xref: /openbmc/linux/drivers/md/raid1.c (revision f35e839a)
1 /*
2  * raid1.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5  *
6  * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7  *
8  * RAID-1 management functions.
9  *
10  * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11  *
12  * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
13  * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14  *
15  * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16  * bitmapped intelligence in resync:
17  *
18  *      - bitmap marked during normal i/o
19  *      - bitmap used to skip nondirty blocks during sync
20  *
21  * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22  * - persistent bitmap code
23  *
24  * This program is free software; you can redistribute it and/or modify
25  * it under the terms of the GNU General Public License as published by
26  * the Free Software Foundation; either version 2, or (at your option)
27  * any later version.
28  *
29  * You should have received a copy of the GNU General Public License
30  * (for example /usr/src/linux/COPYING); if not, write to the Free
31  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32  */
33 
34 #include <linux/slab.h>
35 #include <linux/delay.h>
36 #include <linux/blkdev.h>
37 #include <linux/module.h>
38 #include <linux/seq_file.h>
39 #include <linux/ratelimit.h>
40 #include "md.h"
41 #include "raid1.h"
42 #include "bitmap.h"
43 
44 /*
45  * Number of guaranteed r1bios in case of extreme VM load:
46  */
47 #define	NR_RAID1_BIOS 256
48 
49 /* when we get a read error on a read-only array, we redirect to another
50  * device without failing the first device, or trying to over-write to
51  * correct the read error.  To keep track of bad blocks on a per-bio
52  * level, we store IO_BLOCKED in the appropriate 'bios' pointer
53  */
54 #define IO_BLOCKED ((struct bio *)1)
55 /* When we successfully write to a known bad-block, we need to remove the
56  * bad-block marking which must be done from process context.  So we record
57  * the success by setting devs[n].bio to IO_MADE_GOOD
58  */
59 #define IO_MADE_GOOD ((struct bio *)2)
60 
61 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
62 
63 /* When there are this many requests queue to be written by
64  * the raid1 thread, we become 'congested' to provide back-pressure
65  * for writeback.
66  */
67 static int max_queued_requests = 1024;
68 
69 static void allow_barrier(struct r1conf *conf);
70 static void lower_barrier(struct r1conf *conf);
71 
72 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
73 {
74 	struct pool_info *pi = data;
75 	int size = offsetof(struct r1bio, bios[pi->raid_disks]);
76 
77 	/* allocate a r1bio with room for raid_disks entries in the bios array */
78 	return kzalloc(size, gfp_flags);
79 }
80 
81 static void r1bio_pool_free(void *r1_bio, void *data)
82 {
83 	kfree(r1_bio);
84 }
85 
86 #define RESYNC_BLOCK_SIZE (64*1024)
87 //#define RESYNC_BLOCK_SIZE PAGE_SIZE
88 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
89 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
90 #define RESYNC_WINDOW (2048*1024)
91 
92 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
93 {
94 	struct pool_info *pi = data;
95 	struct r1bio *r1_bio;
96 	struct bio *bio;
97 	int i, j;
98 
99 	r1_bio = r1bio_pool_alloc(gfp_flags, pi);
100 	if (!r1_bio)
101 		return NULL;
102 
103 	/*
104 	 * Allocate bios : 1 for reading, n-1 for writing
105 	 */
106 	for (j = pi->raid_disks ; j-- ; ) {
107 		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
108 		if (!bio)
109 			goto out_free_bio;
110 		r1_bio->bios[j] = bio;
111 	}
112 	/*
113 	 * Allocate RESYNC_PAGES data pages and attach them to
114 	 * the first bio.
115 	 * If this is a user-requested check/repair, allocate
116 	 * RESYNC_PAGES for each bio.
117 	 */
118 	if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
119 		j = pi->raid_disks;
120 	else
121 		j = 1;
122 	while(j--) {
123 		bio = r1_bio->bios[j];
124 		bio->bi_vcnt = RESYNC_PAGES;
125 
126 		if (bio_alloc_pages(bio, gfp_flags))
127 			goto out_free_bio;
128 	}
129 	/* If not user-requests, copy the page pointers to all bios */
130 	if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
131 		for (i=0; i<RESYNC_PAGES ; i++)
132 			for (j=1; j<pi->raid_disks; j++)
133 				r1_bio->bios[j]->bi_io_vec[i].bv_page =
134 					r1_bio->bios[0]->bi_io_vec[i].bv_page;
135 	}
136 
137 	r1_bio->master_bio = NULL;
138 
139 	return r1_bio;
140 
141 out_free_bio:
142 	while (++j < pi->raid_disks)
143 		bio_put(r1_bio->bios[j]);
144 	r1bio_pool_free(r1_bio, data);
145 	return NULL;
146 }
147 
148 static void r1buf_pool_free(void *__r1_bio, void *data)
149 {
150 	struct pool_info *pi = data;
151 	int i,j;
152 	struct r1bio *r1bio = __r1_bio;
153 
154 	for (i = 0; i < RESYNC_PAGES; i++)
155 		for (j = pi->raid_disks; j-- ;) {
156 			if (j == 0 ||
157 			    r1bio->bios[j]->bi_io_vec[i].bv_page !=
158 			    r1bio->bios[0]->bi_io_vec[i].bv_page)
159 				safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
160 		}
161 	for (i=0 ; i < pi->raid_disks; i++)
162 		bio_put(r1bio->bios[i]);
163 
164 	r1bio_pool_free(r1bio, data);
165 }
166 
167 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
168 {
169 	int i;
170 
171 	for (i = 0; i < conf->raid_disks * 2; i++) {
172 		struct bio **bio = r1_bio->bios + i;
173 		if (!BIO_SPECIAL(*bio))
174 			bio_put(*bio);
175 		*bio = NULL;
176 	}
177 }
178 
179 static void free_r1bio(struct r1bio *r1_bio)
180 {
181 	struct r1conf *conf = r1_bio->mddev->private;
182 
183 	put_all_bios(conf, r1_bio);
184 	mempool_free(r1_bio, conf->r1bio_pool);
185 }
186 
187 static void put_buf(struct r1bio *r1_bio)
188 {
189 	struct r1conf *conf = r1_bio->mddev->private;
190 	int i;
191 
192 	for (i = 0; i < conf->raid_disks * 2; i++) {
193 		struct bio *bio = r1_bio->bios[i];
194 		if (bio->bi_end_io)
195 			rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
196 	}
197 
198 	mempool_free(r1_bio, conf->r1buf_pool);
199 
200 	lower_barrier(conf);
201 }
202 
203 static void reschedule_retry(struct r1bio *r1_bio)
204 {
205 	unsigned long flags;
206 	struct mddev *mddev = r1_bio->mddev;
207 	struct r1conf *conf = mddev->private;
208 
209 	spin_lock_irqsave(&conf->device_lock, flags);
210 	list_add(&r1_bio->retry_list, &conf->retry_list);
211 	conf->nr_queued ++;
212 	spin_unlock_irqrestore(&conf->device_lock, flags);
213 
214 	wake_up(&conf->wait_barrier);
215 	md_wakeup_thread(mddev->thread);
216 }
217 
218 /*
219  * raid_end_bio_io() is called when we have finished servicing a mirrored
220  * operation and are ready to return a success/failure code to the buffer
221  * cache layer.
222  */
223 static void call_bio_endio(struct r1bio *r1_bio)
224 {
225 	struct bio *bio = r1_bio->master_bio;
226 	int done;
227 	struct r1conf *conf = r1_bio->mddev->private;
228 
229 	if (bio->bi_phys_segments) {
230 		unsigned long flags;
231 		spin_lock_irqsave(&conf->device_lock, flags);
232 		bio->bi_phys_segments--;
233 		done = (bio->bi_phys_segments == 0);
234 		spin_unlock_irqrestore(&conf->device_lock, flags);
235 	} else
236 		done = 1;
237 
238 	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
239 		clear_bit(BIO_UPTODATE, &bio->bi_flags);
240 	if (done) {
241 		bio_endio(bio, 0);
242 		/*
243 		 * Wake up any possible resync thread that waits for the device
244 		 * to go idle.
245 		 */
246 		allow_barrier(conf);
247 	}
248 }
249 
250 static void raid_end_bio_io(struct r1bio *r1_bio)
251 {
252 	struct bio *bio = r1_bio->master_bio;
253 
254 	/* if nobody has done the final endio yet, do it now */
255 	if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
256 		pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
257 			 (bio_data_dir(bio) == WRITE) ? "write" : "read",
258 			 (unsigned long long) bio->bi_sector,
259 			 (unsigned long long) bio->bi_sector +
260 			 bio_sectors(bio) - 1);
261 
262 		call_bio_endio(r1_bio);
263 	}
264 	free_r1bio(r1_bio);
265 }
266 
267 /*
268  * Update disk head position estimator based on IRQ completion info.
269  */
270 static inline void update_head_pos(int disk, struct r1bio *r1_bio)
271 {
272 	struct r1conf *conf = r1_bio->mddev->private;
273 
274 	conf->mirrors[disk].head_position =
275 		r1_bio->sector + (r1_bio->sectors);
276 }
277 
278 /*
279  * Find the disk number which triggered given bio
280  */
281 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
282 {
283 	int mirror;
284 	struct r1conf *conf = r1_bio->mddev->private;
285 	int raid_disks = conf->raid_disks;
286 
287 	for (mirror = 0; mirror < raid_disks * 2; mirror++)
288 		if (r1_bio->bios[mirror] == bio)
289 			break;
290 
291 	BUG_ON(mirror == raid_disks * 2);
292 	update_head_pos(mirror, r1_bio);
293 
294 	return mirror;
295 }
296 
297 static void raid1_end_read_request(struct bio *bio, int error)
298 {
299 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
300 	struct r1bio *r1_bio = bio->bi_private;
301 	int mirror;
302 	struct r1conf *conf = r1_bio->mddev->private;
303 
304 	mirror = r1_bio->read_disk;
305 	/*
306 	 * this branch is our 'one mirror IO has finished' event handler:
307 	 */
308 	update_head_pos(mirror, r1_bio);
309 
310 	if (uptodate)
311 		set_bit(R1BIO_Uptodate, &r1_bio->state);
312 	else {
313 		/* If all other devices have failed, we want to return
314 		 * the error upwards rather than fail the last device.
315 		 * Here we redefine "uptodate" to mean "Don't want to retry"
316 		 */
317 		unsigned long flags;
318 		spin_lock_irqsave(&conf->device_lock, flags);
319 		if (r1_bio->mddev->degraded == conf->raid_disks ||
320 		    (r1_bio->mddev->degraded == conf->raid_disks-1 &&
321 		     !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags)))
322 			uptodate = 1;
323 		spin_unlock_irqrestore(&conf->device_lock, flags);
324 	}
325 
326 	if (uptodate) {
327 		raid_end_bio_io(r1_bio);
328 		rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
329 	} else {
330 		/*
331 		 * oops, read error:
332 		 */
333 		char b[BDEVNAME_SIZE];
334 		printk_ratelimited(
335 			KERN_ERR "md/raid1:%s: %s: "
336 			"rescheduling sector %llu\n",
337 			mdname(conf->mddev),
338 			bdevname(conf->mirrors[mirror].rdev->bdev,
339 				 b),
340 			(unsigned long long)r1_bio->sector);
341 		set_bit(R1BIO_ReadError, &r1_bio->state);
342 		reschedule_retry(r1_bio);
343 		/* don't drop the reference on read_disk yet */
344 	}
345 }
346 
347 static void close_write(struct r1bio *r1_bio)
348 {
349 	/* it really is the end of this request */
350 	if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
351 		/* free extra copy of the data pages */
352 		int i = r1_bio->behind_page_count;
353 		while (i--)
354 			safe_put_page(r1_bio->behind_bvecs[i].bv_page);
355 		kfree(r1_bio->behind_bvecs);
356 		r1_bio->behind_bvecs = NULL;
357 	}
358 	/* clear the bitmap if all writes complete successfully */
359 	bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
360 			r1_bio->sectors,
361 			!test_bit(R1BIO_Degraded, &r1_bio->state),
362 			test_bit(R1BIO_BehindIO, &r1_bio->state));
363 	md_write_end(r1_bio->mddev);
364 }
365 
366 static void r1_bio_write_done(struct r1bio *r1_bio)
367 {
368 	if (!atomic_dec_and_test(&r1_bio->remaining))
369 		return;
370 
371 	if (test_bit(R1BIO_WriteError, &r1_bio->state))
372 		reschedule_retry(r1_bio);
373 	else {
374 		close_write(r1_bio);
375 		if (test_bit(R1BIO_MadeGood, &r1_bio->state))
376 			reschedule_retry(r1_bio);
377 		else
378 			raid_end_bio_io(r1_bio);
379 	}
380 }
381 
382 static void raid1_end_write_request(struct bio *bio, int error)
383 {
384 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
385 	struct r1bio *r1_bio = bio->bi_private;
386 	int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
387 	struct r1conf *conf = r1_bio->mddev->private;
388 	struct bio *to_put = NULL;
389 
390 	mirror = find_bio_disk(r1_bio, bio);
391 
392 	/*
393 	 * 'one mirror IO has finished' event handler:
394 	 */
395 	if (!uptodate) {
396 		set_bit(WriteErrorSeen,
397 			&conf->mirrors[mirror].rdev->flags);
398 		if (!test_and_set_bit(WantReplacement,
399 				      &conf->mirrors[mirror].rdev->flags))
400 			set_bit(MD_RECOVERY_NEEDED, &
401 				conf->mddev->recovery);
402 
403 		set_bit(R1BIO_WriteError, &r1_bio->state);
404 	} else {
405 		/*
406 		 * Set R1BIO_Uptodate in our master bio, so that we
407 		 * will return a good error code for to the higher
408 		 * levels even if IO on some other mirrored buffer
409 		 * fails.
410 		 *
411 		 * The 'master' represents the composite IO operation
412 		 * to user-side. So if something waits for IO, then it
413 		 * will wait for the 'master' bio.
414 		 */
415 		sector_t first_bad;
416 		int bad_sectors;
417 
418 		r1_bio->bios[mirror] = NULL;
419 		to_put = bio;
420 		set_bit(R1BIO_Uptodate, &r1_bio->state);
421 
422 		/* Maybe we can clear some bad blocks. */
423 		if (is_badblock(conf->mirrors[mirror].rdev,
424 				r1_bio->sector, r1_bio->sectors,
425 				&first_bad, &bad_sectors)) {
426 			r1_bio->bios[mirror] = IO_MADE_GOOD;
427 			set_bit(R1BIO_MadeGood, &r1_bio->state);
428 		}
429 	}
430 
431 	if (behind) {
432 		if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
433 			atomic_dec(&r1_bio->behind_remaining);
434 
435 		/*
436 		 * In behind mode, we ACK the master bio once the I/O
437 		 * has safely reached all non-writemostly
438 		 * disks. Setting the Returned bit ensures that this
439 		 * gets done only once -- we don't ever want to return
440 		 * -EIO here, instead we'll wait
441 		 */
442 		if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
443 		    test_bit(R1BIO_Uptodate, &r1_bio->state)) {
444 			/* Maybe we can return now */
445 			if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
446 				struct bio *mbio = r1_bio->master_bio;
447 				pr_debug("raid1: behind end write sectors"
448 					 " %llu-%llu\n",
449 					 (unsigned long long) mbio->bi_sector,
450 					 (unsigned long long) mbio->bi_sector +
451 					 bio_sectors(mbio) - 1);
452 				call_bio_endio(r1_bio);
453 			}
454 		}
455 	}
456 	if (r1_bio->bios[mirror] == NULL)
457 		rdev_dec_pending(conf->mirrors[mirror].rdev,
458 				 conf->mddev);
459 
460 	/*
461 	 * Let's see if all mirrored write operations have finished
462 	 * already.
463 	 */
464 	r1_bio_write_done(r1_bio);
465 
466 	if (to_put)
467 		bio_put(to_put);
468 }
469 
470 
471 /*
472  * This routine returns the disk from which the requested read should
473  * be done. There is a per-array 'next expected sequential IO' sector
474  * number - if this matches on the next IO then we use the last disk.
475  * There is also a per-disk 'last know head position' sector that is
476  * maintained from IRQ contexts, both the normal and the resync IO
477  * completion handlers update this position correctly. If there is no
478  * perfect sequential match then we pick the disk whose head is closest.
479  *
480  * If there are 2 mirrors in the same 2 devices, performance degrades
481  * because position is mirror, not device based.
482  *
483  * The rdev for the device selected will have nr_pending incremented.
484  */
485 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
486 {
487 	const sector_t this_sector = r1_bio->sector;
488 	int sectors;
489 	int best_good_sectors;
490 	int best_disk, best_dist_disk, best_pending_disk;
491 	int has_nonrot_disk;
492 	int disk;
493 	sector_t best_dist;
494 	unsigned int min_pending;
495 	struct md_rdev *rdev;
496 	int choose_first;
497 	int choose_next_idle;
498 
499 	rcu_read_lock();
500 	/*
501 	 * Check if we can balance. We can balance on the whole
502 	 * device if no resync is going on, or below the resync window.
503 	 * We take the first readable disk when above the resync window.
504 	 */
505  retry:
506 	sectors = r1_bio->sectors;
507 	best_disk = -1;
508 	best_dist_disk = -1;
509 	best_dist = MaxSector;
510 	best_pending_disk = -1;
511 	min_pending = UINT_MAX;
512 	best_good_sectors = 0;
513 	has_nonrot_disk = 0;
514 	choose_next_idle = 0;
515 
516 	if (conf->mddev->recovery_cp < MaxSector &&
517 	    (this_sector + sectors >= conf->next_resync))
518 		choose_first = 1;
519 	else
520 		choose_first = 0;
521 
522 	for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
523 		sector_t dist;
524 		sector_t first_bad;
525 		int bad_sectors;
526 		unsigned int pending;
527 		bool nonrot;
528 
529 		rdev = rcu_dereference(conf->mirrors[disk].rdev);
530 		if (r1_bio->bios[disk] == IO_BLOCKED
531 		    || rdev == NULL
532 		    || test_bit(Unmerged, &rdev->flags)
533 		    || test_bit(Faulty, &rdev->flags))
534 			continue;
535 		if (!test_bit(In_sync, &rdev->flags) &&
536 		    rdev->recovery_offset < this_sector + sectors)
537 			continue;
538 		if (test_bit(WriteMostly, &rdev->flags)) {
539 			/* Don't balance among write-mostly, just
540 			 * use the first as a last resort */
541 			if (best_disk < 0) {
542 				if (is_badblock(rdev, this_sector, sectors,
543 						&first_bad, &bad_sectors)) {
544 					if (first_bad < this_sector)
545 						/* Cannot use this */
546 						continue;
547 					best_good_sectors = first_bad - this_sector;
548 				} else
549 					best_good_sectors = sectors;
550 				best_disk = disk;
551 			}
552 			continue;
553 		}
554 		/* This is a reasonable device to use.  It might
555 		 * even be best.
556 		 */
557 		if (is_badblock(rdev, this_sector, sectors,
558 				&first_bad, &bad_sectors)) {
559 			if (best_dist < MaxSector)
560 				/* already have a better device */
561 				continue;
562 			if (first_bad <= this_sector) {
563 				/* cannot read here. If this is the 'primary'
564 				 * device, then we must not read beyond
565 				 * bad_sectors from another device..
566 				 */
567 				bad_sectors -= (this_sector - first_bad);
568 				if (choose_first && sectors > bad_sectors)
569 					sectors = bad_sectors;
570 				if (best_good_sectors > sectors)
571 					best_good_sectors = sectors;
572 
573 			} else {
574 				sector_t good_sectors = first_bad - this_sector;
575 				if (good_sectors > best_good_sectors) {
576 					best_good_sectors = good_sectors;
577 					best_disk = disk;
578 				}
579 				if (choose_first)
580 					break;
581 			}
582 			continue;
583 		} else
584 			best_good_sectors = sectors;
585 
586 		nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
587 		has_nonrot_disk |= nonrot;
588 		pending = atomic_read(&rdev->nr_pending);
589 		dist = abs(this_sector - conf->mirrors[disk].head_position);
590 		if (choose_first) {
591 			best_disk = disk;
592 			break;
593 		}
594 		/* Don't change to another disk for sequential reads */
595 		if (conf->mirrors[disk].next_seq_sect == this_sector
596 		    || dist == 0) {
597 			int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
598 			struct raid1_info *mirror = &conf->mirrors[disk];
599 
600 			best_disk = disk;
601 			/*
602 			 * If buffered sequential IO size exceeds optimal
603 			 * iosize, check if there is idle disk. If yes, choose
604 			 * the idle disk. read_balance could already choose an
605 			 * idle disk before noticing it's a sequential IO in
606 			 * this disk. This doesn't matter because this disk
607 			 * will idle, next time it will be utilized after the
608 			 * first disk has IO size exceeds optimal iosize. In
609 			 * this way, iosize of the first disk will be optimal
610 			 * iosize at least. iosize of the second disk might be
611 			 * small, but not a big deal since when the second disk
612 			 * starts IO, the first disk is likely still busy.
613 			 */
614 			if (nonrot && opt_iosize > 0 &&
615 			    mirror->seq_start != MaxSector &&
616 			    mirror->next_seq_sect > opt_iosize &&
617 			    mirror->next_seq_sect - opt_iosize >=
618 			    mirror->seq_start) {
619 				choose_next_idle = 1;
620 				continue;
621 			}
622 			break;
623 		}
624 		/* If device is idle, use it */
625 		if (pending == 0) {
626 			best_disk = disk;
627 			break;
628 		}
629 
630 		if (choose_next_idle)
631 			continue;
632 
633 		if (min_pending > pending) {
634 			min_pending = pending;
635 			best_pending_disk = disk;
636 		}
637 
638 		if (dist < best_dist) {
639 			best_dist = dist;
640 			best_dist_disk = disk;
641 		}
642 	}
643 
644 	/*
645 	 * If all disks are rotational, choose the closest disk. If any disk is
646 	 * non-rotational, choose the disk with less pending request even the
647 	 * disk is rotational, which might/might not be optimal for raids with
648 	 * mixed ratation/non-rotational disks depending on workload.
649 	 */
650 	if (best_disk == -1) {
651 		if (has_nonrot_disk)
652 			best_disk = best_pending_disk;
653 		else
654 			best_disk = best_dist_disk;
655 	}
656 
657 	if (best_disk >= 0) {
658 		rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
659 		if (!rdev)
660 			goto retry;
661 		atomic_inc(&rdev->nr_pending);
662 		if (test_bit(Faulty, &rdev->flags)) {
663 			/* cannot risk returning a device that failed
664 			 * before we inc'ed nr_pending
665 			 */
666 			rdev_dec_pending(rdev, conf->mddev);
667 			goto retry;
668 		}
669 		sectors = best_good_sectors;
670 
671 		if (conf->mirrors[best_disk].next_seq_sect != this_sector)
672 			conf->mirrors[best_disk].seq_start = this_sector;
673 
674 		conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
675 	}
676 	rcu_read_unlock();
677 	*max_sectors = sectors;
678 
679 	return best_disk;
680 }
681 
682 static int raid1_mergeable_bvec(struct request_queue *q,
683 				struct bvec_merge_data *bvm,
684 				struct bio_vec *biovec)
685 {
686 	struct mddev *mddev = q->queuedata;
687 	struct r1conf *conf = mddev->private;
688 	sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
689 	int max = biovec->bv_len;
690 
691 	if (mddev->merge_check_needed) {
692 		int disk;
693 		rcu_read_lock();
694 		for (disk = 0; disk < conf->raid_disks * 2; disk++) {
695 			struct md_rdev *rdev = rcu_dereference(
696 				conf->mirrors[disk].rdev);
697 			if (rdev && !test_bit(Faulty, &rdev->flags)) {
698 				struct request_queue *q =
699 					bdev_get_queue(rdev->bdev);
700 				if (q->merge_bvec_fn) {
701 					bvm->bi_sector = sector +
702 						rdev->data_offset;
703 					bvm->bi_bdev = rdev->bdev;
704 					max = min(max, q->merge_bvec_fn(
705 							  q, bvm, biovec));
706 				}
707 			}
708 		}
709 		rcu_read_unlock();
710 	}
711 	return max;
712 
713 }
714 
715 int md_raid1_congested(struct mddev *mddev, int bits)
716 {
717 	struct r1conf *conf = mddev->private;
718 	int i, ret = 0;
719 
720 	if ((bits & (1 << BDI_async_congested)) &&
721 	    conf->pending_count >= max_queued_requests)
722 		return 1;
723 
724 	rcu_read_lock();
725 	for (i = 0; i < conf->raid_disks * 2; i++) {
726 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
727 		if (rdev && !test_bit(Faulty, &rdev->flags)) {
728 			struct request_queue *q = bdev_get_queue(rdev->bdev);
729 
730 			BUG_ON(!q);
731 
732 			/* Note the '|| 1' - when read_balance prefers
733 			 * non-congested targets, it can be removed
734 			 */
735 			if ((bits & (1<<BDI_async_congested)) || 1)
736 				ret |= bdi_congested(&q->backing_dev_info, bits);
737 			else
738 				ret &= bdi_congested(&q->backing_dev_info, bits);
739 		}
740 	}
741 	rcu_read_unlock();
742 	return ret;
743 }
744 EXPORT_SYMBOL_GPL(md_raid1_congested);
745 
746 static int raid1_congested(void *data, int bits)
747 {
748 	struct mddev *mddev = data;
749 
750 	return mddev_congested(mddev, bits) ||
751 		md_raid1_congested(mddev, bits);
752 }
753 
754 static void flush_pending_writes(struct r1conf *conf)
755 {
756 	/* Any writes that have been queued but are awaiting
757 	 * bitmap updates get flushed here.
758 	 */
759 	spin_lock_irq(&conf->device_lock);
760 
761 	if (conf->pending_bio_list.head) {
762 		struct bio *bio;
763 		bio = bio_list_get(&conf->pending_bio_list);
764 		conf->pending_count = 0;
765 		spin_unlock_irq(&conf->device_lock);
766 		/* flush any pending bitmap writes to
767 		 * disk before proceeding w/ I/O */
768 		bitmap_unplug(conf->mddev->bitmap);
769 		wake_up(&conf->wait_barrier);
770 
771 		while (bio) { /* submit pending writes */
772 			struct bio *next = bio->bi_next;
773 			bio->bi_next = NULL;
774 			if (unlikely((bio->bi_rw & REQ_DISCARD) &&
775 			    !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
776 				/* Just ignore it */
777 				bio_endio(bio, 0);
778 			else
779 				generic_make_request(bio);
780 			bio = next;
781 		}
782 	} else
783 		spin_unlock_irq(&conf->device_lock);
784 }
785 
786 /* Barriers....
787  * Sometimes we need to suspend IO while we do something else,
788  * either some resync/recovery, or reconfigure the array.
789  * To do this we raise a 'barrier'.
790  * The 'barrier' is a counter that can be raised multiple times
791  * to count how many activities are happening which preclude
792  * normal IO.
793  * We can only raise the barrier if there is no pending IO.
794  * i.e. if nr_pending == 0.
795  * We choose only to raise the barrier if no-one is waiting for the
796  * barrier to go down.  This means that as soon as an IO request
797  * is ready, no other operations which require a barrier will start
798  * until the IO request has had a chance.
799  *
800  * So: regular IO calls 'wait_barrier'.  When that returns there
801  *    is no backgroup IO happening,  It must arrange to call
802  *    allow_barrier when it has finished its IO.
803  * backgroup IO calls must call raise_barrier.  Once that returns
804  *    there is no normal IO happeing.  It must arrange to call
805  *    lower_barrier when the particular background IO completes.
806  */
807 #define RESYNC_DEPTH 32
808 
809 static void raise_barrier(struct r1conf *conf)
810 {
811 	spin_lock_irq(&conf->resync_lock);
812 
813 	/* Wait until no block IO is waiting */
814 	wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
815 			    conf->resync_lock);
816 
817 	/* block any new IO from starting */
818 	conf->barrier++;
819 
820 	/* Now wait for all pending IO to complete */
821 	wait_event_lock_irq(conf->wait_barrier,
822 			    !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
823 			    conf->resync_lock);
824 
825 	spin_unlock_irq(&conf->resync_lock);
826 }
827 
828 static void lower_barrier(struct r1conf *conf)
829 {
830 	unsigned long flags;
831 	BUG_ON(conf->barrier <= 0);
832 	spin_lock_irqsave(&conf->resync_lock, flags);
833 	conf->barrier--;
834 	spin_unlock_irqrestore(&conf->resync_lock, flags);
835 	wake_up(&conf->wait_barrier);
836 }
837 
838 static void wait_barrier(struct r1conf *conf)
839 {
840 	spin_lock_irq(&conf->resync_lock);
841 	if (conf->barrier) {
842 		conf->nr_waiting++;
843 		/* Wait for the barrier to drop.
844 		 * However if there are already pending
845 		 * requests (preventing the barrier from
846 		 * rising completely), and the
847 		 * pre-process bio queue isn't empty,
848 		 * then don't wait, as we need to empty
849 		 * that queue to get the nr_pending
850 		 * count down.
851 		 */
852 		wait_event_lock_irq(conf->wait_barrier,
853 				    !conf->barrier ||
854 				    (conf->nr_pending &&
855 				     current->bio_list &&
856 				     !bio_list_empty(current->bio_list)),
857 				    conf->resync_lock);
858 		conf->nr_waiting--;
859 	}
860 	conf->nr_pending++;
861 	spin_unlock_irq(&conf->resync_lock);
862 }
863 
864 static void allow_barrier(struct r1conf *conf)
865 {
866 	unsigned long flags;
867 	spin_lock_irqsave(&conf->resync_lock, flags);
868 	conf->nr_pending--;
869 	spin_unlock_irqrestore(&conf->resync_lock, flags);
870 	wake_up(&conf->wait_barrier);
871 }
872 
873 static void freeze_array(struct r1conf *conf)
874 {
875 	/* stop syncio and normal IO and wait for everything to
876 	 * go quite.
877 	 * We increment barrier and nr_waiting, and then
878 	 * wait until nr_pending match nr_queued+1
879 	 * This is called in the context of one normal IO request
880 	 * that has failed. Thus any sync request that might be pending
881 	 * will be blocked by nr_pending, and we need to wait for
882 	 * pending IO requests to complete or be queued for re-try.
883 	 * Thus the number queued (nr_queued) plus this request (1)
884 	 * must match the number of pending IOs (nr_pending) before
885 	 * we continue.
886 	 */
887 	spin_lock_irq(&conf->resync_lock);
888 	conf->barrier++;
889 	conf->nr_waiting++;
890 	wait_event_lock_irq_cmd(conf->wait_barrier,
891 				conf->nr_pending == conf->nr_queued+1,
892 				conf->resync_lock,
893 				flush_pending_writes(conf));
894 	spin_unlock_irq(&conf->resync_lock);
895 }
896 static void unfreeze_array(struct r1conf *conf)
897 {
898 	/* reverse the effect of the freeze */
899 	spin_lock_irq(&conf->resync_lock);
900 	conf->barrier--;
901 	conf->nr_waiting--;
902 	wake_up(&conf->wait_barrier);
903 	spin_unlock_irq(&conf->resync_lock);
904 }
905 
906 
907 /* duplicate the data pages for behind I/O
908  */
909 static void alloc_behind_pages(struct bio *bio, struct r1bio *r1_bio)
910 {
911 	int i;
912 	struct bio_vec *bvec;
913 	struct bio_vec *bvecs = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec),
914 					GFP_NOIO);
915 	if (unlikely(!bvecs))
916 		return;
917 
918 	bio_for_each_segment_all(bvec, bio, i) {
919 		bvecs[i] = *bvec;
920 		bvecs[i].bv_page = alloc_page(GFP_NOIO);
921 		if (unlikely(!bvecs[i].bv_page))
922 			goto do_sync_io;
923 		memcpy(kmap(bvecs[i].bv_page) + bvec->bv_offset,
924 		       kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
925 		kunmap(bvecs[i].bv_page);
926 		kunmap(bvec->bv_page);
927 	}
928 	r1_bio->behind_bvecs = bvecs;
929 	r1_bio->behind_page_count = bio->bi_vcnt;
930 	set_bit(R1BIO_BehindIO, &r1_bio->state);
931 	return;
932 
933 do_sync_io:
934 	for (i = 0; i < bio->bi_vcnt; i++)
935 		if (bvecs[i].bv_page)
936 			put_page(bvecs[i].bv_page);
937 	kfree(bvecs);
938 	pr_debug("%dB behind alloc failed, doing sync I/O\n", bio->bi_size);
939 }
940 
941 struct raid1_plug_cb {
942 	struct blk_plug_cb	cb;
943 	struct bio_list		pending;
944 	int			pending_cnt;
945 };
946 
947 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
948 {
949 	struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
950 						  cb);
951 	struct mddev *mddev = plug->cb.data;
952 	struct r1conf *conf = mddev->private;
953 	struct bio *bio;
954 
955 	if (from_schedule || current->bio_list) {
956 		spin_lock_irq(&conf->device_lock);
957 		bio_list_merge(&conf->pending_bio_list, &plug->pending);
958 		conf->pending_count += plug->pending_cnt;
959 		spin_unlock_irq(&conf->device_lock);
960 		wake_up(&conf->wait_barrier);
961 		md_wakeup_thread(mddev->thread);
962 		kfree(plug);
963 		return;
964 	}
965 
966 	/* we aren't scheduling, so we can do the write-out directly. */
967 	bio = bio_list_get(&plug->pending);
968 	bitmap_unplug(mddev->bitmap);
969 	wake_up(&conf->wait_barrier);
970 
971 	while (bio) { /* submit pending writes */
972 		struct bio *next = bio->bi_next;
973 		bio->bi_next = NULL;
974 		if (unlikely((bio->bi_rw & REQ_DISCARD) &&
975 		    !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
976 			/* Just ignore it */
977 			bio_endio(bio, 0);
978 		else
979 			generic_make_request(bio);
980 		bio = next;
981 	}
982 	kfree(plug);
983 }
984 
985 static void make_request(struct mddev *mddev, struct bio * bio)
986 {
987 	struct r1conf *conf = mddev->private;
988 	struct raid1_info *mirror;
989 	struct r1bio *r1_bio;
990 	struct bio *read_bio;
991 	int i, disks;
992 	struct bitmap *bitmap;
993 	unsigned long flags;
994 	const int rw = bio_data_dir(bio);
995 	const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
996 	const unsigned long do_flush_fua = (bio->bi_rw & (REQ_FLUSH | REQ_FUA));
997 	const unsigned long do_discard = (bio->bi_rw
998 					  & (REQ_DISCARD | REQ_SECURE));
999 	const unsigned long do_same = (bio->bi_rw & REQ_WRITE_SAME);
1000 	struct md_rdev *blocked_rdev;
1001 	struct blk_plug_cb *cb;
1002 	struct raid1_plug_cb *plug = NULL;
1003 	int first_clone;
1004 	int sectors_handled;
1005 	int max_sectors;
1006 
1007 	/*
1008 	 * Register the new request and wait if the reconstruction
1009 	 * thread has put up a bar for new requests.
1010 	 * Continue immediately if no resync is active currently.
1011 	 */
1012 
1013 	md_write_start(mddev, bio); /* wait on superblock update early */
1014 
1015 	if (bio_data_dir(bio) == WRITE &&
1016 	    bio_end_sector(bio) > mddev->suspend_lo &&
1017 	    bio->bi_sector < mddev->suspend_hi) {
1018 		/* As the suspend_* range is controlled by
1019 		 * userspace, we want an interruptible
1020 		 * wait.
1021 		 */
1022 		DEFINE_WAIT(w);
1023 		for (;;) {
1024 			flush_signals(current);
1025 			prepare_to_wait(&conf->wait_barrier,
1026 					&w, TASK_INTERRUPTIBLE);
1027 			if (bio_end_sector(bio) <= mddev->suspend_lo ||
1028 			    bio->bi_sector >= mddev->suspend_hi)
1029 				break;
1030 			schedule();
1031 		}
1032 		finish_wait(&conf->wait_barrier, &w);
1033 	}
1034 
1035 	wait_barrier(conf);
1036 
1037 	bitmap = mddev->bitmap;
1038 
1039 	/*
1040 	 * make_request() can abort the operation when READA is being
1041 	 * used and no empty request is available.
1042 	 *
1043 	 */
1044 	r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1045 
1046 	r1_bio->master_bio = bio;
1047 	r1_bio->sectors = bio_sectors(bio);
1048 	r1_bio->state = 0;
1049 	r1_bio->mddev = mddev;
1050 	r1_bio->sector = bio->bi_sector;
1051 
1052 	/* We might need to issue multiple reads to different
1053 	 * devices if there are bad blocks around, so we keep
1054 	 * track of the number of reads in bio->bi_phys_segments.
1055 	 * If this is 0, there is only one r1_bio and no locking
1056 	 * will be needed when requests complete.  If it is
1057 	 * non-zero, then it is the number of not-completed requests.
1058 	 */
1059 	bio->bi_phys_segments = 0;
1060 	clear_bit(BIO_SEG_VALID, &bio->bi_flags);
1061 
1062 	if (rw == READ) {
1063 		/*
1064 		 * read balancing logic:
1065 		 */
1066 		int rdisk;
1067 
1068 read_again:
1069 		rdisk = read_balance(conf, r1_bio, &max_sectors);
1070 
1071 		if (rdisk < 0) {
1072 			/* couldn't find anywhere to read from */
1073 			raid_end_bio_io(r1_bio);
1074 			return;
1075 		}
1076 		mirror = conf->mirrors + rdisk;
1077 
1078 		if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1079 		    bitmap) {
1080 			/* Reading from a write-mostly device must
1081 			 * take care not to over-take any writes
1082 			 * that are 'behind'
1083 			 */
1084 			wait_event(bitmap->behind_wait,
1085 				   atomic_read(&bitmap->behind_writes) == 0);
1086 		}
1087 		r1_bio->read_disk = rdisk;
1088 
1089 		read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1090 		md_trim_bio(read_bio, r1_bio->sector - bio->bi_sector,
1091 			    max_sectors);
1092 
1093 		r1_bio->bios[rdisk] = read_bio;
1094 
1095 		read_bio->bi_sector = r1_bio->sector + mirror->rdev->data_offset;
1096 		read_bio->bi_bdev = mirror->rdev->bdev;
1097 		read_bio->bi_end_io = raid1_end_read_request;
1098 		read_bio->bi_rw = READ | do_sync;
1099 		read_bio->bi_private = r1_bio;
1100 
1101 		if (max_sectors < r1_bio->sectors) {
1102 			/* could not read all from this device, so we will
1103 			 * need another r1_bio.
1104 			 */
1105 
1106 			sectors_handled = (r1_bio->sector + max_sectors
1107 					   - bio->bi_sector);
1108 			r1_bio->sectors = max_sectors;
1109 			spin_lock_irq(&conf->device_lock);
1110 			if (bio->bi_phys_segments == 0)
1111 				bio->bi_phys_segments = 2;
1112 			else
1113 				bio->bi_phys_segments++;
1114 			spin_unlock_irq(&conf->device_lock);
1115 			/* Cannot call generic_make_request directly
1116 			 * as that will be queued in __make_request
1117 			 * and subsequent mempool_alloc might block waiting
1118 			 * for it.  So hand bio over to raid1d.
1119 			 */
1120 			reschedule_retry(r1_bio);
1121 
1122 			r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1123 
1124 			r1_bio->master_bio = bio;
1125 			r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1126 			r1_bio->state = 0;
1127 			r1_bio->mddev = mddev;
1128 			r1_bio->sector = bio->bi_sector + sectors_handled;
1129 			goto read_again;
1130 		} else
1131 			generic_make_request(read_bio);
1132 		return;
1133 	}
1134 
1135 	/*
1136 	 * WRITE:
1137 	 */
1138 	if (conf->pending_count >= max_queued_requests) {
1139 		md_wakeup_thread(mddev->thread);
1140 		wait_event(conf->wait_barrier,
1141 			   conf->pending_count < max_queued_requests);
1142 	}
1143 	/* first select target devices under rcu_lock and
1144 	 * inc refcount on their rdev.  Record them by setting
1145 	 * bios[x] to bio
1146 	 * If there are known/acknowledged bad blocks on any device on
1147 	 * which we have seen a write error, we want to avoid writing those
1148 	 * blocks.
1149 	 * This potentially requires several writes to write around
1150 	 * the bad blocks.  Each set of writes gets it's own r1bio
1151 	 * with a set of bios attached.
1152 	 */
1153 
1154 	disks = conf->raid_disks * 2;
1155  retry_write:
1156 	blocked_rdev = NULL;
1157 	rcu_read_lock();
1158 	max_sectors = r1_bio->sectors;
1159 	for (i = 0;  i < disks; i++) {
1160 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1161 		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1162 			atomic_inc(&rdev->nr_pending);
1163 			blocked_rdev = rdev;
1164 			break;
1165 		}
1166 		r1_bio->bios[i] = NULL;
1167 		if (!rdev || test_bit(Faulty, &rdev->flags)
1168 		    || test_bit(Unmerged, &rdev->flags)) {
1169 			if (i < conf->raid_disks)
1170 				set_bit(R1BIO_Degraded, &r1_bio->state);
1171 			continue;
1172 		}
1173 
1174 		atomic_inc(&rdev->nr_pending);
1175 		if (test_bit(WriteErrorSeen, &rdev->flags)) {
1176 			sector_t first_bad;
1177 			int bad_sectors;
1178 			int is_bad;
1179 
1180 			is_bad = is_badblock(rdev, r1_bio->sector,
1181 					     max_sectors,
1182 					     &first_bad, &bad_sectors);
1183 			if (is_bad < 0) {
1184 				/* mustn't write here until the bad block is
1185 				 * acknowledged*/
1186 				set_bit(BlockedBadBlocks, &rdev->flags);
1187 				blocked_rdev = rdev;
1188 				break;
1189 			}
1190 			if (is_bad && first_bad <= r1_bio->sector) {
1191 				/* Cannot write here at all */
1192 				bad_sectors -= (r1_bio->sector - first_bad);
1193 				if (bad_sectors < max_sectors)
1194 					/* mustn't write more than bad_sectors
1195 					 * to other devices yet
1196 					 */
1197 					max_sectors = bad_sectors;
1198 				rdev_dec_pending(rdev, mddev);
1199 				/* We don't set R1BIO_Degraded as that
1200 				 * only applies if the disk is
1201 				 * missing, so it might be re-added,
1202 				 * and we want to know to recover this
1203 				 * chunk.
1204 				 * In this case the device is here,
1205 				 * and the fact that this chunk is not
1206 				 * in-sync is recorded in the bad
1207 				 * block log
1208 				 */
1209 				continue;
1210 			}
1211 			if (is_bad) {
1212 				int good_sectors = first_bad - r1_bio->sector;
1213 				if (good_sectors < max_sectors)
1214 					max_sectors = good_sectors;
1215 			}
1216 		}
1217 		r1_bio->bios[i] = bio;
1218 	}
1219 	rcu_read_unlock();
1220 
1221 	if (unlikely(blocked_rdev)) {
1222 		/* Wait for this device to become unblocked */
1223 		int j;
1224 
1225 		for (j = 0; j < i; j++)
1226 			if (r1_bio->bios[j])
1227 				rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1228 		r1_bio->state = 0;
1229 		allow_barrier(conf);
1230 		md_wait_for_blocked_rdev(blocked_rdev, mddev);
1231 		wait_barrier(conf);
1232 		goto retry_write;
1233 	}
1234 
1235 	if (max_sectors < r1_bio->sectors) {
1236 		/* We are splitting this write into multiple parts, so
1237 		 * we need to prepare for allocating another r1_bio.
1238 		 */
1239 		r1_bio->sectors = max_sectors;
1240 		spin_lock_irq(&conf->device_lock);
1241 		if (bio->bi_phys_segments == 0)
1242 			bio->bi_phys_segments = 2;
1243 		else
1244 			bio->bi_phys_segments++;
1245 		spin_unlock_irq(&conf->device_lock);
1246 	}
1247 	sectors_handled = r1_bio->sector + max_sectors - bio->bi_sector;
1248 
1249 	atomic_set(&r1_bio->remaining, 1);
1250 	atomic_set(&r1_bio->behind_remaining, 0);
1251 
1252 	first_clone = 1;
1253 	for (i = 0; i < disks; i++) {
1254 		struct bio *mbio;
1255 		if (!r1_bio->bios[i])
1256 			continue;
1257 
1258 		mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1259 		md_trim_bio(mbio, r1_bio->sector - bio->bi_sector, max_sectors);
1260 
1261 		if (first_clone) {
1262 			/* do behind I/O ?
1263 			 * Not if there are too many, or cannot
1264 			 * allocate memory, or a reader on WriteMostly
1265 			 * is waiting for behind writes to flush */
1266 			if (bitmap &&
1267 			    (atomic_read(&bitmap->behind_writes)
1268 			     < mddev->bitmap_info.max_write_behind) &&
1269 			    !waitqueue_active(&bitmap->behind_wait))
1270 				alloc_behind_pages(mbio, r1_bio);
1271 
1272 			bitmap_startwrite(bitmap, r1_bio->sector,
1273 					  r1_bio->sectors,
1274 					  test_bit(R1BIO_BehindIO,
1275 						   &r1_bio->state));
1276 			first_clone = 0;
1277 		}
1278 		if (r1_bio->behind_bvecs) {
1279 			struct bio_vec *bvec;
1280 			int j;
1281 
1282 			/*
1283 			 * We trimmed the bio, so _all is legit
1284 			 */
1285 			bio_for_each_segment_all(bvec, mbio, j)
1286 				bvec->bv_page = r1_bio->behind_bvecs[j].bv_page;
1287 			if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1288 				atomic_inc(&r1_bio->behind_remaining);
1289 		}
1290 
1291 		r1_bio->bios[i] = mbio;
1292 
1293 		mbio->bi_sector	= (r1_bio->sector +
1294 				   conf->mirrors[i].rdev->data_offset);
1295 		mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1296 		mbio->bi_end_io	= raid1_end_write_request;
1297 		mbio->bi_rw =
1298 			WRITE | do_flush_fua | do_sync | do_discard | do_same;
1299 		mbio->bi_private = r1_bio;
1300 
1301 		atomic_inc(&r1_bio->remaining);
1302 
1303 		cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1304 		if (cb)
1305 			plug = container_of(cb, struct raid1_plug_cb, cb);
1306 		else
1307 			plug = NULL;
1308 		spin_lock_irqsave(&conf->device_lock, flags);
1309 		if (plug) {
1310 			bio_list_add(&plug->pending, mbio);
1311 			plug->pending_cnt++;
1312 		} else {
1313 			bio_list_add(&conf->pending_bio_list, mbio);
1314 			conf->pending_count++;
1315 		}
1316 		spin_unlock_irqrestore(&conf->device_lock, flags);
1317 		if (!plug)
1318 			md_wakeup_thread(mddev->thread);
1319 	}
1320 	/* Mustn't call r1_bio_write_done before this next test,
1321 	 * as it could result in the bio being freed.
1322 	 */
1323 	if (sectors_handled < bio_sectors(bio)) {
1324 		r1_bio_write_done(r1_bio);
1325 		/* We need another r1_bio.  It has already been counted
1326 		 * in bio->bi_phys_segments
1327 		 */
1328 		r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1329 		r1_bio->master_bio = bio;
1330 		r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1331 		r1_bio->state = 0;
1332 		r1_bio->mddev = mddev;
1333 		r1_bio->sector = bio->bi_sector + sectors_handled;
1334 		goto retry_write;
1335 	}
1336 
1337 	r1_bio_write_done(r1_bio);
1338 
1339 	/* In case raid1d snuck in to freeze_array */
1340 	wake_up(&conf->wait_barrier);
1341 }
1342 
1343 static void status(struct seq_file *seq, struct mddev *mddev)
1344 {
1345 	struct r1conf *conf = mddev->private;
1346 	int i;
1347 
1348 	seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1349 		   conf->raid_disks - mddev->degraded);
1350 	rcu_read_lock();
1351 	for (i = 0; i < conf->raid_disks; i++) {
1352 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1353 		seq_printf(seq, "%s",
1354 			   rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1355 	}
1356 	rcu_read_unlock();
1357 	seq_printf(seq, "]");
1358 }
1359 
1360 
1361 static void error(struct mddev *mddev, struct md_rdev *rdev)
1362 {
1363 	char b[BDEVNAME_SIZE];
1364 	struct r1conf *conf = mddev->private;
1365 
1366 	/*
1367 	 * If it is not operational, then we have already marked it as dead
1368 	 * else if it is the last working disks, ignore the error, let the
1369 	 * next level up know.
1370 	 * else mark the drive as failed
1371 	 */
1372 	if (test_bit(In_sync, &rdev->flags)
1373 	    && (conf->raid_disks - mddev->degraded) == 1) {
1374 		/*
1375 		 * Don't fail the drive, act as though we were just a
1376 		 * normal single drive.
1377 		 * However don't try a recovery from this drive as
1378 		 * it is very likely to fail.
1379 		 */
1380 		conf->recovery_disabled = mddev->recovery_disabled;
1381 		return;
1382 	}
1383 	set_bit(Blocked, &rdev->flags);
1384 	if (test_and_clear_bit(In_sync, &rdev->flags)) {
1385 		unsigned long flags;
1386 		spin_lock_irqsave(&conf->device_lock, flags);
1387 		mddev->degraded++;
1388 		set_bit(Faulty, &rdev->flags);
1389 		spin_unlock_irqrestore(&conf->device_lock, flags);
1390 		/*
1391 		 * if recovery is running, make sure it aborts.
1392 		 */
1393 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1394 	} else
1395 		set_bit(Faulty, &rdev->flags);
1396 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
1397 	printk(KERN_ALERT
1398 	       "md/raid1:%s: Disk failure on %s, disabling device.\n"
1399 	       "md/raid1:%s: Operation continuing on %d devices.\n",
1400 	       mdname(mddev), bdevname(rdev->bdev, b),
1401 	       mdname(mddev), conf->raid_disks - mddev->degraded);
1402 }
1403 
1404 static void print_conf(struct r1conf *conf)
1405 {
1406 	int i;
1407 
1408 	printk(KERN_DEBUG "RAID1 conf printout:\n");
1409 	if (!conf) {
1410 		printk(KERN_DEBUG "(!conf)\n");
1411 		return;
1412 	}
1413 	printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1414 		conf->raid_disks);
1415 
1416 	rcu_read_lock();
1417 	for (i = 0; i < conf->raid_disks; i++) {
1418 		char b[BDEVNAME_SIZE];
1419 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1420 		if (rdev)
1421 			printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1422 			       i, !test_bit(In_sync, &rdev->flags),
1423 			       !test_bit(Faulty, &rdev->flags),
1424 			       bdevname(rdev->bdev,b));
1425 	}
1426 	rcu_read_unlock();
1427 }
1428 
1429 static void close_sync(struct r1conf *conf)
1430 {
1431 	wait_barrier(conf);
1432 	allow_barrier(conf);
1433 
1434 	mempool_destroy(conf->r1buf_pool);
1435 	conf->r1buf_pool = NULL;
1436 }
1437 
1438 static int raid1_spare_active(struct mddev *mddev)
1439 {
1440 	int i;
1441 	struct r1conf *conf = mddev->private;
1442 	int count = 0;
1443 	unsigned long flags;
1444 
1445 	/*
1446 	 * Find all failed disks within the RAID1 configuration
1447 	 * and mark them readable.
1448 	 * Called under mddev lock, so rcu protection not needed.
1449 	 */
1450 	for (i = 0; i < conf->raid_disks; i++) {
1451 		struct md_rdev *rdev = conf->mirrors[i].rdev;
1452 		struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1453 		if (repl
1454 		    && repl->recovery_offset == MaxSector
1455 		    && !test_bit(Faulty, &repl->flags)
1456 		    && !test_and_set_bit(In_sync, &repl->flags)) {
1457 			/* replacement has just become active */
1458 			if (!rdev ||
1459 			    !test_and_clear_bit(In_sync, &rdev->flags))
1460 				count++;
1461 			if (rdev) {
1462 				/* Replaced device not technically
1463 				 * faulty, but we need to be sure
1464 				 * it gets removed and never re-added
1465 				 */
1466 				set_bit(Faulty, &rdev->flags);
1467 				sysfs_notify_dirent_safe(
1468 					rdev->sysfs_state);
1469 			}
1470 		}
1471 		if (rdev
1472 		    && !test_bit(Faulty, &rdev->flags)
1473 		    && !test_and_set_bit(In_sync, &rdev->flags)) {
1474 			count++;
1475 			sysfs_notify_dirent_safe(rdev->sysfs_state);
1476 		}
1477 	}
1478 	spin_lock_irqsave(&conf->device_lock, flags);
1479 	mddev->degraded -= count;
1480 	spin_unlock_irqrestore(&conf->device_lock, flags);
1481 
1482 	print_conf(conf);
1483 	return count;
1484 }
1485 
1486 
1487 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1488 {
1489 	struct r1conf *conf = mddev->private;
1490 	int err = -EEXIST;
1491 	int mirror = 0;
1492 	struct raid1_info *p;
1493 	int first = 0;
1494 	int last = conf->raid_disks - 1;
1495 	struct request_queue *q = bdev_get_queue(rdev->bdev);
1496 
1497 	if (mddev->recovery_disabled == conf->recovery_disabled)
1498 		return -EBUSY;
1499 
1500 	if (rdev->raid_disk >= 0)
1501 		first = last = rdev->raid_disk;
1502 
1503 	if (q->merge_bvec_fn) {
1504 		set_bit(Unmerged, &rdev->flags);
1505 		mddev->merge_check_needed = 1;
1506 	}
1507 
1508 	for (mirror = first; mirror <= last; mirror++) {
1509 		p = conf->mirrors+mirror;
1510 		if (!p->rdev) {
1511 
1512 			disk_stack_limits(mddev->gendisk, rdev->bdev,
1513 					  rdev->data_offset << 9);
1514 
1515 			p->head_position = 0;
1516 			rdev->raid_disk = mirror;
1517 			err = 0;
1518 			/* As all devices are equivalent, we don't need a full recovery
1519 			 * if this was recently any drive of the array
1520 			 */
1521 			if (rdev->saved_raid_disk < 0)
1522 				conf->fullsync = 1;
1523 			rcu_assign_pointer(p->rdev, rdev);
1524 			break;
1525 		}
1526 		if (test_bit(WantReplacement, &p->rdev->flags) &&
1527 		    p[conf->raid_disks].rdev == NULL) {
1528 			/* Add this device as a replacement */
1529 			clear_bit(In_sync, &rdev->flags);
1530 			set_bit(Replacement, &rdev->flags);
1531 			rdev->raid_disk = mirror;
1532 			err = 0;
1533 			conf->fullsync = 1;
1534 			rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1535 			break;
1536 		}
1537 	}
1538 	if (err == 0 && test_bit(Unmerged, &rdev->flags)) {
1539 		/* Some requests might not have seen this new
1540 		 * merge_bvec_fn.  We must wait for them to complete
1541 		 * before merging the device fully.
1542 		 * First we make sure any code which has tested
1543 		 * our function has submitted the request, then
1544 		 * we wait for all outstanding requests to complete.
1545 		 */
1546 		synchronize_sched();
1547 		raise_barrier(conf);
1548 		lower_barrier(conf);
1549 		clear_bit(Unmerged, &rdev->flags);
1550 	}
1551 	md_integrity_add_rdev(rdev, mddev);
1552 	if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
1553 		queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1554 	print_conf(conf);
1555 	return err;
1556 }
1557 
1558 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1559 {
1560 	struct r1conf *conf = mddev->private;
1561 	int err = 0;
1562 	int number = rdev->raid_disk;
1563 	struct raid1_info *p = conf->mirrors + number;
1564 
1565 	if (rdev != p->rdev)
1566 		p = conf->mirrors + conf->raid_disks + number;
1567 
1568 	print_conf(conf);
1569 	if (rdev == p->rdev) {
1570 		if (test_bit(In_sync, &rdev->flags) ||
1571 		    atomic_read(&rdev->nr_pending)) {
1572 			err = -EBUSY;
1573 			goto abort;
1574 		}
1575 		/* Only remove non-faulty devices if recovery
1576 		 * is not possible.
1577 		 */
1578 		if (!test_bit(Faulty, &rdev->flags) &&
1579 		    mddev->recovery_disabled != conf->recovery_disabled &&
1580 		    mddev->degraded < conf->raid_disks) {
1581 			err = -EBUSY;
1582 			goto abort;
1583 		}
1584 		p->rdev = NULL;
1585 		synchronize_rcu();
1586 		if (atomic_read(&rdev->nr_pending)) {
1587 			/* lost the race, try later */
1588 			err = -EBUSY;
1589 			p->rdev = rdev;
1590 			goto abort;
1591 		} else if (conf->mirrors[conf->raid_disks + number].rdev) {
1592 			/* We just removed a device that is being replaced.
1593 			 * Move down the replacement.  We drain all IO before
1594 			 * doing this to avoid confusion.
1595 			 */
1596 			struct md_rdev *repl =
1597 				conf->mirrors[conf->raid_disks + number].rdev;
1598 			raise_barrier(conf);
1599 			clear_bit(Replacement, &repl->flags);
1600 			p->rdev = repl;
1601 			conf->mirrors[conf->raid_disks + number].rdev = NULL;
1602 			lower_barrier(conf);
1603 			clear_bit(WantReplacement, &rdev->flags);
1604 		} else
1605 			clear_bit(WantReplacement, &rdev->flags);
1606 		err = md_integrity_register(mddev);
1607 	}
1608 abort:
1609 
1610 	print_conf(conf);
1611 	return err;
1612 }
1613 
1614 
1615 static void end_sync_read(struct bio *bio, int error)
1616 {
1617 	struct r1bio *r1_bio = bio->bi_private;
1618 
1619 	update_head_pos(r1_bio->read_disk, r1_bio);
1620 
1621 	/*
1622 	 * we have read a block, now it needs to be re-written,
1623 	 * or re-read if the read failed.
1624 	 * We don't do much here, just schedule handling by raid1d
1625 	 */
1626 	if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1627 		set_bit(R1BIO_Uptodate, &r1_bio->state);
1628 
1629 	if (atomic_dec_and_test(&r1_bio->remaining))
1630 		reschedule_retry(r1_bio);
1631 }
1632 
1633 static void end_sync_write(struct bio *bio, int error)
1634 {
1635 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1636 	struct r1bio *r1_bio = bio->bi_private;
1637 	struct mddev *mddev = r1_bio->mddev;
1638 	struct r1conf *conf = mddev->private;
1639 	int mirror=0;
1640 	sector_t first_bad;
1641 	int bad_sectors;
1642 
1643 	mirror = find_bio_disk(r1_bio, bio);
1644 
1645 	if (!uptodate) {
1646 		sector_t sync_blocks = 0;
1647 		sector_t s = r1_bio->sector;
1648 		long sectors_to_go = r1_bio->sectors;
1649 		/* make sure these bits doesn't get cleared. */
1650 		do {
1651 			bitmap_end_sync(mddev->bitmap, s,
1652 					&sync_blocks, 1);
1653 			s += sync_blocks;
1654 			sectors_to_go -= sync_blocks;
1655 		} while (sectors_to_go > 0);
1656 		set_bit(WriteErrorSeen,
1657 			&conf->mirrors[mirror].rdev->flags);
1658 		if (!test_and_set_bit(WantReplacement,
1659 				      &conf->mirrors[mirror].rdev->flags))
1660 			set_bit(MD_RECOVERY_NEEDED, &
1661 				mddev->recovery);
1662 		set_bit(R1BIO_WriteError, &r1_bio->state);
1663 	} else if (is_badblock(conf->mirrors[mirror].rdev,
1664 			       r1_bio->sector,
1665 			       r1_bio->sectors,
1666 			       &first_bad, &bad_sectors) &&
1667 		   !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1668 				r1_bio->sector,
1669 				r1_bio->sectors,
1670 				&first_bad, &bad_sectors)
1671 		)
1672 		set_bit(R1BIO_MadeGood, &r1_bio->state);
1673 
1674 	if (atomic_dec_and_test(&r1_bio->remaining)) {
1675 		int s = r1_bio->sectors;
1676 		if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1677 		    test_bit(R1BIO_WriteError, &r1_bio->state))
1678 			reschedule_retry(r1_bio);
1679 		else {
1680 			put_buf(r1_bio);
1681 			md_done_sync(mddev, s, uptodate);
1682 		}
1683 	}
1684 }
1685 
1686 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1687 			    int sectors, struct page *page, int rw)
1688 {
1689 	if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
1690 		/* success */
1691 		return 1;
1692 	if (rw == WRITE) {
1693 		set_bit(WriteErrorSeen, &rdev->flags);
1694 		if (!test_and_set_bit(WantReplacement,
1695 				      &rdev->flags))
1696 			set_bit(MD_RECOVERY_NEEDED, &
1697 				rdev->mddev->recovery);
1698 	}
1699 	/* need to record an error - either for the block or the device */
1700 	if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1701 		md_error(rdev->mddev, rdev);
1702 	return 0;
1703 }
1704 
1705 static int fix_sync_read_error(struct r1bio *r1_bio)
1706 {
1707 	/* Try some synchronous reads of other devices to get
1708 	 * good data, much like with normal read errors.  Only
1709 	 * read into the pages we already have so we don't
1710 	 * need to re-issue the read request.
1711 	 * We don't need to freeze the array, because being in an
1712 	 * active sync request, there is no normal IO, and
1713 	 * no overlapping syncs.
1714 	 * We don't need to check is_badblock() again as we
1715 	 * made sure that anything with a bad block in range
1716 	 * will have bi_end_io clear.
1717 	 */
1718 	struct mddev *mddev = r1_bio->mddev;
1719 	struct r1conf *conf = mddev->private;
1720 	struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1721 	sector_t sect = r1_bio->sector;
1722 	int sectors = r1_bio->sectors;
1723 	int idx = 0;
1724 
1725 	while(sectors) {
1726 		int s = sectors;
1727 		int d = r1_bio->read_disk;
1728 		int success = 0;
1729 		struct md_rdev *rdev;
1730 		int start;
1731 
1732 		if (s > (PAGE_SIZE>>9))
1733 			s = PAGE_SIZE >> 9;
1734 		do {
1735 			if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1736 				/* No rcu protection needed here devices
1737 				 * can only be removed when no resync is
1738 				 * active, and resync is currently active
1739 				 */
1740 				rdev = conf->mirrors[d].rdev;
1741 				if (sync_page_io(rdev, sect, s<<9,
1742 						 bio->bi_io_vec[idx].bv_page,
1743 						 READ, false)) {
1744 					success = 1;
1745 					break;
1746 				}
1747 			}
1748 			d++;
1749 			if (d == conf->raid_disks * 2)
1750 				d = 0;
1751 		} while (!success && d != r1_bio->read_disk);
1752 
1753 		if (!success) {
1754 			char b[BDEVNAME_SIZE];
1755 			int abort = 0;
1756 			/* Cannot read from anywhere, this block is lost.
1757 			 * Record a bad block on each device.  If that doesn't
1758 			 * work just disable and interrupt the recovery.
1759 			 * Don't fail devices as that won't really help.
1760 			 */
1761 			printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error"
1762 			       " for block %llu\n",
1763 			       mdname(mddev),
1764 			       bdevname(bio->bi_bdev, b),
1765 			       (unsigned long long)r1_bio->sector);
1766 			for (d = 0; d < conf->raid_disks * 2; d++) {
1767 				rdev = conf->mirrors[d].rdev;
1768 				if (!rdev || test_bit(Faulty, &rdev->flags))
1769 					continue;
1770 				if (!rdev_set_badblocks(rdev, sect, s, 0))
1771 					abort = 1;
1772 			}
1773 			if (abort) {
1774 				conf->recovery_disabled =
1775 					mddev->recovery_disabled;
1776 				set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1777 				md_done_sync(mddev, r1_bio->sectors, 0);
1778 				put_buf(r1_bio);
1779 				return 0;
1780 			}
1781 			/* Try next page */
1782 			sectors -= s;
1783 			sect += s;
1784 			idx++;
1785 			continue;
1786 		}
1787 
1788 		start = d;
1789 		/* write it back and re-read */
1790 		while (d != r1_bio->read_disk) {
1791 			if (d == 0)
1792 				d = conf->raid_disks * 2;
1793 			d--;
1794 			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1795 				continue;
1796 			rdev = conf->mirrors[d].rdev;
1797 			if (r1_sync_page_io(rdev, sect, s,
1798 					    bio->bi_io_vec[idx].bv_page,
1799 					    WRITE) == 0) {
1800 				r1_bio->bios[d]->bi_end_io = NULL;
1801 				rdev_dec_pending(rdev, mddev);
1802 			}
1803 		}
1804 		d = start;
1805 		while (d != r1_bio->read_disk) {
1806 			if (d == 0)
1807 				d = conf->raid_disks * 2;
1808 			d--;
1809 			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1810 				continue;
1811 			rdev = conf->mirrors[d].rdev;
1812 			if (r1_sync_page_io(rdev, sect, s,
1813 					    bio->bi_io_vec[idx].bv_page,
1814 					    READ) != 0)
1815 				atomic_add(s, &rdev->corrected_errors);
1816 		}
1817 		sectors -= s;
1818 		sect += s;
1819 		idx ++;
1820 	}
1821 	set_bit(R1BIO_Uptodate, &r1_bio->state);
1822 	set_bit(BIO_UPTODATE, &bio->bi_flags);
1823 	return 1;
1824 }
1825 
1826 static int process_checks(struct r1bio *r1_bio)
1827 {
1828 	/* We have read all readable devices.  If we haven't
1829 	 * got the block, then there is no hope left.
1830 	 * If we have, then we want to do a comparison
1831 	 * and skip the write if everything is the same.
1832 	 * If any blocks failed to read, then we need to
1833 	 * attempt an over-write
1834 	 */
1835 	struct mddev *mddev = r1_bio->mddev;
1836 	struct r1conf *conf = mddev->private;
1837 	int primary;
1838 	int i;
1839 	int vcnt;
1840 
1841 	for (primary = 0; primary < conf->raid_disks * 2; primary++)
1842 		if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
1843 		    test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) {
1844 			r1_bio->bios[primary]->bi_end_io = NULL;
1845 			rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
1846 			break;
1847 		}
1848 	r1_bio->read_disk = primary;
1849 	vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
1850 	for (i = 0; i < conf->raid_disks * 2; i++) {
1851 		int j;
1852 		struct bio *pbio = r1_bio->bios[primary];
1853 		struct bio *sbio = r1_bio->bios[i];
1854 		int size;
1855 
1856 		if (sbio->bi_end_io != end_sync_read)
1857 			continue;
1858 
1859 		if (test_bit(BIO_UPTODATE, &sbio->bi_flags)) {
1860 			for (j = vcnt; j-- ; ) {
1861 				struct page *p, *s;
1862 				p = pbio->bi_io_vec[j].bv_page;
1863 				s = sbio->bi_io_vec[j].bv_page;
1864 				if (memcmp(page_address(p),
1865 					   page_address(s),
1866 					   sbio->bi_io_vec[j].bv_len))
1867 					break;
1868 			}
1869 		} else
1870 			j = 0;
1871 		if (j >= 0)
1872 			atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
1873 		if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
1874 			      && test_bit(BIO_UPTODATE, &sbio->bi_flags))) {
1875 			/* No need to write to this device. */
1876 			sbio->bi_end_io = NULL;
1877 			rdev_dec_pending(conf->mirrors[i].rdev, mddev);
1878 			continue;
1879 		}
1880 		/* fixup the bio for reuse */
1881 		bio_reset(sbio);
1882 		sbio->bi_vcnt = vcnt;
1883 		sbio->bi_size = r1_bio->sectors << 9;
1884 		sbio->bi_sector = r1_bio->sector +
1885 			conf->mirrors[i].rdev->data_offset;
1886 		sbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1887 		sbio->bi_end_io = end_sync_read;
1888 		sbio->bi_private = r1_bio;
1889 
1890 		size = sbio->bi_size;
1891 		for (j = 0; j < vcnt ; j++) {
1892 			struct bio_vec *bi;
1893 			bi = &sbio->bi_io_vec[j];
1894 			bi->bv_offset = 0;
1895 			if (size > PAGE_SIZE)
1896 				bi->bv_len = PAGE_SIZE;
1897 			else
1898 				bi->bv_len = size;
1899 			size -= PAGE_SIZE;
1900 		}
1901 
1902 		bio_copy_data(sbio, pbio);
1903 	}
1904 	return 0;
1905 }
1906 
1907 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
1908 {
1909 	struct r1conf *conf = mddev->private;
1910 	int i;
1911 	int disks = conf->raid_disks * 2;
1912 	struct bio *bio, *wbio;
1913 
1914 	bio = r1_bio->bios[r1_bio->read_disk];
1915 
1916 	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
1917 		/* ouch - failed to read all of that. */
1918 		if (!fix_sync_read_error(r1_bio))
1919 			return;
1920 
1921 	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
1922 		if (process_checks(r1_bio) < 0)
1923 			return;
1924 	/*
1925 	 * schedule writes
1926 	 */
1927 	atomic_set(&r1_bio->remaining, 1);
1928 	for (i = 0; i < disks ; i++) {
1929 		wbio = r1_bio->bios[i];
1930 		if (wbio->bi_end_io == NULL ||
1931 		    (wbio->bi_end_io == end_sync_read &&
1932 		     (i == r1_bio->read_disk ||
1933 		      !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
1934 			continue;
1935 
1936 		wbio->bi_rw = WRITE;
1937 		wbio->bi_end_io = end_sync_write;
1938 		atomic_inc(&r1_bio->remaining);
1939 		md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
1940 
1941 		generic_make_request(wbio);
1942 	}
1943 
1944 	if (atomic_dec_and_test(&r1_bio->remaining)) {
1945 		/* if we're here, all write(s) have completed, so clean up */
1946 		int s = r1_bio->sectors;
1947 		if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1948 		    test_bit(R1BIO_WriteError, &r1_bio->state))
1949 			reschedule_retry(r1_bio);
1950 		else {
1951 			put_buf(r1_bio);
1952 			md_done_sync(mddev, s, 1);
1953 		}
1954 	}
1955 }
1956 
1957 /*
1958  * This is a kernel thread which:
1959  *
1960  *	1.	Retries failed read operations on working mirrors.
1961  *	2.	Updates the raid superblock when problems encounter.
1962  *	3.	Performs writes following reads for array synchronising.
1963  */
1964 
1965 static void fix_read_error(struct r1conf *conf, int read_disk,
1966 			   sector_t sect, int sectors)
1967 {
1968 	struct mddev *mddev = conf->mddev;
1969 	while(sectors) {
1970 		int s = sectors;
1971 		int d = read_disk;
1972 		int success = 0;
1973 		int start;
1974 		struct md_rdev *rdev;
1975 
1976 		if (s > (PAGE_SIZE>>9))
1977 			s = PAGE_SIZE >> 9;
1978 
1979 		do {
1980 			/* Note: no rcu protection needed here
1981 			 * as this is synchronous in the raid1d thread
1982 			 * which is the thread that might remove
1983 			 * a device.  If raid1d ever becomes multi-threaded....
1984 			 */
1985 			sector_t first_bad;
1986 			int bad_sectors;
1987 
1988 			rdev = conf->mirrors[d].rdev;
1989 			if (rdev &&
1990 			    (test_bit(In_sync, &rdev->flags) ||
1991 			     (!test_bit(Faulty, &rdev->flags) &&
1992 			      rdev->recovery_offset >= sect + s)) &&
1993 			    is_badblock(rdev, sect, s,
1994 					&first_bad, &bad_sectors) == 0 &&
1995 			    sync_page_io(rdev, sect, s<<9,
1996 					 conf->tmppage, READ, false))
1997 				success = 1;
1998 			else {
1999 				d++;
2000 				if (d == conf->raid_disks * 2)
2001 					d = 0;
2002 			}
2003 		} while (!success && d != read_disk);
2004 
2005 		if (!success) {
2006 			/* Cannot read from anywhere - mark it bad */
2007 			struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2008 			if (!rdev_set_badblocks(rdev, sect, s, 0))
2009 				md_error(mddev, rdev);
2010 			break;
2011 		}
2012 		/* write it back and re-read */
2013 		start = d;
2014 		while (d != read_disk) {
2015 			if (d==0)
2016 				d = conf->raid_disks * 2;
2017 			d--;
2018 			rdev = conf->mirrors[d].rdev;
2019 			if (rdev &&
2020 			    test_bit(In_sync, &rdev->flags))
2021 				r1_sync_page_io(rdev, sect, s,
2022 						conf->tmppage, WRITE);
2023 		}
2024 		d = start;
2025 		while (d != read_disk) {
2026 			char b[BDEVNAME_SIZE];
2027 			if (d==0)
2028 				d = conf->raid_disks * 2;
2029 			d--;
2030 			rdev = conf->mirrors[d].rdev;
2031 			if (rdev &&
2032 			    test_bit(In_sync, &rdev->flags)) {
2033 				if (r1_sync_page_io(rdev, sect, s,
2034 						    conf->tmppage, READ)) {
2035 					atomic_add(s, &rdev->corrected_errors);
2036 					printk(KERN_INFO
2037 					       "md/raid1:%s: read error corrected "
2038 					       "(%d sectors at %llu on %s)\n",
2039 					       mdname(mddev), s,
2040 					       (unsigned long long)(sect +
2041 					           rdev->data_offset),
2042 					       bdevname(rdev->bdev, b));
2043 				}
2044 			}
2045 		}
2046 		sectors -= s;
2047 		sect += s;
2048 	}
2049 }
2050 
2051 static int narrow_write_error(struct r1bio *r1_bio, int i)
2052 {
2053 	struct mddev *mddev = r1_bio->mddev;
2054 	struct r1conf *conf = mddev->private;
2055 	struct md_rdev *rdev = conf->mirrors[i].rdev;
2056 
2057 	/* bio has the data to be written to device 'i' where
2058 	 * we just recently had a write error.
2059 	 * We repeatedly clone the bio and trim down to one block,
2060 	 * then try the write.  Where the write fails we record
2061 	 * a bad block.
2062 	 * It is conceivable that the bio doesn't exactly align with
2063 	 * blocks.  We must handle this somehow.
2064 	 *
2065 	 * We currently own a reference on the rdev.
2066 	 */
2067 
2068 	int block_sectors;
2069 	sector_t sector;
2070 	int sectors;
2071 	int sect_to_write = r1_bio->sectors;
2072 	int ok = 1;
2073 
2074 	if (rdev->badblocks.shift < 0)
2075 		return 0;
2076 
2077 	block_sectors = 1 << rdev->badblocks.shift;
2078 	sector = r1_bio->sector;
2079 	sectors = ((sector + block_sectors)
2080 		   & ~(sector_t)(block_sectors - 1))
2081 		- sector;
2082 
2083 	while (sect_to_write) {
2084 		struct bio *wbio;
2085 		if (sectors > sect_to_write)
2086 			sectors = sect_to_write;
2087 		/* Write at 'sector' for 'sectors'*/
2088 
2089 		if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2090 			unsigned vcnt = r1_bio->behind_page_count;
2091 			struct bio_vec *vec = r1_bio->behind_bvecs;
2092 
2093 			while (!vec->bv_page) {
2094 				vec++;
2095 				vcnt--;
2096 			}
2097 
2098 			wbio = bio_alloc_mddev(GFP_NOIO, vcnt, mddev);
2099 			memcpy(wbio->bi_io_vec, vec, vcnt * sizeof(struct bio_vec));
2100 
2101 			wbio->bi_vcnt = vcnt;
2102 		} else {
2103 			wbio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2104 		}
2105 
2106 		wbio->bi_rw = WRITE;
2107 		wbio->bi_sector = r1_bio->sector;
2108 		wbio->bi_size = r1_bio->sectors << 9;
2109 
2110 		md_trim_bio(wbio, sector - r1_bio->sector, sectors);
2111 		wbio->bi_sector += rdev->data_offset;
2112 		wbio->bi_bdev = rdev->bdev;
2113 		if (submit_bio_wait(WRITE, wbio) == 0)
2114 			/* failure! */
2115 			ok = rdev_set_badblocks(rdev, sector,
2116 						sectors, 0)
2117 				&& ok;
2118 
2119 		bio_put(wbio);
2120 		sect_to_write -= sectors;
2121 		sector += sectors;
2122 		sectors = block_sectors;
2123 	}
2124 	return ok;
2125 }
2126 
2127 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2128 {
2129 	int m;
2130 	int s = r1_bio->sectors;
2131 	for (m = 0; m < conf->raid_disks * 2 ; m++) {
2132 		struct md_rdev *rdev = conf->mirrors[m].rdev;
2133 		struct bio *bio = r1_bio->bios[m];
2134 		if (bio->bi_end_io == NULL)
2135 			continue;
2136 		if (test_bit(BIO_UPTODATE, &bio->bi_flags) &&
2137 		    test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2138 			rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2139 		}
2140 		if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
2141 		    test_bit(R1BIO_WriteError, &r1_bio->state)) {
2142 			if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2143 				md_error(conf->mddev, rdev);
2144 		}
2145 	}
2146 	put_buf(r1_bio);
2147 	md_done_sync(conf->mddev, s, 1);
2148 }
2149 
2150 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2151 {
2152 	int m;
2153 	for (m = 0; m < conf->raid_disks * 2 ; m++)
2154 		if (r1_bio->bios[m] == IO_MADE_GOOD) {
2155 			struct md_rdev *rdev = conf->mirrors[m].rdev;
2156 			rdev_clear_badblocks(rdev,
2157 					     r1_bio->sector,
2158 					     r1_bio->sectors, 0);
2159 			rdev_dec_pending(rdev, conf->mddev);
2160 		} else if (r1_bio->bios[m] != NULL) {
2161 			/* This drive got a write error.  We need to
2162 			 * narrow down and record precise write
2163 			 * errors.
2164 			 */
2165 			if (!narrow_write_error(r1_bio, m)) {
2166 				md_error(conf->mddev,
2167 					 conf->mirrors[m].rdev);
2168 				/* an I/O failed, we can't clear the bitmap */
2169 				set_bit(R1BIO_Degraded, &r1_bio->state);
2170 			}
2171 			rdev_dec_pending(conf->mirrors[m].rdev,
2172 					 conf->mddev);
2173 		}
2174 	if (test_bit(R1BIO_WriteError, &r1_bio->state))
2175 		close_write(r1_bio);
2176 	raid_end_bio_io(r1_bio);
2177 }
2178 
2179 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2180 {
2181 	int disk;
2182 	int max_sectors;
2183 	struct mddev *mddev = conf->mddev;
2184 	struct bio *bio;
2185 	char b[BDEVNAME_SIZE];
2186 	struct md_rdev *rdev;
2187 
2188 	clear_bit(R1BIO_ReadError, &r1_bio->state);
2189 	/* we got a read error. Maybe the drive is bad.  Maybe just
2190 	 * the block and we can fix it.
2191 	 * We freeze all other IO, and try reading the block from
2192 	 * other devices.  When we find one, we re-write
2193 	 * and check it that fixes the read error.
2194 	 * This is all done synchronously while the array is
2195 	 * frozen
2196 	 */
2197 	if (mddev->ro == 0) {
2198 		freeze_array(conf);
2199 		fix_read_error(conf, r1_bio->read_disk,
2200 			       r1_bio->sector, r1_bio->sectors);
2201 		unfreeze_array(conf);
2202 	} else
2203 		md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
2204 	rdev_dec_pending(conf->mirrors[r1_bio->read_disk].rdev, conf->mddev);
2205 
2206 	bio = r1_bio->bios[r1_bio->read_disk];
2207 	bdevname(bio->bi_bdev, b);
2208 read_more:
2209 	disk = read_balance(conf, r1_bio, &max_sectors);
2210 	if (disk == -1) {
2211 		printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O"
2212 		       " read error for block %llu\n",
2213 		       mdname(mddev), b, (unsigned long long)r1_bio->sector);
2214 		raid_end_bio_io(r1_bio);
2215 	} else {
2216 		const unsigned long do_sync
2217 			= r1_bio->master_bio->bi_rw & REQ_SYNC;
2218 		if (bio) {
2219 			r1_bio->bios[r1_bio->read_disk] =
2220 				mddev->ro ? IO_BLOCKED : NULL;
2221 			bio_put(bio);
2222 		}
2223 		r1_bio->read_disk = disk;
2224 		bio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2225 		md_trim_bio(bio, r1_bio->sector - bio->bi_sector, max_sectors);
2226 		r1_bio->bios[r1_bio->read_disk] = bio;
2227 		rdev = conf->mirrors[disk].rdev;
2228 		printk_ratelimited(KERN_ERR
2229 				   "md/raid1:%s: redirecting sector %llu"
2230 				   " to other mirror: %s\n",
2231 				   mdname(mddev),
2232 				   (unsigned long long)r1_bio->sector,
2233 				   bdevname(rdev->bdev, b));
2234 		bio->bi_sector = r1_bio->sector + rdev->data_offset;
2235 		bio->bi_bdev = rdev->bdev;
2236 		bio->bi_end_io = raid1_end_read_request;
2237 		bio->bi_rw = READ | do_sync;
2238 		bio->bi_private = r1_bio;
2239 		if (max_sectors < r1_bio->sectors) {
2240 			/* Drat - have to split this up more */
2241 			struct bio *mbio = r1_bio->master_bio;
2242 			int sectors_handled = (r1_bio->sector + max_sectors
2243 					       - mbio->bi_sector);
2244 			r1_bio->sectors = max_sectors;
2245 			spin_lock_irq(&conf->device_lock);
2246 			if (mbio->bi_phys_segments == 0)
2247 				mbio->bi_phys_segments = 2;
2248 			else
2249 				mbio->bi_phys_segments++;
2250 			spin_unlock_irq(&conf->device_lock);
2251 			generic_make_request(bio);
2252 			bio = NULL;
2253 
2254 			r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
2255 
2256 			r1_bio->master_bio = mbio;
2257 			r1_bio->sectors = bio_sectors(mbio) - sectors_handled;
2258 			r1_bio->state = 0;
2259 			set_bit(R1BIO_ReadError, &r1_bio->state);
2260 			r1_bio->mddev = mddev;
2261 			r1_bio->sector = mbio->bi_sector + sectors_handled;
2262 
2263 			goto read_more;
2264 		} else
2265 			generic_make_request(bio);
2266 	}
2267 }
2268 
2269 static void raid1d(struct md_thread *thread)
2270 {
2271 	struct mddev *mddev = thread->mddev;
2272 	struct r1bio *r1_bio;
2273 	unsigned long flags;
2274 	struct r1conf *conf = mddev->private;
2275 	struct list_head *head = &conf->retry_list;
2276 	struct blk_plug plug;
2277 
2278 	md_check_recovery(mddev);
2279 
2280 	blk_start_plug(&plug);
2281 	for (;;) {
2282 
2283 		flush_pending_writes(conf);
2284 
2285 		spin_lock_irqsave(&conf->device_lock, flags);
2286 		if (list_empty(head)) {
2287 			spin_unlock_irqrestore(&conf->device_lock, flags);
2288 			break;
2289 		}
2290 		r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2291 		list_del(head->prev);
2292 		conf->nr_queued--;
2293 		spin_unlock_irqrestore(&conf->device_lock, flags);
2294 
2295 		mddev = r1_bio->mddev;
2296 		conf = mddev->private;
2297 		if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2298 			if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2299 			    test_bit(R1BIO_WriteError, &r1_bio->state))
2300 				handle_sync_write_finished(conf, r1_bio);
2301 			else
2302 				sync_request_write(mddev, r1_bio);
2303 		} else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2304 			   test_bit(R1BIO_WriteError, &r1_bio->state))
2305 			handle_write_finished(conf, r1_bio);
2306 		else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2307 			handle_read_error(conf, r1_bio);
2308 		else
2309 			/* just a partial read to be scheduled from separate
2310 			 * context
2311 			 */
2312 			generic_make_request(r1_bio->bios[r1_bio->read_disk]);
2313 
2314 		cond_resched();
2315 		if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2316 			md_check_recovery(mddev);
2317 	}
2318 	blk_finish_plug(&plug);
2319 }
2320 
2321 
2322 static int init_resync(struct r1conf *conf)
2323 {
2324 	int buffs;
2325 
2326 	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2327 	BUG_ON(conf->r1buf_pool);
2328 	conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2329 					  conf->poolinfo);
2330 	if (!conf->r1buf_pool)
2331 		return -ENOMEM;
2332 	conf->next_resync = 0;
2333 	return 0;
2334 }
2335 
2336 /*
2337  * perform a "sync" on one "block"
2338  *
2339  * We need to make sure that no normal I/O request - particularly write
2340  * requests - conflict with active sync requests.
2341  *
2342  * This is achieved by tracking pending requests and a 'barrier' concept
2343  * that can be installed to exclude normal IO requests.
2344  */
2345 
2346 static sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
2347 {
2348 	struct r1conf *conf = mddev->private;
2349 	struct r1bio *r1_bio;
2350 	struct bio *bio;
2351 	sector_t max_sector, nr_sectors;
2352 	int disk = -1;
2353 	int i;
2354 	int wonly = -1;
2355 	int write_targets = 0, read_targets = 0;
2356 	sector_t sync_blocks;
2357 	int still_degraded = 0;
2358 	int good_sectors = RESYNC_SECTORS;
2359 	int min_bad = 0; /* number of sectors that are bad in all devices */
2360 
2361 	if (!conf->r1buf_pool)
2362 		if (init_resync(conf))
2363 			return 0;
2364 
2365 	max_sector = mddev->dev_sectors;
2366 	if (sector_nr >= max_sector) {
2367 		/* If we aborted, we need to abort the
2368 		 * sync on the 'current' bitmap chunk (there will
2369 		 * only be one in raid1 resync.
2370 		 * We can find the current addess in mddev->curr_resync
2371 		 */
2372 		if (mddev->curr_resync < max_sector) /* aborted */
2373 			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2374 						&sync_blocks, 1);
2375 		else /* completed sync */
2376 			conf->fullsync = 0;
2377 
2378 		bitmap_close_sync(mddev->bitmap);
2379 		close_sync(conf);
2380 		return 0;
2381 	}
2382 
2383 	if (mddev->bitmap == NULL &&
2384 	    mddev->recovery_cp == MaxSector &&
2385 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2386 	    conf->fullsync == 0) {
2387 		*skipped = 1;
2388 		return max_sector - sector_nr;
2389 	}
2390 	/* before building a request, check if we can skip these blocks..
2391 	 * This call the bitmap_start_sync doesn't actually record anything
2392 	 */
2393 	if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2394 	    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2395 		/* We can skip this block, and probably several more */
2396 		*skipped = 1;
2397 		return sync_blocks;
2398 	}
2399 	/*
2400 	 * If there is non-resync activity waiting for a turn,
2401 	 * and resync is going fast enough,
2402 	 * then let it though before starting on this new sync request.
2403 	 */
2404 	if (!go_faster && conf->nr_waiting)
2405 		msleep_interruptible(1000);
2406 
2407 	bitmap_cond_end_sync(mddev->bitmap, sector_nr);
2408 	r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
2409 	raise_barrier(conf);
2410 
2411 	conf->next_resync = sector_nr;
2412 
2413 	rcu_read_lock();
2414 	/*
2415 	 * If we get a correctably read error during resync or recovery,
2416 	 * we might want to read from a different device.  So we
2417 	 * flag all drives that could conceivably be read from for READ,
2418 	 * and any others (which will be non-In_sync devices) for WRITE.
2419 	 * If a read fails, we try reading from something else for which READ
2420 	 * is OK.
2421 	 */
2422 
2423 	r1_bio->mddev = mddev;
2424 	r1_bio->sector = sector_nr;
2425 	r1_bio->state = 0;
2426 	set_bit(R1BIO_IsSync, &r1_bio->state);
2427 
2428 	for (i = 0; i < conf->raid_disks * 2; i++) {
2429 		struct md_rdev *rdev;
2430 		bio = r1_bio->bios[i];
2431 		bio_reset(bio);
2432 
2433 		rdev = rcu_dereference(conf->mirrors[i].rdev);
2434 		if (rdev == NULL ||
2435 		    test_bit(Faulty, &rdev->flags)) {
2436 			if (i < conf->raid_disks)
2437 				still_degraded = 1;
2438 		} else if (!test_bit(In_sync, &rdev->flags)) {
2439 			bio->bi_rw = WRITE;
2440 			bio->bi_end_io = end_sync_write;
2441 			write_targets ++;
2442 		} else {
2443 			/* may need to read from here */
2444 			sector_t first_bad = MaxSector;
2445 			int bad_sectors;
2446 
2447 			if (is_badblock(rdev, sector_nr, good_sectors,
2448 					&first_bad, &bad_sectors)) {
2449 				if (first_bad > sector_nr)
2450 					good_sectors = first_bad - sector_nr;
2451 				else {
2452 					bad_sectors -= (sector_nr - first_bad);
2453 					if (min_bad == 0 ||
2454 					    min_bad > bad_sectors)
2455 						min_bad = bad_sectors;
2456 				}
2457 			}
2458 			if (sector_nr < first_bad) {
2459 				if (test_bit(WriteMostly, &rdev->flags)) {
2460 					if (wonly < 0)
2461 						wonly = i;
2462 				} else {
2463 					if (disk < 0)
2464 						disk = i;
2465 				}
2466 				bio->bi_rw = READ;
2467 				bio->bi_end_io = end_sync_read;
2468 				read_targets++;
2469 			} else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2470 				test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2471 				!test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2472 				/*
2473 				 * The device is suitable for reading (InSync),
2474 				 * but has bad block(s) here. Let's try to correct them,
2475 				 * if we are doing resync or repair. Otherwise, leave
2476 				 * this device alone for this sync request.
2477 				 */
2478 				bio->bi_rw = WRITE;
2479 				bio->bi_end_io = end_sync_write;
2480 				write_targets++;
2481 			}
2482 		}
2483 		if (bio->bi_end_io) {
2484 			atomic_inc(&rdev->nr_pending);
2485 			bio->bi_sector = sector_nr + rdev->data_offset;
2486 			bio->bi_bdev = rdev->bdev;
2487 			bio->bi_private = r1_bio;
2488 		}
2489 	}
2490 	rcu_read_unlock();
2491 	if (disk < 0)
2492 		disk = wonly;
2493 	r1_bio->read_disk = disk;
2494 
2495 	if (read_targets == 0 && min_bad > 0) {
2496 		/* These sectors are bad on all InSync devices, so we
2497 		 * need to mark them bad on all write targets
2498 		 */
2499 		int ok = 1;
2500 		for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2501 			if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2502 				struct md_rdev *rdev = conf->mirrors[i].rdev;
2503 				ok = rdev_set_badblocks(rdev, sector_nr,
2504 							min_bad, 0
2505 					) && ok;
2506 			}
2507 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
2508 		*skipped = 1;
2509 		put_buf(r1_bio);
2510 
2511 		if (!ok) {
2512 			/* Cannot record the badblocks, so need to
2513 			 * abort the resync.
2514 			 * If there are multiple read targets, could just
2515 			 * fail the really bad ones ???
2516 			 */
2517 			conf->recovery_disabled = mddev->recovery_disabled;
2518 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2519 			return 0;
2520 		} else
2521 			return min_bad;
2522 
2523 	}
2524 	if (min_bad > 0 && min_bad < good_sectors) {
2525 		/* only resync enough to reach the next bad->good
2526 		 * transition */
2527 		good_sectors = min_bad;
2528 	}
2529 
2530 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2531 		/* extra read targets are also write targets */
2532 		write_targets += read_targets-1;
2533 
2534 	if (write_targets == 0 || read_targets == 0) {
2535 		/* There is nowhere to write, so all non-sync
2536 		 * drives must be failed - so we are finished
2537 		 */
2538 		sector_t rv;
2539 		if (min_bad > 0)
2540 			max_sector = sector_nr + min_bad;
2541 		rv = max_sector - sector_nr;
2542 		*skipped = 1;
2543 		put_buf(r1_bio);
2544 		return rv;
2545 	}
2546 
2547 	if (max_sector > mddev->resync_max)
2548 		max_sector = mddev->resync_max; /* Don't do IO beyond here */
2549 	if (max_sector > sector_nr + good_sectors)
2550 		max_sector = sector_nr + good_sectors;
2551 	nr_sectors = 0;
2552 	sync_blocks = 0;
2553 	do {
2554 		struct page *page;
2555 		int len = PAGE_SIZE;
2556 		if (sector_nr + (len>>9) > max_sector)
2557 			len = (max_sector - sector_nr) << 9;
2558 		if (len == 0)
2559 			break;
2560 		if (sync_blocks == 0) {
2561 			if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2562 					       &sync_blocks, still_degraded) &&
2563 			    !conf->fullsync &&
2564 			    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2565 				break;
2566 			BUG_ON(sync_blocks < (PAGE_SIZE>>9));
2567 			if ((len >> 9) > sync_blocks)
2568 				len = sync_blocks<<9;
2569 		}
2570 
2571 		for (i = 0 ; i < conf->raid_disks * 2; i++) {
2572 			bio = r1_bio->bios[i];
2573 			if (bio->bi_end_io) {
2574 				page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
2575 				if (bio_add_page(bio, page, len, 0) == 0) {
2576 					/* stop here */
2577 					bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
2578 					while (i > 0) {
2579 						i--;
2580 						bio = r1_bio->bios[i];
2581 						if (bio->bi_end_io==NULL)
2582 							continue;
2583 						/* remove last page from this bio */
2584 						bio->bi_vcnt--;
2585 						bio->bi_size -= len;
2586 						bio->bi_flags &= ~(1<< BIO_SEG_VALID);
2587 					}
2588 					goto bio_full;
2589 				}
2590 			}
2591 		}
2592 		nr_sectors += len>>9;
2593 		sector_nr += len>>9;
2594 		sync_blocks -= (len>>9);
2595 	} while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
2596  bio_full:
2597 	r1_bio->sectors = nr_sectors;
2598 
2599 	/* For a user-requested sync, we read all readable devices and do a
2600 	 * compare
2601 	 */
2602 	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2603 		atomic_set(&r1_bio->remaining, read_targets);
2604 		for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2605 			bio = r1_bio->bios[i];
2606 			if (bio->bi_end_io == end_sync_read) {
2607 				read_targets--;
2608 				md_sync_acct(bio->bi_bdev, nr_sectors);
2609 				generic_make_request(bio);
2610 			}
2611 		}
2612 	} else {
2613 		atomic_set(&r1_bio->remaining, 1);
2614 		bio = r1_bio->bios[r1_bio->read_disk];
2615 		md_sync_acct(bio->bi_bdev, nr_sectors);
2616 		generic_make_request(bio);
2617 
2618 	}
2619 	return nr_sectors;
2620 }
2621 
2622 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2623 {
2624 	if (sectors)
2625 		return sectors;
2626 
2627 	return mddev->dev_sectors;
2628 }
2629 
2630 static struct r1conf *setup_conf(struct mddev *mddev)
2631 {
2632 	struct r1conf *conf;
2633 	int i;
2634 	struct raid1_info *disk;
2635 	struct md_rdev *rdev;
2636 	int err = -ENOMEM;
2637 
2638 	conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2639 	if (!conf)
2640 		goto abort;
2641 
2642 	conf->mirrors = kzalloc(sizeof(struct raid1_info)
2643 				* mddev->raid_disks * 2,
2644 				 GFP_KERNEL);
2645 	if (!conf->mirrors)
2646 		goto abort;
2647 
2648 	conf->tmppage = alloc_page(GFP_KERNEL);
2649 	if (!conf->tmppage)
2650 		goto abort;
2651 
2652 	conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
2653 	if (!conf->poolinfo)
2654 		goto abort;
2655 	conf->poolinfo->raid_disks = mddev->raid_disks * 2;
2656 	conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2657 					  r1bio_pool_free,
2658 					  conf->poolinfo);
2659 	if (!conf->r1bio_pool)
2660 		goto abort;
2661 
2662 	conf->poolinfo->mddev = mddev;
2663 
2664 	err = -EINVAL;
2665 	spin_lock_init(&conf->device_lock);
2666 	rdev_for_each(rdev, mddev) {
2667 		struct request_queue *q;
2668 		int disk_idx = rdev->raid_disk;
2669 		if (disk_idx >= mddev->raid_disks
2670 		    || disk_idx < 0)
2671 			continue;
2672 		if (test_bit(Replacement, &rdev->flags))
2673 			disk = conf->mirrors + mddev->raid_disks + disk_idx;
2674 		else
2675 			disk = conf->mirrors + disk_idx;
2676 
2677 		if (disk->rdev)
2678 			goto abort;
2679 		disk->rdev = rdev;
2680 		q = bdev_get_queue(rdev->bdev);
2681 		if (q->merge_bvec_fn)
2682 			mddev->merge_check_needed = 1;
2683 
2684 		disk->head_position = 0;
2685 		disk->seq_start = MaxSector;
2686 	}
2687 	conf->raid_disks = mddev->raid_disks;
2688 	conf->mddev = mddev;
2689 	INIT_LIST_HEAD(&conf->retry_list);
2690 
2691 	spin_lock_init(&conf->resync_lock);
2692 	init_waitqueue_head(&conf->wait_barrier);
2693 
2694 	bio_list_init(&conf->pending_bio_list);
2695 	conf->pending_count = 0;
2696 	conf->recovery_disabled = mddev->recovery_disabled - 1;
2697 
2698 	err = -EIO;
2699 	for (i = 0; i < conf->raid_disks * 2; i++) {
2700 
2701 		disk = conf->mirrors + i;
2702 
2703 		if (i < conf->raid_disks &&
2704 		    disk[conf->raid_disks].rdev) {
2705 			/* This slot has a replacement. */
2706 			if (!disk->rdev) {
2707 				/* No original, just make the replacement
2708 				 * a recovering spare
2709 				 */
2710 				disk->rdev =
2711 					disk[conf->raid_disks].rdev;
2712 				disk[conf->raid_disks].rdev = NULL;
2713 			} else if (!test_bit(In_sync, &disk->rdev->flags))
2714 				/* Original is not in_sync - bad */
2715 				goto abort;
2716 		}
2717 
2718 		if (!disk->rdev ||
2719 		    !test_bit(In_sync, &disk->rdev->flags)) {
2720 			disk->head_position = 0;
2721 			if (disk->rdev &&
2722 			    (disk->rdev->saved_raid_disk < 0))
2723 				conf->fullsync = 1;
2724 		}
2725 	}
2726 
2727 	err = -ENOMEM;
2728 	conf->thread = md_register_thread(raid1d, mddev, "raid1");
2729 	if (!conf->thread) {
2730 		printk(KERN_ERR
2731 		       "md/raid1:%s: couldn't allocate thread\n",
2732 		       mdname(mddev));
2733 		goto abort;
2734 	}
2735 
2736 	return conf;
2737 
2738  abort:
2739 	if (conf) {
2740 		if (conf->r1bio_pool)
2741 			mempool_destroy(conf->r1bio_pool);
2742 		kfree(conf->mirrors);
2743 		safe_put_page(conf->tmppage);
2744 		kfree(conf->poolinfo);
2745 		kfree(conf);
2746 	}
2747 	return ERR_PTR(err);
2748 }
2749 
2750 static int stop(struct mddev *mddev);
2751 static int run(struct mddev *mddev)
2752 {
2753 	struct r1conf *conf;
2754 	int i;
2755 	struct md_rdev *rdev;
2756 	int ret;
2757 	bool discard_supported = false;
2758 
2759 	if (mddev->level != 1) {
2760 		printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n",
2761 		       mdname(mddev), mddev->level);
2762 		return -EIO;
2763 	}
2764 	if (mddev->reshape_position != MaxSector) {
2765 		printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n",
2766 		       mdname(mddev));
2767 		return -EIO;
2768 	}
2769 	/*
2770 	 * copy the already verified devices into our private RAID1
2771 	 * bookkeeping area. [whatever we allocate in run(),
2772 	 * should be freed in stop()]
2773 	 */
2774 	if (mddev->private == NULL)
2775 		conf = setup_conf(mddev);
2776 	else
2777 		conf = mddev->private;
2778 
2779 	if (IS_ERR(conf))
2780 		return PTR_ERR(conf);
2781 
2782 	if (mddev->queue)
2783 		blk_queue_max_write_same_sectors(mddev->queue,
2784 						 mddev->chunk_sectors);
2785 	rdev_for_each(rdev, mddev) {
2786 		if (!mddev->gendisk)
2787 			continue;
2788 		disk_stack_limits(mddev->gendisk, rdev->bdev,
2789 				  rdev->data_offset << 9);
2790 		if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
2791 			discard_supported = true;
2792 	}
2793 
2794 	mddev->degraded = 0;
2795 	for (i=0; i < conf->raid_disks; i++)
2796 		if (conf->mirrors[i].rdev == NULL ||
2797 		    !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
2798 		    test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2799 			mddev->degraded++;
2800 
2801 	if (conf->raid_disks - mddev->degraded == 1)
2802 		mddev->recovery_cp = MaxSector;
2803 
2804 	if (mddev->recovery_cp != MaxSector)
2805 		printk(KERN_NOTICE "md/raid1:%s: not clean"
2806 		       " -- starting background reconstruction\n",
2807 		       mdname(mddev));
2808 	printk(KERN_INFO
2809 		"md/raid1:%s: active with %d out of %d mirrors\n",
2810 		mdname(mddev), mddev->raid_disks - mddev->degraded,
2811 		mddev->raid_disks);
2812 
2813 	/*
2814 	 * Ok, everything is just fine now
2815 	 */
2816 	mddev->thread = conf->thread;
2817 	conf->thread = NULL;
2818 	mddev->private = conf;
2819 
2820 	md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
2821 
2822 	if (mddev->queue) {
2823 		mddev->queue->backing_dev_info.congested_fn = raid1_congested;
2824 		mddev->queue->backing_dev_info.congested_data = mddev;
2825 		blk_queue_merge_bvec(mddev->queue, raid1_mergeable_bvec);
2826 
2827 		if (discard_supported)
2828 			queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
2829 						mddev->queue);
2830 		else
2831 			queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
2832 						  mddev->queue);
2833 	}
2834 
2835 	ret =  md_integrity_register(mddev);
2836 	if (ret)
2837 		stop(mddev);
2838 	return ret;
2839 }
2840 
2841 static int stop(struct mddev *mddev)
2842 {
2843 	struct r1conf *conf = mddev->private;
2844 	struct bitmap *bitmap = mddev->bitmap;
2845 
2846 	/* wait for behind writes to complete */
2847 	if (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
2848 		printk(KERN_INFO "md/raid1:%s: behind writes in progress - waiting to stop.\n",
2849 		       mdname(mddev));
2850 		/* need to kick something here to make sure I/O goes? */
2851 		wait_event(bitmap->behind_wait,
2852 			   atomic_read(&bitmap->behind_writes) == 0);
2853 	}
2854 
2855 	raise_barrier(conf);
2856 	lower_barrier(conf);
2857 
2858 	md_unregister_thread(&mddev->thread);
2859 	if (conf->r1bio_pool)
2860 		mempool_destroy(conf->r1bio_pool);
2861 	kfree(conf->mirrors);
2862 	safe_put_page(conf->tmppage);
2863 	kfree(conf->poolinfo);
2864 	kfree(conf);
2865 	mddev->private = NULL;
2866 	return 0;
2867 }
2868 
2869 static int raid1_resize(struct mddev *mddev, sector_t sectors)
2870 {
2871 	/* no resync is happening, and there is enough space
2872 	 * on all devices, so we can resize.
2873 	 * We need to make sure resync covers any new space.
2874 	 * If the array is shrinking we should possibly wait until
2875 	 * any io in the removed space completes, but it hardly seems
2876 	 * worth it.
2877 	 */
2878 	sector_t newsize = raid1_size(mddev, sectors, 0);
2879 	if (mddev->external_size &&
2880 	    mddev->array_sectors > newsize)
2881 		return -EINVAL;
2882 	if (mddev->bitmap) {
2883 		int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0);
2884 		if (ret)
2885 			return ret;
2886 	}
2887 	md_set_array_sectors(mddev, newsize);
2888 	set_capacity(mddev->gendisk, mddev->array_sectors);
2889 	revalidate_disk(mddev->gendisk);
2890 	if (sectors > mddev->dev_sectors &&
2891 	    mddev->recovery_cp > mddev->dev_sectors) {
2892 		mddev->recovery_cp = mddev->dev_sectors;
2893 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2894 	}
2895 	mddev->dev_sectors = sectors;
2896 	mddev->resync_max_sectors = sectors;
2897 	return 0;
2898 }
2899 
2900 static int raid1_reshape(struct mddev *mddev)
2901 {
2902 	/* We need to:
2903 	 * 1/ resize the r1bio_pool
2904 	 * 2/ resize conf->mirrors
2905 	 *
2906 	 * We allocate a new r1bio_pool if we can.
2907 	 * Then raise a device barrier and wait until all IO stops.
2908 	 * Then resize conf->mirrors and swap in the new r1bio pool.
2909 	 *
2910 	 * At the same time, we "pack" the devices so that all the missing
2911 	 * devices have the higher raid_disk numbers.
2912 	 */
2913 	mempool_t *newpool, *oldpool;
2914 	struct pool_info *newpoolinfo;
2915 	struct raid1_info *newmirrors;
2916 	struct r1conf *conf = mddev->private;
2917 	int cnt, raid_disks;
2918 	unsigned long flags;
2919 	int d, d2, err;
2920 
2921 	/* Cannot change chunk_size, layout, or level */
2922 	if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
2923 	    mddev->layout != mddev->new_layout ||
2924 	    mddev->level != mddev->new_level) {
2925 		mddev->new_chunk_sectors = mddev->chunk_sectors;
2926 		mddev->new_layout = mddev->layout;
2927 		mddev->new_level = mddev->level;
2928 		return -EINVAL;
2929 	}
2930 
2931 	err = md_allow_write(mddev);
2932 	if (err)
2933 		return err;
2934 
2935 	raid_disks = mddev->raid_disks + mddev->delta_disks;
2936 
2937 	if (raid_disks < conf->raid_disks) {
2938 		cnt=0;
2939 		for (d= 0; d < conf->raid_disks; d++)
2940 			if (conf->mirrors[d].rdev)
2941 				cnt++;
2942 		if (cnt > raid_disks)
2943 			return -EBUSY;
2944 	}
2945 
2946 	newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
2947 	if (!newpoolinfo)
2948 		return -ENOMEM;
2949 	newpoolinfo->mddev = mddev;
2950 	newpoolinfo->raid_disks = raid_disks * 2;
2951 
2952 	newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2953 				 r1bio_pool_free, newpoolinfo);
2954 	if (!newpool) {
2955 		kfree(newpoolinfo);
2956 		return -ENOMEM;
2957 	}
2958 	newmirrors = kzalloc(sizeof(struct raid1_info) * raid_disks * 2,
2959 			     GFP_KERNEL);
2960 	if (!newmirrors) {
2961 		kfree(newpoolinfo);
2962 		mempool_destroy(newpool);
2963 		return -ENOMEM;
2964 	}
2965 
2966 	raise_barrier(conf);
2967 
2968 	/* ok, everything is stopped */
2969 	oldpool = conf->r1bio_pool;
2970 	conf->r1bio_pool = newpool;
2971 
2972 	for (d = d2 = 0; d < conf->raid_disks; d++) {
2973 		struct md_rdev *rdev = conf->mirrors[d].rdev;
2974 		if (rdev && rdev->raid_disk != d2) {
2975 			sysfs_unlink_rdev(mddev, rdev);
2976 			rdev->raid_disk = d2;
2977 			sysfs_unlink_rdev(mddev, rdev);
2978 			if (sysfs_link_rdev(mddev, rdev))
2979 				printk(KERN_WARNING
2980 				       "md/raid1:%s: cannot register rd%d\n",
2981 				       mdname(mddev), rdev->raid_disk);
2982 		}
2983 		if (rdev)
2984 			newmirrors[d2++].rdev = rdev;
2985 	}
2986 	kfree(conf->mirrors);
2987 	conf->mirrors = newmirrors;
2988 	kfree(conf->poolinfo);
2989 	conf->poolinfo = newpoolinfo;
2990 
2991 	spin_lock_irqsave(&conf->device_lock, flags);
2992 	mddev->degraded += (raid_disks - conf->raid_disks);
2993 	spin_unlock_irqrestore(&conf->device_lock, flags);
2994 	conf->raid_disks = mddev->raid_disks = raid_disks;
2995 	mddev->delta_disks = 0;
2996 
2997 	lower_barrier(conf);
2998 
2999 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3000 	md_wakeup_thread(mddev->thread);
3001 
3002 	mempool_destroy(oldpool);
3003 	return 0;
3004 }
3005 
3006 static void raid1_quiesce(struct mddev *mddev, int state)
3007 {
3008 	struct r1conf *conf = mddev->private;
3009 
3010 	switch(state) {
3011 	case 2: /* wake for suspend */
3012 		wake_up(&conf->wait_barrier);
3013 		break;
3014 	case 1:
3015 		raise_barrier(conf);
3016 		break;
3017 	case 0:
3018 		lower_barrier(conf);
3019 		break;
3020 	}
3021 }
3022 
3023 static void *raid1_takeover(struct mddev *mddev)
3024 {
3025 	/* raid1 can take over:
3026 	 *  raid5 with 2 devices, any layout or chunk size
3027 	 */
3028 	if (mddev->level == 5 && mddev->raid_disks == 2) {
3029 		struct r1conf *conf;
3030 		mddev->new_level = 1;
3031 		mddev->new_layout = 0;
3032 		mddev->new_chunk_sectors = 0;
3033 		conf = setup_conf(mddev);
3034 		if (!IS_ERR(conf))
3035 			conf->barrier = 1;
3036 		return conf;
3037 	}
3038 	return ERR_PTR(-EINVAL);
3039 }
3040 
3041 static struct md_personality raid1_personality =
3042 {
3043 	.name		= "raid1",
3044 	.level		= 1,
3045 	.owner		= THIS_MODULE,
3046 	.make_request	= make_request,
3047 	.run		= run,
3048 	.stop		= stop,
3049 	.status		= status,
3050 	.error_handler	= error,
3051 	.hot_add_disk	= raid1_add_disk,
3052 	.hot_remove_disk= raid1_remove_disk,
3053 	.spare_active	= raid1_spare_active,
3054 	.sync_request	= sync_request,
3055 	.resize		= raid1_resize,
3056 	.size		= raid1_size,
3057 	.check_reshape	= raid1_reshape,
3058 	.quiesce	= raid1_quiesce,
3059 	.takeover	= raid1_takeover,
3060 };
3061 
3062 static int __init raid_init(void)
3063 {
3064 	return register_md_personality(&raid1_personality);
3065 }
3066 
3067 static void raid_exit(void)
3068 {
3069 	unregister_md_personality(&raid1_personality);
3070 }
3071 
3072 module_init(raid_init);
3073 module_exit(raid_exit);
3074 MODULE_LICENSE("GPL");
3075 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3076 MODULE_ALIAS("md-personality-3"); /* RAID1 */
3077 MODULE_ALIAS("md-raid1");
3078 MODULE_ALIAS("md-level-1");
3079 
3080 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
3081