARN_ON_ONCE(1);
2558 
2559 		cond_resched();
2560 		if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
2561 			md_check_recovery(mddev);
2562 	}
2563 	blk_finish_plug(&plug);
2564 }
2565 
2566 static int init_resync(struct r1conf *conf)
2567 {
2568 	int buffs;
2569 
2570 	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2571 	BUG_ON(mempool_initialized(&conf->r1buf_pool));
2572 
2573 	return mempool_init(&conf->r1buf_pool, buffs, r1buf_pool_alloc,
2574 			    r1buf_pool_free, conf->poolinfo);
2575 }
2576 
2577 static struct r1bio *raid1_alloc_init_r1buf(struct r1conf *conf)
2578 {
2579 	struct r1bio *r1bio = mempool_alloc(&conf->r1buf_pool, GFP_NOIO);
2580 	struct resync_pages *rps;
2581 	struct bio *bio;
2582 	int i;
2583 
2584 	for (i = conf->poolinfo->raid_disks; i--; ) {
2585 		bio = r1bio->bios[i];
2586 		rps = bio->bi_private;
2587 		bio_reset(bio);
2588 		bio->bi_private = rps;
2589 	}
2590 	r1bio->master_bio = NULL;
2591 	return r1bio;
2592 }
2593 
2594 /*
2595  * perform a "sync" on one "block"
2596  *
2597  * We need to make sure that no normal I/O request - particularly write
2598  * requests - conflict with active sync requests.
2599  *
2600  * This is achieved by tracking pending requests and a 'barrier' concept
2601  * that can be installed to exclude normal IO requests.
2602  */
2603 
2604 static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr,
2605 				   int *skipped)
2606 {
2607 	struct r1conf *conf = mddev->private;
2608 	struct r1bio *r1_bio;
2609 	struct bio *bio;
2610 	sector_t max_sector, nr_sectors;
2611 	int disk = -1;
2612 	int i;
2613 	int wonly = -1;
2614 	int write_targets = 0, read_targets = 0;
2615 	sector_t sync_blocks;
2616 	int still_degraded = 0;
2617 	int good_sectors = RESYNC_SECTORS;
2618 	int min_bad = 0; /* number of sectors that are bad in all devices */
2619 	int idx = sector_to_idx(sector_nr);
2620 	int page_idx = 0;
2621 
2622 	if (!mempool_initialized(&conf->r1buf_pool))
2623 		if (init_resync(conf))
2624 			return 0;
2625 
2626 	max_sector = mddev->dev_sectors;
2627 	if (sector_nr >= max_sector) {
2628 		/* If we aborted, we need to abort the
2629 		 * sync on the 'current' bitmap chunk (there will
2630 		 * only be one in raid1 resync.
2631 		 * We can find the current addess in mddev->curr_resync
2632 		 */
2633 		if (mddev->curr_resync < max_sector) /* aborted */
2634 			md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2635 					   &sync_blocks, 1);
2636 		else /* completed sync */
2637 			conf->fullsync = 0;
2638 
2639 		md_bitmap_close_sync(mddev->bitmap);
2640 		close_sync(conf);
2641 
2642 		if (mddev_is_clustered(mddev)) {
2643 			conf->cluster_sync_low = 0;
2644 			conf->cluster_sync_high = 0;
2645 		}
2646 		return 0;
2647 	}
2648 
2649 	if (mddev->bitmap == NULL &&
2650 	    mddev->recovery_cp == MaxSector &&
2651 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2652 	    conf->fullsync == 0) {
2653 		*skipped = 1;
2654 		return max_sector - sector_nr;
2655 	}
2656 	/* before building a request, check if we can skip these blocks..
2657 	 * This call the bitmap_start_sync doesn't actually record anything
2658 	 */
2659 	if (!md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2660 	    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2661 		/* We can skip this block, and probably several more */
2662 		*skipped = 1;
2663 		return sync_blocks;
2664 	}
2665 
2666 	/*
2667 	 * If there is non-resync activity waiting for a turn, then let it
2668 	 * though before starting on this new sync request.
2669 	 */
2670 	if (atomic_read(&conf->nr_waiting[idx]))
2671 		schedule_timeout_uninterruptible(1);
2672 
2673 	/* we are incrementing sector_nr below. To be safe, we check against
2674 	 * sector_nr + two times RESYNC_SECTORS
2675 	 */
2676 
2677 	md_bitmap_cond_end_sync(mddev->bitmap, sector_nr,
2678 		mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
2679 
2680 
2681 	if (raise_barrier(conf, sector_nr))
2682 		return 0;
2683 
2684 	r1_bio = raid1_alloc_init_r1buf(conf);
2685 
2686 	rcu_read_lock();
2687 	/*
2688 	 * If we get a correctably read error during resync or recovery,
2689 	 * we might want to read from a different device.  So we
2690 	 * flag all drives that could conceivably be read from for READ,
2691 	 * and any others (which will be non-In_sync devices) for WRITE.
2692 	 * If a read fails, we try reading from something else for which READ
2693 	 * is OK.
2694 	 */
2695 
2696 	r1_bio->mddev = mddev;
2697 	r1_bio->sector = sector_nr;
2698 	r1_bio->state = 0;
2699 	set_bit(R1BIO_IsSync, &r1_bio->state);
2700 	/* make sure good_sectors won't go across barrier unit boundary */
2701 	good_sectors = align_to_barrier_unit_end(sector_nr, good_sectors);
2702 
2703 	for (i = 0; i < conf->raid_disks * 2; i++) {
2704 		struct md_rdev *rdev;
2705 		bio = r1_bio->bios[i];
2706 
2707 		rdev = rcu_dereference(conf->mirrors[i].rdev);
2708 		if (rdev == NULL ||
2709 		    test_bit(Faulty, &rdev->flags)) {
2710 			if (i < conf->raid_disks)
2711 				still_degraded = 1;
2712 		} else if (!test_bit(In_sync, &rdev->flags)) {
2713 			bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2714 			bio->bi_end_io = end_sync_write;
2715 			write_targets ++;
2716 		} else {
2717 			/* may need to read from here */
2718 			sector_t first_bad = MaxSector;
2719 			int bad_sectors;
2720 
2721 			if (is_badblock(rdev, sector_nr, good_sectors,
2722 					&first_bad, &bad_sectors)) {
2723 				if (first_bad > sector_nr)
2724 					good_sectors = first_bad - sector_nr;
2725 				else {
2726 					bad_sectors -= (sector_nr - first_bad);
2727 					if (min_bad == 0 ||
2728 					    min_bad > bad_sectors)
2729 						min_bad = bad_sectors;
2730 				}
2731 			}
2732 			if (sector_nr < first_bad) {
2733 				if (test_bit(WriteMostly, &rdev->flags)) {
2734 					if (wonly < 0)
2735 						wonly = i;
2736 				} else {
2737 					if (disk < 0)
2738 						disk = i;
2739 				}
2740 				bio_set_op_attrs(bio, REQ_OP_READ, 0);
2741 				bio->bi_end_io = end_sync_read;
2742 				read_targets++;
2743 			} else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2744 				test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2745 				!test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2746 				/*
2747 				 * The device is suitable for reading (InSync),
2748 				 * but has bad block(s) here. Let's try to correct them,
2749 				 * if we are doing resync or repair. Otherwise, leave
2750 				 * this device alone for this sync request.
2751 				 */
2752 				bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2753 				bio->bi_end_io = end_sync_write;
2754 				write_targets++;
2755 			}
2756 		}
2757 		if (bio->bi_end_io) {
2758 			atomic_inc(&rdev->nr_pending);
2759 			bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
2760 			bio_set_dev(bio, rdev->bdev);
2761 			if (test_bit(FailFast, &rdev->flags))
2762 				bio->bi_opf |= MD_FAILFAST;
2763 		}
2764 	}
2765 	rcu_read_unlock();
2766 	if (disk < 0)
2767 		disk = wonly;
2768 	r1_bio->read_disk = disk;
2769 
2770 	if (read_targets == 0 && min_bad > 0) {
2771 		/* These sectors are bad on all InSync devices, so we
2772 		 * need to mark them bad on all write targets
2773 		 */
2774 		int ok = 1;
2775 		for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2776 			if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2777 				struct md_rdev *rdev = conf->mirrors[i].rdev;
2778 				ok = rdev_set_badblocks(rdev, sector_nr,
2779 							min_bad, 0
2780 					) && ok;
2781 			}
2782 		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2783 		*skipped = 1;
2784 		put_buf(r1_bio);
2785 
2786 		if (!ok) {
2787 			/* Cannot record the badblocks, so need to
2788 			 * abort the resync.
2789 			 * If there are multiple read targets, could just
2790 			 * fail the really bad ones ???
2791 			 */
2792 			conf->recovery_disabled = mddev->recovery_disabled;
2793 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2794 			return 0;
2795 		} else
2796 			return min_bad;
2797 
2798 	}
2799 	if (min_bad > 0 && min_bad < good_sectors) {
2800 		/* only resync enough to reach the next bad->good
2801 		 * transition */
2802 		good_sectors = min_bad;
2803 	}
2804 
2805 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2806 		/* extra read targets are also write targets */
2807 		write_targets += read_targets-1;
2808 
2809 	if (write_targets == 0 || read_targets == 0) {
2810 		/* There is nowhere to write, so all non-sync
2811 		 * drives must be failed - so we are finished
2812 		 */
2813 		sector_t rv;
2814 		if (min_bad > 0)
2815 			max_sector = sector_nr + min_bad;
2816 		rv = max_sector - sector_nr;
2817 		*skipped = 1;
2818 		put_buf(r1_bio);
2819 		return rv;
2820 	}
2821 
2822 	if (max_sector > mddev->resync_max)
2823 		max_sector = mddev->resync_max; /* Don't do IO beyond here */
2824 	if (max_sector > sector_nr + good_sectors)
2825 		max_sector = sector_nr + good_sectors;
2826 	nr_sectors = 0;
2827 	sync_blocks = 0;
2828 	do {
2829 		struct page *page;
2830 		int len = PAGE_SIZE;
2831 		if (sector_nr + (len>>9) > max_sector)
2832 			len = (max_sector - sector_nr) << 9;
2833 		if (len == 0)
2834 			break;
2835 		if (sync_blocks == 0) {
2836 			if (!md_bitmap_start_sync(mddev->bitmap, sector_nr,
2837 						  &sync_blocks, still_degraded) &&
2838 			    !conf->fullsync &&
2839 			    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2840 				break;
2841 			if ((len >> 9) > sync_blocks)
2842 				len = sync_blocks<<9;
2843 		}
2844 
2845 		for (i = 0 ; i < conf->raid_disks * 2; i++) {
2846 			struct resync_pages *rp;
2847 
2848 			bio = r1_bio->bios[i];
2849 			rp = get_resync_pages(bio);
2850 			if (bio->bi_end_io) {
2851 				page = resync_fetch_page(rp, page_idx);
2852 
2853 				/*
2854 				 * won't fail because the vec table is big
2855 				 * enough to hold all these pages
2856 				 */
2857 				bio_add_page(bio, page, len, 0);
2858 			}
2859 		}
2860 		nr_sectors += len>>9;
2861 		sector_nr += len>>9;
2862 		sync_blocks -= (len>>9);
2863 	} while (++page_idx < RESYNC_PAGES);
2864 
2865 	r1_bio->sectors = nr_sectors;
2866 
2867 	if (mddev_is_clustered(mddev) &&
2868 			conf->cluster_sync_high < sector_nr + nr_sectors) {
2869 		conf->cluster_sync_low = mddev->curr_resync_completed;
2870 		conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS;
2871 		/* Send resync message */
2872 		md_cluster_ops->resync_info_update(mddev,
2873 				conf->cluster_sync_low,
2874 				conf->cluster_sync_high);
2875 	}
2876 
2877 	/* For a user-requested sync, we read all readable devices and do a
2878 	 * compare
2879 	 */
2880 	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2881 		atomic_set(&r1_bio->remaining, read_targets);
2882 		for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2883 			bio = r1_bio->bios[i];
2884 			if (bio->bi_end_io == end_sync_read) {
2885 				read_targets--;
2886 				md_sync_acct_bio(bio, nr_sectors);
2887 				if (read_targets == 1)
2888 					bio->bi_opf &= ~MD_FAILFAST;
2889 				generic_make_request(bio);
2890 			}
2891 		}
2892 	} else {
2893 		atomic_set(&r1_bio->remaining, 1);
2894 		bio = r1_bio->bios[r1_bio->read_disk];
2895 		md_sync_acct_bio(bio, nr_sectors);
2896 		if (read_targets == 1)
2897 			bio->bi_opf &= ~MD_FAILFAST;
2898 		generic_make_request(bio);
2899 
2900 	}
2901 	return nr_sectors;
2902 }
2903 
2904 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2905 {
2906 	if (sectors)
2907 		return sectors;
2908 
2909 	return mddev->dev_sectors;
2910 }
2911 
2912 static struct r1conf *setup_conf(struct mddev *mddev)
2913 {
2914 	struct r1conf *conf;
2915 	int i;
2916 	struct raid1_info *disk;
2917 	struct md_rdev *rdev;
2918 	int err = -ENOMEM;
2919 
2920 	conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2921 	if (!conf)
2922 		goto abort;
2923 
2924 	conf->nr_pending = kcalloc(BARRIER_BUCKETS_NR,
2925 				   sizeof(atomic_t), GFP_KERNEL);
2926 	if (!conf->nr_pending)
2927 		goto abort;
2928 
2929 	conf->nr_waiting = kcalloc(BARRIER_BUCKETS_NR,
2930 				   sizeof(atomic_t), GFP_KERNEL);
2931 	if (!conf->nr_waiting)
2932 		goto abort;
2933 
2934 	conf->nr_queued = kcalloc(BARRIER_BUCKETS_NR,
2935 				  sizeof(atomic_t), GFP_KERNEL);
2936 	if (!conf->nr_queued)
2937 		goto abort;
2938 
2939 	conf->barrier = kcalloc(BARRIER_BUCKETS_NR,
2940 				sizeof(atomic_t), GFP_KERNEL);
2941 	if (!conf->barrier)
2942 		goto abort;
2943 
2944 	conf->mirrors = kzalloc(array3_size(sizeof(struct raid1_info),
2945 					    mddev->raid_disks, 2),
2946 				GFP_KERNEL);
2947 	if (!conf->mirrors)
2948 		goto abort;
2949 
2950 	conf->tmppage = alloc_page(GFP_KERNEL);
2951 	if (!conf->tmppage)
2952 		goto abort;
2953 
2954 	conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
2955 	if (!conf->poolinfo)
2956 		goto abort;
2957 	conf->poolinfo->raid_disks = mddev->raid_disks * 2;
2958 	err = mempool_init(&conf->r1bio_pool, NR_RAID1_BIOS, r1bio_pool_alloc,
2959 			   r1bio_pool_free, conf->poolinfo);
2960 	if (err)
2961 		goto abort;
2962 
2963 	err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
2964 	if (err)
2965 		goto abort;
2966 
2967 	conf->poolinfo->mddev = mddev;
2968 
2969 	err = -EINVAL;
2970 	spin_lock_init(&conf->device_lock);
2971 	rdev_for_each(rdev, mddev) {
2972 		int disk_idx = rdev->raid_disk;
2973 		if (disk_idx >= mddev->raid_disks
2974 		    || disk_idx < 0)
2975 			continue;
2976 		if (test_bit(Replacement, &rdev->flags))
2977 			disk = conf->mirrors + mddev->raid_disks + disk_idx;
2978 		else
2979 			disk = conf->mirrors + disk_idx;
2980 
2981 		if (disk->rdev)
2982 			goto abort;
2983 		disk->rdev = rdev;
2984 		disk->head_position = 0;
2985 		disk->seq_start = MaxSector;
2986 	}
2987 	conf->raid_disks = mddev->raid_disks;
2988 	conf->mddev = mddev;
2989 	INIT_LIST_HEAD(&conf->retry_list);
2990 	INIT_LIST_HEAD(&conf->bio_end_io_list);
2991 
2992 	spin_lock_init(&conf->resync_lock);
2993 	init_waitqueue_head(&conf->wait_barrier);
2994 
2995 	bio_list_init(&conf->pending_bio_list);
2996 	conf->pending_count = 0;
2997 	conf->recovery_disabled = mddev->recovery_disabled - 1;
2998 
2999 	err = -EIO;
3000 	for (i = 0; i < conf->raid_disks * 2; i++) {
3001 
3002 		disk = conf->mirrors + i;
3003 
3004 		if (i < conf->raid_disks &&
3005 		    disk[conf->raid_disks].rdev) {
3006 			/* This slot has a replacement. */
3007 			if (!disk->rdev) {
3008 				/* No original, just make the replacement
3009 				 * a recovering spare
3010 				 */
3011 				disk->rdev =
3012 					disk[conf->raid_disks].rdev;
3013 				disk[conf->raid_disks].rdev = NULL;
3014 			} else if (!test_bit(In_sync, &disk->rdev->flags))
3015 				/* Original is not in_sync - bad */
3016 				goto abort;
3017 		}
3018 
3019 		if (!disk->rdev ||
3020 		    !test_bit(In_sync, &disk->rdev->flags)) {
3021 			disk->head_position = 0;
3022 			if (disk->rdev &&
3023 			    (disk->rdev->saved_raid_disk < 0))
3024 				conf->fullsync = 1;
3025 		}
3026 	}
3027 
3028 	err = -ENOMEM;
3029 	conf->thread = md_register_thread(raid1d, mddev, "raid1");
3030 	if (!conf->thread)
3031 		goto abort;
3032 
3033 	return conf;
3034 
3035  abort:
3036 	if (conf) {
3037 		mempool_exit(&conf->r1bio_pool);
3038 		kfree(conf->mirrors);
3039 		safe_put_page(conf->tmppage);
3040 		kfree(conf->poolinfo);
3041 		kfree(conf->nr_pending);
3042 		kfree(conf->nr_waiting);
3043 		kfree(conf->nr_queued);
3044 		kfree(conf->barrier);
3045 		bioset_exit(&conf->bio_split);
3046 		kfree(conf);
3047 	}
3048 	return ERR_PTR(err);
3049 }
3050 
3051 static void raid1_free(struct mddev *mddev, void *priv);
3052 static int raid1_run(struct mddev *mddev)
3053 {
3054 	struct r1conf *conf;
3055 	int i;
3056 	struct md_rdev *rdev;
3057 	int ret;
3058 	bool discard_supported = false;
3059 
3060 	if (mddev->level != 1) {
3061 		pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n",
3062 			mdname(mddev), mddev->level);
3063 		return -EIO;
3064 	}
3065 	if (mddev->reshape_position != MaxSector) {
3066 		pr_warn("md/raid1:%s: reshape_position set but not supported\n",
3067 			mdname(mddev));
3068 		return -EIO;
3069 	}
3070 	if (mddev_init_writes_pending(mddev) < 0)
3071 		return -ENOMEM;
3072 	/*
3073 	 * copy the already verified devices into our private RAID1
3074 	 * bookkeeping area. [whatever we allocate in run(),
3075 	 * should be freed in raid1_free()]
3076 	 */
3077 	if (mddev->private == NULL)
3078 		conf = setup_conf(mddev);
3079 	else
3080 		conf = mddev->private;
3081 
3082 	if (IS_ERR(conf))
3083 		return PTR_ERR(conf);
3084 
3085 	if (mddev->queue) {
3086 		blk_queue_max_write_same_sectors(mddev->queue, 0);
3087 		blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
3088 	}
3089 
3090 	rdev_for_each(rdev, mddev) {
3091 		if (!mddev->gendisk)
3092 			continue;
3093 		disk_stack_limits(mddev->gendisk, rdev->bdev,
3094 				  rdev->data_offset << 9);
3095 		if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3096 			discard_supported = true;
3097 	}
3098 
3099 	mddev->degraded = 0;
3100 	for (i=0; i < conf->raid_disks; i++)
3101 		if (conf->mirrors[i].rdev == NULL ||
3102 		    !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
3103 		    test_bit(Faulty, &conf->mirrors[i].rdev->flags))
3104 			mddev->degraded++;
3105 
3106 	if (conf->raid_disks - mddev->degraded == 1)
3107 		mddev->recovery_cp = MaxSector;
3108 
3109 	if (mddev->recovery_cp != MaxSector)
3110 		pr_info("md/raid1:%s: not clean -- starting background reconstruction\n",
3111 			mdname(mddev));
3112 	pr_info("md/raid1:%s: active with %d out of %d mirrors\n",
3113 		mdname(mddev), mddev->raid_disks - mddev->degraded,
3114 		mddev->raid_disks);
3115 
3116 	/*
3117 	 * Ok, everything is just fine now
3118 	 */
3119 	mddev->thread = conf->thread;
3120 	conf->thread = NULL;
3121 	mddev->private = conf;
3122 	set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
3123 
3124 	md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
3125 
3126 	if (mddev->queue) {
3127 		if (discard_supported)
3128 			blk_queue_flag_set(QUEUE_FLAG_DISCARD,
3129 						mddev->queue);
3130 		else
3131 			blk_queue_flag_clear(QUEUE_FLAG_DISCARD,
3132 						  mddev->queue);
3133 	}
3134 
3135 	ret =  md_integrity_register(mddev);
3136 	if (ret) {
3137 		md_unregister_thread(&mddev->thread);
3138 		raid1_free(mddev, conf);
3139 	}
3140 	return ret;
3141 }
3142 
3143 static void raid1_free(struct mddev *mddev, void *priv)
3144 {
3145 	struct r1conf *conf = priv;
3146 
3147 	mempool_exit(&conf->r1bio_pool);
3148 	kfree(conf->mirrors);
3149 	safe_put_page(conf->tmppage);
3150 	kfree(conf->poolinfo);
3151 	kfree(conf->nr_pending);
3152 	kfree(conf->nr_waiting);
3153 	kfree(conf->nr_queued);
3154 	kfree(conf->barrier);
3155 	bioset_exit(&conf->bio_split);
3156 	kfree(conf);
3157 }
3158 
3159 static int raid1_resize(struct mddev *mddev, sector_t sectors)
3160 {
3161 	/* no resync is happening, and there is enough space
3162 	 * on all devices, so we can resize.
3163 	 * We need to make sure resync covers any new space.
3164 	 * If the array is shrinking we should possibly wait until
3165 	 * any io in the removed space completes, but it hardly seems
3166 	 * worth it.
3167 	 */
3168 	sector_t newsize = raid1_size(mddev, sectors, 0);
3169 	if (mddev->external_size &&
3170 	    mddev->array_sectors > newsize)
3171 		return -EINVAL;
3172 	if (mddev->bitmap) {
3173 		int ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
3174 		if (ret)
3175 			return ret;
3176 	}
3177 	md_set_array_sectors(mddev, newsize);
3178 	if (sectors > mddev->dev_sectors &&
3179 	    mddev->recovery_cp > mddev->dev_sectors) {
3180 		mddev->recovery_cp = mddev->dev_sectors;
3181 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3182 	}
3183 	mddev->dev_sectors = sectors;
3184 	mddev->resync_max_sectors = sectors;
3185 	return 0;
3186 }
3187 
3188 static int raid1_reshape(struct mddev *mddev)
3189 {
3190 	/* We need to:
3191 	 * 1/ resize the r1bio_pool
3192 	 * 2/ resize conf->mirrors
3193 	 *
3194 	 * We allocate a new r1bio_pool if we can.
3195 	 * Then raise a device barrier and wait until all IO stops.
3196 	 * Then resize conf->mirrors and swap in the new r1bio pool.
3197 	 *
3198 	 * At the same time, we "pack" the devices so that all the missing
3199 	 * devices have the higher raid_disk numbers.
3200 	 */
3201 	mempool_t newpool, oldpool;
3202 	struct pool_info *newpoolinfo;
3203 	struct raid1_info *newmirrors;
3204 	struct r1conf *conf = mddev->private;
3205 	int cnt, raid_disks;
3206 	unsigned long flags;
3207 	int d, d2;
3208 	int ret;
3209 
3210 	memset(&newpool, 0, sizeof(newpool));
3211 	memset(&oldpool, 0, sizeof(oldpool));
3212 
3213 	/* Cannot change chunk_size, layout, or level */
3214 	if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3215 	    mddev->layout != mddev->new_layout ||
3216 	    mddev->level != mddev->new_level) {
3217 		mddev->new_chunk_sectors = mddev->chunk_sectors;
3218 		mddev->new_layout = mddev->layout;
3219 		mddev->new_level = mddev->level;
3220 		return -EINVAL;
3221 	}
3222 
3223 	if (!mddev_is_clustered(mddev))
3224 		md_allow_write(mddev);
3225 
3226 	raid_disks = mddev->raid_disks + mddev->delta_disks;
3227 
3228 	if (raid_disks < conf->raid_disks) {
3229 		cnt=0;
3230 		for (d= 0; d < conf->raid_disks; d++)
3231 			if (conf->mirrors[d].rdev)
3232 				cnt++;
3233 		if (cnt > raid_disks)
3234 			return -EBUSY;
3235 	}
3236 
3237 	newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3238 	if (!newpoolinfo)
3239 		return -ENOMEM;
3240 	newpoolinfo->mddev = mddev;
3241 	newpoolinfo->raid_disks = raid_disks * 2;
3242 
3243 	ret = mempool_init(&newpool, NR_RAID1_BIOS, r1bio_pool_alloc,
3244 			   r1bio_pool_free, newpoolinfo);
3245 	if (ret) {
3246 		kfree(newpoolinfo);
3247 		return ret;
3248 	}
3249 	newmirrors = kzalloc(array3_size(sizeof(struct raid1_info),
3250 					 raid_disks, 2),
3251 			     GFP_KERNEL);
3252 	if (!newmirrors) {
3253 		kfree(newpoolinfo);
3254 		mempool_exit(&newpool);
3255 		return -ENOMEM;
3256 	}
3257 
3258 	freeze_array(conf, 0);
3259 
3260 	/* ok, everything is stopped */
3261 	oldpool = conf->r1bio_pool;
3262 	conf->r1bio_pool = newpool;
3263 
3264 	for (d = d2 = 0; d < conf->raid_disks; d++) {
3265 		struct md_rdev *rdev = conf->mirrors[d].rdev;
3266 		if (rdev && rdev->raid_disk != d2) {
3267 			sysfs_unlink_rdev(mddev, rdev);
3268 			rdev->raid_disk = d2;
3269 			sysfs_unlink_rdev(mddev, rdev);
3270 			if (sysfs_link_rdev(mddev, rdev))
3271 				pr_warn("md/raid1:%s: cannot register rd%d\n",
3272 					mdname(mddev), rdev->raid_disk);
3273 		}
3274 		if (rdev)
3275 			newmirrors[d2++].rdev = rdev;
3276 	}
3277 	kfree(conf->mirrors);
3278 	conf->mirrors = newmirrors;
3279 	kfree(conf->poolinfo);
3280 	conf->poolinfo = newpoolinfo;
3281 
3282 	spin_lock_irqsave(&conf->device_lock, flags);
3283 	mddev->degraded += (raid_disks - conf->raid_disks);
3284 	spin_unlock_irqrestore(&conf->device_lock, flags);
3285 	conf->raid_disks = mddev->raid_disks = raid_disks;
3286 	mddev->delta_disks = 0;
3287 
3288 	unfreeze_array(conf);
3289 
3290 	set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3291 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3292 	md_wakeup_thread(mddev->thread);
3293 
3294 	mempool_exit(&oldpool);
3295 	return 0;
3296 }
3297 
3298 static void raid1_quiesce(struct mddev *mddev, int quiesce)
3299 {
3300 	struct r1conf *conf = mddev->private;
3301 
3302 	if (quiesce)
3303 		freeze_array(conf, 0);
3304 	else
3305 		unfreeze_array(conf);
3306 }
3307 
3308 static void *raid1_takeover(struct mddev *mddev)
3309 {
3310 	/* raid1 can take over:
3311 	 *  raid5 with 2 devices, any layout or chunk size
3312 	 */
3313 	if (mddev->level == 5 && mddev->raid_disks == 2) {
3314 		struct r1conf *conf;
3315 		mddev->new_level = 1;
3316 		mddev->new_layout = 0;
3317 		mddev->new_chunk_sectors = 0;
3318 		conf = setup_conf(mddev);
3319 		if (!IS_ERR(conf)) {
3320 			/* Array must appear to be quiesced */
3321 			conf->array_frozen = 1;
3322 			mddev_clear_unsupported_flags(mddev,
3323 				UNSUPPORTED_MDDEV_FLAGS);
3324 		}
3325 		return conf;
3326 	}
3327 	return ERR_PTR(-EINVAL);
3328 }
3329 
3330 static struct md_personality raid1_personality =
3331 {
3332 	.name		= "raid1",
3333 	.level		= 1,
3334 	.owner		= THIS_MODULE,
3335 	.make_request	= raid1_make_request,
3336 	.run		= raid1_run,
3337 	.free		= raid1_free,
3338 	.status		= raid1_status,
3339 	.error_handler	= raid1_error,
3340 	.hot_add_disk	= raid1_add_disk,
3341 	.hot_remove_disk= raid1_remove_disk,
3342 	.spare_active	= raid1_spare_active,
3343 	.sync_request	= raid1_sync_request,
3344 	.resize		= raid1_resize,
3345 	.size		= raid1_size,
3346 	.check_reshape	= raid1_reshape,
3347 	.quiesce	= raid1_quiesce,
3348 	.takeover	= raid1_takeover,
3349 	.congested	= raid1_congested,
3350 };
3351 
3352 static int __init raid_init(void)
3353 {
3354 	return register_md_personality(&raid1_personality);
3355 }
3356 
3357 static void raid_exit(void)
3358 {
3359 	unregister_md_personality(&raid1_personality);
3360 }
3361 
3362 module_init(raid_init);
3363 module_exit(raid_exit);
3364 MODULE_LICENSE("GPL");
3365 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3366 MODULE_ALIAS("md-personality-3"); /* RAID1 */
3367 MODULE_ALIAS("md-raid1");
3368 MODULE_ALIAS("md-level-1");
3369 
3370 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
3371