xref: /openbmc/linux/drivers/md/raid1.c (revision f0cc9a05)
1 /*
2  * raid1.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5  *
6  * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7  *
8  * RAID-1 management functions.
9  *
10  * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11  *
12  * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
13  * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14  *
15  * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16  * bitmapped intelligence in resync:
17  *
18  *      - bitmap marked during normal i/o
19  *      - bitmap used to skip nondirty blocks during sync
20  *
21  * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22  * - persistent bitmap code
23  *
24  * This program is free software; you can redistribute it and/or modify
25  * it under the terms of the GNU General Public License as published by
26  * the Free Software Foundation; either version 2, or (at your option)
27  * any later version.
28  *
29  * You should have received a copy of the GNU General Public License
30  * (for example /usr/src/linux/COPYING); if not, write to the Free
31  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32  */
33 
34 #include <linux/slab.h>
35 #include <linux/delay.h>
36 #include <linux/blkdev.h>
37 #include <linux/module.h>
38 #include <linux/seq_file.h>
39 #include <linux/ratelimit.h>
40 #include "md.h"
41 #include "raid1.h"
42 #include "bitmap.h"
43 
44 /*
45  * Number of guaranteed r1bios in case of extreme VM load:
46  */
47 #define	NR_RAID1_BIOS 256
48 
49 /* when we get a read error on a read-only array, we redirect to another
50  * device without failing the first device, or trying to over-write to
51  * correct the read error.  To keep track of bad blocks on a per-bio
52  * level, we store IO_BLOCKED in the appropriate 'bios' pointer
53  */
54 #define IO_BLOCKED ((struct bio *)1)
55 /* When we successfully write to a known bad-block, we need to remove the
56  * bad-block marking which must be done from process context.  So we record
57  * the success by setting devs[n].bio to IO_MADE_GOOD
58  */
59 #define IO_MADE_GOOD ((struct bio *)2)
60 
61 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
62 
63 /* When there are this many requests queue to be written by
64  * the raid1 thread, we become 'congested' to provide back-pressure
65  * for writeback.
66  */
67 static int max_queued_requests = 1024;
68 
69 static void allow_barrier(struct r1conf *conf, sector_t start_next_window,
70 			  sector_t bi_sector);
71 static void lower_barrier(struct r1conf *conf);
72 
73 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
74 {
75 	struct pool_info *pi = data;
76 	int size = offsetof(struct r1bio, bios[pi->raid_disks]);
77 
78 	/* allocate a r1bio with room for raid_disks entries in the bios array */
79 	return kzalloc(size, gfp_flags);
80 }
81 
82 static void r1bio_pool_free(void *r1_bio, void *data)
83 {
84 	kfree(r1_bio);
85 }
86 
87 #define RESYNC_BLOCK_SIZE (64*1024)
88 #define RESYNC_DEPTH 32
89 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
90 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
91 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
92 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
93 #define NEXT_NORMALIO_DISTANCE (3 * RESYNC_WINDOW_SECTORS)
94 
95 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
96 {
97 	struct pool_info *pi = data;
98 	struct r1bio *r1_bio;
99 	struct bio *bio;
100 	int need_pages;
101 	int i, j;
102 
103 	r1_bio = r1bio_pool_alloc(gfp_flags, pi);
104 	if (!r1_bio)
105 		return NULL;
106 
107 	/*
108 	 * Allocate bios : 1 for reading, n-1 for writing
109 	 */
110 	for (j = pi->raid_disks ; j-- ; ) {
111 		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
112 		if (!bio)
113 			goto out_free_bio;
114 		r1_bio->bios[j] = bio;
115 	}
116 	/*
117 	 * Allocate RESYNC_PAGES data pages and attach them to
118 	 * the first bio.
119 	 * If this is a user-requested check/repair, allocate
120 	 * RESYNC_PAGES for each bio.
121 	 */
122 	if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
123 		need_pages = pi->raid_disks;
124 	else
125 		need_pages = 1;
126 	for (j = 0; j < need_pages; j++) {
127 		bio = r1_bio->bios[j];
128 		bio->bi_vcnt = RESYNC_PAGES;
129 
130 		if (bio_alloc_pages(bio, gfp_flags))
131 			goto out_free_pages;
132 	}
133 	/* If not user-requests, copy the page pointers to all bios */
134 	if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
135 		for (i=0; i<RESYNC_PAGES ; i++)
136 			for (j=1; j<pi->raid_disks; j++)
137 				r1_bio->bios[j]->bi_io_vec[i].bv_page =
138 					r1_bio->bios[0]->bi_io_vec[i].bv_page;
139 	}
140 
141 	r1_bio->master_bio = NULL;
142 
143 	return r1_bio;
144 
145 out_free_pages:
146 	while (--j >= 0) {
147 		struct bio_vec *bv;
148 
149 		bio_for_each_segment_all(bv, r1_bio->bios[j], i)
150 			__free_page(bv->bv_page);
151 	}
152 
153 out_free_bio:
154 	while (++j < pi->raid_disks)
155 		bio_put(r1_bio->bios[j]);
156 	r1bio_pool_free(r1_bio, data);
157 	return NULL;
158 }
159 
160 static void r1buf_pool_free(void *__r1_bio, void *data)
161 {
162 	struct pool_info *pi = data;
163 	int i,j;
164 	struct r1bio *r1bio = __r1_bio;
165 
166 	for (i = 0; i < RESYNC_PAGES; i++)
167 		for (j = pi->raid_disks; j-- ;) {
168 			if (j == 0 ||
169 			    r1bio->bios[j]->bi_io_vec[i].bv_page !=
170 			    r1bio->bios[0]->bi_io_vec[i].bv_page)
171 				safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
172 		}
173 	for (i=0 ; i < pi->raid_disks; i++)
174 		bio_put(r1bio->bios[i]);
175 
176 	r1bio_pool_free(r1bio, data);
177 }
178 
179 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
180 {
181 	int i;
182 
183 	for (i = 0; i < conf->raid_disks * 2; i++) {
184 		struct bio **bio = r1_bio->bios + i;
185 		if (!BIO_SPECIAL(*bio))
186 			bio_put(*bio);
187 		*bio = NULL;
188 	}
189 }
190 
191 static void free_r1bio(struct r1bio *r1_bio)
192 {
193 	struct r1conf *conf = r1_bio->mddev->private;
194 
195 	put_all_bios(conf, r1_bio);
196 	mempool_free(r1_bio, conf->r1bio_pool);
197 }
198 
199 static void put_buf(struct r1bio *r1_bio)
200 {
201 	struct r1conf *conf = r1_bio->mddev->private;
202 	int i;
203 
204 	for (i = 0; i < conf->raid_disks * 2; i++) {
205 		struct bio *bio = r1_bio->bios[i];
206 		if (bio->bi_end_io)
207 			rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
208 	}
209 
210 	mempool_free(r1_bio, conf->r1buf_pool);
211 
212 	lower_barrier(conf);
213 }
214 
215 static void reschedule_retry(struct r1bio *r1_bio)
216 {
217 	unsigned long flags;
218 	struct mddev *mddev = r1_bio->mddev;
219 	struct r1conf *conf = mddev->private;
220 
221 	spin_lock_irqsave(&conf->device_lock, flags);
222 	list_add(&r1_bio->retry_list, &conf->retry_list);
223 	conf->nr_queued ++;
224 	spin_unlock_irqrestore(&conf->device_lock, flags);
225 
226 	wake_up(&conf->wait_barrier);
227 	md_wakeup_thread(mddev->thread);
228 }
229 
230 /*
231  * raid_end_bio_io() is called when we have finished servicing a mirrored
232  * operation and are ready to return a success/failure code to the buffer
233  * cache layer.
234  */
235 static void call_bio_endio(struct r1bio *r1_bio)
236 {
237 	struct bio *bio = r1_bio->master_bio;
238 	int done;
239 	struct r1conf *conf = r1_bio->mddev->private;
240 	sector_t start_next_window = r1_bio->start_next_window;
241 	sector_t bi_sector = bio->bi_iter.bi_sector;
242 
243 	if (bio->bi_phys_segments) {
244 		unsigned long flags;
245 		spin_lock_irqsave(&conf->device_lock, flags);
246 		bio->bi_phys_segments--;
247 		done = (bio->bi_phys_segments == 0);
248 		spin_unlock_irqrestore(&conf->device_lock, flags);
249 		/*
250 		 * make_request() might be waiting for
251 		 * bi_phys_segments to decrease
252 		 */
253 		wake_up(&conf->wait_barrier);
254 	} else
255 		done = 1;
256 
257 	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
258 		clear_bit(BIO_UPTODATE, &bio->bi_flags);
259 	if (done) {
260 		bio_endio(bio, 0);
261 		/*
262 		 * Wake up any possible resync thread that waits for the device
263 		 * to go idle.
264 		 */
265 		allow_barrier(conf, start_next_window, bi_sector);
266 	}
267 }
268 
269 static void raid_end_bio_io(struct r1bio *r1_bio)
270 {
271 	struct bio *bio = r1_bio->master_bio;
272 
273 	/* if nobody has done the final endio yet, do it now */
274 	if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
275 		pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
276 			 (bio_data_dir(bio) == WRITE) ? "write" : "read",
277 			 (unsigned long long) bio->bi_iter.bi_sector,
278 			 (unsigned long long) bio_end_sector(bio) - 1);
279 
280 		call_bio_endio(r1_bio);
281 	}
282 	free_r1bio(r1_bio);
283 }
284 
285 /*
286  * Update disk head position estimator based on IRQ completion info.
287  */
288 static inline void update_head_pos(int disk, struct r1bio *r1_bio)
289 {
290 	struct r1conf *conf = r1_bio->mddev->private;
291 
292 	conf->mirrors[disk].head_position =
293 		r1_bio->sector + (r1_bio->sectors);
294 }
295 
296 /*
297  * Find the disk number which triggered given bio
298  */
299 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
300 {
301 	int mirror;
302 	struct r1conf *conf = r1_bio->mddev->private;
303 	int raid_disks = conf->raid_disks;
304 
305 	for (mirror = 0; mirror < raid_disks * 2; mirror++)
306 		if (r1_bio->bios[mirror] == bio)
307 			break;
308 
309 	BUG_ON(mirror == raid_disks * 2);
310 	update_head_pos(mirror, r1_bio);
311 
312 	return mirror;
313 }
314 
315 static void raid1_end_read_request(struct bio *bio, int error)
316 {
317 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
318 	struct r1bio *r1_bio = bio->bi_private;
319 	int mirror;
320 	struct r1conf *conf = r1_bio->mddev->private;
321 
322 	mirror = r1_bio->read_disk;
323 	/*
324 	 * this branch is our 'one mirror IO has finished' event handler:
325 	 */
326 	update_head_pos(mirror, r1_bio);
327 
328 	if (uptodate)
329 		set_bit(R1BIO_Uptodate, &r1_bio->state);
330 	else {
331 		/* If all other devices have failed, we want to return
332 		 * the error upwards rather than fail the last device.
333 		 * Here we redefine "uptodate" to mean "Don't want to retry"
334 		 */
335 		unsigned long flags;
336 		spin_lock_irqsave(&conf->device_lock, flags);
337 		if (r1_bio->mddev->degraded == conf->raid_disks ||
338 		    (r1_bio->mddev->degraded == conf->raid_disks-1 &&
339 		     !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags)))
340 			uptodate = 1;
341 		spin_unlock_irqrestore(&conf->device_lock, flags);
342 	}
343 
344 	if (uptodate) {
345 		raid_end_bio_io(r1_bio);
346 		rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
347 	} else {
348 		/*
349 		 * oops, read error:
350 		 */
351 		char b[BDEVNAME_SIZE];
352 		printk_ratelimited(
353 			KERN_ERR "md/raid1:%s: %s: "
354 			"rescheduling sector %llu\n",
355 			mdname(conf->mddev),
356 			bdevname(conf->mirrors[mirror].rdev->bdev,
357 				 b),
358 			(unsigned long long)r1_bio->sector);
359 		set_bit(R1BIO_ReadError, &r1_bio->state);
360 		reschedule_retry(r1_bio);
361 		/* don't drop the reference on read_disk yet */
362 	}
363 }
364 
365 static void close_write(struct r1bio *r1_bio)
366 {
367 	/* it really is the end of this request */
368 	if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
369 		/* free extra copy of the data pages */
370 		int i = r1_bio->behind_page_count;
371 		while (i--)
372 			safe_put_page(r1_bio->behind_bvecs[i].bv_page);
373 		kfree(r1_bio->behind_bvecs);
374 		r1_bio->behind_bvecs = NULL;
375 	}
376 	/* clear the bitmap if all writes complete successfully */
377 	bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
378 			r1_bio->sectors,
379 			!test_bit(R1BIO_Degraded, &r1_bio->state),
380 			test_bit(R1BIO_BehindIO, &r1_bio->state));
381 	md_write_end(r1_bio->mddev);
382 }
383 
384 static void r1_bio_write_done(struct r1bio *r1_bio)
385 {
386 	if (!atomic_dec_and_test(&r1_bio->remaining))
387 		return;
388 
389 	if (test_bit(R1BIO_WriteError, &r1_bio->state))
390 		reschedule_retry(r1_bio);
391 	else {
392 		close_write(r1_bio);
393 		if (test_bit(R1BIO_MadeGood, &r1_bio->state))
394 			reschedule_retry(r1_bio);
395 		else
396 			raid_end_bio_io(r1_bio);
397 	}
398 }
399 
400 static void raid1_end_write_request(struct bio *bio, int error)
401 {
402 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
403 	struct r1bio *r1_bio = bio->bi_private;
404 	int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
405 	struct r1conf *conf = r1_bio->mddev->private;
406 	struct bio *to_put = NULL;
407 
408 	mirror = find_bio_disk(r1_bio, bio);
409 
410 	/*
411 	 * 'one mirror IO has finished' event handler:
412 	 */
413 	if (!uptodate) {
414 		set_bit(WriteErrorSeen,
415 			&conf->mirrors[mirror].rdev->flags);
416 		if (!test_and_set_bit(WantReplacement,
417 				      &conf->mirrors[mirror].rdev->flags))
418 			set_bit(MD_RECOVERY_NEEDED, &
419 				conf->mddev->recovery);
420 
421 		set_bit(R1BIO_WriteError, &r1_bio->state);
422 	} else {
423 		/*
424 		 * Set R1BIO_Uptodate in our master bio, so that we
425 		 * will return a good error code for to the higher
426 		 * levels even if IO on some other mirrored buffer
427 		 * fails.
428 		 *
429 		 * The 'master' represents the composite IO operation
430 		 * to user-side. So if something waits for IO, then it
431 		 * will wait for the 'master' bio.
432 		 */
433 		sector_t first_bad;
434 		int bad_sectors;
435 
436 		r1_bio->bios[mirror] = NULL;
437 		to_put = bio;
438 		/*
439 		 * Do not set R1BIO_Uptodate if the current device is
440 		 * rebuilding or Faulty. This is because we cannot use
441 		 * such device for properly reading the data back (we could
442 		 * potentially use it, if the current write would have felt
443 		 * before rdev->recovery_offset, but for simplicity we don't
444 		 * check this here.
445 		 */
446 		if (test_bit(In_sync, &conf->mirrors[mirror].rdev->flags) &&
447 		    !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags))
448 			set_bit(R1BIO_Uptodate, &r1_bio->state);
449 
450 		/* Maybe we can clear some bad blocks. */
451 		if (is_badblock(conf->mirrors[mirror].rdev,
452 				r1_bio->sector, r1_bio->sectors,
453 				&first_bad, &bad_sectors)) {
454 			r1_bio->bios[mirror] = IO_MADE_GOOD;
455 			set_bit(R1BIO_MadeGood, &r1_bio->state);
456 		}
457 	}
458 
459 	if (behind) {
460 		if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
461 			atomic_dec(&r1_bio->behind_remaining);
462 
463 		/*
464 		 * In behind mode, we ACK the master bio once the I/O
465 		 * has safely reached all non-writemostly
466 		 * disks. Setting the Returned bit ensures that this
467 		 * gets done only once -- we don't ever want to return
468 		 * -EIO here, instead we'll wait
469 		 */
470 		if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
471 		    test_bit(R1BIO_Uptodate, &r1_bio->state)) {
472 			/* Maybe we can return now */
473 			if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
474 				struct bio *mbio = r1_bio->master_bio;
475 				pr_debug("raid1: behind end write sectors"
476 					 " %llu-%llu\n",
477 					 (unsigned long long) mbio->bi_iter.bi_sector,
478 					 (unsigned long long) bio_end_sector(mbio) - 1);
479 				call_bio_endio(r1_bio);
480 			}
481 		}
482 	}
483 	if (r1_bio->bios[mirror] == NULL)
484 		rdev_dec_pending(conf->mirrors[mirror].rdev,
485 				 conf->mddev);
486 
487 	/*
488 	 * Let's see if all mirrored write operations have finished
489 	 * already.
490 	 */
491 	r1_bio_write_done(r1_bio);
492 
493 	if (to_put)
494 		bio_put(to_put);
495 }
496 
497 
498 /*
499  * This routine returns the disk from which the requested read should
500  * be done. There is a per-array 'next expected sequential IO' sector
501  * number - if this matches on the next IO then we use the last disk.
502  * There is also a per-disk 'last know head position' sector that is
503  * maintained from IRQ contexts, both the normal and the resync IO
504  * completion handlers update this position correctly. If there is no
505  * perfect sequential match then we pick the disk whose head is closest.
506  *
507  * If there are 2 mirrors in the same 2 devices, performance degrades
508  * because position is mirror, not device based.
509  *
510  * The rdev for the device selected will have nr_pending incremented.
511  */
512 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
513 {
514 	const sector_t this_sector = r1_bio->sector;
515 	int sectors;
516 	int best_good_sectors;
517 	int best_disk, best_dist_disk, best_pending_disk;
518 	int has_nonrot_disk;
519 	int disk;
520 	sector_t best_dist;
521 	unsigned int min_pending;
522 	struct md_rdev *rdev;
523 	int choose_first;
524 	int choose_next_idle;
525 
526 	rcu_read_lock();
527 	/*
528 	 * Check if we can balance. We can balance on the whole
529 	 * device if no resync is going on, or below the resync window.
530 	 * We take the first readable disk when above the resync window.
531 	 */
532  retry:
533 	sectors = r1_bio->sectors;
534 	best_disk = -1;
535 	best_dist_disk = -1;
536 	best_dist = MaxSector;
537 	best_pending_disk = -1;
538 	min_pending = UINT_MAX;
539 	best_good_sectors = 0;
540 	has_nonrot_disk = 0;
541 	choose_next_idle = 0;
542 
543 	if (conf->mddev->recovery_cp < MaxSector &&
544 	    (this_sector + sectors >= conf->next_resync))
545 		choose_first = 1;
546 	else
547 		choose_first = 0;
548 
549 	for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
550 		sector_t dist;
551 		sector_t first_bad;
552 		int bad_sectors;
553 		unsigned int pending;
554 		bool nonrot;
555 
556 		rdev = rcu_dereference(conf->mirrors[disk].rdev);
557 		if (r1_bio->bios[disk] == IO_BLOCKED
558 		    || rdev == NULL
559 		    || test_bit(Unmerged, &rdev->flags)
560 		    || test_bit(Faulty, &rdev->flags))
561 			continue;
562 		if (!test_bit(In_sync, &rdev->flags) &&
563 		    rdev->recovery_offset < this_sector + sectors)
564 			continue;
565 		if (test_bit(WriteMostly, &rdev->flags)) {
566 			/* Don't balance among write-mostly, just
567 			 * use the first as a last resort */
568 			if (best_disk < 0) {
569 				if (is_badblock(rdev, this_sector, sectors,
570 						&first_bad, &bad_sectors)) {
571 					if (first_bad < this_sector)
572 						/* Cannot use this */
573 						continue;
574 					best_good_sectors = first_bad - this_sector;
575 				} else
576 					best_good_sectors = sectors;
577 				best_disk = disk;
578 			}
579 			continue;
580 		}
581 		/* This is a reasonable device to use.  It might
582 		 * even be best.
583 		 */
584 		if (is_badblock(rdev, this_sector, sectors,
585 				&first_bad, &bad_sectors)) {
586 			if (best_dist < MaxSector)
587 				/* already have a better device */
588 				continue;
589 			if (first_bad <= this_sector) {
590 				/* cannot read here. If this is the 'primary'
591 				 * device, then we must not read beyond
592 				 * bad_sectors from another device..
593 				 */
594 				bad_sectors -= (this_sector - first_bad);
595 				if (choose_first && sectors > bad_sectors)
596 					sectors = bad_sectors;
597 				if (best_good_sectors > sectors)
598 					best_good_sectors = sectors;
599 
600 			} else {
601 				sector_t good_sectors = first_bad - this_sector;
602 				if (good_sectors > best_good_sectors) {
603 					best_good_sectors = good_sectors;
604 					best_disk = disk;
605 				}
606 				if (choose_first)
607 					break;
608 			}
609 			continue;
610 		} else
611 			best_good_sectors = sectors;
612 
613 		nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
614 		has_nonrot_disk |= nonrot;
615 		pending = atomic_read(&rdev->nr_pending);
616 		dist = abs(this_sector - conf->mirrors[disk].head_position);
617 		if (choose_first) {
618 			best_disk = disk;
619 			break;
620 		}
621 		/* Don't change to another disk for sequential reads */
622 		if (conf->mirrors[disk].next_seq_sect == this_sector
623 		    || dist == 0) {
624 			int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
625 			struct raid1_info *mirror = &conf->mirrors[disk];
626 
627 			best_disk = disk;
628 			/*
629 			 * If buffered sequential IO size exceeds optimal
630 			 * iosize, check if there is idle disk. If yes, choose
631 			 * the idle disk. read_balance could already choose an
632 			 * idle disk before noticing it's a sequential IO in
633 			 * this disk. This doesn't matter because this disk
634 			 * will idle, next time it will be utilized after the
635 			 * first disk has IO size exceeds optimal iosize. In
636 			 * this way, iosize of the first disk will be optimal
637 			 * iosize at least. iosize of the second disk might be
638 			 * small, but not a big deal since when the second disk
639 			 * starts IO, the first disk is likely still busy.
640 			 */
641 			if (nonrot && opt_iosize > 0 &&
642 			    mirror->seq_start != MaxSector &&
643 			    mirror->next_seq_sect > opt_iosize &&
644 			    mirror->next_seq_sect - opt_iosize >=
645 			    mirror->seq_start) {
646 				choose_next_idle = 1;
647 				continue;
648 			}
649 			break;
650 		}
651 		/* If device is idle, use it */
652 		if (pending == 0) {
653 			best_disk = disk;
654 			break;
655 		}
656 
657 		if (choose_next_idle)
658 			continue;
659 
660 		if (min_pending > pending) {
661 			min_pending = pending;
662 			best_pending_disk = disk;
663 		}
664 
665 		if (dist < best_dist) {
666 			best_dist = dist;
667 			best_dist_disk = disk;
668 		}
669 	}
670 
671 	/*
672 	 * If all disks are rotational, choose the closest disk. If any disk is
673 	 * non-rotational, choose the disk with less pending request even the
674 	 * disk is rotational, which might/might not be optimal for raids with
675 	 * mixed ratation/non-rotational disks depending on workload.
676 	 */
677 	if (best_disk == -1) {
678 		if (has_nonrot_disk)
679 			best_disk = best_pending_disk;
680 		else
681 			best_disk = best_dist_disk;
682 	}
683 
684 	if (best_disk >= 0) {
685 		rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
686 		if (!rdev)
687 			goto retry;
688 		atomic_inc(&rdev->nr_pending);
689 		if (test_bit(Faulty, &rdev->flags)) {
690 			/* cannot risk returning a device that failed
691 			 * before we inc'ed nr_pending
692 			 */
693 			rdev_dec_pending(rdev, conf->mddev);
694 			goto retry;
695 		}
696 		sectors = best_good_sectors;
697 
698 		if (conf->mirrors[best_disk].next_seq_sect != this_sector)
699 			conf->mirrors[best_disk].seq_start = this_sector;
700 
701 		conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
702 	}
703 	rcu_read_unlock();
704 	*max_sectors = sectors;
705 
706 	return best_disk;
707 }
708 
709 static int raid1_mergeable_bvec(struct request_queue *q,
710 				struct bvec_merge_data *bvm,
711 				struct bio_vec *biovec)
712 {
713 	struct mddev *mddev = q->queuedata;
714 	struct r1conf *conf = mddev->private;
715 	sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
716 	int max = biovec->bv_len;
717 
718 	if (mddev->merge_check_needed) {
719 		int disk;
720 		rcu_read_lock();
721 		for (disk = 0; disk < conf->raid_disks * 2; disk++) {
722 			struct md_rdev *rdev = rcu_dereference(
723 				conf->mirrors[disk].rdev);
724 			if (rdev && !test_bit(Faulty, &rdev->flags)) {
725 				struct request_queue *q =
726 					bdev_get_queue(rdev->bdev);
727 				if (q->merge_bvec_fn) {
728 					bvm->bi_sector = sector +
729 						rdev->data_offset;
730 					bvm->bi_bdev = rdev->bdev;
731 					max = min(max, q->merge_bvec_fn(
732 							  q, bvm, biovec));
733 				}
734 			}
735 		}
736 		rcu_read_unlock();
737 	}
738 	return max;
739 
740 }
741 
742 int md_raid1_congested(struct mddev *mddev, int bits)
743 {
744 	struct r1conf *conf = mddev->private;
745 	int i, ret = 0;
746 
747 	if ((bits & (1 << BDI_async_congested)) &&
748 	    conf->pending_count >= max_queued_requests)
749 		return 1;
750 
751 	rcu_read_lock();
752 	for (i = 0; i < conf->raid_disks * 2; i++) {
753 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
754 		if (rdev && !test_bit(Faulty, &rdev->flags)) {
755 			struct request_queue *q = bdev_get_queue(rdev->bdev);
756 
757 			BUG_ON(!q);
758 
759 			/* Note the '|| 1' - when read_balance prefers
760 			 * non-congested targets, it can be removed
761 			 */
762 			if ((bits & (1<<BDI_async_congested)) || 1)
763 				ret |= bdi_congested(&q->backing_dev_info, bits);
764 			else
765 				ret &= bdi_congested(&q->backing_dev_info, bits);
766 		}
767 	}
768 	rcu_read_unlock();
769 	return ret;
770 }
771 EXPORT_SYMBOL_GPL(md_raid1_congested);
772 
773 static int raid1_congested(void *data, int bits)
774 {
775 	struct mddev *mddev = data;
776 
777 	return mddev_congested(mddev, bits) ||
778 		md_raid1_congested(mddev, bits);
779 }
780 
781 static void flush_pending_writes(struct r1conf *conf)
782 {
783 	/* Any writes that have been queued but are awaiting
784 	 * bitmap updates get flushed here.
785 	 */
786 	spin_lock_irq(&conf->device_lock);
787 
788 	if (conf->pending_bio_list.head) {
789 		struct bio *bio;
790 		bio = bio_list_get(&conf->pending_bio_list);
791 		conf->pending_count = 0;
792 		spin_unlock_irq(&conf->device_lock);
793 		/* flush any pending bitmap writes to
794 		 * disk before proceeding w/ I/O */
795 		bitmap_unplug(conf->mddev->bitmap);
796 		wake_up(&conf->wait_barrier);
797 
798 		while (bio) { /* submit pending writes */
799 			struct bio *next = bio->bi_next;
800 			bio->bi_next = NULL;
801 			if (unlikely((bio->bi_rw & REQ_DISCARD) &&
802 			    !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
803 				/* Just ignore it */
804 				bio_endio(bio, 0);
805 			else
806 				generic_make_request(bio);
807 			bio = next;
808 		}
809 	} else
810 		spin_unlock_irq(&conf->device_lock);
811 }
812 
813 /* Barriers....
814  * Sometimes we need to suspend IO while we do something else,
815  * either some resync/recovery, or reconfigure the array.
816  * To do this we raise a 'barrier'.
817  * The 'barrier' is a counter that can be raised multiple times
818  * to count how many activities are happening which preclude
819  * normal IO.
820  * We can only raise the barrier if there is no pending IO.
821  * i.e. if nr_pending == 0.
822  * We choose only to raise the barrier if no-one is waiting for the
823  * barrier to go down.  This means that as soon as an IO request
824  * is ready, no other operations which require a barrier will start
825  * until the IO request has had a chance.
826  *
827  * So: regular IO calls 'wait_barrier'.  When that returns there
828  *    is no backgroup IO happening,  It must arrange to call
829  *    allow_barrier when it has finished its IO.
830  * backgroup IO calls must call raise_barrier.  Once that returns
831  *    there is no normal IO happeing.  It must arrange to call
832  *    lower_barrier when the particular background IO completes.
833  */
834 static void raise_barrier(struct r1conf *conf)
835 {
836 	spin_lock_irq(&conf->resync_lock);
837 
838 	/* Wait until no block IO is waiting */
839 	wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
840 			    conf->resync_lock);
841 
842 	/* block any new IO from starting */
843 	conf->barrier++;
844 
845 	/* For these conditions we must wait:
846 	 * A: while the array is in frozen state
847 	 * B: while barrier >= RESYNC_DEPTH, meaning resync reach
848 	 *    the max count which allowed.
849 	 * C: next_resync + RESYNC_SECTORS > start_next_window, meaning
850 	 *    next resync will reach to the window which normal bios are
851 	 *    handling.
852 	 */
853 	wait_event_lock_irq(conf->wait_barrier,
854 			    !conf->array_frozen &&
855 			    conf->barrier < RESYNC_DEPTH &&
856 			    (conf->start_next_window >=
857 			     conf->next_resync + RESYNC_SECTORS),
858 			    conf->resync_lock);
859 
860 	spin_unlock_irq(&conf->resync_lock);
861 }
862 
863 static void lower_barrier(struct r1conf *conf)
864 {
865 	unsigned long flags;
866 	BUG_ON(conf->barrier <= 0);
867 	spin_lock_irqsave(&conf->resync_lock, flags);
868 	conf->barrier--;
869 	spin_unlock_irqrestore(&conf->resync_lock, flags);
870 	wake_up(&conf->wait_barrier);
871 }
872 
873 static bool need_to_wait_for_sync(struct r1conf *conf, struct bio *bio)
874 {
875 	bool wait = false;
876 
877 	if (conf->array_frozen || !bio)
878 		wait = true;
879 	else if (conf->barrier && bio_data_dir(bio) == WRITE) {
880 		if (conf->next_resync < RESYNC_WINDOW_SECTORS)
881 			wait = true;
882 		else if ((conf->next_resync - RESYNC_WINDOW_SECTORS
883 				>= bio_end_sector(bio)) ||
884 			 (conf->next_resync + NEXT_NORMALIO_DISTANCE
885 				<= bio->bi_iter.bi_sector))
886 			wait = false;
887 		else
888 			wait = true;
889 	}
890 
891 	return wait;
892 }
893 
894 static sector_t wait_barrier(struct r1conf *conf, struct bio *bio)
895 {
896 	sector_t sector = 0;
897 
898 	spin_lock_irq(&conf->resync_lock);
899 	if (need_to_wait_for_sync(conf, bio)) {
900 		conf->nr_waiting++;
901 		/* Wait for the barrier to drop.
902 		 * However if there are already pending
903 		 * requests (preventing the barrier from
904 		 * rising completely), and the
905 		 * pre-process bio queue isn't empty,
906 		 * then don't wait, as we need to empty
907 		 * that queue to get the nr_pending
908 		 * count down.
909 		 */
910 		wait_event_lock_irq(conf->wait_barrier,
911 				    !conf->array_frozen &&
912 				    (!conf->barrier ||
913 				    ((conf->start_next_window <
914 				      conf->next_resync + RESYNC_SECTORS) &&
915 				     current->bio_list &&
916 				     !bio_list_empty(current->bio_list))),
917 				    conf->resync_lock);
918 		conf->nr_waiting--;
919 	}
920 
921 	if (bio && bio_data_dir(bio) == WRITE) {
922 		if (conf->next_resync + NEXT_NORMALIO_DISTANCE
923 		    <= bio->bi_iter.bi_sector) {
924 			if (conf->start_next_window == MaxSector)
925 				conf->start_next_window =
926 					conf->next_resync +
927 					NEXT_NORMALIO_DISTANCE;
928 
929 			if ((conf->start_next_window + NEXT_NORMALIO_DISTANCE)
930 			    <= bio->bi_iter.bi_sector)
931 				conf->next_window_requests++;
932 			else
933 				conf->current_window_requests++;
934 			sector = conf->start_next_window;
935 		}
936 	}
937 
938 	conf->nr_pending++;
939 	spin_unlock_irq(&conf->resync_lock);
940 	return sector;
941 }
942 
943 static void allow_barrier(struct r1conf *conf, sector_t start_next_window,
944 			  sector_t bi_sector)
945 {
946 	unsigned long flags;
947 
948 	spin_lock_irqsave(&conf->resync_lock, flags);
949 	conf->nr_pending--;
950 	if (start_next_window) {
951 		if (start_next_window == conf->start_next_window) {
952 			if (conf->start_next_window + NEXT_NORMALIO_DISTANCE
953 			    <= bi_sector)
954 				conf->next_window_requests--;
955 			else
956 				conf->current_window_requests--;
957 		} else
958 			conf->current_window_requests--;
959 
960 		if (!conf->current_window_requests) {
961 			if (conf->next_window_requests) {
962 				conf->current_window_requests =
963 					conf->next_window_requests;
964 				conf->next_window_requests = 0;
965 				conf->start_next_window +=
966 					NEXT_NORMALIO_DISTANCE;
967 			} else
968 				conf->start_next_window = MaxSector;
969 		}
970 	}
971 	spin_unlock_irqrestore(&conf->resync_lock, flags);
972 	wake_up(&conf->wait_barrier);
973 }
974 
975 static void freeze_array(struct r1conf *conf, int extra)
976 {
977 	/* stop syncio and normal IO and wait for everything to
978 	 * go quite.
979 	 * We wait until nr_pending match nr_queued+extra
980 	 * This is called in the context of one normal IO request
981 	 * that has failed. Thus any sync request that might be pending
982 	 * will be blocked by nr_pending, and we need to wait for
983 	 * pending IO requests to complete or be queued for re-try.
984 	 * Thus the number queued (nr_queued) plus this request (extra)
985 	 * must match the number of pending IOs (nr_pending) before
986 	 * we continue.
987 	 */
988 	spin_lock_irq(&conf->resync_lock);
989 	conf->array_frozen = 1;
990 	wait_event_lock_irq_cmd(conf->wait_barrier,
991 				conf->nr_pending == conf->nr_queued+extra,
992 				conf->resync_lock,
993 				flush_pending_writes(conf));
994 	spin_unlock_irq(&conf->resync_lock);
995 }
996 static void unfreeze_array(struct r1conf *conf)
997 {
998 	/* reverse the effect of the freeze */
999 	spin_lock_irq(&conf->resync_lock);
1000 	conf->array_frozen = 0;
1001 	wake_up(&conf->wait_barrier);
1002 	spin_unlock_irq(&conf->resync_lock);
1003 }
1004 
1005 
1006 /* duplicate the data pages for behind I/O
1007  */
1008 static void alloc_behind_pages(struct bio *bio, struct r1bio *r1_bio)
1009 {
1010 	int i;
1011 	struct bio_vec *bvec;
1012 	struct bio_vec *bvecs = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec),
1013 					GFP_NOIO);
1014 	if (unlikely(!bvecs))
1015 		return;
1016 
1017 	bio_for_each_segment_all(bvec, bio, i) {
1018 		bvecs[i] = *bvec;
1019 		bvecs[i].bv_page = alloc_page(GFP_NOIO);
1020 		if (unlikely(!bvecs[i].bv_page))
1021 			goto do_sync_io;
1022 		memcpy(kmap(bvecs[i].bv_page) + bvec->bv_offset,
1023 		       kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
1024 		kunmap(bvecs[i].bv_page);
1025 		kunmap(bvec->bv_page);
1026 	}
1027 	r1_bio->behind_bvecs = bvecs;
1028 	r1_bio->behind_page_count = bio->bi_vcnt;
1029 	set_bit(R1BIO_BehindIO, &r1_bio->state);
1030 	return;
1031 
1032 do_sync_io:
1033 	for (i = 0; i < bio->bi_vcnt; i++)
1034 		if (bvecs[i].bv_page)
1035 			put_page(bvecs[i].bv_page);
1036 	kfree(bvecs);
1037 	pr_debug("%dB behind alloc failed, doing sync I/O\n",
1038 		 bio->bi_iter.bi_size);
1039 }
1040 
1041 struct raid1_plug_cb {
1042 	struct blk_plug_cb	cb;
1043 	struct bio_list		pending;
1044 	int			pending_cnt;
1045 };
1046 
1047 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1048 {
1049 	struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1050 						  cb);
1051 	struct mddev *mddev = plug->cb.data;
1052 	struct r1conf *conf = mddev->private;
1053 	struct bio *bio;
1054 
1055 	if (from_schedule || current->bio_list) {
1056 		spin_lock_irq(&conf->device_lock);
1057 		bio_list_merge(&conf->pending_bio_list, &plug->pending);
1058 		conf->pending_count += plug->pending_cnt;
1059 		spin_unlock_irq(&conf->device_lock);
1060 		wake_up(&conf->wait_barrier);
1061 		md_wakeup_thread(mddev->thread);
1062 		kfree(plug);
1063 		return;
1064 	}
1065 
1066 	/* we aren't scheduling, so we can do the write-out directly. */
1067 	bio = bio_list_get(&plug->pending);
1068 	bitmap_unplug(mddev->bitmap);
1069 	wake_up(&conf->wait_barrier);
1070 
1071 	while (bio) { /* submit pending writes */
1072 		struct bio *next = bio->bi_next;
1073 		bio->bi_next = NULL;
1074 		if (unlikely((bio->bi_rw & REQ_DISCARD) &&
1075 		    !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
1076 			/* Just ignore it */
1077 			bio_endio(bio, 0);
1078 		else
1079 			generic_make_request(bio);
1080 		bio = next;
1081 	}
1082 	kfree(plug);
1083 }
1084 
1085 static void make_request(struct mddev *mddev, struct bio * bio)
1086 {
1087 	struct r1conf *conf = mddev->private;
1088 	struct raid1_info *mirror;
1089 	struct r1bio *r1_bio;
1090 	struct bio *read_bio;
1091 	int i, disks;
1092 	struct bitmap *bitmap;
1093 	unsigned long flags;
1094 	const int rw = bio_data_dir(bio);
1095 	const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
1096 	const unsigned long do_flush_fua = (bio->bi_rw & (REQ_FLUSH | REQ_FUA));
1097 	const unsigned long do_discard = (bio->bi_rw
1098 					  & (REQ_DISCARD | REQ_SECURE));
1099 	const unsigned long do_same = (bio->bi_rw & REQ_WRITE_SAME);
1100 	struct md_rdev *blocked_rdev;
1101 	struct blk_plug_cb *cb;
1102 	struct raid1_plug_cb *plug = NULL;
1103 	int first_clone;
1104 	int sectors_handled;
1105 	int max_sectors;
1106 	sector_t start_next_window;
1107 
1108 	/*
1109 	 * Register the new request and wait if the reconstruction
1110 	 * thread has put up a bar for new requests.
1111 	 * Continue immediately if no resync is active currently.
1112 	 */
1113 
1114 	md_write_start(mddev, bio); /* wait on superblock update early */
1115 
1116 	if (bio_data_dir(bio) == WRITE &&
1117 	    bio_end_sector(bio) > mddev->suspend_lo &&
1118 	    bio->bi_iter.bi_sector < mddev->suspend_hi) {
1119 		/* As the suspend_* range is controlled by
1120 		 * userspace, we want an interruptible
1121 		 * wait.
1122 		 */
1123 		DEFINE_WAIT(w);
1124 		for (;;) {
1125 			flush_signals(current);
1126 			prepare_to_wait(&conf->wait_barrier,
1127 					&w, TASK_INTERRUPTIBLE);
1128 			if (bio_end_sector(bio) <= mddev->suspend_lo ||
1129 			    bio->bi_iter.bi_sector >= mddev->suspend_hi)
1130 				break;
1131 			schedule();
1132 		}
1133 		finish_wait(&conf->wait_barrier, &w);
1134 	}
1135 
1136 	start_next_window = wait_barrier(conf, bio);
1137 
1138 	bitmap = mddev->bitmap;
1139 
1140 	/*
1141 	 * make_request() can abort the operation when READA is being
1142 	 * used and no empty request is available.
1143 	 *
1144 	 */
1145 	r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1146 
1147 	r1_bio->master_bio = bio;
1148 	r1_bio->sectors = bio_sectors(bio);
1149 	r1_bio->state = 0;
1150 	r1_bio->mddev = mddev;
1151 	r1_bio->sector = bio->bi_iter.bi_sector;
1152 
1153 	/* We might need to issue multiple reads to different
1154 	 * devices if there are bad blocks around, so we keep
1155 	 * track of the number of reads in bio->bi_phys_segments.
1156 	 * If this is 0, there is only one r1_bio and no locking
1157 	 * will be needed when requests complete.  If it is
1158 	 * non-zero, then it is the number of not-completed requests.
1159 	 */
1160 	bio->bi_phys_segments = 0;
1161 	clear_bit(BIO_SEG_VALID, &bio->bi_flags);
1162 
1163 	if (rw == READ) {
1164 		/*
1165 		 * read balancing logic:
1166 		 */
1167 		int rdisk;
1168 
1169 read_again:
1170 		rdisk = read_balance(conf, r1_bio, &max_sectors);
1171 
1172 		if (rdisk < 0) {
1173 			/* couldn't find anywhere to read from */
1174 			raid_end_bio_io(r1_bio);
1175 			return;
1176 		}
1177 		mirror = conf->mirrors + rdisk;
1178 
1179 		if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1180 		    bitmap) {
1181 			/* Reading from a write-mostly device must
1182 			 * take care not to over-take any writes
1183 			 * that are 'behind'
1184 			 */
1185 			wait_event(bitmap->behind_wait,
1186 				   atomic_read(&bitmap->behind_writes) == 0);
1187 		}
1188 		r1_bio->read_disk = rdisk;
1189 		r1_bio->start_next_window = 0;
1190 
1191 		read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1192 		bio_trim(read_bio, r1_bio->sector - bio->bi_iter.bi_sector,
1193 			 max_sectors);
1194 
1195 		r1_bio->bios[rdisk] = read_bio;
1196 
1197 		read_bio->bi_iter.bi_sector = r1_bio->sector +
1198 			mirror->rdev->data_offset;
1199 		read_bio->bi_bdev = mirror->rdev->bdev;
1200 		read_bio->bi_end_io = raid1_end_read_request;
1201 		read_bio->bi_rw = READ | do_sync;
1202 		read_bio->bi_private = r1_bio;
1203 
1204 		if (max_sectors < r1_bio->sectors) {
1205 			/* could not read all from this device, so we will
1206 			 * need another r1_bio.
1207 			 */
1208 
1209 			sectors_handled = (r1_bio->sector + max_sectors
1210 					   - bio->bi_iter.bi_sector);
1211 			r1_bio->sectors = max_sectors;
1212 			spin_lock_irq(&conf->device_lock);
1213 			if (bio->bi_phys_segments == 0)
1214 				bio->bi_phys_segments = 2;
1215 			else
1216 				bio->bi_phys_segments++;
1217 			spin_unlock_irq(&conf->device_lock);
1218 			/* Cannot call generic_make_request directly
1219 			 * as that will be queued in __make_request
1220 			 * and subsequent mempool_alloc might block waiting
1221 			 * for it.  So hand bio over to raid1d.
1222 			 */
1223 			reschedule_retry(r1_bio);
1224 
1225 			r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1226 
1227 			r1_bio->master_bio = bio;
1228 			r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1229 			r1_bio->state = 0;
1230 			r1_bio->mddev = mddev;
1231 			r1_bio->sector = bio->bi_iter.bi_sector +
1232 				sectors_handled;
1233 			goto read_again;
1234 		} else
1235 			generic_make_request(read_bio);
1236 		return;
1237 	}
1238 
1239 	/*
1240 	 * WRITE:
1241 	 */
1242 	if (conf->pending_count >= max_queued_requests) {
1243 		md_wakeup_thread(mddev->thread);
1244 		wait_event(conf->wait_barrier,
1245 			   conf->pending_count < max_queued_requests);
1246 	}
1247 	/* first select target devices under rcu_lock and
1248 	 * inc refcount on their rdev.  Record them by setting
1249 	 * bios[x] to bio
1250 	 * If there are known/acknowledged bad blocks on any device on
1251 	 * which we have seen a write error, we want to avoid writing those
1252 	 * blocks.
1253 	 * This potentially requires several writes to write around
1254 	 * the bad blocks.  Each set of writes gets it's own r1bio
1255 	 * with a set of bios attached.
1256 	 */
1257 
1258 	disks = conf->raid_disks * 2;
1259  retry_write:
1260 	r1_bio->start_next_window = start_next_window;
1261 	blocked_rdev = NULL;
1262 	rcu_read_lock();
1263 	max_sectors = r1_bio->sectors;
1264 	for (i = 0;  i < disks; i++) {
1265 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1266 		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1267 			atomic_inc(&rdev->nr_pending);
1268 			blocked_rdev = rdev;
1269 			break;
1270 		}
1271 		r1_bio->bios[i] = NULL;
1272 		if (!rdev || test_bit(Faulty, &rdev->flags)
1273 		    || test_bit(Unmerged, &rdev->flags)) {
1274 			if (i < conf->raid_disks)
1275 				set_bit(R1BIO_Degraded, &r1_bio->state);
1276 			continue;
1277 		}
1278 
1279 		atomic_inc(&rdev->nr_pending);
1280 		if (test_bit(WriteErrorSeen, &rdev->flags)) {
1281 			sector_t first_bad;
1282 			int bad_sectors;
1283 			int is_bad;
1284 
1285 			is_bad = is_badblock(rdev, r1_bio->sector,
1286 					     max_sectors,
1287 					     &first_bad, &bad_sectors);
1288 			if (is_bad < 0) {
1289 				/* mustn't write here until the bad block is
1290 				 * acknowledged*/
1291 				set_bit(BlockedBadBlocks, &rdev->flags);
1292 				blocked_rdev = rdev;
1293 				break;
1294 			}
1295 			if (is_bad && first_bad <= r1_bio->sector) {
1296 				/* Cannot write here at all */
1297 				bad_sectors -= (r1_bio->sector - first_bad);
1298 				if (bad_sectors < max_sectors)
1299 					/* mustn't write more than bad_sectors
1300 					 * to other devices yet
1301 					 */
1302 					max_sectors = bad_sectors;
1303 				rdev_dec_pending(rdev, mddev);
1304 				/* We don't set R1BIO_Degraded as that
1305 				 * only applies if the disk is
1306 				 * missing, so it might be re-added,
1307 				 * and we want to know to recover this
1308 				 * chunk.
1309 				 * In this case the device is here,
1310 				 * and the fact that this chunk is not
1311 				 * in-sync is recorded in the bad
1312 				 * block log
1313 				 */
1314 				continue;
1315 			}
1316 			if (is_bad) {
1317 				int good_sectors = first_bad - r1_bio->sector;
1318 				if (good_sectors < max_sectors)
1319 					max_sectors = good_sectors;
1320 			}
1321 		}
1322 		r1_bio->bios[i] = bio;
1323 	}
1324 	rcu_read_unlock();
1325 
1326 	if (unlikely(blocked_rdev)) {
1327 		/* Wait for this device to become unblocked */
1328 		int j;
1329 		sector_t old = start_next_window;
1330 
1331 		for (j = 0; j < i; j++)
1332 			if (r1_bio->bios[j])
1333 				rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1334 		r1_bio->state = 0;
1335 		allow_barrier(conf, start_next_window, bio->bi_iter.bi_sector);
1336 		md_wait_for_blocked_rdev(blocked_rdev, mddev);
1337 		start_next_window = wait_barrier(conf, bio);
1338 		/*
1339 		 * We must make sure the multi r1bios of bio have
1340 		 * the same value of bi_phys_segments
1341 		 */
1342 		if (bio->bi_phys_segments && old &&
1343 		    old != start_next_window)
1344 			/* Wait for the former r1bio(s) to complete */
1345 			wait_event(conf->wait_barrier,
1346 				   bio->bi_phys_segments == 1);
1347 		goto retry_write;
1348 	}
1349 
1350 	if (max_sectors < r1_bio->sectors) {
1351 		/* We are splitting this write into multiple parts, so
1352 		 * we need to prepare for allocating another r1_bio.
1353 		 */
1354 		r1_bio->sectors = max_sectors;
1355 		spin_lock_irq(&conf->device_lock);
1356 		if (bio->bi_phys_segments == 0)
1357 			bio->bi_phys_segments = 2;
1358 		else
1359 			bio->bi_phys_segments++;
1360 		spin_unlock_irq(&conf->device_lock);
1361 	}
1362 	sectors_handled = r1_bio->sector + max_sectors - bio->bi_iter.bi_sector;
1363 
1364 	atomic_set(&r1_bio->remaining, 1);
1365 	atomic_set(&r1_bio->behind_remaining, 0);
1366 
1367 	first_clone = 1;
1368 	for (i = 0; i < disks; i++) {
1369 		struct bio *mbio;
1370 		if (!r1_bio->bios[i])
1371 			continue;
1372 
1373 		mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1374 		bio_trim(mbio, r1_bio->sector - bio->bi_iter.bi_sector, max_sectors);
1375 
1376 		if (first_clone) {
1377 			/* do behind I/O ?
1378 			 * Not if there are too many, or cannot
1379 			 * allocate memory, or a reader on WriteMostly
1380 			 * is waiting for behind writes to flush */
1381 			if (bitmap &&
1382 			    (atomic_read(&bitmap->behind_writes)
1383 			     < mddev->bitmap_info.max_write_behind) &&
1384 			    !waitqueue_active(&bitmap->behind_wait))
1385 				alloc_behind_pages(mbio, r1_bio);
1386 
1387 			bitmap_startwrite(bitmap, r1_bio->sector,
1388 					  r1_bio->sectors,
1389 					  test_bit(R1BIO_BehindIO,
1390 						   &r1_bio->state));
1391 			first_clone = 0;
1392 		}
1393 		if (r1_bio->behind_bvecs) {
1394 			struct bio_vec *bvec;
1395 			int j;
1396 
1397 			/*
1398 			 * We trimmed the bio, so _all is legit
1399 			 */
1400 			bio_for_each_segment_all(bvec, mbio, j)
1401 				bvec->bv_page = r1_bio->behind_bvecs[j].bv_page;
1402 			if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1403 				atomic_inc(&r1_bio->behind_remaining);
1404 		}
1405 
1406 		r1_bio->bios[i] = mbio;
1407 
1408 		mbio->bi_iter.bi_sector	= (r1_bio->sector +
1409 				   conf->mirrors[i].rdev->data_offset);
1410 		mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1411 		mbio->bi_end_io	= raid1_end_write_request;
1412 		mbio->bi_rw =
1413 			WRITE | do_flush_fua | do_sync | do_discard | do_same;
1414 		mbio->bi_private = r1_bio;
1415 
1416 		atomic_inc(&r1_bio->remaining);
1417 
1418 		cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1419 		if (cb)
1420 			plug = container_of(cb, struct raid1_plug_cb, cb);
1421 		else
1422 			plug = NULL;
1423 		spin_lock_irqsave(&conf->device_lock, flags);
1424 		if (plug) {
1425 			bio_list_add(&plug->pending, mbio);
1426 			plug->pending_cnt++;
1427 		} else {
1428 			bio_list_add(&conf->pending_bio_list, mbio);
1429 			conf->pending_count++;
1430 		}
1431 		spin_unlock_irqrestore(&conf->device_lock, flags);
1432 		if (!plug)
1433 			md_wakeup_thread(mddev->thread);
1434 	}
1435 	/* Mustn't call r1_bio_write_done before this next test,
1436 	 * as it could result in the bio being freed.
1437 	 */
1438 	if (sectors_handled < bio_sectors(bio)) {
1439 		r1_bio_write_done(r1_bio);
1440 		/* We need another r1_bio.  It has already been counted
1441 		 * in bio->bi_phys_segments
1442 		 */
1443 		r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1444 		r1_bio->master_bio = bio;
1445 		r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1446 		r1_bio->state = 0;
1447 		r1_bio->mddev = mddev;
1448 		r1_bio->sector = bio->bi_iter.bi_sector + sectors_handled;
1449 		goto retry_write;
1450 	}
1451 
1452 	r1_bio_write_done(r1_bio);
1453 
1454 	/* In case raid1d snuck in to freeze_array */
1455 	wake_up(&conf->wait_barrier);
1456 }
1457 
1458 static void status(struct seq_file *seq, struct mddev *mddev)
1459 {
1460 	struct r1conf *conf = mddev->private;
1461 	int i;
1462 
1463 	seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1464 		   conf->raid_disks - mddev->degraded);
1465 	rcu_read_lock();
1466 	for (i = 0; i < conf->raid_disks; i++) {
1467 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1468 		seq_printf(seq, "%s",
1469 			   rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1470 	}
1471 	rcu_read_unlock();
1472 	seq_printf(seq, "]");
1473 }
1474 
1475 
1476 static void error(struct mddev *mddev, struct md_rdev *rdev)
1477 {
1478 	char b[BDEVNAME_SIZE];
1479 	struct r1conf *conf = mddev->private;
1480 
1481 	/*
1482 	 * If it is not operational, then we have already marked it as dead
1483 	 * else if it is the last working disks, ignore the error, let the
1484 	 * next level up know.
1485 	 * else mark the drive as failed
1486 	 */
1487 	if (test_bit(In_sync, &rdev->flags)
1488 	    && (conf->raid_disks - mddev->degraded) == 1) {
1489 		/*
1490 		 * Don't fail the drive, act as though we were just a
1491 		 * normal single drive.
1492 		 * However don't try a recovery from this drive as
1493 		 * it is very likely to fail.
1494 		 */
1495 		conf->recovery_disabled = mddev->recovery_disabled;
1496 		return;
1497 	}
1498 	set_bit(Blocked, &rdev->flags);
1499 	if (test_and_clear_bit(In_sync, &rdev->flags)) {
1500 		unsigned long flags;
1501 		spin_lock_irqsave(&conf->device_lock, flags);
1502 		mddev->degraded++;
1503 		set_bit(Faulty, &rdev->flags);
1504 		spin_unlock_irqrestore(&conf->device_lock, flags);
1505 	} else
1506 		set_bit(Faulty, &rdev->flags);
1507 	/*
1508 	 * if recovery is running, make sure it aborts.
1509 	 */
1510 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1511 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
1512 	printk(KERN_ALERT
1513 	       "md/raid1:%s: Disk failure on %s, disabling device.\n"
1514 	       "md/raid1:%s: Operation continuing on %d devices.\n",
1515 	       mdname(mddev), bdevname(rdev->bdev, b),
1516 	       mdname(mddev), conf->raid_disks - mddev->degraded);
1517 }
1518 
1519 static void print_conf(struct r1conf *conf)
1520 {
1521 	int i;
1522 
1523 	printk(KERN_DEBUG "RAID1 conf printout:\n");
1524 	if (!conf) {
1525 		printk(KERN_DEBUG "(!conf)\n");
1526 		return;
1527 	}
1528 	printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1529 		conf->raid_disks);
1530 
1531 	rcu_read_lock();
1532 	for (i = 0; i < conf->raid_disks; i++) {
1533 		char b[BDEVNAME_SIZE];
1534 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1535 		if (rdev)
1536 			printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1537 			       i, !test_bit(In_sync, &rdev->flags),
1538 			       !test_bit(Faulty, &rdev->flags),
1539 			       bdevname(rdev->bdev,b));
1540 	}
1541 	rcu_read_unlock();
1542 }
1543 
1544 static void close_sync(struct r1conf *conf)
1545 {
1546 	wait_barrier(conf, NULL);
1547 	allow_barrier(conf, 0, 0);
1548 
1549 	mempool_destroy(conf->r1buf_pool);
1550 	conf->r1buf_pool = NULL;
1551 
1552 	conf->next_resync = 0;
1553 	conf->start_next_window = MaxSector;
1554 }
1555 
1556 static int raid1_spare_active(struct mddev *mddev)
1557 {
1558 	int i;
1559 	struct r1conf *conf = mddev->private;
1560 	int count = 0;
1561 	unsigned long flags;
1562 
1563 	/*
1564 	 * Find all failed disks within the RAID1 configuration
1565 	 * and mark them readable.
1566 	 * Called under mddev lock, so rcu protection not needed.
1567 	 */
1568 	for (i = 0; i < conf->raid_disks; i++) {
1569 		struct md_rdev *rdev = conf->mirrors[i].rdev;
1570 		struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1571 		if (repl
1572 		    && repl->recovery_offset == MaxSector
1573 		    && !test_bit(Faulty, &repl->flags)
1574 		    && !test_and_set_bit(In_sync, &repl->flags)) {
1575 			/* replacement has just become active */
1576 			if (!rdev ||
1577 			    !test_and_clear_bit(In_sync, &rdev->flags))
1578 				count++;
1579 			if (rdev) {
1580 				/* Replaced device not technically
1581 				 * faulty, but we need to be sure
1582 				 * it gets removed and never re-added
1583 				 */
1584 				set_bit(Faulty, &rdev->flags);
1585 				sysfs_notify_dirent_safe(
1586 					rdev->sysfs_state);
1587 			}
1588 		}
1589 		if (rdev
1590 		    && rdev->recovery_offset == MaxSector
1591 		    && !test_bit(Faulty, &rdev->flags)
1592 		    && !test_and_set_bit(In_sync, &rdev->flags)) {
1593 			count++;
1594 			sysfs_notify_dirent_safe(rdev->sysfs_state);
1595 		}
1596 	}
1597 	spin_lock_irqsave(&conf->device_lock, flags);
1598 	mddev->degraded -= count;
1599 	spin_unlock_irqrestore(&conf->device_lock, flags);
1600 
1601 	print_conf(conf);
1602 	return count;
1603 }
1604 
1605 
1606 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1607 {
1608 	struct r1conf *conf = mddev->private;
1609 	int err = -EEXIST;
1610 	int mirror = 0;
1611 	struct raid1_info *p;
1612 	int first = 0;
1613 	int last = conf->raid_disks - 1;
1614 	struct request_queue *q = bdev_get_queue(rdev->bdev);
1615 
1616 	if (mddev->recovery_disabled == conf->recovery_disabled)
1617 		return -EBUSY;
1618 
1619 	if (rdev->raid_disk >= 0)
1620 		first = last = rdev->raid_disk;
1621 
1622 	if (q->merge_bvec_fn) {
1623 		set_bit(Unmerged, &rdev->flags);
1624 		mddev->merge_check_needed = 1;
1625 	}
1626 
1627 	for (mirror = first; mirror <= last; mirror++) {
1628 		p = conf->mirrors+mirror;
1629 		if (!p->rdev) {
1630 
1631 			if (mddev->gendisk)
1632 				disk_stack_limits(mddev->gendisk, rdev->bdev,
1633 						  rdev->data_offset << 9);
1634 
1635 			p->head_position = 0;
1636 			rdev->raid_disk = mirror;
1637 			err = 0;
1638 			/* As all devices are equivalent, we don't need a full recovery
1639 			 * if this was recently any drive of the array
1640 			 */
1641 			if (rdev->saved_raid_disk < 0)
1642 				conf->fullsync = 1;
1643 			rcu_assign_pointer(p->rdev, rdev);
1644 			break;
1645 		}
1646 		if (test_bit(WantReplacement, &p->rdev->flags) &&
1647 		    p[conf->raid_disks].rdev == NULL) {
1648 			/* Add this device as a replacement */
1649 			clear_bit(In_sync, &rdev->flags);
1650 			set_bit(Replacement, &rdev->flags);
1651 			rdev->raid_disk = mirror;
1652 			err = 0;
1653 			conf->fullsync = 1;
1654 			rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1655 			break;
1656 		}
1657 	}
1658 	if (err == 0 && test_bit(Unmerged, &rdev->flags)) {
1659 		/* Some requests might not have seen this new
1660 		 * merge_bvec_fn.  We must wait for them to complete
1661 		 * before merging the device fully.
1662 		 * First we make sure any code which has tested
1663 		 * our function has submitted the request, then
1664 		 * we wait for all outstanding requests to complete.
1665 		 */
1666 		synchronize_sched();
1667 		freeze_array(conf, 0);
1668 		unfreeze_array(conf);
1669 		clear_bit(Unmerged, &rdev->flags);
1670 	}
1671 	md_integrity_add_rdev(rdev, mddev);
1672 	if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1673 		queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1674 	print_conf(conf);
1675 	return err;
1676 }
1677 
1678 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1679 {
1680 	struct r1conf *conf = mddev->private;
1681 	int err = 0;
1682 	int number = rdev->raid_disk;
1683 	struct raid1_info *p = conf->mirrors + number;
1684 
1685 	if (rdev != p->rdev)
1686 		p = conf->mirrors + conf->raid_disks + number;
1687 
1688 	print_conf(conf);
1689 	if (rdev == p->rdev) {
1690 		if (test_bit(In_sync, &rdev->flags) ||
1691 		    atomic_read(&rdev->nr_pending)) {
1692 			err = -EBUSY;
1693 			goto abort;
1694 		}
1695 		/* Only remove non-faulty devices if recovery
1696 		 * is not possible.
1697 		 */
1698 		if (!test_bit(Faulty, &rdev->flags) &&
1699 		    mddev->recovery_disabled != conf->recovery_disabled &&
1700 		    mddev->degraded < conf->raid_disks) {
1701 			err = -EBUSY;
1702 			goto abort;
1703 		}
1704 		p->rdev = NULL;
1705 		synchronize_rcu();
1706 		if (atomic_read(&rdev->nr_pending)) {
1707 			/* lost the race, try later */
1708 			err = -EBUSY;
1709 			p->rdev = rdev;
1710 			goto abort;
1711 		} else if (conf->mirrors[conf->raid_disks + number].rdev) {
1712 			/* We just removed a device that is being replaced.
1713 			 * Move down the replacement.  We drain all IO before
1714 			 * doing this to avoid confusion.
1715 			 */
1716 			struct md_rdev *repl =
1717 				conf->mirrors[conf->raid_disks + number].rdev;
1718 			freeze_array(conf, 0);
1719 			clear_bit(Replacement, &repl->flags);
1720 			p->rdev = repl;
1721 			conf->mirrors[conf->raid_disks + number].rdev = NULL;
1722 			unfreeze_array(conf);
1723 			clear_bit(WantReplacement, &rdev->flags);
1724 		} else
1725 			clear_bit(WantReplacement, &rdev->flags);
1726 		err = md_integrity_register(mddev);
1727 	}
1728 abort:
1729 
1730 	print_conf(conf);
1731 	return err;
1732 }
1733 
1734 
1735 static void end_sync_read(struct bio *bio, int error)
1736 {
1737 	struct r1bio *r1_bio = bio->bi_private;
1738 
1739 	update_head_pos(r1_bio->read_disk, r1_bio);
1740 
1741 	/*
1742 	 * we have read a block, now it needs to be re-written,
1743 	 * or re-read if the read failed.
1744 	 * We don't do much here, just schedule handling by raid1d
1745 	 */
1746 	if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1747 		set_bit(R1BIO_Uptodate, &r1_bio->state);
1748 
1749 	if (atomic_dec_and_test(&r1_bio->remaining))
1750 		reschedule_retry(r1_bio);
1751 }
1752 
1753 static void end_sync_write(struct bio *bio, int error)
1754 {
1755 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1756 	struct r1bio *r1_bio = bio->bi_private;
1757 	struct mddev *mddev = r1_bio->mddev;
1758 	struct r1conf *conf = mddev->private;
1759 	int mirror=0;
1760 	sector_t first_bad;
1761 	int bad_sectors;
1762 
1763 	mirror = find_bio_disk(r1_bio, bio);
1764 
1765 	if (!uptodate) {
1766 		sector_t sync_blocks = 0;
1767 		sector_t s = r1_bio->sector;
1768 		long sectors_to_go = r1_bio->sectors;
1769 		/* make sure these bits doesn't get cleared. */
1770 		do {
1771 			bitmap_end_sync(mddev->bitmap, s,
1772 					&sync_blocks, 1);
1773 			s += sync_blocks;
1774 			sectors_to_go -= sync_blocks;
1775 		} while (sectors_to_go > 0);
1776 		set_bit(WriteErrorSeen,
1777 			&conf->mirrors[mirror].rdev->flags);
1778 		if (!test_and_set_bit(WantReplacement,
1779 				      &conf->mirrors[mirror].rdev->flags))
1780 			set_bit(MD_RECOVERY_NEEDED, &
1781 				mddev->recovery);
1782 		set_bit(R1BIO_WriteError, &r1_bio->state);
1783 	} else if (is_badblock(conf->mirrors[mirror].rdev,
1784 			       r1_bio->sector,
1785 			       r1_bio->sectors,
1786 			       &first_bad, &bad_sectors) &&
1787 		   !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1788 				r1_bio->sector,
1789 				r1_bio->sectors,
1790 				&first_bad, &bad_sectors)
1791 		)
1792 		set_bit(R1BIO_MadeGood, &r1_bio->state);
1793 
1794 	if (atomic_dec_and_test(&r1_bio->remaining)) {
1795 		int s = r1_bio->sectors;
1796 		if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1797 		    test_bit(R1BIO_WriteError, &r1_bio->state))
1798 			reschedule_retry(r1_bio);
1799 		else {
1800 			put_buf(r1_bio);
1801 			md_done_sync(mddev, s, uptodate);
1802 		}
1803 	}
1804 }
1805 
1806 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1807 			    int sectors, struct page *page, int rw)
1808 {
1809 	if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
1810 		/* success */
1811 		return 1;
1812 	if (rw == WRITE) {
1813 		set_bit(WriteErrorSeen, &rdev->flags);
1814 		if (!test_and_set_bit(WantReplacement,
1815 				      &rdev->flags))
1816 			set_bit(MD_RECOVERY_NEEDED, &
1817 				rdev->mddev->recovery);
1818 	}
1819 	/* need to record an error - either for the block or the device */
1820 	if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1821 		md_error(rdev->mddev, rdev);
1822 	return 0;
1823 }
1824 
1825 static int fix_sync_read_error(struct r1bio *r1_bio)
1826 {
1827 	/* Try some synchronous reads of other devices to get
1828 	 * good data, much like with normal read errors.  Only
1829 	 * read into the pages we already have so we don't
1830 	 * need to re-issue the read request.
1831 	 * We don't need to freeze the array, because being in an
1832 	 * active sync request, there is no normal IO, and
1833 	 * no overlapping syncs.
1834 	 * We don't need to check is_badblock() again as we
1835 	 * made sure that anything with a bad block in range
1836 	 * will have bi_end_io clear.
1837 	 */
1838 	struct mddev *mddev = r1_bio->mddev;
1839 	struct r1conf *conf = mddev->private;
1840 	struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1841 	sector_t sect = r1_bio->sector;
1842 	int sectors = r1_bio->sectors;
1843 	int idx = 0;
1844 
1845 	while(sectors) {
1846 		int s = sectors;
1847 		int d = r1_bio->read_disk;
1848 		int success = 0;
1849 		struct md_rdev *rdev;
1850 		int start;
1851 
1852 		if (s > (PAGE_SIZE>>9))
1853 			s = PAGE_SIZE >> 9;
1854 		do {
1855 			if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1856 				/* No rcu protection needed here devices
1857 				 * can only be removed when no resync is
1858 				 * active, and resync is currently active
1859 				 */
1860 				rdev = conf->mirrors[d].rdev;
1861 				if (sync_page_io(rdev, sect, s<<9,
1862 						 bio->bi_io_vec[idx].bv_page,
1863 						 READ, false)) {
1864 					success = 1;
1865 					break;
1866 				}
1867 			}
1868 			d++;
1869 			if (d == conf->raid_disks * 2)
1870 				d = 0;
1871 		} while (!success && d != r1_bio->read_disk);
1872 
1873 		if (!success) {
1874 			char b[BDEVNAME_SIZE];
1875 			int abort = 0;
1876 			/* Cannot read from anywhere, this block is lost.
1877 			 * Record a bad block on each device.  If that doesn't
1878 			 * work just disable and interrupt the recovery.
1879 			 * Don't fail devices as that won't really help.
1880 			 */
1881 			printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error"
1882 			       " for block %llu\n",
1883 			       mdname(mddev),
1884 			       bdevname(bio->bi_bdev, b),
1885 			       (unsigned long long)r1_bio->sector);
1886 			for (d = 0; d < conf->raid_disks * 2; d++) {
1887 				rdev = conf->mirrors[d].rdev;
1888 				if (!rdev || test_bit(Faulty, &rdev->flags))
1889 					continue;
1890 				if (!rdev_set_badblocks(rdev, sect, s, 0))
1891 					abort = 1;
1892 			}
1893 			if (abort) {
1894 				conf->recovery_disabled =
1895 					mddev->recovery_disabled;
1896 				set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1897 				md_done_sync(mddev, r1_bio->sectors, 0);
1898 				put_buf(r1_bio);
1899 				return 0;
1900 			}
1901 			/* Try next page */
1902 			sectors -= s;
1903 			sect += s;
1904 			idx++;
1905 			continue;
1906 		}
1907 
1908 		start = d;
1909 		/* write it back and re-read */
1910 		while (d != r1_bio->read_disk) {
1911 			if (d == 0)
1912 				d = conf->raid_disks * 2;
1913 			d--;
1914 			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1915 				continue;
1916 			rdev = conf->mirrors[d].rdev;
1917 			if (r1_sync_page_io(rdev, sect, s,
1918 					    bio->bi_io_vec[idx].bv_page,
1919 					    WRITE) == 0) {
1920 				r1_bio->bios[d]->bi_end_io = NULL;
1921 				rdev_dec_pending(rdev, mddev);
1922 			}
1923 		}
1924 		d = start;
1925 		while (d != r1_bio->read_disk) {
1926 			if (d == 0)
1927 				d = conf->raid_disks * 2;
1928 			d--;
1929 			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1930 				continue;
1931 			rdev = conf->mirrors[d].rdev;
1932 			if (r1_sync_page_io(rdev, sect, s,
1933 					    bio->bi_io_vec[idx].bv_page,
1934 					    READ) != 0)
1935 				atomic_add(s, &rdev->corrected_errors);
1936 		}
1937 		sectors -= s;
1938 		sect += s;
1939 		idx ++;
1940 	}
1941 	set_bit(R1BIO_Uptodate, &r1_bio->state);
1942 	set_bit(BIO_UPTODATE, &bio->bi_flags);
1943 	return 1;
1944 }
1945 
1946 static int process_checks(struct r1bio *r1_bio)
1947 {
1948 	/* We have read all readable devices.  If we haven't
1949 	 * got the block, then there is no hope left.
1950 	 * If we have, then we want to do a comparison
1951 	 * and skip the write if everything is the same.
1952 	 * If any blocks failed to read, then we need to
1953 	 * attempt an over-write
1954 	 */
1955 	struct mddev *mddev = r1_bio->mddev;
1956 	struct r1conf *conf = mddev->private;
1957 	int primary;
1958 	int i;
1959 	int vcnt;
1960 
1961 	/* Fix variable parts of all bios */
1962 	vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
1963 	for (i = 0; i < conf->raid_disks * 2; i++) {
1964 		int j;
1965 		int size;
1966 		int uptodate;
1967 		struct bio *b = r1_bio->bios[i];
1968 		if (b->bi_end_io != end_sync_read)
1969 			continue;
1970 		/* fixup the bio for reuse, but preserve BIO_UPTODATE */
1971 		uptodate = test_bit(BIO_UPTODATE, &b->bi_flags);
1972 		bio_reset(b);
1973 		if (!uptodate)
1974 			clear_bit(BIO_UPTODATE, &b->bi_flags);
1975 		b->bi_vcnt = vcnt;
1976 		b->bi_iter.bi_size = r1_bio->sectors << 9;
1977 		b->bi_iter.bi_sector = r1_bio->sector +
1978 			conf->mirrors[i].rdev->data_offset;
1979 		b->bi_bdev = conf->mirrors[i].rdev->bdev;
1980 		b->bi_end_io = end_sync_read;
1981 		b->bi_private = r1_bio;
1982 
1983 		size = b->bi_iter.bi_size;
1984 		for (j = 0; j < vcnt ; j++) {
1985 			struct bio_vec *bi;
1986 			bi = &b->bi_io_vec[j];
1987 			bi->bv_offset = 0;
1988 			if (size > PAGE_SIZE)
1989 				bi->bv_len = PAGE_SIZE;
1990 			else
1991 				bi->bv_len = size;
1992 			size -= PAGE_SIZE;
1993 		}
1994 	}
1995 	for (primary = 0; primary < conf->raid_disks * 2; primary++)
1996 		if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
1997 		    test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) {
1998 			r1_bio->bios[primary]->bi_end_io = NULL;
1999 			rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
2000 			break;
2001 		}
2002 	r1_bio->read_disk = primary;
2003 	for (i = 0; i < conf->raid_disks * 2; i++) {
2004 		int j;
2005 		struct bio *pbio = r1_bio->bios[primary];
2006 		struct bio *sbio = r1_bio->bios[i];
2007 		int uptodate = test_bit(BIO_UPTODATE, &sbio->bi_flags);
2008 
2009 		if (sbio->bi_end_io != end_sync_read)
2010 			continue;
2011 		/* Now we can 'fixup' the BIO_UPTODATE flag */
2012 		set_bit(BIO_UPTODATE, &sbio->bi_flags);
2013 
2014 		if (uptodate) {
2015 			for (j = vcnt; j-- ; ) {
2016 				struct page *p, *s;
2017 				p = pbio->bi_io_vec[j].bv_page;
2018 				s = sbio->bi_io_vec[j].bv_page;
2019 				if (memcmp(page_address(p),
2020 					   page_address(s),
2021 					   sbio->bi_io_vec[j].bv_len))
2022 					break;
2023 			}
2024 		} else
2025 			j = 0;
2026 		if (j >= 0)
2027 			atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
2028 		if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
2029 			      && uptodate)) {
2030 			/* No need to write to this device. */
2031 			sbio->bi_end_io = NULL;
2032 			rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2033 			continue;
2034 		}
2035 
2036 		bio_copy_data(sbio, pbio);
2037 	}
2038 	return 0;
2039 }
2040 
2041 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
2042 {
2043 	struct r1conf *conf = mddev->private;
2044 	int i;
2045 	int disks = conf->raid_disks * 2;
2046 	struct bio *bio, *wbio;
2047 
2048 	bio = r1_bio->bios[r1_bio->read_disk];
2049 
2050 	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2051 		/* ouch - failed to read all of that. */
2052 		if (!fix_sync_read_error(r1_bio))
2053 			return;
2054 
2055 	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2056 		if (process_checks(r1_bio) < 0)
2057 			return;
2058 	/*
2059 	 * schedule writes
2060 	 */
2061 	atomic_set(&r1_bio->remaining, 1);
2062 	for (i = 0; i < disks ; i++) {
2063 		wbio = r1_bio->bios[i];
2064 		if (wbio->bi_end_io == NULL ||
2065 		    (wbio->bi_end_io == end_sync_read &&
2066 		     (i == r1_bio->read_disk ||
2067 		      !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2068 			continue;
2069 
2070 		wbio->bi_rw = WRITE;
2071 		wbio->bi_end_io = end_sync_write;
2072 		atomic_inc(&r1_bio->remaining);
2073 		md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
2074 
2075 		generic_make_request(wbio);
2076 	}
2077 
2078 	if (atomic_dec_and_test(&r1_bio->remaining)) {
2079 		/* if we're here, all write(s) have completed, so clean up */
2080 		int s = r1_bio->sectors;
2081 		if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2082 		    test_bit(R1BIO_WriteError, &r1_bio->state))
2083 			reschedule_retry(r1_bio);
2084 		else {
2085 			put_buf(r1_bio);
2086 			md_done_sync(mddev, s, 1);
2087 		}
2088 	}
2089 }
2090 
2091 /*
2092  * This is a kernel thread which:
2093  *
2094  *	1.	Retries failed read operations on working mirrors.
2095  *	2.	Updates the raid superblock when problems encounter.
2096  *	3.	Performs writes following reads for array synchronising.
2097  */
2098 
2099 static void fix_read_error(struct r1conf *conf, int read_disk,
2100 			   sector_t sect, int sectors)
2101 {
2102 	struct mddev *mddev = conf->mddev;
2103 	while(sectors) {
2104 		int s = sectors;
2105 		int d = read_disk;
2106 		int success = 0;
2107 		int start;
2108 		struct md_rdev *rdev;
2109 
2110 		if (s > (PAGE_SIZE>>9))
2111 			s = PAGE_SIZE >> 9;
2112 
2113 		do {
2114 			/* Note: no rcu protection needed here
2115 			 * as this is synchronous in the raid1d thread
2116 			 * which is the thread that might remove
2117 			 * a device.  If raid1d ever becomes multi-threaded....
2118 			 */
2119 			sector_t first_bad;
2120 			int bad_sectors;
2121 
2122 			rdev = conf->mirrors[d].rdev;
2123 			if (rdev &&
2124 			    (test_bit(In_sync, &rdev->flags) ||
2125 			     (!test_bit(Faulty, &rdev->flags) &&
2126 			      rdev->recovery_offset >= sect + s)) &&
2127 			    is_badblock(rdev, sect, s,
2128 					&first_bad, &bad_sectors) == 0 &&
2129 			    sync_page_io(rdev, sect, s<<9,
2130 					 conf->tmppage, READ, false))
2131 				success = 1;
2132 			else {
2133 				d++;
2134 				if (d == conf->raid_disks * 2)
2135 					d = 0;
2136 			}
2137 		} while (!success && d != read_disk);
2138 
2139 		if (!success) {
2140 			/* Cannot read from anywhere - mark it bad */
2141 			struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2142 			if (!rdev_set_badblocks(rdev, sect, s, 0))
2143 				md_error(mddev, rdev);
2144 			break;
2145 		}
2146 		/* write it back and re-read */
2147 		start = d;
2148 		while (d != read_disk) {
2149 			if (d==0)
2150 				d = conf->raid_disks * 2;
2151 			d--;
2152 			rdev = conf->mirrors[d].rdev;
2153 			if (rdev &&
2154 			    test_bit(In_sync, &rdev->flags))
2155 				r1_sync_page_io(rdev, sect, s,
2156 						conf->tmppage, WRITE);
2157 		}
2158 		d = start;
2159 		while (d != read_disk) {
2160 			char b[BDEVNAME_SIZE];
2161 			if (d==0)
2162 				d = conf->raid_disks * 2;
2163 			d--;
2164 			rdev = conf->mirrors[d].rdev;
2165 			if (rdev &&
2166 			    test_bit(In_sync, &rdev->flags)) {
2167 				if (r1_sync_page_io(rdev, sect, s,
2168 						    conf->tmppage, READ)) {
2169 					atomic_add(s, &rdev->corrected_errors);
2170 					printk(KERN_INFO
2171 					       "md/raid1:%s: read error corrected "
2172 					       "(%d sectors at %llu on %s)\n",
2173 					       mdname(mddev), s,
2174 					       (unsigned long long)(sect +
2175 					           rdev->data_offset),
2176 					       bdevname(rdev->bdev, b));
2177 				}
2178 			}
2179 		}
2180 		sectors -= s;
2181 		sect += s;
2182 	}
2183 }
2184 
2185 static int narrow_write_error(struct r1bio *r1_bio, int i)
2186 {
2187 	struct mddev *mddev = r1_bio->mddev;
2188 	struct r1conf *conf = mddev->private;
2189 	struct md_rdev *rdev = conf->mirrors[i].rdev;
2190 
2191 	/* bio has the data to be written to device 'i' where
2192 	 * we just recently had a write error.
2193 	 * We repeatedly clone the bio and trim down to one block,
2194 	 * then try the write.  Where the write fails we record
2195 	 * a bad block.
2196 	 * It is conceivable that the bio doesn't exactly align with
2197 	 * blocks.  We must handle this somehow.
2198 	 *
2199 	 * We currently own a reference on the rdev.
2200 	 */
2201 
2202 	int block_sectors;
2203 	sector_t sector;
2204 	int sectors;
2205 	int sect_to_write = r1_bio->sectors;
2206 	int ok = 1;
2207 
2208 	if (rdev->badblocks.shift < 0)
2209 		return 0;
2210 
2211 	block_sectors = 1 << rdev->badblocks.shift;
2212 	sector = r1_bio->sector;
2213 	sectors = ((sector + block_sectors)
2214 		   & ~(sector_t)(block_sectors - 1))
2215 		- sector;
2216 
2217 	while (sect_to_write) {
2218 		struct bio *wbio;
2219 		if (sectors > sect_to_write)
2220 			sectors = sect_to_write;
2221 		/* Write at 'sector' for 'sectors'*/
2222 
2223 		if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2224 			unsigned vcnt = r1_bio->behind_page_count;
2225 			struct bio_vec *vec = r1_bio->behind_bvecs;
2226 
2227 			while (!vec->bv_page) {
2228 				vec++;
2229 				vcnt--;
2230 			}
2231 
2232 			wbio = bio_alloc_mddev(GFP_NOIO, vcnt, mddev);
2233 			memcpy(wbio->bi_io_vec, vec, vcnt * sizeof(struct bio_vec));
2234 
2235 			wbio->bi_vcnt = vcnt;
2236 		} else {
2237 			wbio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2238 		}
2239 
2240 		wbio->bi_rw = WRITE;
2241 		wbio->bi_iter.bi_sector = r1_bio->sector;
2242 		wbio->bi_iter.bi_size = r1_bio->sectors << 9;
2243 
2244 		bio_trim(wbio, sector - r1_bio->sector, sectors);
2245 		wbio->bi_iter.bi_sector += rdev->data_offset;
2246 		wbio->bi_bdev = rdev->bdev;
2247 		if (submit_bio_wait(WRITE, wbio) == 0)
2248 			/* failure! */
2249 			ok = rdev_set_badblocks(rdev, sector,
2250 						sectors, 0)
2251 				&& ok;
2252 
2253 		bio_put(wbio);
2254 		sect_to_write -= sectors;
2255 		sector += sectors;
2256 		sectors = block_sectors;
2257 	}
2258 	return ok;
2259 }
2260 
2261 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2262 {
2263 	int m;
2264 	int s = r1_bio->sectors;
2265 	for (m = 0; m < conf->raid_disks * 2 ; m++) {
2266 		struct md_rdev *rdev = conf->mirrors[m].rdev;
2267 		struct bio *bio = r1_bio->bios[m];
2268 		if (bio->bi_end_io == NULL)
2269 			continue;
2270 		if (test_bit(BIO_UPTODATE, &bio->bi_flags) &&
2271 		    test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2272 			rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2273 		}
2274 		if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
2275 		    test_bit(R1BIO_WriteError, &r1_bio->state)) {
2276 			if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2277 				md_error(conf->mddev, rdev);
2278 		}
2279 	}
2280 	put_buf(r1_bio);
2281 	md_done_sync(conf->mddev, s, 1);
2282 }
2283 
2284 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2285 {
2286 	int m;
2287 	for (m = 0; m < conf->raid_disks * 2 ; m++)
2288 		if (r1_bio->bios[m] == IO_MADE_GOOD) {
2289 			struct md_rdev *rdev = conf->mirrors[m].rdev;
2290 			rdev_clear_badblocks(rdev,
2291 					     r1_bio->sector,
2292 					     r1_bio->sectors, 0);
2293 			rdev_dec_pending(rdev, conf->mddev);
2294 		} else if (r1_bio->bios[m] != NULL) {
2295 			/* This drive got a write error.  We need to
2296 			 * narrow down and record precise write
2297 			 * errors.
2298 			 */
2299 			if (!narrow_write_error(r1_bio, m)) {
2300 				md_error(conf->mddev,
2301 					 conf->mirrors[m].rdev);
2302 				/* an I/O failed, we can't clear the bitmap */
2303 				set_bit(R1BIO_Degraded, &r1_bio->state);
2304 			}
2305 			rdev_dec_pending(conf->mirrors[m].rdev,
2306 					 conf->mddev);
2307 		}
2308 	if (test_bit(R1BIO_WriteError, &r1_bio->state))
2309 		close_write(r1_bio);
2310 	raid_end_bio_io(r1_bio);
2311 }
2312 
2313 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2314 {
2315 	int disk;
2316 	int max_sectors;
2317 	struct mddev *mddev = conf->mddev;
2318 	struct bio *bio;
2319 	char b[BDEVNAME_SIZE];
2320 	struct md_rdev *rdev;
2321 
2322 	clear_bit(R1BIO_ReadError, &r1_bio->state);
2323 	/* we got a read error. Maybe the drive is bad.  Maybe just
2324 	 * the block and we can fix it.
2325 	 * We freeze all other IO, and try reading the block from
2326 	 * other devices.  When we find one, we re-write
2327 	 * and check it that fixes the read error.
2328 	 * This is all done synchronously while the array is
2329 	 * frozen
2330 	 */
2331 	if (mddev->ro == 0) {
2332 		freeze_array(conf, 1);
2333 		fix_read_error(conf, r1_bio->read_disk,
2334 			       r1_bio->sector, r1_bio->sectors);
2335 		unfreeze_array(conf);
2336 	} else
2337 		md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
2338 	rdev_dec_pending(conf->mirrors[r1_bio->read_disk].rdev, conf->mddev);
2339 
2340 	bio = r1_bio->bios[r1_bio->read_disk];
2341 	bdevname(bio->bi_bdev, b);
2342 read_more:
2343 	disk = read_balance(conf, r1_bio, &max_sectors);
2344 	if (disk == -1) {
2345 		printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O"
2346 		       " read error for block %llu\n",
2347 		       mdname(mddev), b, (unsigned long long)r1_bio->sector);
2348 		raid_end_bio_io(r1_bio);
2349 	} else {
2350 		const unsigned long do_sync
2351 			= r1_bio->master_bio->bi_rw & REQ_SYNC;
2352 		if (bio) {
2353 			r1_bio->bios[r1_bio->read_disk] =
2354 				mddev->ro ? IO_BLOCKED : NULL;
2355 			bio_put(bio);
2356 		}
2357 		r1_bio->read_disk = disk;
2358 		bio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2359 		bio_trim(bio, r1_bio->sector - bio->bi_iter.bi_sector,
2360 			 max_sectors);
2361 		r1_bio->bios[r1_bio->read_disk] = bio;
2362 		rdev = conf->mirrors[disk].rdev;
2363 		printk_ratelimited(KERN_ERR
2364 				   "md/raid1:%s: redirecting sector %llu"
2365 				   " to other mirror: %s\n",
2366 				   mdname(mddev),
2367 				   (unsigned long long)r1_bio->sector,
2368 				   bdevname(rdev->bdev, b));
2369 		bio->bi_iter.bi_sector = r1_bio->sector + rdev->data_offset;
2370 		bio->bi_bdev = rdev->bdev;
2371 		bio->bi_end_io = raid1_end_read_request;
2372 		bio->bi_rw = READ | do_sync;
2373 		bio->bi_private = r1_bio;
2374 		if (max_sectors < r1_bio->sectors) {
2375 			/* Drat - have to split this up more */
2376 			struct bio *mbio = r1_bio->master_bio;
2377 			int sectors_handled = (r1_bio->sector + max_sectors
2378 					       - mbio->bi_iter.bi_sector);
2379 			r1_bio->sectors = max_sectors;
2380 			spin_lock_irq(&conf->device_lock);
2381 			if (mbio->bi_phys_segments == 0)
2382 				mbio->bi_phys_segments = 2;
2383 			else
2384 				mbio->bi_phys_segments++;
2385 			spin_unlock_irq(&conf->device_lock);
2386 			generic_make_request(bio);
2387 			bio = NULL;
2388 
2389 			r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
2390 
2391 			r1_bio->master_bio = mbio;
2392 			r1_bio->sectors = bio_sectors(mbio) - sectors_handled;
2393 			r1_bio->state = 0;
2394 			set_bit(R1BIO_ReadError, &r1_bio->state);
2395 			r1_bio->mddev = mddev;
2396 			r1_bio->sector = mbio->bi_iter.bi_sector +
2397 				sectors_handled;
2398 
2399 			goto read_more;
2400 		} else
2401 			generic_make_request(bio);
2402 	}
2403 }
2404 
2405 static void raid1d(struct md_thread *thread)
2406 {
2407 	struct mddev *mddev = thread->mddev;
2408 	struct r1bio *r1_bio;
2409 	unsigned long flags;
2410 	struct r1conf *conf = mddev->private;
2411 	struct list_head *head = &conf->retry_list;
2412 	struct blk_plug plug;
2413 
2414 	md_check_recovery(mddev);
2415 
2416 	blk_start_plug(&plug);
2417 	for (;;) {
2418 
2419 		flush_pending_writes(conf);
2420 
2421 		spin_lock_irqsave(&conf->device_lock, flags);
2422 		if (list_empty(head)) {
2423 			spin_unlock_irqrestore(&conf->device_lock, flags);
2424 			break;
2425 		}
2426 		r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2427 		list_del(head->prev);
2428 		conf->nr_queued--;
2429 		spin_unlock_irqrestore(&conf->device_lock, flags);
2430 
2431 		mddev = r1_bio->mddev;
2432 		conf = mddev->private;
2433 		if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2434 			if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2435 			    test_bit(R1BIO_WriteError, &r1_bio->state))
2436 				handle_sync_write_finished(conf, r1_bio);
2437 			else
2438 				sync_request_write(mddev, r1_bio);
2439 		} else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2440 			   test_bit(R1BIO_WriteError, &r1_bio->state))
2441 			handle_write_finished(conf, r1_bio);
2442 		else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2443 			handle_read_error(conf, r1_bio);
2444 		else
2445 			/* just a partial read to be scheduled from separate
2446 			 * context
2447 			 */
2448 			generic_make_request(r1_bio->bios[r1_bio->read_disk]);
2449 
2450 		cond_resched();
2451 		if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2452 			md_check_recovery(mddev);
2453 	}
2454 	blk_finish_plug(&plug);
2455 }
2456 
2457 
2458 static int init_resync(struct r1conf *conf)
2459 {
2460 	int buffs;
2461 
2462 	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2463 	BUG_ON(conf->r1buf_pool);
2464 	conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2465 					  conf->poolinfo);
2466 	if (!conf->r1buf_pool)
2467 		return -ENOMEM;
2468 	conf->next_resync = 0;
2469 	return 0;
2470 }
2471 
2472 /*
2473  * perform a "sync" on one "block"
2474  *
2475  * We need to make sure that no normal I/O request - particularly write
2476  * requests - conflict with active sync requests.
2477  *
2478  * This is achieved by tracking pending requests and a 'barrier' concept
2479  * that can be installed to exclude normal IO requests.
2480  */
2481 
2482 static sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
2483 {
2484 	struct r1conf *conf = mddev->private;
2485 	struct r1bio *r1_bio;
2486 	struct bio *bio;
2487 	sector_t max_sector, nr_sectors;
2488 	int disk = -1;
2489 	int i;
2490 	int wonly = -1;
2491 	int write_targets = 0, read_targets = 0;
2492 	sector_t sync_blocks;
2493 	int still_degraded = 0;
2494 	int good_sectors = RESYNC_SECTORS;
2495 	int min_bad = 0; /* number of sectors that are bad in all devices */
2496 
2497 	if (!conf->r1buf_pool)
2498 		if (init_resync(conf))
2499 			return 0;
2500 
2501 	max_sector = mddev->dev_sectors;
2502 	if (sector_nr >= max_sector) {
2503 		/* If we aborted, we need to abort the
2504 		 * sync on the 'current' bitmap chunk (there will
2505 		 * only be one in raid1 resync.
2506 		 * We can find the current addess in mddev->curr_resync
2507 		 */
2508 		if (mddev->curr_resync < max_sector) /* aborted */
2509 			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2510 						&sync_blocks, 1);
2511 		else /* completed sync */
2512 			conf->fullsync = 0;
2513 
2514 		bitmap_close_sync(mddev->bitmap);
2515 		close_sync(conf);
2516 		return 0;
2517 	}
2518 
2519 	if (mddev->bitmap == NULL &&
2520 	    mddev->recovery_cp == MaxSector &&
2521 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2522 	    conf->fullsync == 0) {
2523 		*skipped = 1;
2524 		return max_sector - sector_nr;
2525 	}
2526 	/* before building a request, check if we can skip these blocks..
2527 	 * This call the bitmap_start_sync doesn't actually record anything
2528 	 */
2529 	if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2530 	    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2531 		/* We can skip this block, and probably several more */
2532 		*skipped = 1;
2533 		return sync_blocks;
2534 	}
2535 	/*
2536 	 * If there is non-resync activity waiting for a turn,
2537 	 * and resync is going fast enough,
2538 	 * then let it though before starting on this new sync request.
2539 	 */
2540 	if (!go_faster && conf->nr_waiting)
2541 		msleep_interruptible(1000);
2542 
2543 	bitmap_cond_end_sync(mddev->bitmap, sector_nr);
2544 	r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
2545 	raise_barrier(conf);
2546 
2547 	conf->next_resync = sector_nr;
2548 
2549 	rcu_read_lock();
2550 	/*
2551 	 * If we get a correctably read error during resync or recovery,
2552 	 * we might want to read from a different device.  So we
2553 	 * flag all drives that could conceivably be read from for READ,
2554 	 * and any others (which will be non-In_sync devices) for WRITE.
2555 	 * If a read fails, we try reading from something else for which READ
2556 	 * is OK.
2557 	 */
2558 
2559 	r1_bio->mddev = mddev;
2560 	r1_bio->sector = sector_nr;
2561 	r1_bio->state = 0;
2562 	set_bit(R1BIO_IsSync, &r1_bio->state);
2563 
2564 	for (i = 0; i < conf->raid_disks * 2; i++) {
2565 		struct md_rdev *rdev;
2566 		bio = r1_bio->bios[i];
2567 		bio_reset(bio);
2568 
2569 		rdev = rcu_dereference(conf->mirrors[i].rdev);
2570 		if (rdev == NULL ||
2571 		    test_bit(Faulty, &rdev->flags)) {
2572 			if (i < conf->raid_disks)
2573 				still_degraded = 1;
2574 		} else if (!test_bit(In_sync, &rdev->flags)) {
2575 			bio->bi_rw = WRITE;
2576 			bio->bi_end_io = end_sync_write;
2577 			write_targets ++;
2578 		} else {
2579 			/* may need to read from here */
2580 			sector_t first_bad = MaxSector;
2581 			int bad_sectors;
2582 
2583 			if (is_badblock(rdev, sector_nr, good_sectors,
2584 					&first_bad, &bad_sectors)) {
2585 				if (first_bad > sector_nr)
2586 					good_sectors = first_bad - sector_nr;
2587 				else {
2588 					bad_sectors -= (sector_nr - first_bad);
2589 					if (min_bad == 0 ||
2590 					    min_bad > bad_sectors)
2591 						min_bad = bad_sectors;
2592 				}
2593 			}
2594 			if (sector_nr < first_bad) {
2595 				if (test_bit(WriteMostly, &rdev->flags)) {
2596 					if (wonly < 0)
2597 						wonly = i;
2598 				} else {
2599 					if (disk < 0)
2600 						disk = i;
2601 				}
2602 				bio->bi_rw = READ;
2603 				bio->bi_end_io = end_sync_read;
2604 				read_targets++;
2605 			} else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2606 				test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2607 				!test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2608 				/*
2609 				 * The device is suitable for reading (InSync),
2610 				 * but has bad block(s) here. Let's try to correct them,
2611 				 * if we are doing resync or repair. Otherwise, leave
2612 				 * this device alone for this sync request.
2613 				 */
2614 				bio->bi_rw = WRITE;
2615 				bio->bi_end_io = end_sync_write;
2616 				write_targets++;
2617 			}
2618 		}
2619 		if (bio->bi_end_io) {
2620 			atomic_inc(&rdev->nr_pending);
2621 			bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
2622 			bio->bi_bdev = rdev->bdev;
2623 			bio->bi_private = r1_bio;
2624 		}
2625 	}
2626 	rcu_read_unlock();
2627 	if (disk < 0)
2628 		disk = wonly;
2629 	r1_bio->read_disk = disk;
2630 
2631 	if (read_targets == 0 && min_bad > 0) {
2632 		/* These sectors are bad on all InSync devices, so we
2633 		 * need to mark them bad on all write targets
2634 		 */
2635 		int ok = 1;
2636 		for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2637 			if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2638 				struct md_rdev *rdev = conf->mirrors[i].rdev;
2639 				ok = rdev_set_badblocks(rdev, sector_nr,
2640 							min_bad, 0
2641 					) && ok;
2642 			}
2643 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
2644 		*skipped = 1;
2645 		put_buf(r1_bio);
2646 
2647 		if (!ok) {
2648 			/* Cannot record the badblocks, so need to
2649 			 * abort the resync.
2650 			 * If there are multiple read targets, could just
2651 			 * fail the really bad ones ???
2652 			 */
2653 			conf->recovery_disabled = mddev->recovery_disabled;
2654 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2655 			return 0;
2656 		} else
2657 			return min_bad;
2658 
2659 	}
2660 	if (min_bad > 0 && min_bad < good_sectors) {
2661 		/* only resync enough to reach the next bad->good
2662 		 * transition */
2663 		good_sectors = min_bad;
2664 	}
2665 
2666 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2667 		/* extra read targets are also write targets */
2668 		write_targets += read_targets-1;
2669 
2670 	if (write_targets == 0 || read_targets == 0) {
2671 		/* There is nowhere to write, so all non-sync
2672 		 * drives must be failed - so we are finished
2673 		 */
2674 		sector_t rv;
2675 		if (min_bad > 0)
2676 			max_sector = sector_nr + min_bad;
2677 		rv = max_sector - sector_nr;
2678 		*skipped = 1;
2679 		put_buf(r1_bio);
2680 		return rv;
2681 	}
2682 
2683 	if (max_sector > mddev->resync_max)
2684 		max_sector = mddev->resync_max; /* Don't do IO beyond here */
2685 	if (max_sector > sector_nr + good_sectors)
2686 		max_sector = sector_nr + good_sectors;
2687 	nr_sectors = 0;
2688 	sync_blocks = 0;
2689 	do {
2690 		struct page *page;
2691 		int len = PAGE_SIZE;
2692 		if (sector_nr + (len>>9) > max_sector)
2693 			len = (max_sector - sector_nr) << 9;
2694 		if (len == 0)
2695 			break;
2696 		if (sync_blocks == 0) {
2697 			if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2698 					       &sync_blocks, still_degraded) &&
2699 			    !conf->fullsync &&
2700 			    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2701 				break;
2702 			BUG_ON(sync_blocks < (PAGE_SIZE>>9));
2703 			if ((len >> 9) > sync_blocks)
2704 				len = sync_blocks<<9;
2705 		}
2706 
2707 		for (i = 0 ; i < conf->raid_disks * 2; i++) {
2708 			bio = r1_bio->bios[i];
2709 			if (bio->bi_end_io) {
2710 				page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
2711 				if (bio_add_page(bio, page, len, 0) == 0) {
2712 					/* stop here */
2713 					bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
2714 					while (i > 0) {
2715 						i--;
2716 						bio = r1_bio->bios[i];
2717 						if (bio->bi_end_io==NULL)
2718 							continue;
2719 						/* remove last page from this bio */
2720 						bio->bi_vcnt--;
2721 						bio->bi_iter.bi_size -= len;
2722 						bio->bi_flags &= ~(1<< BIO_SEG_VALID);
2723 					}
2724 					goto bio_full;
2725 				}
2726 			}
2727 		}
2728 		nr_sectors += len>>9;
2729 		sector_nr += len>>9;
2730 		sync_blocks -= (len>>9);
2731 	} while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
2732  bio_full:
2733 	r1_bio->sectors = nr_sectors;
2734 
2735 	/* For a user-requested sync, we read all readable devices and do a
2736 	 * compare
2737 	 */
2738 	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2739 		atomic_set(&r1_bio->remaining, read_targets);
2740 		for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2741 			bio = r1_bio->bios[i];
2742 			if (bio->bi_end_io == end_sync_read) {
2743 				read_targets--;
2744 				md_sync_acct(bio->bi_bdev, nr_sectors);
2745 				generic_make_request(bio);
2746 			}
2747 		}
2748 	} else {
2749 		atomic_set(&r1_bio->remaining, 1);
2750 		bio = r1_bio->bios[r1_bio->read_disk];
2751 		md_sync_acct(bio->bi_bdev, nr_sectors);
2752 		generic_make_request(bio);
2753 
2754 	}
2755 	return nr_sectors;
2756 }
2757 
2758 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2759 {
2760 	if (sectors)
2761 		return sectors;
2762 
2763 	return mddev->dev_sectors;
2764 }
2765 
2766 static struct r1conf *setup_conf(struct mddev *mddev)
2767 {
2768 	struct r1conf *conf;
2769 	int i;
2770 	struct raid1_info *disk;
2771 	struct md_rdev *rdev;
2772 	int err = -ENOMEM;
2773 
2774 	conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2775 	if (!conf)
2776 		goto abort;
2777 
2778 	conf->mirrors = kzalloc(sizeof(struct raid1_info)
2779 				* mddev->raid_disks * 2,
2780 				 GFP_KERNEL);
2781 	if (!conf->mirrors)
2782 		goto abort;
2783 
2784 	conf->tmppage = alloc_page(GFP_KERNEL);
2785 	if (!conf->tmppage)
2786 		goto abort;
2787 
2788 	conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
2789 	if (!conf->poolinfo)
2790 		goto abort;
2791 	conf->poolinfo->raid_disks = mddev->raid_disks * 2;
2792 	conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2793 					  r1bio_pool_free,
2794 					  conf->poolinfo);
2795 	if (!conf->r1bio_pool)
2796 		goto abort;
2797 
2798 	conf->poolinfo->mddev = mddev;
2799 
2800 	err = -EINVAL;
2801 	spin_lock_init(&conf->device_lock);
2802 	rdev_for_each(rdev, mddev) {
2803 		struct request_queue *q;
2804 		int disk_idx = rdev->raid_disk;
2805 		if (disk_idx >= mddev->raid_disks
2806 		    || disk_idx < 0)
2807 			continue;
2808 		if (test_bit(Replacement, &rdev->flags))
2809 			disk = conf->mirrors + mddev->raid_disks + disk_idx;
2810 		else
2811 			disk = conf->mirrors + disk_idx;
2812 
2813 		if (disk->rdev)
2814 			goto abort;
2815 		disk->rdev = rdev;
2816 		q = bdev_get_queue(rdev->bdev);
2817 		if (q->merge_bvec_fn)
2818 			mddev->merge_check_needed = 1;
2819 
2820 		disk->head_position = 0;
2821 		disk->seq_start = MaxSector;
2822 	}
2823 	conf->raid_disks = mddev->raid_disks;
2824 	conf->mddev = mddev;
2825 	INIT_LIST_HEAD(&conf->retry_list);
2826 
2827 	spin_lock_init(&conf->resync_lock);
2828 	init_waitqueue_head(&conf->wait_barrier);
2829 
2830 	bio_list_init(&conf->pending_bio_list);
2831 	conf->pending_count = 0;
2832 	conf->recovery_disabled = mddev->recovery_disabled - 1;
2833 
2834 	conf->start_next_window = MaxSector;
2835 	conf->current_window_requests = conf->next_window_requests = 0;
2836 
2837 	err = -EIO;
2838 	for (i = 0; i < conf->raid_disks * 2; i++) {
2839 
2840 		disk = conf->mirrors + i;
2841 
2842 		if (i < conf->raid_disks &&
2843 		    disk[conf->raid_disks].rdev) {
2844 			/* This slot has a replacement. */
2845 			if (!disk->rdev) {
2846 				/* No original, just make the replacement
2847 				 * a recovering spare
2848 				 */
2849 				disk->rdev =
2850 					disk[conf->raid_disks].rdev;
2851 				disk[conf->raid_disks].rdev = NULL;
2852 			} else if (!test_bit(In_sync, &disk->rdev->flags))
2853 				/* Original is not in_sync - bad */
2854 				goto abort;
2855 		}
2856 
2857 		if (!disk->rdev ||
2858 		    !test_bit(In_sync, &disk->rdev->flags)) {
2859 			disk->head_position = 0;
2860 			if (disk->rdev &&
2861 			    (disk->rdev->saved_raid_disk < 0))
2862 				conf->fullsync = 1;
2863 		}
2864 	}
2865 
2866 	err = -ENOMEM;
2867 	conf->thread = md_register_thread(raid1d, mddev, "raid1");
2868 	if (!conf->thread) {
2869 		printk(KERN_ERR
2870 		       "md/raid1:%s: couldn't allocate thread\n",
2871 		       mdname(mddev));
2872 		goto abort;
2873 	}
2874 
2875 	return conf;
2876 
2877  abort:
2878 	if (conf) {
2879 		if (conf->r1bio_pool)
2880 			mempool_destroy(conf->r1bio_pool);
2881 		kfree(conf->mirrors);
2882 		safe_put_page(conf->tmppage);
2883 		kfree(conf->poolinfo);
2884 		kfree(conf);
2885 	}
2886 	return ERR_PTR(err);
2887 }
2888 
2889 static int stop(struct mddev *mddev);
2890 static int run(struct mddev *mddev)
2891 {
2892 	struct r1conf *conf;
2893 	int i;
2894 	struct md_rdev *rdev;
2895 	int ret;
2896 	bool discard_supported = false;
2897 
2898 	if (mddev->level != 1) {
2899 		printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n",
2900 		       mdname(mddev), mddev->level);
2901 		return -EIO;
2902 	}
2903 	if (mddev->reshape_position != MaxSector) {
2904 		printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n",
2905 		       mdname(mddev));
2906 		return -EIO;
2907 	}
2908 	/*
2909 	 * copy the already verified devices into our private RAID1
2910 	 * bookkeeping area. [whatever we allocate in run(),
2911 	 * should be freed in stop()]
2912 	 */
2913 	if (mddev->private == NULL)
2914 		conf = setup_conf(mddev);
2915 	else
2916 		conf = mddev->private;
2917 
2918 	if (IS_ERR(conf))
2919 		return PTR_ERR(conf);
2920 
2921 	if (mddev->queue)
2922 		blk_queue_max_write_same_sectors(mddev->queue, 0);
2923 
2924 	rdev_for_each(rdev, mddev) {
2925 		if (!mddev->gendisk)
2926 			continue;
2927 		disk_stack_limits(mddev->gendisk, rdev->bdev,
2928 				  rdev->data_offset << 9);
2929 		if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
2930 			discard_supported = true;
2931 	}
2932 
2933 	mddev->degraded = 0;
2934 	for (i=0; i < conf->raid_disks; i++)
2935 		if (conf->mirrors[i].rdev == NULL ||
2936 		    !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
2937 		    test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2938 			mddev->degraded++;
2939 
2940 	if (conf->raid_disks - mddev->degraded == 1)
2941 		mddev->recovery_cp = MaxSector;
2942 
2943 	if (mddev->recovery_cp != MaxSector)
2944 		printk(KERN_NOTICE "md/raid1:%s: not clean"
2945 		       " -- starting background reconstruction\n",
2946 		       mdname(mddev));
2947 	printk(KERN_INFO
2948 		"md/raid1:%s: active with %d out of %d mirrors\n",
2949 		mdname(mddev), mddev->raid_disks - mddev->degraded,
2950 		mddev->raid_disks);
2951 
2952 	/*
2953 	 * Ok, everything is just fine now
2954 	 */
2955 	mddev->thread = conf->thread;
2956 	conf->thread = NULL;
2957 	mddev->private = conf;
2958 
2959 	md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
2960 
2961 	if (mddev->queue) {
2962 		mddev->queue->backing_dev_info.congested_fn = raid1_congested;
2963 		mddev->queue->backing_dev_info.congested_data = mddev;
2964 		blk_queue_merge_bvec(mddev->queue, raid1_mergeable_bvec);
2965 
2966 		if (discard_supported)
2967 			queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
2968 						mddev->queue);
2969 		else
2970 			queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
2971 						  mddev->queue);
2972 	}
2973 
2974 	ret =  md_integrity_register(mddev);
2975 	if (ret)
2976 		stop(mddev);
2977 	return ret;
2978 }
2979 
2980 static int stop(struct mddev *mddev)
2981 {
2982 	struct r1conf *conf = mddev->private;
2983 	struct bitmap *bitmap = mddev->bitmap;
2984 
2985 	/* wait for behind writes to complete */
2986 	if (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
2987 		printk(KERN_INFO "md/raid1:%s: behind writes in progress - waiting to stop.\n",
2988 		       mdname(mddev));
2989 		/* need to kick something here to make sure I/O goes? */
2990 		wait_event(bitmap->behind_wait,
2991 			   atomic_read(&bitmap->behind_writes) == 0);
2992 	}
2993 
2994 	freeze_array(conf, 0);
2995 	unfreeze_array(conf);
2996 
2997 	md_unregister_thread(&mddev->thread);
2998 	if (conf->r1bio_pool)
2999 		mempool_destroy(conf->r1bio_pool);
3000 	kfree(conf->mirrors);
3001 	safe_put_page(conf->tmppage);
3002 	kfree(conf->poolinfo);
3003 	kfree(conf);
3004 	mddev->private = NULL;
3005 	return 0;
3006 }
3007 
3008 static int raid1_resize(struct mddev *mddev, sector_t sectors)
3009 {
3010 	/* no resync is happening, and there is enough space
3011 	 * on all devices, so we can resize.
3012 	 * We need to make sure resync covers any new space.
3013 	 * If the array is shrinking we should possibly wait until
3014 	 * any io in the removed space completes, but it hardly seems
3015 	 * worth it.
3016 	 */
3017 	sector_t newsize = raid1_size(mddev, sectors, 0);
3018 	if (mddev->external_size &&
3019 	    mddev->array_sectors > newsize)
3020 		return -EINVAL;
3021 	if (mddev->bitmap) {
3022 		int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0);
3023 		if (ret)
3024 			return ret;
3025 	}
3026 	md_set_array_sectors(mddev, newsize);
3027 	set_capacity(mddev->gendisk, mddev->array_sectors);
3028 	revalidate_disk(mddev->gendisk);
3029 	if (sectors > mddev->dev_sectors &&
3030 	    mddev->recovery_cp > mddev->dev_sectors) {
3031 		mddev->recovery_cp = mddev->dev_sectors;
3032 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3033 	}
3034 	mddev->dev_sectors = sectors;
3035 	mddev->resync_max_sectors = sectors;
3036 	return 0;
3037 }
3038 
3039 static int raid1_reshape(struct mddev *mddev)
3040 {
3041 	/* We need to:
3042 	 * 1/ resize the r1bio_pool
3043 	 * 2/ resize conf->mirrors
3044 	 *
3045 	 * We allocate a new r1bio_pool if we can.
3046 	 * Then raise a device barrier and wait until all IO stops.
3047 	 * Then resize conf->mirrors and swap in the new r1bio pool.
3048 	 *
3049 	 * At the same time, we "pack" the devices so that all the missing
3050 	 * devices have the higher raid_disk numbers.
3051 	 */
3052 	mempool_t *newpool, *oldpool;
3053 	struct pool_info *newpoolinfo;
3054 	struct raid1_info *newmirrors;
3055 	struct r1conf *conf = mddev->private;
3056 	int cnt, raid_disks;
3057 	unsigned long flags;
3058 	int d, d2, err;
3059 
3060 	/* Cannot change chunk_size, layout, or level */
3061 	if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3062 	    mddev->layout != mddev->new_layout ||
3063 	    mddev->level != mddev->new_level) {
3064 		mddev->new_chunk_sectors = mddev->chunk_sectors;
3065 		mddev->new_layout = mddev->layout;
3066 		mddev->new_level = mddev->level;
3067 		return -EINVAL;
3068 	}
3069 
3070 	err = md_allow_write(mddev);
3071 	if (err)
3072 		return err;
3073 
3074 	raid_disks = mddev->raid_disks + mddev->delta_disks;
3075 
3076 	if (raid_disks < conf->raid_disks) {
3077 		cnt=0;
3078 		for (d= 0; d < conf->raid_disks; d++)
3079 			if (conf->mirrors[d].rdev)
3080 				cnt++;
3081 		if (cnt > raid_disks)
3082 			return -EBUSY;
3083 	}
3084 
3085 	newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3086 	if (!newpoolinfo)
3087 		return -ENOMEM;
3088 	newpoolinfo->mddev = mddev;
3089 	newpoolinfo->raid_disks = raid_disks * 2;
3090 
3091 	newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
3092 				 r1bio_pool_free, newpoolinfo);
3093 	if (!newpool) {
3094 		kfree(newpoolinfo);
3095 		return -ENOMEM;
3096 	}
3097 	newmirrors = kzalloc(sizeof(struct raid1_info) * raid_disks * 2,
3098 			     GFP_KERNEL);
3099 	if (!newmirrors) {
3100 		kfree(newpoolinfo);
3101 		mempool_destroy(newpool);
3102 		return -ENOMEM;
3103 	}
3104 
3105 	freeze_array(conf, 0);
3106 
3107 	/* ok, everything is stopped */
3108 	oldpool = conf->r1bio_pool;
3109 	conf->r1bio_pool = newpool;
3110 
3111 	for (d = d2 = 0; d < conf->raid_disks; d++) {
3112 		struct md_rdev *rdev = conf->mirrors[d].rdev;
3113 		if (rdev && rdev->raid_disk != d2) {
3114 			sysfs_unlink_rdev(mddev, rdev);
3115 			rdev->raid_disk = d2;
3116 			sysfs_unlink_rdev(mddev, rdev);
3117 			if (sysfs_link_rdev(mddev, rdev))
3118 				printk(KERN_WARNING
3119 				       "md/raid1:%s: cannot register rd%d\n",
3120 				       mdname(mddev), rdev->raid_disk);
3121 		}
3122 		if (rdev)
3123 			newmirrors[d2++].rdev = rdev;
3124 	}
3125 	kfree(conf->mirrors);
3126 	conf->mirrors = newmirrors;
3127 	kfree(conf->poolinfo);
3128 	conf->poolinfo = newpoolinfo;
3129 
3130 	spin_lock_irqsave(&conf->device_lock, flags);
3131 	mddev->degraded += (raid_disks - conf->raid_disks);
3132 	spin_unlock_irqrestore(&conf->device_lock, flags);
3133 	conf->raid_disks = mddev->raid_disks = raid_disks;
3134 	mddev->delta_disks = 0;
3135 
3136 	unfreeze_array(conf);
3137 
3138 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3139 	md_wakeup_thread(mddev->thread);
3140 
3141 	mempool_destroy(oldpool);
3142 	return 0;
3143 }
3144 
3145 static void raid1_quiesce(struct mddev *mddev, int state)
3146 {
3147 	struct r1conf *conf = mddev->private;
3148 
3149 	switch(state) {
3150 	case 2: /* wake for suspend */
3151 		wake_up(&conf->wait_barrier);
3152 		break;
3153 	case 1:
3154 		freeze_array(conf, 0);
3155 		break;
3156 	case 0:
3157 		unfreeze_array(conf);
3158 		break;
3159 	}
3160 }
3161 
3162 static void *raid1_takeover(struct mddev *mddev)
3163 {
3164 	/* raid1 can take over:
3165 	 *  raid5 with 2 devices, any layout or chunk size
3166 	 */
3167 	if (mddev->level == 5 && mddev->raid_disks == 2) {
3168 		struct r1conf *conf;
3169 		mddev->new_level = 1;
3170 		mddev->new_layout = 0;
3171 		mddev->new_chunk_sectors = 0;
3172 		conf = setup_conf(mddev);
3173 		if (!IS_ERR(conf))
3174 			/* Array must appear to be quiesced */
3175 			conf->array_frozen = 1;
3176 		return conf;
3177 	}
3178 	return ERR_PTR(-EINVAL);
3179 }
3180 
3181 static struct md_personality raid1_personality =
3182 {
3183 	.name		= "raid1",
3184 	.level		= 1,
3185 	.owner		= THIS_MODULE,
3186 	.make_request	= make_request,
3187 	.run		= run,
3188 	.stop		= stop,
3189 	.status		= status,
3190 	.error_handler	= error,
3191 	.hot_add_disk	= raid1_add_disk,
3192 	.hot_remove_disk= raid1_remove_disk,
3193 	.spare_active	= raid1_spare_active,
3194 	.sync_request	= sync_request,
3195 	.resize		= raid1_resize,
3196 	.size		= raid1_size,
3197 	.check_reshape	= raid1_reshape,
3198 	.quiesce	= raid1_quiesce,
3199 	.takeover	= raid1_takeover,
3200 };
3201 
3202 static int __init raid_init(void)
3203 {
3204 	return register_md_personality(&raid1_personality);
3205 }
3206 
3207 static void raid_exit(void)
3208 {
3209 	unregister_md_personality(&raid1_personality);
3210 }
3211 
3212 module_init(raid_init);
3213 module_exit(raid_exit);
3214 MODULE_LICENSE("GPL");
3215 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3216 MODULE_ALIAS("md-personality-3"); /* RAID1 */
3217 MODULE_ALIAS("md-raid1");
3218 MODULE_ALIAS("md-level-1");
3219 
3220 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
3221