xref: /openbmc/linux/drivers/md/raid1.c (revision e8e0929d)
1 /*
2  * raid1.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5  *
6  * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7  *
8  * RAID-1 management functions.
9  *
10  * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11  *
12  * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
13  * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14  *
15  * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16  * bitmapped intelligence in resync:
17  *
18  *      - bitmap marked during normal i/o
19  *      - bitmap used to skip nondirty blocks during sync
20  *
21  * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22  * - persistent bitmap code
23  *
24  * This program is free software; you can redistribute it and/or modify
25  * it under the terms of the GNU General Public License as published by
26  * the Free Software Foundation; either version 2, or (at your option)
27  * any later version.
28  *
29  * You should have received a copy of the GNU General Public License
30  * (for example /usr/src/linux/COPYING); if not, write to the Free
31  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32  */
33 
34 #include <linux/delay.h>
35 #include <linux/blkdev.h>
36 #include <linux/seq_file.h>
37 #include "md.h"
38 #include "raid1.h"
39 #include "bitmap.h"
40 
41 #define DEBUG 0
42 #if DEBUG
43 #define PRINTK(x...) printk(x)
44 #else
45 #define PRINTK(x...)
46 #endif
47 
48 /*
49  * Number of guaranteed r1bios in case of extreme VM load:
50  */
51 #define	NR_RAID1_BIOS 256
52 
53 
54 static void unplug_slaves(mddev_t *mddev);
55 
56 static void allow_barrier(conf_t *conf);
57 static void lower_barrier(conf_t *conf);
58 
59 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
60 {
61 	struct pool_info *pi = data;
62 	r1bio_t *r1_bio;
63 	int size = offsetof(r1bio_t, bios[pi->raid_disks]);
64 
65 	/* allocate a r1bio with room for raid_disks entries in the bios array */
66 	r1_bio = kzalloc(size, gfp_flags);
67 	if (!r1_bio)
68 		unplug_slaves(pi->mddev);
69 
70 	return r1_bio;
71 }
72 
73 static void r1bio_pool_free(void *r1_bio, void *data)
74 {
75 	kfree(r1_bio);
76 }
77 
78 #define RESYNC_BLOCK_SIZE (64*1024)
79 //#define RESYNC_BLOCK_SIZE PAGE_SIZE
80 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
81 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
82 #define RESYNC_WINDOW (2048*1024)
83 
84 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
85 {
86 	struct pool_info *pi = data;
87 	struct page *page;
88 	r1bio_t *r1_bio;
89 	struct bio *bio;
90 	int i, j;
91 
92 	r1_bio = r1bio_pool_alloc(gfp_flags, pi);
93 	if (!r1_bio) {
94 		unplug_slaves(pi->mddev);
95 		return NULL;
96 	}
97 
98 	/*
99 	 * Allocate bios : 1 for reading, n-1 for writing
100 	 */
101 	for (j = pi->raid_disks ; j-- ; ) {
102 		bio = bio_alloc(gfp_flags, RESYNC_PAGES);
103 		if (!bio)
104 			goto out_free_bio;
105 		r1_bio->bios[j] = bio;
106 	}
107 	/*
108 	 * Allocate RESYNC_PAGES data pages and attach them to
109 	 * the first bio.
110 	 * If this is a user-requested check/repair, allocate
111 	 * RESYNC_PAGES for each bio.
112 	 */
113 	if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
114 		j = pi->raid_disks;
115 	else
116 		j = 1;
117 	while(j--) {
118 		bio = r1_bio->bios[j];
119 		for (i = 0; i < RESYNC_PAGES; i++) {
120 			page = alloc_page(gfp_flags);
121 			if (unlikely(!page))
122 				goto out_free_pages;
123 
124 			bio->bi_io_vec[i].bv_page = page;
125 			bio->bi_vcnt = i+1;
126 		}
127 	}
128 	/* If not user-requests, copy the page pointers to all bios */
129 	if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
130 		for (i=0; i<RESYNC_PAGES ; i++)
131 			for (j=1; j<pi->raid_disks; j++)
132 				r1_bio->bios[j]->bi_io_vec[i].bv_page =
133 					r1_bio->bios[0]->bi_io_vec[i].bv_page;
134 	}
135 
136 	r1_bio->master_bio = NULL;
137 
138 	return r1_bio;
139 
140 out_free_pages:
141 	for (j=0 ; j < pi->raid_disks; j++)
142 		for (i=0; i < r1_bio->bios[j]->bi_vcnt ; i++)
143 			put_page(r1_bio->bios[j]->bi_io_vec[i].bv_page);
144 	j = -1;
145 out_free_bio:
146 	while ( ++j < pi->raid_disks )
147 		bio_put(r1_bio->bios[j]);
148 	r1bio_pool_free(r1_bio, data);
149 	return NULL;
150 }
151 
152 static void r1buf_pool_free(void *__r1_bio, void *data)
153 {
154 	struct pool_info *pi = data;
155 	int i,j;
156 	r1bio_t *r1bio = __r1_bio;
157 
158 	for (i = 0; i < RESYNC_PAGES; i++)
159 		for (j = pi->raid_disks; j-- ;) {
160 			if (j == 0 ||
161 			    r1bio->bios[j]->bi_io_vec[i].bv_page !=
162 			    r1bio->bios[0]->bi_io_vec[i].bv_page)
163 				safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
164 		}
165 	for (i=0 ; i < pi->raid_disks; i++)
166 		bio_put(r1bio->bios[i]);
167 
168 	r1bio_pool_free(r1bio, data);
169 }
170 
171 static void put_all_bios(conf_t *conf, r1bio_t *r1_bio)
172 {
173 	int i;
174 
175 	for (i = 0; i < conf->raid_disks; i++) {
176 		struct bio **bio = r1_bio->bios + i;
177 		if (*bio && *bio != IO_BLOCKED)
178 			bio_put(*bio);
179 		*bio = NULL;
180 	}
181 }
182 
183 static void free_r1bio(r1bio_t *r1_bio)
184 {
185 	conf_t *conf = r1_bio->mddev->private;
186 
187 	/*
188 	 * Wake up any possible resync thread that waits for the device
189 	 * to go idle.
190 	 */
191 	allow_barrier(conf);
192 
193 	put_all_bios(conf, r1_bio);
194 	mempool_free(r1_bio, conf->r1bio_pool);
195 }
196 
197 static void put_buf(r1bio_t *r1_bio)
198 {
199 	conf_t *conf = r1_bio->mddev->private;
200 	int i;
201 
202 	for (i=0; i<conf->raid_disks; i++) {
203 		struct bio *bio = r1_bio->bios[i];
204 		if (bio->bi_end_io)
205 			rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
206 	}
207 
208 	mempool_free(r1_bio, conf->r1buf_pool);
209 
210 	lower_barrier(conf);
211 }
212 
213 static void reschedule_retry(r1bio_t *r1_bio)
214 {
215 	unsigned long flags;
216 	mddev_t *mddev = r1_bio->mddev;
217 	conf_t *conf = mddev->private;
218 
219 	spin_lock_irqsave(&conf->device_lock, flags);
220 	list_add(&r1_bio->retry_list, &conf->retry_list);
221 	conf->nr_queued ++;
222 	spin_unlock_irqrestore(&conf->device_lock, flags);
223 
224 	wake_up(&conf->wait_barrier);
225 	md_wakeup_thread(mddev->thread);
226 }
227 
228 /*
229  * raid_end_bio_io() is called when we have finished servicing a mirrored
230  * operation and are ready to return a success/failure code to the buffer
231  * cache layer.
232  */
233 static void raid_end_bio_io(r1bio_t *r1_bio)
234 {
235 	struct bio *bio = r1_bio->master_bio;
236 
237 	/* if nobody has done the final endio yet, do it now */
238 	if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
239 		PRINTK(KERN_DEBUG "raid1: sync end %s on sectors %llu-%llu\n",
240 			(bio_data_dir(bio) == WRITE) ? "write" : "read",
241 			(unsigned long long) bio->bi_sector,
242 			(unsigned long long) bio->bi_sector +
243 				(bio->bi_size >> 9) - 1);
244 
245 		bio_endio(bio,
246 			test_bit(R1BIO_Uptodate, &r1_bio->state) ? 0 : -EIO);
247 	}
248 	free_r1bio(r1_bio);
249 }
250 
251 /*
252  * Update disk head position estimator based on IRQ completion info.
253  */
254 static inline void update_head_pos(int disk, r1bio_t *r1_bio)
255 {
256 	conf_t *conf = r1_bio->mddev->private;
257 
258 	conf->mirrors[disk].head_position =
259 		r1_bio->sector + (r1_bio->sectors);
260 }
261 
262 static void raid1_end_read_request(struct bio *bio, int error)
263 {
264 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
265 	r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
266 	int mirror;
267 	conf_t *conf = r1_bio->mddev->private;
268 
269 	mirror = r1_bio->read_disk;
270 	/*
271 	 * this branch is our 'one mirror IO has finished' event handler:
272 	 */
273 	update_head_pos(mirror, r1_bio);
274 
275 	if (uptodate)
276 		set_bit(R1BIO_Uptodate, &r1_bio->state);
277 	else {
278 		/* If all other devices have failed, we want to return
279 		 * the error upwards rather than fail the last device.
280 		 * Here we redefine "uptodate" to mean "Don't want to retry"
281 		 */
282 		unsigned long flags;
283 		spin_lock_irqsave(&conf->device_lock, flags);
284 		if (r1_bio->mddev->degraded == conf->raid_disks ||
285 		    (r1_bio->mddev->degraded == conf->raid_disks-1 &&
286 		     !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags)))
287 			uptodate = 1;
288 		spin_unlock_irqrestore(&conf->device_lock, flags);
289 	}
290 
291 	if (uptodate)
292 		raid_end_bio_io(r1_bio);
293 	else {
294 		/*
295 		 * oops, read error:
296 		 */
297 		char b[BDEVNAME_SIZE];
298 		if (printk_ratelimit())
299 			printk(KERN_ERR "raid1: %s: rescheduling sector %llu\n",
300 			       bdevname(conf->mirrors[mirror].rdev->bdev,b), (unsigned long long)r1_bio->sector);
301 		reschedule_retry(r1_bio);
302 	}
303 
304 	rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
305 }
306 
307 static void raid1_end_write_request(struct bio *bio, int error)
308 {
309 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
310 	r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
311 	int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
312 	conf_t *conf = r1_bio->mddev->private;
313 	struct bio *to_put = NULL;
314 
315 
316 	for (mirror = 0; mirror < conf->raid_disks; mirror++)
317 		if (r1_bio->bios[mirror] == bio)
318 			break;
319 
320 	if (error == -EOPNOTSUPP && test_bit(R1BIO_Barrier, &r1_bio->state)) {
321 		set_bit(BarriersNotsupp, &conf->mirrors[mirror].rdev->flags);
322 		set_bit(R1BIO_BarrierRetry, &r1_bio->state);
323 		r1_bio->mddev->barriers_work = 0;
324 		/* Don't rdev_dec_pending in this branch - keep it for the retry */
325 	} else {
326 		/*
327 		 * this branch is our 'one mirror IO has finished' event handler:
328 		 */
329 		r1_bio->bios[mirror] = NULL;
330 		to_put = bio;
331 		if (!uptodate) {
332 			md_error(r1_bio->mddev, conf->mirrors[mirror].rdev);
333 			/* an I/O failed, we can't clear the bitmap */
334 			set_bit(R1BIO_Degraded, &r1_bio->state);
335 		} else
336 			/*
337 			 * Set R1BIO_Uptodate in our master bio, so that
338 			 * we will return a good error code for to the higher
339 			 * levels even if IO on some other mirrored buffer fails.
340 			 *
341 			 * The 'master' represents the composite IO operation to
342 			 * user-side. So if something waits for IO, then it will
343 			 * wait for the 'master' bio.
344 			 */
345 			set_bit(R1BIO_Uptodate, &r1_bio->state);
346 
347 		update_head_pos(mirror, r1_bio);
348 
349 		if (behind) {
350 			if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
351 				atomic_dec(&r1_bio->behind_remaining);
352 
353 			/* In behind mode, we ACK the master bio once the I/O has safely
354 			 * reached all non-writemostly disks. Setting the Returned bit
355 			 * ensures that this gets done only once -- we don't ever want to
356 			 * return -EIO here, instead we'll wait */
357 
358 			if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
359 			    test_bit(R1BIO_Uptodate, &r1_bio->state)) {
360 				/* Maybe we can return now */
361 				if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
362 					struct bio *mbio = r1_bio->master_bio;
363 					PRINTK(KERN_DEBUG "raid1: behind end write sectors %llu-%llu\n",
364 					       (unsigned long long) mbio->bi_sector,
365 					       (unsigned long long) mbio->bi_sector +
366 					       (mbio->bi_size >> 9) - 1);
367 					bio_endio(mbio, 0);
368 				}
369 			}
370 		}
371 		rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
372 	}
373 	/*
374 	 *
375 	 * Let's see if all mirrored write operations have finished
376 	 * already.
377 	 */
378 	if (atomic_dec_and_test(&r1_bio->remaining)) {
379 		if (test_bit(R1BIO_BarrierRetry, &r1_bio->state))
380 			reschedule_retry(r1_bio);
381 		else {
382 			/* it really is the end of this request */
383 			if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
384 				/* free extra copy of the data pages */
385 				int i = bio->bi_vcnt;
386 				while (i--)
387 					safe_put_page(bio->bi_io_vec[i].bv_page);
388 			}
389 			/* clear the bitmap if all writes complete successfully */
390 			bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
391 					r1_bio->sectors,
392 					!test_bit(R1BIO_Degraded, &r1_bio->state),
393 					behind);
394 			md_write_end(r1_bio->mddev);
395 			raid_end_bio_io(r1_bio);
396 		}
397 	}
398 
399 	if (to_put)
400 		bio_put(to_put);
401 }
402 
403 
404 /*
405  * This routine returns the disk from which the requested read should
406  * be done. There is a per-array 'next expected sequential IO' sector
407  * number - if this matches on the next IO then we use the last disk.
408  * There is also a per-disk 'last know head position' sector that is
409  * maintained from IRQ contexts, both the normal and the resync IO
410  * completion handlers update this position correctly. If there is no
411  * perfect sequential match then we pick the disk whose head is closest.
412  *
413  * If there are 2 mirrors in the same 2 devices, performance degrades
414  * because position is mirror, not device based.
415  *
416  * The rdev for the device selected will have nr_pending incremented.
417  */
418 static int read_balance(conf_t *conf, r1bio_t *r1_bio)
419 {
420 	const unsigned long this_sector = r1_bio->sector;
421 	int new_disk = conf->last_used, disk = new_disk;
422 	int wonly_disk = -1;
423 	const int sectors = r1_bio->sectors;
424 	sector_t new_distance, current_distance;
425 	mdk_rdev_t *rdev;
426 
427 	rcu_read_lock();
428 	/*
429 	 * Check if we can balance. We can balance on the whole
430 	 * device if no resync is going on, or below the resync window.
431 	 * We take the first readable disk when above the resync window.
432 	 */
433  retry:
434 	if (conf->mddev->recovery_cp < MaxSector &&
435 	    (this_sector + sectors >= conf->next_resync)) {
436 		/* Choose the first operation device, for consistancy */
437 		new_disk = 0;
438 
439 		for (rdev = rcu_dereference(conf->mirrors[new_disk].rdev);
440 		     r1_bio->bios[new_disk] == IO_BLOCKED ||
441 		     !rdev || !test_bit(In_sync, &rdev->flags)
442 			     || test_bit(WriteMostly, &rdev->flags);
443 		     rdev = rcu_dereference(conf->mirrors[++new_disk].rdev)) {
444 
445 			if (rdev && test_bit(In_sync, &rdev->flags) &&
446 				r1_bio->bios[new_disk] != IO_BLOCKED)
447 				wonly_disk = new_disk;
448 
449 			if (new_disk == conf->raid_disks - 1) {
450 				new_disk = wonly_disk;
451 				break;
452 			}
453 		}
454 		goto rb_out;
455 	}
456 
457 
458 	/* make sure the disk is operational */
459 	for (rdev = rcu_dereference(conf->mirrors[new_disk].rdev);
460 	     r1_bio->bios[new_disk] == IO_BLOCKED ||
461 	     !rdev || !test_bit(In_sync, &rdev->flags) ||
462 		     test_bit(WriteMostly, &rdev->flags);
463 	     rdev = rcu_dereference(conf->mirrors[new_disk].rdev)) {
464 
465 		if (rdev && test_bit(In_sync, &rdev->flags) &&
466 		    r1_bio->bios[new_disk] != IO_BLOCKED)
467 			wonly_disk = new_disk;
468 
469 		if (new_disk <= 0)
470 			new_disk = conf->raid_disks;
471 		new_disk--;
472 		if (new_disk == disk) {
473 			new_disk = wonly_disk;
474 			break;
475 		}
476 	}
477 
478 	if (new_disk < 0)
479 		goto rb_out;
480 
481 	disk = new_disk;
482 	/* now disk == new_disk == starting point for search */
483 
484 	/*
485 	 * Don't change to another disk for sequential reads:
486 	 */
487 	if (conf->next_seq_sect == this_sector)
488 		goto rb_out;
489 	if (this_sector == conf->mirrors[new_disk].head_position)
490 		goto rb_out;
491 
492 	current_distance = abs(this_sector - conf->mirrors[disk].head_position);
493 
494 	/* Find the disk whose head is closest */
495 
496 	do {
497 		if (disk <= 0)
498 			disk = conf->raid_disks;
499 		disk--;
500 
501 		rdev = rcu_dereference(conf->mirrors[disk].rdev);
502 
503 		if (!rdev || r1_bio->bios[disk] == IO_BLOCKED ||
504 		    !test_bit(In_sync, &rdev->flags) ||
505 		    test_bit(WriteMostly, &rdev->flags))
506 			continue;
507 
508 		if (!atomic_read(&rdev->nr_pending)) {
509 			new_disk = disk;
510 			break;
511 		}
512 		new_distance = abs(this_sector - conf->mirrors[disk].head_position);
513 		if (new_distance < current_distance) {
514 			current_distance = new_distance;
515 			new_disk = disk;
516 		}
517 	} while (disk != conf->last_used);
518 
519  rb_out:
520 
521 
522 	if (new_disk >= 0) {
523 		rdev = rcu_dereference(conf->mirrors[new_disk].rdev);
524 		if (!rdev)
525 			goto retry;
526 		atomic_inc(&rdev->nr_pending);
527 		if (!test_bit(In_sync, &rdev->flags)) {
528 			/* cannot risk returning a device that failed
529 			 * before we inc'ed nr_pending
530 			 */
531 			rdev_dec_pending(rdev, conf->mddev);
532 			goto retry;
533 		}
534 		conf->next_seq_sect = this_sector + sectors;
535 		conf->last_used = new_disk;
536 	}
537 	rcu_read_unlock();
538 
539 	return new_disk;
540 }
541 
542 static void unplug_slaves(mddev_t *mddev)
543 {
544 	conf_t *conf = mddev->private;
545 	int i;
546 
547 	rcu_read_lock();
548 	for (i=0; i<mddev->raid_disks; i++) {
549 		mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
550 		if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
551 			struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
552 
553 			atomic_inc(&rdev->nr_pending);
554 			rcu_read_unlock();
555 
556 			blk_unplug(r_queue);
557 
558 			rdev_dec_pending(rdev, mddev);
559 			rcu_read_lock();
560 		}
561 	}
562 	rcu_read_unlock();
563 }
564 
565 static void raid1_unplug(struct request_queue *q)
566 {
567 	mddev_t *mddev = q->queuedata;
568 
569 	unplug_slaves(mddev);
570 	md_wakeup_thread(mddev->thread);
571 }
572 
573 static int raid1_congested(void *data, int bits)
574 {
575 	mddev_t *mddev = data;
576 	conf_t *conf = mddev->private;
577 	int i, ret = 0;
578 
579 	if (mddev_congested(mddev, bits))
580 		return 1;
581 
582 	rcu_read_lock();
583 	for (i = 0; i < mddev->raid_disks; i++) {
584 		mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
585 		if (rdev && !test_bit(Faulty, &rdev->flags)) {
586 			struct request_queue *q = bdev_get_queue(rdev->bdev);
587 
588 			/* Note the '|| 1' - when read_balance prefers
589 			 * non-congested targets, it can be removed
590 			 */
591 			if ((bits & (1<<BDI_async_congested)) || 1)
592 				ret |= bdi_congested(&q->backing_dev_info, bits);
593 			else
594 				ret &= bdi_congested(&q->backing_dev_info, bits);
595 		}
596 	}
597 	rcu_read_unlock();
598 	return ret;
599 }
600 
601 
602 static int flush_pending_writes(conf_t *conf)
603 {
604 	/* Any writes that have been queued but are awaiting
605 	 * bitmap updates get flushed here.
606 	 * We return 1 if any requests were actually submitted.
607 	 */
608 	int rv = 0;
609 
610 	spin_lock_irq(&conf->device_lock);
611 
612 	if (conf->pending_bio_list.head) {
613 		struct bio *bio;
614 		bio = bio_list_get(&conf->pending_bio_list);
615 		blk_remove_plug(conf->mddev->queue);
616 		spin_unlock_irq(&conf->device_lock);
617 		/* flush any pending bitmap writes to
618 		 * disk before proceeding w/ I/O */
619 		bitmap_unplug(conf->mddev->bitmap);
620 
621 		while (bio) { /* submit pending writes */
622 			struct bio *next = bio->bi_next;
623 			bio->bi_next = NULL;
624 			generic_make_request(bio);
625 			bio = next;
626 		}
627 		rv = 1;
628 	} else
629 		spin_unlock_irq(&conf->device_lock);
630 	return rv;
631 }
632 
633 /* Barriers....
634  * Sometimes we need to suspend IO while we do something else,
635  * either some resync/recovery, or reconfigure the array.
636  * To do this we raise a 'barrier'.
637  * The 'barrier' is a counter that can be raised multiple times
638  * to count how many activities are happening which preclude
639  * normal IO.
640  * We can only raise the barrier if there is no pending IO.
641  * i.e. if nr_pending == 0.
642  * We choose only to raise the barrier if no-one is waiting for the
643  * barrier to go down.  This means that as soon as an IO request
644  * is ready, no other operations which require a barrier will start
645  * until the IO request has had a chance.
646  *
647  * So: regular IO calls 'wait_barrier'.  When that returns there
648  *    is no backgroup IO happening,  It must arrange to call
649  *    allow_barrier when it has finished its IO.
650  * backgroup IO calls must call raise_barrier.  Once that returns
651  *    there is no normal IO happeing.  It must arrange to call
652  *    lower_barrier when the particular background IO completes.
653  */
654 #define RESYNC_DEPTH 32
655 
656 static void raise_barrier(conf_t *conf)
657 {
658 	spin_lock_irq(&conf->resync_lock);
659 
660 	/* Wait until no block IO is waiting */
661 	wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
662 			    conf->resync_lock,
663 			    raid1_unplug(conf->mddev->queue));
664 
665 	/* block any new IO from starting */
666 	conf->barrier++;
667 
668 	/* No wait for all pending IO to complete */
669 	wait_event_lock_irq(conf->wait_barrier,
670 			    !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
671 			    conf->resync_lock,
672 			    raid1_unplug(conf->mddev->queue));
673 
674 	spin_unlock_irq(&conf->resync_lock);
675 }
676 
677 static void lower_barrier(conf_t *conf)
678 {
679 	unsigned long flags;
680 	spin_lock_irqsave(&conf->resync_lock, flags);
681 	conf->barrier--;
682 	spin_unlock_irqrestore(&conf->resync_lock, flags);
683 	wake_up(&conf->wait_barrier);
684 }
685 
686 static void wait_barrier(conf_t *conf)
687 {
688 	spin_lock_irq(&conf->resync_lock);
689 	if (conf->barrier) {
690 		conf->nr_waiting++;
691 		wait_event_lock_irq(conf->wait_barrier, !conf->barrier,
692 				    conf->resync_lock,
693 				    raid1_unplug(conf->mddev->queue));
694 		conf->nr_waiting--;
695 	}
696 	conf->nr_pending++;
697 	spin_unlock_irq(&conf->resync_lock);
698 }
699 
700 static void allow_barrier(conf_t *conf)
701 {
702 	unsigned long flags;
703 	spin_lock_irqsave(&conf->resync_lock, flags);
704 	conf->nr_pending--;
705 	spin_unlock_irqrestore(&conf->resync_lock, flags);
706 	wake_up(&conf->wait_barrier);
707 }
708 
709 static void freeze_array(conf_t *conf)
710 {
711 	/* stop syncio and normal IO and wait for everything to
712 	 * go quite.
713 	 * We increment barrier and nr_waiting, and then
714 	 * wait until nr_pending match nr_queued+1
715 	 * This is called in the context of one normal IO request
716 	 * that has failed. Thus any sync request that might be pending
717 	 * will be blocked by nr_pending, and we need to wait for
718 	 * pending IO requests to complete or be queued for re-try.
719 	 * Thus the number queued (nr_queued) plus this request (1)
720 	 * must match the number of pending IOs (nr_pending) before
721 	 * we continue.
722 	 */
723 	spin_lock_irq(&conf->resync_lock);
724 	conf->barrier++;
725 	conf->nr_waiting++;
726 	wait_event_lock_irq(conf->wait_barrier,
727 			    conf->nr_pending == conf->nr_queued+1,
728 			    conf->resync_lock,
729 			    ({ flush_pending_writes(conf);
730 			       raid1_unplug(conf->mddev->queue); }));
731 	spin_unlock_irq(&conf->resync_lock);
732 }
733 static void unfreeze_array(conf_t *conf)
734 {
735 	/* reverse the effect of the freeze */
736 	spin_lock_irq(&conf->resync_lock);
737 	conf->barrier--;
738 	conf->nr_waiting--;
739 	wake_up(&conf->wait_barrier);
740 	spin_unlock_irq(&conf->resync_lock);
741 }
742 
743 
744 /* duplicate the data pages for behind I/O */
745 static struct page **alloc_behind_pages(struct bio *bio)
746 {
747 	int i;
748 	struct bio_vec *bvec;
749 	struct page **pages = kzalloc(bio->bi_vcnt * sizeof(struct page *),
750 					GFP_NOIO);
751 	if (unlikely(!pages))
752 		goto do_sync_io;
753 
754 	bio_for_each_segment(bvec, bio, i) {
755 		pages[i] = alloc_page(GFP_NOIO);
756 		if (unlikely(!pages[i]))
757 			goto do_sync_io;
758 		memcpy(kmap(pages[i]) + bvec->bv_offset,
759 			kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
760 		kunmap(pages[i]);
761 		kunmap(bvec->bv_page);
762 	}
763 
764 	return pages;
765 
766 do_sync_io:
767 	if (pages)
768 		for (i = 0; i < bio->bi_vcnt && pages[i]; i++)
769 			put_page(pages[i]);
770 	kfree(pages);
771 	PRINTK("%dB behind alloc failed, doing sync I/O\n", bio->bi_size);
772 	return NULL;
773 }
774 
775 static int make_request(struct request_queue *q, struct bio * bio)
776 {
777 	mddev_t *mddev = q->queuedata;
778 	conf_t *conf = mddev->private;
779 	mirror_info_t *mirror;
780 	r1bio_t *r1_bio;
781 	struct bio *read_bio;
782 	int i, targets = 0, disks;
783 	struct bitmap *bitmap;
784 	unsigned long flags;
785 	struct bio_list bl;
786 	struct page **behind_pages = NULL;
787 	const int rw = bio_data_dir(bio);
788 	const bool do_sync = bio_rw_flagged(bio, BIO_RW_SYNCIO);
789 	int cpu;
790 	bool do_barriers;
791 	mdk_rdev_t *blocked_rdev;
792 
793 	/*
794 	 * Register the new request and wait if the reconstruction
795 	 * thread has put up a bar for new requests.
796 	 * Continue immediately if no resync is active currently.
797 	 * We test barriers_work *after* md_write_start as md_write_start
798 	 * may cause the first superblock write, and that will check out
799 	 * if barriers work.
800 	 */
801 
802 	md_write_start(mddev, bio); /* wait on superblock update early */
803 
804 	if (unlikely(!mddev->barriers_work &&
805 		     bio_rw_flagged(bio, BIO_RW_BARRIER))) {
806 		if (rw == WRITE)
807 			md_write_end(mddev);
808 		bio_endio(bio, -EOPNOTSUPP);
809 		return 0;
810 	}
811 
812 	wait_barrier(conf);
813 
814 	bitmap = mddev->bitmap;
815 
816 	cpu = part_stat_lock();
817 	part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
818 	part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw],
819 		      bio_sectors(bio));
820 	part_stat_unlock();
821 
822 	/*
823 	 * make_request() can abort the operation when READA is being
824 	 * used and no empty request is available.
825 	 *
826 	 */
827 	r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
828 
829 	r1_bio->master_bio = bio;
830 	r1_bio->sectors = bio->bi_size >> 9;
831 	r1_bio->state = 0;
832 	r1_bio->mddev = mddev;
833 	r1_bio->sector = bio->bi_sector;
834 
835 	if (rw == READ) {
836 		/*
837 		 * read balancing logic:
838 		 */
839 		int rdisk = read_balance(conf, r1_bio);
840 
841 		if (rdisk < 0) {
842 			/* couldn't find anywhere to read from */
843 			raid_end_bio_io(r1_bio);
844 			return 0;
845 		}
846 		mirror = conf->mirrors + rdisk;
847 
848 		r1_bio->read_disk = rdisk;
849 
850 		read_bio = bio_clone(bio, GFP_NOIO);
851 
852 		r1_bio->bios[rdisk] = read_bio;
853 
854 		read_bio->bi_sector = r1_bio->sector + mirror->rdev->data_offset;
855 		read_bio->bi_bdev = mirror->rdev->bdev;
856 		read_bio->bi_end_io = raid1_end_read_request;
857 		read_bio->bi_rw = READ | (do_sync << BIO_RW_SYNCIO);
858 		read_bio->bi_private = r1_bio;
859 
860 		generic_make_request(read_bio);
861 		return 0;
862 	}
863 
864 	/*
865 	 * WRITE:
866 	 */
867 	/* first select target devices under spinlock and
868 	 * inc refcount on their rdev.  Record them by setting
869 	 * bios[x] to bio
870 	 */
871 	disks = conf->raid_disks;
872 #if 0
873 	{ static int first=1;
874 	if (first) printk("First Write sector %llu disks %d\n",
875 			  (unsigned long long)r1_bio->sector, disks);
876 	first = 0;
877 	}
878 #endif
879  retry_write:
880 	blocked_rdev = NULL;
881 	rcu_read_lock();
882 	for (i = 0;  i < disks; i++) {
883 		mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
884 		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
885 			atomic_inc(&rdev->nr_pending);
886 			blocked_rdev = rdev;
887 			break;
888 		}
889 		if (rdev && !test_bit(Faulty, &rdev->flags)) {
890 			atomic_inc(&rdev->nr_pending);
891 			if (test_bit(Faulty, &rdev->flags)) {
892 				rdev_dec_pending(rdev, mddev);
893 				r1_bio->bios[i] = NULL;
894 			} else
895 				r1_bio->bios[i] = bio;
896 			targets++;
897 		} else
898 			r1_bio->bios[i] = NULL;
899 	}
900 	rcu_read_unlock();
901 
902 	if (unlikely(blocked_rdev)) {
903 		/* Wait for this device to become unblocked */
904 		int j;
905 
906 		for (j = 0; j < i; j++)
907 			if (r1_bio->bios[j])
908 				rdev_dec_pending(conf->mirrors[j].rdev, mddev);
909 
910 		allow_barrier(conf);
911 		md_wait_for_blocked_rdev(blocked_rdev, mddev);
912 		wait_barrier(conf);
913 		goto retry_write;
914 	}
915 
916 	BUG_ON(targets == 0); /* we never fail the last device */
917 
918 	if (targets < conf->raid_disks) {
919 		/* array is degraded, we will not clear the bitmap
920 		 * on I/O completion (see raid1_end_write_request) */
921 		set_bit(R1BIO_Degraded, &r1_bio->state);
922 	}
923 
924 	/* do behind I/O ? */
925 	if (bitmap &&
926 	    atomic_read(&bitmap->behind_writes) < bitmap->max_write_behind &&
927 	    (behind_pages = alloc_behind_pages(bio)) != NULL)
928 		set_bit(R1BIO_BehindIO, &r1_bio->state);
929 
930 	atomic_set(&r1_bio->remaining, 0);
931 	atomic_set(&r1_bio->behind_remaining, 0);
932 
933 	do_barriers = bio_rw_flagged(bio, BIO_RW_BARRIER);
934 	if (do_barriers)
935 		set_bit(R1BIO_Barrier, &r1_bio->state);
936 
937 	bio_list_init(&bl);
938 	for (i = 0; i < disks; i++) {
939 		struct bio *mbio;
940 		if (!r1_bio->bios[i])
941 			continue;
942 
943 		mbio = bio_clone(bio, GFP_NOIO);
944 		r1_bio->bios[i] = mbio;
945 
946 		mbio->bi_sector	= r1_bio->sector + conf->mirrors[i].rdev->data_offset;
947 		mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
948 		mbio->bi_end_io	= raid1_end_write_request;
949 		mbio->bi_rw = WRITE | (do_barriers << BIO_RW_BARRIER) |
950 			(do_sync << BIO_RW_SYNCIO);
951 		mbio->bi_private = r1_bio;
952 
953 		if (behind_pages) {
954 			struct bio_vec *bvec;
955 			int j;
956 
957 			/* Yes, I really want the '__' version so that
958 			 * we clear any unused pointer in the io_vec, rather
959 			 * than leave them unchanged.  This is important
960 			 * because when we come to free the pages, we won't
961 			 * know the originial bi_idx, so we just free
962 			 * them all
963 			 */
964 			__bio_for_each_segment(bvec, mbio, j, 0)
965 				bvec->bv_page = behind_pages[j];
966 			if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
967 				atomic_inc(&r1_bio->behind_remaining);
968 		}
969 
970 		atomic_inc(&r1_bio->remaining);
971 
972 		bio_list_add(&bl, mbio);
973 	}
974 	kfree(behind_pages); /* the behind pages are attached to the bios now */
975 
976 	bitmap_startwrite(bitmap, bio->bi_sector, r1_bio->sectors,
977 				test_bit(R1BIO_BehindIO, &r1_bio->state));
978 	spin_lock_irqsave(&conf->device_lock, flags);
979 	bio_list_merge(&conf->pending_bio_list, &bl);
980 	bio_list_init(&bl);
981 
982 	blk_plug_device(mddev->queue);
983 	spin_unlock_irqrestore(&conf->device_lock, flags);
984 
985 	/* In case raid1d snuck into freeze_array */
986 	wake_up(&conf->wait_barrier);
987 
988 	if (do_sync)
989 		md_wakeup_thread(mddev->thread);
990 #if 0
991 	while ((bio = bio_list_pop(&bl)) != NULL)
992 		generic_make_request(bio);
993 #endif
994 
995 	return 0;
996 }
997 
998 static void status(struct seq_file *seq, mddev_t *mddev)
999 {
1000 	conf_t *conf = mddev->private;
1001 	int i;
1002 
1003 	seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1004 		   conf->raid_disks - mddev->degraded);
1005 	rcu_read_lock();
1006 	for (i = 0; i < conf->raid_disks; i++) {
1007 		mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
1008 		seq_printf(seq, "%s",
1009 			   rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1010 	}
1011 	rcu_read_unlock();
1012 	seq_printf(seq, "]");
1013 }
1014 
1015 
1016 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1017 {
1018 	char b[BDEVNAME_SIZE];
1019 	conf_t *conf = mddev->private;
1020 
1021 	/*
1022 	 * If it is not operational, then we have already marked it as dead
1023 	 * else if it is the last working disks, ignore the error, let the
1024 	 * next level up know.
1025 	 * else mark the drive as failed
1026 	 */
1027 	if (test_bit(In_sync, &rdev->flags)
1028 	    && (conf->raid_disks - mddev->degraded) == 1) {
1029 		/*
1030 		 * Don't fail the drive, act as though we were just a
1031 		 * normal single drive.
1032 		 * However don't try a recovery from this drive as
1033 		 * it is very likely to fail.
1034 		 */
1035 		mddev->recovery_disabled = 1;
1036 		return;
1037 	}
1038 	if (test_and_clear_bit(In_sync, &rdev->flags)) {
1039 		unsigned long flags;
1040 		spin_lock_irqsave(&conf->device_lock, flags);
1041 		mddev->degraded++;
1042 		set_bit(Faulty, &rdev->flags);
1043 		spin_unlock_irqrestore(&conf->device_lock, flags);
1044 		/*
1045 		 * if recovery is running, make sure it aborts.
1046 		 */
1047 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1048 	} else
1049 		set_bit(Faulty, &rdev->flags);
1050 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
1051 	printk(KERN_ALERT "raid1: Disk failure on %s, disabling device.\n"
1052 		"raid1: Operation continuing on %d devices.\n",
1053 		bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded);
1054 }
1055 
1056 static void print_conf(conf_t *conf)
1057 {
1058 	int i;
1059 
1060 	printk("RAID1 conf printout:\n");
1061 	if (!conf) {
1062 		printk("(!conf)\n");
1063 		return;
1064 	}
1065 	printk(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1066 		conf->raid_disks);
1067 
1068 	rcu_read_lock();
1069 	for (i = 0; i < conf->raid_disks; i++) {
1070 		char b[BDEVNAME_SIZE];
1071 		mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
1072 		if (rdev)
1073 			printk(" disk %d, wo:%d, o:%d, dev:%s\n",
1074 			       i, !test_bit(In_sync, &rdev->flags),
1075 			       !test_bit(Faulty, &rdev->flags),
1076 			       bdevname(rdev->bdev,b));
1077 	}
1078 	rcu_read_unlock();
1079 }
1080 
1081 static void close_sync(conf_t *conf)
1082 {
1083 	wait_barrier(conf);
1084 	allow_barrier(conf);
1085 
1086 	mempool_destroy(conf->r1buf_pool);
1087 	conf->r1buf_pool = NULL;
1088 }
1089 
1090 static int raid1_spare_active(mddev_t *mddev)
1091 {
1092 	int i;
1093 	conf_t *conf = mddev->private;
1094 
1095 	/*
1096 	 * Find all failed disks within the RAID1 configuration
1097 	 * and mark them readable.
1098 	 * Called under mddev lock, so rcu protection not needed.
1099 	 */
1100 	for (i = 0; i < conf->raid_disks; i++) {
1101 		mdk_rdev_t *rdev = conf->mirrors[i].rdev;
1102 		if (rdev
1103 		    && !test_bit(Faulty, &rdev->flags)
1104 		    && !test_and_set_bit(In_sync, &rdev->flags)) {
1105 			unsigned long flags;
1106 			spin_lock_irqsave(&conf->device_lock, flags);
1107 			mddev->degraded--;
1108 			spin_unlock_irqrestore(&conf->device_lock, flags);
1109 		}
1110 	}
1111 
1112 	print_conf(conf);
1113 	return 0;
1114 }
1115 
1116 
1117 static int raid1_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
1118 {
1119 	conf_t *conf = mddev->private;
1120 	int err = -EEXIST;
1121 	int mirror = 0;
1122 	mirror_info_t *p;
1123 	int first = 0;
1124 	int last = mddev->raid_disks - 1;
1125 
1126 	if (rdev->raid_disk >= 0)
1127 		first = last = rdev->raid_disk;
1128 
1129 	for (mirror = first; mirror <= last; mirror++)
1130 		if ( !(p=conf->mirrors+mirror)->rdev) {
1131 
1132 			disk_stack_limits(mddev->gendisk, rdev->bdev,
1133 					  rdev->data_offset << 9);
1134 			/* as we don't honour merge_bvec_fn, we must never risk
1135 			 * violating it, so limit ->max_sector to one PAGE, as
1136 			 * a one page request is never in violation.
1137 			 */
1138 			if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
1139 			    queue_max_sectors(mddev->queue) > (PAGE_SIZE>>9))
1140 				blk_queue_max_sectors(mddev->queue, PAGE_SIZE>>9);
1141 
1142 			p->head_position = 0;
1143 			rdev->raid_disk = mirror;
1144 			err = 0;
1145 			/* As all devices are equivalent, we don't need a full recovery
1146 			 * if this was recently any drive of the array
1147 			 */
1148 			if (rdev->saved_raid_disk < 0)
1149 				conf->fullsync = 1;
1150 			rcu_assign_pointer(p->rdev, rdev);
1151 			break;
1152 		}
1153 	md_integrity_add_rdev(rdev, mddev);
1154 	print_conf(conf);
1155 	return err;
1156 }
1157 
1158 static int raid1_remove_disk(mddev_t *mddev, int number)
1159 {
1160 	conf_t *conf = mddev->private;
1161 	int err = 0;
1162 	mdk_rdev_t *rdev;
1163 	mirror_info_t *p = conf->mirrors+ number;
1164 
1165 	print_conf(conf);
1166 	rdev = p->rdev;
1167 	if (rdev) {
1168 		if (test_bit(In_sync, &rdev->flags) ||
1169 		    atomic_read(&rdev->nr_pending)) {
1170 			err = -EBUSY;
1171 			goto abort;
1172 		}
1173 		/* Only remove non-faulty devices is recovery
1174 		 * is not possible.
1175 		 */
1176 		if (!test_bit(Faulty, &rdev->flags) &&
1177 		    mddev->degraded < conf->raid_disks) {
1178 			err = -EBUSY;
1179 			goto abort;
1180 		}
1181 		p->rdev = NULL;
1182 		synchronize_rcu();
1183 		if (atomic_read(&rdev->nr_pending)) {
1184 			/* lost the race, try later */
1185 			err = -EBUSY;
1186 			p->rdev = rdev;
1187 			goto abort;
1188 		}
1189 		md_integrity_register(mddev);
1190 	}
1191 abort:
1192 
1193 	print_conf(conf);
1194 	return err;
1195 }
1196 
1197 
1198 static void end_sync_read(struct bio *bio, int error)
1199 {
1200 	r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
1201 	int i;
1202 
1203 	for (i=r1_bio->mddev->raid_disks; i--; )
1204 		if (r1_bio->bios[i] == bio)
1205 			break;
1206 	BUG_ON(i < 0);
1207 	update_head_pos(i, r1_bio);
1208 	/*
1209 	 * we have read a block, now it needs to be re-written,
1210 	 * or re-read if the read failed.
1211 	 * We don't do much here, just schedule handling by raid1d
1212 	 */
1213 	if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1214 		set_bit(R1BIO_Uptodate, &r1_bio->state);
1215 
1216 	if (atomic_dec_and_test(&r1_bio->remaining))
1217 		reschedule_retry(r1_bio);
1218 }
1219 
1220 static void end_sync_write(struct bio *bio, int error)
1221 {
1222 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1223 	r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
1224 	mddev_t *mddev = r1_bio->mddev;
1225 	conf_t *conf = mddev->private;
1226 	int i;
1227 	int mirror=0;
1228 
1229 	for (i = 0; i < conf->raid_disks; i++)
1230 		if (r1_bio->bios[i] == bio) {
1231 			mirror = i;
1232 			break;
1233 		}
1234 	if (!uptodate) {
1235 		int sync_blocks = 0;
1236 		sector_t s = r1_bio->sector;
1237 		long sectors_to_go = r1_bio->sectors;
1238 		/* make sure these bits doesn't get cleared. */
1239 		do {
1240 			bitmap_end_sync(mddev->bitmap, s,
1241 					&sync_blocks, 1);
1242 			s += sync_blocks;
1243 			sectors_to_go -= sync_blocks;
1244 		} while (sectors_to_go > 0);
1245 		md_error(mddev, conf->mirrors[mirror].rdev);
1246 	}
1247 
1248 	update_head_pos(mirror, r1_bio);
1249 
1250 	if (atomic_dec_and_test(&r1_bio->remaining)) {
1251 		sector_t s = r1_bio->sectors;
1252 		put_buf(r1_bio);
1253 		md_done_sync(mddev, s, uptodate);
1254 	}
1255 }
1256 
1257 static void sync_request_write(mddev_t *mddev, r1bio_t *r1_bio)
1258 {
1259 	conf_t *conf = mddev->private;
1260 	int i;
1261 	int disks = conf->raid_disks;
1262 	struct bio *bio, *wbio;
1263 
1264 	bio = r1_bio->bios[r1_bio->read_disk];
1265 
1266 
1267 	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
1268 		/* We have read all readable devices.  If we haven't
1269 		 * got the block, then there is no hope left.
1270 		 * If we have, then we want to do a comparison
1271 		 * and skip the write if everything is the same.
1272 		 * If any blocks failed to read, then we need to
1273 		 * attempt an over-write
1274 		 */
1275 		int primary;
1276 		if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) {
1277 			for (i=0; i<mddev->raid_disks; i++)
1278 				if (r1_bio->bios[i]->bi_end_io == end_sync_read)
1279 					md_error(mddev, conf->mirrors[i].rdev);
1280 
1281 			md_done_sync(mddev, r1_bio->sectors, 1);
1282 			put_buf(r1_bio);
1283 			return;
1284 		}
1285 		for (primary=0; primary<mddev->raid_disks; primary++)
1286 			if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
1287 			    test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) {
1288 				r1_bio->bios[primary]->bi_end_io = NULL;
1289 				rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
1290 				break;
1291 			}
1292 		r1_bio->read_disk = primary;
1293 		for (i=0; i<mddev->raid_disks; i++)
1294 			if (r1_bio->bios[i]->bi_end_io == end_sync_read) {
1295 				int j;
1296 				int vcnt = r1_bio->sectors >> (PAGE_SHIFT- 9);
1297 				struct bio *pbio = r1_bio->bios[primary];
1298 				struct bio *sbio = r1_bio->bios[i];
1299 
1300 				if (test_bit(BIO_UPTODATE, &sbio->bi_flags)) {
1301 					for (j = vcnt; j-- ; ) {
1302 						struct page *p, *s;
1303 						p = pbio->bi_io_vec[j].bv_page;
1304 						s = sbio->bi_io_vec[j].bv_page;
1305 						if (memcmp(page_address(p),
1306 							   page_address(s),
1307 							   PAGE_SIZE))
1308 							break;
1309 					}
1310 				} else
1311 					j = 0;
1312 				if (j >= 0)
1313 					mddev->resync_mismatches += r1_bio->sectors;
1314 				if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
1315 					      && test_bit(BIO_UPTODATE, &sbio->bi_flags))) {
1316 					sbio->bi_end_io = NULL;
1317 					rdev_dec_pending(conf->mirrors[i].rdev, mddev);
1318 				} else {
1319 					/* fixup the bio for reuse */
1320 					int size;
1321 					sbio->bi_vcnt = vcnt;
1322 					sbio->bi_size = r1_bio->sectors << 9;
1323 					sbio->bi_idx = 0;
1324 					sbio->bi_phys_segments = 0;
1325 					sbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1326 					sbio->bi_flags |= 1 << BIO_UPTODATE;
1327 					sbio->bi_next = NULL;
1328 					sbio->bi_sector = r1_bio->sector +
1329 						conf->mirrors[i].rdev->data_offset;
1330 					sbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1331 					size = sbio->bi_size;
1332 					for (j = 0; j < vcnt ; j++) {
1333 						struct bio_vec *bi;
1334 						bi = &sbio->bi_io_vec[j];
1335 						bi->bv_offset = 0;
1336 						if (size > PAGE_SIZE)
1337 							bi->bv_len = PAGE_SIZE;
1338 						else
1339 							bi->bv_len = size;
1340 						size -= PAGE_SIZE;
1341 						memcpy(page_address(bi->bv_page),
1342 						       page_address(pbio->bi_io_vec[j].bv_page),
1343 						       PAGE_SIZE);
1344 					}
1345 
1346 				}
1347 			}
1348 	}
1349 	if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) {
1350 		/* ouch - failed to read all of that.
1351 		 * Try some synchronous reads of other devices to get
1352 		 * good data, much like with normal read errors.  Only
1353 		 * read into the pages we already have so we don't
1354 		 * need to re-issue the read request.
1355 		 * We don't need to freeze the array, because being in an
1356 		 * active sync request, there is no normal IO, and
1357 		 * no overlapping syncs.
1358 		 */
1359 		sector_t sect = r1_bio->sector;
1360 		int sectors = r1_bio->sectors;
1361 		int idx = 0;
1362 
1363 		while(sectors) {
1364 			int s = sectors;
1365 			int d = r1_bio->read_disk;
1366 			int success = 0;
1367 			mdk_rdev_t *rdev;
1368 
1369 			if (s > (PAGE_SIZE>>9))
1370 				s = PAGE_SIZE >> 9;
1371 			do {
1372 				if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1373 					/* No rcu protection needed here devices
1374 					 * can only be removed when no resync is
1375 					 * active, and resync is currently active
1376 					 */
1377 					rdev = conf->mirrors[d].rdev;
1378 					if (sync_page_io(rdev->bdev,
1379 							 sect + rdev->data_offset,
1380 							 s<<9,
1381 							 bio->bi_io_vec[idx].bv_page,
1382 							 READ)) {
1383 						success = 1;
1384 						break;
1385 					}
1386 				}
1387 				d++;
1388 				if (d == conf->raid_disks)
1389 					d = 0;
1390 			} while (!success && d != r1_bio->read_disk);
1391 
1392 			if (success) {
1393 				int start = d;
1394 				/* write it back and re-read */
1395 				set_bit(R1BIO_Uptodate, &r1_bio->state);
1396 				while (d != r1_bio->read_disk) {
1397 					if (d == 0)
1398 						d = conf->raid_disks;
1399 					d--;
1400 					if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1401 						continue;
1402 					rdev = conf->mirrors[d].rdev;
1403 					atomic_add(s, &rdev->corrected_errors);
1404 					if (sync_page_io(rdev->bdev,
1405 							 sect + rdev->data_offset,
1406 							 s<<9,
1407 							 bio->bi_io_vec[idx].bv_page,
1408 							 WRITE) == 0)
1409 						md_error(mddev, rdev);
1410 				}
1411 				d = start;
1412 				while (d != r1_bio->read_disk) {
1413 					if (d == 0)
1414 						d = conf->raid_disks;
1415 					d--;
1416 					if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1417 						continue;
1418 					rdev = conf->mirrors[d].rdev;
1419 					if (sync_page_io(rdev->bdev,
1420 							 sect + rdev->data_offset,
1421 							 s<<9,
1422 							 bio->bi_io_vec[idx].bv_page,
1423 							 READ) == 0)
1424 						md_error(mddev, rdev);
1425 				}
1426 			} else {
1427 				char b[BDEVNAME_SIZE];
1428 				/* Cannot read from anywhere, array is toast */
1429 				md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
1430 				printk(KERN_ALERT "raid1: %s: unrecoverable I/O read error"
1431 				       " for block %llu\n",
1432 				       bdevname(bio->bi_bdev,b),
1433 				       (unsigned long long)r1_bio->sector);
1434 				md_done_sync(mddev, r1_bio->sectors, 0);
1435 				put_buf(r1_bio);
1436 				return;
1437 			}
1438 			sectors -= s;
1439 			sect += s;
1440 			idx ++;
1441 		}
1442 	}
1443 
1444 	/*
1445 	 * schedule writes
1446 	 */
1447 	atomic_set(&r1_bio->remaining, 1);
1448 	for (i = 0; i < disks ; i++) {
1449 		wbio = r1_bio->bios[i];
1450 		if (wbio->bi_end_io == NULL ||
1451 		    (wbio->bi_end_io == end_sync_read &&
1452 		     (i == r1_bio->read_disk ||
1453 		      !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
1454 			continue;
1455 
1456 		wbio->bi_rw = WRITE;
1457 		wbio->bi_end_io = end_sync_write;
1458 		atomic_inc(&r1_bio->remaining);
1459 		md_sync_acct(conf->mirrors[i].rdev->bdev, wbio->bi_size >> 9);
1460 
1461 		generic_make_request(wbio);
1462 	}
1463 
1464 	if (atomic_dec_and_test(&r1_bio->remaining)) {
1465 		/* if we're here, all write(s) have completed, so clean up */
1466 		md_done_sync(mddev, r1_bio->sectors, 1);
1467 		put_buf(r1_bio);
1468 	}
1469 }
1470 
1471 /*
1472  * This is a kernel thread which:
1473  *
1474  *	1.	Retries failed read operations on working mirrors.
1475  *	2.	Updates the raid superblock when problems encounter.
1476  *	3.	Performs writes following reads for array syncronising.
1477  */
1478 
1479 static void fix_read_error(conf_t *conf, int read_disk,
1480 			   sector_t sect, int sectors)
1481 {
1482 	mddev_t *mddev = conf->mddev;
1483 	while(sectors) {
1484 		int s = sectors;
1485 		int d = read_disk;
1486 		int success = 0;
1487 		int start;
1488 		mdk_rdev_t *rdev;
1489 
1490 		if (s > (PAGE_SIZE>>9))
1491 			s = PAGE_SIZE >> 9;
1492 
1493 		do {
1494 			/* Note: no rcu protection needed here
1495 			 * as this is synchronous in the raid1d thread
1496 			 * which is the thread that might remove
1497 			 * a device.  If raid1d ever becomes multi-threaded....
1498 			 */
1499 			rdev = conf->mirrors[d].rdev;
1500 			if (rdev &&
1501 			    test_bit(In_sync, &rdev->flags) &&
1502 			    sync_page_io(rdev->bdev,
1503 					 sect + rdev->data_offset,
1504 					 s<<9,
1505 					 conf->tmppage, READ))
1506 				success = 1;
1507 			else {
1508 				d++;
1509 				if (d == conf->raid_disks)
1510 					d = 0;
1511 			}
1512 		} while (!success && d != read_disk);
1513 
1514 		if (!success) {
1515 			/* Cannot read from anywhere -- bye bye array */
1516 			md_error(mddev, conf->mirrors[read_disk].rdev);
1517 			break;
1518 		}
1519 		/* write it back and re-read */
1520 		start = d;
1521 		while (d != read_disk) {
1522 			if (d==0)
1523 				d = conf->raid_disks;
1524 			d--;
1525 			rdev = conf->mirrors[d].rdev;
1526 			if (rdev &&
1527 			    test_bit(In_sync, &rdev->flags)) {
1528 				if (sync_page_io(rdev->bdev,
1529 						 sect + rdev->data_offset,
1530 						 s<<9, conf->tmppage, WRITE)
1531 				    == 0)
1532 					/* Well, this device is dead */
1533 					md_error(mddev, rdev);
1534 			}
1535 		}
1536 		d = start;
1537 		while (d != read_disk) {
1538 			char b[BDEVNAME_SIZE];
1539 			if (d==0)
1540 				d = conf->raid_disks;
1541 			d--;
1542 			rdev = conf->mirrors[d].rdev;
1543 			if (rdev &&
1544 			    test_bit(In_sync, &rdev->flags)) {
1545 				if (sync_page_io(rdev->bdev,
1546 						 sect + rdev->data_offset,
1547 						 s<<9, conf->tmppage, READ)
1548 				    == 0)
1549 					/* Well, this device is dead */
1550 					md_error(mddev, rdev);
1551 				else {
1552 					atomic_add(s, &rdev->corrected_errors);
1553 					printk(KERN_INFO
1554 					       "raid1:%s: read error corrected "
1555 					       "(%d sectors at %llu on %s)\n",
1556 					       mdname(mddev), s,
1557 					       (unsigned long long)(sect +
1558 					           rdev->data_offset),
1559 					       bdevname(rdev->bdev, b));
1560 				}
1561 			}
1562 		}
1563 		sectors -= s;
1564 		sect += s;
1565 	}
1566 }
1567 
1568 static void raid1d(mddev_t *mddev)
1569 {
1570 	r1bio_t *r1_bio;
1571 	struct bio *bio;
1572 	unsigned long flags;
1573 	conf_t *conf = mddev->private;
1574 	struct list_head *head = &conf->retry_list;
1575 	int unplug=0;
1576 	mdk_rdev_t *rdev;
1577 
1578 	md_check_recovery(mddev);
1579 
1580 	for (;;) {
1581 		char b[BDEVNAME_SIZE];
1582 
1583 		unplug += flush_pending_writes(conf);
1584 
1585 		spin_lock_irqsave(&conf->device_lock, flags);
1586 		if (list_empty(head)) {
1587 			spin_unlock_irqrestore(&conf->device_lock, flags);
1588 			break;
1589 		}
1590 		r1_bio = list_entry(head->prev, r1bio_t, retry_list);
1591 		list_del(head->prev);
1592 		conf->nr_queued--;
1593 		spin_unlock_irqrestore(&conf->device_lock, flags);
1594 
1595 		mddev = r1_bio->mddev;
1596 		conf = mddev->private;
1597 		if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
1598 			sync_request_write(mddev, r1_bio);
1599 			unplug = 1;
1600 		} else if (test_bit(R1BIO_BarrierRetry, &r1_bio->state)) {
1601 			/* some requests in the r1bio were BIO_RW_BARRIER
1602 			 * requests which failed with -EOPNOTSUPP.  Hohumm..
1603 			 * Better resubmit without the barrier.
1604 			 * We know which devices to resubmit for, because
1605 			 * all others have had their bios[] entry cleared.
1606 			 * We already have a nr_pending reference on these rdevs.
1607 			 */
1608 			int i;
1609 			const bool do_sync = bio_rw_flagged(r1_bio->master_bio, BIO_RW_SYNCIO);
1610 			clear_bit(R1BIO_BarrierRetry, &r1_bio->state);
1611 			clear_bit(R1BIO_Barrier, &r1_bio->state);
1612 			for (i=0; i < conf->raid_disks; i++)
1613 				if (r1_bio->bios[i])
1614 					atomic_inc(&r1_bio->remaining);
1615 			for (i=0; i < conf->raid_disks; i++)
1616 				if (r1_bio->bios[i]) {
1617 					struct bio_vec *bvec;
1618 					int j;
1619 
1620 					bio = bio_clone(r1_bio->master_bio, GFP_NOIO);
1621 					/* copy pages from the failed bio, as
1622 					 * this might be a write-behind device */
1623 					__bio_for_each_segment(bvec, bio, j, 0)
1624 						bvec->bv_page = bio_iovec_idx(r1_bio->bios[i], j)->bv_page;
1625 					bio_put(r1_bio->bios[i]);
1626 					bio->bi_sector = r1_bio->sector +
1627 						conf->mirrors[i].rdev->data_offset;
1628 					bio->bi_bdev = conf->mirrors[i].rdev->bdev;
1629 					bio->bi_end_io = raid1_end_write_request;
1630 					bio->bi_rw = WRITE |
1631 						(do_sync << BIO_RW_SYNCIO);
1632 					bio->bi_private = r1_bio;
1633 					r1_bio->bios[i] = bio;
1634 					generic_make_request(bio);
1635 				}
1636 		} else {
1637 			int disk;
1638 
1639 			/* we got a read error. Maybe the drive is bad.  Maybe just
1640 			 * the block and we can fix it.
1641 			 * We freeze all other IO, and try reading the block from
1642 			 * other devices.  When we find one, we re-write
1643 			 * and check it that fixes the read error.
1644 			 * This is all done synchronously while the array is
1645 			 * frozen
1646 			 */
1647 			if (mddev->ro == 0) {
1648 				freeze_array(conf);
1649 				fix_read_error(conf, r1_bio->read_disk,
1650 					       r1_bio->sector,
1651 					       r1_bio->sectors);
1652 				unfreeze_array(conf);
1653 			}
1654 
1655 			bio = r1_bio->bios[r1_bio->read_disk];
1656 			if ((disk=read_balance(conf, r1_bio)) == -1 ||
1657 			    disk == r1_bio->read_disk) {
1658 				printk(KERN_ALERT "raid1: %s: unrecoverable I/O"
1659 				       " read error for block %llu\n",
1660 				       bdevname(bio->bi_bdev,b),
1661 				       (unsigned long long)r1_bio->sector);
1662 				raid_end_bio_io(r1_bio);
1663 			} else {
1664 				const bool do_sync = bio_rw_flagged(r1_bio->master_bio, BIO_RW_SYNCIO);
1665 				r1_bio->bios[r1_bio->read_disk] =
1666 					mddev->ro ? IO_BLOCKED : NULL;
1667 				r1_bio->read_disk = disk;
1668 				bio_put(bio);
1669 				bio = bio_clone(r1_bio->master_bio, GFP_NOIO);
1670 				r1_bio->bios[r1_bio->read_disk] = bio;
1671 				rdev = conf->mirrors[disk].rdev;
1672 				if (printk_ratelimit())
1673 					printk(KERN_ERR "raid1: %s: redirecting sector %llu to"
1674 					       " another mirror\n",
1675 					       bdevname(rdev->bdev,b),
1676 					       (unsigned long long)r1_bio->sector);
1677 				bio->bi_sector = r1_bio->sector + rdev->data_offset;
1678 				bio->bi_bdev = rdev->bdev;
1679 				bio->bi_end_io = raid1_end_read_request;
1680 				bio->bi_rw = READ | (do_sync << BIO_RW_SYNCIO);
1681 				bio->bi_private = r1_bio;
1682 				unplug = 1;
1683 				generic_make_request(bio);
1684 			}
1685 		}
1686 	}
1687 	if (unplug)
1688 		unplug_slaves(mddev);
1689 }
1690 
1691 
1692 static int init_resync(conf_t *conf)
1693 {
1694 	int buffs;
1695 
1696 	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
1697 	BUG_ON(conf->r1buf_pool);
1698 	conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
1699 					  conf->poolinfo);
1700 	if (!conf->r1buf_pool)
1701 		return -ENOMEM;
1702 	conf->next_resync = 0;
1703 	return 0;
1704 }
1705 
1706 /*
1707  * perform a "sync" on one "block"
1708  *
1709  * We need to make sure that no normal I/O request - particularly write
1710  * requests - conflict with active sync requests.
1711  *
1712  * This is achieved by tracking pending requests and a 'barrier' concept
1713  * that can be installed to exclude normal IO requests.
1714  */
1715 
1716 static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
1717 {
1718 	conf_t *conf = mddev->private;
1719 	r1bio_t *r1_bio;
1720 	struct bio *bio;
1721 	sector_t max_sector, nr_sectors;
1722 	int disk = -1;
1723 	int i;
1724 	int wonly = -1;
1725 	int write_targets = 0, read_targets = 0;
1726 	int sync_blocks;
1727 	int still_degraded = 0;
1728 
1729 	if (!conf->r1buf_pool)
1730 	{
1731 /*
1732 		printk("sync start - bitmap %p\n", mddev->bitmap);
1733 */
1734 		if (init_resync(conf))
1735 			return 0;
1736 	}
1737 
1738 	max_sector = mddev->dev_sectors;
1739 	if (sector_nr >= max_sector) {
1740 		/* If we aborted, we need to abort the
1741 		 * sync on the 'current' bitmap chunk (there will
1742 		 * only be one in raid1 resync.
1743 		 * We can find the current addess in mddev->curr_resync
1744 		 */
1745 		if (mddev->curr_resync < max_sector) /* aborted */
1746 			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
1747 						&sync_blocks, 1);
1748 		else /* completed sync */
1749 			conf->fullsync = 0;
1750 
1751 		bitmap_close_sync(mddev->bitmap);
1752 		close_sync(conf);
1753 		return 0;
1754 	}
1755 
1756 	if (mddev->bitmap == NULL &&
1757 	    mddev->recovery_cp == MaxSector &&
1758 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
1759 	    conf->fullsync == 0) {
1760 		*skipped = 1;
1761 		return max_sector - sector_nr;
1762 	}
1763 	/* before building a request, check if we can skip these blocks..
1764 	 * This call the bitmap_start_sync doesn't actually record anything
1765 	 */
1766 	if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
1767 	    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
1768 		/* We can skip this block, and probably several more */
1769 		*skipped = 1;
1770 		return sync_blocks;
1771 	}
1772 	/*
1773 	 * If there is non-resync activity waiting for a turn,
1774 	 * and resync is going fast enough,
1775 	 * then let it though before starting on this new sync request.
1776 	 */
1777 	if (!go_faster && conf->nr_waiting)
1778 		msleep_interruptible(1000);
1779 
1780 	bitmap_cond_end_sync(mddev->bitmap, sector_nr);
1781 	raise_barrier(conf);
1782 
1783 	conf->next_resync = sector_nr;
1784 
1785 	r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
1786 	rcu_read_lock();
1787 	/*
1788 	 * If we get a correctably read error during resync or recovery,
1789 	 * we might want to read from a different device.  So we
1790 	 * flag all drives that could conceivably be read from for READ,
1791 	 * and any others (which will be non-In_sync devices) for WRITE.
1792 	 * If a read fails, we try reading from something else for which READ
1793 	 * is OK.
1794 	 */
1795 
1796 	r1_bio->mddev = mddev;
1797 	r1_bio->sector = sector_nr;
1798 	r1_bio->state = 0;
1799 	set_bit(R1BIO_IsSync, &r1_bio->state);
1800 
1801 	for (i=0; i < conf->raid_disks; i++) {
1802 		mdk_rdev_t *rdev;
1803 		bio = r1_bio->bios[i];
1804 
1805 		/* take from bio_init */
1806 		bio->bi_next = NULL;
1807 		bio->bi_flags |= 1 << BIO_UPTODATE;
1808 		bio->bi_rw = READ;
1809 		bio->bi_vcnt = 0;
1810 		bio->bi_idx = 0;
1811 		bio->bi_phys_segments = 0;
1812 		bio->bi_size = 0;
1813 		bio->bi_end_io = NULL;
1814 		bio->bi_private = NULL;
1815 
1816 		rdev = rcu_dereference(conf->mirrors[i].rdev);
1817 		if (rdev == NULL ||
1818 			   test_bit(Faulty, &rdev->flags)) {
1819 			still_degraded = 1;
1820 			continue;
1821 		} else if (!test_bit(In_sync, &rdev->flags)) {
1822 			bio->bi_rw = WRITE;
1823 			bio->bi_end_io = end_sync_write;
1824 			write_targets ++;
1825 		} else {
1826 			/* may need to read from here */
1827 			bio->bi_rw = READ;
1828 			bio->bi_end_io = end_sync_read;
1829 			if (test_bit(WriteMostly, &rdev->flags)) {
1830 				if (wonly < 0)
1831 					wonly = i;
1832 			} else {
1833 				if (disk < 0)
1834 					disk = i;
1835 			}
1836 			read_targets++;
1837 		}
1838 		atomic_inc(&rdev->nr_pending);
1839 		bio->bi_sector = sector_nr + rdev->data_offset;
1840 		bio->bi_bdev = rdev->bdev;
1841 		bio->bi_private = r1_bio;
1842 	}
1843 	rcu_read_unlock();
1844 	if (disk < 0)
1845 		disk = wonly;
1846 	r1_bio->read_disk = disk;
1847 
1848 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
1849 		/* extra read targets are also write targets */
1850 		write_targets += read_targets-1;
1851 
1852 	if (write_targets == 0 || read_targets == 0) {
1853 		/* There is nowhere to write, so all non-sync
1854 		 * drives must be failed - so we are finished
1855 		 */
1856 		sector_t rv = max_sector - sector_nr;
1857 		*skipped = 1;
1858 		put_buf(r1_bio);
1859 		return rv;
1860 	}
1861 
1862 	if (max_sector > mddev->resync_max)
1863 		max_sector = mddev->resync_max; /* Don't do IO beyond here */
1864 	nr_sectors = 0;
1865 	sync_blocks = 0;
1866 	do {
1867 		struct page *page;
1868 		int len = PAGE_SIZE;
1869 		if (sector_nr + (len>>9) > max_sector)
1870 			len = (max_sector - sector_nr) << 9;
1871 		if (len == 0)
1872 			break;
1873 		if (sync_blocks == 0) {
1874 			if (!bitmap_start_sync(mddev->bitmap, sector_nr,
1875 					       &sync_blocks, still_degraded) &&
1876 			    !conf->fullsync &&
1877 			    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
1878 				break;
1879 			BUG_ON(sync_blocks < (PAGE_SIZE>>9));
1880 			if (len > (sync_blocks<<9))
1881 				len = sync_blocks<<9;
1882 		}
1883 
1884 		for (i=0 ; i < conf->raid_disks; i++) {
1885 			bio = r1_bio->bios[i];
1886 			if (bio->bi_end_io) {
1887 				page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
1888 				if (bio_add_page(bio, page, len, 0) == 0) {
1889 					/* stop here */
1890 					bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
1891 					while (i > 0) {
1892 						i--;
1893 						bio = r1_bio->bios[i];
1894 						if (bio->bi_end_io==NULL)
1895 							continue;
1896 						/* remove last page from this bio */
1897 						bio->bi_vcnt--;
1898 						bio->bi_size -= len;
1899 						bio->bi_flags &= ~(1<< BIO_SEG_VALID);
1900 					}
1901 					goto bio_full;
1902 				}
1903 			}
1904 		}
1905 		nr_sectors += len>>9;
1906 		sector_nr += len>>9;
1907 		sync_blocks -= (len>>9);
1908 	} while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
1909  bio_full:
1910 	r1_bio->sectors = nr_sectors;
1911 
1912 	/* For a user-requested sync, we read all readable devices and do a
1913 	 * compare
1914 	 */
1915 	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
1916 		atomic_set(&r1_bio->remaining, read_targets);
1917 		for (i=0; i<conf->raid_disks; i++) {
1918 			bio = r1_bio->bios[i];
1919 			if (bio->bi_end_io == end_sync_read) {
1920 				md_sync_acct(bio->bi_bdev, nr_sectors);
1921 				generic_make_request(bio);
1922 			}
1923 		}
1924 	} else {
1925 		atomic_set(&r1_bio->remaining, 1);
1926 		bio = r1_bio->bios[r1_bio->read_disk];
1927 		md_sync_acct(bio->bi_bdev, nr_sectors);
1928 		generic_make_request(bio);
1929 
1930 	}
1931 	return nr_sectors;
1932 }
1933 
1934 static sector_t raid1_size(mddev_t *mddev, sector_t sectors, int raid_disks)
1935 {
1936 	if (sectors)
1937 		return sectors;
1938 
1939 	return mddev->dev_sectors;
1940 }
1941 
1942 static int run(mddev_t *mddev)
1943 {
1944 	conf_t *conf;
1945 	int i, j, disk_idx;
1946 	mirror_info_t *disk;
1947 	mdk_rdev_t *rdev;
1948 
1949 	if (mddev->level != 1) {
1950 		printk("raid1: %s: raid level not set to mirroring (%d)\n",
1951 		       mdname(mddev), mddev->level);
1952 		goto out;
1953 	}
1954 	if (mddev->reshape_position != MaxSector) {
1955 		printk("raid1: %s: reshape_position set but not supported\n",
1956 		       mdname(mddev));
1957 		goto out;
1958 	}
1959 	/*
1960 	 * copy the already verified devices into our private RAID1
1961 	 * bookkeeping area. [whatever we allocate in run(),
1962 	 * should be freed in stop()]
1963 	 */
1964 	conf = kzalloc(sizeof(conf_t), GFP_KERNEL);
1965 	mddev->private = conf;
1966 	if (!conf)
1967 		goto out_no_mem;
1968 
1969 	conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks,
1970 				 GFP_KERNEL);
1971 	if (!conf->mirrors)
1972 		goto out_no_mem;
1973 
1974 	conf->tmppage = alloc_page(GFP_KERNEL);
1975 	if (!conf->tmppage)
1976 		goto out_no_mem;
1977 
1978 	conf->poolinfo = kmalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
1979 	if (!conf->poolinfo)
1980 		goto out_no_mem;
1981 	conf->poolinfo->mddev = mddev;
1982 	conf->poolinfo->raid_disks = mddev->raid_disks;
1983 	conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
1984 					  r1bio_pool_free,
1985 					  conf->poolinfo);
1986 	if (!conf->r1bio_pool)
1987 		goto out_no_mem;
1988 
1989 	spin_lock_init(&conf->device_lock);
1990 	mddev->queue->queue_lock = &conf->device_lock;
1991 
1992 	list_for_each_entry(rdev, &mddev->disks, same_set) {
1993 		disk_idx = rdev->raid_disk;
1994 		if (disk_idx >= mddev->raid_disks
1995 		    || disk_idx < 0)
1996 			continue;
1997 		disk = conf->mirrors + disk_idx;
1998 
1999 		disk->rdev = rdev;
2000 		disk_stack_limits(mddev->gendisk, rdev->bdev,
2001 				  rdev->data_offset << 9);
2002 		/* as we don't honour merge_bvec_fn, we must never risk
2003 		 * violating it, so limit ->max_sector to one PAGE, as
2004 		 * a one page request is never in violation.
2005 		 */
2006 		if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
2007 		    queue_max_sectors(mddev->queue) > (PAGE_SIZE>>9))
2008 			blk_queue_max_sectors(mddev->queue, PAGE_SIZE>>9);
2009 
2010 		disk->head_position = 0;
2011 	}
2012 	conf->raid_disks = mddev->raid_disks;
2013 	conf->mddev = mddev;
2014 	INIT_LIST_HEAD(&conf->retry_list);
2015 
2016 	spin_lock_init(&conf->resync_lock);
2017 	init_waitqueue_head(&conf->wait_barrier);
2018 
2019 	bio_list_init(&conf->pending_bio_list);
2020 	bio_list_init(&conf->flushing_bio_list);
2021 
2022 
2023 	mddev->degraded = 0;
2024 	for (i = 0; i < conf->raid_disks; i++) {
2025 
2026 		disk = conf->mirrors + i;
2027 
2028 		if (!disk->rdev ||
2029 		    !test_bit(In_sync, &disk->rdev->flags)) {
2030 			disk->head_position = 0;
2031 			mddev->degraded++;
2032 			if (disk->rdev)
2033 				conf->fullsync = 1;
2034 		}
2035 	}
2036 	if (mddev->degraded == conf->raid_disks) {
2037 		printk(KERN_ERR "raid1: no operational mirrors for %s\n",
2038 			mdname(mddev));
2039 		goto out_free_conf;
2040 	}
2041 	if (conf->raid_disks - mddev->degraded == 1)
2042 		mddev->recovery_cp = MaxSector;
2043 
2044 	/*
2045 	 * find the first working one and use it as a starting point
2046 	 * to read balancing.
2047 	 */
2048 	for (j = 0; j < conf->raid_disks &&
2049 		     (!conf->mirrors[j].rdev ||
2050 		      !test_bit(In_sync, &conf->mirrors[j].rdev->flags)) ; j++)
2051 		/* nothing */;
2052 	conf->last_used = j;
2053 
2054 
2055 	mddev->thread = md_register_thread(raid1d, mddev, NULL);
2056 	if (!mddev->thread) {
2057 		printk(KERN_ERR
2058 		       "raid1: couldn't allocate thread for %s\n",
2059 		       mdname(mddev));
2060 		goto out_free_conf;
2061 	}
2062 
2063 	if (mddev->recovery_cp != MaxSector)
2064 		printk(KERN_NOTICE "raid1: %s is not clean"
2065 		       " -- starting background reconstruction\n",
2066 		       mdname(mddev));
2067 	printk(KERN_INFO
2068 		"raid1: raid set %s active with %d out of %d mirrors\n",
2069 		mdname(mddev), mddev->raid_disks - mddev->degraded,
2070 		mddev->raid_disks);
2071 	/*
2072 	 * Ok, everything is just fine now
2073 	 */
2074 	md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
2075 
2076 	mddev->queue->unplug_fn = raid1_unplug;
2077 	mddev->queue->backing_dev_info.congested_fn = raid1_congested;
2078 	mddev->queue->backing_dev_info.congested_data = mddev;
2079 	md_integrity_register(mddev);
2080 	return 0;
2081 
2082 out_no_mem:
2083 	printk(KERN_ERR "raid1: couldn't allocate memory for %s\n",
2084 	       mdname(mddev));
2085 
2086 out_free_conf:
2087 	if (conf) {
2088 		if (conf->r1bio_pool)
2089 			mempool_destroy(conf->r1bio_pool);
2090 		kfree(conf->mirrors);
2091 		safe_put_page(conf->tmppage);
2092 		kfree(conf->poolinfo);
2093 		kfree(conf);
2094 		mddev->private = NULL;
2095 	}
2096 out:
2097 	return -EIO;
2098 }
2099 
2100 static int stop(mddev_t *mddev)
2101 {
2102 	conf_t *conf = mddev->private;
2103 	struct bitmap *bitmap = mddev->bitmap;
2104 	int behind_wait = 0;
2105 
2106 	/* wait for behind writes to complete */
2107 	while (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
2108 		behind_wait++;
2109 		printk(KERN_INFO "raid1: behind writes in progress on device %s, waiting to stop (%d)\n", mdname(mddev), behind_wait);
2110 		set_current_state(TASK_UNINTERRUPTIBLE);
2111 		schedule_timeout(HZ); /* wait a second */
2112 		/* need to kick something here to make sure I/O goes? */
2113 	}
2114 
2115 	raise_barrier(conf);
2116 	lower_barrier(conf);
2117 
2118 	md_unregister_thread(mddev->thread);
2119 	mddev->thread = NULL;
2120 	blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
2121 	if (conf->r1bio_pool)
2122 		mempool_destroy(conf->r1bio_pool);
2123 	kfree(conf->mirrors);
2124 	kfree(conf->poolinfo);
2125 	kfree(conf);
2126 	mddev->private = NULL;
2127 	return 0;
2128 }
2129 
2130 static int raid1_resize(mddev_t *mddev, sector_t sectors)
2131 {
2132 	/* no resync is happening, and there is enough space
2133 	 * on all devices, so we can resize.
2134 	 * We need to make sure resync covers any new space.
2135 	 * If the array is shrinking we should possibly wait until
2136 	 * any io in the removed space completes, but it hardly seems
2137 	 * worth it.
2138 	 */
2139 	md_set_array_sectors(mddev, raid1_size(mddev, sectors, 0));
2140 	if (mddev->array_sectors > raid1_size(mddev, sectors, 0))
2141 		return -EINVAL;
2142 	set_capacity(mddev->gendisk, mddev->array_sectors);
2143 	mddev->changed = 1;
2144 	revalidate_disk(mddev->gendisk);
2145 	if (sectors > mddev->dev_sectors &&
2146 	    mddev->recovery_cp == MaxSector) {
2147 		mddev->recovery_cp = mddev->dev_sectors;
2148 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2149 	}
2150 	mddev->dev_sectors = sectors;
2151 	mddev->resync_max_sectors = sectors;
2152 	return 0;
2153 }
2154 
2155 static int raid1_reshape(mddev_t *mddev)
2156 {
2157 	/* We need to:
2158 	 * 1/ resize the r1bio_pool
2159 	 * 2/ resize conf->mirrors
2160 	 *
2161 	 * We allocate a new r1bio_pool if we can.
2162 	 * Then raise a device barrier and wait until all IO stops.
2163 	 * Then resize conf->mirrors and swap in the new r1bio pool.
2164 	 *
2165 	 * At the same time, we "pack" the devices so that all the missing
2166 	 * devices have the higher raid_disk numbers.
2167 	 */
2168 	mempool_t *newpool, *oldpool;
2169 	struct pool_info *newpoolinfo;
2170 	mirror_info_t *newmirrors;
2171 	conf_t *conf = mddev->private;
2172 	int cnt, raid_disks;
2173 	unsigned long flags;
2174 	int d, d2, err;
2175 
2176 	/* Cannot change chunk_size, layout, or level */
2177 	if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
2178 	    mddev->layout != mddev->new_layout ||
2179 	    mddev->level != mddev->new_level) {
2180 		mddev->new_chunk_sectors = mddev->chunk_sectors;
2181 		mddev->new_layout = mddev->layout;
2182 		mddev->new_level = mddev->level;
2183 		return -EINVAL;
2184 	}
2185 
2186 	err = md_allow_write(mddev);
2187 	if (err)
2188 		return err;
2189 
2190 	raid_disks = mddev->raid_disks + mddev->delta_disks;
2191 
2192 	if (raid_disks < conf->raid_disks) {
2193 		cnt=0;
2194 		for (d= 0; d < conf->raid_disks; d++)
2195 			if (conf->mirrors[d].rdev)
2196 				cnt++;
2197 		if (cnt > raid_disks)
2198 			return -EBUSY;
2199 	}
2200 
2201 	newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
2202 	if (!newpoolinfo)
2203 		return -ENOMEM;
2204 	newpoolinfo->mddev = mddev;
2205 	newpoolinfo->raid_disks = raid_disks;
2206 
2207 	newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2208 				 r1bio_pool_free, newpoolinfo);
2209 	if (!newpool) {
2210 		kfree(newpoolinfo);
2211 		return -ENOMEM;
2212 	}
2213 	newmirrors = kzalloc(sizeof(struct mirror_info) * raid_disks, GFP_KERNEL);
2214 	if (!newmirrors) {
2215 		kfree(newpoolinfo);
2216 		mempool_destroy(newpool);
2217 		return -ENOMEM;
2218 	}
2219 
2220 	raise_barrier(conf);
2221 
2222 	/* ok, everything is stopped */
2223 	oldpool = conf->r1bio_pool;
2224 	conf->r1bio_pool = newpool;
2225 
2226 	for (d = d2 = 0; d < conf->raid_disks; d++) {
2227 		mdk_rdev_t *rdev = conf->mirrors[d].rdev;
2228 		if (rdev && rdev->raid_disk != d2) {
2229 			char nm[20];
2230 			sprintf(nm, "rd%d", rdev->raid_disk);
2231 			sysfs_remove_link(&mddev->kobj, nm);
2232 			rdev->raid_disk = d2;
2233 			sprintf(nm, "rd%d", rdev->raid_disk);
2234 			sysfs_remove_link(&mddev->kobj, nm);
2235 			if (sysfs_create_link(&mddev->kobj,
2236 					      &rdev->kobj, nm))
2237 				printk(KERN_WARNING
2238 				       "md/raid1: cannot register "
2239 				       "%s for %s\n",
2240 				       nm, mdname(mddev));
2241 		}
2242 		if (rdev)
2243 			newmirrors[d2++].rdev = rdev;
2244 	}
2245 	kfree(conf->mirrors);
2246 	conf->mirrors = newmirrors;
2247 	kfree(conf->poolinfo);
2248 	conf->poolinfo = newpoolinfo;
2249 
2250 	spin_lock_irqsave(&conf->device_lock, flags);
2251 	mddev->degraded += (raid_disks - conf->raid_disks);
2252 	spin_unlock_irqrestore(&conf->device_lock, flags);
2253 	conf->raid_disks = mddev->raid_disks = raid_disks;
2254 	mddev->delta_disks = 0;
2255 
2256 	conf->last_used = 0; /* just make sure it is in-range */
2257 	lower_barrier(conf);
2258 
2259 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2260 	md_wakeup_thread(mddev->thread);
2261 
2262 	mempool_destroy(oldpool);
2263 	return 0;
2264 }
2265 
2266 static void raid1_quiesce(mddev_t *mddev, int state)
2267 {
2268 	conf_t *conf = mddev->private;
2269 
2270 	switch(state) {
2271 	case 1:
2272 		raise_barrier(conf);
2273 		break;
2274 	case 0:
2275 		lower_barrier(conf);
2276 		break;
2277 	}
2278 }
2279 
2280 
2281 static struct mdk_personality raid1_personality =
2282 {
2283 	.name		= "raid1",
2284 	.level		= 1,
2285 	.owner		= THIS_MODULE,
2286 	.make_request	= make_request,
2287 	.run		= run,
2288 	.stop		= stop,
2289 	.status		= status,
2290 	.error_handler	= error,
2291 	.hot_add_disk	= raid1_add_disk,
2292 	.hot_remove_disk= raid1_remove_disk,
2293 	.spare_active	= raid1_spare_active,
2294 	.sync_request	= sync_request,
2295 	.resize		= raid1_resize,
2296 	.size		= raid1_size,
2297 	.check_reshape	= raid1_reshape,
2298 	.quiesce	= raid1_quiesce,
2299 };
2300 
2301 static int __init raid_init(void)
2302 {
2303 	return register_md_personality(&raid1_personality);
2304 }
2305 
2306 static void raid_exit(void)
2307 {
2308 	unregister_md_personality(&raid1_personality);
2309 }
2310 
2311 module_init(raid_init);
2312 module_exit(raid_exit);
2313 MODULE_LICENSE("GPL");
2314 MODULE_ALIAS("md-personality-3"); /* RAID1 */
2315 MODULE_ALIAS("md-raid1");
2316 MODULE_ALIAS("md-level-1");
2317