xref: /openbmc/linux/drivers/md/raid1.c (revision f7777dcc)
1 /*
2  * raid1.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5  *
6  * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7  *
8  * RAID-1 management functions.
9  *
10  * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11  *
12  * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
13  * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14  *
15  * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16  * bitmapped intelligence in resync:
17  *
18  *      - bitmap marked during normal i/o
19  *      - bitmap used to skip nondirty blocks during sync
20  *
21  * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22  * - persistent bitmap code
23  *
24  * This program is free software; you can redistribute it and/or modify
25  * it under the terms of the GNU General Public License as published by
26  * the Free Software Foundation; either version 2, or (at your option)
27  * any later version.
28  *
29  * You should have received a copy of the GNU General Public License
30  * (for example /usr/src/linux/COPYING); if not, write to the Free
31  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32  */
33 
34 #include <linux/slab.h>
35 #include <linux/delay.h>
36 #include <linux/blkdev.h>
37 #include <linux/module.h>
38 #include <linux/seq_file.h>
39 #include <linux/ratelimit.h>
40 #include "md.h"
41 #include "raid1.h"
42 #include "bitmap.h"
43 
44 /*
45  * Number of guaranteed r1bios in case of extreme VM load:
46  */
47 #define	NR_RAID1_BIOS 256
48 
49 /* when we get a read error on a read-only array, we redirect to another
50  * device without failing the first device, or trying to over-write to
51  * correct the read error.  To keep track of bad blocks on a per-bio
52  * level, we store IO_BLOCKED in the appropriate 'bios' pointer
53  */
54 #define IO_BLOCKED ((struct bio *)1)
55 /* When we successfully write to a known bad-block, we need to remove the
56  * bad-block marking which must be done from process context.  So we record
57  * the success by setting devs[n].bio to IO_MADE_GOOD
58  */
59 #define IO_MADE_GOOD ((struct bio *)2)
60 
61 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
62 
63 /* When there are this many requests queue to be written by
64  * the raid1 thread, we become 'congested' to provide back-pressure
65  * for writeback.
66  */
67 static int max_queued_requests = 1024;
68 
69 static void allow_barrier(struct r1conf *conf);
70 static void lower_barrier(struct r1conf *conf);
71 
72 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
73 {
74 	struct pool_info *pi = data;
75 	int size = offsetof(struct r1bio, bios[pi->raid_disks]);
76 
77 	/* allocate a r1bio with room for raid_disks entries in the bios array */
78 	return kzalloc(size, gfp_flags);
79 }
80 
81 static void r1bio_pool_free(void *r1_bio, void *data)
82 {
83 	kfree(r1_bio);
84 }
85 
86 #define RESYNC_BLOCK_SIZE (64*1024)
87 //#define RESYNC_BLOCK_SIZE PAGE_SIZE
88 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
89 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
90 #define RESYNC_WINDOW (2048*1024)
91 
92 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
93 {
94 	struct pool_info *pi = data;
95 	struct r1bio *r1_bio;
96 	struct bio *bio;
97 	int i, j;
98 
99 	r1_bio = r1bio_pool_alloc(gfp_flags, pi);
100 	if (!r1_bio)
101 		return NULL;
102 
103 	/*
104 	 * Allocate bios : 1 for reading, n-1 for writing
105 	 */
106 	for (j = pi->raid_disks ; j-- ; ) {
107 		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
108 		if (!bio)
109 			goto out_free_bio;
110 		r1_bio->bios[j] = bio;
111 	}
112 	/*
113 	 * Allocate RESYNC_PAGES data pages and attach them to
114 	 * the first bio.
115 	 * If this is a user-requested check/repair, allocate
116 	 * RESYNC_PAGES for each bio.
117 	 */
118 	if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
119 		j = pi->raid_disks;
120 	else
121 		j = 1;
122 	while(j--) {
123 		bio = r1_bio->bios[j];
124 		bio->bi_vcnt = RESYNC_PAGES;
125 
126 		if (bio_alloc_pages(bio, gfp_flags))
127 			goto out_free_bio;
128 	}
129 	/* If not user-requests, copy the page pointers to all bios */
130 	if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
131 		for (i=0; i<RESYNC_PAGES ; i++)
132 			for (j=1; j<pi->raid_disks; j++)
133 				r1_bio->bios[j]->bi_io_vec[i].bv_page =
134 					r1_bio->bios[0]->bi_io_vec[i].bv_page;
135 	}
136 
137 	r1_bio->master_bio = NULL;
138 
139 	return r1_bio;
140 
141 out_free_bio:
142 	while (++j < pi->raid_disks)
143 		bio_put(r1_bio->bios[j]);
144 	r1bio_pool_free(r1_bio, data);
145 	return NULL;
146 }
147 
148 static void r1buf_pool_free(void *__r1_bio, void *data)
149 {
150 	struct pool_info *pi = data;
151 	int i,j;
152 	struct r1bio *r1bio = __r1_bio;
153 
154 	for (i = 0; i < RESYNC_PAGES; i++)
155 		for (j = pi->raid_disks; j-- ;) {
156 			if (j == 0 ||
157 			    r1bio->bios[j]->bi_io_vec[i].bv_page !=
158 			    r1bio->bios[0]->bi_io_vec[i].bv_page)
159 				safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
160 		}
161 	for (i=0 ; i < pi->raid_disks; i++)
162 		bio_put(r1bio->bios[i]);
163 
164 	r1bio_pool_free(r1bio, data);
165 }
166 
167 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
168 {
169 	int i;
170 
171 	for (i = 0; i < conf->raid_disks * 2; i++) {
172 		struct bio **bio = r1_bio->bios + i;
173 		if (!BIO_SPECIAL(*bio))
174 			bio_put(*bio);
175 		*bio = NULL;
176 	}
177 }
178 
179 static void free_r1bio(struct r1bio *r1_bio)
180 {
181 	struct r1conf *conf = r1_bio->mddev->private;
182 
183 	put_all_bios(conf, r1_bio);
184 	mempool_free(r1_bio, conf->r1bio_pool);
185 }
186 
187 static void put_buf(struct r1bio *r1_bio)
188 {
189 	struct r1conf *conf = r1_bio->mddev->private;
190 	int i;
191 
192 	for (i = 0; i < conf->raid_disks * 2; i++) {
193 		struct bio *bio = r1_bio->bios[i];
194 		if (bio->bi_end_io)
195 			rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
196 	}
197 
198 	mempool_free(r1_bio, conf->r1buf_pool);
199 
200 	lower_barrier(conf);
201 }
202 
203 static void reschedule_retry(struct r1bio *r1_bio)
204 {
205 	unsigned long flags;
206 	struct mddev *mddev = r1_bio->mddev;
207 	struct r1conf *conf = mddev->private;
208 
209 	spin_lock_irqsave(&conf->device_lock, flags);
210 	list_add(&r1_bio->retry_list, &conf->retry_list);
211 	conf->nr_queued ++;
212 	spin_unlock_irqrestore(&conf->device_lock, flags);
213 
214 	wake_up(&conf->wait_barrier);
215 	md_wakeup_thread(mddev->thread);
216 }
217 
218 /*
219  * raid_end_bio_io() is called when we have finished servicing a mirrored
220  * operation and are ready to return a success/failure code to the buffer
221  * cache layer.
222  */
223 static void call_bio_endio(struct r1bio *r1_bio)
224 {
225 	struct bio *bio = r1_bio->master_bio;
226 	int done;
227 	struct r1conf *conf = r1_bio->mddev->private;
228 
229 	if (bio->bi_phys_segments) {
230 		unsigned long flags;
231 		spin_lock_irqsave(&conf->device_lock, flags);
232 		bio->bi_phys_segments--;
233 		done = (bio->bi_phys_segments == 0);
234 		spin_unlock_irqrestore(&conf->device_lock, flags);
235 	} else
236 		done = 1;
237 
238 	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
239 		clear_bit(BIO_UPTODATE, &bio->bi_flags);
240 	if (done) {
241 		bio_endio(bio, 0);
242 		/*
243 		 * Wake up any possible resync thread that waits for the device
244 		 * to go idle.
245 		 */
246 		allow_barrier(conf);
247 	}
248 }
249 
250 static void raid_end_bio_io(struct r1bio *r1_bio)
251 {
252 	struct bio *bio = r1_bio->master_bio;
253 
254 	/* if nobody has done the final endio yet, do it now */
255 	if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
256 		pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
257 			 (bio_data_dir(bio) == WRITE) ? "write" : "read",
258 			 (unsigned long long) bio->bi_sector,
259 			 (unsigned long long) bio->bi_sector +
260 			 bio_sectors(bio) - 1);
261 
262 		call_bio_endio(r1_bio);
263 	}
264 	free_r1bio(r1_bio);
265 }
266 
267 /*
268  * Update disk head position estimator based on IRQ completion info.
269  */
270 static inline void update_head_pos(int disk, struct r1bio *r1_bio)
271 {
272 	struct r1conf *conf = r1_bio->mddev->private;
273 
274 	conf->mirrors[disk].head_position =
275 		r1_bio->sector + (r1_bio->sectors);
276 }
277 
278 /*
279  * Find the disk number which triggered given bio
280  */
281 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
282 {
283 	int mirror;
284 	struct r1conf *conf = r1_bio->mddev->private;
285 	int raid_disks = conf->raid_disks;
286 
287 	for (mirror = 0; mirror < raid_disks * 2; mirror++)
288 		if (r1_bio->bios[mirror] == bio)
289 			break;
290 
291 	BUG_ON(mirror == raid_disks * 2);
292 	update_head_pos(mirror, r1_bio);
293 
294 	return mirror;
295 }
296 
297 static void raid1_end_read_request(struct bio *bio, int error)
298 {
299 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
300 	struct r1bio *r1_bio = bio->bi_private;
301 	int mirror;
302 	struct r1conf *conf = r1_bio->mddev->private;
303 
304 	mirror = r1_bio->read_disk;
305 	/*
306 	 * this branch is our 'one mirror IO has finished' event handler:
307 	 */
308 	update_head_pos(mirror, r1_bio);
309 
310 	if (uptodate)
311 		set_bit(R1BIO_Uptodate, &r1_bio->state);
312 	else {
313 		/* If all other devices have failed, we want to return
314 		 * the error upwards rather than fail the last device.
315 		 * Here we redefine "uptodate" to mean "Don't want to retry"
316 		 */
317 		unsigned long flags;
318 		spin_lock_irqsave(&conf->device_lock, flags);
319 		if (r1_bio->mddev->degraded == conf->raid_disks ||
320 		    (r1_bio->mddev->degraded == conf->raid_disks-1 &&
321 		     !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags)))
322 			uptodate = 1;
323 		spin_unlock_irqrestore(&conf->device_lock, flags);
324 	}
325 
326 	if (uptodate) {
327 		raid_end_bio_io(r1_bio);
328 		rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
329 	} else {
330 		/*
331 		 * oops, read error:
332 		 */
333 		char b[BDEVNAME_SIZE];
334 		printk_ratelimited(
335 			KERN_ERR "md/raid1:%s: %s: "
336 			"rescheduling sector %llu\n",
337 			mdname(conf->mddev),
338 			bdevname(conf->mirrors[mirror].rdev->bdev,
339 				 b),
340 			(unsigned long long)r1_bio->sector);
341 		set_bit(R1BIO_ReadError, &r1_bio->state);
342 		reschedule_retry(r1_bio);
343 		/* don't drop the reference on read_disk yet */
344 	}
345 }
346 
347 static void close_write(struct r1bio *r1_bio)
348 {
349 	/* it really is the end of this request */
350 	if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
351 		/* free extra copy of the data pages */
352 		int i = r1_bio->behind_page_count;
353 		while (i--)
354 			safe_put_page(r1_bio->behind_bvecs[i].bv_page);
355 		kfree(r1_bio->behind_bvecs);
356 		r1_bio->behind_bvecs = NULL;
357 	}
358 	/* clear the bitmap if all writes complete successfully */
359 	bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
360 			r1_bio->sectors,
361 			!test_bit(R1BIO_Degraded, &r1_bio->state),
362 			test_bit(R1BIO_BehindIO, &r1_bio->state));
363 	md_write_end(r1_bio->mddev);
364 }
365 
366 static void r1_bio_write_done(struct r1bio *r1_bio)
367 {
368 	if (!atomic_dec_and_test(&r1_bio->remaining))
369 		return;
370 
371 	if (test_bit(R1BIO_WriteError, &r1_bio->state))
372 		reschedule_retry(r1_bio);
373 	else {
374 		close_write(r1_bio);
375 		if (test_bit(R1BIO_MadeGood, &r1_bio->state))
376 			reschedule_retry(r1_bio);
377 		else
378 			raid_end_bio_io(r1_bio);
379 	}
380 }
381 
382 static void raid1_end_write_request(struct bio *bio, int error)
383 {
384 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
385 	struct r1bio *r1_bio = bio->bi_private;
386 	int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
387 	struct r1conf *conf = r1_bio->mddev->private;
388 	struct bio *to_put = NULL;
389 
390 	mirror = find_bio_disk(r1_bio, bio);
391 
392 	/*
393 	 * 'one mirror IO has finished' event handler:
394 	 */
395 	if (!uptodate) {
396 		set_bit(WriteErrorSeen,
397 			&conf->mirrors[mirror].rdev->flags);
398 		if (!test_and_set_bit(WantReplacement,
399 				      &conf->mirrors[mirror].rdev->flags))
400 			set_bit(MD_RECOVERY_NEEDED, &
401 				conf->mddev->recovery);
402 
403 		set_bit(R1BIO_WriteError, &r1_bio->state);
404 	} else {
405 		/*
406 		 * Set R1BIO_Uptodate in our master bio, so that we
407 		 * will return a good error code for to the higher
408 		 * levels even if IO on some other mirrored buffer
409 		 * fails.
410 		 *
411 		 * The 'master' represents the composite IO operation
412 		 * to user-side. So if something waits for IO, then it
413 		 * will wait for the 'master' bio.
414 		 */
415 		sector_t first_bad;
416 		int bad_sectors;
417 
418 		r1_bio->bios[mirror] = NULL;
419 		to_put = bio;
420 		/*
421 		 * Do not set R1BIO_Uptodate if the current device is
422 		 * rebuilding or Faulty. This is because we cannot use
423 		 * such device for properly reading the data back (we could
424 		 * potentially use it, if the current write would have felt
425 		 * before rdev->recovery_offset, but for simplicity we don't
426 		 * check this here.
427 		 */
428 		if (test_bit(In_sync, &conf->mirrors[mirror].rdev->flags) &&
429 		    !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags))
430 			set_bit(R1BIO_Uptodate, &r1_bio->state);
431 
432 		/* Maybe we can clear some bad blocks. */
433 		if (is_badblock(conf->mirrors[mirror].rdev,
434 				r1_bio->sector, r1_bio->sectors,
435 				&first_bad, &bad_sectors)) {
436 			r1_bio->bios[mirror] = IO_MADE_GOOD;
437 			set_bit(R1BIO_MadeGood, &r1_bio->state);
438 		}
439 	}
440 
441 	if (behind) {
442 		if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
443 			atomic_dec(&r1_bio->behind_remaining);
444 
445 		/*
446 		 * In behind mode, we ACK the master bio once the I/O
447 		 * has safely reached all non-writemostly
448 		 * disks. Setting the Returned bit ensures that this
449 		 * gets done only once -- we don't ever want to return
450 		 * -EIO here, instead we'll wait
451 		 */
452 		if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
453 		    test_bit(R1BIO_Uptodate, &r1_bio->state)) {
454 			/* Maybe we can return now */
455 			if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
456 				struct bio *mbio = r1_bio->master_bio;
457 				pr_debug("raid1: behind end write sectors"
458 					 " %llu-%llu\n",
459 					 (unsigned long long) mbio->bi_sector,
460 					 (unsigned long long) mbio->bi_sector +
461 					 bio_sectors(mbio) - 1);
462 				call_bio_endio(r1_bio);
463 			}
464 		}
465 	}
466 	if (r1_bio->bios[mirror] == NULL)
467 		rdev_dec_pending(conf->mirrors[mirror].rdev,
468 				 conf->mddev);
469 
470 	/*
471 	 * Let's see if all mirrored write operations have finished
472 	 * already.
473 	 */
474 	r1_bio_write_done(r1_bio);
475 
476 	if (to_put)
477 		bio_put(to_put);
478 }
479 
480 
481 /*
482  * This routine returns the disk from which the requested read should
483  * be done. There is a per-array 'next expected sequential IO' sector
484  * number - if this matches on the next IO then we use the last disk.
485  * There is also a per-disk 'last know head position' sector that is
486  * maintained from IRQ contexts, both the normal and the resync IO
487  * completion handlers update this position correctly. If there is no
488  * perfect sequential match then we pick the disk whose head is closest.
489  *
490  * If there are 2 mirrors in the same 2 devices, performance degrades
491  * because position is mirror, not device based.
492  *
493  * The rdev for the device selected will have nr_pending incremented.
494  */
495 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
496 {
497 	const sector_t this_sector = r1_bio->sector;
498 	int sectors;
499 	int best_good_sectors;
500 	int best_disk, best_dist_disk, best_pending_disk;
501 	int has_nonrot_disk;
502 	int disk;
503 	sector_t best_dist;
504 	unsigned int min_pending;
505 	struct md_rdev *rdev;
506 	int choose_first;
507 	int choose_next_idle;
508 
509 	rcu_read_lock();
510 	/*
511 	 * Check if we can balance. We can balance on the whole
512 	 * device if no resync is going on, or below the resync window.
513 	 * We take the first readable disk when above the resync window.
514 	 */
515  retry:
516 	sectors = r1_bio->sectors;
517 	best_disk = -1;
518 	best_dist_disk = -1;
519 	best_dist = MaxSector;
520 	best_pending_disk = -1;
521 	min_pending = UINT_MAX;
522 	best_good_sectors = 0;
523 	has_nonrot_disk = 0;
524 	choose_next_idle = 0;
525 
526 	if (conf->mddev->recovery_cp < MaxSector &&
527 	    (this_sector + sectors >= conf->next_resync))
528 		choose_first = 1;
529 	else
530 		choose_first = 0;
531 
532 	for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
533 		sector_t dist;
534 		sector_t first_bad;
535 		int bad_sectors;
536 		unsigned int pending;
537 		bool nonrot;
538 
539 		rdev = rcu_dereference(conf->mirrors[disk].rdev);
540 		if (r1_bio->bios[disk] == IO_BLOCKED
541 		    || rdev == NULL
542 		    || test_bit(Unmerged, &rdev->flags)
543 		    || test_bit(Faulty, &rdev->flags))
544 			continue;
545 		if (!test_bit(In_sync, &rdev->flags) &&
546 		    rdev->recovery_offset < this_sector + sectors)
547 			continue;
548 		if (test_bit(WriteMostly, &rdev->flags)) {
549 			/* Don't balance among write-mostly, just
550 			 * use the first as a last resort */
551 			if (best_disk < 0) {
552 				if (is_badblock(rdev, this_sector, sectors,
553 						&first_bad, &bad_sectors)) {
554 					if (first_bad < this_sector)
555 						/* Cannot use this */
556 						continue;
557 					best_good_sectors = first_bad - this_sector;
558 				} else
559 					best_good_sectors = sectors;
560 				best_disk = disk;
561 			}
562 			continue;
563 		}
564 		/* This is a reasonable device to use.  It might
565 		 * even be best.
566 		 */
567 		if (is_badblock(rdev, this_sector, sectors,
568 				&first_bad, &bad_sectors)) {
569 			if (best_dist < MaxSector)
570 				/* already have a better device */
571 				continue;
572 			if (first_bad <= this_sector) {
573 				/* cannot read here. If this is the 'primary'
574 				 * device, then we must not read beyond
575 				 * bad_sectors from another device..
576 				 */
577 				bad_sectors -= (this_sector - first_bad);
578 				if (choose_first && sectors > bad_sectors)
579 					sectors = bad_sectors;
580 				if (best_good_sectors > sectors)
581 					best_good_sectors = sectors;
582 
583 			} else {
584 				sector_t good_sectors = first_bad - this_sector;
585 				if (good_sectors > best_good_sectors) {
586 					best_good_sectors = good_sectors;
587 					best_disk = disk;
588 				}
589 				if (choose_first)
590 					break;
591 			}
592 			continue;
593 		} else
594 			best_good_sectors = sectors;
595 
596 		nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
597 		has_nonrot_disk |= nonrot;
598 		pending = atomic_read(&rdev->nr_pending);
599 		dist = abs(this_sector - conf->mirrors[disk].head_position);
600 		if (choose_first) {
601 			best_disk = disk;
602 			break;
603 		}
604 		/* Don't change to another disk for sequential reads */
605 		if (conf->mirrors[disk].next_seq_sect == this_sector
606 		    || dist == 0) {
607 			int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
608 			struct raid1_info *mirror = &conf->mirrors[disk];
609 
610 			best_disk = disk;
611 			/*
612 			 * If buffered sequential IO size exceeds optimal
613 			 * iosize, check if there is idle disk. If yes, choose
614 			 * the idle disk. read_balance could already choose an
615 			 * idle disk before noticing it's a sequential IO in
616 			 * this disk. This doesn't matter because this disk
617 			 * will idle, next time it will be utilized after the
618 			 * first disk has IO size exceeds optimal iosize. In
619 			 * this way, iosize of the first disk will be optimal
620 			 * iosize at least. iosize of the second disk might be
621 			 * small, but not a big deal since when the second disk
622 			 * starts IO, the first disk is likely still busy.
623 			 */
624 			if (nonrot && opt_iosize > 0 &&
625 			    mirror->seq_start != MaxSector &&
626 			    mirror->next_seq_sect > opt_iosize &&
627 			    mirror->next_seq_sect - opt_iosize >=
628 			    mirror->seq_start) {
629 				choose_next_idle = 1;
630 				continue;
631 			}
632 			break;
633 		}
634 		/* If device is idle, use it */
635 		if (pending == 0) {
636 			best_disk = disk;
637 			break;
638 		}
639 
640 		if (choose_next_idle)
641 			continue;
642 
643 		if (min_pending > pending) {
644 			min_pending = pending;
645 			best_pending_disk = disk;
646 		}
647 
648 		if (dist < best_dist) {
649 			best_dist = dist;
650 			best_dist_disk = disk;
651 		}
652 	}
653 
654 	/*
655 	 * If all disks are rotational, choose the closest disk. If any disk is
656 	 * non-rotational, choose the disk with less pending request even the
657 	 * disk is rotational, which might/might not be optimal for raids with
658 	 * mixed ratation/non-rotational disks depending on workload.
659 	 */
660 	if (best_disk == -1) {
661 		if (has_nonrot_disk)
662 			best_disk = best_pending_disk;
663 		else
664 			best_disk = best_dist_disk;
665 	}
666 
667 	if (best_disk >= 0) {
668 		rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
669 		if (!rdev)
670 			goto retry;
671 		atomic_inc(&rdev->nr_pending);
672 		if (test_bit(Faulty, &rdev->flags)) {
673 			/* cannot risk returning a device that failed
674 			 * before we inc'ed nr_pending
675 			 */
676 			rdev_dec_pending(rdev, conf->mddev);
677 			goto retry;
678 		}
679 		sectors = best_good_sectors;
680 
681 		if (conf->mirrors[best_disk].next_seq_sect != this_sector)
682 			conf->mirrors[best_disk].seq_start = this_sector;
683 
684 		conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
685 	}
686 	rcu_read_unlock();
687 	*max_sectors = sectors;
688 
689 	return best_disk;
690 }
691 
692 static int raid1_mergeable_bvec(struct request_queue *q,
693 				struct bvec_merge_data *bvm,
694 				struct bio_vec *biovec)
695 {
696 	struct mddev *mddev = q->queuedata;
697 	struct r1conf *conf = mddev->private;
698 	sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
699 	int max = biovec->bv_len;
700 
701 	if (mddev->merge_check_needed) {
702 		int disk;
703 		rcu_read_lock();
704 		for (disk = 0; disk < conf->raid_disks * 2; disk++) {
705 			struct md_rdev *rdev = rcu_dereference(
706 				conf->mirrors[disk].rdev);
707 			if (rdev && !test_bit(Faulty, &rdev->flags)) {
708 				struct request_queue *q =
709 					bdev_get_queue(rdev->bdev);
710 				if (q->merge_bvec_fn) {
711 					bvm->bi_sector = sector +
712 						rdev->data_offset;
713 					bvm->bi_bdev = rdev->bdev;
714 					max = min(max, q->merge_bvec_fn(
715 							  q, bvm, biovec));
716 				}
717 			}
718 		}
719 		rcu_read_unlock();
720 	}
721 	return max;
722 
723 }
724 
725 int md_raid1_congested(struct mddev *mddev, int bits)
726 {
727 	struct r1conf *conf = mddev->private;
728 	int i, ret = 0;
729 
730 	if ((bits & (1 << BDI_async_congested)) &&
731 	    conf->pending_count >= max_queued_requests)
732 		return 1;
733 
734 	rcu_read_lock();
735 	for (i = 0; i < conf->raid_disks * 2; i++) {
736 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
737 		if (rdev && !test_bit(Faulty, &rdev->flags)) {
738 			struct request_queue *q = bdev_get_queue(rdev->bdev);
739 
740 			BUG_ON(!q);
741 
742 			/* Note the '|| 1' - when read_balance prefers
743 			 * non-congested targets, it can be removed
744 			 */
745 			if ((bits & (1<<BDI_async_congested)) || 1)
746 				ret |= bdi_congested(&q->backing_dev_info, bits);
747 			else
748 				ret &= bdi_congested(&q->backing_dev_info, bits);
749 		}
750 	}
751 	rcu_read_unlock();
752 	return ret;
753 }
754 EXPORT_SYMBOL_GPL(md_raid1_congested);
755 
756 static int raid1_congested(void *data, int bits)
757 {
758 	struct mddev *mddev = data;
759 
760 	return mddev_congested(mddev, bits) ||
761 		md_raid1_congested(mddev, bits);
762 }
763 
764 static void flush_pending_writes(struct r1conf *conf)
765 {
766 	/* Any writes that have been queued but are awaiting
767 	 * bitmap updates get flushed here.
768 	 */
769 	spin_lock_irq(&conf->device_lock);
770 
771 	if (conf->pending_bio_list.head) {
772 		struct bio *bio;
773 		bio = bio_list_get(&conf->pending_bio_list);
774 		conf->pending_count = 0;
775 		spin_unlock_irq(&conf->device_lock);
776 		/* flush any pending bitmap writes to
777 		 * disk before proceeding w/ I/O */
778 		bitmap_unplug(conf->mddev->bitmap);
779 		wake_up(&conf->wait_barrier);
780 
781 		while (bio) { /* submit pending writes */
782 			struct bio *next = bio->bi_next;
783 			bio->bi_next = NULL;
784 			if (unlikely((bio->bi_rw & REQ_DISCARD) &&
785 			    !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
786 				/* Just ignore it */
787 				bio_endio(bio, 0);
788 			else
789 				generic_make_request(bio);
790 			bio = next;
791 		}
792 	} else
793 		spin_unlock_irq(&conf->device_lock);
794 }
795 
796 /* Barriers....
797  * Sometimes we need to suspend IO while we do something else,
798  * either some resync/recovery, or reconfigure the array.
799  * To do this we raise a 'barrier'.
800  * The 'barrier' is a counter that can be raised multiple times
801  * to count how many activities are happening which preclude
802  * normal IO.
803  * We can only raise the barrier if there is no pending IO.
804  * i.e. if nr_pending == 0.
805  * We choose only to raise the barrier if no-one is waiting for the
806  * barrier to go down.  This means that as soon as an IO request
807  * is ready, no other operations which require a barrier will start
808  * until the IO request has had a chance.
809  *
810  * So: regular IO calls 'wait_barrier'.  When that returns there
811  *    is no backgroup IO happening,  It must arrange to call
812  *    allow_barrier when it has finished its IO.
813  * backgroup IO calls must call raise_barrier.  Once that returns
814  *    there is no normal IO happeing.  It must arrange to call
815  *    lower_barrier when the particular background IO completes.
816  */
817 #define RESYNC_DEPTH 32
818 
819 static void raise_barrier(struct r1conf *conf)
820 {
821 	spin_lock_irq(&conf->resync_lock);
822 
823 	/* Wait until no block IO is waiting */
824 	wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
825 			    conf->resync_lock);
826 
827 	/* block any new IO from starting */
828 	conf->barrier++;
829 
830 	/* Now wait for all pending IO to complete */
831 	wait_event_lock_irq(conf->wait_barrier,
832 			    !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
833 			    conf->resync_lock);
834 
835 	spin_unlock_irq(&conf->resync_lock);
836 }
837 
838 static void lower_barrier(struct r1conf *conf)
839 {
840 	unsigned long flags;
841 	BUG_ON(conf->barrier <= 0);
842 	spin_lock_irqsave(&conf->resync_lock, flags);
843 	conf->barrier--;
844 	spin_unlock_irqrestore(&conf->resync_lock, flags);
845 	wake_up(&conf->wait_barrier);
846 }
847 
848 static void wait_barrier(struct r1conf *conf)
849 {
850 	spin_lock_irq(&conf->resync_lock);
851 	if (conf->barrier) {
852 		conf->nr_waiting++;
853 		/* Wait for the barrier to drop.
854 		 * However if there are already pending
855 		 * requests (preventing the barrier from
856 		 * rising completely), and the
857 		 * pre-process bio queue isn't empty,
858 		 * then don't wait, as we need to empty
859 		 * that queue to get the nr_pending
860 		 * count down.
861 		 */
862 		wait_event_lock_irq(conf->wait_barrier,
863 				    !conf->barrier ||
864 				    (conf->nr_pending &&
865 				     current->bio_list &&
866 				     !bio_list_empty(current->bio_list)),
867 				    conf->resync_lock);
868 		conf->nr_waiting--;
869 	}
870 	conf->nr_pending++;
871 	spin_unlock_irq(&conf->resync_lock);
872 }
873 
874 static void allow_barrier(struct r1conf *conf)
875 {
876 	unsigned long flags;
877 	spin_lock_irqsave(&conf->resync_lock, flags);
878 	conf->nr_pending--;
879 	spin_unlock_irqrestore(&conf->resync_lock, flags);
880 	wake_up(&conf->wait_barrier);
881 }
882 
883 static void freeze_array(struct r1conf *conf, int extra)
884 {
885 	/* stop syncio and normal IO and wait for everything to
886 	 * go quite.
887 	 * We increment barrier and nr_waiting, and then
888 	 * wait until nr_pending match nr_queued+extra
889 	 * This is called in the context of one normal IO request
890 	 * that has failed. Thus any sync request that might be pending
891 	 * will be blocked by nr_pending, and we need to wait for
892 	 * pending IO requests to complete or be queued for re-try.
893 	 * Thus the number queued (nr_queued) plus this request (extra)
894 	 * must match the number of pending IOs (nr_pending) before
895 	 * we continue.
896 	 */
897 	spin_lock_irq(&conf->resync_lock);
898 	conf->barrier++;
899 	conf->nr_waiting++;
900 	wait_event_lock_irq_cmd(conf->wait_barrier,
901 				conf->nr_pending == conf->nr_queued+extra,
902 				conf->resync_lock,
903 				flush_pending_writes(conf));
904 	spin_unlock_irq(&conf->resync_lock);
905 }
906 static void unfreeze_array(struct r1conf *conf)
907 {
908 	/* reverse the effect of the freeze */
909 	spin_lock_irq(&conf->resync_lock);
910 	conf->barrier--;
911 	conf->nr_waiting--;
912 	wake_up(&conf->wait_barrier);
913 	spin_unlock_irq(&conf->resync_lock);
914 }
915 
916 
917 /* duplicate the data pages for behind I/O
918  */
919 static void alloc_behind_pages(struct bio *bio, struct r1bio *r1_bio)
920 {
921 	int i;
922 	struct bio_vec *bvec;
923 	struct bio_vec *bvecs = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec),
924 					GFP_NOIO);
925 	if (unlikely(!bvecs))
926 		return;
927 
928 	bio_for_each_segment_all(bvec, bio, i) {
929 		bvecs[i] = *bvec;
930 		bvecs[i].bv_page = alloc_page(GFP_NOIO);
931 		if (unlikely(!bvecs[i].bv_page))
932 			goto do_sync_io;
933 		memcpy(kmap(bvecs[i].bv_page) + bvec->bv_offset,
934 		       kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
935 		kunmap(bvecs[i].bv_page);
936 		kunmap(bvec->bv_page);
937 	}
938 	r1_bio->behind_bvecs = bvecs;
939 	r1_bio->behind_page_count = bio->bi_vcnt;
940 	set_bit(R1BIO_BehindIO, &r1_bio->state);
941 	return;
942 
943 do_sync_io:
944 	for (i = 0; i < bio->bi_vcnt; i++)
945 		if (bvecs[i].bv_page)
946 			put_page(bvecs[i].bv_page);
947 	kfree(bvecs);
948 	pr_debug("%dB behind alloc failed, doing sync I/O\n", bio->bi_size);
949 }
950 
951 struct raid1_plug_cb {
952 	struct blk_plug_cb	cb;
953 	struct bio_list		pending;
954 	int			pending_cnt;
955 };
956 
957 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
958 {
959 	struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
960 						  cb);
961 	struct mddev *mddev = plug->cb.data;
962 	struct r1conf *conf = mddev->private;
963 	struct bio *bio;
964 
965 	if (from_schedule || current->bio_list) {
966 		spin_lock_irq(&conf->device_lock);
967 		bio_list_merge(&conf->pending_bio_list, &plug->pending);
968 		conf->pending_count += plug->pending_cnt;
969 		spin_unlock_irq(&conf->device_lock);
970 		wake_up(&conf->wait_barrier);
971 		md_wakeup_thread(mddev->thread);
972 		kfree(plug);
973 		return;
974 	}
975 
976 	/* we aren't scheduling, so we can do the write-out directly. */
977 	bio = bio_list_get(&plug->pending);
978 	bitmap_unplug(mddev->bitmap);
979 	wake_up(&conf->wait_barrier);
980 
981 	while (bio) { /* submit pending writes */
982 		struct bio *next = bio->bi_next;
983 		bio->bi_next = NULL;
984 		if (unlikely((bio->bi_rw & REQ_DISCARD) &&
985 		    !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
986 			/* Just ignore it */
987 			bio_endio(bio, 0);
988 		else
989 			generic_make_request(bio);
990 		bio = next;
991 	}
992 	kfree(plug);
993 }
994 
995 static void make_request(struct mddev *mddev, struct bio * bio)
996 {
997 	struct r1conf *conf = mddev->private;
998 	struct raid1_info *mirror;
999 	struct r1bio *r1_bio;
1000 	struct bio *read_bio;
1001 	int i, disks;
1002 	struct bitmap *bitmap;
1003 	unsigned long flags;
1004 	const int rw = bio_data_dir(bio);
1005 	const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
1006 	const unsigned long do_flush_fua = (bio->bi_rw & (REQ_FLUSH | REQ_FUA));
1007 	const unsigned long do_discard = (bio->bi_rw
1008 					  & (REQ_DISCARD | REQ_SECURE));
1009 	const unsigned long do_same = (bio->bi_rw & REQ_WRITE_SAME);
1010 	struct md_rdev *blocked_rdev;
1011 	struct blk_plug_cb *cb;
1012 	struct raid1_plug_cb *plug = NULL;
1013 	int first_clone;
1014 	int sectors_handled;
1015 	int max_sectors;
1016 
1017 	/*
1018 	 * Register the new request and wait if the reconstruction
1019 	 * thread has put up a bar for new requests.
1020 	 * Continue immediately if no resync is active currently.
1021 	 */
1022 
1023 	md_write_start(mddev, bio); /* wait on superblock update early */
1024 
1025 	if (bio_data_dir(bio) == WRITE &&
1026 	    bio_end_sector(bio) > mddev->suspend_lo &&
1027 	    bio->bi_sector < mddev->suspend_hi) {
1028 		/* As the suspend_* range is controlled by
1029 		 * userspace, we want an interruptible
1030 		 * wait.
1031 		 */
1032 		DEFINE_WAIT(w);
1033 		for (;;) {
1034 			flush_signals(current);
1035 			prepare_to_wait(&conf->wait_barrier,
1036 					&w, TASK_INTERRUPTIBLE);
1037 			if (bio_end_sector(bio) <= mddev->suspend_lo ||
1038 			    bio->bi_sector >= mddev->suspend_hi)
1039 				break;
1040 			schedule();
1041 		}
1042 		finish_wait(&conf->wait_barrier, &w);
1043 	}
1044 
1045 	wait_barrier(conf);
1046 
1047 	bitmap = mddev->bitmap;
1048 
1049 	/*
1050 	 * make_request() can abort the operation when READA is being
1051 	 * used and no empty request is available.
1052 	 *
1053 	 */
1054 	r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1055 
1056 	r1_bio->master_bio = bio;
1057 	r1_bio->sectors = bio_sectors(bio);
1058 	r1_bio->state = 0;
1059 	r1_bio->mddev = mddev;
1060 	r1_bio->sector = bio->bi_sector;
1061 
1062 	/* We might need to issue multiple reads to different
1063 	 * devices if there are bad blocks around, so we keep
1064 	 * track of the number of reads in bio->bi_phys_segments.
1065 	 * If this is 0, there is only one r1_bio and no locking
1066 	 * will be needed when requests complete.  If it is
1067 	 * non-zero, then it is the number of not-completed requests.
1068 	 */
1069 	bio->bi_phys_segments = 0;
1070 	clear_bit(BIO_SEG_VALID, &bio->bi_flags);
1071 
1072 	if (rw == READ) {
1073 		/*
1074 		 * read balancing logic:
1075 		 */
1076 		int rdisk;
1077 
1078 read_again:
1079 		rdisk = read_balance(conf, r1_bio, &max_sectors);
1080 
1081 		if (rdisk < 0) {
1082 			/* couldn't find anywhere to read from */
1083 			raid_end_bio_io(r1_bio);
1084 			return;
1085 		}
1086 		mirror = conf->mirrors + rdisk;
1087 
1088 		if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1089 		    bitmap) {
1090 			/* Reading from a write-mostly device must
1091 			 * take care not to over-take any writes
1092 			 * that are 'behind'
1093 			 */
1094 			wait_event(bitmap->behind_wait,
1095 				   atomic_read(&bitmap->behind_writes) == 0);
1096 		}
1097 		r1_bio->read_disk = rdisk;
1098 
1099 		read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1100 		md_trim_bio(read_bio, r1_bio->sector - bio->bi_sector,
1101 			    max_sectors);
1102 
1103 		r1_bio->bios[rdisk] = read_bio;
1104 
1105 		read_bio->bi_sector = r1_bio->sector + mirror->rdev->data_offset;
1106 		read_bio->bi_bdev = mirror->rdev->bdev;
1107 		read_bio->bi_end_io = raid1_end_read_request;
1108 		read_bio->bi_rw = READ | do_sync;
1109 		read_bio->bi_private = r1_bio;
1110 
1111 		if (max_sectors < r1_bio->sectors) {
1112 			/* could not read all from this device, so we will
1113 			 * need another r1_bio.
1114 			 */
1115 
1116 			sectors_handled = (r1_bio->sector + max_sectors
1117 					   - bio->bi_sector);
1118 			r1_bio->sectors = max_sectors;
1119 			spin_lock_irq(&conf->device_lock);
1120 			if (bio->bi_phys_segments == 0)
1121 				bio->bi_phys_segments = 2;
1122 			else
1123 				bio->bi_phys_segments++;
1124 			spin_unlock_irq(&conf->device_lock);
1125 			/* Cannot call generic_make_request directly
1126 			 * as that will be queued in __make_request
1127 			 * and subsequent mempool_alloc might block waiting
1128 			 * for it.  So hand bio over to raid1d.
1129 			 */
1130 			reschedule_retry(r1_bio);
1131 
1132 			r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1133 
1134 			r1_bio->master_bio = bio;
1135 			r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1136 			r1_bio->state = 0;
1137 			r1_bio->mddev = mddev;
1138 			r1_bio->sector = bio->bi_sector + sectors_handled;
1139 			goto read_again;
1140 		} else
1141 			generic_make_request(read_bio);
1142 		return;
1143 	}
1144 
1145 	/*
1146 	 * WRITE:
1147 	 */
1148 	if (conf->pending_count >= max_queued_requests) {
1149 		md_wakeup_thread(mddev->thread);
1150 		wait_event(conf->wait_barrier,
1151 			   conf->pending_count < max_queued_requests);
1152 	}
1153 	/* first select target devices under rcu_lock and
1154 	 * inc refcount on their rdev.  Record them by setting
1155 	 * bios[x] to bio
1156 	 * If there are known/acknowledged bad blocks on any device on
1157 	 * which we have seen a write error, we want to avoid writing those
1158 	 * blocks.
1159 	 * This potentially requires several writes to write around
1160 	 * the bad blocks.  Each set of writes gets it's own r1bio
1161 	 * with a set of bios attached.
1162 	 */
1163 
1164 	disks = conf->raid_disks * 2;
1165  retry_write:
1166 	blocked_rdev = NULL;
1167 	rcu_read_lock();
1168 	max_sectors = r1_bio->sectors;
1169 	for (i = 0;  i < disks; i++) {
1170 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1171 		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1172 			atomic_inc(&rdev->nr_pending);
1173 			blocked_rdev = rdev;
1174 			break;
1175 		}
1176 		r1_bio->bios[i] = NULL;
1177 		if (!rdev || test_bit(Faulty, &rdev->flags)
1178 		    || test_bit(Unmerged, &rdev->flags)) {
1179 			if (i < conf->raid_disks)
1180 				set_bit(R1BIO_Degraded, &r1_bio->state);
1181 			continue;
1182 		}
1183 
1184 		atomic_inc(&rdev->nr_pending);
1185 		if (test_bit(WriteErrorSeen, &rdev->flags)) {
1186 			sector_t first_bad;
1187 			int bad_sectors;
1188 			int is_bad;
1189 
1190 			is_bad = is_badblock(rdev, r1_bio->sector,
1191 					     max_sectors,
1192 					     &first_bad, &bad_sectors);
1193 			if (is_bad < 0) {
1194 				/* mustn't write here until the bad block is
1195 				 * acknowledged*/
1196 				set_bit(BlockedBadBlocks, &rdev->flags);
1197 				blocked_rdev = rdev;
1198 				break;
1199 			}
1200 			if (is_bad && first_bad <= r1_bio->sector) {
1201 				/* Cannot write here at all */
1202 				bad_sectors -= (r1_bio->sector - first_bad);
1203 				if (bad_sectors < max_sectors)
1204 					/* mustn't write more than bad_sectors
1205 					 * to other devices yet
1206 					 */
1207 					max_sectors = bad_sectors;
1208 				rdev_dec_pending(rdev, mddev);
1209 				/* We don't set R1BIO_Degraded as that
1210 				 * only applies if the disk is
1211 				 * missing, so it might be re-added,
1212 				 * and we want to know to recover this
1213 				 * chunk.
1214 				 * In this case the device is here,
1215 				 * and the fact that this chunk is not
1216 				 * in-sync is recorded in the bad
1217 				 * block log
1218 				 */
1219 				continue;
1220 			}
1221 			if (is_bad) {
1222 				int good_sectors = first_bad - r1_bio->sector;
1223 				if (good_sectors < max_sectors)
1224 					max_sectors = good_sectors;
1225 			}
1226 		}
1227 		r1_bio->bios[i] = bio;
1228 	}
1229 	rcu_read_unlock();
1230 
1231 	if (unlikely(blocked_rdev)) {
1232 		/* Wait for this device to become unblocked */
1233 		int j;
1234 
1235 		for (j = 0; j < i; j++)
1236 			if (r1_bio->bios[j])
1237 				rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1238 		r1_bio->state = 0;
1239 		allow_barrier(conf);
1240 		md_wait_for_blocked_rdev(blocked_rdev, mddev);
1241 		wait_barrier(conf);
1242 		goto retry_write;
1243 	}
1244 
1245 	if (max_sectors < r1_bio->sectors) {
1246 		/* We are splitting this write into multiple parts, so
1247 		 * we need to prepare for allocating another r1_bio.
1248 		 */
1249 		r1_bio->sectors = max_sectors;
1250 		spin_lock_irq(&conf->device_lock);
1251 		if (bio->bi_phys_segments == 0)
1252 			bio->bi_phys_segments = 2;
1253 		else
1254 			bio->bi_phys_segments++;
1255 		spin_unlock_irq(&conf->device_lock);
1256 	}
1257 	sectors_handled = r1_bio->sector + max_sectors - bio->bi_sector;
1258 
1259 	atomic_set(&r1_bio->remaining, 1);
1260 	atomic_set(&r1_bio->behind_remaining, 0);
1261 
1262 	first_clone = 1;
1263 	for (i = 0; i < disks; i++) {
1264 		struct bio *mbio;
1265 		if (!r1_bio->bios[i])
1266 			continue;
1267 
1268 		mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1269 		md_trim_bio(mbio, r1_bio->sector - bio->bi_sector, max_sectors);
1270 
1271 		if (first_clone) {
1272 			/* do behind I/O ?
1273 			 * Not if there are too many, or cannot
1274 			 * allocate memory, or a reader on WriteMostly
1275 			 * is waiting for behind writes to flush */
1276 			if (bitmap &&
1277 			    (atomic_read(&bitmap->behind_writes)
1278 			     < mddev->bitmap_info.max_write_behind) &&
1279 			    !waitqueue_active(&bitmap->behind_wait))
1280 				alloc_behind_pages(mbio, r1_bio);
1281 
1282 			bitmap_startwrite(bitmap, r1_bio->sector,
1283 					  r1_bio->sectors,
1284 					  test_bit(R1BIO_BehindIO,
1285 						   &r1_bio->state));
1286 			first_clone = 0;
1287 		}
1288 		if (r1_bio->behind_bvecs) {
1289 			struct bio_vec *bvec;
1290 			int j;
1291 
1292 			/*
1293 			 * We trimmed the bio, so _all is legit
1294 			 */
1295 			bio_for_each_segment_all(bvec, mbio, j)
1296 				bvec->bv_page = r1_bio->behind_bvecs[j].bv_page;
1297 			if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1298 				atomic_inc(&r1_bio->behind_remaining);
1299 		}
1300 
1301 		r1_bio->bios[i] = mbio;
1302 
1303 		mbio->bi_sector	= (r1_bio->sector +
1304 				   conf->mirrors[i].rdev->data_offset);
1305 		mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1306 		mbio->bi_end_io	= raid1_end_write_request;
1307 		mbio->bi_rw =
1308 			WRITE | do_flush_fua | do_sync | do_discard | do_same;
1309 		mbio->bi_private = r1_bio;
1310 
1311 		atomic_inc(&r1_bio->remaining);
1312 
1313 		cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1314 		if (cb)
1315 			plug = container_of(cb, struct raid1_plug_cb, cb);
1316 		else
1317 			plug = NULL;
1318 		spin_lock_irqsave(&conf->device_lock, flags);
1319 		if (plug) {
1320 			bio_list_add(&plug->pending, mbio);
1321 			plug->pending_cnt++;
1322 		} else {
1323 			bio_list_add(&conf->pending_bio_list, mbio);
1324 			conf->pending_count++;
1325 		}
1326 		spin_unlock_irqrestore(&conf->device_lock, flags);
1327 		if (!plug)
1328 			md_wakeup_thread(mddev->thread);
1329 	}
1330 	/* Mustn't call r1_bio_write_done before this next test,
1331 	 * as it could result in the bio being freed.
1332 	 */
1333 	if (sectors_handled < bio_sectors(bio)) {
1334 		r1_bio_write_done(r1_bio);
1335 		/* We need another r1_bio.  It has already been counted
1336 		 * in bio->bi_phys_segments
1337 		 */
1338 		r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1339 		r1_bio->master_bio = bio;
1340 		r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1341 		r1_bio->state = 0;
1342 		r1_bio->mddev = mddev;
1343 		r1_bio->sector = bio->bi_sector + sectors_handled;
1344 		goto retry_write;
1345 	}
1346 
1347 	r1_bio_write_done(r1_bio);
1348 
1349 	/* In case raid1d snuck in to freeze_array */
1350 	wake_up(&conf->wait_barrier);
1351 }
1352 
1353 static void status(struct seq_file *seq, struct mddev *mddev)
1354 {
1355 	struct r1conf *conf = mddev->private;
1356 	int i;
1357 
1358 	seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1359 		   conf->raid_disks - mddev->degraded);
1360 	rcu_read_lock();
1361 	for (i = 0; i < conf->raid_disks; i++) {
1362 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1363 		seq_printf(seq, "%s",
1364 			   rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1365 	}
1366 	rcu_read_unlock();
1367 	seq_printf(seq, "]");
1368 }
1369 
1370 
1371 static void error(struct mddev *mddev, struct md_rdev *rdev)
1372 {
1373 	char b[BDEVNAME_SIZE];
1374 	struct r1conf *conf = mddev->private;
1375 
1376 	/*
1377 	 * If it is not operational, then we have already marked it as dead
1378 	 * else if it is the last working disks, ignore the error, let the
1379 	 * next level up know.
1380 	 * else mark the drive as failed
1381 	 */
1382 	if (test_bit(In_sync, &rdev->flags)
1383 	    && (conf->raid_disks - mddev->degraded) == 1) {
1384 		/*
1385 		 * Don't fail the drive, act as though we were just a
1386 		 * normal single drive.
1387 		 * However don't try a recovery from this drive as
1388 		 * it is very likely to fail.
1389 		 */
1390 		conf->recovery_disabled = mddev->recovery_disabled;
1391 		return;
1392 	}
1393 	set_bit(Blocked, &rdev->flags);
1394 	if (test_and_clear_bit(In_sync, &rdev->flags)) {
1395 		unsigned long flags;
1396 		spin_lock_irqsave(&conf->device_lock, flags);
1397 		mddev->degraded++;
1398 		set_bit(Faulty, &rdev->flags);
1399 		spin_unlock_irqrestore(&conf->device_lock, flags);
1400 		/*
1401 		 * if recovery is running, make sure it aborts.
1402 		 */
1403 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1404 	} else
1405 		set_bit(Faulty, &rdev->flags);
1406 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
1407 	printk(KERN_ALERT
1408 	       "md/raid1:%s: Disk failure on %s, disabling device.\n"
1409 	       "md/raid1:%s: Operation continuing on %d devices.\n",
1410 	       mdname(mddev), bdevname(rdev->bdev, b),
1411 	       mdname(mddev), conf->raid_disks - mddev->degraded);
1412 }
1413 
1414 static void print_conf(struct r1conf *conf)
1415 {
1416 	int i;
1417 
1418 	printk(KERN_DEBUG "RAID1 conf printout:\n");
1419 	if (!conf) {
1420 		printk(KERN_DEBUG "(!conf)\n");
1421 		return;
1422 	}
1423 	printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1424 		conf->raid_disks);
1425 
1426 	rcu_read_lock();
1427 	for (i = 0; i < conf->raid_disks; i++) {
1428 		char b[BDEVNAME_SIZE];
1429 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1430 		if (rdev)
1431 			printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1432 			       i, !test_bit(In_sync, &rdev->flags),
1433 			       !test_bit(Faulty, &rdev->flags),
1434 			       bdevname(rdev->bdev,b));
1435 	}
1436 	rcu_read_unlock();
1437 }
1438 
1439 static void close_sync(struct r1conf *conf)
1440 {
1441 	wait_barrier(conf);
1442 	allow_barrier(conf);
1443 
1444 	mempool_destroy(conf->r1buf_pool);
1445 	conf->r1buf_pool = NULL;
1446 }
1447 
1448 static int raid1_spare_active(struct mddev *mddev)
1449 {
1450 	int i;
1451 	struct r1conf *conf = mddev->private;
1452 	int count = 0;
1453 	unsigned long flags;
1454 
1455 	/*
1456 	 * Find all failed disks within the RAID1 configuration
1457 	 * and mark them readable.
1458 	 * Called under mddev lock, so rcu protection not needed.
1459 	 */
1460 	for (i = 0; i < conf->raid_disks; i++) {
1461 		struct md_rdev *rdev = conf->mirrors[i].rdev;
1462 		struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1463 		if (repl
1464 		    && repl->recovery_offset == MaxSector
1465 		    && !test_bit(Faulty, &repl->flags)
1466 		    && !test_and_set_bit(In_sync, &repl->flags)) {
1467 			/* replacement has just become active */
1468 			if (!rdev ||
1469 			    !test_and_clear_bit(In_sync, &rdev->flags))
1470 				count++;
1471 			if (rdev) {
1472 				/* Replaced device not technically
1473 				 * faulty, but we need to be sure
1474 				 * it gets removed and never re-added
1475 				 */
1476 				set_bit(Faulty, &rdev->flags);
1477 				sysfs_notify_dirent_safe(
1478 					rdev->sysfs_state);
1479 			}
1480 		}
1481 		if (rdev
1482 		    && rdev->recovery_offset == MaxSector
1483 		    && !test_bit(Faulty, &rdev->flags)
1484 		    && !test_and_set_bit(In_sync, &rdev->flags)) {
1485 			count++;
1486 			sysfs_notify_dirent_safe(rdev->sysfs_state);
1487 		}
1488 	}
1489 	spin_lock_irqsave(&conf->device_lock, flags);
1490 	mddev->degraded -= count;
1491 	spin_unlock_irqrestore(&conf->device_lock, flags);
1492 
1493 	print_conf(conf);
1494 	return count;
1495 }
1496 
1497 
1498 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1499 {
1500 	struct r1conf *conf = mddev->private;
1501 	int err = -EEXIST;
1502 	int mirror = 0;
1503 	struct raid1_info *p;
1504 	int first = 0;
1505 	int last = conf->raid_disks - 1;
1506 	struct request_queue *q = bdev_get_queue(rdev->bdev);
1507 
1508 	if (mddev->recovery_disabled == conf->recovery_disabled)
1509 		return -EBUSY;
1510 
1511 	if (rdev->raid_disk >= 0)
1512 		first = last = rdev->raid_disk;
1513 
1514 	if (q->merge_bvec_fn) {
1515 		set_bit(Unmerged, &rdev->flags);
1516 		mddev->merge_check_needed = 1;
1517 	}
1518 
1519 	for (mirror = first; mirror <= last; mirror++) {
1520 		p = conf->mirrors+mirror;
1521 		if (!p->rdev) {
1522 
1523 			if (mddev->gendisk)
1524 				disk_stack_limits(mddev->gendisk, rdev->bdev,
1525 						  rdev->data_offset << 9);
1526 
1527 			p->head_position = 0;
1528 			rdev->raid_disk = mirror;
1529 			err = 0;
1530 			/* As all devices are equivalent, we don't need a full recovery
1531 			 * if this was recently any drive of the array
1532 			 */
1533 			if (rdev->saved_raid_disk < 0)
1534 				conf->fullsync = 1;
1535 			rcu_assign_pointer(p->rdev, rdev);
1536 			break;
1537 		}
1538 		if (test_bit(WantReplacement, &p->rdev->flags) &&
1539 		    p[conf->raid_disks].rdev == NULL) {
1540 			/* Add this device as a replacement */
1541 			clear_bit(In_sync, &rdev->flags);
1542 			set_bit(Replacement, &rdev->flags);
1543 			rdev->raid_disk = mirror;
1544 			err = 0;
1545 			conf->fullsync = 1;
1546 			rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1547 			break;
1548 		}
1549 	}
1550 	if (err == 0 && test_bit(Unmerged, &rdev->flags)) {
1551 		/* Some requests might not have seen this new
1552 		 * merge_bvec_fn.  We must wait for them to complete
1553 		 * before merging the device fully.
1554 		 * First we make sure any code which has tested
1555 		 * our function has submitted the request, then
1556 		 * we wait for all outstanding requests to complete.
1557 		 */
1558 		synchronize_sched();
1559 		freeze_array(conf, 0);
1560 		unfreeze_array(conf);
1561 		clear_bit(Unmerged, &rdev->flags);
1562 	}
1563 	md_integrity_add_rdev(rdev, mddev);
1564 	if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1565 		queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1566 	print_conf(conf);
1567 	return err;
1568 }
1569 
1570 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1571 {
1572 	struct r1conf *conf = mddev->private;
1573 	int err = 0;
1574 	int number = rdev->raid_disk;
1575 	struct raid1_info *p = conf->mirrors + number;
1576 
1577 	if (rdev != p->rdev)
1578 		p = conf->mirrors + conf->raid_disks + number;
1579 
1580 	print_conf(conf);
1581 	if (rdev == p->rdev) {
1582 		if (test_bit(In_sync, &rdev->flags) ||
1583 		    atomic_read(&rdev->nr_pending)) {
1584 			err = -EBUSY;
1585 			goto abort;
1586 		}
1587 		/* Only remove non-faulty devices if recovery
1588 		 * is not possible.
1589 		 */
1590 		if (!test_bit(Faulty, &rdev->flags) &&
1591 		    mddev->recovery_disabled != conf->recovery_disabled &&
1592 		    mddev->degraded < conf->raid_disks) {
1593 			err = -EBUSY;
1594 			goto abort;
1595 		}
1596 		p->rdev = NULL;
1597 		synchronize_rcu();
1598 		if (atomic_read(&rdev->nr_pending)) {
1599 			/* lost the race, try later */
1600 			err = -EBUSY;
1601 			p->rdev = rdev;
1602 			goto abort;
1603 		} else if (conf->mirrors[conf->raid_disks + number].rdev) {
1604 			/* We just removed a device that is being replaced.
1605 			 * Move down the replacement.  We drain all IO before
1606 			 * doing this to avoid confusion.
1607 			 */
1608 			struct md_rdev *repl =
1609 				conf->mirrors[conf->raid_disks + number].rdev;
1610 			freeze_array(conf, 0);
1611 			clear_bit(Replacement, &repl->flags);
1612 			p->rdev = repl;
1613 			conf->mirrors[conf->raid_disks + number].rdev = NULL;
1614 			unfreeze_array(conf);
1615 			clear_bit(WantReplacement, &rdev->flags);
1616 		} else
1617 			clear_bit(WantReplacement, &rdev->flags);
1618 		err = md_integrity_register(mddev);
1619 	}
1620 abort:
1621 
1622 	print_conf(conf);
1623 	return err;
1624 }
1625 
1626 
1627 static void end_sync_read(struct bio *bio, int error)
1628 {
1629 	struct r1bio *r1_bio = bio->bi_private;
1630 
1631 	update_head_pos(r1_bio->read_disk, r1_bio);
1632 
1633 	/*
1634 	 * we have read a block, now it needs to be re-written,
1635 	 * or re-read if the read failed.
1636 	 * We don't do much here, just schedule handling by raid1d
1637 	 */
1638 	if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1639 		set_bit(R1BIO_Uptodate, &r1_bio->state);
1640 
1641 	if (atomic_dec_and_test(&r1_bio->remaining))
1642 		reschedule_retry(r1_bio);
1643 }
1644 
1645 static void end_sync_write(struct bio *bio, int error)
1646 {
1647 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1648 	struct r1bio *r1_bio = bio->bi_private;
1649 	struct mddev *mddev = r1_bio->mddev;
1650 	struct r1conf *conf = mddev->private;
1651 	int mirror=0;
1652 	sector_t first_bad;
1653 	int bad_sectors;
1654 
1655 	mirror = find_bio_disk(r1_bio, bio);
1656 
1657 	if (!uptodate) {
1658 		sector_t sync_blocks = 0;
1659 		sector_t s = r1_bio->sector;
1660 		long sectors_to_go = r1_bio->sectors;
1661 		/* make sure these bits doesn't get cleared. */
1662 		do {
1663 			bitmap_end_sync(mddev->bitmap, s,
1664 					&sync_blocks, 1);
1665 			s += sync_blocks;
1666 			sectors_to_go -= sync_blocks;
1667 		} while (sectors_to_go > 0);
1668 		set_bit(WriteErrorSeen,
1669 			&conf->mirrors[mirror].rdev->flags);
1670 		if (!test_and_set_bit(WantReplacement,
1671 				      &conf->mirrors[mirror].rdev->flags))
1672 			set_bit(MD_RECOVERY_NEEDED, &
1673 				mddev->recovery);
1674 		set_bit(R1BIO_WriteError, &r1_bio->state);
1675 	} else if (is_badblock(conf->mirrors[mirror].rdev,
1676 			       r1_bio->sector,
1677 			       r1_bio->sectors,
1678 			       &first_bad, &bad_sectors) &&
1679 		   !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1680 				r1_bio->sector,
1681 				r1_bio->sectors,
1682 				&first_bad, &bad_sectors)
1683 		)
1684 		set_bit(R1BIO_MadeGood, &r1_bio->state);
1685 
1686 	if (atomic_dec_and_test(&r1_bio->remaining)) {
1687 		int s = r1_bio->sectors;
1688 		if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1689 		    test_bit(R1BIO_WriteError, &r1_bio->state))
1690 			reschedule_retry(r1_bio);
1691 		else {
1692 			put_buf(r1_bio);
1693 			md_done_sync(mddev, s, uptodate);
1694 		}
1695 	}
1696 }
1697 
1698 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1699 			    int sectors, struct page *page, int rw)
1700 {
1701 	if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
1702 		/* success */
1703 		return 1;
1704 	if (rw == WRITE) {
1705 		set_bit(WriteErrorSeen, &rdev->flags);
1706 		if (!test_and_set_bit(WantReplacement,
1707 				      &rdev->flags))
1708 			set_bit(MD_RECOVERY_NEEDED, &
1709 				rdev->mddev->recovery);
1710 	}
1711 	/* need to record an error - either for the block or the device */
1712 	if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1713 		md_error(rdev->mddev, rdev);
1714 	return 0;
1715 }
1716 
1717 static int fix_sync_read_error(struct r1bio *r1_bio)
1718 {
1719 	/* Try some synchronous reads of other devices to get
1720 	 * good data, much like with normal read errors.  Only
1721 	 * read into the pages we already have so we don't
1722 	 * need to re-issue the read request.
1723 	 * We don't need to freeze the array, because being in an
1724 	 * active sync request, there is no normal IO, and
1725 	 * no overlapping syncs.
1726 	 * We don't need to check is_badblock() again as we
1727 	 * made sure that anything with a bad block in range
1728 	 * will have bi_end_io clear.
1729 	 */
1730 	struct mddev *mddev = r1_bio->mddev;
1731 	struct r1conf *conf = mddev->private;
1732 	struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1733 	sector_t sect = r1_bio->sector;
1734 	int sectors = r1_bio->sectors;
1735 	int idx = 0;
1736 
1737 	while(sectors) {
1738 		int s = sectors;
1739 		int d = r1_bio->read_disk;
1740 		int success = 0;
1741 		struct md_rdev *rdev;
1742 		int start;
1743 
1744 		if (s > (PAGE_SIZE>>9))
1745 			s = PAGE_SIZE >> 9;
1746 		do {
1747 			if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1748 				/* No rcu protection needed here devices
1749 				 * can only be removed when no resync is
1750 				 * active, and resync is currently active
1751 				 */
1752 				rdev = conf->mirrors[d].rdev;
1753 				if (sync_page_io(rdev, sect, s<<9,
1754 						 bio->bi_io_vec[idx].bv_page,
1755 						 READ, false)) {
1756 					success = 1;
1757 					break;
1758 				}
1759 			}
1760 			d++;
1761 			if (d == conf->raid_disks * 2)
1762 				d = 0;
1763 		} while (!success && d != r1_bio->read_disk);
1764 
1765 		if (!success) {
1766 			char b[BDEVNAME_SIZE];
1767 			int abort = 0;
1768 			/* Cannot read from anywhere, this block is lost.
1769 			 * Record a bad block on each device.  If that doesn't
1770 			 * work just disable and interrupt the recovery.
1771 			 * Don't fail devices as that won't really help.
1772 			 */
1773 			printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error"
1774 			       " for block %llu\n",
1775 			       mdname(mddev),
1776 			       bdevname(bio->bi_bdev, b),
1777 			       (unsigned long long)r1_bio->sector);
1778 			for (d = 0; d < conf->raid_disks * 2; d++) {
1779 				rdev = conf->mirrors[d].rdev;
1780 				if (!rdev || test_bit(Faulty, &rdev->flags))
1781 					continue;
1782 				if (!rdev_set_badblocks(rdev, sect, s, 0))
1783 					abort = 1;
1784 			}
1785 			if (abort) {
1786 				conf->recovery_disabled =
1787 					mddev->recovery_disabled;
1788 				set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1789 				md_done_sync(mddev, r1_bio->sectors, 0);
1790 				put_buf(r1_bio);
1791 				return 0;
1792 			}
1793 			/* Try next page */
1794 			sectors -= s;
1795 			sect += s;
1796 			idx++;
1797 			continue;
1798 		}
1799 
1800 		start = d;
1801 		/* write it back and re-read */
1802 		while (d != r1_bio->read_disk) {
1803 			if (d == 0)
1804 				d = conf->raid_disks * 2;
1805 			d--;
1806 			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1807 				continue;
1808 			rdev = conf->mirrors[d].rdev;
1809 			if (r1_sync_page_io(rdev, sect, s,
1810 					    bio->bi_io_vec[idx].bv_page,
1811 					    WRITE) == 0) {
1812 				r1_bio->bios[d]->bi_end_io = NULL;
1813 				rdev_dec_pending(rdev, mddev);
1814 			}
1815 		}
1816 		d = start;
1817 		while (d != r1_bio->read_disk) {
1818 			if (d == 0)
1819 				d = conf->raid_disks * 2;
1820 			d--;
1821 			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1822 				continue;
1823 			rdev = conf->mirrors[d].rdev;
1824 			if (r1_sync_page_io(rdev, sect, s,
1825 					    bio->bi_io_vec[idx].bv_page,
1826 					    READ) != 0)
1827 				atomic_add(s, &rdev->corrected_errors);
1828 		}
1829 		sectors -= s;
1830 		sect += s;
1831 		idx ++;
1832 	}
1833 	set_bit(R1BIO_Uptodate, &r1_bio->state);
1834 	set_bit(BIO_UPTODATE, &bio->bi_flags);
1835 	return 1;
1836 }
1837 
1838 static int process_checks(struct r1bio *r1_bio)
1839 {
1840 	/* We have read all readable devices.  If we haven't
1841 	 * got the block, then there is no hope left.
1842 	 * If we have, then we want to do a comparison
1843 	 * and skip the write if everything is the same.
1844 	 * If any blocks failed to read, then we need to
1845 	 * attempt an over-write
1846 	 */
1847 	struct mddev *mddev = r1_bio->mddev;
1848 	struct r1conf *conf = mddev->private;
1849 	int primary;
1850 	int i;
1851 	int vcnt;
1852 
1853 	/* Fix variable parts of all bios */
1854 	vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
1855 	for (i = 0; i < conf->raid_disks * 2; i++) {
1856 		int j;
1857 		int size;
1858 		struct bio *b = r1_bio->bios[i];
1859 		if (b->bi_end_io != end_sync_read)
1860 			continue;
1861 		/* fixup the bio for reuse */
1862 		bio_reset(b);
1863 		b->bi_vcnt = vcnt;
1864 		b->bi_size = r1_bio->sectors << 9;
1865 		b->bi_sector = r1_bio->sector +
1866 			conf->mirrors[i].rdev->data_offset;
1867 		b->bi_bdev = conf->mirrors[i].rdev->bdev;
1868 		b->bi_end_io = end_sync_read;
1869 		b->bi_private = r1_bio;
1870 
1871 		size = b->bi_size;
1872 		for (j = 0; j < vcnt ; j++) {
1873 			struct bio_vec *bi;
1874 			bi = &b->bi_io_vec[j];
1875 			bi->bv_offset = 0;
1876 			if (size > PAGE_SIZE)
1877 				bi->bv_len = PAGE_SIZE;
1878 			else
1879 				bi->bv_len = size;
1880 			size -= PAGE_SIZE;
1881 		}
1882 	}
1883 	for (primary = 0; primary < conf->raid_disks * 2; primary++)
1884 		if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
1885 		    test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) {
1886 			r1_bio->bios[primary]->bi_end_io = NULL;
1887 			rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
1888 			break;
1889 		}
1890 	r1_bio->read_disk = primary;
1891 	for (i = 0; i < conf->raid_disks * 2; i++) {
1892 		int j;
1893 		struct bio *pbio = r1_bio->bios[primary];
1894 		struct bio *sbio = r1_bio->bios[i];
1895 
1896 		if (sbio->bi_end_io != end_sync_read)
1897 			continue;
1898 
1899 		if (test_bit(BIO_UPTODATE, &sbio->bi_flags)) {
1900 			for (j = vcnt; j-- ; ) {
1901 				struct page *p, *s;
1902 				p = pbio->bi_io_vec[j].bv_page;
1903 				s = sbio->bi_io_vec[j].bv_page;
1904 				if (memcmp(page_address(p),
1905 					   page_address(s),
1906 					   sbio->bi_io_vec[j].bv_len))
1907 					break;
1908 			}
1909 		} else
1910 			j = 0;
1911 		if (j >= 0)
1912 			atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
1913 		if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
1914 			      && test_bit(BIO_UPTODATE, &sbio->bi_flags))) {
1915 			/* No need to write to this device. */
1916 			sbio->bi_end_io = NULL;
1917 			rdev_dec_pending(conf->mirrors[i].rdev, mddev);
1918 			continue;
1919 		}
1920 
1921 		bio_copy_data(sbio, pbio);
1922 	}
1923 	return 0;
1924 }
1925 
1926 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
1927 {
1928 	struct r1conf *conf = mddev->private;
1929 	int i;
1930 	int disks = conf->raid_disks * 2;
1931 	struct bio *bio, *wbio;
1932 
1933 	bio = r1_bio->bios[r1_bio->read_disk];
1934 
1935 	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
1936 		/* ouch - failed to read all of that. */
1937 		if (!fix_sync_read_error(r1_bio))
1938 			return;
1939 
1940 	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
1941 		if (process_checks(r1_bio) < 0)
1942 			return;
1943 	/*
1944 	 * schedule writes
1945 	 */
1946 	atomic_set(&r1_bio->remaining, 1);
1947 	for (i = 0; i < disks ; i++) {
1948 		wbio = r1_bio->bios[i];
1949 		if (wbio->bi_end_io == NULL ||
1950 		    (wbio->bi_end_io == end_sync_read &&
1951 		     (i == r1_bio->read_disk ||
1952 		      !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
1953 			continue;
1954 
1955 		wbio->bi_rw = WRITE;
1956 		wbio->bi_end_io = end_sync_write;
1957 		atomic_inc(&r1_bio->remaining);
1958 		md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
1959 
1960 		generic_make_request(wbio);
1961 	}
1962 
1963 	if (atomic_dec_and_test(&r1_bio->remaining)) {
1964 		/* if we're here, all write(s) have completed, so clean up */
1965 		int s = r1_bio->sectors;
1966 		if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1967 		    test_bit(R1BIO_WriteError, &r1_bio->state))
1968 			reschedule_retry(r1_bio);
1969 		else {
1970 			put_buf(r1_bio);
1971 			md_done_sync(mddev, s, 1);
1972 		}
1973 	}
1974 }
1975 
1976 /*
1977  * This is a kernel thread which:
1978  *
1979  *	1.	Retries failed read operations on working mirrors.
1980  *	2.	Updates the raid superblock when problems encounter.
1981  *	3.	Performs writes following reads for array synchronising.
1982  */
1983 
1984 static void fix_read_error(struct r1conf *conf, int read_disk,
1985 			   sector_t sect, int sectors)
1986 {
1987 	struct mddev *mddev = conf->mddev;
1988 	while(sectors) {
1989 		int s = sectors;
1990 		int d = read_disk;
1991 		int success = 0;
1992 		int start;
1993 		struct md_rdev *rdev;
1994 
1995 		if (s > (PAGE_SIZE>>9))
1996 			s = PAGE_SIZE >> 9;
1997 
1998 		do {
1999 			/* Note: no rcu protection needed here
2000 			 * as this is synchronous in the raid1d thread
2001 			 * which is the thread that might remove
2002 			 * a device.  If raid1d ever becomes multi-threaded....
2003 			 */
2004 			sector_t first_bad;
2005 			int bad_sectors;
2006 
2007 			rdev = conf->mirrors[d].rdev;
2008 			if (rdev &&
2009 			    (test_bit(In_sync, &rdev->flags) ||
2010 			     (!test_bit(Faulty, &rdev->flags) &&
2011 			      rdev->recovery_offset >= sect + s)) &&
2012 			    is_badblock(rdev, sect, s,
2013 					&first_bad, &bad_sectors) == 0 &&
2014 			    sync_page_io(rdev, sect, s<<9,
2015 					 conf->tmppage, READ, false))
2016 				success = 1;
2017 			else {
2018 				d++;
2019 				if (d == conf->raid_disks * 2)
2020 					d = 0;
2021 			}
2022 		} while (!success && d != read_disk);
2023 
2024 		if (!success) {
2025 			/* Cannot read from anywhere - mark it bad */
2026 			struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2027 			if (!rdev_set_badblocks(rdev, sect, s, 0))
2028 				md_error(mddev, rdev);
2029 			break;
2030 		}
2031 		/* write it back and re-read */
2032 		start = d;
2033 		while (d != read_disk) {
2034 			if (d==0)
2035 				d = conf->raid_disks * 2;
2036 			d--;
2037 			rdev = conf->mirrors[d].rdev;
2038 			if (rdev &&
2039 			    test_bit(In_sync, &rdev->flags))
2040 				r1_sync_page_io(rdev, sect, s,
2041 						conf->tmppage, WRITE);
2042 		}
2043 		d = start;
2044 		while (d != read_disk) {
2045 			char b[BDEVNAME_SIZE];
2046 			if (d==0)
2047 				d = conf->raid_disks * 2;
2048 			d--;
2049 			rdev = conf->mirrors[d].rdev;
2050 			if (rdev &&
2051 			    test_bit(In_sync, &rdev->flags)) {
2052 				if (r1_sync_page_io(rdev, sect, s,
2053 						    conf->tmppage, READ)) {
2054 					atomic_add(s, &rdev->corrected_errors);
2055 					printk(KERN_INFO
2056 					       "md/raid1:%s: read error corrected "
2057 					       "(%d sectors at %llu on %s)\n",
2058 					       mdname(mddev), s,
2059 					       (unsigned long long)(sect +
2060 					           rdev->data_offset),
2061 					       bdevname(rdev->bdev, b));
2062 				}
2063 			}
2064 		}
2065 		sectors -= s;
2066 		sect += s;
2067 	}
2068 }
2069 
2070 static int narrow_write_error(struct r1bio *r1_bio, int i)
2071 {
2072 	struct mddev *mddev = r1_bio->mddev;
2073 	struct r1conf *conf = mddev->private;
2074 	struct md_rdev *rdev = conf->mirrors[i].rdev;
2075 
2076 	/* bio has the data to be written to device 'i' where
2077 	 * we just recently had a write error.
2078 	 * We repeatedly clone the bio and trim down to one block,
2079 	 * then try the write.  Where the write fails we record
2080 	 * a bad block.
2081 	 * It is conceivable that the bio doesn't exactly align with
2082 	 * blocks.  We must handle this somehow.
2083 	 *
2084 	 * We currently own a reference on the rdev.
2085 	 */
2086 
2087 	int block_sectors;
2088 	sector_t sector;
2089 	int sectors;
2090 	int sect_to_write = r1_bio->sectors;
2091 	int ok = 1;
2092 
2093 	if (rdev->badblocks.shift < 0)
2094 		return 0;
2095 
2096 	block_sectors = 1 << rdev->badblocks.shift;
2097 	sector = r1_bio->sector;
2098 	sectors = ((sector + block_sectors)
2099 		   & ~(sector_t)(block_sectors - 1))
2100 		- sector;
2101 
2102 	while (sect_to_write) {
2103 		struct bio *wbio;
2104 		if (sectors > sect_to_write)
2105 			sectors = sect_to_write;
2106 		/* Write at 'sector' for 'sectors'*/
2107 
2108 		if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2109 			unsigned vcnt = r1_bio->behind_page_count;
2110 			struct bio_vec *vec = r1_bio->behind_bvecs;
2111 
2112 			while (!vec->bv_page) {
2113 				vec++;
2114 				vcnt--;
2115 			}
2116 
2117 			wbio = bio_alloc_mddev(GFP_NOIO, vcnt, mddev);
2118 			memcpy(wbio->bi_io_vec, vec, vcnt * sizeof(struct bio_vec));
2119 
2120 			wbio->bi_vcnt = vcnt;
2121 		} else {
2122 			wbio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2123 		}
2124 
2125 		wbio->bi_rw = WRITE;
2126 		wbio->bi_sector = r1_bio->sector;
2127 		wbio->bi_size = r1_bio->sectors << 9;
2128 
2129 		md_trim_bio(wbio, sector - r1_bio->sector, sectors);
2130 		wbio->bi_sector += rdev->data_offset;
2131 		wbio->bi_bdev = rdev->bdev;
2132 		if (submit_bio_wait(WRITE, wbio) == 0)
2133 			/* failure! */
2134 			ok = rdev_set_badblocks(rdev, sector,
2135 						sectors, 0)
2136 				&& ok;
2137 
2138 		bio_put(wbio);
2139 		sect_to_write -= sectors;
2140 		sector += sectors;
2141 		sectors = block_sectors;
2142 	}
2143 	return ok;
2144 }
2145 
2146 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2147 {
2148 	int m;
2149 	int s = r1_bio->sectors;
2150 	for (m = 0; m < conf->raid_disks * 2 ; m++) {
2151 		struct md_rdev *rdev = conf->mirrors[m].rdev;
2152 		struct bio *bio = r1_bio->bios[m];
2153 		if (bio->bi_end_io == NULL)
2154 			continue;
2155 		if (test_bit(BIO_UPTODATE, &bio->bi_flags) &&
2156 		    test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2157 			rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2158 		}
2159 		if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
2160 		    test_bit(R1BIO_WriteError, &r1_bio->state)) {
2161 			if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2162 				md_error(conf->mddev, rdev);
2163 		}
2164 	}
2165 	put_buf(r1_bio);
2166 	md_done_sync(conf->mddev, s, 1);
2167 }
2168 
2169 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2170 {
2171 	int m;
2172 	for (m = 0; m < conf->raid_disks * 2 ; m++)
2173 		if (r1_bio->bios[m] == IO_MADE_GOOD) {
2174 			struct md_rdev *rdev = conf->mirrors[m].rdev;
2175 			rdev_clear_badblocks(rdev,
2176 					     r1_bio->sector,
2177 					     r1_bio->sectors, 0);
2178 			rdev_dec_pending(rdev, conf->mddev);
2179 		} else if (r1_bio->bios[m] != NULL) {
2180 			/* This drive got a write error.  We need to
2181 			 * narrow down and record precise write
2182 			 * errors.
2183 			 */
2184 			if (!narrow_write_error(r1_bio, m)) {
2185 				md_error(conf->mddev,
2186 					 conf->mirrors[m].rdev);
2187 				/* an I/O failed, we can't clear the bitmap */
2188 				set_bit(R1BIO_Degraded, &r1_bio->state);
2189 			}
2190 			rdev_dec_pending(conf->mirrors[m].rdev,
2191 					 conf->mddev);
2192 		}
2193 	if (test_bit(R1BIO_WriteError, &r1_bio->state))
2194 		close_write(r1_bio);
2195 	raid_end_bio_io(r1_bio);
2196 }
2197 
2198 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2199 {
2200 	int disk;
2201 	int max_sectors;
2202 	struct mddev *mddev = conf->mddev;
2203 	struct bio *bio;
2204 	char b[BDEVNAME_SIZE];
2205 	struct md_rdev *rdev;
2206 
2207 	clear_bit(R1BIO_ReadError, &r1_bio->state);
2208 	/* we got a read error. Maybe the drive is bad.  Maybe just
2209 	 * the block and we can fix it.
2210 	 * We freeze all other IO, and try reading the block from
2211 	 * other devices.  When we find one, we re-write
2212 	 * and check it that fixes the read error.
2213 	 * This is all done synchronously while the array is
2214 	 * frozen
2215 	 */
2216 	if (mddev->ro == 0) {
2217 		freeze_array(conf, 1);
2218 		fix_read_error(conf, r1_bio->read_disk,
2219 			       r1_bio->sector, r1_bio->sectors);
2220 		unfreeze_array(conf);
2221 	} else
2222 		md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
2223 	rdev_dec_pending(conf->mirrors[r1_bio->read_disk].rdev, conf->mddev);
2224 
2225 	bio = r1_bio->bios[r1_bio->read_disk];
2226 	bdevname(bio->bi_bdev, b);
2227 read_more:
2228 	disk = read_balance(conf, r1_bio, &max_sectors);
2229 	if (disk == -1) {
2230 		printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O"
2231 		       " read error for block %llu\n",
2232 		       mdname(mddev), b, (unsigned long long)r1_bio->sector);
2233 		raid_end_bio_io(r1_bio);
2234 	} else {
2235 		const unsigned long do_sync
2236 			= r1_bio->master_bio->bi_rw & REQ_SYNC;
2237 		if (bio) {
2238 			r1_bio->bios[r1_bio->read_disk] =
2239 				mddev->ro ? IO_BLOCKED : NULL;
2240 			bio_put(bio);
2241 		}
2242 		r1_bio->read_disk = disk;
2243 		bio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2244 		md_trim_bio(bio, r1_bio->sector - bio->bi_sector, max_sectors);
2245 		r1_bio->bios[r1_bio->read_disk] = bio;
2246 		rdev = conf->mirrors[disk].rdev;
2247 		printk_ratelimited(KERN_ERR
2248 				   "md/raid1:%s: redirecting sector %llu"
2249 				   " to other mirror: %s\n",
2250 				   mdname(mddev),
2251 				   (unsigned long long)r1_bio->sector,
2252 				   bdevname(rdev->bdev, b));
2253 		bio->bi_sector = r1_bio->sector + rdev->data_offset;
2254 		bio->bi_bdev = rdev->bdev;
2255 		bio->bi_end_io = raid1_end_read_request;
2256 		bio->bi_rw = READ | do_sync;
2257 		bio->bi_private = r1_bio;
2258 		if (max_sectors < r1_bio->sectors) {
2259 			/* Drat - have to split this up more */
2260 			struct bio *mbio = r1_bio->master_bio;
2261 			int sectors_handled = (r1_bio->sector + max_sectors
2262 					       - mbio->bi_sector);
2263 			r1_bio->sectors = max_sectors;
2264 			spin_lock_irq(&conf->device_lock);
2265 			if (mbio->bi_phys_segments == 0)
2266 				mbio->bi_phys_segments = 2;
2267 			else
2268 				mbio->bi_phys_segments++;
2269 			spin_unlock_irq(&conf->device_lock);
2270 			generic_make_request(bio);
2271 			bio = NULL;
2272 
2273 			r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
2274 
2275 			r1_bio->master_bio = mbio;
2276 			r1_bio->sectors = bio_sectors(mbio) - sectors_handled;
2277 			r1_bio->state = 0;
2278 			set_bit(R1BIO_ReadError, &r1_bio->state);
2279 			r1_bio->mddev = mddev;
2280 			r1_bio->sector = mbio->bi_sector + sectors_handled;
2281 
2282 			goto read_more;
2283 		} else
2284 			generic_make_request(bio);
2285 	}
2286 }
2287 
2288 static void raid1d(struct md_thread *thread)
2289 {
2290 	struct mddev *mddev = thread->mddev;
2291 	struct r1bio *r1_bio;
2292 	unsigned long flags;
2293 	struct r1conf *conf = mddev->private;
2294 	struct list_head *head = &conf->retry_list;
2295 	struct blk_plug plug;
2296 
2297 	md_check_recovery(mddev);
2298 
2299 	blk_start_plug(&plug);
2300 	for (;;) {
2301 
2302 		flush_pending_writes(conf);
2303 
2304 		spin_lock_irqsave(&conf->device_lock, flags);
2305 		if (list_empty(head)) {
2306 			spin_unlock_irqrestore(&conf->device_lock, flags);
2307 			break;
2308 		}
2309 		r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2310 		list_del(head->prev);
2311 		conf->nr_queued--;
2312 		spin_unlock_irqrestore(&conf->device_lock, flags);
2313 
2314 		mddev = r1_bio->mddev;
2315 		conf = mddev->private;
2316 		if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2317 			if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2318 			    test_bit(R1BIO_WriteError, &r1_bio->state))
2319 				handle_sync_write_finished(conf, r1_bio);
2320 			else
2321 				sync_request_write(mddev, r1_bio);
2322 		} else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2323 			   test_bit(R1BIO_WriteError, &r1_bio->state))
2324 			handle_write_finished(conf, r1_bio);
2325 		else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2326 			handle_read_error(conf, r1_bio);
2327 		else
2328 			/* just a partial read to be scheduled from separate
2329 			 * context
2330 			 */
2331 			generic_make_request(r1_bio->bios[r1_bio->read_disk]);
2332 
2333 		cond_resched();
2334 		if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2335 			md_check_recovery(mddev);
2336 	}
2337 	blk_finish_plug(&plug);
2338 }
2339 
2340 
2341 static int init_resync(struct r1conf *conf)
2342 {
2343 	int buffs;
2344 
2345 	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2346 	BUG_ON(conf->r1buf_pool);
2347 	conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2348 					  conf->poolinfo);
2349 	if (!conf->r1buf_pool)
2350 		return -ENOMEM;
2351 	conf->next_resync = 0;
2352 	return 0;
2353 }
2354 
2355 /*
2356  * perform a "sync" on one "block"
2357  *
2358  * We need to make sure that no normal I/O request - particularly write
2359  * requests - conflict with active sync requests.
2360  *
2361  * This is achieved by tracking pending requests and a 'barrier' concept
2362  * that can be installed to exclude normal IO requests.
2363  */
2364 
2365 static sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
2366 {
2367 	struct r1conf *conf = mddev->private;
2368 	struct r1bio *r1_bio;
2369 	struct bio *bio;
2370 	sector_t max_sector, nr_sectors;
2371 	int disk = -1;
2372 	int i;
2373 	int wonly = -1;
2374 	int write_targets = 0, read_targets = 0;
2375 	sector_t sync_blocks;
2376 	int still_degraded = 0;
2377 	int good_sectors = RESYNC_SECTORS;
2378 	int min_bad = 0; /* number of sectors that are bad in all devices */
2379 
2380 	if (!conf->r1buf_pool)
2381 		if (init_resync(conf))
2382 			return 0;
2383 
2384 	max_sector = mddev->dev_sectors;
2385 	if (sector_nr >= max_sector) {
2386 		/* If we aborted, we need to abort the
2387 		 * sync on the 'current' bitmap chunk (there will
2388 		 * only be one in raid1 resync.
2389 		 * We can find the current addess in mddev->curr_resync
2390 		 */
2391 		if (mddev->curr_resync < max_sector) /* aborted */
2392 			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2393 						&sync_blocks, 1);
2394 		else /* completed sync */
2395 			conf->fullsync = 0;
2396 
2397 		bitmap_close_sync(mddev->bitmap);
2398 		close_sync(conf);
2399 		return 0;
2400 	}
2401 
2402 	if (mddev->bitmap == NULL &&
2403 	    mddev->recovery_cp == MaxSector &&
2404 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2405 	    conf->fullsync == 0) {
2406 		*skipped = 1;
2407 		return max_sector - sector_nr;
2408 	}
2409 	/* before building a request, check if we can skip these blocks..
2410 	 * This call the bitmap_start_sync doesn't actually record anything
2411 	 */
2412 	if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2413 	    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2414 		/* We can skip this block, and probably several more */
2415 		*skipped = 1;
2416 		return sync_blocks;
2417 	}
2418 	/*
2419 	 * If there is non-resync activity waiting for a turn,
2420 	 * and resync is going fast enough,
2421 	 * then let it though before starting on this new sync request.
2422 	 */
2423 	if (!go_faster && conf->nr_waiting)
2424 		msleep_interruptible(1000);
2425 
2426 	bitmap_cond_end_sync(mddev->bitmap, sector_nr);
2427 	r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
2428 	raise_barrier(conf);
2429 
2430 	conf->next_resync = sector_nr;
2431 
2432 	rcu_read_lock();
2433 	/*
2434 	 * If we get a correctably read error during resync or recovery,
2435 	 * we might want to read from a different device.  So we
2436 	 * flag all drives that could conceivably be read from for READ,
2437 	 * and any others (which will be non-In_sync devices) for WRITE.
2438 	 * If a read fails, we try reading from something else for which READ
2439 	 * is OK.
2440 	 */
2441 
2442 	r1_bio->mddev = mddev;
2443 	r1_bio->sector = sector_nr;
2444 	r1_bio->state = 0;
2445 	set_bit(R1BIO_IsSync, &r1_bio->state);
2446 
2447 	for (i = 0; i < conf->raid_disks * 2; i++) {
2448 		struct md_rdev *rdev;
2449 		bio = r1_bio->bios[i];
2450 		bio_reset(bio);
2451 
2452 		rdev = rcu_dereference(conf->mirrors[i].rdev);
2453 		if (rdev == NULL ||
2454 		    test_bit(Faulty, &rdev->flags)) {
2455 			if (i < conf->raid_disks)
2456 				still_degraded = 1;
2457 		} else if (!test_bit(In_sync, &rdev->flags)) {
2458 			bio->bi_rw = WRITE;
2459 			bio->bi_end_io = end_sync_write;
2460 			write_targets ++;
2461 		} else {
2462 			/* may need to read from here */
2463 			sector_t first_bad = MaxSector;
2464 			int bad_sectors;
2465 
2466 			if (is_badblock(rdev, sector_nr, good_sectors,
2467 					&first_bad, &bad_sectors)) {
2468 				if (first_bad > sector_nr)
2469 					good_sectors = first_bad - sector_nr;
2470 				else {
2471 					bad_sectors -= (sector_nr - first_bad);
2472 					if (min_bad == 0 ||
2473 					    min_bad > bad_sectors)
2474 						min_bad = bad_sectors;
2475 				}
2476 			}
2477 			if (sector_nr < first_bad) {
2478 				if (test_bit(WriteMostly, &rdev->flags)) {
2479 					if (wonly < 0)
2480 						wonly = i;
2481 				} else {
2482 					if (disk < 0)
2483 						disk = i;
2484 				}
2485 				bio->bi_rw = READ;
2486 				bio->bi_end_io = end_sync_read;
2487 				read_targets++;
2488 			} else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2489 				test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2490 				!test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2491 				/*
2492 				 * The device is suitable for reading (InSync),
2493 				 * but has bad block(s) here. Let's try to correct them,
2494 				 * if we are doing resync or repair. Otherwise, leave
2495 				 * this device alone for this sync request.
2496 				 */
2497 				bio->bi_rw = WRITE;
2498 				bio->bi_end_io = end_sync_write;
2499 				write_targets++;
2500 			}
2501 		}
2502 		if (bio->bi_end_io) {
2503 			atomic_inc(&rdev->nr_pending);
2504 			bio->bi_sector = sector_nr + rdev->data_offset;
2505 			bio->bi_bdev = rdev->bdev;
2506 			bio->bi_private = r1_bio;
2507 		}
2508 	}
2509 	rcu_read_unlock();
2510 	if (disk < 0)
2511 		disk = wonly;
2512 	r1_bio->read_disk = disk;
2513 
2514 	if (read_targets == 0 && min_bad > 0) {
2515 		/* These sectors are bad on all InSync devices, so we
2516 		 * need to mark them bad on all write targets
2517 		 */
2518 		int ok = 1;
2519 		for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2520 			if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2521 				struct md_rdev *rdev = conf->mirrors[i].rdev;
2522 				ok = rdev_set_badblocks(rdev, sector_nr,
2523 							min_bad, 0
2524 					) && ok;
2525 			}
2526 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
2527 		*skipped = 1;
2528 		put_buf(r1_bio);
2529 
2530 		if (!ok) {
2531 			/* Cannot record the badblocks, so need to
2532 			 * abort the resync.
2533 			 * If there are multiple read targets, could just
2534 			 * fail the really bad ones ???
2535 			 */
2536 			conf->recovery_disabled = mddev->recovery_disabled;
2537 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2538 			return 0;
2539 		} else
2540 			return min_bad;
2541 
2542 	}
2543 	if (min_bad > 0 && min_bad < good_sectors) {
2544 		/* only resync enough to reach the next bad->good
2545 		 * transition */
2546 		good_sectors = min_bad;
2547 	}
2548 
2549 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2550 		/* extra read targets are also write targets */
2551 		write_targets += read_targets-1;
2552 
2553 	if (write_targets == 0 || read_targets == 0) {
2554 		/* There is nowhere to write, so all non-sync
2555 		 * drives must be failed - so we are finished
2556 		 */
2557 		sector_t rv;
2558 		if (min_bad > 0)
2559 			max_sector = sector_nr + min_bad;
2560 		rv = max_sector - sector_nr;
2561 		*skipped = 1;
2562 		put_buf(r1_bio);
2563 		return rv;
2564 	}
2565 
2566 	if (max_sector > mddev->resync_max)
2567 		max_sector = mddev->resync_max; /* Don't do IO beyond here */
2568 	if (max_sector > sector_nr + good_sectors)
2569 		max_sector = sector_nr + good_sectors;
2570 	nr_sectors = 0;
2571 	sync_blocks = 0;
2572 	do {
2573 		struct page *page;
2574 		int len = PAGE_SIZE;
2575 		if (sector_nr + (len>>9) > max_sector)
2576 			len = (max_sector - sector_nr) << 9;
2577 		if (len == 0)
2578 			break;
2579 		if (sync_blocks == 0) {
2580 			if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2581 					       &sync_blocks, still_degraded) &&
2582 			    !conf->fullsync &&
2583 			    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2584 				break;
2585 			BUG_ON(sync_blocks < (PAGE_SIZE>>9));
2586 			if ((len >> 9) > sync_blocks)
2587 				len = sync_blocks<<9;
2588 		}
2589 
2590 		for (i = 0 ; i < conf->raid_disks * 2; i++) {
2591 			bio = r1_bio->bios[i];
2592 			if (bio->bi_end_io) {
2593 				page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
2594 				if (bio_add_page(bio, page, len, 0) == 0) {
2595 					/* stop here */
2596 					bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
2597 					while (i > 0) {
2598 						i--;
2599 						bio = r1_bio->bios[i];
2600 						if (bio->bi_end_io==NULL)
2601 							continue;
2602 						/* remove last page from this bio */
2603 						bio->bi_vcnt--;
2604 						bio->bi_size -= len;
2605 						bio->bi_flags &= ~(1<< BIO_SEG_VALID);
2606 					}
2607 					goto bio_full;
2608 				}
2609 			}
2610 		}
2611 		nr_sectors += len>>9;
2612 		sector_nr += len>>9;
2613 		sync_blocks -= (len>>9);
2614 	} while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
2615  bio_full:
2616 	r1_bio->sectors = nr_sectors;
2617 
2618 	/* For a user-requested sync, we read all readable devices and do a
2619 	 * compare
2620 	 */
2621 	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2622 		atomic_set(&r1_bio->remaining, read_targets);
2623 		for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2624 			bio = r1_bio->bios[i];
2625 			if (bio->bi_end_io == end_sync_read) {
2626 				read_targets--;
2627 				md_sync_acct(bio->bi_bdev, nr_sectors);
2628 				generic_make_request(bio);
2629 			}
2630 		}
2631 	} else {
2632 		atomic_set(&r1_bio->remaining, 1);
2633 		bio = r1_bio->bios[r1_bio->read_disk];
2634 		md_sync_acct(bio->bi_bdev, nr_sectors);
2635 		generic_make_request(bio);
2636 
2637 	}
2638 	return nr_sectors;
2639 }
2640 
2641 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2642 {
2643 	if (sectors)
2644 		return sectors;
2645 
2646 	return mddev->dev_sectors;
2647 }
2648 
2649 static struct r1conf *setup_conf(struct mddev *mddev)
2650 {
2651 	struct r1conf *conf;
2652 	int i;
2653 	struct raid1_info *disk;
2654 	struct md_rdev *rdev;
2655 	int err = -ENOMEM;
2656 
2657 	conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2658 	if (!conf)
2659 		goto abort;
2660 
2661 	conf->mirrors = kzalloc(sizeof(struct raid1_info)
2662 				* mddev->raid_disks * 2,
2663 				 GFP_KERNEL);
2664 	if (!conf->mirrors)
2665 		goto abort;
2666 
2667 	conf->tmppage = alloc_page(GFP_KERNEL);
2668 	if (!conf->tmppage)
2669 		goto abort;
2670 
2671 	conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
2672 	if (!conf->poolinfo)
2673 		goto abort;
2674 	conf->poolinfo->raid_disks = mddev->raid_disks * 2;
2675 	conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2676 					  r1bio_pool_free,
2677 					  conf->poolinfo);
2678 	if (!conf->r1bio_pool)
2679 		goto abort;
2680 
2681 	conf->poolinfo->mddev = mddev;
2682 
2683 	err = -EINVAL;
2684 	spin_lock_init(&conf->device_lock);
2685 	rdev_for_each(rdev, mddev) {
2686 		struct request_queue *q;
2687 		int disk_idx = rdev->raid_disk;
2688 		if (disk_idx >= mddev->raid_disks
2689 		    || disk_idx < 0)
2690 			continue;
2691 		if (test_bit(Replacement, &rdev->flags))
2692 			disk = conf->mirrors + mddev->raid_disks + disk_idx;
2693 		else
2694 			disk = conf->mirrors + disk_idx;
2695 
2696 		if (disk->rdev)
2697 			goto abort;
2698 		disk->rdev = rdev;
2699 		q = bdev_get_queue(rdev->bdev);
2700 		if (q->merge_bvec_fn)
2701 			mddev->merge_check_needed = 1;
2702 
2703 		disk->head_position = 0;
2704 		disk->seq_start = MaxSector;
2705 	}
2706 	conf->raid_disks = mddev->raid_disks;
2707 	conf->mddev = mddev;
2708 	INIT_LIST_HEAD(&conf->retry_list);
2709 
2710 	spin_lock_init(&conf->resync_lock);
2711 	init_waitqueue_head(&conf->wait_barrier);
2712 
2713 	bio_list_init(&conf->pending_bio_list);
2714 	conf->pending_count = 0;
2715 	conf->recovery_disabled = mddev->recovery_disabled - 1;
2716 
2717 	err = -EIO;
2718 	for (i = 0; i < conf->raid_disks * 2; i++) {
2719 
2720 		disk = conf->mirrors + i;
2721 
2722 		if (i < conf->raid_disks &&
2723 		    disk[conf->raid_disks].rdev) {
2724 			/* This slot has a replacement. */
2725 			if (!disk->rdev) {
2726 				/* No original, just make the replacement
2727 				 * a recovering spare
2728 				 */
2729 				disk->rdev =
2730 					disk[conf->raid_disks].rdev;
2731 				disk[conf->raid_disks].rdev = NULL;
2732 			} else if (!test_bit(In_sync, &disk->rdev->flags))
2733 				/* Original is not in_sync - bad */
2734 				goto abort;
2735 		}
2736 
2737 		if (!disk->rdev ||
2738 		    !test_bit(In_sync, &disk->rdev->flags)) {
2739 			disk->head_position = 0;
2740 			if (disk->rdev &&
2741 			    (disk->rdev->saved_raid_disk < 0))
2742 				conf->fullsync = 1;
2743 		}
2744 	}
2745 
2746 	err = -ENOMEM;
2747 	conf->thread = md_register_thread(raid1d, mddev, "raid1");
2748 	if (!conf->thread) {
2749 		printk(KERN_ERR
2750 		       "md/raid1:%s: couldn't allocate thread\n",
2751 		       mdname(mddev));
2752 		goto abort;
2753 	}
2754 
2755 	return conf;
2756 
2757  abort:
2758 	if (conf) {
2759 		if (conf->r1bio_pool)
2760 			mempool_destroy(conf->r1bio_pool);
2761 		kfree(conf->mirrors);
2762 		safe_put_page(conf->tmppage);
2763 		kfree(conf->poolinfo);
2764 		kfree(conf);
2765 	}
2766 	return ERR_PTR(err);
2767 }
2768 
2769 static int stop(struct mddev *mddev);
2770 static int run(struct mddev *mddev)
2771 {
2772 	struct r1conf *conf;
2773 	int i;
2774 	struct md_rdev *rdev;
2775 	int ret;
2776 	bool discard_supported = false;
2777 
2778 	if (mddev->level != 1) {
2779 		printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n",
2780 		       mdname(mddev), mddev->level);
2781 		return -EIO;
2782 	}
2783 	if (mddev->reshape_position != MaxSector) {
2784 		printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n",
2785 		       mdname(mddev));
2786 		return -EIO;
2787 	}
2788 	/*
2789 	 * copy the already verified devices into our private RAID1
2790 	 * bookkeeping area. [whatever we allocate in run(),
2791 	 * should be freed in stop()]
2792 	 */
2793 	if (mddev->private == NULL)
2794 		conf = setup_conf(mddev);
2795 	else
2796 		conf = mddev->private;
2797 
2798 	if (IS_ERR(conf))
2799 		return PTR_ERR(conf);
2800 
2801 	if (mddev->queue)
2802 		blk_queue_max_write_same_sectors(mddev->queue, 0);
2803 
2804 	rdev_for_each(rdev, mddev) {
2805 		if (!mddev->gendisk)
2806 			continue;
2807 		disk_stack_limits(mddev->gendisk, rdev->bdev,
2808 				  rdev->data_offset << 9);
2809 		if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
2810 			discard_supported = true;
2811 	}
2812 
2813 	mddev->degraded = 0;
2814 	for (i=0; i < conf->raid_disks; i++)
2815 		if (conf->mirrors[i].rdev == NULL ||
2816 		    !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
2817 		    test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2818 			mddev->degraded++;
2819 
2820 	if (conf->raid_disks - mddev->degraded == 1)
2821 		mddev->recovery_cp = MaxSector;
2822 
2823 	if (mddev->recovery_cp != MaxSector)
2824 		printk(KERN_NOTICE "md/raid1:%s: not clean"
2825 		       " -- starting background reconstruction\n",
2826 		       mdname(mddev));
2827 	printk(KERN_INFO
2828 		"md/raid1:%s: active with %d out of %d mirrors\n",
2829 		mdname(mddev), mddev->raid_disks - mddev->degraded,
2830 		mddev->raid_disks);
2831 
2832 	/*
2833 	 * Ok, everything is just fine now
2834 	 */
2835 	mddev->thread = conf->thread;
2836 	conf->thread = NULL;
2837 	mddev->private = conf;
2838 
2839 	md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
2840 
2841 	if (mddev->queue) {
2842 		mddev->queue->backing_dev_info.congested_fn = raid1_congested;
2843 		mddev->queue->backing_dev_info.congested_data = mddev;
2844 		blk_queue_merge_bvec(mddev->queue, raid1_mergeable_bvec);
2845 
2846 		if (discard_supported)
2847 			queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
2848 						mddev->queue);
2849 		else
2850 			queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
2851 						  mddev->queue);
2852 	}
2853 
2854 	ret =  md_integrity_register(mddev);
2855 	if (ret)
2856 		stop(mddev);
2857 	return ret;
2858 }
2859 
2860 static int stop(struct mddev *mddev)
2861 {
2862 	struct r1conf *conf = mddev->private;
2863 	struct bitmap *bitmap = mddev->bitmap;
2864 
2865 	/* wait for behind writes to complete */
2866 	if (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
2867 		printk(KERN_INFO "md/raid1:%s: behind writes in progress - waiting to stop.\n",
2868 		       mdname(mddev));
2869 		/* need to kick something here to make sure I/O goes? */
2870 		wait_event(bitmap->behind_wait,
2871 			   atomic_read(&bitmap->behind_writes) == 0);
2872 	}
2873 
2874 	raise_barrier(conf);
2875 	lower_barrier(conf);
2876 
2877 	md_unregister_thread(&mddev->thread);
2878 	if (conf->r1bio_pool)
2879 		mempool_destroy(conf->r1bio_pool);
2880 	kfree(conf->mirrors);
2881 	safe_put_page(conf->tmppage);
2882 	kfree(conf->poolinfo);
2883 	kfree(conf);
2884 	mddev->private = NULL;
2885 	return 0;
2886 }
2887 
2888 static int raid1_resize(struct mddev *mddev, sector_t sectors)
2889 {
2890 	/* no resync is happening, and there is enough space
2891 	 * on all devices, so we can resize.
2892 	 * We need to make sure resync covers any new space.
2893 	 * If the array is shrinking we should possibly wait until
2894 	 * any io in the removed space completes, but it hardly seems
2895 	 * worth it.
2896 	 */
2897 	sector_t newsize = raid1_size(mddev, sectors, 0);
2898 	if (mddev->external_size &&
2899 	    mddev->array_sectors > newsize)
2900 		return -EINVAL;
2901 	if (mddev->bitmap) {
2902 		int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0);
2903 		if (ret)
2904 			return ret;
2905 	}
2906 	md_set_array_sectors(mddev, newsize);
2907 	set_capacity(mddev->gendisk, mddev->array_sectors);
2908 	revalidate_disk(mddev->gendisk);
2909 	if (sectors > mddev->dev_sectors &&
2910 	    mddev->recovery_cp > mddev->dev_sectors) {
2911 		mddev->recovery_cp = mddev->dev_sectors;
2912 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2913 	}
2914 	mddev->dev_sectors = sectors;
2915 	mddev->resync_max_sectors = sectors;
2916 	return 0;
2917 }
2918 
2919 static int raid1_reshape(struct mddev *mddev)
2920 {
2921 	/* We need to:
2922 	 * 1/ resize the r1bio_pool
2923 	 * 2/ resize conf->mirrors
2924 	 *
2925 	 * We allocate a new r1bio_pool if we can.
2926 	 * Then raise a device barrier and wait until all IO stops.
2927 	 * Then resize conf->mirrors and swap in the new r1bio pool.
2928 	 *
2929 	 * At the same time, we "pack" the devices so that all the missing
2930 	 * devices have the higher raid_disk numbers.
2931 	 */
2932 	mempool_t *newpool, *oldpool;
2933 	struct pool_info *newpoolinfo;
2934 	struct raid1_info *newmirrors;
2935 	struct r1conf *conf = mddev->private;
2936 	int cnt, raid_disks;
2937 	unsigned long flags;
2938 	int d, d2, err;
2939 
2940 	/* Cannot change chunk_size, layout, or level */
2941 	if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
2942 	    mddev->layout != mddev->new_layout ||
2943 	    mddev->level != mddev->new_level) {
2944 		mddev->new_chunk_sectors = mddev->chunk_sectors;
2945 		mddev->new_layout = mddev->layout;
2946 		mddev->new_level = mddev->level;
2947 		return -EINVAL;
2948 	}
2949 
2950 	err = md_allow_write(mddev);
2951 	if (err)
2952 		return err;
2953 
2954 	raid_disks = mddev->raid_disks + mddev->delta_disks;
2955 
2956 	if (raid_disks < conf->raid_disks) {
2957 		cnt=0;
2958 		for (d= 0; d < conf->raid_disks; d++)
2959 			if (conf->mirrors[d].rdev)
2960 				cnt++;
2961 		if (cnt > raid_disks)
2962 			return -EBUSY;
2963 	}
2964 
2965 	newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
2966 	if (!newpoolinfo)
2967 		return -ENOMEM;
2968 	newpoolinfo->mddev = mddev;
2969 	newpoolinfo->raid_disks = raid_disks * 2;
2970 
2971 	newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2972 				 r1bio_pool_free, newpoolinfo);
2973 	if (!newpool) {
2974 		kfree(newpoolinfo);
2975 		return -ENOMEM;
2976 	}
2977 	newmirrors = kzalloc(sizeof(struct raid1_info) * raid_disks * 2,
2978 			     GFP_KERNEL);
2979 	if (!newmirrors) {
2980 		kfree(newpoolinfo);
2981 		mempool_destroy(newpool);
2982 		return -ENOMEM;
2983 	}
2984 
2985 	freeze_array(conf, 0);
2986 
2987 	/* ok, everything is stopped */
2988 	oldpool = conf->r1bio_pool;
2989 	conf->r1bio_pool = newpool;
2990 
2991 	for (d = d2 = 0; d < conf->raid_disks; d++) {
2992 		struct md_rdev *rdev = conf->mirrors[d].rdev;
2993 		if (rdev && rdev->raid_disk != d2) {
2994 			sysfs_unlink_rdev(mddev, rdev);
2995 			rdev->raid_disk = d2;
2996 			sysfs_unlink_rdev(mddev, rdev);
2997 			if (sysfs_link_rdev(mddev, rdev))
2998 				printk(KERN_WARNING
2999 				       "md/raid1:%s: cannot register rd%d\n",
3000 				       mdname(mddev), rdev->raid_disk);
3001 		}
3002 		if (rdev)
3003 			newmirrors[d2++].rdev = rdev;
3004 	}
3005 	kfree(conf->mirrors);
3006 	conf->mirrors = newmirrors;
3007 	kfree(conf->poolinfo);
3008 	conf->poolinfo = newpoolinfo;
3009 
3010 	spin_lock_irqsave(&conf->device_lock, flags);
3011 	mddev->degraded += (raid_disks - conf->raid_disks);
3012 	spin_unlock_irqrestore(&conf->device_lock, flags);
3013 	conf->raid_disks = mddev->raid_disks = raid_disks;
3014 	mddev->delta_disks = 0;
3015 
3016 	unfreeze_array(conf);
3017 
3018 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3019 	md_wakeup_thread(mddev->thread);
3020 
3021 	mempool_destroy(oldpool);
3022 	return 0;
3023 }
3024 
3025 static void raid1_quiesce(struct mddev *mddev, int state)
3026 {
3027 	struct r1conf *conf = mddev->private;
3028 
3029 	switch(state) {
3030 	case 2: /* wake for suspend */
3031 		wake_up(&conf->wait_barrier);
3032 		break;
3033 	case 1:
3034 		raise_barrier(conf);
3035 		break;
3036 	case 0:
3037 		lower_barrier(conf);
3038 		break;
3039 	}
3040 }
3041 
3042 static void *raid1_takeover(struct mddev *mddev)
3043 {
3044 	/* raid1 can take over:
3045 	 *  raid5 with 2 devices, any layout or chunk size
3046 	 */
3047 	if (mddev->level == 5 && mddev->raid_disks == 2) {
3048 		struct r1conf *conf;
3049 		mddev->new_level = 1;
3050 		mddev->new_layout = 0;
3051 		mddev->new_chunk_sectors = 0;
3052 		conf = setup_conf(mddev);
3053 		if (!IS_ERR(conf))
3054 			conf->barrier = 1;
3055 		return conf;
3056 	}
3057 	return ERR_PTR(-EINVAL);
3058 }
3059 
3060 static struct md_personality raid1_personality =
3061 {
3062 	.name		= "raid1",
3063 	.level		= 1,
3064 	.owner		= THIS_MODULE,
3065 	.make_request	= make_request,
3066 	.run		= run,
3067 	.stop		= stop,
3068 	.status		= status,
3069 	.error_handler	= error,
3070 	.hot_add_disk	= raid1_add_disk,
3071 	.hot_remove_disk= raid1_remove_disk,
3072 	.spare_active	= raid1_spare_active,
3073 	.sync_request	= sync_request,
3074 	.resize		= raid1_resize,
3075 	.size		= raid1_size,
3076 	.check_reshape	= raid1_reshape,
3077 	.quiesce	= raid1_quiesce,
3078 	.takeover	= raid1_takeover,
3079 };
3080 
3081 static int __init raid_init(void)
3082 {
3083 	return register_md_personality(&raid1_personality);
3084 }
3085 
3086 static void raid_exit(void)
3087 {
3088 	unregister_md_personality(&raid1_personality);
3089 }
3090 
3091 module_init(raid_init);
3092 module_exit(raid_exit);
3093 MODULE_LICENSE("GPL");
3094 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3095 MODULE_ALIAS("md-personality-3"); /* RAID1 */
3096 MODULE_ALIAS("md-raid1");
3097 MODULE_ALIAS("md-level-1");
3098 
3099 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
3100