1 /* 2 * raid1.c : Multiple Devices driver for Linux 3 * 4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat 5 * 6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman 7 * 8 * RAID-1 management functions. 9 * 10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000 11 * 12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk> 13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au> 14 * 15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support 16 * bitmapped intelligence in resync: 17 * 18 * - bitmap marked during normal i/o 19 * - bitmap used to skip nondirty blocks during sync 20 * 21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology: 22 * - persistent bitmap code 23 * 24 * This program is free software; you can redistribute it and/or modify 25 * it under the terms of the GNU General Public License as published by 26 * the Free Software Foundation; either version 2, or (at your option) 27 * any later version. 28 * 29 * You should have received a copy of the GNU General Public License 30 * (for example /usr/src/linux/COPYING); if not, write to the Free 31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 32 */ 33 34 #include <linux/slab.h> 35 #include <linux/delay.h> 36 #include <linux/blkdev.h> 37 #include <linux/module.h> 38 #include <linux/seq_file.h> 39 #include <linux/ratelimit.h> 40 #include "md.h" 41 #include "raid1.h" 42 #include "bitmap.h" 43 44 /* 45 * Number of guaranteed r1bios in case of extreme VM load: 46 */ 47 #define NR_RAID1_BIOS 256 48 49 /* when we get a read error on a read-only array, we redirect to another 50 * device without failing the first device, or trying to over-write to 51 * correct the read error. To keep track of bad blocks on a per-bio 52 * level, we store IO_BLOCKED in the appropriate 'bios' pointer 53 */ 54 #define IO_BLOCKED ((struct bio *)1) 55 /* When we successfully write to a known bad-block, we need to remove the 56 * bad-block marking which must be done from process context. So we record 57 * the success by setting devs[n].bio to IO_MADE_GOOD 58 */ 59 #define IO_MADE_GOOD ((struct bio *)2) 60 61 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2) 62 63 /* When there are this many requests queue to be written by 64 * the raid1 thread, we become 'congested' to provide back-pressure 65 * for writeback. 66 */ 67 static int max_queued_requests = 1024; 68 69 static void allow_barrier(struct r1conf *conf); 70 static void lower_barrier(struct r1conf *conf); 71 72 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data) 73 { 74 struct pool_info *pi = data; 75 int size = offsetof(struct r1bio, bios[pi->raid_disks]); 76 77 /* allocate a r1bio with room for raid_disks entries in the bios array */ 78 return kzalloc(size, gfp_flags); 79 } 80 81 static void r1bio_pool_free(void *r1_bio, void *data) 82 { 83 kfree(r1_bio); 84 } 85 86 #define RESYNC_BLOCK_SIZE (64*1024) 87 //#define RESYNC_BLOCK_SIZE PAGE_SIZE 88 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9) 89 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE) 90 #define RESYNC_WINDOW (2048*1024) 91 92 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data) 93 { 94 struct pool_info *pi = data; 95 struct r1bio *r1_bio; 96 struct bio *bio; 97 int i, j; 98 99 r1_bio = r1bio_pool_alloc(gfp_flags, pi); 100 if (!r1_bio) 101 return NULL; 102 103 /* 104 * Allocate bios : 1 for reading, n-1 for writing 105 */ 106 for (j = pi->raid_disks ; j-- ; ) { 107 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES); 108 if (!bio) 109 goto out_free_bio; 110 r1_bio->bios[j] = bio; 111 } 112 /* 113 * Allocate RESYNC_PAGES data pages and attach them to 114 * the first bio. 115 * If this is a user-requested check/repair, allocate 116 * RESYNC_PAGES for each bio. 117 */ 118 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) 119 j = pi->raid_disks; 120 else 121 j = 1; 122 while(j--) { 123 bio = r1_bio->bios[j]; 124 bio->bi_vcnt = RESYNC_PAGES; 125 126 if (bio_alloc_pages(bio, gfp_flags)) 127 goto out_free_bio; 128 } 129 /* If not user-requests, copy the page pointers to all bios */ 130 if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) { 131 for (i=0; i<RESYNC_PAGES ; i++) 132 for (j=1; j<pi->raid_disks; j++) 133 r1_bio->bios[j]->bi_io_vec[i].bv_page = 134 r1_bio->bios[0]->bi_io_vec[i].bv_page; 135 } 136 137 r1_bio->master_bio = NULL; 138 139 return r1_bio; 140 141 out_free_bio: 142 while (++j < pi->raid_disks) 143 bio_put(r1_bio->bios[j]); 144 r1bio_pool_free(r1_bio, data); 145 return NULL; 146 } 147 148 static void r1buf_pool_free(void *__r1_bio, void *data) 149 { 150 struct pool_info *pi = data; 151 int i,j; 152 struct r1bio *r1bio = __r1_bio; 153 154 for (i = 0; i < RESYNC_PAGES; i++) 155 for (j = pi->raid_disks; j-- ;) { 156 if (j == 0 || 157 r1bio->bios[j]->bi_io_vec[i].bv_page != 158 r1bio->bios[0]->bi_io_vec[i].bv_page) 159 safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page); 160 } 161 for (i=0 ; i < pi->raid_disks; i++) 162 bio_put(r1bio->bios[i]); 163 164 r1bio_pool_free(r1bio, data); 165 } 166 167 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio) 168 { 169 int i; 170 171 for (i = 0; i < conf->raid_disks * 2; i++) { 172 struct bio **bio = r1_bio->bios + i; 173 if (!BIO_SPECIAL(*bio)) 174 bio_put(*bio); 175 *bio = NULL; 176 } 177 } 178 179 static void free_r1bio(struct r1bio *r1_bio) 180 { 181 struct r1conf *conf = r1_bio->mddev->private; 182 183 put_all_bios(conf, r1_bio); 184 mempool_free(r1_bio, conf->r1bio_pool); 185 } 186 187 static void put_buf(struct r1bio *r1_bio) 188 { 189 struct r1conf *conf = r1_bio->mddev->private; 190 int i; 191 192 for (i = 0; i < conf->raid_disks * 2; i++) { 193 struct bio *bio = r1_bio->bios[i]; 194 if (bio->bi_end_io) 195 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev); 196 } 197 198 mempool_free(r1_bio, conf->r1buf_pool); 199 200 lower_barrier(conf); 201 } 202 203 static void reschedule_retry(struct r1bio *r1_bio) 204 { 205 unsigned long flags; 206 struct mddev *mddev = r1_bio->mddev; 207 struct r1conf *conf = mddev->private; 208 209 spin_lock_irqsave(&conf->device_lock, flags); 210 list_add(&r1_bio->retry_list, &conf->retry_list); 211 conf->nr_queued ++; 212 spin_unlock_irqrestore(&conf->device_lock, flags); 213 214 wake_up(&conf->wait_barrier); 215 md_wakeup_thread(mddev->thread); 216 } 217 218 /* 219 * raid_end_bio_io() is called when we have finished servicing a mirrored 220 * operation and are ready to return a success/failure code to the buffer 221 * cache layer. 222 */ 223 static void call_bio_endio(struct r1bio *r1_bio) 224 { 225 struct bio *bio = r1_bio->master_bio; 226 int done; 227 struct r1conf *conf = r1_bio->mddev->private; 228 229 if (bio->bi_phys_segments) { 230 unsigned long flags; 231 spin_lock_irqsave(&conf->device_lock, flags); 232 bio->bi_phys_segments--; 233 done = (bio->bi_phys_segments == 0); 234 spin_unlock_irqrestore(&conf->device_lock, flags); 235 } else 236 done = 1; 237 238 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) 239 clear_bit(BIO_UPTODATE, &bio->bi_flags); 240 if (done) { 241 bio_endio(bio, 0); 242 /* 243 * Wake up any possible resync thread that waits for the device 244 * to go idle. 245 */ 246 allow_barrier(conf); 247 } 248 } 249 250 static void raid_end_bio_io(struct r1bio *r1_bio) 251 { 252 struct bio *bio = r1_bio->master_bio; 253 254 /* if nobody has done the final endio yet, do it now */ 255 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) { 256 pr_debug("raid1: sync end %s on sectors %llu-%llu\n", 257 (bio_data_dir(bio) == WRITE) ? "write" : "read", 258 (unsigned long long) bio->bi_sector, 259 (unsigned long long) bio->bi_sector + 260 bio_sectors(bio) - 1); 261 262 call_bio_endio(r1_bio); 263 } 264 free_r1bio(r1_bio); 265 } 266 267 /* 268 * Update disk head position estimator based on IRQ completion info. 269 */ 270 static inline void update_head_pos(int disk, struct r1bio *r1_bio) 271 { 272 struct r1conf *conf = r1_bio->mddev->private; 273 274 conf->mirrors[disk].head_position = 275 r1_bio->sector + (r1_bio->sectors); 276 } 277 278 /* 279 * Find the disk number which triggered given bio 280 */ 281 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio) 282 { 283 int mirror; 284 struct r1conf *conf = r1_bio->mddev->private; 285 int raid_disks = conf->raid_disks; 286 287 for (mirror = 0; mirror < raid_disks * 2; mirror++) 288 if (r1_bio->bios[mirror] == bio) 289 break; 290 291 BUG_ON(mirror == raid_disks * 2); 292 update_head_pos(mirror, r1_bio); 293 294 return mirror; 295 } 296 297 static void raid1_end_read_request(struct bio *bio, int error) 298 { 299 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 300 struct r1bio *r1_bio = bio->bi_private; 301 int mirror; 302 struct r1conf *conf = r1_bio->mddev->private; 303 304 mirror = r1_bio->read_disk; 305 /* 306 * this branch is our 'one mirror IO has finished' event handler: 307 */ 308 update_head_pos(mirror, r1_bio); 309 310 if (uptodate) 311 set_bit(R1BIO_Uptodate, &r1_bio->state); 312 else { 313 /* If all other devices have failed, we want to return 314 * the error upwards rather than fail the last device. 315 * Here we redefine "uptodate" to mean "Don't want to retry" 316 */ 317 unsigned long flags; 318 spin_lock_irqsave(&conf->device_lock, flags); 319 if (r1_bio->mddev->degraded == conf->raid_disks || 320 (r1_bio->mddev->degraded == conf->raid_disks-1 && 321 !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags))) 322 uptodate = 1; 323 spin_unlock_irqrestore(&conf->device_lock, flags); 324 } 325 326 if (uptodate) { 327 raid_end_bio_io(r1_bio); 328 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev); 329 } else { 330 /* 331 * oops, read error: 332 */ 333 char b[BDEVNAME_SIZE]; 334 printk_ratelimited( 335 KERN_ERR "md/raid1:%s: %s: " 336 "rescheduling sector %llu\n", 337 mdname(conf->mddev), 338 bdevname(conf->mirrors[mirror].rdev->bdev, 339 b), 340 (unsigned long long)r1_bio->sector); 341 set_bit(R1BIO_ReadError, &r1_bio->state); 342 reschedule_retry(r1_bio); 343 /* don't drop the reference on read_disk yet */ 344 } 345 } 346 347 static void close_write(struct r1bio *r1_bio) 348 { 349 /* it really is the end of this request */ 350 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) { 351 /* free extra copy of the data pages */ 352 int i = r1_bio->behind_page_count; 353 while (i--) 354 safe_put_page(r1_bio->behind_bvecs[i].bv_page); 355 kfree(r1_bio->behind_bvecs); 356 r1_bio->behind_bvecs = NULL; 357 } 358 /* clear the bitmap if all writes complete successfully */ 359 bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector, 360 r1_bio->sectors, 361 !test_bit(R1BIO_Degraded, &r1_bio->state), 362 test_bit(R1BIO_BehindIO, &r1_bio->state)); 363 md_write_end(r1_bio->mddev); 364 } 365 366 static void r1_bio_write_done(struct r1bio *r1_bio) 367 { 368 if (!atomic_dec_and_test(&r1_bio->remaining)) 369 return; 370 371 if (test_bit(R1BIO_WriteError, &r1_bio->state)) 372 reschedule_retry(r1_bio); 373 else { 374 close_write(r1_bio); 375 if (test_bit(R1BIO_MadeGood, &r1_bio->state)) 376 reschedule_retry(r1_bio); 377 else 378 raid_end_bio_io(r1_bio); 379 } 380 } 381 382 static void raid1_end_write_request(struct bio *bio, int error) 383 { 384 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 385 struct r1bio *r1_bio = bio->bi_private; 386 int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state); 387 struct r1conf *conf = r1_bio->mddev->private; 388 struct bio *to_put = NULL; 389 390 mirror = find_bio_disk(r1_bio, bio); 391 392 /* 393 * 'one mirror IO has finished' event handler: 394 */ 395 if (!uptodate) { 396 set_bit(WriteErrorSeen, 397 &conf->mirrors[mirror].rdev->flags); 398 if (!test_and_set_bit(WantReplacement, 399 &conf->mirrors[mirror].rdev->flags)) 400 set_bit(MD_RECOVERY_NEEDED, & 401 conf->mddev->recovery); 402 403 set_bit(R1BIO_WriteError, &r1_bio->state); 404 } else { 405 /* 406 * Set R1BIO_Uptodate in our master bio, so that we 407 * will return a good error code for to the higher 408 * levels even if IO on some other mirrored buffer 409 * fails. 410 * 411 * The 'master' represents the composite IO operation 412 * to user-side. So if something waits for IO, then it 413 * will wait for the 'master' bio. 414 */ 415 sector_t first_bad; 416 int bad_sectors; 417 418 r1_bio->bios[mirror] = NULL; 419 to_put = bio; 420 set_bit(R1BIO_Uptodate, &r1_bio->state); 421 422 /* Maybe we can clear some bad blocks. */ 423 if (is_badblock(conf->mirrors[mirror].rdev, 424 r1_bio->sector, r1_bio->sectors, 425 &first_bad, &bad_sectors)) { 426 r1_bio->bios[mirror] = IO_MADE_GOOD; 427 set_bit(R1BIO_MadeGood, &r1_bio->state); 428 } 429 } 430 431 if (behind) { 432 if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags)) 433 atomic_dec(&r1_bio->behind_remaining); 434 435 /* 436 * In behind mode, we ACK the master bio once the I/O 437 * has safely reached all non-writemostly 438 * disks. Setting the Returned bit ensures that this 439 * gets done only once -- we don't ever want to return 440 * -EIO here, instead we'll wait 441 */ 442 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) && 443 test_bit(R1BIO_Uptodate, &r1_bio->state)) { 444 /* Maybe we can return now */ 445 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) { 446 struct bio *mbio = r1_bio->master_bio; 447 pr_debug("raid1: behind end write sectors" 448 " %llu-%llu\n", 449 (unsigned long long) mbio->bi_sector, 450 (unsigned long long) mbio->bi_sector + 451 bio_sectors(mbio) - 1); 452 call_bio_endio(r1_bio); 453 } 454 } 455 } 456 if (r1_bio->bios[mirror] == NULL) 457 rdev_dec_pending(conf->mirrors[mirror].rdev, 458 conf->mddev); 459 460 /* 461 * Let's see if all mirrored write operations have finished 462 * already. 463 */ 464 r1_bio_write_done(r1_bio); 465 466 if (to_put) 467 bio_put(to_put); 468 } 469 470 471 /* 472 * This routine returns the disk from which the requested read should 473 * be done. There is a per-array 'next expected sequential IO' sector 474 * number - if this matches on the next IO then we use the last disk. 475 * There is also a per-disk 'last know head position' sector that is 476 * maintained from IRQ contexts, both the normal and the resync IO 477 * completion handlers update this position correctly. If there is no 478 * perfect sequential match then we pick the disk whose head is closest. 479 * 480 * If there are 2 mirrors in the same 2 devices, performance degrades 481 * because position is mirror, not device based. 482 * 483 * The rdev for the device selected will have nr_pending incremented. 484 */ 485 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors) 486 { 487 const sector_t this_sector = r1_bio->sector; 488 int sectors; 489 int best_good_sectors; 490 int best_disk, best_dist_disk, best_pending_disk; 491 int has_nonrot_disk; 492 int disk; 493 sector_t best_dist; 494 unsigned int min_pending; 495 struct md_rdev *rdev; 496 int choose_first; 497 int choose_next_idle; 498 499 rcu_read_lock(); 500 /* 501 * Check if we can balance. We can balance on the whole 502 * device if no resync is going on, or below the resync window. 503 * We take the first readable disk when above the resync window. 504 */ 505 retry: 506 sectors = r1_bio->sectors; 507 best_disk = -1; 508 best_dist_disk = -1; 509 best_dist = MaxSector; 510 best_pending_disk = -1; 511 min_pending = UINT_MAX; 512 best_good_sectors = 0; 513 has_nonrot_disk = 0; 514 choose_next_idle = 0; 515 516 if (conf->mddev->recovery_cp < MaxSector && 517 (this_sector + sectors >= conf->next_resync)) 518 choose_first = 1; 519 else 520 choose_first = 0; 521 522 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) { 523 sector_t dist; 524 sector_t first_bad; 525 int bad_sectors; 526 unsigned int pending; 527 bool nonrot; 528 529 rdev = rcu_dereference(conf->mirrors[disk].rdev); 530 if (r1_bio->bios[disk] == IO_BLOCKED 531 || rdev == NULL 532 || test_bit(Unmerged, &rdev->flags) 533 || test_bit(Faulty, &rdev->flags)) 534 continue; 535 if (!test_bit(In_sync, &rdev->flags) && 536 rdev->recovery_offset < this_sector + sectors) 537 continue; 538 if (test_bit(WriteMostly, &rdev->flags)) { 539 /* Don't balance among write-mostly, just 540 * use the first as a last resort */ 541 if (best_disk < 0) { 542 if (is_badblock(rdev, this_sector, sectors, 543 &first_bad, &bad_sectors)) { 544 if (first_bad < this_sector) 545 /* Cannot use this */ 546 continue; 547 best_good_sectors = first_bad - this_sector; 548 } else 549 best_good_sectors = sectors; 550 best_disk = disk; 551 } 552 continue; 553 } 554 /* This is a reasonable device to use. It might 555 * even be best. 556 */ 557 if (is_badblock(rdev, this_sector, sectors, 558 &first_bad, &bad_sectors)) { 559 if (best_dist < MaxSector) 560 /* already have a better device */ 561 continue; 562 if (first_bad <= this_sector) { 563 /* cannot read here. If this is the 'primary' 564 * device, then we must not read beyond 565 * bad_sectors from another device.. 566 */ 567 bad_sectors -= (this_sector - first_bad); 568 if (choose_first && sectors > bad_sectors) 569 sectors = bad_sectors; 570 if (best_good_sectors > sectors) 571 best_good_sectors = sectors; 572 573 } else { 574 sector_t good_sectors = first_bad - this_sector; 575 if (good_sectors > best_good_sectors) { 576 best_good_sectors = good_sectors; 577 best_disk = disk; 578 } 579 if (choose_first) 580 break; 581 } 582 continue; 583 } else 584 best_good_sectors = sectors; 585 586 nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev)); 587 has_nonrot_disk |= nonrot; 588 pending = atomic_read(&rdev->nr_pending); 589 dist = abs(this_sector - conf->mirrors[disk].head_position); 590 if (choose_first) { 591 best_disk = disk; 592 break; 593 } 594 /* Don't change to another disk for sequential reads */ 595 if (conf->mirrors[disk].next_seq_sect == this_sector 596 || dist == 0) { 597 int opt_iosize = bdev_io_opt(rdev->bdev) >> 9; 598 struct raid1_info *mirror = &conf->mirrors[disk]; 599 600 best_disk = disk; 601 /* 602 * If buffered sequential IO size exceeds optimal 603 * iosize, check if there is idle disk. If yes, choose 604 * the idle disk. read_balance could already choose an 605 * idle disk before noticing it's a sequential IO in 606 * this disk. This doesn't matter because this disk 607 * will idle, next time it will be utilized after the 608 * first disk has IO size exceeds optimal iosize. In 609 * this way, iosize of the first disk will be optimal 610 * iosize at least. iosize of the second disk might be 611 * small, but not a big deal since when the second disk 612 * starts IO, the first disk is likely still busy. 613 */ 614 if (nonrot && opt_iosize > 0 && 615 mirror->seq_start != MaxSector && 616 mirror->next_seq_sect > opt_iosize && 617 mirror->next_seq_sect - opt_iosize >= 618 mirror->seq_start) { 619 choose_next_idle = 1; 620 continue; 621 } 622 break; 623 } 624 /* If device is idle, use it */ 625 if (pending == 0) { 626 best_disk = disk; 627 break; 628 } 629 630 if (choose_next_idle) 631 continue; 632 633 if (min_pending > pending) { 634 min_pending = pending; 635 best_pending_disk = disk; 636 } 637 638 if (dist < best_dist) { 639 best_dist = dist; 640 best_dist_disk = disk; 641 } 642 } 643 644 /* 645 * If all disks are rotational, choose the closest disk. If any disk is 646 * non-rotational, choose the disk with less pending request even the 647 * disk is rotational, which might/might not be optimal for raids with 648 * mixed ratation/non-rotational disks depending on workload. 649 */ 650 if (best_disk == -1) { 651 if (has_nonrot_disk) 652 best_disk = best_pending_disk; 653 else 654 best_disk = best_dist_disk; 655 } 656 657 if (best_disk >= 0) { 658 rdev = rcu_dereference(conf->mirrors[best_disk].rdev); 659 if (!rdev) 660 goto retry; 661 atomic_inc(&rdev->nr_pending); 662 if (test_bit(Faulty, &rdev->flags)) { 663 /* cannot risk returning a device that failed 664 * before we inc'ed nr_pending 665 */ 666 rdev_dec_pending(rdev, conf->mddev); 667 goto retry; 668 } 669 sectors = best_good_sectors; 670 671 if (conf->mirrors[best_disk].next_seq_sect != this_sector) 672 conf->mirrors[best_disk].seq_start = this_sector; 673 674 conf->mirrors[best_disk].next_seq_sect = this_sector + sectors; 675 } 676 rcu_read_unlock(); 677 *max_sectors = sectors; 678 679 return best_disk; 680 } 681 682 static int raid1_mergeable_bvec(struct request_queue *q, 683 struct bvec_merge_data *bvm, 684 struct bio_vec *biovec) 685 { 686 struct mddev *mddev = q->queuedata; 687 struct r1conf *conf = mddev->private; 688 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev); 689 int max = biovec->bv_len; 690 691 if (mddev->merge_check_needed) { 692 int disk; 693 rcu_read_lock(); 694 for (disk = 0; disk < conf->raid_disks * 2; disk++) { 695 struct md_rdev *rdev = rcu_dereference( 696 conf->mirrors[disk].rdev); 697 if (rdev && !test_bit(Faulty, &rdev->flags)) { 698 struct request_queue *q = 699 bdev_get_queue(rdev->bdev); 700 if (q->merge_bvec_fn) { 701 bvm->bi_sector = sector + 702 rdev->data_offset; 703 bvm->bi_bdev = rdev->bdev; 704 max = min(max, q->merge_bvec_fn( 705 q, bvm, biovec)); 706 } 707 } 708 } 709 rcu_read_unlock(); 710 } 711 return max; 712 713 } 714 715 int md_raid1_congested(struct mddev *mddev, int bits) 716 { 717 struct r1conf *conf = mddev->private; 718 int i, ret = 0; 719 720 if ((bits & (1 << BDI_async_congested)) && 721 conf->pending_count >= max_queued_requests) 722 return 1; 723 724 rcu_read_lock(); 725 for (i = 0; i < conf->raid_disks * 2; i++) { 726 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 727 if (rdev && !test_bit(Faulty, &rdev->flags)) { 728 struct request_queue *q = bdev_get_queue(rdev->bdev); 729 730 BUG_ON(!q); 731 732 /* Note the '|| 1' - when read_balance prefers 733 * non-congested targets, it can be removed 734 */ 735 if ((bits & (1<<BDI_async_congested)) || 1) 736 ret |= bdi_congested(&q->backing_dev_info, bits); 737 else 738 ret &= bdi_congested(&q->backing_dev_info, bits); 739 } 740 } 741 rcu_read_unlock(); 742 return ret; 743 } 744 EXPORT_SYMBOL_GPL(md_raid1_congested); 745 746 static int raid1_congested(void *data, int bits) 747 { 748 struct mddev *mddev = data; 749 750 return mddev_congested(mddev, bits) || 751 md_raid1_congested(mddev, bits); 752 } 753 754 static void flush_pending_writes(struct r1conf *conf) 755 { 756 /* Any writes that have been queued but are awaiting 757 * bitmap updates get flushed here. 758 */ 759 spin_lock_irq(&conf->device_lock); 760 761 if (conf->pending_bio_list.head) { 762 struct bio *bio; 763 bio = bio_list_get(&conf->pending_bio_list); 764 conf->pending_count = 0; 765 spin_unlock_irq(&conf->device_lock); 766 /* flush any pending bitmap writes to 767 * disk before proceeding w/ I/O */ 768 bitmap_unplug(conf->mddev->bitmap); 769 wake_up(&conf->wait_barrier); 770 771 while (bio) { /* submit pending writes */ 772 struct bio *next = bio->bi_next; 773 bio->bi_next = NULL; 774 if (unlikely((bio->bi_rw & REQ_DISCARD) && 775 !blk_queue_discard(bdev_get_queue(bio->bi_bdev)))) 776 /* Just ignore it */ 777 bio_endio(bio, 0); 778 else 779 generic_make_request(bio); 780 bio = next; 781 } 782 } else 783 spin_unlock_irq(&conf->device_lock); 784 } 785 786 /* Barriers.... 787 * Sometimes we need to suspend IO while we do something else, 788 * either some resync/recovery, or reconfigure the array. 789 * To do this we raise a 'barrier'. 790 * The 'barrier' is a counter that can be raised multiple times 791 * to count how many activities are happening which preclude 792 * normal IO. 793 * We can only raise the barrier if there is no pending IO. 794 * i.e. if nr_pending == 0. 795 * We choose only to raise the barrier if no-one is waiting for the 796 * barrier to go down. This means that as soon as an IO request 797 * is ready, no other operations which require a barrier will start 798 * until the IO request has had a chance. 799 * 800 * So: regular IO calls 'wait_barrier'. When that returns there 801 * is no backgroup IO happening, It must arrange to call 802 * allow_barrier when it has finished its IO. 803 * backgroup IO calls must call raise_barrier. Once that returns 804 * there is no normal IO happeing. It must arrange to call 805 * lower_barrier when the particular background IO completes. 806 */ 807 #define RESYNC_DEPTH 32 808 809 static void raise_barrier(struct r1conf *conf) 810 { 811 spin_lock_irq(&conf->resync_lock); 812 813 /* Wait until no block IO is waiting */ 814 wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting, 815 conf->resync_lock); 816 817 /* block any new IO from starting */ 818 conf->barrier++; 819 820 /* Now wait for all pending IO to complete */ 821 wait_event_lock_irq(conf->wait_barrier, 822 !conf->nr_pending && conf->barrier < RESYNC_DEPTH, 823 conf->resync_lock); 824 825 spin_unlock_irq(&conf->resync_lock); 826 } 827 828 static void lower_barrier(struct r1conf *conf) 829 { 830 unsigned long flags; 831 BUG_ON(conf->barrier <= 0); 832 spin_lock_irqsave(&conf->resync_lock, flags); 833 conf->barrier--; 834 spin_unlock_irqrestore(&conf->resync_lock, flags); 835 wake_up(&conf->wait_barrier); 836 } 837 838 static void wait_barrier(struct r1conf *conf) 839 { 840 spin_lock_irq(&conf->resync_lock); 841 if (conf->barrier) { 842 conf->nr_waiting++; 843 /* Wait for the barrier to drop. 844 * However if there are already pending 845 * requests (preventing the barrier from 846 * rising completely), and the 847 * pre-process bio queue isn't empty, 848 * then don't wait, as we need to empty 849 * that queue to get the nr_pending 850 * count down. 851 */ 852 wait_event_lock_irq(conf->wait_barrier, 853 !conf->barrier || 854 (conf->nr_pending && 855 current->bio_list && 856 !bio_list_empty(current->bio_list)), 857 conf->resync_lock); 858 conf->nr_waiting--; 859 } 860 conf->nr_pending++; 861 spin_unlock_irq(&conf->resync_lock); 862 } 863 864 static void allow_barrier(struct r1conf *conf) 865 { 866 unsigned long flags; 867 spin_lock_irqsave(&conf->resync_lock, flags); 868 conf->nr_pending--; 869 spin_unlock_irqrestore(&conf->resync_lock, flags); 870 wake_up(&conf->wait_barrier); 871 } 872 873 static void freeze_array(struct r1conf *conf) 874 { 875 /* stop syncio and normal IO and wait for everything to 876 * go quite. 877 * We increment barrier and nr_waiting, and then 878 * wait until nr_pending match nr_queued+1 879 * This is called in the context of one normal IO request 880 * that has failed. Thus any sync request that might be pending 881 * will be blocked by nr_pending, and we need to wait for 882 * pending IO requests to complete or be queued for re-try. 883 * Thus the number queued (nr_queued) plus this request (1) 884 * must match the number of pending IOs (nr_pending) before 885 * we continue. 886 */ 887 spin_lock_irq(&conf->resync_lock); 888 conf->barrier++; 889 conf->nr_waiting++; 890 wait_event_lock_irq_cmd(conf->wait_barrier, 891 conf->nr_pending == conf->nr_queued+1, 892 conf->resync_lock, 893 flush_pending_writes(conf)); 894 spin_unlock_irq(&conf->resync_lock); 895 } 896 static void unfreeze_array(struct r1conf *conf) 897 { 898 /* reverse the effect of the freeze */ 899 spin_lock_irq(&conf->resync_lock); 900 conf->barrier--; 901 conf->nr_waiting--; 902 wake_up(&conf->wait_barrier); 903 spin_unlock_irq(&conf->resync_lock); 904 } 905 906 907 /* duplicate the data pages for behind I/O 908 */ 909 static void alloc_behind_pages(struct bio *bio, struct r1bio *r1_bio) 910 { 911 int i; 912 struct bio_vec *bvec; 913 struct bio_vec *bvecs = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec), 914 GFP_NOIO); 915 if (unlikely(!bvecs)) 916 return; 917 918 bio_for_each_segment_all(bvec, bio, i) { 919 bvecs[i] = *bvec; 920 bvecs[i].bv_page = alloc_page(GFP_NOIO); 921 if (unlikely(!bvecs[i].bv_page)) 922 goto do_sync_io; 923 memcpy(kmap(bvecs[i].bv_page) + bvec->bv_offset, 924 kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len); 925 kunmap(bvecs[i].bv_page); 926 kunmap(bvec->bv_page); 927 } 928 r1_bio->behind_bvecs = bvecs; 929 r1_bio->behind_page_count = bio->bi_vcnt; 930 set_bit(R1BIO_BehindIO, &r1_bio->state); 931 return; 932 933 do_sync_io: 934 for (i = 0; i < bio->bi_vcnt; i++) 935 if (bvecs[i].bv_page) 936 put_page(bvecs[i].bv_page); 937 kfree(bvecs); 938 pr_debug("%dB behind alloc failed, doing sync I/O\n", bio->bi_size); 939 } 940 941 struct raid1_plug_cb { 942 struct blk_plug_cb cb; 943 struct bio_list pending; 944 int pending_cnt; 945 }; 946 947 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule) 948 { 949 struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb, 950 cb); 951 struct mddev *mddev = plug->cb.data; 952 struct r1conf *conf = mddev->private; 953 struct bio *bio; 954 955 if (from_schedule || current->bio_list) { 956 spin_lock_irq(&conf->device_lock); 957 bio_list_merge(&conf->pending_bio_list, &plug->pending); 958 conf->pending_count += plug->pending_cnt; 959 spin_unlock_irq(&conf->device_lock); 960 wake_up(&conf->wait_barrier); 961 md_wakeup_thread(mddev->thread); 962 kfree(plug); 963 return; 964 } 965 966 /* we aren't scheduling, so we can do the write-out directly. */ 967 bio = bio_list_get(&plug->pending); 968 bitmap_unplug(mddev->bitmap); 969 wake_up(&conf->wait_barrier); 970 971 while (bio) { /* submit pending writes */ 972 struct bio *next = bio->bi_next; 973 bio->bi_next = NULL; 974 if (unlikely((bio->bi_rw & REQ_DISCARD) && 975 !blk_queue_discard(bdev_get_queue(bio->bi_bdev)))) 976 /* Just ignore it */ 977 bio_endio(bio, 0); 978 else 979 generic_make_request(bio); 980 bio = next; 981 } 982 kfree(plug); 983 } 984 985 static void make_request(struct mddev *mddev, struct bio * bio) 986 { 987 struct r1conf *conf = mddev->private; 988 struct raid1_info *mirror; 989 struct r1bio *r1_bio; 990 struct bio *read_bio; 991 int i, disks; 992 struct bitmap *bitmap; 993 unsigned long flags; 994 const int rw = bio_data_dir(bio); 995 const unsigned long do_sync = (bio->bi_rw & REQ_SYNC); 996 const unsigned long do_flush_fua = (bio->bi_rw & (REQ_FLUSH | REQ_FUA)); 997 const unsigned long do_discard = (bio->bi_rw 998 & (REQ_DISCARD | REQ_SECURE)); 999 const unsigned long do_same = (bio->bi_rw & REQ_WRITE_SAME); 1000 struct md_rdev *blocked_rdev; 1001 struct blk_plug_cb *cb; 1002 struct raid1_plug_cb *plug = NULL; 1003 int first_clone; 1004 int sectors_handled; 1005 int max_sectors; 1006 1007 /* 1008 * Register the new request and wait if the reconstruction 1009 * thread has put up a bar for new requests. 1010 * Continue immediately if no resync is active currently. 1011 */ 1012 1013 md_write_start(mddev, bio); /* wait on superblock update early */ 1014 1015 if (bio_data_dir(bio) == WRITE && 1016 bio_end_sector(bio) > mddev->suspend_lo && 1017 bio->bi_sector < mddev->suspend_hi) { 1018 /* As the suspend_* range is controlled by 1019 * userspace, we want an interruptible 1020 * wait. 1021 */ 1022 DEFINE_WAIT(w); 1023 for (;;) { 1024 flush_signals(current); 1025 prepare_to_wait(&conf->wait_barrier, 1026 &w, TASK_INTERRUPTIBLE); 1027 if (bio_end_sector(bio) <= mddev->suspend_lo || 1028 bio->bi_sector >= mddev->suspend_hi) 1029 break; 1030 schedule(); 1031 } 1032 finish_wait(&conf->wait_barrier, &w); 1033 } 1034 1035 wait_barrier(conf); 1036 1037 bitmap = mddev->bitmap; 1038 1039 /* 1040 * make_request() can abort the operation when READA is being 1041 * used and no empty request is available. 1042 * 1043 */ 1044 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO); 1045 1046 r1_bio->master_bio = bio; 1047 r1_bio->sectors = bio_sectors(bio); 1048 r1_bio->state = 0; 1049 r1_bio->mddev = mddev; 1050 r1_bio->sector = bio->bi_sector; 1051 1052 /* We might need to issue multiple reads to different 1053 * devices if there are bad blocks around, so we keep 1054 * track of the number of reads in bio->bi_phys_segments. 1055 * If this is 0, there is only one r1_bio and no locking 1056 * will be needed when requests complete. If it is 1057 * non-zero, then it is the number of not-completed requests. 1058 */ 1059 bio->bi_phys_segments = 0; 1060 clear_bit(BIO_SEG_VALID, &bio->bi_flags); 1061 1062 if (rw == READ) { 1063 /* 1064 * read balancing logic: 1065 */ 1066 int rdisk; 1067 1068 read_again: 1069 rdisk = read_balance(conf, r1_bio, &max_sectors); 1070 1071 if (rdisk < 0) { 1072 /* couldn't find anywhere to read from */ 1073 raid_end_bio_io(r1_bio); 1074 return; 1075 } 1076 mirror = conf->mirrors + rdisk; 1077 1078 if (test_bit(WriteMostly, &mirror->rdev->flags) && 1079 bitmap) { 1080 /* Reading from a write-mostly device must 1081 * take care not to over-take any writes 1082 * that are 'behind' 1083 */ 1084 wait_event(bitmap->behind_wait, 1085 atomic_read(&bitmap->behind_writes) == 0); 1086 } 1087 r1_bio->read_disk = rdisk; 1088 1089 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev); 1090 md_trim_bio(read_bio, r1_bio->sector - bio->bi_sector, 1091 max_sectors); 1092 1093 r1_bio->bios[rdisk] = read_bio; 1094 1095 read_bio->bi_sector = r1_bio->sector + mirror->rdev->data_offset; 1096 read_bio->bi_bdev = mirror->rdev->bdev; 1097 read_bio->bi_end_io = raid1_end_read_request; 1098 read_bio->bi_rw = READ | do_sync; 1099 read_bio->bi_private = r1_bio; 1100 1101 if (max_sectors < r1_bio->sectors) { 1102 /* could not read all from this device, so we will 1103 * need another r1_bio. 1104 */ 1105 1106 sectors_handled = (r1_bio->sector + max_sectors 1107 - bio->bi_sector); 1108 r1_bio->sectors = max_sectors; 1109 spin_lock_irq(&conf->device_lock); 1110 if (bio->bi_phys_segments == 0) 1111 bio->bi_phys_segments = 2; 1112 else 1113 bio->bi_phys_segments++; 1114 spin_unlock_irq(&conf->device_lock); 1115 /* Cannot call generic_make_request directly 1116 * as that will be queued in __make_request 1117 * and subsequent mempool_alloc might block waiting 1118 * for it. So hand bio over to raid1d. 1119 */ 1120 reschedule_retry(r1_bio); 1121 1122 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO); 1123 1124 r1_bio->master_bio = bio; 1125 r1_bio->sectors = bio_sectors(bio) - sectors_handled; 1126 r1_bio->state = 0; 1127 r1_bio->mddev = mddev; 1128 r1_bio->sector = bio->bi_sector + sectors_handled; 1129 goto read_again; 1130 } else 1131 generic_make_request(read_bio); 1132 return; 1133 } 1134 1135 /* 1136 * WRITE: 1137 */ 1138 if (conf->pending_count >= max_queued_requests) { 1139 md_wakeup_thread(mddev->thread); 1140 wait_event(conf->wait_barrier, 1141 conf->pending_count < max_queued_requests); 1142 } 1143 /* first select target devices under rcu_lock and 1144 * inc refcount on their rdev. Record them by setting 1145 * bios[x] to bio 1146 * If there are known/acknowledged bad blocks on any device on 1147 * which we have seen a write error, we want to avoid writing those 1148 * blocks. 1149 * This potentially requires several writes to write around 1150 * the bad blocks. Each set of writes gets it's own r1bio 1151 * with a set of bios attached. 1152 */ 1153 1154 disks = conf->raid_disks * 2; 1155 retry_write: 1156 blocked_rdev = NULL; 1157 rcu_read_lock(); 1158 max_sectors = r1_bio->sectors; 1159 for (i = 0; i < disks; i++) { 1160 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 1161 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) { 1162 atomic_inc(&rdev->nr_pending); 1163 blocked_rdev = rdev; 1164 break; 1165 } 1166 r1_bio->bios[i] = NULL; 1167 if (!rdev || test_bit(Faulty, &rdev->flags) 1168 || test_bit(Unmerged, &rdev->flags)) { 1169 if (i < conf->raid_disks) 1170 set_bit(R1BIO_Degraded, &r1_bio->state); 1171 continue; 1172 } 1173 1174 atomic_inc(&rdev->nr_pending); 1175 if (test_bit(WriteErrorSeen, &rdev->flags)) { 1176 sector_t first_bad; 1177 int bad_sectors; 1178 int is_bad; 1179 1180 is_bad = is_badblock(rdev, r1_bio->sector, 1181 max_sectors, 1182 &first_bad, &bad_sectors); 1183 if (is_bad < 0) { 1184 /* mustn't write here until the bad block is 1185 * acknowledged*/ 1186 set_bit(BlockedBadBlocks, &rdev->flags); 1187 blocked_rdev = rdev; 1188 break; 1189 } 1190 if (is_bad && first_bad <= r1_bio->sector) { 1191 /* Cannot write here at all */ 1192 bad_sectors -= (r1_bio->sector - first_bad); 1193 if (bad_sectors < max_sectors) 1194 /* mustn't write more than bad_sectors 1195 * to other devices yet 1196 */ 1197 max_sectors = bad_sectors; 1198 rdev_dec_pending(rdev, mddev); 1199 /* We don't set R1BIO_Degraded as that 1200 * only applies if the disk is 1201 * missing, so it might be re-added, 1202 * and we want to know to recover this 1203 * chunk. 1204 * In this case the device is here, 1205 * and the fact that this chunk is not 1206 * in-sync is recorded in the bad 1207 * block log 1208 */ 1209 continue; 1210 } 1211 if (is_bad) { 1212 int good_sectors = first_bad - r1_bio->sector; 1213 if (good_sectors < max_sectors) 1214 max_sectors = good_sectors; 1215 } 1216 } 1217 r1_bio->bios[i] = bio; 1218 } 1219 rcu_read_unlock(); 1220 1221 if (unlikely(blocked_rdev)) { 1222 /* Wait for this device to become unblocked */ 1223 int j; 1224 1225 for (j = 0; j < i; j++) 1226 if (r1_bio->bios[j]) 1227 rdev_dec_pending(conf->mirrors[j].rdev, mddev); 1228 r1_bio->state = 0; 1229 allow_barrier(conf); 1230 md_wait_for_blocked_rdev(blocked_rdev, mddev); 1231 wait_barrier(conf); 1232 goto retry_write; 1233 } 1234 1235 if (max_sectors < r1_bio->sectors) { 1236 /* We are splitting this write into multiple parts, so 1237 * we need to prepare for allocating another r1_bio. 1238 */ 1239 r1_bio->sectors = max_sectors; 1240 spin_lock_irq(&conf->device_lock); 1241 if (bio->bi_phys_segments == 0) 1242 bio->bi_phys_segments = 2; 1243 else 1244 bio->bi_phys_segments++; 1245 spin_unlock_irq(&conf->device_lock); 1246 } 1247 sectors_handled = r1_bio->sector + max_sectors - bio->bi_sector; 1248 1249 atomic_set(&r1_bio->remaining, 1); 1250 atomic_set(&r1_bio->behind_remaining, 0); 1251 1252 first_clone = 1; 1253 for (i = 0; i < disks; i++) { 1254 struct bio *mbio; 1255 if (!r1_bio->bios[i]) 1256 continue; 1257 1258 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev); 1259 md_trim_bio(mbio, r1_bio->sector - bio->bi_sector, max_sectors); 1260 1261 if (first_clone) { 1262 /* do behind I/O ? 1263 * Not if there are too many, or cannot 1264 * allocate memory, or a reader on WriteMostly 1265 * is waiting for behind writes to flush */ 1266 if (bitmap && 1267 (atomic_read(&bitmap->behind_writes) 1268 < mddev->bitmap_info.max_write_behind) && 1269 !waitqueue_active(&bitmap->behind_wait)) 1270 alloc_behind_pages(mbio, r1_bio); 1271 1272 bitmap_startwrite(bitmap, r1_bio->sector, 1273 r1_bio->sectors, 1274 test_bit(R1BIO_BehindIO, 1275 &r1_bio->state)); 1276 first_clone = 0; 1277 } 1278 if (r1_bio->behind_bvecs) { 1279 struct bio_vec *bvec; 1280 int j; 1281 1282 /* 1283 * We trimmed the bio, so _all is legit 1284 */ 1285 bio_for_each_segment_all(bvec, mbio, j) 1286 bvec->bv_page = r1_bio->behind_bvecs[j].bv_page; 1287 if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags)) 1288 atomic_inc(&r1_bio->behind_remaining); 1289 } 1290 1291 r1_bio->bios[i] = mbio; 1292 1293 mbio->bi_sector = (r1_bio->sector + 1294 conf->mirrors[i].rdev->data_offset); 1295 mbio->bi_bdev = conf->mirrors[i].rdev->bdev; 1296 mbio->bi_end_io = raid1_end_write_request; 1297 mbio->bi_rw = 1298 WRITE | do_flush_fua | do_sync | do_discard | do_same; 1299 mbio->bi_private = r1_bio; 1300 1301 atomic_inc(&r1_bio->remaining); 1302 1303 cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug)); 1304 if (cb) 1305 plug = container_of(cb, struct raid1_plug_cb, cb); 1306 else 1307 plug = NULL; 1308 spin_lock_irqsave(&conf->device_lock, flags); 1309 if (plug) { 1310 bio_list_add(&plug->pending, mbio); 1311 plug->pending_cnt++; 1312 } else { 1313 bio_list_add(&conf->pending_bio_list, mbio); 1314 conf->pending_count++; 1315 } 1316 spin_unlock_irqrestore(&conf->device_lock, flags); 1317 if (!plug) 1318 md_wakeup_thread(mddev->thread); 1319 } 1320 /* Mustn't call r1_bio_write_done before this next test, 1321 * as it could result in the bio being freed. 1322 */ 1323 if (sectors_handled < bio_sectors(bio)) { 1324 r1_bio_write_done(r1_bio); 1325 /* We need another r1_bio. It has already been counted 1326 * in bio->bi_phys_segments 1327 */ 1328 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO); 1329 r1_bio->master_bio = bio; 1330 r1_bio->sectors = bio_sectors(bio) - sectors_handled; 1331 r1_bio->state = 0; 1332 r1_bio->mddev = mddev; 1333 r1_bio->sector = bio->bi_sector + sectors_handled; 1334 goto retry_write; 1335 } 1336 1337 r1_bio_write_done(r1_bio); 1338 1339 /* In case raid1d snuck in to freeze_array */ 1340 wake_up(&conf->wait_barrier); 1341 } 1342 1343 static void status(struct seq_file *seq, struct mddev *mddev) 1344 { 1345 struct r1conf *conf = mddev->private; 1346 int i; 1347 1348 seq_printf(seq, " [%d/%d] [", conf->raid_disks, 1349 conf->raid_disks - mddev->degraded); 1350 rcu_read_lock(); 1351 for (i = 0; i < conf->raid_disks; i++) { 1352 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 1353 seq_printf(seq, "%s", 1354 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_"); 1355 } 1356 rcu_read_unlock(); 1357 seq_printf(seq, "]"); 1358 } 1359 1360 1361 static void error(struct mddev *mddev, struct md_rdev *rdev) 1362 { 1363 char b[BDEVNAME_SIZE]; 1364 struct r1conf *conf = mddev->private; 1365 1366 /* 1367 * If it is not operational, then we have already marked it as dead 1368 * else if it is the last working disks, ignore the error, let the 1369 * next level up know. 1370 * else mark the drive as failed 1371 */ 1372 if (test_bit(In_sync, &rdev->flags) 1373 && (conf->raid_disks - mddev->degraded) == 1) { 1374 /* 1375 * Don't fail the drive, act as though we were just a 1376 * normal single drive. 1377 * However don't try a recovery from this drive as 1378 * it is very likely to fail. 1379 */ 1380 conf->recovery_disabled = mddev->recovery_disabled; 1381 return; 1382 } 1383 set_bit(Blocked, &rdev->flags); 1384 if (test_and_clear_bit(In_sync, &rdev->flags)) { 1385 unsigned long flags; 1386 spin_lock_irqsave(&conf->device_lock, flags); 1387 mddev->degraded++; 1388 set_bit(Faulty, &rdev->flags); 1389 spin_unlock_irqrestore(&conf->device_lock, flags); 1390 /* 1391 * if recovery is running, make sure it aborts. 1392 */ 1393 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 1394 } else 1395 set_bit(Faulty, &rdev->flags); 1396 set_bit(MD_CHANGE_DEVS, &mddev->flags); 1397 printk(KERN_ALERT 1398 "md/raid1:%s: Disk failure on %s, disabling device.\n" 1399 "md/raid1:%s: Operation continuing on %d devices.\n", 1400 mdname(mddev), bdevname(rdev->bdev, b), 1401 mdname(mddev), conf->raid_disks - mddev->degraded); 1402 } 1403 1404 static void print_conf(struct r1conf *conf) 1405 { 1406 int i; 1407 1408 printk(KERN_DEBUG "RAID1 conf printout:\n"); 1409 if (!conf) { 1410 printk(KERN_DEBUG "(!conf)\n"); 1411 return; 1412 } 1413 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded, 1414 conf->raid_disks); 1415 1416 rcu_read_lock(); 1417 for (i = 0; i < conf->raid_disks; i++) { 1418 char b[BDEVNAME_SIZE]; 1419 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 1420 if (rdev) 1421 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n", 1422 i, !test_bit(In_sync, &rdev->flags), 1423 !test_bit(Faulty, &rdev->flags), 1424 bdevname(rdev->bdev,b)); 1425 } 1426 rcu_read_unlock(); 1427 } 1428 1429 static void close_sync(struct r1conf *conf) 1430 { 1431 wait_barrier(conf); 1432 allow_barrier(conf); 1433 1434 mempool_destroy(conf->r1buf_pool); 1435 conf->r1buf_pool = NULL; 1436 } 1437 1438 static int raid1_spare_active(struct mddev *mddev) 1439 { 1440 int i; 1441 struct r1conf *conf = mddev->private; 1442 int count = 0; 1443 unsigned long flags; 1444 1445 /* 1446 * Find all failed disks within the RAID1 configuration 1447 * and mark them readable. 1448 * Called under mddev lock, so rcu protection not needed. 1449 */ 1450 for (i = 0; i < conf->raid_disks; i++) { 1451 struct md_rdev *rdev = conf->mirrors[i].rdev; 1452 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev; 1453 if (repl 1454 && repl->recovery_offset == MaxSector 1455 && !test_bit(Faulty, &repl->flags) 1456 && !test_and_set_bit(In_sync, &repl->flags)) { 1457 /* replacement has just become active */ 1458 if (!rdev || 1459 !test_and_clear_bit(In_sync, &rdev->flags)) 1460 count++; 1461 if (rdev) { 1462 /* Replaced device not technically 1463 * faulty, but we need to be sure 1464 * it gets removed and never re-added 1465 */ 1466 set_bit(Faulty, &rdev->flags); 1467 sysfs_notify_dirent_safe( 1468 rdev->sysfs_state); 1469 } 1470 } 1471 if (rdev 1472 && !test_bit(Faulty, &rdev->flags) 1473 && !test_and_set_bit(In_sync, &rdev->flags)) { 1474 count++; 1475 sysfs_notify_dirent_safe(rdev->sysfs_state); 1476 } 1477 } 1478 spin_lock_irqsave(&conf->device_lock, flags); 1479 mddev->degraded -= count; 1480 spin_unlock_irqrestore(&conf->device_lock, flags); 1481 1482 print_conf(conf); 1483 return count; 1484 } 1485 1486 1487 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev) 1488 { 1489 struct r1conf *conf = mddev->private; 1490 int err = -EEXIST; 1491 int mirror = 0; 1492 struct raid1_info *p; 1493 int first = 0; 1494 int last = conf->raid_disks - 1; 1495 struct request_queue *q = bdev_get_queue(rdev->bdev); 1496 1497 if (mddev->recovery_disabled == conf->recovery_disabled) 1498 return -EBUSY; 1499 1500 if (rdev->raid_disk >= 0) 1501 first = last = rdev->raid_disk; 1502 1503 if (q->merge_bvec_fn) { 1504 set_bit(Unmerged, &rdev->flags); 1505 mddev->merge_check_needed = 1; 1506 } 1507 1508 for (mirror = first; mirror <= last; mirror++) { 1509 p = conf->mirrors+mirror; 1510 if (!p->rdev) { 1511 1512 disk_stack_limits(mddev->gendisk, rdev->bdev, 1513 rdev->data_offset << 9); 1514 1515 p->head_position = 0; 1516 rdev->raid_disk = mirror; 1517 err = 0; 1518 /* As all devices are equivalent, we don't need a full recovery 1519 * if this was recently any drive of the array 1520 */ 1521 if (rdev->saved_raid_disk < 0) 1522 conf->fullsync = 1; 1523 rcu_assign_pointer(p->rdev, rdev); 1524 break; 1525 } 1526 if (test_bit(WantReplacement, &p->rdev->flags) && 1527 p[conf->raid_disks].rdev == NULL) { 1528 /* Add this device as a replacement */ 1529 clear_bit(In_sync, &rdev->flags); 1530 set_bit(Replacement, &rdev->flags); 1531 rdev->raid_disk = mirror; 1532 err = 0; 1533 conf->fullsync = 1; 1534 rcu_assign_pointer(p[conf->raid_disks].rdev, rdev); 1535 break; 1536 } 1537 } 1538 if (err == 0 && test_bit(Unmerged, &rdev->flags)) { 1539 /* Some requests might not have seen this new 1540 * merge_bvec_fn. We must wait for them to complete 1541 * before merging the device fully. 1542 * First we make sure any code which has tested 1543 * our function has submitted the request, then 1544 * we wait for all outstanding requests to complete. 1545 */ 1546 synchronize_sched(); 1547 raise_barrier(conf); 1548 lower_barrier(conf); 1549 clear_bit(Unmerged, &rdev->flags); 1550 } 1551 md_integrity_add_rdev(rdev, mddev); 1552 if (blk_queue_discard(bdev_get_queue(rdev->bdev))) 1553 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue); 1554 print_conf(conf); 1555 return err; 1556 } 1557 1558 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev) 1559 { 1560 struct r1conf *conf = mddev->private; 1561 int err = 0; 1562 int number = rdev->raid_disk; 1563 struct raid1_info *p = conf->mirrors + number; 1564 1565 if (rdev != p->rdev) 1566 p = conf->mirrors + conf->raid_disks + number; 1567 1568 print_conf(conf); 1569 if (rdev == p->rdev) { 1570 if (test_bit(In_sync, &rdev->flags) || 1571 atomic_read(&rdev->nr_pending)) { 1572 err = -EBUSY; 1573 goto abort; 1574 } 1575 /* Only remove non-faulty devices if recovery 1576 * is not possible. 1577 */ 1578 if (!test_bit(Faulty, &rdev->flags) && 1579 mddev->recovery_disabled != conf->recovery_disabled && 1580 mddev->degraded < conf->raid_disks) { 1581 err = -EBUSY; 1582 goto abort; 1583 } 1584 p->rdev = NULL; 1585 synchronize_rcu(); 1586 if (atomic_read(&rdev->nr_pending)) { 1587 /* lost the race, try later */ 1588 err = -EBUSY; 1589 p->rdev = rdev; 1590 goto abort; 1591 } else if (conf->mirrors[conf->raid_disks + number].rdev) { 1592 /* We just removed a device that is being replaced. 1593 * Move down the replacement. We drain all IO before 1594 * doing this to avoid confusion. 1595 */ 1596 struct md_rdev *repl = 1597 conf->mirrors[conf->raid_disks + number].rdev; 1598 raise_barrier(conf); 1599 clear_bit(Replacement, &repl->flags); 1600 p->rdev = repl; 1601 conf->mirrors[conf->raid_disks + number].rdev = NULL; 1602 lower_barrier(conf); 1603 clear_bit(WantReplacement, &rdev->flags); 1604 } else 1605 clear_bit(WantReplacement, &rdev->flags); 1606 err = md_integrity_register(mddev); 1607 } 1608 abort: 1609 1610 print_conf(conf); 1611 return err; 1612 } 1613 1614 1615 static void end_sync_read(struct bio *bio, int error) 1616 { 1617 struct r1bio *r1_bio = bio->bi_private; 1618 1619 update_head_pos(r1_bio->read_disk, r1_bio); 1620 1621 /* 1622 * we have read a block, now it needs to be re-written, 1623 * or re-read if the read failed. 1624 * We don't do much here, just schedule handling by raid1d 1625 */ 1626 if (test_bit(BIO_UPTODATE, &bio->bi_flags)) 1627 set_bit(R1BIO_Uptodate, &r1_bio->state); 1628 1629 if (atomic_dec_and_test(&r1_bio->remaining)) 1630 reschedule_retry(r1_bio); 1631 } 1632 1633 static void end_sync_write(struct bio *bio, int error) 1634 { 1635 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 1636 struct r1bio *r1_bio = bio->bi_private; 1637 struct mddev *mddev = r1_bio->mddev; 1638 struct r1conf *conf = mddev->private; 1639 int mirror=0; 1640 sector_t first_bad; 1641 int bad_sectors; 1642 1643 mirror = find_bio_disk(r1_bio, bio); 1644 1645 if (!uptodate) { 1646 sector_t sync_blocks = 0; 1647 sector_t s = r1_bio->sector; 1648 long sectors_to_go = r1_bio->sectors; 1649 /* make sure these bits doesn't get cleared. */ 1650 do { 1651 bitmap_end_sync(mddev->bitmap, s, 1652 &sync_blocks, 1); 1653 s += sync_blocks; 1654 sectors_to_go -= sync_blocks; 1655 } while (sectors_to_go > 0); 1656 set_bit(WriteErrorSeen, 1657 &conf->mirrors[mirror].rdev->flags); 1658 if (!test_and_set_bit(WantReplacement, 1659 &conf->mirrors[mirror].rdev->flags)) 1660 set_bit(MD_RECOVERY_NEEDED, & 1661 mddev->recovery); 1662 set_bit(R1BIO_WriteError, &r1_bio->state); 1663 } else if (is_badblock(conf->mirrors[mirror].rdev, 1664 r1_bio->sector, 1665 r1_bio->sectors, 1666 &first_bad, &bad_sectors) && 1667 !is_badblock(conf->mirrors[r1_bio->read_disk].rdev, 1668 r1_bio->sector, 1669 r1_bio->sectors, 1670 &first_bad, &bad_sectors) 1671 ) 1672 set_bit(R1BIO_MadeGood, &r1_bio->state); 1673 1674 if (atomic_dec_and_test(&r1_bio->remaining)) { 1675 int s = r1_bio->sectors; 1676 if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 1677 test_bit(R1BIO_WriteError, &r1_bio->state)) 1678 reschedule_retry(r1_bio); 1679 else { 1680 put_buf(r1_bio); 1681 md_done_sync(mddev, s, uptodate); 1682 } 1683 } 1684 } 1685 1686 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector, 1687 int sectors, struct page *page, int rw) 1688 { 1689 if (sync_page_io(rdev, sector, sectors << 9, page, rw, false)) 1690 /* success */ 1691 return 1; 1692 if (rw == WRITE) { 1693 set_bit(WriteErrorSeen, &rdev->flags); 1694 if (!test_and_set_bit(WantReplacement, 1695 &rdev->flags)) 1696 set_bit(MD_RECOVERY_NEEDED, & 1697 rdev->mddev->recovery); 1698 } 1699 /* need to record an error - either for the block or the device */ 1700 if (!rdev_set_badblocks(rdev, sector, sectors, 0)) 1701 md_error(rdev->mddev, rdev); 1702 return 0; 1703 } 1704 1705 static int fix_sync_read_error(struct r1bio *r1_bio) 1706 { 1707 /* Try some synchronous reads of other devices to get 1708 * good data, much like with normal read errors. Only 1709 * read into the pages we already have so we don't 1710 * need to re-issue the read request. 1711 * We don't need to freeze the array, because being in an 1712 * active sync request, there is no normal IO, and 1713 * no overlapping syncs. 1714 * We don't need to check is_badblock() again as we 1715 * made sure that anything with a bad block in range 1716 * will have bi_end_io clear. 1717 */ 1718 struct mddev *mddev = r1_bio->mddev; 1719 struct r1conf *conf = mddev->private; 1720 struct bio *bio = r1_bio->bios[r1_bio->read_disk]; 1721 sector_t sect = r1_bio->sector; 1722 int sectors = r1_bio->sectors; 1723 int idx = 0; 1724 1725 while(sectors) { 1726 int s = sectors; 1727 int d = r1_bio->read_disk; 1728 int success = 0; 1729 struct md_rdev *rdev; 1730 int start; 1731 1732 if (s > (PAGE_SIZE>>9)) 1733 s = PAGE_SIZE >> 9; 1734 do { 1735 if (r1_bio->bios[d]->bi_end_io == end_sync_read) { 1736 /* No rcu protection needed here devices 1737 * can only be removed when no resync is 1738 * active, and resync is currently active 1739 */ 1740 rdev = conf->mirrors[d].rdev; 1741 if (sync_page_io(rdev, sect, s<<9, 1742 bio->bi_io_vec[idx].bv_page, 1743 READ, false)) { 1744 success = 1; 1745 break; 1746 } 1747 } 1748 d++; 1749 if (d == conf->raid_disks * 2) 1750 d = 0; 1751 } while (!success && d != r1_bio->read_disk); 1752 1753 if (!success) { 1754 char b[BDEVNAME_SIZE]; 1755 int abort = 0; 1756 /* Cannot read from anywhere, this block is lost. 1757 * Record a bad block on each device. If that doesn't 1758 * work just disable and interrupt the recovery. 1759 * Don't fail devices as that won't really help. 1760 */ 1761 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error" 1762 " for block %llu\n", 1763 mdname(mddev), 1764 bdevname(bio->bi_bdev, b), 1765 (unsigned long long)r1_bio->sector); 1766 for (d = 0; d < conf->raid_disks * 2; d++) { 1767 rdev = conf->mirrors[d].rdev; 1768 if (!rdev || test_bit(Faulty, &rdev->flags)) 1769 continue; 1770 if (!rdev_set_badblocks(rdev, sect, s, 0)) 1771 abort = 1; 1772 } 1773 if (abort) { 1774 conf->recovery_disabled = 1775 mddev->recovery_disabled; 1776 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 1777 md_done_sync(mddev, r1_bio->sectors, 0); 1778 put_buf(r1_bio); 1779 return 0; 1780 } 1781 /* Try next page */ 1782 sectors -= s; 1783 sect += s; 1784 idx++; 1785 continue; 1786 } 1787 1788 start = d; 1789 /* write it back and re-read */ 1790 while (d != r1_bio->read_disk) { 1791 if (d == 0) 1792 d = conf->raid_disks * 2; 1793 d--; 1794 if (r1_bio->bios[d]->bi_end_io != end_sync_read) 1795 continue; 1796 rdev = conf->mirrors[d].rdev; 1797 if (r1_sync_page_io(rdev, sect, s, 1798 bio->bi_io_vec[idx].bv_page, 1799 WRITE) == 0) { 1800 r1_bio->bios[d]->bi_end_io = NULL; 1801 rdev_dec_pending(rdev, mddev); 1802 } 1803 } 1804 d = start; 1805 while (d != r1_bio->read_disk) { 1806 if (d == 0) 1807 d = conf->raid_disks * 2; 1808 d--; 1809 if (r1_bio->bios[d]->bi_end_io != end_sync_read) 1810 continue; 1811 rdev = conf->mirrors[d].rdev; 1812 if (r1_sync_page_io(rdev, sect, s, 1813 bio->bi_io_vec[idx].bv_page, 1814 READ) != 0) 1815 atomic_add(s, &rdev->corrected_errors); 1816 } 1817 sectors -= s; 1818 sect += s; 1819 idx ++; 1820 } 1821 set_bit(R1BIO_Uptodate, &r1_bio->state); 1822 set_bit(BIO_UPTODATE, &bio->bi_flags); 1823 return 1; 1824 } 1825 1826 static int process_checks(struct r1bio *r1_bio) 1827 { 1828 /* We have read all readable devices. If we haven't 1829 * got the block, then there is no hope left. 1830 * If we have, then we want to do a comparison 1831 * and skip the write if everything is the same. 1832 * If any blocks failed to read, then we need to 1833 * attempt an over-write 1834 */ 1835 struct mddev *mddev = r1_bio->mddev; 1836 struct r1conf *conf = mddev->private; 1837 int primary; 1838 int i; 1839 int vcnt; 1840 1841 for (primary = 0; primary < conf->raid_disks * 2; primary++) 1842 if (r1_bio->bios[primary]->bi_end_io == end_sync_read && 1843 test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) { 1844 r1_bio->bios[primary]->bi_end_io = NULL; 1845 rdev_dec_pending(conf->mirrors[primary].rdev, mddev); 1846 break; 1847 } 1848 r1_bio->read_disk = primary; 1849 vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9); 1850 for (i = 0; i < conf->raid_disks * 2; i++) { 1851 int j; 1852 struct bio *pbio = r1_bio->bios[primary]; 1853 struct bio *sbio = r1_bio->bios[i]; 1854 int size; 1855 1856 if (sbio->bi_end_io != end_sync_read) 1857 continue; 1858 1859 if (test_bit(BIO_UPTODATE, &sbio->bi_flags)) { 1860 for (j = vcnt; j-- ; ) { 1861 struct page *p, *s; 1862 p = pbio->bi_io_vec[j].bv_page; 1863 s = sbio->bi_io_vec[j].bv_page; 1864 if (memcmp(page_address(p), 1865 page_address(s), 1866 sbio->bi_io_vec[j].bv_len)) 1867 break; 1868 } 1869 } else 1870 j = 0; 1871 if (j >= 0) 1872 atomic64_add(r1_bio->sectors, &mddev->resync_mismatches); 1873 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery) 1874 && test_bit(BIO_UPTODATE, &sbio->bi_flags))) { 1875 /* No need to write to this device. */ 1876 sbio->bi_end_io = NULL; 1877 rdev_dec_pending(conf->mirrors[i].rdev, mddev); 1878 continue; 1879 } 1880 /* fixup the bio for reuse */ 1881 bio_reset(sbio); 1882 sbio->bi_vcnt = vcnt; 1883 sbio->bi_size = r1_bio->sectors << 9; 1884 sbio->bi_sector = r1_bio->sector + 1885 conf->mirrors[i].rdev->data_offset; 1886 sbio->bi_bdev = conf->mirrors[i].rdev->bdev; 1887 sbio->bi_end_io = end_sync_read; 1888 sbio->bi_private = r1_bio; 1889 1890 size = sbio->bi_size; 1891 for (j = 0; j < vcnt ; j++) { 1892 struct bio_vec *bi; 1893 bi = &sbio->bi_io_vec[j]; 1894 bi->bv_offset = 0; 1895 if (size > PAGE_SIZE) 1896 bi->bv_len = PAGE_SIZE; 1897 else 1898 bi->bv_len = size; 1899 size -= PAGE_SIZE; 1900 } 1901 1902 bio_copy_data(sbio, pbio); 1903 } 1904 return 0; 1905 } 1906 1907 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio) 1908 { 1909 struct r1conf *conf = mddev->private; 1910 int i; 1911 int disks = conf->raid_disks * 2; 1912 struct bio *bio, *wbio; 1913 1914 bio = r1_bio->bios[r1_bio->read_disk]; 1915 1916 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) 1917 /* ouch - failed to read all of that. */ 1918 if (!fix_sync_read_error(r1_bio)) 1919 return; 1920 1921 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 1922 if (process_checks(r1_bio) < 0) 1923 return; 1924 /* 1925 * schedule writes 1926 */ 1927 atomic_set(&r1_bio->remaining, 1); 1928 for (i = 0; i < disks ; i++) { 1929 wbio = r1_bio->bios[i]; 1930 if (wbio->bi_end_io == NULL || 1931 (wbio->bi_end_io == end_sync_read && 1932 (i == r1_bio->read_disk || 1933 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery)))) 1934 continue; 1935 1936 wbio->bi_rw = WRITE; 1937 wbio->bi_end_io = end_sync_write; 1938 atomic_inc(&r1_bio->remaining); 1939 md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio)); 1940 1941 generic_make_request(wbio); 1942 } 1943 1944 if (atomic_dec_and_test(&r1_bio->remaining)) { 1945 /* if we're here, all write(s) have completed, so clean up */ 1946 int s = r1_bio->sectors; 1947 if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 1948 test_bit(R1BIO_WriteError, &r1_bio->state)) 1949 reschedule_retry(r1_bio); 1950 else { 1951 put_buf(r1_bio); 1952 md_done_sync(mddev, s, 1); 1953 } 1954 } 1955 } 1956 1957 /* 1958 * This is a kernel thread which: 1959 * 1960 * 1. Retries failed read operations on working mirrors. 1961 * 2. Updates the raid superblock when problems encounter. 1962 * 3. Performs writes following reads for array synchronising. 1963 */ 1964 1965 static void fix_read_error(struct r1conf *conf, int read_disk, 1966 sector_t sect, int sectors) 1967 { 1968 struct mddev *mddev = conf->mddev; 1969 while(sectors) { 1970 int s = sectors; 1971 int d = read_disk; 1972 int success = 0; 1973 int start; 1974 struct md_rdev *rdev; 1975 1976 if (s > (PAGE_SIZE>>9)) 1977 s = PAGE_SIZE >> 9; 1978 1979 do { 1980 /* Note: no rcu protection needed here 1981 * as this is synchronous in the raid1d thread 1982 * which is the thread that might remove 1983 * a device. If raid1d ever becomes multi-threaded.... 1984 */ 1985 sector_t first_bad; 1986 int bad_sectors; 1987 1988 rdev = conf->mirrors[d].rdev; 1989 if (rdev && 1990 (test_bit(In_sync, &rdev->flags) || 1991 (!test_bit(Faulty, &rdev->flags) && 1992 rdev->recovery_offset >= sect + s)) && 1993 is_badblock(rdev, sect, s, 1994 &first_bad, &bad_sectors) == 0 && 1995 sync_page_io(rdev, sect, s<<9, 1996 conf->tmppage, READ, false)) 1997 success = 1; 1998 else { 1999 d++; 2000 if (d == conf->raid_disks * 2) 2001 d = 0; 2002 } 2003 } while (!success && d != read_disk); 2004 2005 if (!success) { 2006 /* Cannot read from anywhere - mark it bad */ 2007 struct md_rdev *rdev = conf->mirrors[read_disk].rdev; 2008 if (!rdev_set_badblocks(rdev, sect, s, 0)) 2009 md_error(mddev, rdev); 2010 break; 2011 } 2012 /* write it back and re-read */ 2013 start = d; 2014 while (d != read_disk) { 2015 if (d==0) 2016 d = conf->raid_disks * 2; 2017 d--; 2018 rdev = conf->mirrors[d].rdev; 2019 if (rdev && 2020 test_bit(In_sync, &rdev->flags)) 2021 r1_sync_page_io(rdev, sect, s, 2022 conf->tmppage, WRITE); 2023 } 2024 d = start; 2025 while (d != read_disk) { 2026 char b[BDEVNAME_SIZE]; 2027 if (d==0) 2028 d = conf->raid_disks * 2; 2029 d--; 2030 rdev = conf->mirrors[d].rdev; 2031 if (rdev && 2032 test_bit(In_sync, &rdev->flags)) { 2033 if (r1_sync_page_io(rdev, sect, s, 2034 conf->tmppage, READ)) { 2035 atomic_add(s, &rdev->corrected_errors); 2036 printk(KERN_INFO 2037 "md/raid1:%s: read error corrected " 2038 "(%d sectors at %llu on %s)\n", 2039 mdname(mddev), s, 2040 (unsigned long long)(sect + 2041 rdev->data_offset), 2042 bdevname(rdev->bdev, b)); 2043 } 2044 } 2045 } 2046 sectors -= s; 2047 sect += s; 2048 } 2049 } 2050 2051 static int narrow_write_error(struct r1bio *r1_bio, int i) 2052 { 2053 struct mddev *mddev = r1_bio->mddev; 2054 struct r1conf *conf = mddev->private; 2055 struct md_rdev *rdev = conf->mirrors[i].rdev; 2056 2057 /* bio has the data to be written to device 'i' where 2058 * we just recently had a write error. 2059 * We repeatedly clone the bio and trim down to one block, 2060 * then try the write. Where the write fails we record 2061 * a bad block. 2062 * It is conceivable that the bio doesn't exactly align with 2063 * blocks. We must handle this somehow. 2064 * 2065 * We currently own a reference on the rdev. 2066 */ 2067 2068 int block_sectors; 2069 sector_t sector; 2070 int sectors; 2071 int sect_to_write = r1_bio->sectors; 2072 int ok = 1; 2073 2074 if (rdev->badblocks.shift < 0) 2075 return 0; 2076 2077 block_sectors = 1 << rdev->badblocks.shift; 2078 sector = r1_bio->sector; 2079 sectors = ((sector + block_sectors) 2080 & ~(sector_t)(block_sectors - 1)) 2081 - sector; 2082 2083 while (sect_to_write) { 2084 struct bio *wbio; 2085 if (sectors > sect_to_write) 2086 sectors = sect_to_write; 2087 /* Write at 'sector' for 'sectors'*/ 2088 2089 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) { 2090 unsigned vcnt = r1_bio->behind_page_count; 2091 struct bio_vec *vec = r1_bio->behind_bvecs; 2092 2093 while (!vec->bv_page) { 2094 vec++; 2095 vcnt--; 2096 } 2097 2098 wbio = bio_alloc_mddev(GFP_NOIO, vcnt, mddev); 2099 memcpy(wbio->bi_io_vec, vec, vcnt * sizeof(struct bio_vec)); 2100 2101 wbio->bi_vcnt = vcnt; 2102 } else { 2103 wbio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev); 2104 } 2105 2106 wbio->bi_rw = WRITE; 2107 wbio->bi_sector = r1_bio->sector; 2108 wbio->bi_size = r1_bio->sectors << 9; 2109 2110 md_trim_bio(wbio, sector - r1_bio->sector, sectors); 2111 wbio->bi_sector += rdev->data_offset; 2112 wbio->bi_bdev = rdev->bdev; 2113 if (submit_bio_wait(WRITE, wbio) == 0) 2114 /* failure! */ 2115 ok = rdev_set_badblocks(rdev, sector, 2116 sectors, 0) 2117 && ok; 2118 2119 bio_put(wbio); 2120 sect_to_write -= sectors; 2121 sector += sectors; 2122 sectors = block_sectors; 2123 } 2124 return ok; 2125 } 2126 2127 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio) 2128 { 2129 int m; 2130 int s = r1_bio->sectors; 2131 for (m = 0; m < conf->raid_disks * 2 ; m++) { 2132 struct md_rdev *rdev = conf->mirrors[m].rdev; 2133 struct bio *bio = r1_bio->bios[m]; 2134 if (bio->bi_end_io == NULL) 2135 continue; 2136 if (test_bit(BIO_UPTODATE, &bio->bi_flags) && 2137 test_bit(R1BIO_MadeGood, &r1_bio->state)) { 2138 rdev_clear_badblocks(rdev, r1_bio->sector, s, 0); 2139 } 2140 if (!test_bit(BIO_UPTODATE, &bio->bi_flags) && 2141 test_bit(R1BIO_WriteError, &r1_bio->state)) { 2142 if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0)) 2143 md_error(conf->mddev, rdev); 2144 } 2145 } 2146 put_buf(r1_bio); 2147 md_done_sync(conf->mddev, s, 1); 2148 } 2149 2150 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio) 2151 { 2152 int m; 2153 for (m = 0; m < conf->raid_disks * 2 ; m++) 2154 if (r1_bio->bios[m] == IO_MADE_GOOD) { 2155 struct md_rdev *rdev = conf->mirrors[m].rdev; 2156 rdev_clear_badblocks(rdev, 2157 r1_bio->sector, 2158 r1_bio->sectors, 0); 2159 rdev_dec_pending(rdev, conf->mddev); 2160 } else if (r1_bio->bios[m] != NULL) { 2161 /* This drive got a write error. We need to 2162 * narrow down and record precise write 2163 * errors. 2164 */ 2165 if (!narrow_write_error(r1_bio, m)) { 2166 md_error(conf->mddev, 2167 conf->mirrors[m].rdev); 2168 /* an I/O failed, we can't clear the bitmap */ 2169 set_bit(R1BIO_Degraded, &r1_bio->state); 2170 } 2171 rdev_dec_pending(conf->mirrors[m].rdev, 2172 conf->mddev); 2173 } 2174 if (test_bit(R1BIO_WriteError, &r1_bio->state)) 2175 close_write(r1_bio); 2176 raid_end_bio_io(r1_bio); 2177 } 2178 2179 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio) 2180 { 2181 int disk; 2182 int max_sectors; 2183 struct mddev *mddev = conf->mddev; 2184 struct bio *bio; 2185 char b[BDEVNAME_SIZE]; 2186 struct md_rdev *rdev; 2187 2188 clear_bit(R1BIO_ReadError, &r1_bio->state); 2189 /* we got a read error. Maybe the drive is bad. Maybe just 2190 * the block and we can fix it. 2191 * We freeze all other IO, and try reading the block from 2192 * other devices. When we find one, we re-write 2193 * and check it that fixes the read error. 2194 * This is all done synchronously while the array is 2195 * frozen 2196 */ 2197 if (mddev->ro == 0) { 2198 freeze_array(conf); 2199 fix_read_error(conf, r1_bio->read_disk, 2200 r1_bio->sector, r1_bio->sectors); 2201 unfreeze_array(conf); 2202 } else 2203 md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev); 2204 rdev_dec_pending(conf->mirrors[r1_bio->read_disk].rdev, conf->mddev); 2205 2206 bio = r1_bio->bios[r1_bio->read_disk]; 2207 bdevname(bio->bi_bdev, b); 2208 read_more: 2209 disk = read_balance(conf, r1_bio, &max_sectors); 2210 if (disk == -1) { 2211 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O" 2212 " read error for block %llu\n", 2213 mdname(mddev), b, (unsigned long long)r1_bio->sector); 2214 raid_end_bio_io(r1_bio); 2215 } else { 2216 const unsigned long do_sync 2217 = r1_bio->master_bio->bi_rw & REQ_SYNC; 2218 if (bio) { 2219 r1_bio->bios[r1_bio->read_disk] = 2220 mddev->ro ? IO_BLOCKED : NULL; 2221 bio_put(bio); 2222 } 2223 r1_bio->read_disk = disk; 2224 bio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev); 2225 md_trim_bio(bio, r1_bio->sector - bio->bi_sector, max_sectors); 2226 r1_bio->bios[r1_bio->read_disk] = bio; 2227 rdev = conf->mirrors[disk].rdev; 2228 printk_ratelimited(KERN_ERR 2229 "md/raid1:%s: redirecting sector %llu" 2230 " to other mirror: %s\n", 2231 mdname(mddev), 2232 (unsigned long long)r1_bio->sector, 2233 bdevname(rdev->bdev, b)); 2234 bio->bi_sector = r1_bio->sector + rdev->data_offset; 2235 bio->bi_bdev = rdev->bdev; 2236 bio->bi_end_io = raid1_end_read_request; 2237 bio->bi_rw = READ | do_sync; 2238 bio->bi_private = r1_bio; 2239 if (max_sectors < r1_bio->sectors) { 2240 /* Drat - have to split this up more */ 2241 struct bio *mbio = r1_bio->master_bio; 2242 int sectors_handled = (r1_bio->sector + max_sectors 2243 - mbio->bi_sector); 2244 r1_bio->sectors = max_sectors; 2245 spin_lock_irq(&conf->device_lock); 2246 if (mbio->bi_phys_segments == 0) 2247 mbio->bi_phys_segments = 2; 2248 else 2249 mbio->bi_phys_segments++; 2250 spin_unlock_irq(&conf->device_lock); 2251 generic_make_request(bio); 2252 bio = NULL; 2253 2254 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO); 2255 2256 r1_bio->master_bio = mbio; 2257 r1_bio->sectors = bio_sectors(mbio) - sectors_handled; 2258 r1_bio->state = 0; 2259 set_bit(R1BIO_ReadError, &r1_bio->state); 2260 r1_bio->mddev = mddev; 2261 r1_bio->sector = mbio->bi_sector + sectors_handled; 2262 2263 goto read_more; 2264 } else 2265 generic_make_request(bio); 2266 } 2267 } 2268 2269 static void raid1d(struct md_thread *thread) 2270 { 2271 struct mddev *mddev = thread->mddev; 2272 struct r1bio *r1_bio; 2273 unsigned long flags; 2274 struct r1conf *conf = mddev->private; 2275 struct list_head *head = &conf->retry_list; 2276 struct blk_plug plug; 2277 2278 md_check_recovery(mddev); 2279 2280 blk_start_plug(&plug); 2281 for (;;) { 2282 2283 flush_pending_writes(conf); 2284 2285 spin_lock_irqsave(&conf->device_lock, flags); 2286 if (list_empty(head)) { 2287 spin_unlock_irqrestore(&conf->device_lock, flags); 2288 break; 2289 } 2290 r1_bio = list_entry(head->prev, struct r1bio, retry_list); 2291 list_del(head->prev); 2292 conf->nr_queued--; 2293 spin_unlock_irqrestore(&conf->device_lock, flags); 2294 2295 mddev = r1_bio->mddev; 2296 conf = mddev->private; 2297 if (test_bit(R1BIO_IsSync, &r1_bio->state)) { 2298 if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 2299 test_bit(R1BIO_WriteError, &r1_bio->state)) 2300 handle_sync_write_finished(conf, r1_bio); 2301 else 2302 sync_request_write(mddev, r1_bio); 2303 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 2304 test_bit(R1BIO_WriteError, &r1_bio->state)) 2305 handle_write_finished(conf, r1_bio); 2306 else if (test_bit(R1BIO_ReadError, &r1_bio->state)) 2307 handle_read_error(conf, r1_bio); 2308 else 2309 /* just a partial read to be scheduled from separate 2310 * context 2311 */ 2312 generic_make_request(r1_bio->bios[r1_bio->read_disk]); 2313 2314 cond_resched(); 2315 if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) 2316 md_check_recovery(mddev); 2317 } 2318 blk_finish_plug(&plug); 2319 } 2320 2321 2322 static int init_resync(struct r1conf *conf) 2323 { 2324 int buffs; 2325 2326 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE; 2327 BUG_ON(conf->r1buf_pool); 2328 conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free, 2329 conf->poolinfo); 2330 if (!conf->r1buf_pool) 2331 return -ENOMEM; 2332 conf->next_resync = 0; 2333 return 0; 2334 } 2335 2336 /* 2337 * perform a "sync" on one "block" 2338 * 2339 * We need to make sure that no normal I/O request - particularly write 2340 * requests - conflict with active sync requests. 2341 * 2342 * This is achieved by tracking pending requests and a 'barrier' concept 2343 * that can be installed to exclude normal IO requests. 2344 */ 2345 2346 static sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster) 2347 { 2348 struct r1conf *conf = mddev->private; 2349 struct r1bio *r1_bio; 2350 struct bio *bio; 2351 sector_t max_sector, nr_sectors; 2352 int disk = -1; 2353 int i; 2354 int wonly = -1; 2355 int write_targets = 0, read_targets = 0; 2356 sector_t sync_blocks; 2357 int still_degraded = 0; 2358 int good_sectors = RESYNC_SECTORS; 2359 int min_bad = 0; /* number of sectors that are bad in all devices */ 2360 2361 if (!conf->r1buf_pool) 2362 if (init_resync(conf)) 2363 return 0; 2364 2365 max_sector = mddev->dev_sectors; 2366 if (sector_nr >= max_sector) { 2367 /* If we aborted, we need to abort the 2368 * sync on the 'current' bitmap chunk (there will 2369 * only be one in raid1 resync. 2370 * We can find the current addess in mddev->curr_resync 2371 */ 2372 if (mddev->curr_resync < max_sector) /* aborted */ 2373 bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 2374 &sync_blocks, 1); 2375 else /* completed sync */ 2376 conf->fullsync = 0; 2377 2378 bitmap_close_sync(mddev->bitmap); 2379 close_sync(conf); 2380 return 0; 2381 } 2382 2383 if (mddev->bitmap == NULL && 2384 mddev->recovery_cp == MaxSector && 2385 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 2386 conf->fullsync == 0) { 2387 *skipped = 1; 2388 return max_sector - sector_nr; 2389 } 2390 /* before building a request, check if we can skip these blocks.. 2391 * This call the bitmap_start_sync doesn't actually record anything 2392 */ 2393 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) && 2394 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 2395 /* We can skip this block, and probably several more */ 2396 *skipped = 1; 2397 return sync_blocks; 2398 } 2399 /* 2400 * If there is non-resync activity waiting for a turn, 2401 * and resync is going fast enough, 2402 * then let it though before starting on this new sync request. 2403 */ 2404 if (!go_faster && conf->nr_waiting) 2405 msleep_interruptible(1000); 2406 2407 bitmap_cond_end_sync(mddev->bitmap, sector_nr); 2408 r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO); 2409 raise_barrier(conf); 2410 2411 conf->next_resync = sector_nr; 2412 2413 rcu_read_lock(); 2414 /* 2415 * If we get a correctably read error during resync or recovery, 2416 * we might want to read from a different device. So we 2417 * flag all drives that could conceivably be read from for READ, 2418 * and any others (which will be non-In_sync devices) for WRITE. 2419 * If a read fails, we try reading from something else for which READ 2420 * is OK. 2421 */ 2422 2423 r1_bio->mddev = mddev; 2424 r1_bio->sector = sector_nr; 2425 r1_bio->state = 0; 2426 set_bit(R1BIO_IsSync, &r1_bio->state); 2427 2428 for (i = 0; i < conf->raid_disks * 2; i++) { 2429 struct md_rdev *rdev; 2430 bio = r1_bio->bios[i]; 2431 bio_reset(bio); 2432 2433 rdev = rcu_dereference(conf->mirrors[i].rdev); 2434 if (rdev == NULL || 2435 test_bit(Faulty, &rdev->flags)) { 2436 if (i < conf->raid_disks) 2437 still_degraded = 1; 2438 } else if (!test_bit(In_sync, &rdev->flags)) { 2439 bio->bi_rw = WRITE; 2440 bio->bi_end_io = end_sync_write; 2441 write_targets ++; 2442 } else { 2443 /* may need to read from here */ 2444 sector_t first_bad = MaxSector; 2445 int bad_sectors; 2446 2447 if (is_badblock(rdev, sector_nr, good_sectors, 2448 &first_bad, &bad_sectors)) { 2449 if (first_bad > sector_nr) 2450 good_sectors = first_bad - sector_nr; 2451 else { 2452 bad_sectors -= (sector_nr - first_bad); 2453 if (min_bad == 0 || 2454 min_bad > bad_sectors) 2455 min_bad = bad_sectors; 2456 } 2457 } 2458 if (sector_nr < first_bad) { 2459 if (test_bit(WriteMostly, &rdev->flags)) { 2460 if (wonly < 0) 2461 wonly = i; 2462 } else { 2463 if (disk < 0) 2464 disk = i; 2465 } 2466 bio->bi_rw = READ; 2467 bio->bi_end_io = end_sync_read; 2468 read_targets++; 2469 } else if (!test_bit(WriteErrorSeen, &rdev->flags) && 2470 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && 2471 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) { 2472 /* 2473 * The device is suitable for reading (InSync), 2474 * but has bad block(s) here. Let's try to correct them, 2475 * if we are doing resync or repair. Otherwise, leave 2476 * this device alone for this sync request. 2477 */ 2478 bio->bi_rw = WRITE; 2479 bio->bi_end_io = end_sync_write; 2480 write_targets++; 2481 } 2482 } 2483 if (bio->bi_end_io) { 2484 atomic_inc(&rdev->nr_pending); 2485 bio->bi_sector = sector_nr + rdev->data_offset; 2486 bio->bi_bdev = rdev->bdev; 2487 bio->bi_private = r1_bio; 2488 } 2489 } 2490 rcu_read_unlock(); 2491 if (disk < 0) 2492 disk = wonly; 2493 r1_bio->read_disk = disk; 2494 2495 if (read_targets == 0 && min_bad > 0) { 2496 /* These sectors are bad on all InSync devices, so we 2497 * need to mark them bad on all write targets 2498 */ 2499 int ok = 1; 2500 for (i = 0 ; i < conf->raid_disks * 2 ; i++) 2501 if (r1_bio->bios[i]->bi_end_io == end_sync_write) { 2502 struct md_rdev *rdev = conf->mirrors[i].rdev; 2503 ok = rdev_set_badblocks(rdev, sector_nr, 2504 min_bad, 0 2505 ) && ok; 2506 } 2507 set_bit(MD_CHANGE_DEVS, &mddev->flags); 2508 *skipped = 1; 2509 put_buf(r1_bio); 2510 2511 if (!ok) { 2512 /* Cannot record the badblocks, so need to 2513 * abort the resync. 2514 * If there are multiple read targets, could just 2515 * fail the really bad ones ??? 2516 */ 2517 conf->recovery_disabled = mddev->recovery_disabled; 2518 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 2519 return 0; 2520 } else 2521 return min_bad; 2522 2523 } 2524 if (min_bad > 0 && min_bad < good_sectors) { 2525 /* only resync enough to reach the next bad->good 2526 * transition */ 2527 good_sectors = min_bad; 2528 } 2529 2530 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0) 2531 /* extra read targets are also write targets */ 2532 write_targets += read_targets-1; 2533 2534 if (write_targets == 0 || read_targets == 0) { 2535 /* There is nowhere to write, so all non-sync 2536 * drives must be failed - so we are finished 2537 */ 2538 sector_t rv; 2539 if (min_bad > 0) 2540 max_sector = sector_nr + min_bad; 2541 rv = max_sector - sector_nr; 2542 *skipped = 1; 2543 put_buf(r1_bio); 2544 return rv; 2545 } 2546 2547 if (max_sector > mddev->resync_max) 2548 max_sector = mddev->resync_max; /* Don't do IO beyond here */ 2549 if (max_sector > sector_nr + good_sectors) 2550 max_sector = sector_nr + good_sectors; 2551 nr_sectors = 0; 2552 sync_blocks = 0; 2553 do { 2554 struct page *page; 2555 int len = PAGE_SIZE; 2556 if (sector_nr + (len>>9) > max_sector) 2557 len = (max_sector - sector_nr) << 9; 2558 if (len == 0) 2559 break; 2560 if (sync_blocks == 0) { 2561 if (!bitmap_start_sync(mddev->bitmap, sector_nr, 2562 &sync_blocks, still_degraded) && 2563 !conf->fullsync && 2564 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 2565 break; 2566 BUG_ON(sync_blocks < (PAGE_SIZE>>9)); 2567 if ((len >> 9) > sync_blocks) 2568 len = sync_blocks<<9; 2569 } 2570 2571 for (i = 0 ; i < conf->raid_disks * 2; i++) { 2572 bio = r1_bio->bios[i]; 2573 if (bio->bi_end_io) { 2574 page = bio->bi_io_vec[bio->bi_vcnt].bv_page; 2575 if (bio_add_page(bio, page, len, 0) == 0) { 2576 /* stop here */ 2577 bio->bi_io_vec[bio->bi_vcnt].bv_page = page; 2578 while (i > 0) { 2579 i--; 2580 bio = r1_bio->bios[i]; 2581 if (bio->bi_end_io==NULL) 2582 continue; 2583 /* remove last page from this bio */ 2584 bio->bi_vcnt--; 2585 bio->bi_size -= len; 2586 bio->bi_flags &= ~(1<< BIO_SEG_VALID); 2587 } 2588 goto bio_full; 2589 } 2590 } 2591 } 2592 nr_sectors += len>>9; 2593 sector_nr += len>>9; 2594 sync_blocks -= (len>>9); 2595 } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES); 2596 bio_full: 2597 r1_bio->sectors = nr_sectors; 2598 2599 /* For a user-requested sync, we read all readable devices and do a 2600 * compare 2601 */ 2602 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 2603 atomic_set(&r1_bio->remaining, read_targets); 2604 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) { 2605 bio = r1_bio->bios[i]; 2606 if (bio->bi_end_io == end_sync_read) { 2607 read_targets--; 2608 md_sync_acct(bio->bi_bdev, nr_sectors); 2609 generic_make_request(bio); 2610 } 2611 } 2612 } else { 2613 atomic_set(&r1_bio->remaining, 1); 2614 bio = r1_bio->bios[r1_bio->read_disk]; 2615 md_sync_acct(bio->bi_bdev, nr_sectors); 2616 generic_make_request(bio); 2617 2618 } 2619 return nr_sectors; 2620 } 2621 2622 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks) 2623 { 2624 if (sectors) 2625 return sectors; 2626 2627 return mddev->dev_sectors; 2628 } 2629 2630 static struct r1conf *setup_conf(struct mddev *mddev) 2631 { 2632 struct r1conf *conf; 2633 int i; 2634 struct raid1_info *disk; 2635 struct md_rdev *rdev; 2636 int err = -ENOMEM; 2637 2638 conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL); 2639 if (!conf) 2640 goto abort; 2641 2642 conf->mirrors = kzalloc(sizeof(struct raid1_info) 2643 * mddev->raid_disks * 2, 2644 GFP_KERNEL); 2645 if (!conf->mirrors) 2646 goto abort; 2647 2648 conf->tmppage = alloc_page(GFP_KERNEL); 2649 if (!conf->tmppage) 2650 goto abort; 2651 2652 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL); 2653 if (!conf->poolinfo) 2654 goto abort; 2655 conf->poolinfo->raid_disks = mddev->raid_disks * 2; 2656 conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc, 2657 r1bio_pool_free, 2658 conf->poolinfo); 2659 if (!conf->r1bio_pool) 2660 goto abort; 2661 2662 conf->poolinfo->mddev = mddev; 2663 2664 err = -EINVAL; 2665 spin_lock_init(&conf->device_lock); 2666 rdev_for_each(rdev, mddev) { 2667 struct request_queue *q; 2668 int disk_idx = rdev->raid_disk; 2669 if (disk_idx >= mddev->raid_disks 2670 || disk_idx < 0) 2671 continue; 2672 if (test_bit(Replacement, &rdev->flags)) 2673 disk = conf->mirrors + mddev->raid_disks + disk_idx; 2674 else 2675 disk = conf->mirrors + disk_idx; 2676 2677 if (disk->rdev) 2678 goto abort; 2679 disk->rdev = rdev; 2680 q = bdev_get_queue(rdev->bdev); 2681 if (q->merge_bvec_fn) 2682 mddev->merge_check_needed = 1; 2683 2684 disk->head_position = 0; 2685 disk->seq_start = MaxSector; 2686 } 2687 conf->raid_disks = mddev->raid_disks; 2688 conf->mddev = mddev; 2689 INIT_LIST_HEAD(&conf->retry_list); 2690 2691 spin_lock_init(&conf->resync_lock); 2692 init_waitqueue_head(&conf->wait_barrier); 2693 2694 bio_list_init(&conf->pending_bio_list); 2695 conf->pending_count = 0; 2696 conf->recovery_disabled = mddev->recovery_disabled - 1; 2697 2698 err = -EIO; 2699 for (i = 0; i < conf->raid_disks * 2; i++) { 2700 2701 disk = conf->mirrors + i; 2702 2703 if (i < conf->raid_disks && 2704 disk[conf->raid_disks].rdev) { 2705 /* This slot has a replacement. */ 2706 if (!disk->rdev) { 2707 /* No original, just make the replacement 2708 * a recovering spare 2709 */ 2710 disk->rdev = 2711 disk[conf->raid_disks].rdev; 2712 disk[conf->raid_disks].rdev = NULL; 2713 } else if (!test_bit(In_sync, &disk->rdev->flags)) 2714 /* Original is not in_sync - bad */ 2715 goto abort; 2716 } 2717 2718 if (!disk->rdev || 2719 !test_bit(In_sync, &disk->rdev->flags)) { 2720 disk->head_position = 0; 2721 if (disk->rdev && 2722 (disk->rdev->saved_raid_disk < 0)) 2723 conf->fullsync = 1; 2724 } 2725 } 2726 2727 err = -ENOMEM; 2728 conf->thread = md_register_thread(raid1d, mddev, "raid1"); 2729 if (!conf->thread) { 2730 printk(KERN_ERR 2731 "md/raid1:%s: couldn't allocate thread\n", 2732 mdname(mddev)); 2733 goto abort; 2734 } 2735 2736 return conf; 2737 2738 abort: 2739 if (conf) { 2740 if (conf->r1bio_pool) 2741 mempool_destroy(conf->r1bio_pool); 2742 kfree(conf->mirrors); 2743 safe_put_page(conf->tmppage); 2744 kfree(conf->poolinfo); 2745 kfree(conf); 2746 } 2747 return ERR_PTR(err); 2748 } 2749 2750 static int stop(struct mddev *mddev); 2751 static int run(struct mddev *mddev) 2752 { 2753 struct r1conf *conf; 2754 int i; 2755 struct md_rdev *rdev; 2756 int ret; 2757 bool discard_supported = false; 2758 2759 if (mddev->level != 1) { 2760 printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n", 2761 mdname(mddev), mddev->level); 2762 return -EIO; 2763 } 2764 if (mddev->reshape_position != MaxSector) { 2765 printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n", 2766 mdname(mddev)); 2767 return -EIO; 2768 } 2769 /* 2770 * copy the already verified devices into our private RAID1 2771 * bookkeeping area. [whatever we allocate in run(), 2772 * should be freed in stop()] 2773 */ 2774 if (mddev->private == NULL) 2775 conf = setup_conf(mddev); 2776 else 2777 conf = mddev->private; 2778 2779 if (IS_ERR(conf)) 2780 return PTR_ERR(conf); 2781 2782 if (mddev->queue) 2783 blk_queue_max_write_same_sectors(mddev->queue, 2784 mddev->chunk_sectors); 2785 rdev_for_each(rdev, mddev) { 2786 if (!mddev->gendisk) 2787 continue; 2788 disk_stack_limits(mddev->gendisk, rdev->bdev, 2789 rdev->data_offset << 9); 2790 if (blk_queue_discard(bdev_get_queue(rdev->bdev))) 2791 discard_supported = true; 2792 } 2793 2794 mddev->degraded = 0; 2795 for (i=0; i < conf->raid_disks; i++) 2796 if (conf->mirrors[i].rdev == NULL || 2797 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) || 2798 test_bit(Faulty, &conf->mirrors[i].rdev->flags)) 2799 mddev->degraded++; 2800 2801 if (conf->raid_disks - mddev->degraded == 1) 2802 mddev->recovery_cp = MaxSector; 2803 2804 if (mddev->recovery_cp != MaxSector) 2805 printk(KERN_NOTICE "md/raid1:%s: not clean" 2806 " -- starting background reconstruction\n", 2807 mdname(mddev)); 2808 printk(KERN_INFO 2809 "md/raid1:%s: active with %d out of %d mirrors\n", 2810 mdname(mddev), mddev->raid_disks - mddev->degraded, 2811 mddev->raid_disks); 2812 2813 /* 2814 * Ok, everything is just fine now 2815 */ 2816 mddev->thread = conf->thread; 2817 conf->thread = NULL; 2818 mddev->private = conf; 2819 2820 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0)); 2821 2822 if (mddev->queue) { 2823 mddev->queue->backing_dev_info.congested_fn = raid1_congested; 2824 mddev->queue->backing_dev_info.congested_data = mddev; 2825 blk_queue_merge_bvec(mddev->queue, raid1_mergeable_bvec); 2826 2827 if (discard_supported) 2828 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, 2829 mddev->queue); 2830 else 2831 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, 2832 mddev->queue); 2833 } 2834 2835 ret = md_integrity_register(mddev); 2836 if (ret) 2837 stop(mddev); 2838 return ret; 2839 } 2840 2841 static int stop(struct mddev *mddev) 2842 { 2843 struct r1conf *conf = mddev->private; 2844 struct bitmap *bitmap = mddev->bitmap; 2845 2846 /* wait for behind writes to complete */ 2847 if (bitmap && atomic_read(&bitmap->behind_writes) > 0) { 2848 printk(KERN_INFO "md/raid1:%s: behind writes in progress - waiting to stop.\n", 2849 mdname(mddev)); 2850 /* need to kick something here to make sure I/O goes? */ 2851 wait_event(bitmap->behind_wait, 2852 atomic_read(&bitmap->behind_writes) == 0); 2853 } 2854 2855 raise_barrier(conf); 2856 lower_barrier(conf); 2857 2858 md_unregister_thread(&mddev->thread); 2859 if (conf->r1bio_pool) 2860 mempool_destroy(conf->r1bio_pool); 2861 kfree(conf->mirrors); 2862 safe_put_page(conf->tmppage); 2863 kfree(conf->poolinfo); 2864 kfree(conf); 2865 mddev->private = NULL; 2866 return 0; 2867 } 2868 2869 static int raid1_resize(struct mddev *mddev, sector_t sectors) 2870 { 2871 /* no resync is happening, and there is enough space 2872 * on all devices, so we can resize. 2873 * We need to make sure resync covers any new space. 2874 * If the array is shrinking we should possibly wait until 2875 * any io in the removed space completes, but it hardly seems 2876 * worth it. 2877 */ 2878 sector_t newsize = raid1_size(mddev, sectors, 0); 2879 if (mddev->external_size && 2880 mddev->array_sectors > newsize) 2881 return -EINVAL; 2882 if (mddev->bitmap) { 2883 int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0); 2884 if (ret) 2885 return ret; 2886 } 2887 md_set_array_sectors(mddev, newsize); 2888 set_capacity(mddev->gendisk, mddev->array_sectors); 2889 revalidate_disk(mddev->gendisk); 2890 if (sectors > mddev->dev_sectors && 2891 mddev->recovery_cp > mddev->dev_sectors) { 2892 mddev->recovery_cp = mddev->dev_sectors; 2893 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 2894 } 2895 mddev->dev_sectors = sectors; 2896 mddev->resync_max_sectors = sectors; 2897 return 0; 2898 } 2899 2900 static int raid1_reshape(struct mddev *mddev) 2901 { 2902 /* We need to: 2903 * 1/ resize the r1bio_pool 2904 * 2/ resize conf->mirrors 2905 * 2906 * We allocate a new r1bio_pool if we can. 2907 * Then raise a device barrier and wait until all IO stops. 2908 * Then resize conf->mirrors and swap in the new r1bio pool. 2909 * 2910 * At the same time, we "pack" the devices so that all the missing 2911 * devices have the higher raid_disk numbers. 2912 */ 2913 mempool_t *newpool, *oldpool; 2914 struct pool_info *newpoolinfo; 2915 struct raid1_info *newmirrors; 2916 struct r1conf *conf = mddev->private; 2917 int cnt, raid_disks; 2918 unsigned long flags; 2919 int d, d2, err; 2920 2921 /* Cannot change chunk_size, layout, or level */ 2922 if (mddev->chunk_sectors != mddev->new_chunk_sectors || 2923 mddev->layout != mddev->new_layout || 2924 mddev->level != mddev->new_level) { 2925 mddev->new_chunk_sectors = mddev->chunk_sectors; 2926 mddev->new_layout = mddev->layout; 2927 mddev->new_level = mddev->level; 2928 return -EINVAL; 2929 } 2930 2931 err = md_allow_write(mddev); 2932 if (err) 2933 return err; 2934 2935 raid_disks = mddev->raid_disks + mddev->delta_disks; 2936 2937 if (raid_disks < conf->raid_disks) { 2938 cnt=0; 2939 for (d= 0; d < conf->raid_disks; d++) 2940 if (conf->mirrors[d].rdev) 2941 cnt++; 2942 if (cnt > raid_disks) 2943 return -EBUSY; 2944 } 2945 2946 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL); 2947 if (!newpoolinfo) 2948 return -ENOMEM; 2949 newpoolinfo->mddev = mddev; 2950 newpoolinfo->raid_disks = raid_disks * 2; 2951 2952 newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc, 2953 r1bio_pool_free, newpoolinfo); 2954 if (!newpool) { 2955 kfree(newpoolinfo); 2956 return -ENOMEM; 2957 } 2958 newmirrors = kzalloc(sizeof(struct raid1_info) * raid_disks * 2, 2959 GFP_KERNEL); 2960 if (!newmirrors) { 2961 kfree(newpoolinfo); 2962 mempool_destroy(newpool); 2963 return -ENOMEM; 2964 } 2965 2966 raise_barrier(conf); 2967 2968 /* ok, everything is stopped */ 2969 oldpool = conf->r1bio_pool; 2970 conf->r1bio_pool = newpool; 2971 2972 for (d = d2 = 0; d < conf->raid_disks; d++) { 2973 struct md_rdev *rdev = conf->mirrors[d].rdev; 2974 if (rdev && rdev->raid_disk != d2) { 2975 sysfs_unlink_rdev(mddev, rdev); 2976 rdev->raid_disk = d2; 2977 sysfs_unlink_rdev(mddev, rdev); 2978 if (sysfs_link_rdev(mddev, rdev)) 2979 printk(KERN_WARNING 2980 "md/raid1:%s: cannot register rd%d\n", 2981 mdname(mddev), rdev->raid_disk); 2982 } 2983 if (rdev) 2984 newmirrors[d2++].rdev = rdev; 2985 } 2986 kfree(conf->mirrors); 2987 conf->mirrors = newmirrors; 2988 kfree(conf->poolinfo); 2989 conf->poolinfo = newpoolinfo; 2990 2991 spin_lock_irqsave(&conf->device_lock, flags); 2992 mddev->degraded += (raid_disks - conf->raid_disks); 2993 spin_unlock_irqrestore(&conf->device_lock, flags); 2994 conf->raid_disks = mddev->raid_disks = raid_disks; 2995 mddev->delta_disks = 0; 2996 2997 lower_barrier(conf); 2998 2999 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3000 md_wakeup_thread(mddev->thread); 3001 3002 mempool_destroy(oldpool); 3003 return 0; 3004 } 3005 3006 static void raid1_quiesce(struct mddev *mddev, int state) 3007 { 3008 struct r1conf *conf = mddev->private; 3009 3010 switch(state) { 3011 case 2: /* wake for suspend */ 3012 wake_up(&conf->wait_barrier); 3013 break; 3014 case 1: 3015 raise_barrier(conf); 3016 break; 3017 case 0: 3018 lower_barrier(conf); 3019 break; 3020 } 3021 } 3022 3023 static void *raid1_takeover(struct mddev *mddev) 3024 { 3025 /* raid1 can take over: 3026 * raid5 with 2 devices, any layout or chunk size 3027 */ 3028 if (mddev->level == 5 && mddev->raid_disks == 2) { 3029 struct r1conf *conf; 3030 mddev->new_level = 1; 3031 mddev->new_layout = 0; 3032 mddev->new_chunk_sectors = 0; 3033 conf = setup_conf(mddev); 3034 if (!IS_ERR(conf)) 3035 conf->barrier = 1; 3036 return conf; 3037 } 3038 return ERR_PTR(-EINVAL); 3039 } 3040 3041 static struct md_personality raid1_personality = 3042 { 3043 .name = "raid1", 3044 .level = 1, 3045 .owner = THIS_MODULE, 3046 .make_request = make_request, 3047 .run = run, 3048 .stop = stop, 3049 .status = status, 3050 .error_handler = error, 3051 .hot_add_disk = raid1_add_disk, 3052 .hot_remove_disk= raid1_remove_disk, 3053 .spare_active = raid1_spare_active, 3054 .sync_request = sync_request, 3055 .resize = raid1_resize, 3056 .size = raid1_size, 3057 .check_reshape = raid1_reshape, 3058 .quiesce = raid1_quiesce, 3059 .takeover = raid1_takeover, 3060 }; 3061 3062 static int __init raid_init(void) 3063 { 3064 return register_md_personality(&raid1_personality); 3065 } 3066 3067 static void raid_exit(void) 3068 { 3069 unregister_md_personality(&raid1_personality); 3070 } 3071 3072 module_init(raid_init); 3073 module_exit(raid_exit); 3074 MODULE_LICENSE("GPL"); 3075 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD"); 3076 MODULE_ALIAS("md-personality-3"); /* RAID1 */ 3077 MODULE_ALIAS("md-raid1"); 3078 MODULE_ALIAS("md-level-1"); 3079 3080 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR); 3081