xref: /openbmc/linux/drivers/md/raid1.c (revision f6723b56)
1 /*
2  * raid1.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5  *
6  * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7  *
8  * RAID-1 management functions.
9  *
10  * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11  *
12  * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
13  * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14  *
15  * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16  * bitmapped intelligence in resync:
17  *
18  *      - bitmap marked during normal i/o
19  *      - bitmap used to skip nondirty blocks during sync
20  *
21  * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22  * - persistent bitmap code
23  *
24  * This program is free software; you can redistribute it and/or modify
25  * it under the terms of the GNU General Public License as published by
26  * the Free Software Foundation; either version 2, or (at your option)
27  * any later version.
28  *
29  * You should have received a copy of the GNU General Public License
30  * (for example /usr/src/linux/COPYING); if not, write to the Free
31  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32  */
33 
34 #include <linux/slab.h>
35 #include <linux/delay.h>
36 #include <linux/blkdev.h>
37 #include <linux/module.h>
38 #include <linux/seq_file.h>
39 #include <linux/ratelimit.h>
40 #include "md.h"
41 #include "raid1.h"
42 #include "bitmap.h"
43 
44 /*
45  * Number of guaranteed r1bios in case of extreme VM load:
46  */
47 #define	NR_RAID1_BIOS 256
48 
49 /* when we get a read error on a read-only array, we redirect to another
50  * device without failing the first device, or trying to over-write to
51  * correct the read error.  To keep track of bad blocks on a per-bio
52  * level, we store IO_BLOCKED in the appropriate 'bios' pointer
53  */
54 #define IO_BLOCKED ((struct bio *)1)
55 /* When we successfully write to a known bad-block, we need to remove the
56  * bad-block marking which must be done from process context.  So we record
57  * the success by setting devs[n].bio to IO_MADE_GOOD
58  */
59 #define IO_MADE_GOOD ((struct bio *)2)
60 
61 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
62 
63 /* When there are this many requests queue to be written by
64  * the raid1 thread, we become 'congested' to provide back-pressure
65  * for writeback.
66  */
67 static int max_queued_requests = 1024;
68 
69 static void allow_barrier(struct r1conf *conf, sector_t start_next_window,
70 			  sector_t bi_sector);
71 static void lower_barrier(struct r1conf *conf);
72 
73 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
74 {
75 	struct pool_info *pi = data;
76 	int size = offsetof(struct r1bio, bios[pi->raid_disks]);
77 
78 	/* allocate a r1bio with room for raid_disks entries in the bios array */
79 	return kzalloc(size, gfp_flags);
80 }
81 
82 static void r1bio_pool_free(void *r1_bio, void *data)
83 {
84 	kfree(r1_bio);
85 }
86 
87 #define RESYNC_BLOCK_SIZE (64*1024)
88 #define RESYNC_DEPTH 32
89 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
90 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
91 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
92 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
93 #define NEXT_NORMALIO_DISTANCE (3 * RESYNC_WINDOW_SECTORS)
94 
95 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
96 {
97 	struct pool_info *pi = data;
98 	struct r1bio *r1_bio;
99 	struct bio *bio;
100 	int i, j;
101 
102 	r1_bio = r1bio_pool_alloc(gfp_flags, pi);
103 	if (!r1_bio)
104 		return NULL;
105 
106 	/*
107 	 * Allocate bios : 1 for reading, n-1 for writing
108 	 */
109 	for (j = pi->raid_disks ; j-- ; ) {
110 		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
111 		if (!bio)
112 			goto out_free_bio;
113 		r1_bio->bios[j] = bio;
114 	}
115 	/*
116 	 * Allocate RESYNC_PAGES data pages and attach them to
117 	 * the first bio.
118 	 * If this is a user-requested check/repair, allocate
119 	 * RESYNC_PAGES for each bio.
120 	 */
121 	if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
122 		j = pi->raid_disks;
123 	else
124 		j = 1;
125 	while(j--) {
126 		bio = r1_bio->bios[j];
127 		bio->bi_vcnt = RESYNC_PAGES;
128 
129 		if (bio_alloc_pages(bio, gfp_flags))
130 			goto out_free_bio;
131 	}
132 	/* If not user-requests, copy the page pointers to all bios */
133 	if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
134 		for (i=0; i<RESYNC_PAGES ; i++)
135 			for (j=1; j<pi->raid_disks; j++)
136 				r1_bio->bios[j]->bi_io_vec[i].bv_page =
137 					r1_bio->bios[0]->bi_io_vec[i].bv_page;
138 	}
139 
140 	r1_bio->master_bio = NULL;
141 
142 	return r1_bio;
143 
144 out_free_bio:
145 	while (++j < pi->raid_disks)
146 		bio_put(r1_bio->bios[j]);
147 	r1bio_pool_free(r1_bio, data);
148 	return NULL;
149 }
150 
151 static void r1buf_pool_free(void *__r1_bio, void *data)
152 {
153 	struct pool_info *pi = data;
154 	int i,j;
155 	struct r1bio *r1bio = __r1_bio;
156 
157 	for (i = 0; i < RESYNC_PAGES; i++)
158 		for (j = pi->raid_disks; j-- ;) {
159 			if (j == 0 ||
160 			    r1bio->bios[j]->bi_io_vec[i].bv_page !=
161 			    r1bio->bios[0]->bi_io_vec[i].bv_page)
162 				safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
163 		}
164 	for (i=0 ; i < pi->raid_disks; i++)
165 		bio_put(r1bio->bios[i]);
166 
167 	r1bio_pool_free(r1bio, data);
168 }
169 
170 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
171 {
172 	int i;
173 
174 	for (i = 0; i < conf->raid_disks * 2; i++) {
175 		struct bio **bio = r1_bio->bios + i;
176 		if (!BIO_SPECIAL(*bio))
177 			bio_put(*bio);
178 		*bio = NULL;
179 	}
180 }
181 
182 static void free_r1bio(struct r1bio *r1_bio)
183 {
184 	struct r1conf *conf = r1_bio->mddev->private;
185 
186 	put_all_bios(conf, r1_bio);
187 	mempool_free(r1_bio, conf->r1bio_pool);
188 }
189 
190 static void put_buf(struct r1bio *r1_bio)
191 {
192 	struct r1conf *conf = r1_bio->mddev->private;
193 	int i;
194 
195 	for (i = 0; i < conf->raid_disks * 2; i++) {
196 		struct bio *bio = r1_bio->bios[i];
197 		if (bio->bi_end_io)
198 			rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
199 	}
200 
201 	mempool_free(r1_bio, conf->r1buf_pool);
202 
203 	lower_barrier(conf);
204 }
205 
206 static void reschedule_retry(struct r1bio *r1_bio)
207 {
208 	unsigned long flags;
209 	struct mddev *mddev = r1_bio->mddev;
210 	struct r1conf *conf = mddev->private;
211 
212 	spin_lock_irqsave(&conf->device_lock, flags);
213 	list_add(&r1_bio->retry_list, &conf->retry_list);
214 	conf->nr_queued ++;
215 	spin_unlock_irqrestore(&conf->device_lock, flags);
216 
217 	wake_up(&conf->wait_barrier);
218 	md_wakeup_thread(mddev->thread);
219 }
220 
221 /*
222  * raid_end_bio_io() is called when we have finished servicing a mirrored
223  * operation and are ready to return a success/failure code to the buffer
224  * cache layer.
225  */
226 static void call_bio_endio(struct r1bio *r1_bio)
227 {
228 	struct bio *bio = r1_bio->master_bio;
229 	int done;
230 	struct r1conf *conf = r1_bio->mddev->private;
231 	sector_t start_next_window = r1_bio->start_next_window;
232 	sector_t bi_sector = bio->bi_iter.bi_sector;
233 
234 	if (bio->bi_phys_segments) {
235 		unsigned long flags;
236 		spin_lock_irqsave(&conf->device_lock, flags);
237 		bio->bi_phys_segments--;
238 		done = (bio->bi_phys_segments == 0);
239 		spin_unlock_irqrestore(&conf->device_lock, flags);
240 		/*
241 		 * make_request() might be waiting for
242 		 * bi_phys_segments to decrease
243 		 */
244 		wake_up(&conf->wait_barrier);
245 	} else
246 		done = 1;
247 
248 	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
249 		clear_bit(BIO_UPTODATE, &bio->bi_flags);
250 	if (done) {
251 		bio_endio(bio, 0);
252 		/*
253 		 * Wake up any possible resync thread that waits for the device
254 		 * to go idle.
255 		 */
256 		allow_barrier(conf, start_next_window, bi_sector);
257 	}
258 }
259 
260 static void raid_end_bio_io(struct r1bio *r1_bio)
261 {
262 	struct bio *bio = r1_bio->master_bio;
263 
264 	/* if nobody has done the final endio yet, do it now */
265 	if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
266 		pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
267 			 (bio_data_dir(bio) == WRITE) ? "write" : "read",
268 			 (unsigned long long) bio->bi_iter.bi_sector,
269 			 (unsigned long long) bio_end_sector(bio) - 1);
270 
271 		call_bio_endio(r1_bio);
272 	}
273 	free_r1bio(r1_bio);
274 }
275 
276 /*
277  * Update disk head position estimator based on IRQ completion info.
278  */
279 static inline void update_head_pos(int disk, struct r1bio *r1_bio)
280 {
281 	struct r1conf *conf = r1_bio->mddev->private;
282 
283 	conf->mirrors[disk].head_position =
284 		r1_bio->sector + (r1_bio->sectors);
285 }
286 
287 /*
288  * Find the disk number which triggered given bio
289  */
290 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
291 {
292 	int mirror;
293 	struct r1conf *conf = r1_bio->mddev->private;
294 	int raid_disks = conf->raid_disks;
295 
296 	for (mirror = 0; mirror < raid_disks * 2; mirror++)
297 		if (r1_bio->bios[mirror] == bio)
298 			break;
299 
300 	BUG_ON(mirror == raid_disks * 2);
301 	update_head_pos(mirror, r1_bio);
302 
303 	return mirror;
304 }
305 
306 static void raid1_end_read_request(struct bio *bio, int error)
307 {
308 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
309 	struct r1bio *r1_bio = bio->bi_private;
310 	int mirror;
311 	struct r1conf *conf = r1_bio->mddev->private;
312 
313 	mirror = r1_bio->read_disk;
314 	/*
315 	 * this branch is our 'one mirror IO has finished' event handler:
316 	 */
317 	update_head_pos(mirror, r1_bio);
318 
319 	if (uptodate)
320 		set_bit(R1BIO_Uptodate, &r1_bio->state);
321 	else {
322 		/* If all other devices have failed, we want to return
323 		 * the error upwards rather than fail the last device.
324 		 * Here we redefine "uptodate" to mean "Don't want to retry"
325 		 */
326 		unsigned long flags;
327 		spin_lock_irqsave(&conf->device_lock, flags);
328 		if (r1_bio->mddev->degraded == conf->raid_disks ||
329 		    (r1_bio->mddev->degraded == conf->raid_disks-1 &&
330 		     !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags)))
331 			uptodate = 1;
332 		spin_unlock_irqrestore(&conf->device_lock, flags);
333 	}
334 
335 	if (uptodate) {
336 		raid_end_bio_io(r1_bio);
337 		rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
338 	} else {
339 		/*
340 		 * oops, read error:
341 		 */
342 		char b[BDEVNAME_SIZE];
343 		printk_ratelimited(
344 			KERN_ERR "md/raid1:%s: %s: "
345 			"rescheduling sector %llu\n",
346 			mdname(conf->mddev),
347 			bdevname(conf->mirrors[mirror].rdev->bdev,
348 				 b),
349 			(unsigned long long)r1_bio->sector);
350 		set_bit(R1BIO_ReadError, &r1_bio->state);
351 		reschedule_retry(r1_bio);
352 		/* don't drop the reference on read_disk yet */
353 	}
354 }
355 
356 static void close_write(struct r1bio *r1_bio)
357 {
358 	/* it really is the end of this request */
359 	if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
360 		/* free extra copy of the data pages */
361 		int i = r1_bio->behind_page_count;
362 		while (i--)
363 			safe_put_page(r1_bio->behind_bvecs[i].bv_page);
364 		kfree(r1_bio->behind_bvecs);
365 		r1_bio->behind_bvecs = NULL;
366 	}
367 	/* clear the bitmap if all writes complete successfully */
368 	bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
369 			r1_bio->sectors,
370 			!test_bit(R1BIO_Degraded, &r1_bio->state),
371 			test_bit(R1BIO_BehindIO, &r1_bio->state));
372 	md_write_end(r1_bio->mddev);
373 }
374 
375 static void r1_bio_write_done(struct r1bio *r1_bio)
376 {
377 	if (!atomic_dec_and_test(&r1_bio->remaining))
378 		return;
379 
380 	if (test_bit(R1BIO_WriteError, &r1_bio->state))
381 		reschedule_retry(r1_bio);
382 	else {
383 		close_write(r1_bio);
384 		if (test_bit(R1BIO_MadeGood, &r1_bio->state))
385 			reschedule_retry(r1_bio);
386 		else
387 			raid_end_bio_io(r1_bio);
388 	}
389 }
390 
391 static void raid1_end_write_request(struct bio *bio, int error)
392 {
393 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
394 	struct r1bio *r1_bio = bio->bi_private;
395 	int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
396 	struct r1conf *conf = r1_bio->mddev->private;
397 	struct bio *to_put = NULL;
398 
399 	mirror = find_bio_disk(r1_bio, bio);
400 
401 	/*
402 	 * 'one mirror IO has finished' event handler:
403 	 */
404 	if (!uptodate) {
405 		set_bit(WriteErrorSeen,
406 			&conf->mirrors[mirror].rdev->flags);
407 		if (!test_and_set_bit(WantReplacement,
408 				      &conf->mirrors[mirror].rdev->flags))
409 			set_bit(MD_RECOVERY_NEEDED, &
410 				conf->mddev->recovery);
411 
412 		set_bit(R1BIO_WriteError, &r1_bio->state);
413 	} else {
414 		/*
415 		 * Set R1BIO_Uptodate in our master bio, so that we
416 		 * will return a good error code for to the higher
417 		 * levels even if IO on some other mirrored buffer
418 		 * fails.
419 		 *
420 		 * The 'master' represents the composite IO operation
421 		 * to user-side. So if something waits for IO, then it
422 		 * will wait for the 'master' bio.
423 		 */
424 		sector_t first_bad;
425 		int bad_sectors;
426 
427 		r1_bio->bios[mirror] = NULL;
428 		to_put = bio;
429 		/*
430 		 * Do not set R1BIO_Uptodate if the current device is
431 		 * rebuilding or Faulty. This is because we cannot use
432 		 * such device for properly reading the data back (we could
433 		 * potentially use it, if the current write would have felt
434 		 * before rdev->recovery_offset, but for simplicity we don't
435 		 * check this here.
436 		 */
437 		if (test_bit(In_sync, &conf->mirrors[mirror].rdev->flags) &&
438 		    !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags))
439 			set_bit(R1BIO_Uptodate, &r1_bio->state);
440 
441 		/* Maybe we can clear some bad blocks. */
442 		if (is_badblock(conf->mirrors[mirror].rdev,
443 				r1_bio->sector, r1_bio->sectors,
444 				&first_bad, &bad_sectors)) {
445 			r1_bio->bios[mirror] = IO_MADE_GOOD;
446 			set_bit(R1BIO_MadeGood, &r1_bio->state);
447 		}
448 	}
449 
450 	if (behind) {
451 		if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
452 			atomic_dec(&r1_bio->behind_remaining);
453 
454 		/*
455 		 * In behind mode, we ACK the master bio once the I/O
456 		 * has safely reached all non-writemostly
457 		 * disks. Setting the Returned bit ensures that this
458 		 * gets done only once -- we don't ever want to return
459 		 * -EIO here, instead we'll wait
460 		 */
461 		if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
462 		    test_bit(R1BIO_Uptodate, &r1_bio->state)) {
463 			/* Maybe we can return now */
464 			if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
465 				struct bio *mbio = r1_bio->master_bio;
466 				pr_debug("raid1: behind end write sectors"
467 					 " %llu-%llu\n",
468 					 (unsigned long long) mbio->bi_iter.bi_sector,
469 					 (unsigned long long) bio_end_sector(mbio) - 1);
470 				call_bio_endio(r1_bio);
471 			}
472 		}
473 	}
474 	if (r1_bio->bios[mirror] == NULL)
475 		rdev_dec_pending(conf->mirrors[mirror].rdev,
476 				 conf->mddev);
477 
478 	/*
479 	 * Let's see if all mirrored write operations have finished
480 	 * already.
481 	 */
482 	r1_bio_write_done(r1_bio);
483 
484 	if (to_put)
485 		bio_put(to_put);
486 }
487 
488 
489 /*
490  * This routine returns the disk from which the requested read should
491  * be done. There is a per-array 'next expected sequential IO' sector
492  * number - if this matches on the next IO then we use the last disk.
493  * There is also a per-disk 'last know head position' sector that is
494  * maintained from IRQ contexts, both the normal and the resync IO
495  * completion handlers update this position correctly. If there is no
496  * perfect sequential match then we pick the disk whose head is closest.
497  *
498  * If there are 2 mirrors in the same 2 devices, performance degrades
499  * because position is mirror, not device based.
500  *
501  * The rdev for the device selected will have nr_pending incremented.
502  */
503 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
504 {
505 	const sector_t this_sector = r1_bio->sector;
506 	int sectors;
507 	int best_good_sectors;
508 	int best_disk, best_dist_disk, best_pending_disk;
509 	int has_nonrot_disk;
510 	int disk;
511 	sector_t best_dist;
512 	unsigned int min_pending;
513 	struct md_rdev *rdev;
514 	int choose_first;
515 	int choose_next_idle;
516 
517 	rcu_read_lock();
518 	/*
519 	 * Check if we can balance. We can balance on the whole
520 	 * device if no resync is going on, or below the resync window.
521 	 * We take the first readable disk when above the resync window.
522 	 */
523  retry:
524 	sectors = r1_bio->sectors;
525 	best_disk = -1;
526 	best_dist_disk = -1;
527 	best_dist = MaxSector;
528 	best_pending_disk = -1;
529 	min_pending = UINT_MAX;
530 	best_good_sectors = 0;
531 	has_nonrot_disk = 0;
532 	choose_next_idle = 0;
533 
534 	if (conf->mddev->recovery_cp < MaxSector &&
535 	    (this_sector + sectors >= conf->next_resync))
536 		choose_first = 1;
537 	else
538 		choose_first = 0;
539 
540 	for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
541 		sector_t dist;
542 		sector_t first_bad;
543 		int bad_sectors;
544 		unsigned int pending;
545 		bool nonrot;
546 
547 		rdev = rcu_dereference(conf->mirrors[disk].rdev);
548 		if (r1_bio->bios[disk] == IO_BLOCKED
549 		    || rdev == NULL
550 		    || test_bit(Unmerged, &rdev->flags)
551 		    || test_bit(Faulty, &rdev->flags))
552 			continue;
553 		if (!test_bit(In_sync, &rdev->flags) &&
554 		    rdev->recovery_offset < this_sector + sectors)
555 			continue;
556 		if (test_bit(WriteMostly, &rdev->flags)) {
557 			/* Don't balance among write-mostly, just
558 			 * use the first as a last resort */
559 			if (best_disk < 0) {
560 				if (is_badblock(rdev, this_sector, sectors,
561 						&first_bad, &bad_sectors)) {
562 					if (first_bad < this_sector)
563 						/* Cannot use this */
564 						continue;
565 					best_good_sectors = first_bad - this_sector;
566 				} else
567 					best_good_sectors = sectors;
568 				best_disk = disk;
569 			}
570 			continue;
571 		}
572 		/* This is a reasonable device to use.  It might
573 		 * even be best.
574 		 */
575 		if (is_badblock(rdev, this_sector, sectors,
576 				&first_bad, &bad_sectors)) {
577 			if (best_dist < MaxSector)
578 				/* already have a better device */
579 				continue;
580 			if (first_bad <= this_sector) {
581 				/* cannot read here. If this is the 'primary'
582 				 * device, then we must not read beyond
583 				 * bad_sectors from another device..
584 				 */
585 				bad_sectors -= (this_sector - first_bad);
586 				if (choose_first && sectors > bad_sectors)
587 					sectors = bad_sectors;
588 				if (best_good_sectors > sectors)
589 					best_good_sectors = sectors;
590 
591 			} else {
592 				sector_t good_sectors = first_bad - this_sector;
593 				if (good_sectors > best_good_sectors) {
594 					best_good_sectors = good_sectors;
595 					best_disk = disk;
596 				}
597 				if (choose_first)
598 					break;
599 			}
600 			continue;
601 		} else
602 			best_good_sectors = sectors;
603 
604 		nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
605 		has_nonrot_disk |= nonrot;
606 		pending = atomic_read(&rdev->nr_pending);
607 		dist = abs(this_sector - conf->mirrors[disk].head_position);
608 		if (choose_first) {
609 			best_disk = disk;
610 			break;
611 		}
612 		/* Don't change to another disk for sequential reads */
613 		if (conf->mirrors[disk].next_seq_sect == this_sector
614 		    || dist == 0) {
615 			int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
616 			struct raid1_info *mirror = &conf->mirrors[disk];
617 
618 			best_disk = disk;
619 			/*
620 			 * If buffered sequential IO size exceeds optimal
621 			 * iosize, check if there is idle disk. If yes, choose
622 			 * the idle disk. read_balance could already choose an
623 			 * idle disk before noticing it's a sequential IO in
624 			 * this disk. This doesn't matter because this disk
625 			 * will idle, next time it will be utilized after the
626 			 * first disk has IO size exceeds optimal iosize. In
627 			 * this way, iosize of the first disk will be optimal
628 			 * iosize at least. iosize of the second disk might be
629 			 * small, but not a big deal since when the second disk
630 			 * starts IO, the first disk is likely still busy.
631 			 */
632 			if (nonrot && opt_iosize > 0 &&
633 			    mirror->seq_start != MaxSector &&
634 			    mirror->next_seq_sect > opt_iosize &&
635 			    mirror->next_seq_sect - opt_iosize >=
636 			    mirror->seq_start) {
637 				choose_next_idle = 1;
638 				continue;
639 			}
640 			break;
641 		}
642 		/* If device is idle, use it */
643 		if (pending == 0) {
644 			best_disk = disk;
645 			break;
646 		}
647 
648 		if (choose_next_idle)
649 			continue;
650 
651 		if (min_pending > pending) {
652 			min_pending = pending;
653 			best_pending_disk = disk;
654 		}
655 
656 		if (dist < best_dist) {
657 			best_dist = dist;
658 			best_dist_disk = disk;
659 		}
660 	}
661 
662 	/*
663 	 * If all disks are rotational, choose the closest disk. If any disk is
664 	 * non-rotational, choose the disk with less pending request even the
665 	 * disk is rotational, which might/might not be optimal for raids with
666 	 * mixed ratation/non-rotational disks depending on workload.
667 	 */
668 	if (best_disk == -1) {
669 		if (has_nonrot_disk)
670 			best_disk = best_pending_disk;
671 		else
672 			best_disk = best_dist_disk;
673 	}
674 
675 	if (best_disk >= 0) {
676 		rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
677 		if (!rdev)
678 			goto retry;
679 		atomic_inc(&rdev->nr_pending);
680 		if (test_bit(Faulty, &rdev->flags)) {
681 			/* cannot risk returning a device that failed
682 			 * before we inc'ed nr_pending
683 			 */
684 			rdev_dec_pending(rdev, conf->mddev);
685 			goto retry;
686 		}
687 		sectors = best_good_sectors;
688 
689 		if (conf->mirrors[best_disk].next_seq_sect != this_sector)
690 			conf->mirrors[best_disk].seq_start = this_sector;
691 
692 		conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
693 	}
694 	rcu_read_unlock();
695 	*max_sectors = sectors;
696 
697 	return best_disk;
698 }
699 
700 static int raid1_mergeable_bvec(struct request_queue *q,
701 				struct bvec_merge_data *bvm,
702 				struct bio_vec *biovec)
703 {
704 	struct mddev *mddev = q->queuedata;
705 	struct r1conf *conf = mddev->private;
706 	sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
707 	int max = biovec->bv_len;
708 
709 	if (mddev->merge_check_needed) {
710 		int disk;
711 		rcu_read_lock();
712 		for (disk = 0; disk < conf->raid_disks * 2; disk++) {
713 			struct md_rdev *rdev = rcu_dereference(
714 				conf->mirrors[disk].rdev);
715 			if (rdev && !test_bit(Faulty, &rdev->flags)) {
716 				struct request_queue *q =
717 					bdev_get_queue(rdev->bdev);
718 				if (q->merge_bvec_fn) {
719 					bvm->bi_sector = sector +
720 						rdev->data_offset;
721 					bvm->bi_bdev = rdev->bdev;
722 					max = min(max, q->merge_bvec_fn(
723 							  q, bvm, biovec));
724 				}
725 			}
726 		}
727 		rcu_read_unlock();
728 	}
729 	return max;
730 
731 }
732 
733 int md_raid1_congested(struct mddev *mddev, int bits)
734 {
735 	struct r1conf *conf = mddev->private;
736 	int i, ret = 0;
737 
738 	if ((bits & (1 << BDI_async_congested)) &&
739 	    conf->pending_count >= max_queued_requests)
740 		return 1;
741 
742 	rcu_read_lock();
743 	for (i = 0; i < conf->raid_disks * 2; i++) {
744 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
745 		if (rdev && !test_bit(Faulty, &rdev->flags)) {
746 			struct request_queue *q = bdev_get_queue(rdev->bdev);
747 
748 			BUG_ON(!q);
749 
750 			/* Note the '|| 1' - when read_balance prefers
751 			 * non-congested targets, it can be removed
752 			 */
753 			if ((bits & (1<<BDI_async_congested)) || 1)
754 				ret |= bdi_congested(&q->backing_dev_info, bits);
755 			else
756 				ret &= bdi_congested(&q->backing_dev_info, bits);
757 		}
758 	}
759 	rcu_read_unlock();
760 	return ret;
761 }
762 EXPORT_SYMBOL_GPL(md_raid1_congested);
763 
764 static int raid1_congested(void *data, int bits)
765 {
766 	struct mddev *mddev = data;
767 
768 	return mddev_congested(mddev, bits) ||
769 		md_raid1_congested(mddev, bits);
770 }
771 
772 static void flush_pending_writes(struct r1conf *conf)
773 {
774 	/* Any writes that have been queued but are awaiting
775 	 * bitmap updates get flushed here.
776 	 */
777 	spin_lock_irq(&conf->device_lock);
778 
779 	if (conf->pending_bio_list.head) {
780 		struct bio *bio;
781 		bio = bio_list_get(&conf->pending_bio_list);
782 		conf->pending_count = 0;
783 		spin_unlock_irq(&conf->device_lock);
784 		/* flush any pending bitmap writes to
785 		 * disk before proceeding w/ I/O */
786 		bitmap_unplug(conf->mddev->bitmap);
787 		wake_up(&conf->wait_barrier);
788 
789 		while (bio) { /* submit pending writes */
790 			struct bio *next = bio->bi_next;
791 			bio->bi_next = NULL;
792 			if (unlikely((bio->bi_rw & REQ_DISCARD) &&
793 			    !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
794 				/* Just ignore it */
795 				bio_endio(bio, 0);
796 			else
797 				generic_make_request(bio);
798 			bio = next;
799 		}
800 	} else
801 		spin_unlock_irq(&conf->device_lock);
802 }
803 
804 /* Barriers....
805  * Sometimes we need to suspend IO while we do something else,
806  * either some resync/recovery, or reconfigure the array.
807  * To do this we raise a 'barrier'.
808  * The 'barrier' is a counter that can be raised multiple times
809  * to count how many activities are happening which preclude
810  * normal IO.
811  * We can only raise the barrier if there is no pending IO.
812  * i.e. if nr_pending == 0.
813  * We choose only to raise the barrier if no-one is waiting for the
814  * barrier to go down.  This means that as soon as an IO request
815  * is ready, no other operations which require a barrier will start
816  * until the IO request has had a chance.
817  *
818  * So: regular IO calls 'wait_barrier'.  When that returns there
819  *    is no backgroup IO happening,  It must arrange to call
820  *    allow_barrier when it has finished its IO.
821  * backgroup IO calls must call raise_barrier.  Once that returns
822  *    there is no normal IO happeing.  It must arrange to call
823  *    lower_barrier when the particular background IO completes.
824  */
825 static void raise_barrier(struct r1conf *conf)
826 {
827 	spin_lock_irq(&conf->resync_lock);
828 
829 	/* Wait until no block IO is waiting */
830 	wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
831 			    conf->resync_lock);
832 
833 	/* block any new IO from starting */
834 	conf->barrier++;
835 
836 	/* For these conditions we must wait:
837 	 * A: while the array is in frozen state
838 	 * B: while barrier >= RESYNC_DEPTH, meaning resync reach
839 	 *    the max count which allowed.
840 	 * C: next_resync + RESYNC_SECTORS > start_next_window, meaning
841 	 *    next resync will reach to the window which normal bios are
842 	 *    handling.
843 	 */
844 	wait_event_lock_irq(conf->wait_barrier,
845 			    !conf->array_frozen &&
846 			    conf->barrier < RESYNC_DEPTH &&
847 			    (conf->start_next_window >=
848 			     conf->next_resync + RESYNC_SECTORS),
849 			    conf->resync_lock);
850 
851 	spin_unlock_irq(&conf->resync_lock);
852 }
853 
854 static void lower_barrier(struct r1conf *conf)
855 {
856 	unsigned long flags;
857 	BUG_ON(conf->barrier <= 0);
858 	spin_lock_irqsave(&conf->resync_lock, flags);
859 	conf->barrier--;
860 	spin_unlock_irqrestore(&conf->resync_lock, flags);
861 	wake_up(&conf->wait_barrier);
862 }
863 
864 static bool need_to_wait_for_sync(struct r1conf *conf, struct bio *bio)
865 {
866 	bool wait = false;
867 
868 	if (conf->array_frozen || !bio)
869 		wait = true;
870 	else if (conf->barrier && bio_data_dir(bio) == WRITE) {
871 		if (conf->next_resync < RESYNC_WINDOW_SECTORS)
872 			wait = true;
873 		else if ((conf->next_resync - RESYNC_WINDOW_SECTORS
874 				>= bio_end_sector(bio)) ||
875 			 (conf->next_resync + NEXT_NORMALIO_DISTANCE
876 				<= bio->bi_iter.bi_sector))
877 			wait = false;
878 		else
879 			wait = true;
880 	}
881 
882 	return wait;
883 }
884 
885 static sector_t wait_barrier(struct r1conf *conf, struct bio *bio)
886 {
887 	sector_t sector = 0;
888 
889 	spin_lock_irq(&conf->resync_lock);
890 	if (need_to_wait_for_sync(conf, bio)) {
891 		conf->nr_waiting++;
892 		/* Wait for the barrier to drop.
893 		 * However if there are already pending
894 		 * requests (preventing the barrier from
895 		 * rising completely), and the
896 		 * pre-process bio queue isn't empty,
897 		 * then don't wait, as we need to empty
898 		 * that queue to get the nr_pending
899 		 * count down.
900 		 */
901 		wait_event_lock_irq(conf->wait_barrier,
902 				    !conf->array_frozen &&
903 				    (!conf->barrier ||
904 				    ((conf->start_next_window <
905 				      conf->next_resync + RESYNC_SECTORS) &&
906 				     current->bio_list &&
907 				     !bio_list_empty(current->bio_list))),
908 				    conf->resync_lock);
909 		conf->nr_waiting--;
910 	}
911 
912 	if (bio && bio_data_dir(bio) == WRITE) {
913 		if (conf->next_resync + NEXT_NORMALIO_DISTANCE
914 		    <= bio->bi_iter.bi_sector) {
915 			if (conf->start_next_window == MaxSector)
916 				conf->start_next_window =
917 					conf->next_resync +
918 					NEXT_NORMALIO_DISTANCE;
919 
920 			if ((conf->start_next_window + NEXT_NORMALIO_DISTANCE)
921 			    <= bio->bi_iter.bi_sector)
922 				conf->next_window_requests++;
923 			else
924 				conf->current_window_requests++;
925 			sector = conf->start_next_window;
926 		}
927 	}
928 
929 	conf->nr_pending++;
930 	spin_unlock_irq(&conf->resync_lock);
931 	return sector;
932 }
933 
934 static void allow_barrier(struct r1conf *conf, sector_t start_next_window,
935 			  sector_t bi_sector)
936 {
937 	unsigned long flags;
938 
939 	spin_lock_irqsave(&conf->resync_lock, flags);
940 	conf->nr_pending--;
941 	if (start_next_window) {
942 		if (start_next_window == conf->start_next_window) {
943 			if (conf->start_next_window + NEXT_NORMALIO_DISTANCE
944 			    <= bi_sector)
945 				conf->next_window_requests--;
946 			else
947 				conf->current_window_requests--;
948 		} else
949 			conf->current_window_requests--;
950 
951 		if (!conf->current_window_requests) {
952 			if (conf->next_window_requests) {
953 				conf->current_window_requests =
954 					conf->next_window_requests;
955 				conf->next_window_requests = 0;
956 				conf->start_next_window +=
957 					NEXT_NORMALIO_DISTANCE;
958 			} else
959 				conf->start_next_window = MaxSector;
960 		}
961 	}
962 	spin_unlock_irqrestore(&conf->resync_lock, flags);
963 	wake_up(&conf->wait_barrier);
964 }
965 
966 static void freeze_array(struct r1conf *conf, int extra)
967 {
968 	/* stop syncio and normal IO and wait for everything to
969 	 * go quite.
970 	 * We wait until nr_pending match nr_queued+extra
971 	 * This is called in the context of one normal IO request
972 	 * that has failed. Thus any sync request that might be pending
973 	 * will be blocked by nr_pending, and we need to wait for
974 	 * pending IO requests to complete or be queued for re-try.
975 	 * Thus the number queued (nr_queued) plus this request (extra)
976 	 * must match the number of pending IOs (nr_pending) before
977 	 * we continue.
978 	 */
979 	spin_lock_irq(&conf->resync_lock);
980 	conf->array_frozen = 1;
981 	wait_event_lock_irq_cmd(conf->wait_barrier,
982 				conf->nr_pending == conf->nr_queued+extra,
983 				conf->resync_lock,
984 				flush_pending_writes(conf));
985 	spin_unlock_irq(&conf->resync_lock);
986 }
987 static void unfreeze_array(struct r1conf *conf)
988 {
989 	/* reverse the effect of the freeze */
990 	spin_lock_irq(&conf->resync_lock);
991 	conf->array_frozen = 0;
992 	wake_up(&conf->wait_barrier);
993 	spin_unlock_irq(&conf->resync_lock);
994 }
995 
996 
997 /* duplicate the data pages for behind I/O
998  */
999 static void alloc_behind_pages(struct bio *bio, struct r1bio *r1_bio)
1000 {
1001 	int i;
1002 	struct bio_vec *bvec;
1003 	struct bio_vec *bvecs = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec),
1004 					GFP_NOIO);
1005 	if (unlikely(!bvecs))
1006 		return;
1007 
1008 	bio_for_each_segment_all(bvec, bio, i) {
1009 		bvecs[i] = *bvec;
1010 		bvecs[i].bv_page = alloc_page(GFP_NOIO);
1011 		if (unlikely(!bvecs[i].bv_page))
1012 			goto do_sync_io;
1013 		memcpy(kmap(bvecs[i].bv_page) + bvec->bv_offset,
1014 		       kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
1015 		kunmap(bvecs[i].bv_page);
1016 		kunmap(bvec->bv_page);
1017 	}
1018 	r1_bio->behind_bvecs = bvecs;
1019 	r1_bio->behind_page_count = bio->bi_vcnt;
1020 	set_bit(R1BIO_BehindIO, &r1_bio->state);
1021 	return;
1022 
1023 do_sync_io:
1024 	for (i = 0; i < bio->bi_vcnt; i++)
1025 		if (bvecs[i].bv_page)
1026 			put_page(bvecs[i].bv_page);
1027 	kfree(bvecs);
1028 	pr_debug("%dB behind alloc failed, doing sync I/O\n",
1029 		 bio->bi_iter.bi_size);
1030 }
1031 
1032 struct raid1_plug_cb {
1033 	struct blk_plug_cb	cb;
1034 	struct bio_list		pending;
1035 	int			pending_cnt;
1036 };
1037 
1038 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1039 {
1040 	struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1041 						  cb);
1042 	struct mddev *mddev = plug->cb.data;
1043 	struct r1conf *conf = mddev->private;
1044 	struct bio *bio;
1045 
1046 	if (from_schedule || current->bio_list) {
1047 		spin_lock_irq(&conf->device_lock);
1048 		bio_list_merge(&conf->pending_bio_list, &plug->pending);
1049 		conf->pending_count += plug->pending_cnt;
1050 		spin_unlock_irq(&conf->device_lock);
1051 		wake_up(&conf->wait_barrier);
1052 		md_wakeup_thread(mddev->thread);
1053 		kfree(plug);
1054 		return;
1055 	}
1056 
1057 	/* we aren't scheduling, so we can do the write-out directly. */
1058 	bio = bio_list_get(&plug->pending);
1059 	bitmap_unplug(mddev->bitmap);
1060 	wake_up(&conf->wait_barrier);
1061 
1062 	while (bio) { /* submit pending writes */
1063 		struct bio *next = bio->bi_next;
1064 		bio->bi_next = NULL;
1065 		if (unlikely((bio->bi_rw & REQ_DISCARD) &&
1066 		    !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
1067 			/* Just ignore it */
1068 			bio_endio(bio, 0);
1069 		else
1070 			generic_make_request(bio);
1071 		bio = next;
1072 	}
1073 	kfree(plug);
1074 }
1075 
1076 static void make_request(struct mddev *mddev, struct bio * bio)
1077 {
1078 	struct r1conf *conf = mddev->private;
1079 	struct raid1_info *mirror;
1080 	struct r1bio *r1_bio;
1081 	struct bio *read_bio;
1082 	int i, disks;
1083 	struct bitmap *bitmap;
1084 	unsigned long flags;
1085 	const int rw = bio_data_dir(bio);
1086 	const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
1087 	const unsigned long do_flush_fua = (bio->bi_rw & (REQ_FLUSH | REQ_FUA));
1088 	const unsigned long do_discard = (bio->bi_rw
1089 					  & (REQ_DISCARD | REQ_SECURE));
1090 	const unsigned long do_same = (bio->bi_rw & REQ_WRITE_SAME);
1091 	struct md_rdev *blocked_rdev;
1092 	struct blk_plug_cb *cb;
1093 	struct raid1_plug_cb *plug = NULL;
1094 	int first_clone;
1095 	int sectors_handled;
1096 	int max_sectors;
1097 	sector_t start_next_window;
1098 
1099 	/*
1100 	 * Register the new request and wait if the reconstruction
1101 	 * thread has put up a bar for new requests.
1102 	 * Continue immediately if no resync is active currently.
1103 	 */
1104 
1105 	md_write_start(mddev, bio); /* wait on superblock update early */
1106 
1107 	if (bio_data_dir(bio) == WRITE &&
1108 	    bio_end_sector(bio) > mddev->suspend_lo &&
1109 	    bio->bi_iter.bi_sector < mddev->suspend_hi) {
1110 		/* As the suspend_* range is controlled by
1111 		 * userspace, we want an interruptible
1112 		 * wait.
1113 		 */
1114 		DEFINE_WAIT(w);
1115 		for (;;) {
1116 			flush_signals(current);
1117 			prepare_to_wait(&conf->wait_barrier,
1118 					&w, TASK_INTERRUPTIBLE);
1119 			if (bio_end_sector(bio) <= mddev->suspend_lo ||
1120 			    bio->bi_iter.bi_sector >= mddev->suspend_hi)
1121 				break;
1122 			schedule();
1123 		}
1124 		finish_wait(&conf->wait_barrier, &w);
1125 	}
1126 
1127 	start_next_window = wait_barrier(conf, bio);
1128 
1129 	bitmap = mddev->bitmap;
1130 
1131 	/*
1132 	 * make_request() can abort the operation when READA is being
1133 	 * used and no empty request is available.
1134 	 *
1135 	 */
1136 	r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1137 
1138 	r1_bio->master_bio = bio;
1139 	r1_bio->sectors = bio_sectors(bio);
1140 	r1_bio->state = 0;
1141 	r1_bio->mddev = mddev;
1142 	r1_bio->sector = bio->bi_iter.bi_sector;
1143 
1144 	/* We might need to issue multiple reads to different
1145 	 * devices if there are bad blocks around, so we keep
1146 	 * track of the number of reads in bio->bi_phys_segments.
1147 	 * If this is 0, there is only one r1_bio and no locking
1148 	 * will be needed when requests complete.  If it is
1149 	 * non-zero, then it is the number of not-completed requests.
1150 	 */
1151 	bio->bi_phys_segments = 0;
1152 	clear_bit(BIO_SEG_VALID, &bio->bi_flags);
1153 
1154 	if (rw == READ) {
1155 		/*
1156 		 * read balancing logic:
1157 		 */
1158 		int rdisk;
1159 
1160 read_again:
1161 		rdisk = read_balance(conf, r1_bio, &max_sectors);
1162 
1163 		if (rdisk < 0) {
1164 			/* couldn't find anywhere to read from */
1165 			raid_end_bio_io(r1_bio);
1166 			return;
1167 		}
1168 		mirror = conf->mirrors + rdisk;
1169 
1170 		if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1171 		    bitmap) {
1172 			/* Reading from a write-mostly device must
1173 			 * take care not to over-take any writes
1174 			 * that are 'behind'
1175 			 */
1176 			wait_event(bitmap->behind_wait,
1177 				   atomic_read(&bitmap->behind_writes) == 0);
1178 		}
1179 		r1_bio->read_disk = rdisk;
1180 
1181 		read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1182 		bio_trim(read_bio, r1_bio->sector - bio->bi_iter.bi_sector,
1183 			 max_sectors);
1184 
1185 		r1_bio->bios[rdisk] = read_bio;
1186 
1187 		read_bio->bi_iter.bi_sector = r1_bio->sector +
1188 			mirror->rdev->data_offset;
1189 		read_bio->bi_bdev = mirror->rdev->bdev;
1190 		read_bio->bi_end_io = raid1_end_read_request;
1191 		read_bio->bi_rw = READ | do_sync;
1192 		read_bio->bi_private = r1_bio;
1193 
1194 		if (max_sectors < r1_bio->sectors) {
1195 			/* could not read all from this device, so we will
1196 			 * need another r1_bio.
1197 			 */
1198 
1199 			sectors_handled = (r1_bio->sector + max_sectors
1200 					   - bio->bi_iter.bi_sector);
1201 			r1_bio->sectors = max_sectors;
1202 			spin_lock_irq(&conf->device_lock);
1203 			if (bio->bi_phys_segments == 0)
1204 				bio->bi_phys_segments = 2;
1205 			else
1206 				bio->bi_phys_segments++;
1207 			spin_unlock_irq(&conf->device_lock);
1208 			/* Cannot call generic_make_request directly
1209 			 * as that will be queued in __make_request
1210 			 * and subsequent mempool_alloc might block waiting
1211 			 * for it.  So hand bio over to raid1d.
1212 			 */
1213 			reschedule_retry(r1_bio);
1214 
1215 			r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1216 
1217 			r1_bio->master_bio = bio;
1218 			r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1219 			r1_bio->state = 0;
1220 			r1_bio->mddev = mddev;
1221 			r1_bio->sector = bio->bi_iter.bi_sector +
1222 				sectors_handled;
1223 			goto read_again;
1224 		} else
1225 			generic_make_request(read_bio);
1226 		return;
1227 	}
1228 
1229 	/*
1230 	 * WRITE:
1231 	 */
1232 	if (conf->pending_count >= max_queued_requests) {
1233 		md_wakeup_thread(mddev->thread);
1234 		wait_event(conf->wait_barrier,
1235 			   conf->pending_count < max_queued_requests);
1236 	}
1237 	/* first select target devices under rcu_lock and
1238 	 * inc refcount on their rdev.  Record them by setting
1239 	 * bios[x] to bio
1240 	 * If there are known/acknowledged bad blocks on any device on
1241 	 * which we have seen a write error, we want to avoid writing those
1242 	 * blocks.
1243 	 * This potentially requires several writes to write around
1244 	 * the bad blocks.  Each set of writes gets it's own r1bio
1245 	 * with a set of bios attached.
1246 	 */
1247 
1248 	disks = conf->raid_disks * 2;
1249  retry_write:
1250 	r1_bio->start_next_window = start_next_window;
1251 	blocked_rdev = NULL;
1252 	rcu_read_lock();
1253 	max_sectors = r1_bio->sectors;
1254 	for (i = 0;  i < disks; i++) {
1255 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1256 		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1257 			atomic_inc(&rdev->nr_pending);
1258 			blocked_rdev = rdev;
1259 			break;
1260 		}
1261 		r1_bio->bios[i] = NULL;
1262 		if (!rdev || test_bit(Faulty, &rdev->flags)
1263 		    || test_bit(Unmerged, &rdev->flags)) {
1264 			if (i < conf->raid_disks)
1265 				set_bit(R1BIO_Degraded, &r1_bio->state);
1266 			continue;
1267 		}
1268 
1269 		atomic_inc(&rdev->nr_pending);
1270 		if (test_bit(WriteErrorSeen, &rdev->flags)) {
1271 			sector_t first_bad;
1272 			int bad_sectors;
1273 			int is_bad;
1274 
1275 			is_bad = is_badblock(rdev, r1_bio->sector,
1276 					     max_sectors,
1277 					     &first_bad, &bad_sectors);
1278 			if (is_bad < 0) {
1279 				/* mustn't write here until the bad block is
1280 				 * acknowledged*/
1281 				set_bit(BlockedBadBlocks, &rdev->flags);
1282 				blocked_rdev = rdev;
1283 				break;
1284 			}
1285 			if (is_bad && first_bad <= r1_bio->sector) {
1286 				/* Cannot write here at all */
1287 				bad_sectors -= (r1_bio->sector - first_bad);
1288 				if (bad_sectors < max_sectors)
1289 					/* mustn't write more than bad_sectors
1290 					 * to other devices yet
1291 					 */
1292 					max_sectors = bad_sectors;
1293 				rdev_dec_pending(rdev, mddev);
1294 				/* We don't set R1BIO_Degraded as that
1295 				 * only applies if the disk is
1296 				 * missing, so it might be re-added,
1297 				 * and we want to know to recover this
1298 				 * chunk.
1299 				 * In this case the device is here,
1300 				 * and the fact that this chunk is not
1301 				 * in-sync is recorded in the bad
1302 				 * block log
1303 				 */
1304 				continue;
1305 			}
1306 			if (is_bad) {
1307 				int good_sectors = first_bad - r1_bio->sector;
1308 				if (good_sectors < max_sectors)
1309 					max_sectors = good_sectors;
1310 			}
1311 		}
1312 		r1_bio->bios[i] = bio;
1313 	}
1314 	rcu_read_unlock();
1315 
1316 	if (unlikely(blocked_rdev)) {
1317 		/* Wait for this device to become unblocked */
1318 		int j;
1319 		sector_t old = start_next_window;
1320 
1321 		for (j = 0; j < i; j++)
1322 			if (r1_bio->bios[j])
1323 				rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1324 		r1_bio->state = 0;
1325 		allow_barrier(conf, start_next_window, bio->bi_iter.bi_sector);
1326 		md_wait_for_blocked_rdev(blocked_rdev, mddev);
1327 		start_next_window = wait_barrier(conf, bio);
1328 		/*
1329 		 * We must make sure the multi r1bios of bio have
1330 		 * the same value of bi_phys_segments
1331 		 */
1332 		if (bio->bi_phys_segments && old &&
1333 		    old != start_next_window)
1334 			/* Wait for the former r1bio(s) to complete */
1335 			wait_event(conf->wait_barrier,
1336 				   bio->bi_phys_segments == 1);
1337 		goto retry_write;
1338 	}
1339 
1340 	if (max_sectors < r1_bio->sectors) {
1341 		/* We are splitting this write into multiple parts, so
1342 		 * we need to prepare for allocating another r1_bio.
1343 		 */
1344 		r1_bio->sectors = max_sectors;
1345 		spin_lock_irq(&conf->device_lock);
1346 		if (bio->bi_phys_segments == 0)
1347 			bio->bi_phys_segments = 2;
1348 		else
1349 			bio->bi_phys_segments++;
1350 		spin_unlock_irq(&conf->device_lock);
1351 	}
1352 	sectors_handled = r1_bio->sector + max_sectors - bio->bi_iter.bi_sector;
1353 
1354 	atomic_set(&r1_bio->remaining, 1);
1355 	atomic_set(&r1_bio->behind_remaining, 0);
1356 
1357 	first_clone = 1;
1358 	for (i = 0; i < disks; i++) {
1359 		struct bio *mbio;
1360 		if (!r1_bio->bios[i])
1361 			continue;
1362 
1363 		mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1364 		bio_trim(mbio, r1_bio->sector - bio->bi_iter.bi_sector, max_sectors);
1365 
1366 		if (first_clone) {
1367 			/* do behind I/O ?
1368 			 * Not if there are too many, or cannot
1369 			 * allocate memory, or a reader on WriteMostly
1370 			 * is waiting for behind writes to flush */
1371 			if (bitmap &&
1372 			    (atomic_read(&bitmap->behind_writes)
1373 			     < mddev->bitmap_info.max_write_behind) &&
1374 			    !waitqueue_active(&bitmap->behind_wait))
1375 				alloc_behind_pages(mbio, r1_bio);
1376 
1377 			bitmap_startwrite(bitmap, r1_bio->sector,
1378 					  r1_bio->sectors,
1379 					  test_bit(R1BIO_BehindIO,
1380 						   &r1_bio->state));
1381 			first_clone = 0;
1382 		}
1383 		if (r1_bio->behind_bvecs) {
1384 			struct bio_vec *bvec;
1385 			int j;
1386 
1387 			/*
1388 			 * We trimmed the bio, so _all is legit
1389 			 */
1390 			bio_for_each_segment_all(bvec, mbio, j)
1391 				bvec->bv_page = r1_bio->behind_bvecs[j].bv_page;
1392 			if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1393 				atomic_inc(&r1_bio->behind_remaining);
1394 		}
1395 
1396 		r1_bio->bios[i] = mbio;
1397 
1398 		mbio->bi_iter.bi_sector	= (r1_bio->sector +
1399 				   conf->mirrors[i].rdev->data_offset);
1400 		mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1401 		mbio->bi_end_io	= raid1_end_write_request;
1402 		mbio->bi_rw =
1403 			WRITE | do_flush_fua | do_sync | do_discard | do_same;
1404 		mbio->bi_private = r1_bio;
1405 
1406 		atomic_inc(&r1_bio->remaining);
1407 
1408 		cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1409 		if (cb)
1410 			plug = container_of(cb, struct raid1_plug_cb, cb);
1411 		else
1412 			plug = NULL;
1413 		spin_lock_irqsave(&conf->device_lock, flags);
1414 		if (plug) {
1415 			bio_list_add(&plug->pending, mbio);
1416 			plug->pending_cnt++;
1417 		} else {
1418 			bio_list_add(&conf->pending_bio_list, mbio);
1419 			conf->pending_count++;
1420 		}
1421 		spin_unlock_irqrestore(&conf->device_lock, flags);
1422 		if (!plug)
1423 			md_wakeup_thread(mddev->thread);
1424 	}
1425 	/* Mustn't call r1_bio_write_done before this next test,
1426 	 * as it could result in the bio being freed.
1427 	 */
1428 	if (sectors_handled < bio_sectors(bio)) {
1429 		r1_bio_write_done(r1_bio);
1430 		/* We need another r1_bio.  It has already been counted
1431 		 * in bio->bi_phys_segments
1432 		 */
1433 		r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1434 		r1_bio->master_bio = bio;
1435 		r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1436 		r1_bio->state = 0;
1437 		r1_bio->mddev = mddev;
1438 		r1_bio->sector = bio->bi_iter.bi_sector + sectors_handled;
1439 		goto retry_write;
1440 	}
1441 
1442 	r1_bio_write_done(r1_bio);
1443 
1444 	/* In case raid1d snuck in to freeze_array */
1445 	wake_up(&conf->wait_barrier);
1446 }
1447 
1448 static void status(struct seq_file *seq, struct mddev *mddev)
1449 {
1450 	struct r1conf *conf = mddev->private;
1451 	int i;
1452 
1453 	seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1454 		   conf->raid_disks - mddev->degraded);
1455 	rcu_read_lock();
1456 	for (i = 0; i < conf->raid_disks; i++) {
1457 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1458 		seq_printf(seq, "%s",
1459 			   rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1460 	}
1461 	rcu_read_unlock();
1462 	seq_printf(seq, "]");
1463 }
1464 
1465 
1466 static void error(struct mddev *mddev, struct md_rdev *rdev)
1467 {
1468 	char b[BDEVNAME_SIZE];
1469 	struct r1conf *conf = mddev->private;
1470 
1471 	/*
1472 	 * If it is not operational, then we have already marked it as dead
1473 	 * else if it is the last working disks, ignore the error, let the
1474 	 * next level up know.
1475 	 * else mark the drive as failed
1476 	 */
1477 	if (test_bit(In_sync, &rdev->flags)
1478 	    && (conf->raid_disks - mddev->degraded) == 1) {
1479 		/*
1480 		 * Don't fail the drive, act as though we were just a
1481 		 * normal single drive.
1482 		 * However don't try a recovery from this drive as
1483 		 * it is very likely to fail.
1484 		 */
1485 		conf->recovery_disabled = mddev->recovery_disabled;
1486 		return;
1487 	}
1488 	set_bit(Blocked, &rdev->flags);
1489 	if (test_and_clear_bit(In_sync, &rdev->flags)) {
1490 		unsigned long flags;
1491 		spin_lock_irqsave(&conf->device_lock, flags);
1492 		mddev->degraded++;
1493 		set_bit(Faulty, &rdev->flags);
1494 		spin_unlock_irqrestore(&conf->device_lock, flags);
1495 		/*
1496 		 * if recovery is running, make sure it aborts.
1497 		 */
1498 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1499 	} else
1500 		set_bit(Faulty, &rdev->flags);
1501 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
1502 	printk(KERN_ALERT
1503 	       "md/raid1:%s: Disk failure on %s, disabling device.\n"
1504 	       "md/raid1:%s: Operation continuing on %d devices.\n",
1505 	       mdname(mddev), bdevname(rdev->bdev, b),
1506 	       mdname(mddev), conf->raid_disks - mddev->degraded);
1507 }
1508 
1509 static void print_conf(struct r1conf *conf)
1510 {
1511 	int i;
1512 
1513 	printk(KERN_DEBUG "RAID1 conf printout:\n");
1514 	if (!conf) {
1515 		printk(KERN_DEBUG "(!conf)\n");
1516 		return;
1517 	}
1518 	printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1519 		conf->raid_disks);
1520 
1521 	rcu_read_lock();
1522 	for (i = 0; i < conf->raid_disks; i++) {
1523 		char b[BDEVNAME_SIZE];
1524 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1525 		if (rdev)
1526 			printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1527 			       i, !test_bit(In_sync, &rdev->flags),
1528 			       !test_bit(Faulty, &rdev->flags),
1529 			       bdevname(rdev->bdev,b));
1530 	}
1531 	rcu_read_unlock();
1532 }
1533 
1534 static void close_sync(struct r1conf *conf)
1535 {
1536 	wait_barrier(conf, NULL);
1537 	allow_barrier(conf, 0, 0);
1538 
1539 	mempool_destroy(conf->r1buf_pool);
1540 	conf->r1buf_pool = NULL;
1541 
1542 	conf->next_resync = 0;
1543 	conf->start_next_window = MaxSector;
1544 }
1545 
1546 static int raid1_spare_active(struct mddev *mddev)
1547 {
1548 	int i;
1549 	struct r1conf *conf = mddev->private;
1550 	int count = 0;
1551 	unsigned long flags;
1552 
1553 	/*
1554 	 * Find all failed disks within the RAID1 configuration
1555 	 * and mark them readable.
1556 	 * Called under mddev lock, so rcu protection not needed.
1557 	 */
1558 	for (i = 0; i < conf->raid_disks; i++) {
1559 		struct md_rdev *rdev = conf->mirrors[i].rdev;
1560 		struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1561 		if (repl
1562 		    && repl->recovery_offset == MaxSector
1563 		    && !test_bit(Faulty, &repl->flags)
1564 		    && !test_and_set_bit(In_sync, &repl->flags)) {
1565 			/* replacement has just become active */
1566 			if (!rdev ||
1567 			    !test_and_clear_bit(In_sync, &rdev->flags))
1568 				count++;
1569 			if (rdev) {
1570 				/* Replaced device not technically
1571 				 * faulty, but we need to be sure
1572 				 * it gets removed and never re-added
1573 				 */
1574 				set_bit(Faulty, &rdev->flags);
1575 				sysfs_notify_dirent_safe(
1576 					rdev->sysfs_state);
1577 			}
1578 		}
1579 		if (rdev
1580 		    && rdev->recovery_offset == MaxSector
1581 		    && !test_bit(Faulty, &rdev->flags)
1582 		    && !test_and_set_bit(In_sync, &rdev->flags)) {
1583 			count++;
1584 			sysfs_notify_dirent_safe(rdev->sysfs_state);
1585 		}
1586 	}
1587 	spin_lock_irqsave(&conf->device_lock, flags);
1588 	mddev->degraded -= count;
1589 	spin_unlock_irqrestore(&conf->device_lock, flags);
1590 
1591 	print_conf(conf);
1592 	return count;
1593 }
1594 
1595 
1596 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1597 {
1598 	struct r1conf *conf = mddev->private;
1599 	int err = -EEXIST;
1600 	int mirror = 0;
1601 	struct raid1_info *p;
1602 	int first = 0;
1603 	int last = conf->raid_disks - 1;
1604 	struct request_queue *q = bdev_get_queue(rdev->bdev);
1605 
1606 	if (mddev->recovery_disabled == conf->recovery_disabled)
1607 		return -EBUSY;
1608 
1609 	if (rdev->raid_disk >= 0)
1610 		first = last = rdev->raid_disk;
1611 
1612 	if (q->merge_bvec_fn) {
1613 		set_bit(Unmerged, &rdev->flags);
1614 		mddev->merge_check_needed = 1;
1615 	}
1616 
1617 	for (mirror = first; mirror <= last; mirror++) {
1618 		p = conf->mirrors+mirror;
1619 		if (!p->rdev) {
1620 
1621 			if (mddev->gendisk)
1622 				disk_stack_limits(mddev->gendisk, rdev->bdev,
1623 						  rdev->data_offset << 9);
1624 
1625 			p->head_position = 0;
1626 			rdev->raid_disk = mirror;
1627 			err = 0;
1628 			/* As all devices are equivalent, we don't need a full recovery
1629 			 * if this was recently any drive of the array
1630 			 */
1631 			if (rdev->saved_raid_disk < 0)
1632 				conf->fullsync = 1;
1633 			rcu_assign_pointer(p->rdev, rdev);
1634 			break;
1635 		}
1636 		if (test_bit(WantReplacement, &p->rdev->flags) &&
1637 		    p[conf->raid_disks].rdev == NULL) {
1638 			/* Add this device as a replacement */
1639 			clear_bit(In_sync, &rdev->flags);
1640 			set_bit(Replacement, &rdev->flags);
1641 			rdev->raid_disk = mirror;
1642 			err = 0;
1643 			conf->fullsync = 1;
1644 			rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1645 			break;
1646 		}
1647 	}
1648 	if (err == 0 && test_bit(Unmerged, &rdev->flags)) {
1649 		/* Some requests might not have seen this new
1650 		 * merge_bvec_fn.  We must wait for them to complete
1651 		 * before merging the device fully.
1652 		 * First we make sure any code which has tested
1653 		 * our function has submitted the request, then
1654 		 * we wait for all outstanding requests to complete.
1655 		 */
1656 		synchronize_sched();
1657 		freeze_array(conf, 0);
1658 		unfreeze_array(conf);
1659 		clear_bit(Unmerged, &rdev->flags);
1660 	}
1661 	md_integrity_add_rdev(rdev, mddev);
1662 	if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1663 		queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1664 	print_conf(conf);
1665 	return err;
1666 }
1667 
1668 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1669 {
1670 	struct r1conf *conf = mddev->private;
1671 	int err = 0;
1672 	int number = rdev->raid_disk;
1673 	struct raid1_info *p = conf->mirrors + number;
1674 
1675 	if (rdev != p->rdev)
1676 		p = conf->mirrors + conf->raid_disks + number;
1677 
1678 	print_conf(conf);
1679 	if (rdev == p->rdev) {
1680 		if (test_bit(In_sync, &rdev->flags) ||
1681 		    atomic_read(&rdev->nr_pending)) {
1682 			err = -EBUSY;
1683 			goto abort;
1684 		}
1685 		/* Only remove non-faulty devices if recovery
1686 		 * is not possible.
1687 		 */
1688 		if (!test_bit(Faulty, &rdev->flags) &&
1689 		    mddev->recovery_disabled != conf->recovery_disabled &&
1690 		    mddev->degraded < conf->raid_disks) {
1691 			err = -EBUSY;
1692 			goto abort;
1693 		}
1694 		p->rdev = NULL;
1695 		synchronize_rcu();
1696 		if (atomic_read(&rdev->nr_pending)) {
1697 			/* lost the race, try later */
1698 			err = -EBUSY;
1699 			p->rdev = rdev;
1700 			goto abort;
1701 		} else if (conf->mirrors[conf->raid_disks + number].rdev) {
1702 			/* We just removed a device that is being replaced.
1703 			 * Move down the replacement.  We drain all IO before
1704 			 * doing this to avoid confusion.
1705 			 */
1706 			struct md_rdev *repl =
1707 				conf->mirrors[conf->raid_disks + number].rdev;
1708 			freeze_array(conf, 0);
1709 			clear_bit(Replacement, &repl->flags);
1710 			p->rdev = repl;
1711 			conf->mirrors[conf->raid_disks + number].rdev = NULL;
1712 			unfreeze_array(conf);
1713 			clear_bit(WantReplacement, &rdev->flags);
1714 		} else
1715 			clear_bit(WantReplacement, &rdev->flags);
1716 		err = md_integrity_register(mddev);
1717 	}
1718 abort:
1719 
1720 	print_conf(conf);
1721 	return err;
1722 }
1723 
1724 
1725 static void end_sync_read(struct bio *bio, int error)
1726 {
1727 	struct r1bio *r1_bio = bio->bi_private;
1728 
1729 	update_head_pos(r1_bio->read_disk, r1_bio);
1730 
1731 	/*
1732 	 * we have read a block, now it needs to be re-written,
1733 	 * or re-read if the read failed.
1734 	 * We don't do much here, just schedule handling by raid1d
1735 	 */
1736 	if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1737 		set_bit(R1BIO_Uptodate, &r1_bio->state);
1738 
1739 	if (atomic_dec_and_test(&r1_bio->remaining))
1740 		reschedule_retry(r1_bio);
1741 }
1742 
1743 static void end_sync_write(struct bio *bio, int error)
1744 {
1745 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1746 	struct r1bio *r1_bio = bio->bi_private;
1747 	struct mddev *mddev = r1_bio->mddev;
1748 	struct r1conf *conf = mddev->private;
1749 	int mirror=0;
1750 	sector_t first_bad;
1751 	int bad_sectors;
1752 
1753 	mirror = find_bio_disk(r1_bio, bio);
1754 
1755 	if (!uptodate) {
1756 		sector_t sync_blocks = 0;
1757 		sector_t s = r1_bio->sector;
1758 		long sectors_to_go = r1_bio->sectors;
1759 		/* make sure these bits doesn't get cleared. */
1760 		do {
1761 			bitmap_end_sync(mddev->bitmap, s,
1762 					&sync_blocks, 1);
1763 			s += sync_blocks;
1764 			sectors_to_go -= sync_blocks;
1765 		} while (sectors_to_go > 0);
1766 		set_bit(WriteErrorSeen,
1767 			&conf->mirrors[mirror].rdev->flags);
1768 		if (!test_and_set_bit(WantReplacement,
1769 				      &conf->mirrors[mirror].rdev->flags))
1770 			set_bit(MD_RECOVERY_NEEDED, &
1771 				mddev->recovery);
1772 		set_bit(R1BIO_WriteError, &r1_bio->state);
1773 	} else if (is_badblock(conf->mirrors[mirror].rdev,
1774 			       r1_bio->sector,
1775 			       r1_bio->sectors,
1776 			       &first_bad, &bad_sectors) &&
1777 		   !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1778 				r1_bio->sector,
1779 				r1_bio->sectors,
1780 				&first_bad, &bad_sectors)
1781 		)
1782 		set_bit(R1BIO_MadeGood, &r1_bio->state);
1783 
1784 	if (atomic_dec_and_test(&r1_bio->remaining)) {
1785 		int s = r1_bio->sectors;
1786 		if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1787 		    test_bit(R1BIO_WriteError, &r1_bio->state))
1788 			reschedule_retry(r1_bio);
1789 		else {
1790 			put_buf(r1_bio);
1791 			md_done_sync(mddev, s, uptodate);
1792 		}
1793 	}
1794 }
1795 
1796 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1797 			    int sectors, struct page *page, int rw)
1798 {
1799 	if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
1800 		/* success */
1801 		return 1;
1802 	if (rw == WRITE) {
1803 		set_bit(WriteErrorSeen, &rdev->flags);
1804 		if (!test_and_set_bit(WantReplacement,
1805 				      &rdev->flags))
1806 			set_bit(MD_RECOVERY_NEEDED, &
1807 				rdev->mddev->recovery);
1808 	}
1809 	/* need to record an error - either for the block or the device */
1810 	if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1811 		md_error(rdev->mddev, rdev);
1812 	return 0;
1813 }
1814 
1815 static int fix_sync_read_error(struct r1bio *r1_bio)
1816 {
1817 	/* Try some synchronous reads of other devices to get
1818 	 * good data, much like with normal read errors.  Only
1819 	 * read into the pages we already have so we don't
1820 	 * need to re-issue the read request.
1821 	 * We don't need to freeze the array, because being in an
1822 	 * active sync request, there is no normal IO, and
1823 	 * no overlapping syncs.
1824 	 * We don't need to check is_badblock() again as we
1825 	 * made sure that anything with a bad block in range
1826 	 * will have bi_end_io clear.
1827 	 */
1828 	struct mddev *mddev = r1_bio->mddev;
1829 	struct r1conf *conf = mddev->private;
1830 	struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1831 	sector_t sect = r1_bio->sector;
1832 	int sectors = r1_bio->sectors;
1833 	int idx = 0;
1834 
1835 	while(sectors) {
1836 		int s = sectors;
1837 		int d = r1_bio->read_disk;
1838 		int success = 0;
1839 		struct md_rdev *rdev;
1840 		int start;
1841 
1842 		if (s > (PAGE_SIZE>>9))
1843 			s = PAGE_SIZE >> 9;
1844 		do {
1845 			if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1846 				/* No rcu protection needed here devices
1847 				 * can only be removed when no resync is
1848 				 * active, and resync is currently active
1849 				 */
1850 				rdev = conf->mirrors[d].rdev;
1851 				if (sync_page_io(rdev, sect, s<<9,
1852 						 bio->bi_io_vec[idx].bv_page,
1853 						 READ, false)) {
1854 					success = 1;
1855 					break;
1856 				}
1857 			}
1858 			d++;
1859 			if (d == conf->raid_disks * 2)
1860 				d = 0;
1861 		} while (!success && d != r1_bio->read_disk);
1862 
1863 		if (!success) {
1864 			char b[BDEVNAME_SIZE];
1865 			int abort = 0;
1866 			/* Cannot read from anywhere, this block is lost.
1867 			 * Record a bad block on each device.  If that doesn't
1868 			 * work just disable and interrupt the recovery.
1869 			 * Don't fail devices as that won't really help.
1870 			 */
1871 			printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error"
1872 			       " for block %llu\n",
1873 			       mdname(mddev),
1874 			       bdevname(bio->bi_bdev, b),
1875 			       (unsigned long long)r1_bio->sector);
1876 			for (d = 0; d < conf->raid_disks * 2; d++) {
1877 				rdev = conf->mirrors[d].rdev;
1878 				if (!rdev || test_bit(Faulty, &rdev->flags))
1879 					continue;
1880 				if (!rdev_set_badblocks(rdev, sect, s, 0))
1881 					abort = 1;
1882 			}
1883 			if (abort) {
1884 				conf->recovery_disabled =
1885 					mddev->recovery_disabled;
1886 				set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1887 				md_done_sync(mddev, r1_bio->sectors, 0);
1888 				put_buf(r1_bio);
1889 				return 0;
1890 			}
1891 			/* Try next page */
1892 			sectors -= s;
1893 			sect += s;
1894 			idx++;
1895 			continue;
1896 		}
1897 
1898 		start = d;
1899 		/* write it back and re-read */
1900 		while (d != r1_bio->read_disk) {
1901 			if (d == 0)
1902 				d = conf->raid_disks * 2;
1903 			d--;
1904 			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1905 				continue;
1906 			rdev = conf->mirrors[d].rdev;
1907 			if (r1_sync_page_io(rdev, sect, s,
1908 					    bio->bi_io_vec[idx].bv_page,
1909 					    WRITE) == 0) {
1910 				r1_bio->bios[d]->bi_end_io = NULL;
1911 				rdev_dec_pending(rdev, mddev);
1912 			}
1913 		}
1914 		d = start;
1915 		while (d != r1_bio->read_disk) {
1916 			if (d == 0)
1917 				d = conf->raid_disks * 2;
1918 			d--;
1919 			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1920 				continue;
1921 			rdev = conf->mirrors[d].rdev;
1922 			if (r1_sync_page_io(rdev, sect, s,
1923 					    bio->bi_io_vec[idx].bv_page,
1924 					    READ) != 0)
1925 				atomic_add(s, &rdev->corrected_errors);
1926 		}
1927 		sectors -= s;
1928 		sect += s;
1929 		idx ++;
1930 	}
1931 	set_bit(R1BIO_Uptodate, &r1_bio->state);
1932 	set_bit(BIO_UPTODATE, &bio->bi_flags);
1933 	return 1;
1934 }
1935 
1936 static int process_checks(struct r1bio *r1_bio)
1937 {
1938 	/* We have read all readable devices.  If we haven't
1939 	 * got the block, then there is no hope left.
1940 	 * If we have, then we want to do a comparison
1941 	 * and skip the write if everything is the same.
1942 	 * If any blocks failed to read, then we need to
1943 	 * attempt an over-write
1944 	 */
1945 	struct mddev *mddev = r1_bio->mddev;
1946 	struct r1conf *conf = mddev->private;
1947 	int primary;
1948 	int i;
1949 	int vcnt;
1950 
1951 	/* Fix variable parts of all bios */
1952 	vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
1953 	for (i = 0; i < conf->raid_disks * 2; i++) {
1954 		int j;
1955 		int size;
1956 		int uptodate;
1957 		struct bio *b = r1_bio->bios[i];
1958 		if (b->bi_end_io != end_sync_read)
1959 			continue;
1960 		/* fixup the bio for reuse, but preserve BIO_UPTODATE */
1961 		uptodate = test_bit(BIO_UPTODATE, &b->bi_flags);
1962 		bio_reset(b);
1963 		if (!uptodate)
1964 			clear_bit(BIO_UPTODATE, &b->bi_flags);
1965 		b->bi_vcnt = vcnt;
1966 		b->bi_iter.bi_size = r1_bio->sectors << 9;
1967 		b->bi_iter.bi_sector = r1_bio->sector +
1968 			conf->mirrors[i].rdev->data_offset;
1969 		b->bi_bdev = conf->mirrors[i].rdev->bdev;
1970 		b->bi_end_io = end_sync_read;
1971 		b->bi_private = r1_bio;
1972 
1973 		size = b->bi_iter.bi_size;
1974 		for (j = 0; j < vcnt ; j++) {
1975 			struct bio_vec *bi;
1976 			bi = &b->bi_io_vec[j];
1977 			bi->bv_offset = 0;
1978 			if (size > PAGE_SIZE)
1979 				bi->bv_len = PAGE_SIZE;
1980 			else
1981 				bi->bv_len = size;
1982 			size -= PAGE_SIZE;
1983 		}
1984 	}
1985 	for (primary = 0; primary < conf->raid_disks * 2; primary++)
1986 		if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
1987 		    test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) {
1988 			r1_bio->bios[primary]->bi_end_io = NULL;
1989 			rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
1990 			break;
1991 		}
1992 	r1_bio->read_disk = primary;
1993 	for (i = 0; i < conf->raid_disks * 2; i++) {
1994 		int j;
1995 		struct bio *pbio = r1_bio->bios[primary];
1996 		struct bio *sbio = r1_bio->bios[i];
1997 		int uptodate = test_bit(BIO_UPTODATE, &sbio->bi_flags);
1998 
1999 		if (sbio->bi_end_io != end_sync_read)
2000 			continue;
2001 		/* Now we can 'fixup' the BIO_UPTODATE flag */
2002 		set_bit(BIO_UPTODATE, &sbio->bi_flags);
2003 
2004 		if (uptodate) {
2005 			for (j = vcnt; j-- ; ) {
2006 				struct page *p, *s;
2007 				p = pbio->bi_io_vec[j].bv_page;
2008 				s = sbio->bi_io_vec[j].bv_page;
2009 				if (memcmp(page_address(p),
2010 					   page_address(s),
2011 					   sbio->bi_io_vec[j].bv_len))
2012 					break;
2013 			}
2014 		} else
2015 			j = 0;
2016 		if (j >= 0)
2017 			atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
2018 		if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
2019 			      && uptodate)) {
2020 			/* No need to write to this device. */
2021 			sbio->bi_end_io = NULL;
2022 			rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2023 			continue;
2024 		}
2025 
2026 		bio_copy_data(sbio, pbio);
2027 	}
2028 	return 0;
2029 }
2030 
2031 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
2032 {
2033 	struct r1conf *conf = mddev->private;
2034 	int i;
2035 	int disks = conf->raid_disks * 2;
2036 	struct bio *bio, *wbio;
2037 
2038 	bio = r1_bio->bios[r1_bio->read_disk];
2039 
2040 	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2041 		/* ouch - failed to read all of that. */
2042 		if (!fix_sync_read_error(r1_bio))
2043 			return;
2044 
2045 	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2046 		if (process_checks(r1_bio) < 0)
2047 			return;
2048 	/*
2049 	 * schedule writes
2050 	 */
2051 	atomic_set(&r1_bio->remaining, 1);
2052 	for (i = 0; i < disks ; i++) {
2053 		wbio = r1_bio->bios[i];
2054 		if (wbio->bi_end_io == NULL ||
2055 		    (wbio->bi_end_io == end_sync_read &&
2056 		     (i == r1_bio->read_disk ||
2057 		      !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2058 			continue;
2059 
2060 		wbio->bi_rw = WRITE;
2061 		wbio->bi_end_io = end_sync_write;
2062 		atomic_inc(&r1_bio->remaining);
2063 		md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
2064 
2065 		generic_make_request(wbio);
2066 	}
2067 
2068 	if (atomic_dec_and_test(&r1_bio->remaining)) {
2069 		/* if we're here, all write(s) have completed, so clean up */
2070 		int s = r1_bio->sectors;
2071 		if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2072 		    test_bit(R1BIO_WriteError, &r1_bio->state))
2073 			reschedule_retry(r1_bio);
2074 		else {
2075 			put_buf(r1_bio);
2076 			md_done_sync(mddev, s, 1);
2077 		}
2078 	}
2079 }
2080 
2081 /*
2082  * This is a kernel thread which:
2083  *
2084  *	1.	Retries failed read operations on working mirrors.
2085  *	2.	Updates the raid superblock when problems encounter.
2086  *	3.	Performs writes following reads for array synchronising.
2087  */
2088 
2089 static void fix_read_error(struct r1conf *conf, int read_disk,
2090 			   sector_t sect, int sectors)
2091 {
2092 	struct mddev *mddev = conf->mddev;
2093 	while(sectors) {
2094 		int s = sectors;
2095 		int d = read_disk;
2096 		int success = 0;
2097 		int start;
2098 		struct md_rdev *rdev;
2099 
2100 		if (s > (PAGE_SIZE>>9))
2101 			s = PAGE_SIZE >> 9;
2102 
2103 		do {
2104 			/* Note: no rcu protection needed here
2105 			 * as this is synchronous in the raid1d thread
2106 			 * which is the thread that might remove
2107 			 * a device.  If raid1d ever becomes multi-threaded....
2108 			 */
2109 			sector_t first_bad;
2110 			int bad_sectors;
2111 
2112 			rdev = conf->mirrors[d].rdev;
2113 			if (rdev &&
2114 			    (test_bit(In_sync, &rdev->flags) ||
2115 			     (!test_bit(Faulty, &rdev->flags) &&
2116 			      rdev->recovery_offset >= sect + s)) &&
2117 			    is_badblock(rdev, sect, s,
2118 					&first_bad, &bad_sectors) == 0 &&
2119 			    sync_page_io(rdev, sect, s<<9,
2120 					 conf->tmppage, READ, false))
2121 				success = 1;
2122 			else {
2123 				d++;
2124 				if (d == conf->raid_disks * 2)
2125 					d = 0;
2126 			}
2127 		} while (!success && d != read_disk);
2128 
2129 		if (!success) {
2130 			/* Cannot read from anywhere - mark it bad */
2131 			struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2132 			if (!rdev_set_badblocks(rdev, sect, s, 0))
2133 				md_error(mddev, rdev);
2134 			break;
2135 		}
2136 		/* write it back and re-read */
2137 		start = d;
2138 		while (d != read_disk) {
2139 			if (d==0)
2140 				d = conf->raid_disks * 2;
2141 			d--;
2142 			rdev = conf->mirrors[d].rdev;
2143 			if (rdev &&
2144 			    test_bit(In_sync, &rdev->flags))
2145 				r1_sync_page_io(rdev, sect, s,
2146 						conf->tmppage, WRITE);
2147 		}
2148 		d = start;
2149 		while (d != read_disk) {
2150 			char b[BDEVNAME_SIZE];
2151 			if (d==0)
2152 				d = conf->raid_disks * 2;
2153 			d--;
2154 			rdev = conf->mirrors[d].rdev;
2155 			if (rdev &&
2156 			    test_bit(In_sync, &rdev->flags)) {
2157 				if (r1_sync_page_io(rdev, sect, s,
2158 						    conf->tmppage, READ)) {
2159 					atomic_add(s, &rdev->corrected_errors);
2160 					printk(KERN_INFO
2161 					       "md/raid1:%s: read error corrected "
2162 					       "(%d sectors at %llu on %s)\n",
2163 					       mdname(mddev), s,
2164 					       (unsigned long long)(sect +
2165 					           rdev->data_offset),
2166 					       bdevname(rdev->bdev, b));
2167 				}
2168 			}
2169 		}
2170 		sectors -= s;
2171 		sect += s;
2172 	}
2173 }
2174 
2175 static int narrow_write_error(struct r1bio *r1_bio, int i)
2176 {
2177 	struct mddev *mddev = r1_bio->mddev;
2178 	struct r1conf *conf = mddev->private;
2179 	struct md_rdev *rdev = conf->mirrors[i].rdev;
2180 
2181 	/* bio has the data to be written to device 'i' where
2182 	 * we just recently had a write error.
2183 	 * We repeatedly clone the bio and trim down to one block,
2184 	 * then try the write.  Where the write fails we record
2185 	 * a bad block.
2186 	 * It is conceivable that the bio doesn't exactly align with
2187 	 * blocks.  We must handle this somehow.
2188 	 *
2189 	 * We currently own a reference on the rdev.
2190 	 */
2191 
2192 	int block_sectors;
2193 	sector_t sector;
2194 	int sectors;
2195 	int sect_to_write = r1_bio->sectors;
2196 	int ok = 1;
2197 
2198 	if (rdev->badblocks.shift < 0)
2199 		return 0;
2200 
2201 	block_sectors = 1 << rdev->badblocks.shift;
2202 	sector = r1_bio->sector;
2203 	sectors = ((sector + block_sectors)
2204 		   & ~(sector_t)(block_sectors - 1))
2205 		- sector;
2206 
2207 	while (sect_to_write) {
2208 		struct bio *wbio;
2209 		if (sectors > sect_to_write)
2210 			sectors = sect_to_write;
2211 		/* Write at 'sector' for 'sectors'*/
2212 
2213 		if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2214 			unsigned vcnt = r1_bio->behind_page_count;
2215 			struct bio_vec *vec = r1_bio->behind_bvecs;
2216 
2217 			while (!vec->bv_page) {
2218 				vec++;
2219 				vcnt--;
2220 			}
2221 
2222 			wbio = bio_alloc_mddev(GFP_NOIO, vcnt, mddev);
2223 			memcpy(wbio->bi_io_vec, vec, vcnt * sizeof(struct bio_vec));
2224 
2225 			wbio->bi_vcnt = vcnt;
2226 		} else {
2227 			wbio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2228 		}
2229 
2230 		wbio->bi_rw = WRITE;
2231 		wbio->bi_iter.bi_sector = r1_bio->sector;
2232 		wbio->bi_iter.bi_size = r1_bio->sectors << 9;
2233 
2234 		bio_trim(wbio, sector - r1_bio->sector, sectors);
2235 		wbio->bi_iter.bi_sector += rdev->data_offset;
2236 		wbio->bi_bdev = rdev->bdev;
2237 		if (submit_bio_wait(WRITE, wbio) == 0)
2238 			/* failure! */
2239 			ok = rdev_set_badblocks(rdev, sector,
2240 						sectors, 0)
2241 				&& ok;
2242 
2243 		bio_put(wbio);
2244 		sect_to_write -= sectors;
2245 		sector += sectors;
2246 		sectors = block_sectors;
2247 	}
2248 	return ok;
2249 }
2250 
2251 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2252 {
2253 	int m;
2254 	int s = r1_bio->sectors;
2255 	for (m = 0; m < conf->raid_disks * 2 ; m++) {
2256 		struct md_rdev *rdev = conf->mirrors[m].rdev;
2257 		struct bio *bio = r1_bio->bios[m];
2258 		if (bio->bi_end_io == NULL)
2259 			continue;
2260 		if (test_bit(BIO_UPTODATE, &bio->bi_flags) &&
2261 		    test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2262 			rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2263 		}
2264 		if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
2265 		    test_bit(R1BIO_WriteError, &r1_bio->state)) {
2266 			if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2267 				md_error(conf->mddev, rdev);
2268 		}
2269 	}
2270 	put_buf(r1_bio);
2271 	md_done_sync(conf->mddev, s, 1);
2272 }
2273 
2274 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2275 {
2276 	int m;
2277 	for (m = 0; m < conf->raid_disks * 2 ; m++)
2278 		if (r1_bio->bios[m] == IO_MADE_GOOD) {
2279 			struct md_rdev *rdev = conf->mirrors[m].rdev;
2280 			rdev_clear_badblocks(rdev,
2281 					     r1_bio->sector,
2282 					     r1_bio->sectors, 0);
2283 			rdev_dec_pending(rdev, conf->mddev);
2284 		} else if (r1_bio->bios[m] != NULL) {
2285 			/* This drive got a write error.  We need to
2286 			 * narrow down and record precise write
2287 			 * errors.
2288 			 */
2289 			if (!narrow_write_error(r1_bio, m)) {
2290 				md_error(conf->mddev,
2291 					 conf->mirrors[m].rdev);
2292 				/* an I/O failed, we can't clear the bitmap */
2293 				set_bit(R1BIO_Degraded, &r1_bio->state);
2294 			}
2295 			rdev_dec_pending(conf->mirrors[m].rdev,
2296 					 conf->mddev);
2297 		}
2298 	if (test_bit(R1BIO_WriteError, &r1_bio->state))
2299 		close_write(r1_bio);
2300 	raid_end_bio_io(r1_bio);
2301 }
2302 
2303 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2304 {
2305 	int disk;
2306 	int max_sectors;
2307 	struct mddev *mddev = conf->mddev;
2308 	struct bio *bio;
2309 	char b[BDEVNAME_SIZE];
2310 	struct md_rdev *rdev;
2311 
2312 	clear_bit(R1BIO_ReadError, &r1_bio->state);
2313 	/* we got a read error. Maybe the drive is bad.  Maybe just
2314 	 * the block and we can fix it.
2315 	 * We freeze all other IO, and try reading the block from
2316 	 * other devices.  When we find one, we re-write
2317 	 * and check it that fixes the read error.
2318 	 * This is all done synchronously while the array is
2319 	 * frozen
2320 	 */
2321 	if (mddev->ro == 0) {
2322 		freeze_array(conf, 1);
2323 		fix_read_error(conf, r1_bio->read_disk,
2324 			       r1_bio->sector, r1_bio->sectors);
2325 		unfreeze_array(conf);
2326 	} else
2327 		md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
2328 	rdev_dec_pending(conf->mirrors[r1_bio->read_disk].rdev, conf->mddev);
2329 
2330 	bio = r1_bio->bios[r1_bio->read_disk];
2331 	bdevname(bio->bi_bdev, b);
2332 read_more:
2333 	disk = read_balance(conf, r1_bio, &max_sectors);
2334 	if (disk == -1) {
2335 		printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O"
2336 		       " read error for block %llu\n",
2337 		       mdname(mddev), b, (unsigned long long)r1_bio->sector);
2338 		raid_end_bio_io(r1_bio);
2339 	} else {
2340 		const unsigned long do_sync
2341 			= r1_bio->master_bio->bi_rw & REQ_SYNC;
2342 		if (bio) {
2343 			r1_bio->bios[r1_bio->read_disk] =
2344 				mddev->ro ? IO_BLOCKED : NULL;
2345 			bio_put(bio);
2346 		}
2347 		r1_bio->read_disk = disk;
2348 		bio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2349 		bio_trim(bio, r1_bio->sector - bio->bi_iter.bi_sector,
2350 			 max_sectors);
2351 		r1_bio->bios[r1_bio->read_disk] = bio;
2352 		rdev = conf->mirrors[disk].rdev;
2353 		printk_ratelimited(KERN_ERR
2354 				   "md/raid1:%s: redirecting sector %llu"
2355 				   " to other mirror: %s\n",
2356 				   mdname(mddev),
2357 				   (unsigned long long)r1_bio->sector,
2358 				   bdevname(rdev->bdev, b));
2359 		bio->bi_iter.bi_sector = r1_bio->sector + rdev->data_offset;
2360 		bio->bi_bdev = rdev->bdev;
2361 		bio->bi_end_io = raid1_end_read_request;
2362 		bio->bi_rw = READ | do_sync;
2363 		bio->bi_private = r1_bio;
2364 		if (max_sectors < r1_bio->sectors) {
2365 			/* Drat - have to split this up more */
2366 			struct bio *mbio = r1_bio->master_bio;
2367 			int sectors_handled = (r1_bio->sector + max_sectors
2368 					       - mbio->bi_iter.bi_sector);
2369 			r1_bio->sectors = max_sectors;
2370 			spin_lock_irq(&conf->device_lock);
2371 			if (mbio->bi_phys_segments == 0)
2372 				mbio->bi_phys_segments = 2;
2373 			else
2374 				mbio->bi_phys_segments++;
2375 			spin_unlock_irq(&conf->device_lock);
2376 			generic_make_request(bio);
2377 			bio = NULL;
2378 
2379 			r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
2380 
2381 			r1_bio->master_bio = mbio;
2382 			r1_bio->sectors = bio_sectors(mbio) - sectors_handled;
2383 			r1_bio->state = 0;
2384 			set_bit(R1BIO_ReadError, &r1_bio->state);
2385 			r1_bio->mddev = mddev;
2386 			r1_bio->sector = mbio->bi_iter.bi_sector +
2387 				sectors_handled;
2388 
2389 			goto read_more;
2390 		} else
2391 			generic_make_request(bio);
2392 	}
2393 }
2394 
2395 static void raid1d(struct md_thread *thread)
2396 {
2397 	struct mddev *mddev = thread->mddev;
2398 	struct r1bio *r1_bio;
2399 	unsigned long flags;
2400 	struct r1conf *conf = mddev->private;
2401 	struct list_head *head = &conf->retry_list;
2402 	struct blk_plug plug;
2403 
2404 	md_check_recovery(mddev);
2405 
2406 	blk_start_plug(&plug);
2407 	for (;;) {
2408 
2409 		flush_pending_writes(conf);
2410 
2411 		spin_lock_irqsave(&conf->device_lock, flags);
2412 		if (list_empty(head)) {
2413 			spin_unlock_irqrestore(&conf->device_lock, flags);
2414 			break;
2415 		}
2416 		r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2417 		list_del(head->prev);
2418 		conf->nr_queued--;
2419 		spin_unlock_irqrestore(&conf->device_lock, flags);
2420 
2421 		mddev = r1_bio->mddev;
2422 		conf = mddev->private;
2423 		if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2424 			if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2425 			    test_bit(R1BIO_WriteError, &r1_bio->state))
2426 				handle_sync_write_finished(conf, r1_bio);
2427 			else
2428 				sync_request_write(mddev, r1_bio);
2429 		} else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2430 			   test_bit(R1BIO_WriteError, &r1_bio->state))
2431 			handle_write_finished(conf, r1_bio);
2432 		else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2433 			handle_read_error(conf, r1_bio);
2434 		else
2435 			/* just a partial read to be scheduled from separate
2436 			 * context
2437 			 */
2438 			generic_make_request(r1_bio->bios[r1_bio->read_disk]);
2439 
2440 		cond_resched();
2441 		if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2442 			md_check_recovery(mddev);
2443 	}
2444 	blk_finish_plug(&plug);
2445 }
2446 
2447 
2448 static int init_resync(struct r1conf *conf)
2449 {
2450 	int buffs;
2451 
2452 	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2453 	BUG_ON(conf->r1buf_pool);
2454 	conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2455 					  conf->poolinfo);
2456 	if (!conf->r1buf_pool)
2457 		return -ENOMEM;
2458 	conf->next_resync = 0;
2459 	return 0;
2460 }
2461 
2462 /*
2463  * perform a "sync" on one "block"
2464  *
2465  * We need to make sure that no normal I/O request - particularly write
2466  * requests - conflict with active sync requests.
2467  *
2468  * This is achieved by tracking pending requests and a 'barrier' concept
2469  * that can be installed to exclude normal IO requests.
2470  */
2471 
2472 static sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
2473 {
2474 	struct r1conf *conf = mddev->private;
2475 	struct r1bio *r1_bio;
2476 	struct bio *bio;
2477 	sector_t max_sector, nr_sectors;
2478 	int disk = -1;
2479 	int i;
2480 	int wonly = -1;
2481 	int write_targets = 0, read_targets = 0;
2482 	sector_t sync_blocks;
2483 	int still_degraded = 0;
2484 	int good_sectors = RESYNC_SECTORS;
2485 	int min_bad = 0; /* number of sectors that are bad in all devices */
2486 
2487 	if (!conf->r1buf_pool)
2488 		if (init_resync(conf))
2489 			return 0;
2490 
2491 	max_sector = mddev->dev_sectors;
2492 	if (sector_nr >= max_sector) {
2493 		/* If we aborted, we need to abort the
2494 		 * sync on the 'current' bitmap chunk (there will
2495 		 * only be one in raid1 resync.
2496 		 * We can find the current addess in mddev->curr_resync
2497 		 */
2498 		if (mddev->curr_resync < max_sector) /* aborted */
2499 			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2500 						&sync_blocks, 1);
2501 		else /* completed sync */
2502 			conf->fullsync = 0;
2503 
2504 		bitmap_close_sync(mddev->bitmap);
2505 		close_sync(conf);
2506 		return 0;
2507 	}
2508 
2509 	if (mddev->bitmap == NULL &&
2510 	    mddev->recovery_cp == MaxSector &&
2511 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2512 	    conf->fullsync == 0) {
2513 		*skipped = 1;
2514 		return max_sector - sector_nr;
2515 	}
2516 	/* before building a request, check if we can skip these blocks..
2517 	 * This call the bitmap_start_sync doesn't actually record anything
2518 	 */
2519 	if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2520 	    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2521 		/* We can skip this block, and probably several more */
2522 		*skipped = 1;
2523 		return sync_blocks;
2524 	}
2525 	/*
2526 	 * If there is non-resync activity waiting for a turn,
2527 	 * and resync is going fast enough,
2528 	 * then let it though before starting on this new sync request.
2529 	 */
2530 	if (!go_faster && conf->nr_waiting)
2531 		msleep_interruptible(1000);
2532 
2533 	bitmap_cond_end_sync(mddev->bitmap, sector_nr);
2534 	r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
2535 	raise_barrier(conf);
2536 
2537 	conf->next_resync = sector_nr;
2538 
2539 	rcu_read_lock();
2540 	/*
2541 	 * If we get a correctably read error during resync or recovery,
2542 	 * we might want to read from a different device.  So we
2543 	 * flag all drives that could conceivably be read from for READ,
2544 	 * and any others (which will be non-In_sync devices) for WRITE.
2545 	 * If a read fails, we try reading from something else for which READ
2546 	 * is OK.
2547 	 */
2548 
2549 	r1_bio->mddev = mddev;
2550 	r1_bio->sector = sector_nr;
2551 	r1_bio->state = 0;
2552 	set_bit(R1BIO_IsSync, &r1_bio->state);
2553 
2554 	for (i = 0; i < conf->raid_disks * 2; i++) {
2555 		struct md_rdev *rdev;
2556 		bio = r1_bio->bios[i];
2557 		bio_reset(bio);
2558 
2559 		rdev = rcu_dereference(conf->mirrors[i].rdev);
2560 		if (rdev == NULL ||
2561 		    test_bit(Faulty, &rdev->flags)) {
2562 			if (i < conf->raid_disks)
2563 				still_degraded = 1;
2564 		} else if (!test_bit(In_sync, &rdev->flags)) {
2565 			bio->bi_rw = WRITE;
2566 			bio->bi_end_io = end_sync_write;
2567 			write_targets ++;
2568 		} else {
2569 			/* may need to read from here */
2570 			sector_t first_bad = MaxSector;
2571 			int bad_sectors;
2572 
2573 			if (is_badblock(rdev, sector_nr, good_sectors,
2574 					&first_bad, &bad_sectors)) {
2575 				if (first_bad > sector_nr)
2576 					good_sectors = first_bad - sector_nr;
2577 				else {
2578 					bad_sectors -= (sector_nr - first_bad);
2579 					if (min_bad == 0 ||
2580 					    min_bad > bad_sectors)
2581 						min_bad = bad_sectors;
2582 				}
2583 			}
2584 			if (sector_nr < first_bad) {
2585 				if (test_bit(WriteMostly, &rdev->flags)) {
2586 					if (wonly < 0)
2587 						wonly = i;
2588 				} else {
2589 					if (disk < 0)
2590 						disk = i;
2591 				}
2592 				bio->bi_rw = READ;
2593 				bio->bi_end_io = end_sync_read;
2594 				read_targets++;
2595 			} else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2596 				test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2597 				!test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2598 				/*
2599 				 * The device is suitable for reading (InSync),
2600 				 * but has bad block(s) here. Let's try to correct them,
2601 				 * if we are doing resync or repair. Otherwise, leave
2602 				 * this device alone for this sync request.
2603 				 */
2604 				bio->bi_rw = WRITE;
2605 				bio->bi_end_io = end_sync_write;
2606 				write_targets++;
2607 			}
2608 		}
2609 		if (bio->bi_end_io) {
2610 			atomic_inc(&rdev->nr_pending);
2611 			bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
2612 			bio->bi_bdev = rdev->bdev;
2613 			bio->bi_private = r1_bio;
2614 		}
2615 	}
2616 	rcu_read_unlock();
2617 	if (disk < 0)
2618 		disk = wonly;
2619 	r1_bio->read_disk = disk;
2620 
2621 	if (read_targets == 0 && min_bad > 0) {
2622 		/* These sectors are bad on all InSync devices, so we
2623 		 * need to mark them bad on all write targets
2624 		 */
2625 		int ok = 1;
2626 		for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2627 			if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2628 				struct md_rdev *rdev = conf->mirrors[i].rdev;
2629 				ok = rdev_set_badblocks(rdev, sector_nr,
2630 							min_bad, 0
2631 					) && ok;
2632 			}
2633 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
2634 		*skipped = 1;
2635 		put_buf(r1_bio);
2636 
2637 		if (!ok) {
2638 			/* Cannot record the badblocks, so need to
2639 			 * abort the resync.
2640 			 * If there are multiple read targets, could just
2641 			 * fail the really bad ones ???
2642 			 */
2643 			conf->recovery_disabled = mddev->recovery_disabled;
2644 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2645 			return 0;
2646 		} else
2647 			return min_bad;
2648 
2649 	}
2650 	if (min_bad > 0 && min_bad < good_sectors) {
2651 		/* only resync enough to reach the next bad->good
2652 		 * transition */
2653 		good_sectors = min_bad;
2654 	}
2655 
2656 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2657 		/* extra read targets are also write targets */
2658 		write_targets += read_targets-1;
2659 
2660 	if (write_targets == 0 || read_targets == 0) {
2661 		/* There is nowhere to write, so all non-sync
2662 		 * drives must be failed - so we are finished
2663 		 */
2664 		sector_t rv;
2665 		if (min_bad > 0)
2666 			max_sector = sector_nr + min_bad;
2667 		rv = max_sector - sector_nr;
2668 		*skipped = 1;
2669 		put_buf(r1_bio);
2670 		return rv;
2671 	}
2672 
2673 	if (max_sector > mddev->resync_max)
2674 		max_sector = mddev->resync_max; /* Don't do IO beyond here */
2675 	if (max_sector > sector_nr + good_sectors)
2676 		max_sector = sector_nr + good_sectors;
2677 	nr_sectors = 0;
2678 	sync_blocks = 0;
2679 	do {
2680 		struct page *page;
2681 		int len = PAGE_SIZE;
2682 		if (sector_nr + (len>>9) > max_sector)
2683 			len = (max_sector - sector_nr) << 9;
2684 		if (len == 0)
2685 			break;
2686 		if (sync_blocks == 0) {
2687 			if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2688 					       &sync_blocks, still_degraded) &&
2689 			    !conf->fullsync &&
2690 			    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2691 				break;
2692 			BUG_ON(sync_blocks < (PAGE_SIZE>>9));
2693 			if ((len >> 9) > sync_blocks)
2694 				len = sync_blocks<<9;
2695 		}
2696 
2697 		for (i = 0 ; i < conf->raid_disks * 2; i++) {
2698 			bio = r1_bio->bios[i];
2699 			if (bio->bi_end_io) {
2700 				page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
2701 				if (bio_add_page(bio, page, len, 0) == 0) {
2702 					/* stop here */
2703 					bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
2704 					while (i > 0) {
2705 						i--;
2706 						bio = r1_bio->bios[i];
2707 						if (bio->bi_end_io==NULL)
2708 							continue;
2709 						/* remove last page from this bio */
2710 						bio->bi_vcnt--;
2711 						bio->bi_iter.bi_size -= len;
2712 						bio->bi_flags &= ~(1<< BIO_SEG_VALID);
2713 					}
2714 					goto bio_full;
2715 				}
2716 			}
2717 		}
2718 		nr_sectors += len>>9;
2719 		sector_nr += len>>9;
2720 		sync_blocks -= (len>>9);
2721 	} while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
2722  bio_full:
2723 	r1_bio->sectors = nr_sectors;
2724 
2725 	/* For a user-requested sync, we read all readable devices and do a
2726 	 * compare
2727 	 */
2728 	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2729 		atomic_set(&r1_bio->remaining, read_targets);
2730 		for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2731 			bio = r1_bio->bios[i];
2732 			if (bio->bi_end_io == end_sync_read) {
2733 				read_targets--;
2734 				md_sync_acct(bio->bi_bdev, nr_sectors);
2735 				generic_make_request(bio);
2736 			}
2737 		}
2738 	} else {
2739 		atomic_set(&r1_bio->remaining, 1);
2740 		bio = r1_bio->bios[r1_bio->read_disk];
2741 		md_sync_acct(bio->bi_bdev, nr_sectors);
2742 		generic_make_request(bio);
2743 
2744 	}
2745 	return nr_sectors;
2746 }
2747 
2748 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2749 {
2750 	if (sectors)
2751 		return sectors;
2752 
2753 	return mddev->dev_sectors;
2754 }
2755 
2756 static struct r1conf *setup_conf(struct mddev *mddev)
2757 {
2758 	struct r1conf *conf;
2759 	int i;
2760 	struct raid1_info *disk;
2761 	struct md_rdev *rdev;
2762 	int err = -ENOMEM;
2763 
2764 	conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2765 	if (!conf)
2766 		goto abort;
2767 
2768 	conf->mirrors = kzalloc(sizeof(struct raid1_info)
2769 				* mddev->raid_disks * 2,
2770 				 GFP_KERNEL);
2771 	if (!conf->mirrors)
2772 		goto abort;
2773 
2774 	conf->tmppage = alloc_page(GFP_KERNEL);
2775 	if (!conf->tmppage)
2776 		goto abort;
2777 
2778 	conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
2779 	if (!conf->poolinfo)
2780 		goto abort;
2781 	conf->poolinfo->raid_disks = mddev->raid_disks * 2;
2782 	conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2783 					  r1bio_pool_free,
2784 					  conf->poolinfo);
2785 	if (!conf->r1bio_pool)
2786 		goto abort;
2787 
2788 	conf->poolinfo->mddev = mddev;
2789 
2790 	err = -EINVAL;
2791 	spin_lock_init(&conf->device_lock);
2792 	rdev_for_each(rdev, mddev) {
2793 		struct request_queue *q;
2794 		int disk_idx = rdev->raid_disk;
2795 		if (disk_idx >= mddev->raid_disks
2796 		    || disk_idx < 0)
2797 			continue;
2798 		if (test_bit(Replacement, &rdev->flags))
2799 			disk = conf->mirrors + mddev->raid_disks + disk_idx;
2800 		else
2801 			disk = conf->mirrors + disk_idx;
2802 
2803 		if (disk->rdev)
2804 			goto abort;
2805 		disk->rdev = rdev;
2806 		q = bdev_get_queue(rdev->bdev);
2807 		if (q->merge_bvec_fn)
2808 			mddev->merge_check_needed = 1;
2809 
2810 		disk->head_position = 0;
2811 		disk->seq_start = MaxSector;
2812 	}
2813 	conf->raid_disks = mddev->raid_disks;
2814 	conf->mddev = mddev;
2815 	INIT_LIST_HEAD(&conf->retry_list);
2816 
2817 	spin_lock_init(&conf->resync_lock);
2818 	init_waitqueue_head(&conf->wait_barrier);
2819 
2820 	bio_list_init(&conf->pending_bio_list);
2821 	conf->pending_count = 0;
2822 	conf->recovery_disabled = mddev->recovery_disabled - 1;
2823 
2824 	conf->start_next_window = MaxSector;
2825 	conf->current_window_requests = conf->next_window_requests = 0;
2826 
2827 	err = -EIO;
2828 	for (i = 0; i < conf->raid_disks * 2; i++) {
2829 
2830 		disk = conf->mirrors + i;
2831 
2832 		if (i < conf->raid_disks &&
2833 		    disk[conf->raid_disks].rdev) {
2834 			/* This slot has a replacement. */
2835 			if (!disk->rdev) {
2836 				/* No original, just make the replacement
2837 				 * a recovering spare
2838 				 */
2839 				disk->rdev =
2840 					disk[conf->raid_disks].rdev;
2841 				disk[conf->raid_disks].rdev = NULL;
2842 			} else if (!test_bit(In_sync, &disk->rdev->flags))
2843 				/* Original is not in_sync - bad */
2844 				goto abort;
2845 		}
2846 
2847 		if (!disk->rdev ||
2848 		    !test_bit(In_sync, &disk->rdev->flags)) {
2849 			disk->head_position = 0;
2850 			if (disk->rdev &&
2851 			    (disk->rdev->saved_raid_disk < 0))
2852 				conf->fullsync = 1;
2853 		}
2854 	}
2855 
2856 	err = -ENOMEM;
2857 	conf->thread = md_register_thread(raid1d, mddev, "raid1");
2858 	if (!conf->thread) {
2859 		printk(KERN_ERR
2860 		       "md/raid1:%s: couldn't allocate thread\n",
2861 		       mdname(mddev));
2862 		goto abort;
2863 	}
2864 
2865 	return conf;
2866 
2867  abort:
2868 	if (conf) {
2869 		if (conf->r1bio_pool)
2870 			mempool_destroy(conf->r1bio_pool);
2871 		kfree(conf->mirrors);
2872 		safe_put_page(conf->tmppage);
2873 		kfree(conf->poolinfo);
2874 		kfree(conf);
2875 	}
2876 	return ERR_PTR(err);
2877 }
2878 
2879 static int stop(struct mddev *mddev);
2880 static int run(struct mddev *mddev)
2881 {
2882 	struct r1conf *conf;
2883 	int i;
2884 	struct md_rdev *rdev;
2885 	int ret;
2886 	bool discard_supported = false;
2887 
2888 	if (mddev->level != 1) {
2889 		printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n",
2890 		       mdname(mddev), mddev->level);
2891 		return -EIO;
2892 	}
2893 	if (mddev->reshape_position != MaxSector) {
2894 		printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n",
2895 		       mdname(mddev));
2896 		return -EIO;
2897 	}
2898 	/*
2899 	 * copy the already verified devices into our private RAID1
2900 	 * bookkeeping area. [whatever we allocate in run(),
2901 	 * should be freed in stop()]
2902 	 */
2903 	if (mddev->private == NULL)
2904 		conf = setup_conf(mddev);
2905 	else
2906 		conf = mddev->private;
2907 
2908 	if (IS_ERR(conf))
2909 		return PTR_ERR(conf);
2910 
2911 	if (mddev->queue)
2912 		blk_queue_max_write_same_sectors(mddev->queue, 0);
2913 
2914 	rdev_for_each(rdev, mddev) {
2915 		if (!mddev->gendisk)
2916 			continue;
2917 		disk_stack_limits(mddev->gendisk, rdev->bdev,
2918 				  rdev->data_offset << 9);
2919 		if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
2920 			discard_supported = true;
2921 	}
2922 
2923 	mddev->degraded = 0;
2924 	for (i=0; i < conf->raid_disks; i++)
2925 		if (conf->mirrors[i].rdev == NULL ||
2926 		    !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
2927 		    test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2928 			mddev->degraded++;
2929 
2930 	if (conf->raid_disks - mddev->degraded == 1)
2931 		mddev->recovery_cp = MaxSector;
2932 
2933 	if (mddev->recovery_cp != MaxSector)
2934 		printk(KERN_NOTICE "md/raid1:%s: not clean"
2935 		       " -- starting background reconstruction\n",
2936 		       mdname(mddev));
2937 	printk(KERN_INFO
2938 		"md/raid1:%s: active with %d out of %d mirrors\n",
2939 		mdname(mddev), mddev->raid_disks - mddev->degraded,
2940 		mddev->raid_disks);
2941 
2942 	/*
2943 	 * Ok, everything is just fine now
2944 	 */
2945 	mddev->thread = conf->thread;
2946 	conf->thread = NULL;
2947 	mddev->private = conf;
2948 
2949 	md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
2950 
2951 	if (mddev->queue) {
2952 		mddev->queue->backing_dev_info.congested_fn = raid1_congested;
2953 		mddev->queue->backing_dev_info.congested_data = mddev;
2954 		blk_queue_merge_bvec(mddev->queue, raid1_mergeable_bvec);
2955 
2956 		if (discard_supported)
2957 			queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
2958 						mddev->queue);
2959 		else
2960 			queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
2961 						  mddev->queue);
2962 	}
2963 
2964 	ret =  md_integrity_register(mddev);
2965 	if (ret)
2966 		stop(mddev);
2967 	return ret;
2968 }
2969 
2970 static int stop(struct mddev *mddev)
2971 {
2972 	struct r1conf *conf = mddev->private;
2973 	struct bitmap *bitmap = mddev->bitmap;
2974 
2975 	/* wait for behind writes to complete */
2976 	if (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
2977 		printk(KERN_INFO "md/raid1:%s: behind writes in progress - waiting to stop.\n",
2978 		       mdname(mddev));
2979 		/* need to kick something here to make sure I/O goes? */
2980 		wait_event(bitmap->behind_wait,
2981 			   atomic_read(&bitmap->behind_writes) == 0);
2982 	}
2983 
2984 	freeze_array(conf, 0);
2985 	unfreeze_array(conf);
2986 
2987 	md_unregister_thread(&mddev->thread);
2988 	if (conf->r1bio_pool)
2989 		mempool_destroy(conf->r1bio_pool);
2990 	kfree(conf->mirrors);
2991 	safe_put_page(conf->tmppage);
2992 	kfree(conf->poolinfo);
2993 	kfree(conf);
2994 	mddev->private = NULL;
2995 	return 0;
2996 }
2997 
2998 static int raid1_resize(struct mddev *mddev, sector_t sectors)
2999 {
3000 	/* no resync is happening, and there is enough space
3001 	 * on all devices, so we can resize.
3002 	 * We need to make sure resync covers any new space.
3003 	 * If the array is shrinking we should possibly wait until
3004 	 * any io in the removed space completes, but it hardly seems
3005 	 * worth it.
3006 	 */
3007 	sector_t newsize = raid1_size(mddev, sectors, 0);
3008 	if (mddev->external_size &&
3009 	    mddev->array_sectors > newsize)
3010 		return -EINVAL;
3011 	if (mddev->bitmap) {
3012 		int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0);
3013 		if (ret)
3014 			return ret;
3015 	}
3016 	md_set_array_sectors(mddev, newsize);
3017 	set_capacity(mddev->gendisk, mddev->array_sectors);
3018 	revalidate_disk(mddev->gendisk);
3019 	if (sectors > mddev->dev_sectors &&
3020 	    mddev->recovery_cp > mddev->dev_sectors) {
3021 		mddev->recovery_cp = mddev->dev_sectors;
3022 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3023 	}
3024 	mddev->dev_sectors = sectors;
3025 	mddev->resync_max_sectors = sectors;
3026 	return 0;
3027 }
3028 
3029 static int raid1_reshape(struct mddev *mddev)
3030 {
3031 	/* We need to:
3032 	 * 1/ resize the r1bio_pool
3033 	 * 2/ resize conf->mirrors
3034 	 *
3035 	 * We allocate a new r1bio_pool if we can.
3036 	 * Then raise a device barrier and wait until all IO stops.
3037 	 * Then resize conf->mirrors and swap in the new r1bio pool.
3038 	 *
3039 	 * At the same time, we "pack" the devices so that all the missing
3040 	 * devices have the higher raid_disk numbers.
3041 	 */
3042 	mempool_t *newpool, *oldpool;
3043 	struct pool_info *newpoolinfo;
3044 	struct raid1_info *newmirrors;
3045 	struct r1conf *conf = mddev->private;
3046 	int cnt, raid_disks;
3047 	unsigned long flags;
3048 	int d, d2, err;
3049 
3050 	/* Cannot change chunk_size, layout, or level */
3051 	if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3052 	    mddev->layout != mddev->new_layout ||
3053 	    mddev->level != mddev->new_level) {
3054 		mddev->new_chunk_sectors = mddev->chunk_sectors;
3055 		mddev->new_layout = mddev->layout;
3056 		mddev->new_level = mddev->level;
3057 		return -EINVAL;
3058 	}
3059 
3060 	err = md_allow_write(mddev);
3061 	if (err)
3062 		return err;
3063 
3064 	raid_disks = mddev->raid_disks + mddev->delta_disks;
3065 
3066 	if (raid_disks < conf->raid_disks) {
3067 		cnt=0;
3068 		for (d= 0; d < conf->raid_disks; d++)
3069 			if (conf->mirrors[d].rdev)
3070 				cnt++;
3071 		if (cnt > raid_disks)
3072 			return -EBUSY;
3073 	}
3074 
3075 	newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3076 	if (!newpoolinfo)
3077 		return -ENOMEM;
3078 	newpoolinfo->mddev = mddev;
3079 	newpoolinfo->raid_disks = raid_disks * 2;
3080 
3081 	newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
3082 				 r1bio_pool_free, newpoolinfo);
3083 	if (!newpool) {
3084 		kfree(newpoolinfo);
3085 		return -ENOMEM;
3086 	}
3087 	newmirrors = kzalloc(sizeof(struct raid1_info) * raid_disks * 2,
3088 			     GFP_KERNEL);
3089 	if (!newmirrors) {
3090 		kfree(newpoolinfo);
3091 		mempool_destroy(newpool);
3092 		return -ENOMEM;
3093 	}
3094 
3095 	freeze_array(conf, 0);
3096 
3097 	/* ok, everything is stopped */
3098 	oldpool = conf->r1bio_pool;
3099 	conf->r1bio_pool = newpool;
3100 
3101 	for (d = d2 = 0; d < conf->raid_disks; d++) {
3102 		struct md_rdev *rdev = conf->mirrors[d].rdev;
3103 		if (rdev && rdev->raid_disk != d2) {
3104 			sysfs_unlink_rdev(mddev, rdev);
3105 			rdev->raid_disk = d2;
3106 			sysfs_unlink_rdev(mddev, rdev);
3107 			if (sysfs_link_rdev(mddev, rdev))
3108 				printk(KERN_WARNING
3109 				       "md/raid1:%s: cannot register rd%d\n",
3110 				       mdname(mddev), rdev->raid_disk);
3111 		}
3112 		if (rdev)
3113 			newmirrors[d2++].rdev = rdev;
3114 	}
3115 	kfree(conf->mirrors);
3116 	conf->mirrors = newmirrors;
3117 	kfree(conf->poolinfo);
3118 	conf->poolinfo = newpoolinfo;
3119 
3120 	spin_lock_irqsave(&conf->device_lock, flags);
3121 	mddev->degraded += (raid_disks - conf->raid_disks);
3122 	spin_unlock_irqrestore(&conf->device_lock, flags);
3123 	conf->raid_disks = mddev->raid_disks = raid_disks;
3124 	mddev->delta_disks = 0;
3125 
3126 	unfreeze_array(conf);
3127 
3128 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3129 	md_wakeup_thread(mddev->thread);
3130 
3131 	mempool_destroy(oldpool);
3132 	return 0;
3133 }
3134 
3135 static void raid1_quiesce(struct mddev *mddev, int state)
3136 {
3137 	struct r1conf *conf = mddev->private;
3138 
3139 	switch(state) {
3140 	case 2: /* wake for suspend */
3141 		wake_up(&conf->wait_barrier);
3142 		break;
3143 	case 1:
3144 		freeze_array(conf, 0);
3145 		break;
3146 	case 0:
3147 		unfreeze_array(conf);
3148 		break;
3149 	}
3150 }
3151 
3152 static void *raid1_takeover(struct mddev *mddev)
3153 {
3154 	/* raid1 can take over:
3155 	 *  raid5 with 2 devices, any layout or chunk size
3156 	 */
3157 	if (mddev->level == 5 && mddev->raid_disks == 2) {
3158 		struct r1conf *conf;
3159 		mddev->new_level = 1;
3160 		mddev->new_layout = 0;
3161 		mddev->new_chunk_sectors = 0;
3162 		conf = setup_conf(mddev);
3163 		if (!IS_ERR(conf))
3164 			/* Array must appear to be quiesced */
3165 			conf->array_frozen = 1;
3166 		return conf;
3167 	}
3168 	return ERR_PTR(-EINVAL);
3169 }
3170 
3171 static struct md_personality raid1_personality =
3172 {
3173 	.name		= "raid1",
3174 	.level		= 1,
3175 	.owner		= THIS_MODULE,
3176 	.make_request	= make_request,
3177 	.run		= run,
3178 	.stop		= stop,
3179 	.status		= status,
3180 	.error_handler	= error,
3181 	.hot_add_disk	= raid1_add_disk,
3182 	.hot_remove_disk= raid1_remove_disk,
3183 	.spare_active	= raid1_spare_active,
3184 	.sync_request	= sync_request,
3185 	.resize		= raid1_resize,
3186 	.size		= raid1_size,
3187 	.check_reshape	= raid1_reshape,
3188 	.quiesce	= raid1_quiesce,
3189 	.takeover	= raid1_takeover,
3190 };
3191 
3192 static int __init raid_init(void)
3193 {
3194 	return register_md_personality(&raid1_personality);
3195 }
3196 
3197 static void raid_exit(void)
3198 {
3199 	unregister_md_personality(&raid1_personality);
3200 }
3201 
3202 module_init(raid_init);
3203 module_exit(raid_exit);
3204 MODULE_LICENSE("GPL");
3205 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3206 MODULE_ALIAS("md-personality-3"); /* RAID1 */
3207 MODULE_ALIAS("md-raid1");
3208 MODULE_ALIAS("md-level-1");
3209 
3210 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
3211