1 /* 2 * raid1.c : Multiple Devices driver for Linux 3 * 4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat 5 * 6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman 7 * 8 * RAID-1 management functions. 9 * 10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000 11 * 12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk> 13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au> 14 * 15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support 16 * bitmapped intelligence in resync: 17 * 18 * - bitmap marked during normal i/o 19 * - bitmap used to skip nondirty blocks during sync 20 * 21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology: 22 * - persistent bitmap code 23 * 24 * This program is free software; you can redistribute it and/or modify 25 * it under the terms of the GNU General Public License as published by 26 * the Free Software Foundation; either version 2, or (at your option) 27 * any later version. 28 * 29 * You should have received a copy of the GNU General Public License 30 * (for example /usr/src/linux/COPYING); if not, write to the Free 31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 32 */ 33 34 #include <linux/slab.h> 35 #include <linux/delay.h> 36 #include <linux/blkdev.h> 37 #include <linux/module.h> 38 #include <linux/seq_file.h> 39 #include <linux/ratelimit.h> 40 #include <linux/sched/signal.h> 41 42 #include <trace/events/block.h> 43 44 #include "md.h" 45 #include "raid1.h" 46 #include "bitmap.h" 47 48 #define UNSUPPORTED_MDDEV_FLAGS \ 49 ((1L << MD_HAS_JOURNAL) | \ 50 (1L << MD_JOURNAL_CLEAN) | \ 51 (1L << MD_HAS_PPL)) 52 53 /* 54 * Number of guaranteed r1bios in case of extreme VM load: 55 */ 56 #define NR_RAID1_BIOS 256 57 58 /* when we get a read error on a read-only array, we redirect to another 59 * device without failing the first device, or trying to over-write to 60 * correct the read error. To keep track of bad blocks on a per-bio 61 * level, we store IO_BLOCKED in the appropriate 'bios' pointer 62 */ 63 #define IO_BLOCKED ((struct bio *)1) 64 /* When we successfully write to a known bad-block, we need to remove the 65 * bad-block marking which must be done from process context. So we record 66 * the success by setting devs[n].bio to IO_MADE_GOOD 67 */ 68 #define IO_MADE_GOOD ((struct bio *)2) 69 70 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2) 71 72 /* When there are this many requests queue to be written by 73 * the raid1 thread, we become 'congested' to provide back-pressure 74 * for writeback. 75 */ 76 static int max_queued_requests = 1024; 77 78 static void allow_barrier(struct r1conf *conf, sector_t sector_nr); 79 static void lower_barrier(struct r1conf *conf, sector_t sector_nr); 80 81 #define raid1_log(md, fmt, args...) \ 82 do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid1 " fmt, ##args); } while (0) 83 84 /* 85 * 'strct resync_pages' stores actual pages used for doing the resync 86 * IO, and it is per-bio, so make .bi_private points to it. 87 */ 88 static inline struct resync_pages *get_resync_pages(struct bio *bio) 89 { 90 return bio->bi_private; 91 } 92 93 /* 94 * for resync bio, r1bio pointer can be retrieved from the per-bio 95 * 'struct resync_pages'. 96 */ 97 static inline struct r1bio *get_resync_r1bio(struct bio *bio) 98 { 99 return get_resync_pages(bio)->raid_bio; 100 } 101 102 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data) 103 { 104 struct pool_info *pi = data; 105 int size = offsetof(struct r1bio, bios[pi->raid_disks]); 106 107 /* allocate a r1bio with room for raid_disks entries in the bios array */ 108 return kzalloc(size, gfp_flags); 109 } 110 111 static void r1bio_pool_free(void *r1_bio, void *data) 112 { 113 kfree(r1_bio); 114 } 115 116 #define RESYNC_DEPTH 32 117 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9) 118 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH) 119 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9) 120 #define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW) 121 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9) 122 123 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data) 124 { 125 struct pool_info *pi = data; 126 struct r1bio *r1_bio; 127 struct bio *bio; 128 int need_pages; 129 int j; 130 struct resync_pages *rps; 131 132 r1_bio = r1bio_pool_alloc(gfp_flags, pi); 133 if (!r1_bio) 134 return NULL; 135 136 rps = kmalloc(sizeof(struct resync_pages) * pi->raid_disks, 137 gfp_flags); 138 if (!rps) 139 goto out_free_r1bio; 140 141 /* 142 * Allocate bios : 1 for reading, n-1 for writing 143 */ 144 for (j = pi->raid_disks ; j-- ; ) { 145 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES); 146 if (!bio) 147 goto out_free_bio; 148 r1_bio->bios[j] = bio; 149 } 150 /* 151 * Allocate RESYNC_PAGES data pages and attach them to 152 * the first bio. 153 * If this is a user-requested check/repair, allocate 154 * RESYNC_PAGES for each bio. 155 */ 156 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) 157 need_pages = pi->raid_disks; 158 else 159 need_pages = 1; 160 for (j = 0; j < pi->raid_disks; j++) { 161 struct resync_pages *rp = &rps[j]; 162 163 bio = r1_bio->bios[j]; 164 165 if (j < need_pages) { 166 if (resync_alloc_pages(rp, gfp_flags)) 167 goto out_free_pages; 168 } else { 169 memcpy(rp, &rps[0], sizeof(*rp)); 170 resync_get_all_pages(rp); 171 } 172 173 rp->idx = 0; 174 rp->raid_bio = r1_bio; 175 bio->bi_private = rp; 176 } 177 178 r1_bio->master_bio = NULL; 179 180 return r1_bio; 181 182 out_free_pages: 183 while (--j >= 0) 184 resync_free_pages(&rps[j]); 185 186 out_free_bio: 187 while (++j < pi->raid_disks) 188 bio_put(r1_bio->bios[j]); 189 kfree(rps); 190 191 out_free_r1bio: 192 r1bio_pool_free(r1_bio, data); 193 return NULL; 194 } 195 196 static void r1buf_pool_free(void *__r1_bio, void *data) 197 { 198 struct pool_info *pi = data; 199 int i; 200 struct r1bio *r1bio = __r1_bio; 201 struct resync_pages *rp = NULL; 202 203 for (i = pi->raid_disks; i--; ) { 204 rp = get_resync_pages(r1bio->bios[i]); 205 resync_free_pages(rp); 206 bio_put(r1bio->bios[i]); 207 } 208 209 /* resync pages array stored in the 1st bio's .bi_private */ 210 kfree(rp); 211 212 r1bio_pool_free(r1bio, data); 213 } 214 215 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio) 216 { 217 int i; 218 219 for (i = 0; i < conf->raid_disks * 2; i++) { 220 struct bio **bio = r1_bio->bios + i; 221 if (!BIO_SPECIAL(*bio)) 222 bio_put(*bio); 223 *bio = NULL; 224 } 225 } 226 227 static void free_r1bio(struct r1bio *r1_bio) 228 { 229 struct r1conf *conf = r1_bio->mddev->private; 230 231 put_all_bios(conf, r1_bio); 232 mempool_free(r1_bio, conf->r1bio_pool); 233 } 234 235 static void put_buf(struct r1bio *r1_bio) 236 { 237 struct r1conf *conf = r1_bio->mddev->private; 238 sector_t sect = r1_bio->sector; 239 int i; 240 241 for (i = 0; i < conf->raid_disks * 2; i++) { 242 struct bio *bio = r1_bio->bios[i]; 243 if (bio->bi_end_io) 244 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev); 245 } 246 247 mempool_free(r1_bio, conf->r1buf_pool); 248 249 lower_barrier(conf, sect); 250 } 251 252 static void reschedule_retry(struct r1bio *r1_bio) 253 { 254 unsigned long flags; 255 struct mddev *mddev = r1_bio->mddev; 256 struct r1conf *conf = mddev->private; 257 int idx; 258 259 idx = sector_to_idx(r1_bio->sector); 260 spin_lock_irqsave(&conf->device_lock, flags); 261 list_add(&r1_bio->retry_list, &conf->retry_list); 262 atomic_inc(&conf->nr_queued[idx]); 263 spin_unlock_irqrestore(&conf->device_lock, flags); 264 265 wake_up(&conf->wait_barrier); 266 md_wakeup_thread(mddev->thread); 267 } 268 269 /* 270 * raid_end_bio_io() is called when we have finished servicing a mirrored 271 * operation and are ready to return a success/failure code to the buffer 272 * cache layer. 273 */ 274 static void call_bio_endio(struct r1bio *r1_bio) 275 { 276 struct bio *bio = r1_bio->master_bio; 277 struct r1conf *conf = r1_bio->mddev->private; 278 279 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) 280 bio->bi_error = -EIO; 281 282 bio_endio(bio); 283 /* 284 * Wake up any possible resync thread that waits for the device 285 * to go idle. 286 */ 287 allow_barrier(conf, r1_bio->sector); 288 } 289 290 static void raid_end_bio_io(struct r1bio *r1_bio) 291 { 292 struct bio *bio = r1_bio->master_bio; 293 294 /* if nobody has done the final endio yet, do it now */ 295 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) { 296 pr_debug("raid1: sync end %s on sectors %llu-%llu\n", 297 (bio_data_dir(bio) == WRITE) ? "write" : "read", 298 (unsigned long long) bio->bi_iter.bi_sector, 299 (unsigned long long) bio_end_sector(bio) - 1); 300 301 call_bio_endio(r1_bio); 302 } 303 free_r1bio(r1_bio); 304 } 305 306 /* 307 * Update disk head position estimator based on IRQ completion info. 308 */ 309 static inline void update_head_pos(int disk, struct r1bio *r1_bio) 310 { 311 struct r1conf *conf = r1_bio->mddev->private; 312 313 conf->mirrors[disk].head_position = 314 r1_bio->sector + (r1_bio->sectors); 315 } 316 317 /* 318 * Find the disk number which triggered given bio 319 */ 320 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio) 321 { 322 int mirror; 323 struct r1conf *conf = r1_bio->mddev->private; 324 int raid_disks = conf->raid_disks; 325 326 for (mirror = 0; mirror < raid_disks * 2; mirror++) 327 if (r1_bio->bios[mirror] == bio) 328 break; 329 330 BUG_ON(mirror == raid_disks * 2); 331 update_head_pos(mirror, r1_bio); 332 333 return mirror; 334 } 335 336 static void raid1_end_read_request(struct bio *bio) 337 { 338 int uptodate = !bio->bi_error; 339 struct r1bio *r1_bio = bio->bi_private; 340 struct r1conf *conf = r1_bio->mddev->private; 341 struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev; 342 343 /* 344 * this branch is our 'one mirror IO has finished' event handler: 345 */ 346 update_head_pos(r1_bio->read_disk, r1_bio); 347 348 if (uptodate) 349 set_bit(R1BIO_Uptodate, &r1_bio->state); 350 else if (test_bit(FailFast, &rdev->flags) && 351 test_bit(R1BIO_FailFast, &r1_bio->state)) 352 /* This was a fail-fast read so we definitely 353 * want to retry */ 354 ; 355 else { 356 /* If all other devices have failed, we want to return 357 * the error upwards rather than fail the last device. 358 * Here we redefine "uptodate" to mean "Don't want to retry" 359 */ 360 unsigned long flags; 361 spin_lock_irqsave(&conf->device_lock, flags); 362 if (r1_bio->mddev->degraded == conf->raid_disks || 363 (r1_bio->mddev->degraded == conf->raid_disks-1 && 364 test_bit(In_sync, &rdev->flags))) 365 uptodate = 1; 366 spin_unlock_irqrestore(&conf->device_lock, flags); 367 } 368 369 if (uptodate) { 370 raid_end_bio_io(r1_bio); 371 rdev_dec_pending(rdev, conf->mddev); 372 } else { 373 /* 374 * oops, read error: 375 */ 376 char b[BDEVNAME_SIZE]; 377 pr_err_ratelimited("md/raid1:%s: %s: rescheduling sector %llu\n", 378 mdname(conf->mddev), 379 bdevname(rdev->bdev, b), 380 (unsigned long long)r1_bio->sector); 381 set_bit(R1BIO_ReadError, &r1_bio->state); 382 reschedule_retry(r1_bio); 383 /* don't drop the reference on read_disk yet */ 384 } 385 } 386 387 static void close_write(struct r1bio *r1_bio) 388 { 389 /* it really is the end of this request */ 390 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) { 391 bio_free_pages(r1_bio->behind_master_bio); 392 bio_put(r1_bio->behind_master_bio); 393 r1_bio->behind_master_bio = NULL; 394 } 395 /* clear the bitmap if all writes complete successfully */ 396 bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector, 397 r1_bio->sectors, 398 !test_bit(R1BIO_Degraded, &r1_bio->state), 399 test_bit(R1BIO_BehindIO, &r1_bio->state)); 400 md_write_end(r1_bio->mddev); 401 } 402 403 static void r1_bio_write_done(struct r1bio *r1_bio) 404 { 405 if (!atomic_dec_and_test(&r1_bio->remaining)) 406 return; 407 408 if (test_bit(R1BIO_WriteError, &r1_bio->state)) 409 reschedule_retry(r1_bio); 410 else { 411 close_write(r1_bio); 412 if (test_bit(R1BIO_MadeGood, &r1_bio->state)) 413 reschedule_retry(r1_bio); 414 else 415 raid_end_bio_io(r1_bio); 416 } 417 } 418 419 static void raid1_end_write_request(struct bio *bio) 420 { 421 struct r1bio *r1_bio = bio->bi_private; 422 int behind = test_bit(R1BIO_BehindIO, &r1_bio->state); 423 struct r1conf *conf = r1_bio->mddev->private; 424 struct bio *to_put = NULL; 425 int mirror = find_bio_disk(r1_bio, bio); 426 struct md_rdev *rdev = conf->mirrors[mirror].rdev; 427 bool discard_error; 428 429 discard_error = bio->bi_error && bio_op(bio) == REQ_OP_DISCARD; 430 431 /* 432 * 'one mirror IO has finished' event handler: 433 */ 434 if (bio->bi_error && !discard_error) { 435 set_bit(WriteErrorSeen, &rdev->flags); 436 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 437 set_bit(MD_RECOVERY_NEEDED, & 438 conf->mddev->recovery); 439 440 if (test_bit(FailFast, &rdev->flags) && 441 (bio->bi_opf & MD_FAILFAST) && 442 /* We never try FailFast to WriteMostly devices */ 443 !test_bit(WriteMostly, &rdev->flags)) { 444 md_error(r1_bio->mddev, rdev); 445 if (!test_bit(Faulty, &rdev->flags)) 446 /* This is the only remaining device, 447 * We need to retry the write without 448 * FailFast 449 */ 450 set_bit(R1BIO_WriteError, &r1_bio->state); 451 else { 452 /* Finished with this branch */ 453 r1_bio->bios[mirror] = NULL; 454 to_put = bio; 455 } 456 } else 457 set_bit(R1BIO_WriteError, &r1_bio->state); 458 } else { 459 /* 460 * Set R1BIO_Uptodate in our master bio, so that we 461 * will return a good error code for to the higher 462 * levels even if IO on some other mirrored buffer 463 * fails. 464 * 465 * The 'master' represents the composite IO operation 466 * to user-side. So if something waits for IO, then it 467 * will wait for the 'master' bio. 468 */ 469 sector_t first_bad; 470 int bad_sectors; 471 472 r1_bio->bios[mirror] = NULL; 473 to_put = bio; 474 /* 475 * Do not set R1BIO_Uptodate if the current device is 476 * rebuilding or Faulty. This is because we cannot use 477 * such device for properly reading the data back (we could 478 * potentially use it, if the current write would have felt 479 * before rdev->recovery_offset, but for simplicity we don't 480 * check this here. 481 */ 482 if (test_bit(In_sync, &rdev->flags) && 483 !test_bit(Faulty, &rdev->flags)) 484 set_bit(R1BIO_Uptodate, &r1_bio->state); 485 486 /* Maybe we can clear some bad blocks. */ 487 if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors, 488 &first_bad, &bad_sectors) && !discard_error) { 489 r1_bio->bios[mirror] = IO_MADE_GOOD; 490 set_bit(R1BIO_MadeGood, &r1_bio->state); 491 } 492 } 493 494 if (behind) { 495 /* we release behind master bio when all write are done */ 496 if (r1_bio->behind_master_bio == bio) 497 to_put = NULL; 498 499 if (test_bit(WriteMostly, &rdev->flags)) 500 atomic_dec(&r1_bio->behind_remaining); 501 502 /* 503 * In behind mode, we ACK the master bio once the I/O 504 * has safely reached all non-writemostly 505 * disks. Setting the Returned bit ensures that this 506 * gets done only once -- we don't ever want to return 507 * -EIO here, instead we'll wait 508 */ 509 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) && 510 test_bit(R1BIO_Uptodate, &r1_bio->state)) { 511 /* Maybe we can return now */ 512 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) { 513 struct bio *mbio = r1_bio->master_bio; 514 pr_debug("raid1: behind end write sectors" 515 " %llu-%llu\n", 516 (unsigned long long) mbio->bi_iter.bi_sector, 517 (unsigned long long) bio_end_sector(mbio) - 1); 518 call_bio_endio(r1_bio); 519 } 520 } 521 } 522 if (r1_bio->bios[mirror] == NULL) 523 rdev_dec_pending(rdev, conf->mddev); 524 525 /* 526 * Let's see if all mirrored write operations have finished 527 * already. 528 */ 529 r1_bio_write_done(r1_bio); 530 531 if (to_put) 532 bio_put(to_put); 533 } 534 535 static sector_t align_to_barrier_unit_end(sector_t start_sector, 536 sector_t sectors) 537 { 538 sector_t len; 539 540 WARN_ON(sectors == 0); 541 /* 542 * len is the number of sectors from start_sector to end of the 543 * barrier unit which start_sector belongs to. 544 */ 545 len = round_up(start_sector + 1, BARRIER_UNIT_SECTOR_SIZE) - 546 start_sector; 547 548 if (len > sectors) 549 len = sectors; 550 551 return len; 552 } 553 554 /* 555 * This routine returns the disk from which the requested read should 556 * be done. There is a per-array 'next expected sequential IO' sector 557 * number - if this matches on the next IO then we use the last disk. 558 * There is also a per-disk 'last know head position' sector that is 559 * maintained from IRQ contexts, both the normal and the resync IO 560 * completion handlers update this position correctly. If there is no 561 * perfect sequential match then we pick the disk whose head is closest. 562 * 563 * If there are 2 mirrors in the same 2 devices, performance degrades 564 * because position is mirror, not device based. 565 * 566 * The rdev for the device selected will have nr_pending incremented. 567 */ 568 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors) 569 { 570 const sector_t this_sector = r1_bio->sector; 571 int sectors; 572 int best_good_sectors; 573 int best_disk, best_dist_disk, best_pending_disk; 574 int has_nonrot_disk; 575 int disk; 576 sector_t best_dist; 577 unsigned int min_pending; 578 struct md_rdev *rdev; 579 int choose_first; 580 int choose_next_idle; 581 582 rcu_read_lock(); 583 /* 584 * Check if we can balance. We can balance on the whole 585 * device if no resync is going on, or below the resync window. 586 * We take the first readable disk when above the resync window. 587 */ 588 retry: 589 sectors = r1_bio->sectors; 590 best_disk = -1; 591 best_dist_disk = -1; 592 best_dist = MaxSector; 593 best_pending_disk = -1; 594 min_pending = UINT_MAX; 595 best_good_sectors = 0; 596 has_nonrot_disk = 0; 597 choose_next_idle = 0; 598 clear_bit(R1BIO_FailFast, &r1_bio->state); 599 600 if ((conf->mddev->recovery_cp < this_sector + sectors) || 601 (mddev_is_clustered(conf->mddev) && 602 md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector, 603 this_sector + sectors))) 604 choose_first = 1; 605 else 606 choose_first = 0; 607 608 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) { 609 sector_t dist; 610 sector_t first_bad; 611 int bad_sectors; 612 unsigned int pending; 613 bool nonrot; 614 615 rdev = rcu_dereference(conf->mirrors[disk].rdev); 616 if (r1_bio->bios[disk] == IO_BLOCKED 617 || rdev == NULL 618 || test_bit(Faulty, &rdev->flags)) 619 continue; 620 if (!test_bit(In_sync, &rdev->flags) && 621 rdev->recovery_offset < this_sector + sectors) 622 continue; 623 if (test_bit(WriteMostly, &rdev->flags)) { 624 /* Don't balance among write-mostly, just 625 * use the first as a last resort */ 626 if (best_dist_disk < 0) { 627 if (is_badblock(rdev, this_sector, sectors, 628 &first_bad, &bad_sectors)) { 629 if (first_bad <= this_sector) 630 /* Cannot use this */ 631 continue; 632 best_good_sectors = first_bad - this_sector; 633 } else 634 best_good_sectors = sectors; 635 best_dist_disk = disk; 636 best_pending_disk = disk; 637 } 638 continue; 639 } 640 /* This is a reasonable device to use. It might 641 * even be best. 642 */ 643 if (is_badblock(rdev, this_sector, sectors, 644 &first_bad, &bad_sectors)) { 645 if (best_dist < MaxSector) 646 /* already have a better device */ 647 continue; 648 if (first_bad <= this_sector) { 649 /* cannot read here. If this is the 'primary' 650 * device, then we must not read beyond 651 * bad_sectors from another device.. 652 */ 653 bad_sectors -= (this_sector - first_bad); 654 if (choose_first && sectors > bad_sectors) 655 sectors = bad_sectors; 656 if (best_good_sectors > sectors) 657 best_good_sectors = sectors; 658 659 } else { 660 sector_t good_sectors = first_bad - this_sector; 661 if (good_sectors > best_good_sectors) { 662 best_good_sectors = good_sectors; 663 best_disk = disk; 664 } 665 if (choose_first) 666 break; 667 } 668 continue; 669 } else { 670 if ((sectors > best_good_sectors) && (best_disk >= 0)) 671 best_disk = -1; 672 best_good_sectors = sectors; 673 } 674 675 if (best_disk >= 0) 676 /* At least two disks to choose from so failfast is OK */ 677 set_bit(R1BIO_FailFast, &r1_bio->state); 678 679 nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev)); 680 has_nonrot_disk |= nonrot; 681 pending = atomic_read(&rdev->nr_pending); 682 dist = abs(this_sector - conf->mirrors[disk].head_position); 683 if (choose_first) { 684 best_disk = disk; 685 break; 686 } 687 /* Don't change to another disk for sequential reads */ 688 if (conf->mirrors[disk].next_seq_sect == this_sector 689 || dist == 0) { 690 int opt_iosize = bdev_io_opt(rdev->bdev) >> 9; 691 struct raid1_info *mirror = &conf->mirrors[disk]; 692 693 best_disk = disk; 694 /* 695 * If buffered sequential IO size exceeds optimal 696 * iosize, check if there is idle disk. If yes, choose 697 * the idle disk. read_balance could already choose an 698 * idle disk before noticing it's a sequential IO in 699 * this disk. This doesn't matter because this disk 700 * will idle, next time it will be utilized after the 701 * first disk has IO size exceeds optimal iosize. In 702 * this way, iosize of the first disk will be optimal 703 * iosize at least. iosize of the second disk might be 704 * small, but not a big deal since when the second disk 705 * starts IO, the first disk is likely still busy. 706 */ 707 if (nonrot && opt_iosize > 0 && 708 mirror->seq_start != MaxSector && 709 mirror->next_seq_sect > opt_iosize && 710 mirror->next_seq_sect - opt_iosize >= 711 mirror->seq_start) { 712 choose_next_idle = 1; 713 continue; 714 } 715 break; 716 } 717 718 if (choose_next_idle) 719 continue; 720 721 if (min_pending > pending) { 722 min_pending = pending; 723 best_pending_disk = disk; 724 } 725 726 if (dist < best_dist) { 727 best_dist = dist; 728 best_dist_disk = disk; 729 } 730 } 731 732 /* 733 * If all disks are rotational, choose the closest disk. If any disk is 734 * non-rotational, choose the disk with less pending request even the 735 * disk is rotational, which might/might not be optimal for raids with 736 * mixed ratation/non-rotational disks depending on workload. 737 */ 738 if (best_disk == -1) { 739 if (has_nonrot_disk || min_pending == 0) 740 best_disk = best_pending_disk; 741 else 742 best_disk = best_dist_disk; 743 } 744 745 if (best_disk >= 0) { 746 rdev = rcu_dereference(conf->mirrors[best_disk].rdev); 747 if (!rdev) 748 goto retry; 749 atomic_inc(&rdev->nr_pending); 750 sectors = best_good_sectors; 751 752 if (conf->mirrors[best_disk].next_seq_sect != this_sector) 753 conf->mirrors[best_disk].seq_start = this_sector; 754 755 conf->mirrors[best_disk].next_seq_sect = this_sector + sectors; 756 } 757 rcu_read_unlock(); 758 *max_sectors = sectors; 759 760 return best_disk; 761 } 762 763 static int raid1_congested(struct mddev *mddev, int bits) 764 { 765 struct r1conf *conf = mddev->private; 766 int i, ret = 0; 767 768 if ((bits & (1 << WB_async_congested)) && 769 conf->pending_count >= max_queued_requests) 770 return 1; 771 772 rcu_read_lock(); 773 for (i = 0; i < conf->raid_disks * 2; i++) { 774 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 775 if (rdev && !test_bit(Faulty, &rdev->flags)) { 776 struct request_queue *q = bdev_get_queue(rdev->bdev); 777 778 BUG_ON(!q); 779 780 /* Note the '|| 1' - when read_balance prefers 781 * non-congested targets, it can be removed 782 */ 783 if ((bits & (1 << WB_async_congested)) || 1) 784 ret |= bdi_congested(q->backing_dev_info, bits); 785 else 786 ret &= bdi_congested(q->backing_dev_info, bits); 787 } 788 } 789 rcu_read_unlock(); 790 return ret; 791 } 792 793 static void flush_bio_list(struct r1conf *conf, struct bio *bio) 794 { 795 /* flush any pending bitmap writes to disk before proceeding w/ I/O */ 796 bitmap_unplug(conf->mddev->bitmap); 797 wake_up(&conf->wait_barrier); 798 799 while (bio) { /* submit pending writes */ 800 struct bio *next = bio->bi_next; 801 struct md_rdev *rdev = (void*)bio->bi_bdev; 802 bio->bi_next = NULL; 803 bio->bi_bdev = rdev->bdev; 804 if (test_bit(Faulty, &rdev->flags)) { 805 bio->bi_error = -EIO; 806 bio_endio(bio); 807 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) && 808 !blk_queue_discard(bdev_get_queue(bio->bi_bdev)))) 809 /* Just ignore it */ 810 bio_endio(bio); 811 else 812 generic_make_request(bio); 813 bio = next; 814 } 815 } 816 817 static void flush_pending_writes(struct r1conf *conf) 818 { 819 /* Any writes that have been queued but are awaiting 820 * bitmap updates get flushed here. 821 */ 822 spin_lock_irq(&conf->device_lock); 823 824 if (conf->pending_bio_list.head) { 825 struct bio *bio; 826 bio = bio_list_get(&conf->pending_bio_list); 827 conf->pending_count = 0; 828 spin_unlock_irq(&conf->device_lock); 829 flush_bio_list(conf, bio); 830 } else 831 spin_unlock_irq(&conf->device_lock); 832 } 833 834 /* Barriers.... 835 * Sometimes we need to suspend IO while we do something else, 836 * either some resync/recovery, or reconfigure the array. 837 * To do this we raise a 'barrier'. 838 * The 'barrier' is a counter that can be raised multiple times 839 * to count how many activities are happening which preclude 840 * normal IO. 841 * We can only raise the barrier if there is no pending IO. 842 * i.e. if nr_pending == 0. 843 * We choose only to raise the barrier if no-one is waiting for the 844 * barrier to go down. This means that as soon as an IO request 845 * is ready, no other operations which require a barrier will start 846 * until the IO request has had a chance. 847 * 848 * So: regular IO calls 'wait_barrier'. When that returns there 849 * is no backgroup IO happening, It must arrange to call 850 * allow_barrier when it has finished its IO. 851 * backgroup IO calls must call raise_barrier. Once that returns 852 * there is no normal IO happeing. It must arrange to call 853 * lower_barrier when the particular background IO completes. 854 */ 855 static void raise_barrier(struct r1conf *conf, sector_t sector_nr) 856 { 857 int idx = sector_to_idx(sector_nr); 858 859 spin_lock_irq(&conf->resync_lock); 860 861 /* Wait until no block IO is waiting */ 862 wait_event_lock_irq(conf->wait_barrier, 863 !atomic_read(&conf->nr_waiting[idx]), 864 conf->resync_lock); 865 866 /* block any new IO from starting */ 867 atomic_inc(&conf->barrier[idx]); 868 /* 869 * In raise_barrier() we firstly increase conf->barrier[idx] then 870 * check conf->nr_pending[idx]. In _wait_barrier() we firstly 871 * increase conf->nr_pending[idx] then check conf->barrier[idx]. 872 * A memory barrier here to make sure conf->nr_pending[idx] won't 873 * be fetched before conf->barrier[idx] is increased. Otherwise 874 * there will be a race between raise_barrier() and _wait_barrier(). 875 */ 876 smp_mb__after_atomic(); 877 878 /* For these conditions we must wait: 879 * A: while the array is in frozen state 880 * B: while conf->nr_pending[idx] is not 0, meaning regular I/O 881 * existing in corresponding I/O barrier bucket. 882 * C: while conf->barrier[idx] >= RESYNC_DEPTH, meaning reaches 883 * max resync count which allowed on current I/O barrier bucket. 884 */ 885 wait_event_lock_irq(conf->wait_barrier, 886 !conf->array_frozen && 887 !atomic_read(&conf->nr_pending[idx]) && 888 atomic_read(&conf->barrier[idx]) < RESYNC_DEPTH, 889 conf->resync_lock); 890 891 atomic_inc(&conf->nr_sync_pending); 892 spin_unlock_irq(&conf->resync_lock); 893 } 894 895 static void lower_barrier(struct r1conf *conf, sector_t sector_nr) 896 { 897 int idx = sector_to_idx(sector_nr); 898 899 BUG_ON(atomic_read(&conf->barrier[idx]) <= 0); 900 901 atomic_dec(&conf->barrier[idx]); 902 atomic_dec(&conf->nr_sync_pending); 903 wake_up(&conf->wait_barrier); 904 } 905 906 static void _wait_barrier(struct r1conf *conf, int idx) 907 { 908 /* 909 * We need to increase conf->nr_pending[idx] very early here, 910 * then raise_barrier() can be blocked when it waits for 911 * conf->nr_pending[idx] to be 0. Then we can avoid holding 912 * conf->resync_lock when there is no barrier raised in same 913 * barrier unit bucket. Also if the array is frozen, I/O 914 * should be blocked until array is unfrozen. 915 */ 916 atomic_inc(&conf->nr_pending[idx]); 917 /* 918 * In _wait_barrier() we firstly increase conf->nr_pending[idx], then 919 * check conf->barrier[idx]. In raise_barrier() we firstly increase 920 * conf->barrier[idx], then check conf->nr_pending[idx]. A memory 921 * barrier is necessary here to make sure conf->barrier[idx] won't be 922 * fetched before conf->nr_pending[idx] is increased. Otherwise there 923 * will be a race between _wait_barrier() and raise_barrier(). 924 */ 925 smp_mb__after_atomic(); 926 927 /* 928 * Don't worry about checking two atomic_t variables at same time 929 * here. If during we check conf->barrier[idx], the array is 930 * frozen (conf->array_frozen is 1), and chonf->barrier[idx] is 931 * 0, it is safe to return and make the I/O continue. Because the 932 * array is frozen, all I/O returned here will eventually complete 933 * or be queued, no race will happen. See code comment in 934 * frozen_array(). 935 */ 936 if (!READ_ONCE(conf->array_frozen) && 937 !atomic_read(&conf->barrier[idx])) 938 return; 939 940 /* 941 * After holding conf->resync_lock, conf->nr_pending[idx] 942 * should be decreased before waiting for barrier to drop. 943 * Otherwise, we may encounter a race condition because 944 * raise_barrer() might be waiting for conf->nr_pending[idx] 945 * to be 0 at same time. 946 */ 947 spin_lock_irq(&conf->resync_lock); 948 atomic_inc(&conf->nr_waiting[idx]); 949 atomic_dec(&conf->nr_pending[idx]); 950 /* 951 * In case freeze_array() is waiting for 952 * get_unqueued_pending() == extra 953 */ 954 wake_up(&conf->wait_barrier); 955 /* Wait for the barrier in same barrier unit bucket to drop. */ 956 wait_event_lock_irq(conf->wait_barrier, 957 !conf->array_frozen && 958 !atomic_read(&conf->barrier[idx]), 959 conf->resync_lock); 960 atomic_inc(&conf->nr_pending[idx]); 961 atomic_dec(&conf->nr_waiting[idx]); 962 spin_unlock_irq(&conf->resync_lock); 963 } 964 965 static void wait_read_barrier(struct r1conf *conf, sector_t sector_nr) 966 { 967 int idx = sector_to_idx(sector_nr); 968 969 /* 970 * Very similar to _wait_barrier(). The difference is, for read 971 * I/O we don't need wait for sync I/O, but if the whole array 972 * is frozen, the read I/O still has to wait until the array is 973 * unfrozen. Since there is no ordering requirement with 974 * conf->barrier[idx] here, memory barrier is unnecessary as well. 975 */ 976 atomic_inc(&conf->nr_pending[idx]); 977 978 if (!READ_ONCE(conf->array_frozen)) 979 return; 980 981 spin_lock_irq(&conf->resync_lock); 982 atomic_inc(&conf->nr_waiting[idx]); 983 atomic_dec(&conf->nr_pending[idx]); 984 /* 985 * In case freeze_array() is waiting for 986 * get_unqueued_pending() == extra 987 */ 988 wake_up(&conf->wait_barrier); 989 /* Wait for array to be unfrozen */ 990 wait_event_lock_irq(conf->wait_barrier, 991 !conf->array_frozen, 992 conf->resync_lock); 993 atomic_inc(&conf->nr_pending[idx]); 994 atomic_dec(&conf->nr_waiting[idx]); 995 spin_unlock_irq(&conf->resync_lock); 996 } 997 998 static void wait_barrier(struct r1conf *conf, sector_t sector_nr) 999 { 1000 int idx = sector_to_idx(sector_nr); 1001 1002 _wait_barrier(conf, idx); 1003 } 1004 1005 static void wait_all_barriers(struct r1conf *conf) 1006 { 1007 int idx; 1008 1009 for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++) 1010 _wait_barrier(conf, idx); 1011 } 1012 1013 static void _allow_barrier(struct r1conf *conf, int idx) 1014 { 1015 atomic_dec(&conf->nr_pending[idx]); 1016 wake_up(&conf->wait_barrier); 1017 } 1018 1019 static void allow_barrier(struct r1conf *conf, sector_t sector_nr) 1020 { 1021 int idx = sector_to_idx(sector_nr); 1022 1023 _allow_barrier(conf, idx); 1024 } 1025 1026 static void allow_all_barriers(struct r1conf *conf) 1027 { 1028 int idx; 1029 1030 for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++) 1031 _allow_barrier(conf, idx); 1032 } 1033 1034 /* conf->resync_lock should be held */ 1035 static int get_unqueued_pending(struct r1conf *conf) 1036 { 1037 int idx, ret; 1038 1039 ret = atomic_read(&conf->nr_sync_pending); 1040 for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++) 1041 ret += atomic_read(&conf->nr_pending[idx]) - 1042 atomic_read(&conf->nr_queued[idx]); 1043 1044 return ret; 1045 } 1046 1047 static void freeze_array(struct r1conf *conf, int extra) 1048 { 1049 /* Stop sync I/O and normal I/O and wait for everything to 1050 * go quiet. 1051 * This is called in two situations: 1052 * 1) management command handlers (reshape, remove disk, quiesce). 1053 * 2) one normal I/O request failed. 1054 1055 * After array_frozen is set to 1, new sync IO will be blocked at 1056 * raise_barrier(), and new normal I/O will blocked at _wait_barrier() 1057 * or wait_read_barrier(). The flying I/Os will either complete or be 1058 * queued. When everything goes quite, there are only queued I/Os left. 1059 1060 * Every flying I/O contributes to a conf->nr_pending[idx], idx is the 1061 * barrier bucket index which this I/O request hits. When all sync and 1062 * normal I/O are queued, sum of all conf->nr_pending[] will match sum 1063 * of all conf->nr_queued[]. But normal I/O failure is an exception, 1064 * in handle_read_error(), we may call freeze_array() before trying to 1065 * fix the read error. In this case, the error read I/O is not queued, 1066 * so get_unqueued_pending() == 1. 1067 * 1068 * Therefore before this function returns, we need to wait until 1069 * get_unqueued_pendings(conf) gets equal to extra. For 1070 * normal I/O context, extra is 1, in rested situations extra is 0. 1071 */ 1072 spin_lock_irq(&conf->resync_lock); 1073 conf->array_frozen = 1; 1074 raid1_log(conf->mddev, "wait freeze"); 1075 wait_event_lock_irq_cmd( 1076 conf->wait_barrier, 1077 get_unqueued_pending(conf) == extra, 1078 conf->resync_lock, 1079 flush_pending_writes(conf)); 1080 spin_unlock_irq(&conf->resync_lock); 1081 } 1082 static void unfreeze_array(struct r1conf *conf) 1083 { 1084 /* reverse the effect of the freeze */ 1085 spin_lock_irq(&conf->resync_lock); 1086 conf->array_frozen = 0; 1087 spin_unlock_irq(&conf->resync_lock); 1088 wake_up(&conf->wait_barrier); 1089 } 1090 1091 static struct bio *alloc_behind_master_bio(struct r1bio *r1_bio, 1092 struct bio *bio) 1093 { 1094 int size = bio->bi_iter.bi_size; 1095 unsigned vcnt = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; 1096 int i = 0; 1097 struct bio *behind_bio = NULL; 1098 1099 behind_bio = bio_alloc_mddev(GFP_NOIO, vcnt, r1_bio->mddev); 1100 if (!behind_bio) 1101 goto fail; 1102 1103 /* discard op, we don't support writezero/writesame yet */ 1104 if (!bio_has_data(bio)) 1105 goto skip_copy; 1106 1107 while (i < vcnt && size) { 1108 struct page *page; 1109 int len = min_t(int, PAGE_SIZE, size); 1110 1111 page = alloc_page(GFP_NOIO); 1112 if (unlikely(!page)) 1113 goto free_pages; 1114 1115 bio_add_page(behind_bio, page, len, 0); 1116 1117 size -= len; 1118 i++; 1119 } 1120 1121 bio_copy_data(behind_bio, bio); 1122 skip_copy: 1123 r1_bio->behind_master_bio = behind_bio;; 1124 set_bit(R1BIO_BehindIO, &r1_bio->state); 1125 1126 return behind_bio; 1127 1128 free_pages: 1129 pr_debug("%dB behind alloc failed, doing sync I/O\n", 1130 bio->bi_iter.bi_size); 1131 bio_free_pages(behind_bio); 1132 fail: 1133 return behind_bio; 1134 } 1135 1136 struct raid1_plug_cb { 1137 struct blk_plug_cb cb; 1138 struct bio_list pending; 1139 int pending_cnt; 1140 }; 1141 1142 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule) 1143 { 1144 struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb, 1145 cb); 1146 struct mddev *mddev = plug->cb.data; 1147 struct r1conf *conf = mddev->private; 1148 struct bio *bio; 1149 1150 if (from_schedule || current->bio_list) { 1151 spin_lock_irq(&conf->device_lock); 1152 bio_list_merge(&conf->pending_bio_list, &plug->pending); 1153 conf->pending_count += plug->pending_cnt; 1154 spin_unlock_irq(&conf->device_lock); 1155 wake_up(&conf->wait_barrier); 1156 md_wakeup_thread(mddev->thread); 1157 kfree(plug); 1158 return; 1159 } 1160 1161 /* we aren't scheduling, so we can do the write-out directly. */ 1162 bio = bio_list_get(&plug->pending); 1163 flush_bio_list(conf, bio); 1164 kfree(plug); 1165 } 1166 1167 static void init_r1bio(struct r1bio *r1_bio, struct mddev *mddev, struct bio *bio) 1168 { 1169 r1_bio->master_bio = bio; 1170 r1_bio->sectors = bio_sectors(bio); 1171 r1_bio->state = 0; 1172 r1_bio->mddev = mddev; 1173 r1_bio->sector = bio->bi_iter.bi_sector; 1174 } 1175 1176 static inline struct r1bio * 1177 alloc_r1bio(struct mddev *mddev, struct bio *bio) 1178 { 1179 struct r1conf *conf = mddev->private; 1180 struct r1bio *r1_bio; 1181 1182 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO); 1183 /* Ensure no bio records IO_BLOCKED */ 1184 memset(r1_bio->bios, 0, conf->raid_disks * sizeof(r1_bio->bios[0])); 1185 init_r1bio(r1_bio, mddev, bio); 1186 return r1_bio; 1187 } 1188 1189 static void raid1_read_request(struct mddev *mddev, struct bio *bio, 1190 int max_read_sectors, struct r1bio *r1_bio) 1191 { 1192 struct r1conf *conf = mddev->private; 1193 struct raid1_info *mirror; 1194 struct bio *read_bio; 1195 struct bitmap *bitmap = mddev->bitmap; 1196 const int op = bio_op(bio); 1197 const unsigned long do_sync = (bio->bi_opf & REQ_SYNC); 1198 int max_sectors; 1199 int rdisk; 1200 bool print_msg = !!r1_bio; 1201 char b[BDEVNAME_SIZE]; 1202 1203 /* 1204 * If r1_bio is set, we are blocking the raid1d thread 1205 * so there is a tiny risk of deadlock. So ask for 1206 * emergency memory if needed. 1207 */ 1208 gfp_t gfp = r1_bio ? (GFP_NOIO | __GFP_HIGH) : GFP_NOIO; 1209 1210 if (print_msg) { 1211 /* Need to get the block device name carefully */ 1212 struct md_rdev *rdev; 1213 rcu_read_lock(); 1214 rdev = rcu_dereference(conf->mirrors[r1_bio->read_disk].rdev); 1215 if (rdev) 1216 bdevname(rdev->bdev, b); 1217 else 1218 strcpy(b, "???"); 1219 rcu_read_unlock(); 1220 } 1221 1222 /* 1223 * Still need barrier for READ in case that whole 1224 * array is frozen. 1225 */ 1226 wait_read_barrier(conf, bio->bi_iter.bi_sector); 1227 1228 if (!r1_bio) 1229 r1_bio = alloc_r1bio(mddev, bio); 1230 else 1231 init_r1bio(r1_bio, mddev, bio); 1232 r1_bio->sectors = max_read_sectors; 1233 1234 /* 1235 * make_request() can abort the operation when read-ahead is being 1236 * used and no empty request is available. 1237 */ 1238 rdisk = read_balance(conf, r1_bio, &max_sectors); 1239 1240 if (rdisk < 0) { 1241 /* couldn't find anywhere to read from */ 1242 if (print_msg) { 1243 pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n", 1244 mdname(mddev), 1245 b, 1246 (unsigned long long)r1_bio->sector); 1247 } 1248 raid_end_bio_io(r1_bio); 1249 return; 1250 } 1251 mirror = conf->mirrors + rdisk; 1252 1253 if (print_msg) 1254 pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %s\n", 1255 mdname(mddev), 1256 (unsigned long long)r1_bio->sector, 1257 bdevname(mirror->rdev->bdev, b)); 1258 1259 if (test_bit(WriteMostly, &mirror->rdev->flags) && 1260 bitmap) { 1261 /* 1262 * Reading from a write-mostly device must take care not to 1263 * over-take any writes that are 'behind' 1264 */ 1265 raid1_log(mddev, "wait behind writes"); 1266 wait_event(bitmap->behind_wait, 1267 atomic_read(&bitmap->behind_writes) == 0); 1268 } 1269 1270 if (max_sectors < bio_sectors(bio)) { 1271 struct bio *split = bio_split(bio, max_sectors, 1272 gfp, conf->bio_split); 1273 bio_chain(split, bio); 1274 generic_make_request(bio); 1275 bio = split; 1276 r1_bio->master_bio = bio; 1277 r1_bio->sectors = max_sectors; 1278 } 1279 1280 r1_bio->read_disk = rdisk; 1281 1282 read_bio = bio_clone_fast(bio, gfp, mddev->bio_set); 1283 1284 r1_bio->bios[rdisk] = read_bio; 1285 1286 read_bio->bi_iter.bi_sector = r1_bio->sector + 1287 mirror->rdev->data_offset; 1288 read_bio->bi_bdev = mirror->rdev->bdev; 1289 read_bio->bi_end_io = raid1_end_read_request; 1290 bio_set_op_attrs(read_bio, op, do_sync); 1291 if (test_bit(FailFast, &mirror->rdev->flags) && 1292 test_bit(R1BIO_FailFast, &r1_bio->state)) 1293 read_bio->bi_opf |= MD_FAILFAST; 1294 read_bio->bi_private = r1_bio; 1295 1296 if (mddev->gendisk) 1297 trace_block_bio_remap(bdev_get_queue(read_bio->bi_bdev), 1298 read_bio, disk_devt(mddev->gendisk), 1299 r1_bio->sector); 1300 1301 generic_make_request(read_bio); 1302 } 1303 1304 static void raid1_write_request(struct mddev *mddev, struct bio *bio, 1305 int max_write_sectors) 1306 { 1307 struct r1conf *conf = mddev->private; 1308 struct r1bio *r1_bio; 1309 int i, disks; 1310 struct bitmap *bitmap = mddev->bitmap; 1311 unsigned long flags; 1312 struct md_rdev *blocked_rdev; 1313 struct blk_plug_cb *cb; 1314 struct raid1_plug_cb *plug = NULL; 1315 int first_clone; 1316 int max_sectors; 1317 1318 /* 1319 * Register the new request and wait if the reconstruction 1320 * thread has put up a bar for new requests. 1321 * Continue immediately if no resync is active currently. 1322 */ 1323 1324 md_write_start(mddev, bio); /* wait on superblock update early */ 1325 1326 if ((bio_end_sector(bio) > mddev->suspend_lo && 1327 bio->bi_iter.bi_sector < mddev->suspend_hi) || 1328 (mddev_is_clustered(mddev) && 1329 md_cluster_ops->area_resyncing(mddev, WRITE, 1330 bio->bi_iter.bi_sector, bio_end_sector(bio)))) { 1331 1332 /* 1333 * As the suspend_* range is controlled by userspace, we want 1334 * an interruptible wait. 1335 */ 1336 DEFINE_WAIT(w); 1337 for (;;) { 1338 flush_signals(current); 1339 prepare_to_wait(&conf->wait_barrier, 1340 &w, TASK_INTERRUPTIBLE); 1341 if (bio_end_sector(bio) <= mddev->suspend_lo || 1342 bio->bi_iter.bi_sector >= mddev->suspend_hi || 1343 (mddev_is_clustered(mddev) && 1344 !md_cluster_ops->area_resyncing(mddev, WRITE, 1345 bio->bi_iter.bi_sector, 1346 bio_end_sector(bio)))) 1347 break; 1348 schedule(); 1349 } 1350 finish_wait(&conf->wait_barrier, &w); 1351 } 1352 wait_barrier(conf, bio->bi_iter.bi_sector); 1353 1354 r1_bio = alloc_r1bio(mddev, bio); 1355 r1_bio->sectors = max_write_sectors; 1356 1357 if (conf->pending_count >= max_queued_requests) { 1358 md_wakeup_thread(mddev->thread); 1359 raid1_log(mddev, "wait queued"); 1360 wait_event(conf->wait_barrier, 1361 conf->pending_count < max_queued_requests); 1362 } 1363 /* first select target devices under rcu_lock and 1364 * inc refcount on their rdev. Record them by setting 1365 * bios[x] to bio 1366 * If there are known/acknowledged bad blocks on any device on 1367 * which we have seen a write error, we want to avoid writing those 1368 * blocks. 1369 * This potentially requires several writes to write around 1370 * the bad blocks. Each set of writes gets it's own r1bio 1371 * with a set of bios attached. 1372 */ 1373 1374 disks = conf->raid_disks * 2; 1375 retry_write: 1376 blocked_rdev = NULL; 1377 rcu_read_lock(); 1378 max_sectors = r1_bio->sectors; 1379 for (i = 0; i < disks; i++) { 1380 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 1381 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) { 1382 atomic_inc(&rdev->nr_pending); 1383 blocked_rdev = rdev; 1384 break; 1385 } 1386 r1_bio->bios[i] = NULL; 1387 if (!rdev || test_bit(Faulty, &rdev->flags)) { 1388 if (i < conf->raid_disks) 1389 set_bit(R1BIO_Degraded, &r1_bio->state); 1390 continue; 1391 } 1392 1393 atomic_inc(&rdev->nr_pending); 1394 if (test_bit(WriteErrorSeen, &rdev->flags)) { 1395 sector_t first_bad; 1396 int bad_sectors; 1397 int is_bad; 1398 1399 is_bad = is_badblock(rdev, r1_bio->sector, max_sectors, 1400 &first_bad, &bad_sectors); 1401 if (is_bad < 0) { 1402 /* mustn't write here until the bad block is 1403 * acknowledged*/ 1404 set_bit(BlockedBadBlocks, &rdev->flags); 1405 blocked_rdev = rdev; 1406 break; 1407 } 1408 if (is_bad && first_bad <= r1_bio->sector) { 1409 /* Cannot write here at all */ 1410 bad_sectors -= (r1_bio->sector - first_bad); 1411 if (bad_sectors < max_sectors) 1412 /* mustn't write more than bad_sectors 1413 * to other devices yet 1414 */ 1415 max_sectors = bad_sectors; 1416 rdev_dec_pending(rdev, mddev); 1417 /* We don't set R1BIO_Degraded as that 1418 * only applies if the disk is 1419 * missing, so it might be re-added, 1420 * and we want to know to recover this 1421 * chunk. 1422 * In this case the device is here, 1423 * and the fact that this chunk is not 1424 * in-sync is recorded in the bad 1425 * block log 1426 */ 1427 continue; 1428 } 1429 if (is_bad) { 1430 int good_sectors = first_bad - r1_bio->sector; 1431 if (good_sectors < max_sectors) 1432 max_sectors = good_sectors; 1433 } 1434 } 1435 r1_bio->bios[i] = bio; 1436 } 1437 rcu_read_unlock(); 1438 1439 if (unlikely(blocked_rdev)) { 1440 /* Wait for this device to become unblocked */ 1441 int j; 1442 1443 for (j = 0; j < i; j++) 1444 if (r1_bio->bios[j]) 1445 rdev_dec_pending(conf->mirrors[j].rdev, mddev); 1446 r1_bio->state = 0; 1447 allow_barrier(conf, bio->bi_iter.bi_sector); 1448 raid1_log(mddev, "wait rdev %d blocked", blocked_rdev->raid_disk); 1449 md_wait_for_blocked_rdev(blocked_rdev, mddev); 1450 wait_barrier(conf, bio->bi_iter.bi_sector); 1451 goto retry_write; 1452 } 1453 1454 if (max_sectors < bio_sectors(bio)) { 1455 struct bio *split = bio_split(bio, max_sectors, 1456 GFP_NOIO, conf->bio_split); 1457 bio_chain(split, bio); 1458 generic_make_request(bio); 1459 bio = split; 1460 r1_bio->master_bio = bio; 1461 r1_bio->sectors = max_sectors; 1462 } 1463 1464 atomic_set(&r1_bio->remaining, 1); 1465 atomic_set(&r1_bio->behind_remaining, 0); 1466 1467 first_clone = 1; 1468 1469 for (i = 0; i < disks; i++) { 1470 struct bio *mbio = NULL; 1471 if (!r1_bio->bios[i]) 1472 continue; 1473 1474 1475 if (first_clone) { 1476 /* do behind I/O ? 1477 * Not if there are too many, or cannot 1478 * allocate memory, or a reader on WriteMostly 1479 * is waiting for behind writes to flush */ 1480 if (bitmap && 1481 (atomic_read(&bitmap->behind_writes) 1482 < mddev->bitmap_info.max_write_behind) && 1483 !waitqueue_active(&bitmap->behind_wait)) { 1484 mbio = alloc_behind_master_bio(r1_bio, bio); 1485 } 1486 1487 bitmap_startwrite(bitmap, r1_bio->sector, 1488 r1_bio->sectors, 1489 test_bit(R1BIO_BehindIO, 1490 &r1_bio->state)); 1491 first_clone = 0; 1492 } 1493 1494 if (!mbio) { 1495 if (r1_bio->behind_master_bio) 1496 mbio = bio_clone_fast(r1_bio->behind_master_bio, 1497 GFP_NOIO, 1498 mddev->bio_set); 1499 else 1500 mbio = bio_clone_fast(bio, GFP_NOIO, mddev->bio_set); 1501 } 1502 1503 if (r1_bio->behind_master_bio) { 1504 if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags)) 1505 atomic_inc(&r1_bio->behind_remaining); 1506 } 1507 1508 r1_bio->bios[i] = mbio; 1509 1510 mbio->bi_iter.bi_sector = (r1_bio->sector + 1511 conf->mirrors[i].rdev->data_offset); 1512 mbio->bi_bdev = conf->mirrors[i].rdev->bdev; 1513 mbio->bi_end_io = raid1_end_write_request; 1514 mbio->bi_opf = bio_op(bio) | (bio->bi_opf & (REQ_SYNC | REQ_FUA)); 1515 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags) && 1516 !test_bit(WriteMostly, &conf->mirrors[i].rdev->flags) && 1517 conf->raid_disks - mddev->degraded > 1) 1518 mbio->bi_opf |= MD_FAILFAST; 1519 mbio->bi_private = r1_bio; 1520 1521 atomic_inc(&r1_bio->remaining); 1522 1523 if (mddev->gendisk) 1524 trace_block_bio_remap(bdev_get_queue(mbio->bi_bdev), 1525 mbio, disk_devt(mddev->gendisk), 1526 r1_bio->sector); 1527 /* flush_pending_writes() needs access to the rdev so...*/ 1528 mbio->bi_bdev = (void*)conf->mirrors[i].rdev; 1529 1530 cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug)); 1531 if (cb) 1532 plug = container_of(cb, struct raid1_plug_cb, cb); 1533 else 1534 plug = NULL; 1535 if (plug) { 1536 bio_list_add(&plug->pending, mbio); 1537 plug->pending_cnt++; 1538 } else { 1539 spin_lock_irqsave(&conf->device_lock, flags); 1540 bio_list_add(&conf->pending_bio_list, mbio); 1541 conf->pending_count++; 1542 spin_unlock_irqrestore(&conf->device_lock, flags); 1543 md_wakeup_thread(mddev->thread); 1544 } 1545 } 1546 1547 r1_bio_write_done(r1_bio); 1548 1549 /* In case raid1d snuck in to freeze_array */ 1550 wake_up(&conf->wait_barrier); 1551 } 1552 1553 static void raid1_make_request(struct mddev *mddev, struct bio *bio) 1554 { 1555 sector_t sectors; 1556 1557 if (unlikely(bio->bi_opf & REQ_PREFLUSH)) { 1558 md_flush_request(mddev, bio); 1559 return; 1560 } 1561 1562 /* 1563 * There is a limit to the maximum size, but 1564 * the read/write handler might find a lower limit 1565 * due to bad blocks. To avoid multiple splits, 1566 * we pass the maximum number of sectors down 1567 * and let the lower level perform the split. 1568 */ 1569 sectors = align_to_barrier_unit_end( 1570 bio->bi_iter.bi_sector, bio_sectors(bio)); 1571 1572 if (bio_data_dir(bio) == READ) 1573 raid1_read_request(mddev, bio, sectors, NULL); 1574 else 1575 raid1_write_request(mddev, bio, sectors); 1576 } 1577 1578 static void raid1_status(struct seq_file *seq, struct mddev *mddev) 1579 { 1580 struct r1conf *conf = mddev->private; 1581 int i; 1582 1583 seq_printf(seq, " [%d/%d] [", conf->raid_disks, 1584 conf->raid_disks - mddev->degraded); 1585 rcu_read_lock(); 1586 for (i = 0; i < conf->raid_disks; i++) { 1587 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 1588 seq_printf(seq, "%s", 1589 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_"); 1590 } 1591 rcu_read_unlock(); 1592 seq_printf(seq, "]"); 1593 } 1594 1595 static void raid1_error(struct mddev *mddev, struct md_rdev *rdev) 1596 { 1597 char b[BDEVNAME_SIZE]; 1598 struct r1conf *conf = mddev->private; 1599 unsigned long flags; 1600 1601 /* 1602 * If it is not operational, then we have already marked it as dead 1603 * else if it is the last working disks, ignore the error, let the 1604 * next level up know. 1605 * else mark the drive as failed 1606 */ 1607 spin_lock_irqsave(&conf->device_lock, flags); 1608 if (test_bit(In_sync, &rdev->flags) 1609 && (conf->raid_disks - mddev->degraded) == 1) { 1610 /* 1611 * Don't fail the drive, act as though we were just a 1612 * normal single drive. 1613 * However don't try a recovery from this drive as 1614 * it is very likely to fail. 1615 */ 1616 conf->recovery_disabled = mddev->recovery_disabled; 1617 spin_unlock_irqrestore(&conf->device_lock, flags); 1618 return; 1619 } 1620 set_bit(Blocked, &rdev->flags); 1621 if (test_and_clear_bit(In_sync, &rdev->flags)) { 1622 mddev->degraded++; 1623 set_bit(Faulty, &rdev->flags); 1624 } else 1625 set_bit(Faulty, &rdev->flags); 1626 spin_unlock_irqrestore(&conf->device_lock, flags); 1627 /* 1628 * if recovery is running, make sure it aborts. 1629 */ 1630 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 1631 set_mask_bits(&mddev->sb_flags, 0, 1632 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING)); 1633 pr_crit("md/raid1:%s: Disk failure on %s, disabling device.\n" 1634 "md/raid1:%s: Operation continuing on %d devices.\n", 1635 mdname(mddev), bdevname(rdev->bdev, b), 1636 mdname(mddev), conf->raid_disks - mddev->degraded); 1637 } 1638 1639 static void print_conf(struct r1conf *conf) 1640 { 1641 int i; 1642 1643 pr_debug("RAID1 conf printout:\n"); 1644 if (!conf) { 1645 pr_debug("(!conf)\n"); 1646 return; 1647 } 1648 pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded, 1649 conf->raid_disks); 1650 1651 rcu_read_lock(); 1652 for (i = 0; i < conf->raid_disks; i++) { 1653 char b[BDEVNAME_SIZE]; 1654 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 1655 if (rdev) 1656 pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n", 1657 i, !test_bit(In_sync, &rdev->flags), 1658 !test_bit(Faulty, &rdev->flags), 1659 bdevname(rdev->bdev,b)); 1660 } 1661 rcu_read_unlock(); 1662 } 1663 1664 static void close_sync(struct r1conf *conf) 1665 { 1666 wait_all_barriers(conf); 1667 allow_all_barriers(conf); 1668 1669 mempool_destroy(conf->r1buf_pool); 1670 conf->r1buf_pool = NULL; 1671 } 1672 1673 static int raid1_spare_active(struct mddev *mddev) 1674 { 1675 int i; 1676 struct r1conf *conf = mddev->private; 1677 int count = 0; 1678 unsigned long flags; 1679 1680 /* 1681 * Find all failed disks within the RAID1 configuration 1682 * and mark them readable. 1683 * Called under mddev lock, so rcu protection not needed. 1684 * device_lock used to avoid races with raid1_end_read_request 1685 * which expects 'In_sync' flags and ->degraded to be consistent. 1686 */ 1687 spin_lock_irqsave(&conf->device_lock, flags); 1688 for (i = 0; i < conf->raid_disks; i++) { 1689 struct md_rdev *rdev = conf->mirrors[i].rdev; 1690 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev; 1691 if (repl 1692 && !test_bit(Candidate, &repl->flags) 1693 && repl->recovery_offset == MaxSector 1694 && !test_bit(Faulty, &repl->flags) 1695 && !test_and_set_bit(In_sync, &repl->flags)) { 1696 /* replacement has just become active */ 1697 if (!rdev || 1698 !test_and_clear_bit(In_sync, &rdev->flags)) 1699 count++; 1700 if (rdev) { 1701 /* Replaced device not technically 1702 * faulty, but we need to be sure 1703 * it gets removed and never re-added 1704 */ 1705 set_bit(Faulty, &rdev->flags); 1706 sysfs_notify_dirent_safe( 1707 rdev->sysfs_state); 1708 } 1709 } 1710 if (rdev 1711 && rdev->recovery_offset == MaxSector 1712 && !test_bit(Faulty, &rdev->flags) 1713 && !test_and_set_bit(In_sync, &rdev->flags)) { 1714 count++; 1715 sysfs_notify_dirent_safe(rdev->sysfs_state); 1716 } 1717 } 1718 mddev->degraded -= count; 1719 spin_unlock_irqrestore(&conf->device_lock, flags); 1720 1721 print_conf(conf); 1722 return count; 1723 } 1724 1725 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev) 1726 { 1727 struct r1conf *conf = mddev->private; 1728 int err = -EEXIST; 1729 int mirror = 0; 1730 struct raid1_info *p; 1731 int first = 0; 1732 int last = conf->raid_disks - 1; 1733 1734 if (mddev->recovery_disabled == conf->recovery_disabled) 1735 return -EBUSY; 1736 1737 if (md_integrity_add_rdev(rdev, mddev)) 1738 return -ENXIO; 1739 1740 if (rdev->raid_disk >= 0) 1741 first = last = rdev->raid_disk; 1742 1743 /* 1744 * find the disk ... but prefer rdev->saved_raid_disk 1745 * if possible. 1746 */ 1747 if (rdev->saved_raid_disk >= 0 && 1748 rdev->saved_raid_disk >= first && 1749 conf->mirrors[rdev->saved_raid_disk].rdev == NULL) 1750 first = last = rdev->saved_raid_disk; 1751 1752 for (mirror = first; mirror <= last; mirror++) { 1753 p = conf->mirrors+mirror; 1754 if (!p->rdev) { 1755 1756 if (mddev->gendisk) 1757 disk_stack_limits(mddev->gendisk, rdev->bdev, 1758 rdev->data_offset << 9); 1759 1760 p->head_position = 0; 1761 rdev->raid_disk = mirror; 1762 err = 0; 1763 /* As all devices are equivalent, we don't need a full recovery 1764 * if this was recently any drive of the array 1765 */ 1766 if (rdev->saved_raid_disk < 0) 1767 conf->fullsync = 1; 1768 rcu_assign_pointer(p->rdev, rdev); 1769 break; 1770 } 1771 if (test_bit(WantReplacement, &p->rdev->flags) && 1772 p[conf->raid_disks].rdev == NULL) { 1773 /* Add this device as a replacement */ 1774 clear_bit(In_sync, &rdev->flags); 1775 set_bit(Replacement, &rdev->flags); 1776 rdev->raid_disk = mirror; 1777 err = 0; 1778 conf->fullsync = 1; 1779 rcu_assign_pointer(p[conf->raid_disks].rdev, rdev); 1780 break; 1781 } 1782 } 1783 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev))) 1784 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue); 1785 print_conf(conf); 1786 return err; 1787 } 1788 1789 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev) 1790 { 1791 struct r1conf *conf = mddev->private; 1792 int err = 0; 1793 int number = rdev->raid_disk; 1794 struct raid1_info *p = conf->mirrors + number; 1795 1796 if (rdev != p->rdev) 1797 p = conf->mirrors + conf->raid_disks + number; 1798 1799 print_conf(conf); 1800 if (rdev == p->rdev) { 1801 if (test_bit(In_sync, &rdev->flags) || 1802 atomic_read(&rdev->nr_pending)) { 1803 err = -EBUSY; 1804 goto abort; 1805 } 1806 /* Only remove non-faulty devices if recovery 1807 * is not possible. 1808 */ 1809 if (!test_bit(Faulty, &rdev->flags) && 1810 mddev->recovery_disabled != conf->recovery_disabled && 1811 mddev->degraded < conf->raid_disks) { 1812 err = -EBUSY; 1813 goto abort; 1814 } 1815 p->rdev = NULL; 1816 if (!test_bit(RemoveSynchronized, &rdev->flags)) { 1817 synchronize_rcu(); 1818 if (atomic_read(&rdev->nr_pending)) { 1819 /* lost the race, try later */ 1820 err = -EBUSY; 1821 p->rdev = rdev; 1822 goto abort; 1823 } 1824 } 1825 if (conf->mirrors[conf->raid_disks + number].rdev) { 1826 /* We just removed a device that is being replaced. 1827 * Move down the replacement. We drain all IO before 1828 * doing this to avoid confusion. 1829 */ 1830 struct md_rdev *repl = 1831 conf->mirrors[conf->raid_disks + number].rdev; 1832 freeze_array(conf, 0); 1833 clear_bit(Replacement, &repl->flags); 1834 p->rdev = repl; 1835 conf->mirrors[conf->raid_disks + number].rdev = NULL; 1836 unfreeze_array(conf); 1837 } 1838 1839 clear_bit(WantReplacement, &rdev->flags); 1840 err = md_integrity_register(mddev); 1841 } 1842 abort: 1843 1844 print_conf(conf); 1845 return err; 1846 } 1847 1848 static void end_sync_read(struct bio *bio) 1849 { 1850 struct r1bio *r1_bio = get_resync_r1bio(bio); 1851 1852 update_head_pos(r1_bio->read_disk, r1_bio); 1853 1854 /* 1855 * we have read a block, now it needs to be re-written, 1856 * or re-read if the read failed. 1857 * We don't do much here, just schedule handling by raid1d 1858 */ 1859 if (!bio->bi_error) 1860 set_bit(R1BIO_Uptodate, &r1_bio->state); 1861 1862 if (atomic_dec_and_test(&r1_bio->remaining)) 1863 reschedule_retry(r1_bio); 1864 } 1865 1866 static void end_sync_write(struct bio *bio) 1867 { 1868 int uptodate = !bio->bi_error; 1869 struct r1bio *r1_bio = get_resync_r1bio(bio); 1870 struct mddev *mddev = r1_bio->mddev; 1871 struct r1conf *conf = mddev->private; 1872 sector_t first_bad; 1873 int bad_sectors; 1874 struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev; 1875 1876 if (!uptodate) { 1877 sector_t sync_blocks = 0; 1878 sector_t s = r1_bio->sector; 1879 long sectors_to_go = r1_bio->sectors; 1880 /* make sure these bits doesn't get cleared. */ 1881 do { 1882 bitmap_end_sync(mddev->bitmap, s, 1883 &sync_blocks, 1); 1884 s += sync_blocks; 1885 sectors_to_go -= sync_blocks; 1886 } while (sectors_to_go > 0); 1887 set_bit(WriteErrorSeen, &rdev->flags); 1888 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 1889 set_bit(MD_RECOVERY_NEEDED, & 1890 mddev->recovery); 1891 set_bit(R1BIO_WriteError, &r1_bio->state); 1892 } else if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors, 1893 &first_bad, &bad_sectors) && 1894 !is_badblock(conf->mirrors[r1_bio->read_disk].rdev, 1895 r1_bio->sector, 1896 r1_bio->sectors, 1897 &first_bad, &bad_sectors) 1898 ) 1899 set_bit(R1BIO_MadeGood, &r1_bio->state); 1900 1901 if (atomic_dec_and_test(&r1_bio->remaining)) { 1902 int s = r1_bio->sectors; 1903 if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 1904 test_bit(R1BIO_WriteError, &r1_bio->state)) 1905 reschedule_retry(r1_bio); 1906 else { 1907 put_buf(r1_bio); 1908 md_done_sync(mddev, s, uptodate); 1909 } 1910 } 1911 } 1912 1913 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector, 1914 int sectors, struct page *page, int rw) 1915 { 1916 if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false)) 1917 /* success */ 1918 return 1; 1919 if (rw == WRITE) { 1920 set_bit(WriteErrorSeen, &rdev->flags); 1921 if (!test_and_set_bit(WantReplacement, 1922 &rdev->flags)) 1923 set_bit(MD_RECOVERY_NEEDED, & 1924 rdev->mddev->recovery); 1925 } 1926 /* need to record an error - either for the block or the device */ 1927 if (!rdev_set_badblocks(rdev, sector, sectors, 0)) 1928 md_error(rdev->mddev, rdev); 1929 return 0; 1930 } 1931 1932 static int fix_sync_read_error(struct r1bio *r1_bio) 1933 { 1934 /* Try some synchronous reads of other devices to get 1935 * good data, much like with normal read errors. Only 1936 * read into the pages we already have so we don't 1937 * need to re-issue the read request. 1938 * We don't need to freeze the array, because being in an 1939 * active sync request, there is no normal IO, and 1940 * no overlapping syncs. 1941 * We don't need to check is_badblock() again as we 1942 * made sure that anything with a bad block in range 1943 * will have bi_end_io clear. 1944 */ 1945 struct mddev *mddev = r1_bio->mddev; 1946 struct r1conf *conf = mddev->private; 1947 struct bio *bio = r1_bio->bios[r1_bio->read_disk]; 1948 struct page **pages = get_resync_pages(bio)->pages; 1949 sector_t sect = r1_bio->sector; 1950 int sectors = r1_bio->sectors; 1951 int idx = 0; 1952 struct md_rdev *rdev; 1953 1954 rdev = conf->mirrors[r1_bio->read_disk].rdev; 1955 if (test_bit(FailFast, &rdev->flags)) { 1956 /* Don't try recovering from here - just fail it 1957 * ... unless it is the last working device of course */ 1958 md_error(mddev, rdev); 1959 if (test_bit(Faulty, &rdev->flags)) 1960 /* Don't try to read from here, but make sure 1961 * put_buf does it's thing 1962 */ 1963 bio->bi_end_io = end_sync_write; 1964 } 1965 1966 while(sectors) { 1967 int s = sectors; 1968 int d = r1_bio->read_disk; 1969 int success = 0; 1970 int start; 1971 1972 if (s > (PAGE_SIZE>>9)) 1973 s = PAGE_SIZE >> 9; 1974 do { 1975 if (r1_bio->bios[d]->bi_end_io == end_sync_read) { 1976 /* No rcu protection needed here devices 1977 * can only be removed when no resync is 1978 * active, and resync is currently active 1979 */ 1980 rdev = conf->mirrors[d].rdev; 1981 if (sync_page_io(rdev, sect, s<<9, 1982 pages[idx], 1983 REQ_OP_READ, 0, false)) { 1984 success = 1; 1985 break; 1986 } 1987 } 1988 d++; 1989 if (d == conf->raid_disks * 2) 1990 d = 0; 1991 } while (!success && d != r1_bio->read_disk); 1992 1993 if (!success) { 1994 char b[BDEVNAME_SIZE]; 1995 int abort = 0; 1996 /* Cannot read from anywhere, this block is lost. 1997 * Record a bad block on each device. If that doesn't 1998 * work just disable and interrupt the recovery. 1999 * Don't fail devices as that won't really help. 2000 */ 2001 pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n", 2002 mdname(mddev), 2003 bdevname(bio->bi_bdev, b), 2004 (unsigned long long)r1_bio->sector); 2005 for (d = 0; d < conf->raid_disks * 2; d++) { 2006 rdev = conf->mirrors[d].rdev; 2007 if (!rdev || test_bit(Faulty, &rdev->flags)) 2008 continue; 2009 if (!rdev_set_badblocks(rdev, sect, s, 0)) 2010 abort = 1; 2011 } 2012 if (abort) { 2013 conf->recovery_disabled = 2014 mddev->recovery_disabled; 2015 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 2016 md_done_sync(mddev, r1_bio->sectors, 0); 2017 put_buf(r1_bio); 2018 return 0; 2019 } 2020 /* Try next page */ 2021 sectors -= s; 2022 sect += s; 2023 idx++; 2024 continue; 2025 } 2026 2027 start = d; 2028 /* write it back and re-read */ 2029 while (d != r1_bio->read_disk) { 2030 if (d == 0) 2031 d = conf->raid_disks * 2; 2032 d--; 2033 if (r1_bio->bios[d]->bi_end_io != end_sync_read) 2034 continue; 2035 rdev = conf->mirrors[d].rdev; 2036 if (r1_sync_page_io(rdev, sect, s, 2037 pages[idx], 2038 WRITE) == 0) { 2039 r1_bio->bios[d]->bi_end_io = NULL; 2040 rdev_dec_pending(rdev, mddev); 2041 } 2042 } 2043 d = start; 2044 while (d != r1_bio->read_disk) { 2045 if (d == 0) 2046 d = conf->raid_disks * 2; 2047 d--; 2048 if (r1_bio->bios[d]->bi_end_io != end_sync_read) 2049 continue; 2050 rdev = conf->mirrors[d].rdev; 2051 if (r1_sync_page_io(rdev, sect, s, 2052 pages[idx], 2053 READ) != 0) 2054 atomic_add(s, &rdev->corrected_errors); 2055 } 2056 sectors -= s; 2057 sect += s; 2058 idx ++; 2059 } 2060 set_bit(R1BIO_Uptodate, &r1_bio->state); 2061 bio->bi_error = 0; 2062 return 1; 2063 } 2064 2065 static void process_checks(struct r1bio *r1_bio) 2066 { 2067 /* We have read all readable devices. If we haven't 2068 * got the block, then there is no hope left. 2069 * If we have, then we want to do a comparison 2070 * and skip the write if everything is the same. 2071 * If any blocks failed to read, then we need to 2072 * attempt an over-write 2073 */ 2074 struct mddev *mddev = r1_bio->mddev; 2075 struct r1conf *conf = mddev->private; 2076 int primary; 2077 int i; 2078 int vcnt; 2079 2080 /* Fix variable parts of all bios */ 2081 vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9); 2082 for (i = 0; i < conf->raid_disks * 2; i++) { 2083 int j; 2084 int size; 2085 int error; 2086 struct bio_vec *bi; 2087 struct bio *b = r1_bio->bios[i]; 2088 struct resync_pages *rp = get_resync_pages(b); 2089 if (b->bi_end_io != end_sync_read) 2090 continue; 2091 /* fixup the bio for reuse, but preserve errno */ 2092 error = b->bi_error; 2093 bio_reset(b); 2094 b->bi_error = error; 2095 b->bi_vcnt = vcnt; 2096 b->bi_iter.bi_size = r1_bio->sectors << 9; 2097 b->bi_iter.bi_sector = r1_bio->sector + 2098 conf->mirrors[i].rdev->data_offset; 2099 b->bi_bdev = conf->mirrors[i].rdev->bdev; 2100 b->bi_end_io = end_sync_read; 2101 rp->raid_bio = r1_bio; 2102 b->bi_private = rp; 2103 2104 size = b->bi_iter.bi_size; 2105 bio_for_each_segment_all(bi, b, j) { 2106 bi->bv_offset = 0; 2107 if (size > PAGE_SIZE) 2108 bi->bv_len = PAGE_SIZE; 2109 else 2110 bi->bv_len = size; 2111 size -= PAGE_SIZE; 2112 } 2113 } 2114 for (primary = 0; primary < conf->raid_disks * 2; primary++) 2115 if (r1_bio->bios[primary]->bi_end_io == end_sync_read && 2116 !r1_bio->bios[primary]->bi_error) { 2117 r1_bio->bios[primary]->bi_end_io = NULL; 2118 rdev_dec_pending(conf->mirrors[primary].rdev, mddev); 2119 break; 2120 } 2121 r1_bio->read_disk = primary; 2122 for (i = 0; i < conf->raid_disks * 2; i++) { 2123 int j; 2124 struct bio *pbio = r1_bio->bios[primary]; 2125 struct bio *sbio = r1_bio->bios[i]; 2126 int error = sbio->bi_error; 2127 struct page **ppages = get_resync_pages(pbio)->pages; 2128 struct page **spages = get_resync_pages(sbio)->pages; 2129 struct bio_vec *bi; 2130 int page_len[RESYNC_PAGES] = { 0 }; 2131 2132 if (sbio->bi_end_io != end_sync_read) 2133 continue; 2134 /* Now we can 'fixup' the error value */ 2135 sbio->bi_error = 0; 2136 2137 bio_for_each_segment_all(bi, sbio, j) 2138 page_len[j] = bi->bv_len; 2139 2140 if (!error) { 2141 for (j = vcnt; j-- ; ) { 2142 if (memcmp(page_address(ppages[j]), 2143 page_address(spages[j]), 2144 page_len[j])) 2145 break; 2146 } 2147 } else 2148 j = 0; 2149 if (j >= 0) 2150 atomic64_add(r1_bio->sectors, &mddev->resync_mismatches); 2151 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery) 2152 && !error)) { 2153 /* No need to write to this device. */ 2154 sbio->bi_end_io = NULL; 2155 rdev_dec_pending(conf->mirrors[i].rdev, mddev); 2156 continue; 2157 } 2158 2159 bio_copy_data(sbio, pbio); 2160 } 2161 } 2162 2163 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio) 2164 { 2165 struct r1conf *conf = mddev->private; 2166 int i; 2167 int disks = conf->raid_disks * 2; 2168 struct bio *bio, *wbio; 2169 2170 bio = r1_bio->bios[r1_bio->read_disk]; 2171 2172 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) 2173 /* ouch - failed to read all of that. */ 2174 if (!fix_sync_read_error(r1_bio)) 2175 return; 2176 2177 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 2178 process_checks(r1_bio); 2179 2180 /* 2181 * schedule writes 2182 */ 2183 atomic_set(&r1_bio->remaining, 1); 2184 for (i = 0; i < disks ; i++) { 2185 wbio = r1_bio->bios[i]; 2186 if (wbio->bi_end_io == NULL || 2187 (wbio->bi_end_io == end_sync_read && 2188 (i == r1_bio->read_disk || 2189 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery)))) 2190 continue; 2191 if (test_bit(Faulty, &conf->mirrors[i].rdev->flags)) 2192 continue; 2193 2194 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0); 2195 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags)) 2196 wbio->bi_opf |= MD_FAILFAST; 2197 2198 wbio->bi_end_io = end_sync_write; 2199 atomic_inc(&r1_bio->remaining); 2200 md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio)); 2201 2202 generic_make_request(wbio); 2203 } 2204 2205 if (atomic_dec_and_test(&r1_bio->remaining)) { 2206 /* if we're here, all write(s) have completed, so clean up */ 2207 int s = r1_bio->sectors; 2208 if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 2209 test_bit(R1BIO_WriteError, &r1_bio->state)) 2210 reschedule_retry(r1_bio); 2211 else { 2212 put_buf(r1_bio); 2213 md_done_sync(mddev, s, 1); 2214 } 2215 } 2216 } 2217 2218 /* 2219 * This is a kernel thread which: 2220 * 2221 * 1. Retries failed read operations on working mirrors. 2222 * 2. Updates the raid superblock when problems encounter. 2223 * 3. Performs writes following reads for array synchronising. 2224 */ 2225 2226 static void fix_read_error(struct r1conf *conf, int read_disk, 2227 sector_t sect, int sectors) 2228 { 2229 struct mddev *mddev = conf->mddev; 2230 while(sectors) { 2231 int s = sectors; 2232 int d = read_disk; 2233 int success = 0; 2234 int start; 2235 struct md_rdev *rdev; 2236 2237 if (s > (PAGE_SIZE>>9)) 2238 s = PAGE_SIZE >> 9; 2239 2240 do { 2241 sector_t first_bad; 2242 int bad_sectors; 2243 2244 rcu_read_lock(); 2245 rdev = rcu_dereference(conf->mirrors[d].rdev); 2246 if (rdev && 2247 (test_bit(In_sync, &rdev->flags) || 2248 (!test_bit(Faulty, &rdev->flags) && 2249 rdev->recovery_offset >= sect + s)) && 2250 is_badblock(rdev, sect, s, 2251 &first_bad, &bad_sectors) == 0) { 2252 atomic_inc(&rdev->nr_pending); 2253 rcu_read_unlock(); 2254 if (sync_page_io(rdev, sect, s<<9, 2255 conf->tmppage, REQ_OP_READ, 0, false)) 2256 success = 1; 2257 rdev_dec_pending(rdev, mddev); 2258 if (success) 2259 break; 2260 } else 2261 rcu_read_unlock(); 2262 d++; 2263 if (d == conf->raid_disks * 2) 2264 d = 0; 2265 } while (!success && d != read_disk); 2266 2267 if (!success) { 2268 /* Cannot read from anywhere - mark it bad */ 2269 struct md_rdev *rdev = conf->mirrors[read_disk].rdev; 2270 if (!rdev_set_badblocks(rdev, sect, s, 0)) 2271 md_error(mddev, rdev); 2272 break; 2273 } 2274 /* write it back and re-read */ 2275 start = d; 2276 while (d != read_disk) { 2277 if (d==0) 2278 d = conf->raid_disks * 2; 2279 d--; 2280 rcu_read_lock(); 2281 rdev = rcu_dereference(conf->mirrors[d].rdev); 2282 if (rdev && 2283 !test_bit(Faulty, &rdev->flags)) { 2284 atomic_inc(&rdev->nr_pending); 2285 rcu_read_unlock(); 2286 r1_sync_page_io(rdev, sect, s, 2287 conf->tmppage, WRITE); 2288 rdev_dec_pending(rdev, mddev); 2289 } else 2290 rcu_read_unlock(); 2291 } 2292 d = start; 2293 while (d != read_disk) { 2294 char b[BDEVNAME_SIZE]; 2295 if (d==0) 2296 d = conf->raid_disks * 2; 2297 d--; 2298 rcu_read_lock(); 2299 rdev = rcu_dereference(conf->mirrors[d].rdev); 2300 if (rdev && 2301 !test_bit(Faulty, &rdev->flags)) { 2302 atomic_inc(&rdev->nr_pending); 2303 rcu_read_unlock(); 2304 if (r1_sync_page_io(rdev, sect, s, 2305 conf->tmppage, READ)) { 2306 atomic_add(s, &rdev->corrected_errors); 2307 pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %s)\n", 2308 mdname(mddev), s, 2309 (unsigned long long)(sect + 2310 rdev->data_offset), 2311 bdevname(rdev->bdev, b)); 2312 } 2313 rdev_dec_pending(rdev, mddev); 2314 } else 2315 rcu_read_unlock(); 2316 } 2317 sectors -= s; 2318 sect += s; 2319 } 2320 } 2321 2322 static int narrow_write_error(struct r1bio *r1_bio, int i) 2323 { 2324 struct mddev *mddev = r1_bio->mddev; 2325 struct r1conf *conf = mddev->private; 2326 struct md_rdev *rdev = conf->mirrors[i].rdev; 2327 2328 /* bio has the data to be written to device 'i' where 2329 * we just recently had a write error. 2330 * We repeatedly clone the bio and trim down to one block, 2331 * then try the write. Where the write fails we record 2332 * a bad block. 2333 * It is conceivable that the bio doesn't exactly align with 2334 * blocks. We must handle this somehow. 2335 * 2336 * We currently own a reference on the rdev. 2337 */ 2338 2339 int block_sectors; 2340 sector_t sector; 2341 int sectors; 2342 int sect_to_write = r1_bio->sectors; 2343 int ok = 1; 2344 2345 if (rdev->badblocks.shift < 0) 2346 return 0; 2347 2348 block_sectors = roundup(1 << rdev->badblocks.shift, 2349 bdev_logical_block_size(rdev->bdev) >> 9); 2350 sector = r1_bio->sector; 2351 sectors = ((sector + block_sectors) 2352 & ~(sector_t)(block_sectors - 1)) 2353 - sector; 2354 2355 while (sect_to_write) { 2356 struct bio *wbio; 2357 if (sectors > sect_to_write) 2358 sectors = sect_to_write; 2359 /* Write at 'sector' for 'sectors'*/ 2360 2361 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) { 2362 wbio = bio_clone_fast(r1_bio->behind_master_bio, 2363 GFP_NOIO, 2364 mddev->bio_set); 2365 /* We really need a _all clone */ 2366 wbio->bi_iter = (struct bvec_iter){ 0 }; 2367 } else { 2368 wbio = bio_clone_fast(r1_bio->master_bio, GFP_NOIO, 2369 mddev->bio_set); 2370 } 2371 2372 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0); 2373 wbio->bi_iter.bi_sector = r1_bio->sector; 2374 wbio->bi_iter.bi_size = r1_bio->sectors << 9; 2375 2376 bio_trim(wbio, sector - r1_bio->sector, sectors); 2377 wbio->bi_iter.bi_sector += rdev->data_offset; 2378 wbio->bi_bdev = rdev->bdev; 2379 2380 if (submit_bio_wait(wbio) < 0) 2381 /* failure! */ 2382 ok = rdev_set_badblocks(rdev, sector, 2383 sectors, 0) 2384 && ok; 2385 2386 bio_put(wbio); 2387 sect_to_write -= sectors; 2388 sector += sectors; 2389 sectors = block_sectors; 2390 } 2391 return ok; 2392 } 2393 2394 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio) 2395 { 2396 int m; 2397 int s = r1_bio->sectors; 2398 for (m = 0; m < conf->raid_disks * 2 ; m++) { 2399 struct md_rdev *rdev = conf->mirrors[m].rdev; 2400 struct bio *bio = r1_bio->bios[m]; 2401 if (bio->bi_end_io == NULL) 2402 continue; 2403 if (!bio->bi_error && 2404 test_bit(R1BIO_MadeGood, &r1_bio->state)) { 2405 rdev_clear_badblocks(rdev, r1_bio->sector, s, 0); 2406 } 2407 if (bio->bi_error && 2408 test_bit(R1BIO_WriteError, &r1_bio->state)) { 2409 if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0)) 2410 md_error(conf->mddev, rdev); 2411 } 2412 } 2413 put_buf(r1_bio); 2414 md_done_sync(conf->mddev, s, 1); 2415 } 2416 2417 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio) 2418 { 2419 int m, idx; 2420 bool fail = false; 2421 2422 for (m = 0; m < conf->raid_disks * 2 ; m++) 2423 if (r1_bio->bios[m] == IO_MADE_GOOD) { 2424 struct md_rdev *rdev = conf->mirrors[m].rdev; 2425 rdev_clear_badblocks(rdev, 2426 r1_bio->sector, 2427 r1_bio->sectors, 0); 2428 rdev_dec_pending(rdev, conf->mddev); 2429 } else if (r1_bio->bios[m] != NULL) { 2430 /* This drive got a write error. We need to 2431 * narrow down and record precise write 2432 * errors. 2433 */ 2434 fail = true; 2435 if (!narrow_write_error(r1_bio, m)) { 2436 md_error(conf->mddev, 2437 conf->mirrors[m].rdev); 2438 /* an I/O failed, we can't clear the bitmap */ 2439 set_bit(R1BIO_Degraded, &r1_bio->state); 2440 } 2441 rdev_dec_pending(conf->mirrors[m].rdev, 2442 conf->mddev); 2443 } 2444 if (fail) { 2445 spin_lock_irq(&conf->device_lock); 2446 list_add(&r1_bio->retry_list, &conf->bio_end_io_list); 2447 idx = sector_to_idx(r1_bio->sector); 2448 atomic_inc(&conf->nr_queued[idx]); 2449 spin_unlock_irq(&conf->device_lock); 2450 /* 2451 * In case freeze_array() is waiting for condition 2452 * get_unqueued_pending() == extra to be true. 2453 */ 2454 wake_up(&conf->wait_barrier); 2455 md_wakeup_thread(conf->mddev->thread); 2456 } else { 2457 if (test_bit(R1BIO_WriteError, &r1_bio->state)) 2458 close_write(r1_bio); 2459 raid_end_bio_io(r1_bio); 2460 } 2461 } 2462 2463 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio) 2464 { 2465 struct mddev *mddev = conf->mddev; 2466 struct bio *bio; 2467 struct md_rdev *rdev; 2468 dev_t bio_dev; 2469 sector_t bio_sector; 2470 2471 clear_bit(R1BIO_ReadError, &r1_bio->state); 2472 /* we got a read error. Maybe the drive is bad. Maybe just 2473 * the block and we can fix it. 2474 * We freeze all other IO, and try reading the block from 2475 * other devices. When we find one, we re-write 2476 * and check it that fixes the read error. 2477 * This is all done synchronously while the array is 2478 * frozen 2479 */ 2480 2481 bio = r1_bio->bios[r1_bio->read_disk]; 2482 bio_dev = bio->bi_bdev->bd_dev; 2483 bio_sector = conf->mirrors[r1_bio->read_disk].rdev->data_offset + r1_bio->sector; 2484 bio_put(bio); 2485 r1_bio->bios[r1_bio->read_disk] = NULL; 2486 2487 rdev = conf->mirrors[r1_bio->read_disk].rdev; 2488 if (mddev->ro == 0 2489 && !test_bit(FailFast, &rdev->flags)) { 2490 freeze_array(conf, 1); 2491 fix_read_error(conf, r1_bio->read_disk, 2492 r1_bio->sector, r1_bio->sectors); 2493 unfreeze_array(conf); 2494 } else { 2495 r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED; 2496 } 2497 2498 rdev_dec_pending(rdev, conf->mddev); 2499 allow_barrier(conf, r1_bio->sector); 2500 bio = r1_bio->master_bio; 2501 2502 /* Reuse the old r1_bio so that the IO_BLOCKED settings are preserved */ 2503 r1_bio->state = 0; 2504 raid1_read_request(mddev, bio, r1_bio->sectors, r1_bio); 2505 } 2506 2507 static void raid1d(struct md_thread *thread) 2508 { 2509 struct mddev *mddev = thread->mddev; 2510 struct r1bio *r1_bio; 2511 unsigned long flags; 2512 struct r1conf *conf = mddev->private; 2513 struct list_head *head = &conf->retry_list; 2514 struct blk_plug plug; 2515 int idx; 2516 2517 md_check_recovery(mddev); 2518 2519 if (!list_empty_careful(&conf->bio_end_io_list) && 2520 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) { 2521 LIST_HEAD(tmp); 2522 spin_lock_irqsave(&conf->device_lock, flags); 2523 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) 2524 list_splice_init(&conf->bio_end_io_list, &tmp); 2525 spin_unlock_irqrestore(&conf->device_lock, flags); 2526 while (!list_empty(&tmp)) { 2527 r1_bio = list_first_entry(&tmp, struct r1bio, 2528 retry_list); 2529 list_del(&r1_bio->retry_list); 2530 idx = sector_to_idx(r1_bio->sector); 2531 atomic_dec(&conf->nr_queued[idx]); 2532 if (mddev->degraded) 2533 set_bit(R1BIO_Degraded, &r1_bio->state); 2534 if (test_bit(R1BIO_WriteError, &r1_bio->state)) 2535 close_write(r1_bio); 2536 raid_end_bio_io(r1_bio); 2537 } 2538 } 2539 2540 blk_start_plug(&plug); 2541 for (;;) { 2542 2543 flush_pending_writes(conf); 2544 2545 spin_lock_irqsave(&conf->device_lock, flags); 2546 if (list_empty(head)) { 2547 spin_unlock_irqrestore(&conf->device_lock, flags); 2548 break; 2549 } 2550 r1_bio = list_entry(head->prev, struct r1bio, retry_list); 2551 list_del(head->prev); 2552 idx = sector_to_idx(r1_bio->sector); 2553 atomic_dec(&conf->nr_queued[idx]); 2554 spin_unlock_irqrestore(&conf->device_lock, flags); 2555 2556 mddev = r1_bio->mddev; 2557 conf = mddev->private; 2558 if (test_bit(R1BIO_IsSync, &r1_bio->state)) { 2559 if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 2560 test_bit(R1BIO_WriteError, &r1_bio->state)) 2561 handle_sync_write_finished(conf, r1_bio); 2562 else 2563 sync_request_write(mddev, r1_bio); 2564 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 2565 test_bit(R1BIO_WriteError, &r1_bio->state)) 2566 handle_write_finished(conf, r1_bio); 2567 else if (test_bit(R1BIO_ReadError, &r1_bio->state)) 2568 handle_read_error(conf, r1_bio); 2569 else 2570 WARN_ON_ONCE(1); 2571 2572 cond_resched(); 2573 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING)) 2574 md_check_recovery(mddev); 2575 } 2576 blk_finish_plug(&plug); 2577 } 2578 2579 static int init_resync(struct r1conf *conf) 2580 { 2581 int buffs; 2582 2583 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE; 2584 BUG_ON(conf->r1buf_pool); 2585 conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free, 2586 conf->poolinfo); 2587 if (!conf->r1buf_pool) 2588 return -ENOMEM; 2589 return 0; 2590 } 2591 2592 /* 2593 * perform a "sync" on one "block" 2594 * 2595 * We need to make sure that no normal I/O request - particularly write 2596 * requests - conflict with active sync requests. 2597 * 2598 * This is achieved by tracking pending requests and a 'barrier' concept 2599 * that can be installed to exclude normal IO requests. 2600 */ 2601 2602 static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr, 2603 int *skipped) 2604 { 2605 struct r1conf *conf = mddev->private; 2606 struct r1bio *r1_bio; 2607 struct bio *bio; 2608 sector_t max_sector, nr_sectors; 2609 int disk = -1; 2610 int i; 2611 int wonly = -1; 2612 int write_targets = 0, read_targets = 0; 2613 sector_t sync_blocks; 2614 int still_degraded = 0; 2615 int good_sectors = RESYNC_SECTORS; 2616 int min_bad = 0; /* number of sectors that are bad in all devices */ 2617 int idx = sector_to_idx(sector_nr); 2618 2619 if (!conf->r1buf_pool) 2620 if (init_resync(conf)) 2621 return 0; 2622 2623 max_sector = mddev->dev_sectors; 2624 if (sector_nr >= max_sector) { 2625 /* If we aborted, we need to abort the 2626 * sync on the 'current' bitmap chunk (there will 2627 * only be one in raid1 resync. 2628 * We can find the current addess in mddev->curr_resync 2629 */ 2630 if (mddev->curr_resync < max_sector) /* aborted */ 2631 bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 2632 &sync_blocks, 1); 2633 else /* completed sync */ 2634 conf->fullsync = 0; 2635 2636 bitmap_close_sync(mddev->bitmap); 2637 close_sync(conf); 2638 2639 if (mddev_is_clustered(mddev)) { 2640 conf->cluster_sync_low = 0; 2641 conf->cluster_sync_high = 0; 2642 } 2643 return 0; 2644 } 2645 2646 if (mddev->bitmap == NULL && 2647 mddev->recovery_cp == MaxSector && 2648 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 2649 conf->fullsync == 0) { 2650 *skipped = 1; 2651 return max_sector - sector_nr; 2652 } 2653 /* before building a request, check if we can skip these blocks.. 2654 * This call the bitmap_start_sync doesn't actually record anything 2655 */ 2656 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) && 2657 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 2658 /* We can skip this block, and probably several more */ 2659 *skipped = 1; 2660 return sync_blocks; 2661 } 2662 2663 /* 2664 * If there is non-resync activity waiting for a turn, then let it 2665 * though before starting on this new sync request. 2666 */ 2667 if (atomic_read(&conf->nr_waiting[idx])) 2668 schedule_timeout_uninterruptible(1); 2669 2670 /* we are incrementing sector_nr below. To be safe, we check against 2671 * sector_nr + two times RESYNC_SECTORS 2672 */ 2673 2674 bitmap_cond_end_sync(mddev->bitmap, sector_nr, 2675 mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high)); 2676 r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO); 2677 2678 raise_barrier(conf, sector_nr); 2679 2680 rcu_read_lock(); 2681 /* 2682 * If we get a correctably read error during resync or recovery, 2683 * we might want to read from a different device. So we 2684 * flag all drives that could conceivably be read from for READ, 2685 * and any others (which will be non-In_sync devices) for WRITE. 2686 * If a read fails, we try reading from something else for which READ 2687 * is OK. 2688 */ 2689 2690 r1_bio->mddev = mddev; 2691 r1_bio->sector = sector_nr; 2692 r1_bio->state = 0; 2693 set_bit(R1BIO_IsSync, &r1_bio->state); 2694 /* make sure good_sectors won't go across barrier unit boundary */ 2695 good_sectors = align_to_barrier_unit_end(sector_nr, good_sectors); 2696 2697 for (i = 0; i < conf->raid_disks * 2; i++) { 2698 struct md_rdev *rdev; 2699 bio = r1_bio->bios[i]; 2700 2701 rdev = rcu_dereference(conf->mirrors[i].rdev); 2702 if (rdev == NULL || 2703 test_bit(Faulty, &rdev->flags)) { 2704 if (i < conf->raid_disks) 2705 still_degraded = 1; 2706 } else if (!test_bit(In_sync, &rdev->flags)) { 2707 bio_set_op_attrs(bio, REQ_OP_WRITE, 0); 2708 bio->bi_end_io = end_sync_write; 2709 write_targets ++; 2710 } else { 2711 /* may need to read from here */ 2712 sector_t first_bad = MaxSector; 2713 int bad_sectors; 2714 2715 if (is_badblock(rdev, sector_nr, good_sectors, 2716 &first_bad, &bad_sectors)) { 2717 if (first_bad > sector_nr) 2718 good_sectors = first_bad - sector_nr; 2719 else { 2720 bad_sectors -= (sector_nr - first_bad); 2721 if (min_bad == 0 || 2722 min_bad > bad_sectors) 2723 min_bad = bad_sectors; 2724 } 2725 } 2726 if (sector_nr < first_bad) { 2727 if (test_bit(WriteMostly, &rdev->flags)) { 2728 if (wonly < 0) 2729 wonly = i; 2730 } else { 2731 if (disk < 0) 2732 disk = i; 2733 } 2734 bio_set_op_attrs(bio, REQ_OP_READ, 0); 2735 bio->bi_end_io = end_sync_read; 2736 read_targets++; 2737 } else if (!test_bit(WriteErrorSeen, &rdev->flags) && 2738 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && 2739 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) { 2740 /* 2741 * The device is suitable for reading (InSync), 2742 * but has bad block(s) here. Let's try to correct them, 2743 * if we are doing resync or repair. Otherwise, leave 2744 * this device alone for this sync request. 2745 */ 2746 bio_set_op_attrs(bio, REQ_OP_WRITE, 0); 2747 bio->bi_end_io = end_sync_write; 2748 write_targets++; 2749 } 2750 } 2751 if (bio->bi_end_io) { 2752 atomic_inc(&rdev->nr_pending); 2753 bio->bi_iter.bi_sector = sector_nr + rdev->data_offset; 2754 bio->bi_bdev = rdev->bdev; 2755 if (test_bit(FailFast, &rdev->flags)) 2756 bio->bi_opf |= MD_FAILFAST; 2757 } 2758 } 2759 rcu_read_unlock(); 2760 if (disk < 0) 2761 disk = wonly; 2762 r1_bio->read_disk = disk; 2763 2764 if (read_targets == 0 && min_bad > 0) { 2765 /* These sectors are bad on all InSync devices, so we 2766 * need to mark them bad on all write targets 2767 */ 2768 int ok = 1; 2769 for (i = 0 ; i < conf->raid_disks * 2 ; i++) 2770 if (r1_bio->bios[i]->bi_end_io == end_sync_write) { 2771 struct md_rdev *rdev = conf->mirrors[i].rdev; 2772 ok = rdev_set_badblocks(rdev, sector_nr, 2773 min_bad, 0 2774 ) && ok; 2775 } 2776 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2777 *skipped = 1; 2778 put_buf(r1_bio); 2779 2780 if (!ok) { 2781 /* Cannot record the badblocks, so need to 2782 * abort the resync. 2783 * If there are multiple read targets, could just 2784 * fail the really bad ones ??? 2785 */ 2786 conf->recovery_disabled = mddev->recovery_disabled; 2787 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 2788 return 0; 2789 } else 2790 return min_bad; 2791 2792 } 2793 if (min_bad > 0 && min_bad < good_sectors) { 2794 /* only resync enough to reach the next bad->good 2795 * transition */ 2796 good_sectors = min_bad; 2797 } 2798 2799 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0) 2800 /* extra read targets are also write targets */ 2801 write_targets += read_targets-1; 2802 2803 if (write_targets == 0 || read_targets == 0) { 2804 /* There is nowhere to write, so all non-sync 2805 * drives must be failed - so we are finished 2806 */ 2807 sector_t rv; 2808 if (min_bad > 0) 2809 max_sector = sector_nr + min_bad; 2810 rv = max_sector - sector_nr; 2811 *skipped = 1; 2812 put_buf(r1_bio); 2813 return rv; 2814 } 2815 2816 if (max_sector > mddev->resync_max) 2817 max_sector = mddev->resync_max; /* Don't do IO beyond here */ 2818 if (max_sector > sector_nr + good_sectors) 2819 max_sector = sector_nr + good_sectors; 2820 nr_sectors = 0; 2821 sync_blocks = 0; 2822 do { 2823 struct page *page; 2824 int len = PAGE_SIZE; 2825 if (sector_nr + (len>>9) > max_sector) 2826 len = (max_sector - sector_nr) << 9; 2827 if (len == 0) 2828 break; 2829 if (sync_blocks == 0) { 2830 if (!bitmap_start_sync(mddev->bitmap, sector_nr, 2831 &sync_blocks, still_degraded) && 2832 !conf->fullsync && 2833 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 2834 break; 2835 if ((len >> 9) > sync_blocks) 2836 len = sync_blocks<<9; 2837 } 2838 2839 for (i = 0 ; i < conf->raid_disks * 2; i++) { 2840 struct resync_pages *rp; 2841 2842 bio = r1_bio->bios[i]; 2843 rp = get_resync_pages(bio); 2844 if (bio->bi_end_io) { 2845 page = resync_fetch_page(rp, rp->idx++); 2846 2847 /* 2848 * won't fail because the vec table is big 2849 * enough to hold all these pages 2850 */ 2851 bio_add_page(bio, page, len, 0); 2852 } 2853 } 2854 nr_sectors += len>>9; 2855 sector_nr += len>>9; 2856 sync_blocks -= (len>>9); 2857 } while (get_resync_pages(r1_bio->bios[disk]->bi_private)->idx < RESYNC_PAGES); 2858 2859 r1_bio->sectors = nr_sectors; 2860 2861 if (mddev_is_clustered(mddev) && 2862 conf->cluster_sync_high < sector_nr + nr_sectors) { 2863 conf->cluster_sync_low = mddev->curr_resync_completed; 2864 conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS; 2865 /* Send resync message */ 2866 md_cluster_ops->resync_info_update(mddev, 2867 conf->cluster_sync_low, 2868 conf->cluster_sync_high); 2869 } 2870 2871 /* For a user-requested sync, we read all readable devices and do a 2872 * compare 2873 */ 2874 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 2875 atomic_set(&r1_bio->remaining, read_targets); 2876 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) { 2877 bio = r1_bio->bios[i]; 2878 if (bio->bi_end_io == end_sync_read) { 2879 read_targets--; 2880 md_sync_acct(bio->bi_bdev, nr_sectors); 2881 if (read_targets == 1) 2882 bio->bi_opf &= ~MD_FAILFAST; 2883 generic_make_request(bio); 2884 } 2885 } 2886 } else { 2887 atomic_set(&r1_bio->remaining, 1); 2888 bio = r1_bio->bios[r1_bio->read_disk]; 2889 md_sync_acct(bio->bi_bdev, nr_sectors); 2890 if (read_targets == 1) 2891 bio->bi_opf &= ~MD_FAILFAST; 2892 generic_make_request(bio); 2893 2894 } 2895 return nr_sectors; 2896 } 2897 2898 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks) 2899 { 2900 if (sectors) 2901 return sectors; 2902 2903 return mddev->dev_sectors; 2904 } 2905 2906 static struct r1conf *setup_conf(struct mddev *mddev) 2907 { 2908 struct r1conf *conf; 2909 int i; 2910 struct raid1_info *disk; 2911 struct md_rdev *rdev; 2912 int err = -ENOMEM; 2913 2914 conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL); 2915 if (!conf) 2916 goto abort; 2917 2918 conf->nr_pending = kcalloc(BARRIER_BUCKETS_NR, 2919 sizeof(atomic_t), GFP_KERNEL); 2920 if (!conf->nr_pending) 2921 goto abort; 2922 2923 conf->nr_waiting = kcalloc(BARRIER_BUCKETS_NR, 2924 sizeof(atomic_t), GFP_KERNEL); 2925 if (!conf->nr_waiting) 2926 goto abort; 2927 2928 conf->nr_queued = kcalloc(BARRIER_BUCKETS_NR, 2929 sizeof(atomic_t), GFP_KERNEL); 2930 if (!conf->nr_queued) 2931 goto abort; 2932 2933 conf->barrier = kcalloc(BARRIER_BUCKETS_NR, 2934 sizeof(atomic_t), GFP_KERNEL); 2935 if (!conf->barrier) 2936 goto abort; 2937 2938 conf->mirrors = kzalloc(sizeof(struct raid1_info) 2939 * mddev->raid_disks * 2, 2940 GFP_KERNEL); 2941 if (!conf->mirrors) 2942 goto abort; 2943 2944 conf->tmppage = alloc_page(GFP_KERNEL); 2945 if (!conf->tmppage) 2946 goto abort; 2947 2948 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL); 2949 if (!conf->poolinfo) 2950 goto abort; 2951 conf->poolinfo->raid_disks = mddev->raid_disks * 2; 2952 conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc, 2953 r1bio_pool_free, 2954 conf->poolinfo); 2955 if (!conf->r1bio_pool) 2956 goto abort; 2957 2958 conf->bio_split = bioset_create(BIO_POOL_SIZE, 0); 2959 if (!conf->bio_split) 2960 goto abort; 2961 2962 conf->poolinfo->mddev = mddev; 2963 2964 err = -EINVAL; 2965 spin_lock_init(&conf->device_lock); 2966 rdev_for_each(rdev, mddev) { 2967 int disk_idx = rdev->raid_disk; 2968 if (disk_idx >= mddev->raid_disks 2969 || disk_idx < 0) 2970 continue; 2971 if (test_bit(Replacement, &rdev->flags)) 2972 disk = conf->mirrors + mddev->raid_disks + disk_idx; 2973 else 2974 disk = conf->mirrors + disk_idx; 2975 2976 if (disk->rdev) 2977 goto abort; 2978 disk->rdev = rdev; 2979 disk->head_position = 0; 2980 disk->seq_start = MaxSector; 2981 } 2982 conf->raid_disks = mddev->raid_disks; 2983 conf->mddev = mddev; 2984 INIT_LIST_HEAD(&conf->retry_list); 2985 INIT_LIST_HEAD(&conf->bio_end_io_list); 2986 2987 spin_lock_init(&conf->resync_lock); 2988 init_waitqueue_head(&conf->wait_barrier); 2989 2990 bio_list_init(&conf->pending_bio_list); 2991 conf->pending_count = 0; 2992 conf->recovery_disabled = mddev->recovery_disabled - 1; 2993 2994 err = -EIO; 2995 for (i = 0; i < conf->raid_disks * 2; i++) { 2996 2997 disk = conf->mirrors + i; 2998 2999 if (i < conf->raid_disks && 3000 disk[conf->raid_disks].rdev) { 3001 /* This slot has a replacement. */ 3002 if (!disk->rdev) { 3003 /* No original, just make the replacement 3004 * a recovering spare 3005 */ 3006 disk->rdev = 3007 disk[conf->raid_disks].rdev; 3008 disk[conf->raid_disks].rdev = NULL; 3009 } else if (!test_bit(In_sync, &disk->rdev->flags)) 3010 /* Original is not in_sync - bad */ 3011 goto abort; 3012 } 3013 3014 if (!disk->rdev || 3015 !test_bit(In_sync, &disk->rdev->flags)) { 3016 disk->head_position = 0; 3017 if (disk->rdev && 3018 (disk->rdev->saved_raid_disk < 0)) 3019 conf->fullsync = 1; 3020 } 3021 } 3022 3023 err = -ENOMEM; 3024 conf->thread = md_register_thread(raid1d, mddev, "raid1"); 3025 if (!conf->thread) 3026 goto abort; 3027 3028 return conf; 3029 3030 abort: 3031 if (conf) { 3032 mempool_destroy(conf->r1bio_pool); 3033 kfree(conf->mirrors); 3034 safe_put_page(conf->tmppage); 3035 kfree(conf->poolinfo); 3036 kfree(conf->nr_pending); 3037 kfree(conf->nr_waiting); 3038 kfree(conf->nr_queued); 3039 kfree(conf->barrier); 3040 if (conf->bio_split) 3041 bioset_free(conf->bio_split); 3042 kfree(conf); 3043 } 3044 return ERR_PTR(err); 3045 } 3046 3047 static void raid1_free(struct mddev *mddev, void *priv); 3048 static int raid1_run(struct mddev *mddev) 3049 { 3050 struct r1conf *conf; 3051 int i; 3052 struct md_rdev *rdev; 3053 int ret; 3054 bool discard_supported = false; 3055 3056 if (mddev->level != 1) { 3057 pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n", 3058 mdname(mddev), mddev->level); 3059 return -EIO; 3060 } 3061 if (mddev->reshape_position != MaxSector) { 3062 pr_warn("md/raid1:%s: reshape_position set but not supported\n", 3063 mdname(mddev)); 3064 return -EIO; 3065 } 3066 if (mddev_init_writes_pending(mddev) < 0) 3067 return -ENOMEM; 3068 /* 3069 * copy the already verified devices into our private RAID1 3070 * bookkeeping area. [whatever we allocate in run(), 3071 * should be freed in raid1_free()] 3072 */ 3073 if (mddev->private == NULL) 3074 conf = setup_conf(mddev); 3075 else 3076 conf = mddev->private; 3077 3078 if (IS_ERR(conf)) 3079 return PTR_ERR(conf); 3080 3081 if (mddev->queue) { 3082 blk_queue_max_write_same_sectors(mddev->queue, 0); 3083 blk_queue_max_write_zeroes_sectors(mddev->queue, 0); 3084 } 3085 3086 rdev_for_each(rdev, mddev) { 3087 if (!mddev->gendisk) 3088 continue; 3089 disk_stack_limits(mddev->gendisk, rdev->bdev, 3090 rdev->data_offset << 9); 3091 if (blk_queue_discard(bdev_get_queue(rdev->bdev))) 3092 discard_supported = true; 3093 } 3094 3095 mddev->degraded = 0; 3096 for (i=0; i < conf->raid_disks; i++) 3097 if (conf->mirrors[i].rdev == NULL || 3098 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) || 3099 test_bit(Faulty, &conf->mirrors[i].rdev->flags)) 3100 mddev->degraded++; 3101 3102 if (conf->raid_disks - mddev->degraded == 1) 3103 mddev->recovery_cp = MaxSector; 3104 3105 if (mddev->recovery_cp != MaxSector) 3106 pr_info("md/raid1:%s: not clean -- starting background reconstruction\n", 3107 mdname(mddev)); 3108 pr_info("md/raid1:%s: active with %d out of %d mirrors\n", 3109 mdname(mddev), mddev->raid_disks - mddev->degraded, 3110 mddev->raid_disks); 3111 3112 /* 3113 * Ok, everything is just fine now 3114 */ 3115 mddev->thread = conf->thread; 3116 conf->thread = NULL; 3117 mddev->private = conf; 3118 set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags); 3119 3120 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0)); 3121 3122 if (mddev->queue) { 3123 if (discard_supported) 3124 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, 3125 mddev->queue); 3126 else 3127 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, 3128 mddev->queue); 3129 } 3130 3131 ret = md_integrity_register(mddev); 3132 if (ret) { 3133 md_unregister_thread(&mddev->thread); 3134 raid1_free(mddev, conf); 3135 } 3136 return ret; 3137 } 3138 3139 static void raid1_free(struct mddev *mddev, void *priv) 3140 { 3141 struct r1conf *conf = priv; 3142 3143 mempool_destroy(conf->r1bio_pool); 3144 kfree(conf->mirrors); 3145 safe_put_page(conf->tmppage); 3146 kfree(conf->poolinfo); 3147 kfree(conf->nr_pending); 3148 kfree(conf->nr_waiting); 3149 kfree(conf->nr_queued); 3150 kfree(conf->barrier); 3151 if (conf->bio_split) 3152 bioset_free(conf->bio_split); 3153 kfree(conf); 3154 } 3155 3156 static int raid1_resize(struct mddev *mddev, sector_t sectors) 3157 { 3158 /* no resync is happening, and there is enough space 3159 * on all devices, so we can resize. 3160 * We need to make sure resync covers any new space. 3161 * If the array is shrinking we should possibly wait until 3162 * any io in the removed space completes, but it hardly seems 3163 * worth it. 3164 */ 3165 sector_t newsize = raid1_size(mddev, sectors, 0); 3166 if (mddev->external_size && 3167 mddev->array_sectors > newsize) 3168 return -EINVAL; 3169 if (mddev->bitmap) { 3170 int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0); 3171 if (ret) 3172 return ret; 3173 } 3174 md_set_array_sectors(mddev, newsize); 3175 if (sectors > mddev->dev_sectors && 3176 mddev->recovery_cp > mddev->dev_sectors) { 3177 mddev->recovery_cp = mddev->dev_sectors; 3178 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3179 } 3180 mddev->dev_sectors = sectors; 3181 mddev->resync_max_sectors = sectors; 3182 return 0; 3183 } 3184 3185 static int raid1_reshape(struct mddev *mddev) 3186 { 3187 /* We need to: 3188 * 1/ resize the r1bio_pool 3189 * 2/ resize conf->mirrors 3190 * 3191 * We allocate a new r1bio_pool if we can. 3192 * Then raise a device barrier and wait until all IO stops. 3193 * Then resize conf->mirrors and swap in the new r1bio pool. 3194 * 3195 * At the same time, we "pack" the devices so that all the missing 3196 * devices have the higher raid_disk numbers. 3197 */ 3198 mempool_t *newpool, *oldpool; 3199 struct pool_info *newpoolinfo; 3200 struct raid1_info *newmirrors; 3201 struct r1conf *conf = mddev->private; 3202 int cnt, raid_disks; 3203 unsigned long flags; 3204 int d, d2; 3205 3206 /* Cannot change chunk_size, layout, or level */ 3207 if (mddev->chunk_sectors != mddev->new_chunk_sectors || 3208 mddev->layout != mddev->new_layout || 3209 mddev->level != mddev->new_level) { 3210 mddev->new_chunk_sectors = mddev->chunk_sectors; 3211 mddev->new_layout = mddev->layout; 3212 mddev->new_level = mddev->level; 3213 return -EINVAL; 3214 } 3215 3216 if (!mddev_is_clustered(mddev)) 3217 md_allow_write(mddev); 3218 3219 raid_disks = mddev->raid_disks + mddev->delta_disks; 3220 3221 if (raid_disks < conf->raid_disks) { 3222 cnt=0; 3223 for (d= 0; d < conf->raid_disks; d++) 3224 if (conf->mirrors[d].rdev) 3225 cnt++; 3226 if (cnt > raid_disks) 3227 return -EBUSY; 3228 } 3229 3230 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL); 3231 if (!newpoolinfo) 3232 return -ENOMEM; 3233 newpoolinfo->mddev = mddev; 3234 newpoolinfo->raid_disks = raid_disks * 2; 3235 3236 newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc, 3237 r1bio_pool_free, newpoolinfo); 3238 if (!newpool) { 3239 kfree(newpoolinfo); 3240 return -ENOMEM; 3241 } 3242 newmirrors = kzalloc(sizeof(struct raid1_info) * raid_disks * 2, 3243 GFP_KERNEL); 3244 if (!newmirrors) { 3245 kfree(newpoolinfo); 3246 mempool_destroy(newpool); 3247 return -ENOMEM; 3248 } 3249 3250 freeze_array(conf, 0); 3251 3252 /* ok, everything is stopped */ 3253 oldpool = conf->r1bio_pool; 3254 conf->r1bio_pool = newpool; 3255 3256 for (d = d2 = 0; d < conf->raid_disks; d++) { 3257 struct md_rdev *rdev = conf->mirrors[d].rdev; 3258 if (rdev && rdev->raid_disk != d2) { 3259 sysfs_unlink_rdev(mddev, rdev); 3260 rdev->raid_disk = d2; 3261 sysfs_unlink_rdev(mddev, rdev); 3262 if (sysfs_link_rdev(mddev, rdev)) 3263 pr_warn("md/raid1:%s: cannot register rd%d\n", 3264 mdname(mddev), rdev->raid_disk); 3265 } 3266 if (rdev) 3267 newmirrors[d2++].rdev = rdev; 3268 } 3269 kfree(conf->mirrors); 3270 conf->mirrors = newmirrors; 3271 kfree(conf->poolinfo); 3272 conf->poolinfo = newpoolinfo; 3273 3274 spin_lock_irqsave(&conf->device_lock, flags); 3275 mddev->degraded += (raid_disks - conf->raid_disks); 3276 spin_unlock_irqrestore(&conf->device_lock, flags); 3277 conf->raid_disks = mddev->raid_disks = raid_disks; 3278 mddev->delta_disks = 0; 3279 3280 unfreeze_array(conf); 3281 3282 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 3283 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3284 md_wakeup_thread(mddev->thread); 3285 3286 mempool_destroy(oldpool); 3287 return 0; 3288 } 3289 3290 static void raid1_quiesce(struct mddev *mddev, int state) 3291 { 3292 struct r1conf *conf = mddev->private; 3293 3294 switch(state) { 3295 case 2: /* wake for suspend */ 3296 wake_up(&conf->wait_barrier); 3297 break; 3298 case 1: 3299 freeze_array(conf, 0); 3300 break; 3301 case 0: 3302 unfreeze_array(conf); 3303 break; 3304 } 3305 } 3306 3307 static void *raid1_takeover(struct mddev *mddev) 3308 { 3309 /* raid1 can take over: 3310 * raid5 with 2 devices, any layout or chunk size 3311 */ 3312 if (mddev->level == 5 && mddev->raid_disks == 2) { 3313 struct r1conf *conf; 3314 mddev->new_level = 1; 3315 mddev->new_layout = 0; 3316 mddev->new_chunk_sectors = 0; 3317 conf = setup_conf(mddev); 3318 if (!IS_ERR(conf)) { 3319 /* Array must appear to be quiesced */ 3320 conf->array_frozen = 1; 3321 mddev_clear_unsupported_flags(mddev, 3322 UNSUPPORTED_MDDEV_FLAGS); 3323 } 3324 return conf; 3325 } 3326 return ERR_PTR(-EINVAL); 3327 } 3328 3329 static struct md_personality raid1_personality = 3330 { 3331 .name = "raid1", 3332 .level = 1, 3333 .owner = THIS_MODULE, 3334 .make_request = raid1_make_request, 3335 .run = raid1_run, 3336 .free = raid1_free, 3337 .status = raid1_status, 3338 .error_handler = raid1_error, 3339 .hot_add_disk = raid1_add_disk, 3340 .hot_remove_disk= raid1_remove_disk, 3341 .spare_active = raid1_spare_active, 3342 .sync_request = raid1_sync_request, 3343 .resize = raid1_resize, 3344 .size = raid1_size, 3345 .check_reshape = raid1_reshape, 3346 .quiesce = raid1_quiesce, 3347 .takeover = raid1_takeover, 3348 .congested = raid1_congested, 3349 }; 3350 3351 static int __init raid_init(void) 3352 { 3353 return register_md_personality(&raid1_personality); 3354 } 3355 3356 static void raid_exit(void) 3357 { 3358 unregister_md_personality(&raid1_personality); 3359 } 3360 3361 module_init(raid_init); 3362 module_exit(raid_exit); 3363 MODULE_LICENSE("GPL"); 3364 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD"); 3365 MODULE_ALIAS("md-personality-3"); /* RAID1 */ 3366 MODULE_ALIAS("md-raid1"); 3367 MODULE_ALIAS("md-level-1"); 3368 3369 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR); 3370