1 /* 2 * raid1.c : Multiple Devices driver for Linux 3 * 4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat 5 * 6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman 7 * 8 * RAID-1 management functions. 9 * 10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000 11 * 12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk> 13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au> 14 * 15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support 16 * bitmapped intelligence in resync: 17 * 18 * - bitmap marked during normal i/o 19 * - bitmap used to skip nondirty blocks during sync 20 * 21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology: 22 * - persistent bitmap code 23 * 24 * This program is free software; you can redistribute it and/or modify 25 * it under the terms of the GNU General Public License as published by 26 * the Free Software Foundation; either version 2, or (at your option) 27 * any later version. 28 * 29 * You should have received a copy of the GNU General Public License 30 * (for example /usr/src/linux/COPYING); if not, write to the Free 31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 32 */ 33 34 #include <linux/delay.h> 35 #include <linux/blkdev.h> 36 #include <linux/seq_file.h> 37 #include "md.h" 38 #include "raid1.h" 39 #include "bitmap.h" 40 41 #define DEBUG 0 42 #if DEBUG 43 #define PRINTK(x...) printk(x) 44 #else 45 #define PRINTK(x...) 46 #endif 47 48 /* 49 * Number of guaranteed r1bios in case of extreme VM load: 50 */ 51 #define NR_RAID1_BIOS 256 52 53 54 static void unplug_slaves(mddev_t *mddev); 55 56 static void allow_barrier(conf_t *conf); 57 static void lower_barrier(conf_t *conf); 58 59 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data) 60 { 61 struct pool_info *pi = data; 62 r1bio_t *r1_bio; 63 int size = offsetof(r1bio_t, bios[pi->raid_disks]); 64 65 /* allocate a r1bio with room for raid_disks entries in the bios array */ 66 r1_bio = kzalloc(size, gfp_flags); 67 if (!r1_bio) 68 unplug_slaves(pi->mddev); 69 70 return r1_bio; 71 } 72 73 static void r1bio_pool_free(void *r1_bio, void *data) 74 { 75 kfree(r1_bio); 76 } 77 78 #define RESYNC_BLOCK_SIZE (64*1024) 79 //#define RESYNC_BLOCK_SIZE PAGE_SIZE 80 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9) 81 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE) 82 #define RESYNC_WINDOW (2048*1024) 83 84 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data) 85 { 86 struct pool_info *pi = data; 87 struct page *page; 88 r1bio_t *r1_bio; 89 struct bio *bio; 90 int i, j; 91 92 r1_bio = r1bio_pool_alloc(gfp_flags, pi); 93 if (!r1_bio) { 94 unplug_slaves(pi->mddev); 95 return NULL; 96 } 97 98 /* 99 * Allocate bios : 1 for reading, n-1 for writing 100 */ 101 for (j = pi->raid_disks ; j-- ; ) { 102 bio = bio_alloc(gfp_flags, RESYNC_PAGES); 103 if (!bio) 104 goto out_free_bio; 105 r1_bio->bios[j] = bio; 106 } 107 /* 108 * Allocate RESYNC_PAGES data pages and attach them to 109 * the first bio. 110 * If this is a user-requested check/repair, allocate 111 * RESYNC_PAGES for each bio. 112 */ 113 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) 114 j = pi->raid_disks; 115 else 116 j = 1; 117 while(j--) { 118 bio = r1_bio->bios[j]; 119 for (i = 0; i < RESYNC_PAGES; i++) { 120 page = alloc_page(gfp_flags); 121 if (unlikely(!page)) 122 goto out_free_pages; 123 124 bio->bi_io_vec[i].bv_page = page; 125 bio->bi_vcnt = i+1; 126 } 127 } 128 /* If not user-requests, copy the page pointers to all bios */ 129 if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) { 130 for (i=0; i<RESYNC_PAGES ; i++) 131 for (j=1; j<pi->raid_disks; j++) 132 r1_bio->bios[j]->bi_io_vec[i].bv_page = 133 r1_bio->bios[0]->bi_io_vec[i].bv_page; 134 } 135 136 r1_bio->master_bio = NULL; 137 138 return r1_bio; 139 140 out_free_pages: 141 for (j=0 ; j < pi->raid_disks; j++) 142 for (i=0; i < r1_bio->bios[j]->bi_vcnt ; i++) 143 put_page(r1_bio->bios[j]->bi_io_vec[i].bv_page); 144 j = -1; 145 out_free_bio: 146 while ( ++j < pi->raid_disks ) 147 bio_put(r1_bio->bios[j]); 148 r1bio_pool_free(r1_bio, data); 149 return NULL; 150 } 151 152 static void r1buf_pool_free(void *__r1_bio, void *data) 153 { 154 struct pool_info *pi = data; 155 int i,j; 156 r1bio_t *r1bio = __r1_bio; 157 158 for (i = 0; i < RESYNC_PAGES; i++) 159 for (j = pi->raid_disks; j-- ;) { 160 if (j == 0 || 161 r1bio->bios[j]->bi_io_vec[i].bv_page != 162 r1bio->bios[0]->bi_io_vec[i].bv_page) 163 safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page); 164 } 165 for (i=0 ; i < pi->raid_disks; i++) 166 bio_put(r1bio->bios[i]); 167 168 r1bio_pool_free(r1bio, data); 169 } 170 171 static void put_all_bios(conf_t *conf, r1bio_t *r1_bio) 172 { 173 int i; 174 175 for (i = 0; i < conf->raid_disks; i++) { 176 struct bio **bio = r1_bio->bios + i; 177 if (*bio && *bio != IO_BLOCKED) 178 bio_put(*bio); 179 *bio = NULL; 180 } 181 } 182 183 static void free_r1bio(r1bio_t *r1_bio) 184 { 185 conf_t *conf = r1_bio->mddev->private; 186 187 /* 188 * Wake up any possible resync thread that waits for the device 189 * to go idle. 190 */ 191 allow_barrier(conf); 192 193 put_all_bios(conf, r1_bio); 194 mempool_free(r1_bio, conf->r1bio_pool); 195 } 196 197 static void put_buf(r1bio_t *r1_bio) 198 { 199 conf_t *conf = r1_bio->mddev->private; 200 int i; 201 202 for (i=0; i<conf->raid_disks; i++) { 203 struct bio *bio = r1_bio->bios[i]; 204 if (bio->bi_end_io) 205 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev); 206 } 207 208 mempool_free(r1_bio, conf->r1buf_pool); 209 210 lower_barrier(conf); 211 } 212 213 static void reschedule_retry(r1bio_t *r1_bio) 214 { 215 unsigned long flags; 216 mddev_t *mddev = r1_bio->mddev; 217 conf_t *conf = mddev->private; 218 219 spin_lock_irqsave(&conf->device_lock, flags); 220 list_add(&r1_bio->retry_list, &conf->retry_list); 221 conf->nr_queued ++; 222 spin_unlock_irqrestore(&conf->device_lock, flags); 223 224 wake_up(&conf->wait_barrier); 225 md_wakeup_thread(mddev->thread); 226 } 227 228 /* 229 * raid_end_bio_io() is called when we have finished servicing a mirrored 230 * operation and are ready to return a success/failure code to the buffer 231 * cache layer. 232 */ 233 static void raid_end_bio_io(r1bio_t *r1_bio) 234 { 235 struct bio *bio = r1_bio->master_bio; 236 237 /* if nobody has done the final endio yet, do it now */ 238 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) { 239 PRINTK(KERN_DEBUG "raid1: sync end %s on sectors %llu-%llu\n", 240 (bio_data_dir(bio) == WRITE) ? "write" : "read", 241 (unsigned long long) bio->bi_sector, 242 (unsigned long long) bio->bi_sector + 243 (bio->bi_size >> 9) - 1); 244 245 bio_endio(bio, 246 test_bit(R1BIO_Uptodate, &r1_bio->state) ? 0 : -EIO); 247 } 248 free_r1bio(r1_bio); 249 } 250 251 /* 252 * Update disk head position estimator based on IRQ completion info. 253 */ 254 static inline void update_head_pos(int disk, r1bio_t *r1_bio) 255 { 256 conf_t *conf = r1_bio->mddev->private; 257 258 conf->mirrors[disk].head_position = 259 r1_bio->sector + (r1_bio->sectors); 260 } 261 262 static void raid1_end_read_request(struct bio *bio, int error) 263 { 264 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 265 r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private); 266 int mirror; 267 conf_t *conf = r1_bio->mddev->private; 268 269 mirror = r1_bio->read_disk; 270 /* 271 * this branch is our 'one mirror IO has finished' event handler: 272 */ 273 update_head_pos(mirror, r1_bio); 274 275 if (uptodate) 276 set_bit(R1BIO_Uptodate, &r1_bio->state); 277 else { 278 /* If all other devices have failed, we want to return 279 * the error upwards rather than fail the last device. 280 * Here we redefine "uptodate" to mean "Don't want to retry" 281 */ 282 unsigned long flags; 283 spin_lock_irqsave(&conf->device_lock, flags); 284 if (r1_bio->mddev->degraded == conf->raid_disks || 285 (r1_bio->mddev->degraded == conf->raid_disks-1 && 286 !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags))) 287 uptodate = 1; 288 spin_unlock_irqrestore(&conf->device_lock, flags); 289 } 290 291 if (uptodate) 292 raid_end_bio_io(r1_bio); 293 else { 294 /* 295 * oops, read error: 296 */ 297 char b[BDEVNAME_SIZE]; 298 if (printk_ratelimit()) 299 printk(KERN_ERR "raid1: %s: rescheduling sector %llu\n", 300 bdevname(conf->mirrors[mirror].rdev->bdev,b), (unsigned long long)r1_bio->sector); 301 reschedule_retry(r1_bio); 302 } 303 304 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev); 305 } 306 307 static void raid1_end_write_request(struct bio *bio, int error) 308 { 309 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 310 r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private); 311 int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state); 312 conf_t *conf = r1_bio->mddev->private; 313 struct bio *to_put = NULL; 314 315 316 for (mirror = 0; mirror < conf->raid_disks; mirror++) 317 if (r1_bio->bios[mirror] == bio) 318 break; 319 320 if (error == -EOPNOTSUPP && test_bit(R1BIO_Barrier, &r1_bio->state)) { 321 set_bit(BarriersNotsupp, &conf->mirrors[mirror].rdev->flags); 322 set_bit(R1BIO_BarrierRetry, &r1_bio->state); 323 r1_bio->mddev->barriers_work = 0; 324 /* Don't rdev_dec_pending in this branch - keep it for the retry */ 325 } else { 326 /* 327 * this branch is our 'one mirror IO has finished' event handler: 328 */ 329 r1_bio->bios[mirror] = NULL; 330 to_put = bio; 331 if (!uptodate) { 332 md_error(r1_bio->mddev, conf->mirrors[mirror].rdev); 333 /* an I/O failed, we can't clear the bitmap */ 334 set_bit(R1BIO_Degraded, &r1_bio->state); 335 } else 336 /* 337 * Set R1BIO_Uptodate in our master bio, so that 338 * we will return a good error code for to the higher 339 * levels even if IO on some other mirrored buffer fails. 340 * 341 * The 'master' represents the composite IO operation to 342 * user-side. So if something waits for IO, then it will 343 * wait for the 'master' bio. 344 */ 345 set_bit(R1BIO_Uptodate, &r1_bio->state); 346 347 update_head_pos(mirror, r1_bio); 348 349 if (behind) { 350 if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags)) 351 atomic_dec(&r1_bio->behind_remaining); 352 353 /* In behind mode, we ACK the master bio once the I/O has safely 354 * reached all non-writemostly disks. Setting the Returned bit 355 * ensures that this gets done only once -- we don't ever want to 356 * return -EIO here, instead we'll wait */ 357 358 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) && 359 test_bit(R1BIO_Uptodate, &r1_bio->state)) { 360 /* Maybe we can return now */ 361 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) { 362 struct bio *mbio = r1_bio->master_bio; 363 PRINTK(KERN_DEBUG "raid1: behind end write sectors %llu-%llu\n", 364 (unsigned long long) mbio->bi_sector, 365 (unsigned long long) mbio->bi_sector + 366 (mbio->bi_size >> 9) - 1); 367 bio_endio(mbio, 0); 368 } 369 } 370 } 371 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev); 372 } 373 /* 374 * 375 * Let's see if all mirrored write operations have finished 376 * already. 377 */ 378 if (atomic_dec_and_test(&r1_bio->remaining)) { 379 if (test_bit(R1BIO_BarrierRetry, &r1_bio->state)) 380 reschedule_retry(r1_bio); 381 else { 382 /* it really is the end of this request */ 383 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) { 384 /* free extra copy of the data pages */ 385 int i = bio->bi_vcnt; 386 while (i--) 387 safe_put_page(bio->bi_io_vec[i].bv_page); 388 } 389 /* clear the bitmap if all writes complete successfully */ 390 bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector, 391 r1_bio->sectors, 392 !test_bit(R1BIO_Degraded, &r1_bio->state), 393 behind); 394 md_write_end(r1_bio->mddev); 395 raid_end_bio_io(r1_bio); 396 } 397 } 398 399 if (to_put) 400 bio_put(to_put); 401 } 402 403 404 /* 405 * This routine returns the disk from which the requested read should 406 * be done. There is a per-array 'next expected sequential IO' sector 407 * number - if this matches on the next IO then we use the last disk. 408 * There is also a per-disk 'last know head position' sector that is 409 * maintained from IRQ contexts, both the normal and the resync IO 410 * completion handlers update this position correctly. If there is no 411 * perfect sequential match then we pick the disk whose head is closest. 412 * 413 * If there are 2 mirrors in the same 2 devices, performance degrades 414 * because position is mirror, not device based. 415 * 416 * The rdev for the device selected will have nr_pending incremented. 417 */ 418 static int read_balance(conf_t *conf, r1bio_t *r1_bio) 419 { 420 const unsigned long this_sector = r1_bio->sector; 421 int new_disk = conf->last_used, disk = new_disk; 422 int wonly_disk = -1; 423 const int sectors = r1_bio->sectors; 424 sector_t new_distance, current_distance; 425 mdk_rdev_t *rdev; 426 427 rcu_read_lock(); 428 /* 429 * Check if we can balance. We can balance on the whole 430 * device if no resync is going on, or below the resync window. 431 * We take the first readable disk when above the resync window. 432 */ 433 retry: 434 if (conf->mddev->recovery_cp < MaxSector && 435 (this_sector + sectors >= conf->next_resync)) { 436 /* Choose the first operation device, for consistancy */ 437 new_disk = 0; 438 439 for (rdev = rcu_dereference(conf->mirrors[new_disk].rdev); 440 r1_bio->bios[new_disk] == IO_BLOCKED || 441 !rdev || !test_bit(In_sync, &rdev->flags) 442 || test_bit(WriteMostly, &rdev->flags); 443 rdev = rcu_dereference(conf->mirrors[++new_disk].rdev)) { 444 445 if (rdev && test_bit(In_sync, &rdev->flags) && 446 r1_bio->bios[new_disk] != IO_BLOCKED) 447 wonly_disk = new_disk; 448 449 if (new_disk == conf->raid_disks - 1) { 450 new_disk = wonly_disk; 451 break; 452 } 453 } 454 goto rb_out; 455 } 456 457 458 /* make sure the disk is operational */ 459 for (rdev = rcu_dereference(conf->mirrors[new_disk].rdev); 460 r1_bio->bios[new_disk] == IO_BLOCKED || 461 !rdev || !test_bit(In_sync, &rdev->flags) || 462 test_bit(WriteMostly, &rdev->flags); 463 rdev = rcu_dereference(conf->mirrors[new_disk].rdev)) { 464 465 if (rdev && test_bit(In_sync, &rdev->flags) && 466 r1_bio->bios[new_disk] != IO_BLOCKED) 467 wonly_disk = new_disk; 468 469 if (new_disk <= 0) 470 new_disk = conf->raid_disks; 471 new_disk--; 472 if (new_disk == disk) { 473 new_disk = wonly_disk; 474 break; 475 } 476 } 477 478 if (new_disk < 0) 479 goto rb_out; 480 481 disk = new_disk; 482 /* now disk == new_disk == starting point for search */ 483 484 /* 485 * Don't change to another disk for sequential reads: 486 */ 487 if (conf->next_seq_sect == this_sector) 488 goto rb_out; 489 if (this_sector == conf->mirrors[new_disk].head_position) 490 goto rb_out; 491 492 current_distance = abs(this_sector - conf->mirrors[disk].head_position); 493 494 /* Find the disk whose head is closest */ 495 496 do { 497 if (disk <= 0) 498 disk = conf->raid_disks; 499 disk--; 500 501 rdev = rcu_dereference(conf->mirrors[disk].rdev); 502 503 if (!rdev || r1_bio->bios[disk] == IO_BLOCKED || 504 !test_bit(In_sync, &rdev->flags) || 505 test_bit(WriteMostly, &rdev->flags)) 506 continue; 507 508 if (!atomic_read(&rdev->nr_pending)) { 509 new_disk = disk; 510 break; 511 } 512 new_distance = abs(this_sector - conf->mirrors[disk].head_position); 513 if (new_distance < current_distance) { 514 current_distance = new_distance; 515 new_disk = disk; 516 } 517 } while (disk != conf->last_used); 518 519 rb_out: 520 521 522 if (new_disk >= 0) { 523 rdev = rcu_dereference(conf->mirrors[new_disk].rdev); 524 if (!rdev) 525 goto retry; 526 atomic_inc(&rdev->nr_pending); 527 if (!test_bit(In_sync, &rdev->flags)) { 528 /* cannot risk returning a device that failed 529 * before we inc'ed nr_pending 530 */ 531 rdev_dec_pending(rdev, conf->mddev); 532 goto retry; 533 } 534 conf->next_seq_sect = this_sector + sectors; 535 conf->last_used = new_disk; 536 } 537 rcu_read_unlock(); 538 539 return new_disk; 540 } 541 542 static void unplug_slaves(mddev_t *mddev) 543 { 544 conf_t *conf = mddev->private; 545 int i; 546 547 rcu_read_lock(); 548 for (i=0; i<mddev->raid_disks; i++) { 549 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev); 550 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) { 551 struct request_queue *r_queue = bdev_get_queue(rdev->bdev); 552 553 atomic_inc(&rdev->nr_pending); 554 rcu_read_unlock(); 555 556 blk_unplug(r_queue); 557 558 rdev_dec_pending(rdev, mddev); 559 rcu_read_lock(); 560 } 561 } 562 rcu_read_unlock(); 563 } 564 565 static void raid1_unplug(struct request_queue *q) 566 { 567 mddev_t *mddev = q->queuedata; 568 569 unplug_slaves(mddev); 570 md_wakeup_thread(mddev->thread); 571 } 572 573 static int raid1_congested(void *data, int bits) 574 { 575 mddev_t *mddev = data; 576 conf_t *conf = mddev->private; 577 int i, ret = 0; 578 579 if (mddev_congested(mddev, bits)) 580 return 1; 581 582 rcu_read_lock(); 583 for (i = 0; i < mddev->raid_disks; i++) { 584 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev); 585 if (rdev && !test_bit(Faulty, &rdev->flags)) { 586 struct request_queue *q = bdev_get_queue(rdev->bdev); 587 588 /* Note the '|| 1' - when read_balance prefers 589 * non-congested targets, it can be removed 590 */ 591 if ((bits & (1<<BDI_async_congested)) || 1) 592 ret |= bdi_congested(&q->backing_dev_info, bits); 593 else 594 ret &= bdi_congested(&q->backing_dev_info, bits); 595 } 596 } 597 rcu_read_unlock(); 598 return ret; 599 } 600 601 602 static int flush_pending_writes(conf_t *conf) 603 { 604 /* Any writes that have been queued but are awaiting 605 * bitmap updates get flushed here. 606 * We return 1 if any requests were actually submitted. 607 */ 608 int rv = 0; 609 610 spin_lock_irq(&conf->device_lock); 611 612 if (conf->pending_bio_list.head) { 613 struct bio *bio; 614 bio = bio_list_get(&conf->pending_bio_list); 615 blk_remove_plug(conf->mddev->queue); 616 spin_unlock_irq(&conf->device_lock); 617 /* flush any pending bitmap writes to 618 * disk before proceeding w/ I/O */ 619 bitmap_unplug(conf->mddev->bitmap); 620 621 while (bio) { /* submit pending writes */ 622 struct bio *next = bio->bi_next; 623 bio->bi_next = NULL; 624 generic_make_request(bio); 625 bio = next; 626 } 627 rv = 1; 628 } else 629 spin_unlock_irq(&conf->device_lock); 630 return rv; 631 } 632 633 /* Barriers.... 634 * Sometimes we need to suspend IO while we do something else, 635 * either some resync/recovery, or reconfigure the array. 636 * To do this we raise a 'barrier'. 637 * The 'barrier' is a counter that can be raised multiple times 638 * to count how many activities are happening which preclude 639 * normal IO. 640 * We can only raise the barrier if there is no pending IO. 641 * i.e. if nr_pending == 0. 642 * We choose only to raise the barrier if no-one is waiting for the 643 * barrier to go down. This means that as soon as an IO request 644 * is ready, no other operations which require a barrier will start 645 * until the IO request has had a chance. 646 * 647 * So: regular IO calls 'wait_barrier'. When that returns there 648 * is no backgroup IO happening, It must arrange to call 649 * allow_barrier when it has finished its IO. 650 * backgroup IO calls must call raise_barrier. Once that returns 651 * there is no normal IO happeing. It must arrange to call 652 * lower_barrier when the particular background IO completes. 653 */ 654 #define RESYNC_DEPTH 32 655 656 static void raise_barrier(conf_t *conf) 657 { 658 spin_lock_irq(&conf->resync_lock); 659 660 /* Wait until no block IO is waiting */ 661 wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting, 662 conf->resync_lock, 663 raid1_unplug(conf->mddev->queue)); 664 665 /* block any new IO from starting */ 666 conf->barrier++; 667 668 /* No wait for all pending IO to complete */ 669 wait_event_lock_irq(conf->wait_barrier, 670 !conf->nr_pending && conf->barrier < RESYNC_DEPTH, 671 conf->resync_lock, 672 raid1_unplug(conf->mddev->queue)); 673 674 spin_unlock_irq(&conf->resync_lock); 675 } 676 677 static void lower_barrier(conf_t *conf) 678 { 679 unsigned long flags; 680 spin_lock_irqsave(&conf->resync_lock, flags); 681 conf->barrier--; 682 spin_unlock_irqrestore(&conf->resync_lock, flags); 683 wake_up(&conf->wait_barrier); 684 } 685 686 static void wait_barrier(conf_t *conf) 687 { 688 spin_lock_irq(&conf->resync_lock); 689 if (conf->barrier) { 690 conf->nr_waiting++; 691 wait_event_lock_irq(conf->wait_barrier, !conf->barrier, 692 conf->resync_lock, 693 raid1_unplug(conf->mddev->queue)); 694 conf->nr_waiting--; 695 } 696 conf->nr_pending++; 697 spin_unlock_irq(&conf->resync_lock); 698 } 699 700 static void allow_barrier(conf_t *conf) 701 { 702 unsigned long flags; 703 spin_lock_irqsave(&conf->resync_lock, flags); 704 conf->nr_pending--; 705 spin_unlock_irqrestore(&conf->resync_lock, flags); 706 wake_up(&conf->wait_barrier); 707 } 708 709 static void freeze_array(conf_t *conf) 710 { 711 /* stop syncio and normal IO and wait for everything to 712 * go quite. 713 * We increment barrier and nr_waiting, and then 714 * wait until nr_pending match nr_queued+1 715 * This is called in the context of one normal IO request 716 * that has failed. Thus any sync request that might be pending 717 * will be blocked by nr_pending, and we need to wait for 718 * pending IO requests to complete or be queued for re-try. 719 * Thus the number queued (nr_queued) plus this request (1) 720 * must match the number of pending IOs (nr_pending) before 721 * we continue. 722 */ 723 spin_lock_irq(&conf->resync_lock); 724 conf->barrier++; 725 conf->nr_waiting++; 726 wait_event_lock_irq(conf->wait_barrier, 727 conf->nr_pending == conf->nr_queued+1, 728 conf->resync_lock, 729 ({ flush_pending_writes(conf); 730 raid1_unplug(conf->mddev->queue); })); 731 spin_unlock_irq(&conf->resync_lock); 732 } 733 static void unfreeze_array(conf_t *conf) 734 { 735 /* reverse the effect of the freeze */ 736 spin_lock_irq(&conf->resync_lock); 737 conf->barrier--; 738 conf->nr_waiting--; 739 wake_up(&conf->wait_barrier); 740 spin_unlock_irq(&conf->resync_lock); 741 } 742 743 744 /* duplicate the data pages for behind I/O */ 745 static struct page **alloc_behind_pages(struct bio *bio) 746 { 747 int i; 748 struct bio_vec *bvec; 749 struct page **pages = kzalloc(bio->bi_vcnt * sizeof(struct page *), 750 GFP_NOIO); 751 if (unlikely(!pages)) 752 goto do_sync_io; 753 754 bio_for_each_segment(bvec, bio, i) { 755 pages[i] = alloc_page(GFP_NOIO); 756 if (unlikely(!pages[i])) 757 goto do_sync_io; 758 memcpy(kmap(pages[i]) + bvec->bv_offset, 759 kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len); 760 kunmap(pages[i]); 761 kunmap(bvec->bv_page); 762 } 763 764 return pages; 765 766 do_sync_io: 767 if (pages) 768 for (i = 0; i < bio->bi_vcnt && pages[i]; i++) 769 put_page(pages[i]); 770 kfree(pages); 771 PRINTK("%dB behind alloc failed, doing sync I/O\n", bio->bi_size); 772 return NULL; 773 } 774 775 static int make_request(struct request_queue *q, struct bio * bio) 776 { 777 mddev_t *mddev = q->queuedata; 778 conf_t *conf = mddev->private; 779 mirror_info_t *mirror; 780 r1bio_t *r1_bio; 781 struct bio *read_bio; 782 int i, targets = 0, disks; 783 struct bitmap *bitmap; 784 unsigned long flags; 785 struct bio_list bl; 786 struct page **behind_pages = NULL; 787 const int rw = bio_data_dir(bio); 788 const bool do_sync = bio_rw_flagged(bio, BIO_RW_SYNCIO); 789 int cpu; 790 bool do_barriers; 791 mdk_rdev_t *blocked_rdev; 792 793 /* 794 * Register the new request and wait if the reconstruction 795 * thread has put up a bar for new requests. 796 * Continue immediately if no resync is active currently. 797 * We test barriers_work *after* md_write_start as md_write_start 798 * may cause the first superblock write, and that will check out 799 * if barriers work. 800 */ 801 802 md_write_start(mddev, bio); /* wait on superblock update early */ 803 804 if (unlikely(!mddev->barriers_work && 805 bio_rw_flagged(bio, BIO_RW_BARRIER))) { 806 if (rw == WRITE) 807 md_write_end(mddev); 808 bio_endio(bio, -EOPNOTSUPP); 809 return 0; 810 } 811 812 wait_barrier(conf); 813 814 bitmap = mddev->bitmap; 815 816 cpu = part_stat_lock(); 817 part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]); 818 part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], 819 bio_sectors(bio)); 820 part_stat_unlock(); 821 822 /* 823 * make_request() can abort the operation when READA is being 824 * used and no empty request is available. 825 * 826 */ 827 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO); 828 829 r1_bio->master_bio = bio; 830 r1_bio->sectors = bio->bi_size >> 9; 831 r1_bio->state = 0; 832 r1_bio->mddev = mddev; 833 r1_bio->sector = bio->bi_sector; 834 835 if (rw == READ) { 836 /* 837 * read balancing logic: 838 */ 839 int rdisk = read_balance(conf, r1_bio); 840 841 if (rdisk < 0) { 842 /* couldn't find anywhere to read from */ 843 raid_end_bio_io(r1_bio); 844 return 0; 845 } 846 mirror = conf->mirrors + rdisk; 847 848 r1_bio->read_disk = rdisk; 849 850 read_bio = bio_clone(bio, GFP_NOIO); 851 852 r1_bio->bios[rdisk] = read_bio; 853 854 read_bio->bi_sector = r1_bio->sector + mirror->rdev->data_offset; 855 read_bio->bi_bdev = mirror->rdev->bdev; 856 read_bio->bi_end_io = raid1_end_read_request; 857 read_bio->bi_rw = READ | (do_sync << BIO_RW_SYNCIO); 858 read_bio->bi_private = r1_bio; 859 860 generic_make_request(read_bio); 861 return 0; 862 } 863 864 /* 865 * WRITE: 866 */ 867 /* first select target devices under spinlock and 868 * inc refcount on their rdev. Record them by setting 869 * bios[x] to bio 870 */ 871 disks = conf->raid_disks; 872 #if 0 873 { static int first=1; 874 if (first) printk("First Write sector %llu disks %d\n", 875 (unsigned long long)r1_bio->sector, disks); 876 first = 0; 877 } 878 #endif 879 retry_write: 880 blocked_rdev = NULL; 881 rcu_read_lock(); 882 for (i = 0; i < disks; i++) { 883 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev); 884 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) { 885 atomic_inc(&rdev->nr_pending); 886 blocked_rdev = rdev; 887 break; 888 } 889 if (rdev && !test_bit(Faulty, &rdev->flags)) { 890 atomic_inc(&rdev->nr_pending); 891 if (test_bit(Faulty, &rdev->flags)) { 892 rdev_dec_pending(rdev, mddev); 893 r1_bio->bios[i] = NULL; 894 } else 895 r1_bio->bios[i] = bio; 896 targets++; 897 } else 898 r1_bio->bios[i] = NULL; 899 } 900 rcu_read_unlock(); 901 902 if (unlikely(blocked_rdev)) { 903 /* Wait for this device to become unblocked */ 904 int j; 905 906 for (j = 0; j < i; j++) 907 if (r1_bio->bios[j]) 908 rdev_dec_pending(conf->mirrors[j].rdev, mddev); 909 910 allow_barrier(conf); 911 md_wait_for_blocked_rdev(blocked_rdev, mddev); 912 wait_barrier(conf); 913 goto retry_write; 914 } 915 916 BUG_ON(targets == 0); /* we never fail the last device */ 917 918 if (targets < conf->raid_disks) { 919 /* array is degraded, we will not clear the bitmap 920 * on I/O completion (see raid1_end_write_request) */ 921 set_bit(R1BIO_Degraded, &r1_bio->state); 922 } 923 924 /* do behind I/O ? */ 925 if (bitmap && 926 atomic_read(&bitmap->behind_writes) < bitmap->max_write_behind && 927 (behind_pages = alloc_behind_pages(bio)) != NULL) 928 set_bit(R1BIO_BehindIO, &r1_bio->state); 929 930 atomic_set(&r1_bio->remaining, 0); 931 atomic_set(&r1_bio->behind_remaining, 0); 932 933 do_barriers = bio_rw_flagged(bio, BIO_RW_BARRIER); 934 if (do_barriers) 935 set_bit(R1BIO_Barrier, &r1_bio->state); 936 937 bio_list_init(&bl); 938 for (i = 0; i < disks; i++) { 939 struct bio *mbio; 940 if (!r1_bio->bios[i]) 941 continue; 942 943 mbio = bio_clone(bio, GFP_NOIO); 944 r1_bio->bios[i] = mbio; 945 946 mbio->bi_sector = r1_bio->sector + conf->mirrors[i].rdev->data_offset; 947 mbio->bi_bdev = conf->mirrors[i].rdev->bdev; 948 mbio->bi_end_io = raid1_end_write_request; 949 mbio->bi_rw = WRITE | (do_barriers << BIO_RW_BARRIER) | 950 (do_sync << BIO_RW_SYNCIO); 951 mbio->bi_private = r1_bio; 952 953 if (behind_pages) { 954 struct bio_vec *bvec; 955 int j; 956 957 /* Yes, I really want the '__' version so that 958 * we clear any unused pointer in the io_vec, rather 959 * than leave them unchanged. This is important 960 * because when we come to free the pages, we won't 961 * know the originial bi_idx, so we just free 962 * them all 963 */ 964 __bio_for_each_segment(bvec, mbio, j, 0) 965 bvec->bv_page = behind_pages[j]; 966 if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags)) 967 atomic_inc(&r1_bio->behind_remaining); 968 } 969 970 atomic_inc(&r1_bio->remaining); 971 972 bio_list_add(&bl, mbio); 973 } 974 kfree(behind_pages); /* the behind pages are attached to the bios now */ 975 976 bitmap_startwrite(bitmap, bio->bi_sector, r1_bio->sectors, 977 test_bit(R1BIO_BehindIO, &r1_bio->state)); 978 spin_lock_irqsave(&conf->device_lock, flags); 979 bio_list_merge(&conf->pending_bio_list, &bl); 980 bio_list_init(&bl); 981 982 blk_plug_device(mddev->queue); 983 spin_unlock_irqrestore(&conf->device_lock, flags); 984 985 /* In case raid1d snuck into freeze_array */ 986 wake_up(&conf->wait_barrier); 987 988 if (do_sync) 989 md_wakeup_thread(mddev->thread); 990 #if 0 991 while ((bio = bio_list_pop(&bl)) != NULL) 992 generic_make_request(bio); 993 #endif 994 995 return 0; 996 } 997 998 static void status(struct seq_file *seq, mddev_t *mddev) 999 { 1000 conf_t *conf = mddev->private; 1001 int i; 1002 1003 seq_printf(seq, " [%d/%d] [", conf->raid_disks, 1004 conf->raid_disks - mddev->degraded); 1005 rcu_read_lock(); 1006 for (i = 0; i < conf->raid_disks; i++) { 1007 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev); 1008 seq_printf(seq, "%s", 1009 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_"); 1010 } 1011 rcu_read_unlock(); 1012 seq_printf(seq, "]"); 1013 } 1014 1015 1016 static void error(mddev_t *mddev, mdk_rdev_t *rdev) 1017 { 1018 char b[BDEVNAME_SIZE]; 1019 conf_t *conf = mddev->private; 1020 1021 /* 1022 * If it is not operational, then we have already marked it as dead 1023 * else if it is the last working disks, ignore the error, let the 1024 * next level up know. 1025 * else mark the drive as failed 1026 */ 1027 if (test_bit(In_sync, &rdev->flags) 1028 && (conf->raid_disks - mddev->degraded) == 1) { 1029 /* 1030 * Don't fail the drive, act as though we were just a 1031 * normal single drive. 1032 * However don't try a recovery from this drive as 1033 * it is very likely to fail. 1034 */ 1035 mddev->recovery_disabled = 1; 1036 return; 1037 } 1038 if (test_and_clear_bit(In_sync, &rdev->flags)) { 1039 unsigned long flags; 1040 spin_lock_irqsave(&conf->device_lock, flags); 1041 mddev->degraded++; 1042 set_bit(Faulty, &rdev->flags); 1043 spin_unlock_irqrestore(&conf->device_lock, flags); 1044 /* 1045 * if recovery is running, make sure it aborts. 1046 */ 1047 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 1048 } else 1049 set_bit(Faulty, &rdev->flags); 1050 set_bit(MD_CHANGE_DEVS, &mddev->flags); 1051 printk(KERN_ALERT "raid1: Disk failure on %s, disabling device.\n" 1052 "raid1: Operation continuing on %d devices.\n", 1053 bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded); 1054 } 1055 1056 static void print_conf(conf_t *conf) 1057 { 1058 int i; 1059 1060 printk("RAID1 conf printout:\n"); 1061 if (!conf) { 1062 printk("(!conf)\n"); 1063 return; 1064 } 1065 printk(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded, 1066 conf->raid_disks); 1067 1068 rcu_read_lock(); 1069 for (i = 0; i < conf->raid_disks; i++) { 1070 char b[BDEVNAME_SIZE]; 1071 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev); 1072 if (rdev) 1073 printk(" disk %d, wo:%d, o:%d, dev:%s\n", 1074 i, !test_bit(In_sync, &rdev->flags), 1075 !test_bit(Faulty, &rdev->flags), 1076 bdevname(rdev->bdev,b)); 1077 } 1078 rcu_read_unlock(); 1079 } 1080 1081 static void close_sync(conf_t *conf) 1082 { 1083 wait_barrier(conf); 1084 allow_barrier(conf); 1085 1086 mempool_destroy(conf->r1buf_pool); 1087 conf->r1buf_pool = NULL; 1088 } 1089 1090 static int raid1_spare_active(mddev_t *mddev) 1091 { 1092 int i; 1093 conf_t *conf = mddev->private; 1094 1095 /* 1096 * Find all failed disks within the RAID1 configuration 1097 * and mark them readable. 1098 * Called under mddev lock, so rcu protection not needed. 1099 */ 1100 for (i = 0; i < conf->raid_disks; i++) { 1101 mdk_rdev_t *rdev = conf->mirrors[i].rdev; 1102 if (rdev 1103 && !test_bit(Faulty, &rdev->flags) 1104 && !test_and_set_bit(In_sync, &rdev->flags)) { 1105 unsigned long flags; 1106 spin_lock_irqsave(&conf->device_lock, flags); 1107 mddev->degraded--; 1108 spin_unlock_irqrestore(&conf->device_lock, flags); 1109 } 1110 } 1111 1112 print_conf(conf); 1113 return 0; 1114 } 1115 1116 1117 static int raid1_add_disk(mddev_t *mddev, mdk_rdev_t *rdev) 1118 { 1119 conf_t *conf = mddev->private; 1120 int err = -EEXIST; 1121 int mirror = 0; 1122 mirror_info_t *p; 1123 int first = 0; 1124 int last = mddev->raid_disks - 1; 1125 1126 if (rdev->raid_disk >= 0) 1127 first = last = rdev->raid_disk; 1128 1129 for (mirror = first; mirror <= last; mirror++) 1130 if ( !(p=conf->mirrors+mirror)->rdev) { 1131 1132 disk_stack_limits(mddev->gendisk, rdev->bdev, 1133 rdev->data_offset << 9); 1134 /* as we don't honour merge_bvec_fn, we must never risk 1135 * violating it, so limit ->max_sector to one PAGE, as 1136 * a one page request is never in violation. 1137 */ 1138 if (rdev->bdev->bd_disk->queue->merge_bvec_fn && 1139 queue_max_sectors(mddev->queue) > (PAGE_SIZE>>9)) 1140 blk_queue_max_sectors(mddev->queue, PAGE_SIZE>>9); 1141 1142 p->head_position = 0; 1143 rdev->raid_disk = mirror; 1144 err = 0; 1145 /* As all devices are equivalent, we don't need a full recovery 1146 * if this was recently any drive of the array 1147 */ 1148 if (rdev->saved_raid_disk < 0) 1149 conf->fullsync = 1; 1150 rcu_assign_pointer(p->rdev, rdev); 1151 break; 1152 } 1153 md_integrity_add_rdev(rdev, mddev); 1154 print_conf(conf); 1155 return err; 1156 } 1157 1158 static int raid1_remove_disk(mddev_t *mddev, int number) 1159 { 1160 conf_t *conf = mddev->private; 1161 int err = 0; 1162 mdk_rdev_t *rdev; 1163 mirror_info_t *p = conf->mirrors+ number; 1164 1165 print_conf(conf); 1166 rdev = p->rdev; 1167 if (rdev) { 1168 if (test_bit(In_sync, &rdev->flags) || 1169 atomic_read(&rdev->nr_pending)) { 1170 err = -EBUSY; 1171 goto abort; 1172 } 1173 /* Only remove non-faulty devices is recovery 1174 * is not possible. 1175 */ 1176 if (!test_bit(Faulty, &rdev->flags) && 1177 mddev->degraded < conf->raid_disks) { 1178 err = -EBUSY; 1179 goto abort; 1180 } 1181 p->rdev = NULL; 1182 synchronize_rcu(); 1183 if (atomic_read(&rdev->nr_pending)) { 1184 /* lost the race, try later */ 1185 err = -EBUSY; 1186 p->rdev = rdev; 1187 goto abort; 1188 } 1189 md_integrity_register(mddev); 1190 } 1191 abort: 1192 1193 print_conf(conf); 1194 return err; 1195 } 1196 1197 1198 static void end_sync_read(struct bio *bio, int error) 1199 { 1200 r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private); 1201 int i; 1202 1203 for (i=r1_bio->mddev->raid_disks; i--; ) 1204 if (r1_bio->bios[i] == bio) 1205 break; 1206 BUG_ON(i < 0); 1207 update_head_pos(i, r1_bio); 1208 /* 1209 * we have read a block, now it needs to be re-written, 1210 * or re-read if the read failed. 1211 * We don't do much here, just schedule handling by raid1d 1212 */ 1213 if (test_bit(BIO_UPTODATE, &bio->bi_flags)) 1214 set_bit(R1BIO_Uptodate, &r1_bio->state); 1215 1216 if (atomic_dec_and_test(&r1_bio->remaining)) 1217 reschedule_retry(r1_bio); 1218 } 1219 1220 static void end_sync_write(struct bio *bio, int error) 1221 { 1222 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 1223 r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private); 1224 mddev_t *mddev = r1_bio->mddev; 1225 conf_t *conf = mddev->private; 1226 int i; 1227 int mirror=0; 1228 1229 for (i = 0; i < conf->raid_disks; i++) 1230 if (r1_bio->bios[i] == bio) { 1231 mirror = i; 1232 break; 1233 } 1234 if (!uptodate) { 1235 int sync_blocks = 0; 1236 sector_t s = r1_bio->sector; 1237 long sectors_to_go = r1_bio->sectors; 1238 /* make sure these bits doesn't get cleared. */ 1239 do { 1240 bitmap_end_sync(mddev->bitmap, s, 1241 &sync_blocks, 1); 1242 s += sync_blocks; 1243 sectors_to_go -= sync_blocks; 1244 } while (sectors_to_go > 0); 1245 md_error(mddev, conf->mirrors[mirror].rdev); 1246 } 1247 1248 update_head_pos(mirror, r1_bio); 1249 1250 if (atomic_dec_and_test(&r1_bio->remaining)) { 1251 sector_t s = r1_bio->sectors; 1252 put_buf(r1_bio); 1253 md_done_sync(mddev, s, uptodate); 1254 } 1255 } 1256 1257 static void sync_request_write(mddev_t *mddev, r1bio_t *r1_bio) 1258 { 1259 conf_t *conf = mddev->private; 1260 int i; 1261 int disks = conf->raid_disks; 1262 struct bio *bio, *wbio; 1263 1264 bio = r1_bio->bios[r1_bio->read_disk]; 1265 1266 1267 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 1268 /* We have read all readable devices. If we haven't 1269 * got the block, then there is no hope left. 1270 * If we have, then we want to do a comparison 1271 * and skip the write if everything is the same. 1272 * If any blocks failed to read, then we need to 1273 * attempt an over-write 1274 */ 1275 int primary; 1276 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) { 1277 for (i=0; i<mddev->raid_disks; i++) 1278 if (r1_bio->bios[i]->bi_end_io == end_sync_read) 1279 md_error(mddev, conf->mirrors[i].rdev); 1280 1281 md_done_sync(mddev, r1_bio->sectors, 1); 1282 put_buf(r1_bio); 1283 return; 1284 } 1285 for (primary=0; primary<mddev->raid_disks; primary++) 1286 if (r1_bio->bios[primary]->bi_end_io == end_sync_read && 1287 test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) { 1288 r1_bio->bios[primary]->bi_end_io = NULL; 1289 rdev_dec_pending(conf->mirrors[primary].rdev, mddev); 1290 break; 1291 } 1292 r1_bio->read_disk = primary; 1293 for (i=0; i<mddev->raid_disks; i++) 1294 if (r1_bio->bios[i]->bi_end_io == end_sync_read) { 1295 int j; 1296 int vcnt = r1_bio->sectors >> (PAGE_SHIFT- 9); 1297 struct bio *pbio = r1_bio->bios[primary]; 1298 struct bio *sbio = r1_bio->bios[i]; 1299 1300 if (test_bit(BIO_UPTODATE, &sbio->bi_flags)) { 1301 for (j = vcnt; j-- ; ) { 1302 struct page *p, *s; 1303 p = pbio->bi_io_vec[j].bv_page; 1304 s = sbio->bi_io_vec[j].bv_page; 1305 if (memcmp(page_address(p), 1306 page_address(s), 1307 PAGE_SIZE)) 1308 break; 1309 } 1310 } else 1311 j = 0; 1312 if (j >= 0) 1313 mddev->resync_mismatches += r1_bio->sectors; 1314 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery) 1315 && test_bit(BIO_UPTODATE, &sbio->bi_flags))) { 1316 sbio->bi_end_io = NULL; 1317 rdev_dec_pending(conf->mirrors[i].rdev, mddev); 1318 } else { 1319 /* fixup the bio for reuse */ 1320 int size; 1321 sbio->bi_vcnt = vcnt; 1322 sbio->bi_size = r1_bio->sectors << 9; 1323 sbio->bi_idx = 0; 1324 sbio->bi_phys_segments = 0; 1325 sbio->bi_flags &= ~(BIO_POOL_MASK - 1); 1326 sbio->bi_flags |= 1 << BIO_UPTODATE; 1327 sbio->bi_next = NULL; 1328 sbio->bi_sector = r1_bio->sector + 1329 conf->mirrors[i].rdev->data_offset; 1330 sbio->bi_bdev = conf->mirrors[i].rdev->bdev; 1331 size = sbio->bi_size; 1332 for (j = 0; j < vcnt ; j++) { 1333 struct bio_vec *bi; 1334 bi = &sbio->bi_io_vec[j]; 1335 bi->bv_offset = 0; 1336 if (size > PAGE_SIZE) 1337 bi->bv_len = PAGE_SIZE; 1338 else 1339 bi->bv_len = size; 1340 size -= PAGE_SIZE; 1341 memcpy(page_address(bi->bv_page), 1342 page_address(pbio->bi_io_vec[j].bv_page), 1343 PAGE_SIZE); 1344 } 1345 1346 } 1347 } 1348 } 1349 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) { 1350 /* ouch - failed to read all of that. 1351 * Try some synchronous reads of other devices to get 1352 * good data, much like with normal read errors. Only 1353 * read into the pages we already have so we don't 1354 * need to re-issue the read request. 1355 * We don't need to freeze the array, because being in an 1356 * active sync request, there is no normal IO, and 1357 * no overlapping syncs. 1358 */ 1359 sector_t sect = r1_bio->sector; 1360 int sectors = r1_bio->sectors; 1361 int idx = 0; 1362 1363 while(sectors) { 1364 int s = sectors; 1365 int d = r1_bio->read_disk; 1366 int success = 0; 1367 mdk_rdev_t *rdev; 1368 1369 if (s > (PAGE_SIZE>>9)) 1370 s = PAGE_SIZE >> 9; 1371 do { 1372 if (r1_bio->bios[d]->bi_end_io == end_sync_read) { 1373 /* No rcu protection needed here devices 1374 * can only be removed when no resync is 1375 * active, and resync is currently active 1376 */ 1377 rdev = conf->mirrors[d].rdev; 1378 if (sync_page_io(rdev->bdev, 1379 sect + rdev->data_offset, 1380 s<<9, 1381 bio->bi_io_vec[idx].bv_page, 1382 READ)) { 1383 success = 1; 1384 break; 1385 } 1386 } 1387 d++; 1388 if (d == conf->raid_disks) 1389 d = 0; 1390 } while (!success && d != r1_bio->read_disk); 1391 1392 if (success) { 1393 int start = d; 1394 /* write it back and re-read */ 1395 set_bit(R1BIO_Uptodate, &r1_bio->state); 1396 while (d != r1_bio->read_disk) { 1397 if (d == 0) 1398 d = conf->raid_disks; 1399 d--; 1400 if (r1_bio->bios[d]->bi_end_io != end_sync_read) 1401 continue; 1402 rdev = conf->mirrors[d].rdev; 1403 atomic_add(s, &rdev->corrected_errors); 1404 if (sync_page_io(rdev->bdev, 1405 sect + rdev->data_offset, 1406 s<<9, 1407 bio->bi_io_vec[idx].bv_page, 1408 WRITE) == 0) 1409 md_error(mddev, rdev); 1410 } 1411 d = start; 1412 while (d != r1_bio->read_disk) { 1413 if (d == 0) 1414 d = conf->raid_disks; 1415 d--; 1416 if (r1_bio->bios[d]->bi_end_io != end_sync_read) 1417 continue; 1418 rdev = conf->mirrors[d].rdev; 1419 if (sync_page_io(rdev->bdev, 1420 sect + rdev->data_offset, 1421 s<<9, 1422 bio->bi_io_vec[idx].bv_page, 1423 READ) == 0) 1424 md_error(mddev, rdev); 1425 } 1426 } else { 1427 char b[BDEVNAME_SIZE]; 1428 /* Cannot read from anywhere, array is toast */ 1429 md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev); 1430 printk(KERN_ALERT "raid1: %s: unrecoverable I/O read error" 1431 " for block %llu\n", 1432 bdevname(bio->bi_bdev,b), 1433 (unsigned long long)r1_bio->sector); 1434 md_done_sync(mddev, r1_bio->sectors, 0); 1435 put_buf(r1_bio); 1436 return; 1437 } 1438 sectors -= s; 1439 sect += s; 1440 idx ++; 1441 } 1442 } 1443 1444 /* 1445 * schedule writes 1446 */ 1447 atomic_set(&r1_bio->remaining, 1); 1448 for (i = 0; i < disks ; i++) { 1449 wbio = r1_bio->bios[i]; 1450 if (wbio->bi_end_io == NULL || 1451 (wbio->bi_end_io == end_sync_read && 1452 (i == r1_bio->read_disk || 1453 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery)))) 1454 continue; 1455 1456 wbio->bi_rw = WRITE; 1457 wbio->bi_end_io = end_sync_write; 1458 atomic_inc(&r1_bio->remaining); 1459 md_sync_acct(conf->mirrors[i].rdev->bdev, wbio->bi_size >> 9); 1460 1461 generic_make_request(wbio); 1462 } 1463 1464 if (atomic_dec_and_test(&r1_bio->remaining)) { 1465 /* if we're here, all write(s) have completed, so clean up */ 1466 md_done_sync(mddev, r1_bio->sectors, 1); 1467 put_buf(r1_bio); 1468 } 1469 } 1470 1471 /* 1472 * This is a kernel thread which: 1473 * 1474 * 1. Retries failed read operations on working mirrors. 1475 * 2. Updates the raid superblock when problems encounter. 1476 * 3. Performs writes following reads for array syncronising. 1477 */ 1478 1479 static void fix_read_error(conf_t *conf, int read_disk, 1480 sector_t sect, int sectors) 1481 { 1482 mddev_t *mddev = conf->mddev; 1483 while(sectors) { 1484 int s = sectors; 1485 int d = read_disk; 1486 int success = 0; 1487 int start; 1488 mdk_rdev_t *rdev; 1489 1490 if (s > (PAGE_SIZE>>9)) 1491 s = PAGE_SIZE >> 9; 1492 1493 do { 1494 /* Note: no rcu protection needed here 1495 * as this is synchronous in the raid1d thread 1496 * which is the thread that might remove 1497 * a device. If raid1d ever becomes multi-threaded.... 1498 */ 1499 rdev = conf->mirrors[d].rdev; 1500 if (rdev && 1501 test_bit(In_sync, &rdev->flags) && 1502 sync_page_io(rdev->bdev, 1503 sect + rdev->data_offset, 1504 s<<9, 1505 conf->tmppage, READ)) 1506 success = 1; 1507 else { 1508 d++; 1509 if (d == conf->raid_disks) 1510 d = 0; 1511 } 1512 } while (!success && d != read_disk); 1513 1514 if (!success) { 1515 /* Cannot read from anywhere -- bye bye array */ 1516 md_error(mddev, conf->mirrors[read_disk].rdev); 1517 break; 1518 } 1519 /* write it back and re-read */ 1520 start = d; 1521 while (d != read_disk) { 1522 if (d==0) 1523 d = conf->raid_disks; 1524 d--; 1525 rdev = conf->mirrors[d].rdev; 1526 if (rdev && 1527 test_bit(In_sync, &rdev->flags)) { 1528 if (sync_page_io(rdev->bdev, 1529 sect + rdev->data_offset, 1530 s<<9, conf->tmppage, WRITE) 1531 == 0) 1532 /* Well, this device is dead */ 1533 md_error(mddev, rdev); 1534 } 1535 } 1536 d = start; 1537 while (d != read_disk) { 1538 char b[BDEVNAME_SIZE]; 1539 if (d==0) 1540 d = conf->raid_disks; 1541 d--; 1542 rdev = conf->mirrors[d].rdev; 1543 if (rdev && 1544 test_bit(In_sync, &rdev->flags)) { 1545 if (sync_page_io(rdev->bdev, 1546 sect + rdev->data_offset, 1547 s<<9, conf->tmppage, READ) 1548 == 0) 1549 /* Well, this device is dead */ 1550 md_error(mddev, rdev); 1551 else { 1552 atomic_add(s, &rdev->corrected_errors); 1553 printk(KERN_INFO 1554 "raid1:%s: read error corrected " 1555 "(%d sectors at %llu on %s)\n", 1556 mdname(mddev), s, 1557 (unsigned long long)(sect + 1558 rdev->data_offset), 1559 bdevname(rdev->bdev, b)); 1560 } 1561 } 1562 } 1563 sectors -= s; 1564 sect += s; 1565 } 1566 } 1567 1568 static void raid1d(mddev_t *mddev) 1569 { 1570 r1bio_t *r1_bio; 1571 struct bio *bio; 1572 unsigned long flags; 1573 conf_t *conf = mddev->private; 1574 struct list_head *head = &conf->retry_list; 1575 int unplug=0; 1576 mdk_rdev_t *rdev; 1577 1578 md_check_recovery(mddev); 1579 1580 for (;;) { 1581 char b[BDEVNAME_SIZE]; 1582 1583 unplug += flush_pending_writes(conf); 1584 1585 spin_lock_irqsave(&conf->device_lock, flags); 1586 if (list_empty(head)) { 1587 spin_unlock_irqrestore(&conf->device_lock, flags); 1588 break; 1589 } 1590 r1_bio = list_entry(head->prev, r1bio_t, retry_list); 1591 list_del(head->prev); 1592 conf->nr_queued--; 1593 spin_unlock_irqrestore(&conf->device_lock, flags); 1594 1595 mddev = r1_bio->mddev; 1596 conf = mddev->private; 1597 if (test_bit(R1BIO_IsSync, &r1_bio->state)) { 1598 sync_request_write(mddev, r1_bio); 1599 unplug = 1; 1600 } else if (test_bit(R1BIO_BarrierRetry, &r1_bio->state)) { 1601 /* some requests in the r1bio were BIO_RW_BARRIER 1602 * requests which failed with -EOPNOTSUPP. Hohumm.. 1603 * Better resubmit without the barrier. 1604 * We know which devices to resubmit for, because 1605 * all others have had their bios[] entry cleared. 1606 * We already have a nr_pending reference on these rdevs. 1607 */ 1608 int i; 1609 const bool do_sync = bio_rw_flagged(r1_bio->master_bio, BIO_RW_SYNCIO); 1610 clear_bit(R1BIO_BarrierRetry, &r1_bio->state); 1611 clear_bit(R1BIO_Barrier, &r1_bio->state); 1612 for (i=0; i < conf->raid_disks; i++) 1613 if (r1_bio->bios[i]) 1614 atomic_inc(&r1_bio->remaining); 1615 for (i=0; i < conf->raid_disks; i++) 1616 if (r1_bio->bios[i]) { 1617 struct bio_vec *bvec; 1618 int j; 1619 1620 bio = bio_clone(r1_bio->master_bio, GFP_NOIO); 1621 /* copy pages from the failed bio, as 1622 * this might be a write-behind device */ 1623 __bio_for_each_segment(bvec, bio, j, 0) 1624 bvec->bv_page = bio_iovec_idx(r1_bio->bios[i], j)->bv_page; 1625 bio_put(r1_bio->bios[i]); 1626 bio->bi_sector = r1_bio->sector + 1627 conf->mirrors[i].rdev->data_offset; 1628 bio->bi_bdev = conf->mirrors[i].rdev->bdev; 1629 bio->bi_end_io = raid1_end_write_request; 1630 bio->bi_rw = WRITE | 1631 (do_sync << BIO_RW_SYNCIO); 1632 bio->bi_private = r1_bio; 1633 r1_bio->bios[i] = bio; 1634 generic_make_request(bio); 1635 } 1636 } else { 1637 int disk; 1638 1639 /* we got a read error. Maybe the drive is bad. Maybe just 1640 * the block and we can fix it. 1641 * We freeze all other IO, and try reading the block from 1642 * other devices. When we find one, we re-write 1643 * and check it that fixes the read error. 1644 * This is all done synchronously while the array is 1645 * frozen 1646 */ 1647 if (mddev->ro == 0) { 1648 freeze_array(conf); 1649 fix_read_error(conf, r1_bio->read_disk, 1650 r1_bio->sector, 1651 r1_bio->sectors); 1652 unfreeze_array(conf); 1653 } 1654 1655 bio = r1_bio->bios[r1_bio->read_disk]; 1656 if ((disk=read_balance(conf, r1_bio)) == -1 || 1657 disk == r1_bio->read_disk) { 1658 printk(KERN_ALERT "raid1: %s: unrecoverable I/O" 1659 " read error for block %llu\n", 1660 bdevname(bio->bi_bdev,b), 1661 (unsigned long long)r1_bio->sector); 1662 raid_end_bio_io(r1_bio); 1663 } else { 1664 const bool do_sync = bio_rw_flagged(r1_bio->master_bio, BIO_RW_SYNCIO); 1665 r1_bio->bios[r1_bio->read_disk] = 1666 mddev->ro ? IO_BLOCKED : NULL; 1667 r1_bio->read_disk = disk; 1668 bio_put(bio); 1669 bio = bio_clone(r1_bio->master_bio, GFP_NOIO); 1670 r1_bio->bios[r1_bio->read_disk] = bio; 1671 rdev = conf->mirrors[disk].rdev; 1672 if (printk_ratelimit()) 1673 printk(KERN_ERR "raid1: %s: redirecting sector %llu to" 1674 " another mirror\n", 1675 bdevname(rdev->bdev,b), 1676 (unsigned long long)r1_bio->sector); 1677 bio->bi_sector = r1_bio->sector + rdev->data_offset; 1678 bio->bi_bdev = rdev->bdev; 1679 bio->bi_end_io = raid1_end_read_request; 1680 bio->bi_rw = READ | (do_sync << BIO_RW_SYNCIO); 1681 bio->bi_private = r1_bio; 1682 unplug = 1; 1683 generic_make_request(bio); 1684 } 1685 } 1686 } 1687 if (unplug) 1688 unplug_slaves(mddev); 1689 } 1690 1691 1692 static int init_resync(conf_t *conf) 1693 { 1694 int buffs; 1695 1696 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE; 1697 BUG_ON(conf->r1buf_pool); 1698 conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free, 1699 conf->poolinfo); 1700 if (!conf->r1buf_pool) 1701 return -ENOMEM; 1702 conf->next_resync = 0; 1703 return 0; 1704 } 1705 1706 /* 1707 * perform a "sync" on one "block" 1708 * 1709 * We need to make sure that no normal I/O request - particularly write 1710 * requests - conflict with active sync requests. 1711 * 1712 * This is achieved by tracking pending requests and a 'barrier' concept 1713 * that can be installed to exclude normal IO requests. 1714 */ 1715 1716 static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster) 1717 { 1718 conf_t *conf = mddev->private; 1719 r1bio_t *r1_bio; 1720 struct bio *bio; 1721 sector_t max_sector, nr_sectors; 1722 int disk = -1; 1723 int i; 1724 int wonly = -1; 1725 int write_targets = 0, read_targets = 0; 1726 int sync_blocks; 1727 int still_degraded = 0; 1728 1729 if (!conf->r1buf_pool) 1730 { 1731 /* 1732 printk("sync start - bitmap %p\n", mddev->bitmap); 1733 */ 1734 if (init_resync(conf)) 1735 return 0; 1736 } 1737 1738 max_sector = mddev->dev_sectors; 1739 if (sector_nr >= max_sector) { 1740 /* If we aborted, we need to abort the 1741 * sync on the 'current' bitmap chunk (there will 1742 * only be one in raid1 resync. 1743 * We can find the current addess in mddev->curr_resync 1744 */ 1745 if (mddev->curr_resync < max_sector) /* aborted */ 1746 bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 1747 &sync_blocks, 1); 1748 else /* completed sync */ 1749 conf->fullsync = 0; 1750 1751 bitmap_close_sync(mddev->bitmap); 1752 close_sync(conf); 1753 return 0; 1754 } 1755 1756 if (mddev->bitmap == NULL && 1757 mddev->recovery_cp == MaxSector && 1758 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 1759 conf->fullsync == 0) { 1760 *skipped = 1; 1761 return max_sector - sector_nr; 1762 } 1763 /* before building a request, check if we can skip these blocks.. 1764 * This call the bitmap_start_sync doesn't actually record anything 1765 */ 1766 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) && 1767 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 1768 /* We can skip this block, and probably several more */ 1769 *skipped = 1; 1770 return sync_blocks; 1771 } 1772 /* 1773 * If there is non-resync activity waiting for a turn, 1774 * and resync is going fast enough, 1775 * then let it though before starting on this new sync request. 1776 */ 1777 if (!go_faster && conf->nr_waiting) 1778 msleep_interruptible(1000); 1779 1780 bitmap_cond_end_sync(mddev->bitmap, sector_nr); 1781 raise_barrier(conf); 1782 1783 conf->next_resync = sector_nr; 1784 1785 r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO); 1786 rcu_read_lock(); 1787 /* 1788 * If we get a correctably read error during resync or recovery, 1789 * we might want to read from a different device. So we 1790 * flag all drives that could conceivably be read from for READ, 1791 * and any others (which will be non-In_sync devices) for WRITE. 1792 * If a read fails, we try reading from something else for which READ 1793 * is OK. 1794 */ 1795 1796 r1_bio->mddev = mddev; 1797 r1_bio->sector = sector_nr; 1798 r1_bio->state = 0; 1799 set_bit(R1BIO_IsSync, &r1_bio->state); 1800 1801 for (i=0; i < conf->raid_disks; i++) { 1802 mdk_rdev_t *rdev; 1803 bio = r1_bio->bios[i]; 1804 1805 /* take from bio_init */ 1806 bio->bi_next = NULL; 1807 bio->bi_flags |= 1 << BIO_UPTODATE; 1808 bio->bi_rw = READ; 1809 bio->bi_vcnt = 0; 1810 bio->bi_idx = 0; 1811 bio->bi_phys_segments = 0; 1812 bio->bi_size = 0; 1813 bio->bi_end_io = NULL; 1814 bio->bi_private = NULL; 1815 1816 rdev = rcu_dereference(conf->mirrors[i].rdev); 1817 if (rdev == NULL || 1818 test_bit(Faulty, &rdev->flags)) { 1819 still_degraded = 1; 1820 continue; 1821 } else if (!test_bit(In_sync, &rdev->flags)) { 1822 bio->bi_rw = WRITE; 1823 bio->bi_end_io = end_sync_write; 1824 write_targets ++; 1825 } else { 1826 /* may need to read from here */ 1827 bio->bi_rw = READ; 1828 bio->bi_end_io = end_sync_read; 1829 if (test_bit(WriteMostly, &rdev->flags)) { 1830 if (wonly < 0) 1831 wonly = i; 1832 } else { 1833 if (disk < 0) 1834 disk = i; 1835 } 1836 read_targets++; 1837 } 1838 atomic_inc(&rdev->nr_pending); 1839 bio->bi_sector = sector_nr + rdev->data_offset; 1840 bio->bi_bdev = rdev->bdev; 1841 bio->bi_private = r1_bio; 1842 } 1843 rcu_read_unlock(); 1844 if (disk < 0) 1845 disk = wonly; 1846 r1_bio->read_disk = disk; 1847 1848 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0) 1849 /* extra read targets are also write targets */ 1850 write_targets += read_targets-1; 1851 1852 if (write_targets == 0 || read_targets == 0) { 1853 /* There is nowhere to write, so all non-sync 1854 * drives must be failed - so we are finished 1855 */ 1856 sector_t rv = max_sector - sector_nr; 1857 *skipped = 1; 1858 put_buf(r1_bio); 1859 return rv; 1860 } 1861 1862 if (max_sector > mddev->resync_max) 1863 max_sector = mddev->resync_max; /* Don't do IO beyond here */ 1864 nr_sectors = 0; 1865 sync_blocks = 0; 1866 do { 1867 struct page *page; 1868 int len = PAGE_SIZE; 1869 if (sector_nr + (len>>9) > max_sector) 1870 len = (max_sector - sector_nr) << 9; 1871 if (len == 0) 1872 break; 1873 if (sync_blocks == 0) { 1874 if (!bitmap_start_sync(mddev->bitmap, sector_nr, 1875 &sync_blocks, still_degraded) && 1876 !conf->fullsync && 1877 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 1878 break; 1879 BUG_ON(sync_blocks < (PAGE_SIZE>>9)); 1880 if (len > (sync_blocks<<9)) 1881 len = sync_blocks<<9; 1882 } 1883 1884 for (i=0 ; i < conf->raid_disks; i++) { 1885 bio = r1_bio->bios[i]; 1886 if (bio->bi_end_io) { 1887 page = bio->bi_io_vec[bio->bi_vcnt].bv_page; 1888 if (bio_add_page(bio, page, len, 0) == 0) { 1889 /* stop here */ 1890 bio->bi_io_vec[bio->bi_vcnt].bv_page = page; 1891 while (i > 0) { 1892 i--; 1893 bio = r1_bio->bios[i]; 1894 if (bio->bi_end_io==NULL) 1895 continue; 1896 /* remove last page from this bio */ 1897 bio->bi_vcnt--; 1898 bio->bi_size -= len; 1899 bio->bi_flags &= ~(1<< BIO_SEG_VALID); 1900 } 1901 goto bio_full; 1902 } 1903 } 1904 } 1905 nr_sectors += len>>9; 1906 sector_nr += len>>9; 1907 sync_blocks -= (len>>9); 1908 } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES); 1909 bio_full: 1910 r1_bio->sectors = nr_sectors; 1911 1912 /* For a user-requested sync, we read all readable devices and do a 1913 * compare 1914 */ 1915 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 1916 atomic_set(&r1_bio->remaining, read_targets); 1917 for (i=0; i<conf->raid_disks; i++) { 1918 bio = r1_bio->bios[i]; 1919 if (bio->bi_end_io == end_sync_read) { 1920 md_sync_acct(bio->bi_bdev, nr_sectors); 1921 generic_make_request(bio); 1922 } 1923 } 1924 } else { 1925 atomic_set(&r1_bio->remaining, 1); 1926 bio = r1_bio->bios[r1_bio->read_disk]; 1927 md_sync_acct(bio->bi_bdev, nr_sectors); 1928 generic_make_request(bio); 1929 1930 } 1931 return nr_sectors; 1932 } 1933 1934 static sector_t raid1_size(mddev_t *mddev, sector_t sectors, int raid_disks) 1935 { 1936 if (sectors) 1937 return sectors; 1938 1939 return mddev->dev_sectors; 1940 } 1941 1942 static int run(mddev_t *mddev) 1943 { 1944 conf_t *conf; 1945 int i, j, disk_idx; 1946 mirror_info_t *disk; 1947 mdk_rdev_t *rdev; 1948 1949 if (mddev->level != 1) { 1950 printk("raid1: %s: raid level not set to mirroring (%d)\n", 1951 mdname(mddev), mddev->level); 1952 goto out; 1953 } 1954 if (mddev->reshape_position != MaxSector) { 1955 printk("raid1: %s: reshape_position set but not supported\n", 1956 mdname(mddev)); 1957 goto out; 1958 } 1959 /* 1960 * copy the already verified devices into our private RAID1 1961 * bookkeeping area. [whatever we allocate in run(), 1962 * should be freed in stop()] 1963 */ 1964 conf = kzalloc(sizeof(conf_t), GFP_KERNEL); 1965 mddev->private = conf; 1966 if (!conf) 1967 goto out_no_mem; 1968 1969 conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks, 1970 GFP_KERNEL); 1971 if (!conf->mirrors) 1972 goto out_no_mem; 1973 1974 conf->tmppage = alloc_page(GFP_KERNEL); 1975 if (!conf->tmppage) 1976 goto out_no_mem; 1977 1978 conf->poolinfo = kmalloc(sizeof(*conf->poolinfo), GFP_KERNEL); 1979 if (!conf->poolinfo) 1980 goto out_no_mem; 1981 conf->poolinfo->mddev = mddev; 1982 conf->poolinfo->raid_disks = mddev->raid_disks; 1983 conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc, 1984 r1bio_pool_free, 1985 conf->poolinfo); 1986 if (!conf->r1bio_pool) 1987 goto out_no_mem; 1988 1989 spin_lock_init(&conf->device_lock); 1990 mddev->queue->queue_lock = &conf->device_lock; 1991 1992 list_for_each_entry(rdev, &mddev->disks, same_set) { 1993 disk_idx = rdev->raid_disk; 1994 if (disk_idx >= mddev->raid_disks 1995 || disk_idx < 0) 1996 continue; 1997 disk = conf->mirrors + disk_idx; 1998 1999 disk->rdev = rdev; 2000 disk_stack_limits(mddev->gendisk, rdev->bdev, 2001 rdev->data_offset << 9); 2002 /* as we don't honour merge_bvec_fn, we must never risk 2003 * violating it, so limit ->max_sector to one PAGE, as 2004 * a one page request is never in violation. 2005 */ 2006 if (rdev->bdev->bd_disk->queue->merge_bvec_fn && 2007 queue_max_sectors(mddev->queue) > (PAGE_SIZE>>9)) 2008 blk_queue_max_sectors(mddev->queue, PAGE_SIZE>>9); 2009 2010 disk->head_position = 0; 2011 } 2012 conf->raid_disks = mddev->raid_disks; 2013 conf->mddev = mddev; 2014 INIT_LIST_HEAD(&conf->retry_list); 2015 2016 spin_lock_init(&conf->resync_lock); 2017 init_waitqueue_head(&conf->wait_barrier); 2018 2019 bio_list_init(&conf->pending_bio_list); 2020 bio_list_init(&conf->flushing_bio_list); 2021 2022 2023 mddev->degraded = 0; 2024 for (i = 0; i < conf->raid_disks; i++) { 2025 2026 disk = conf->mirrors + i; 2027 2028 if (!disk->rdev || 2029 !test_bit(In_sync, &disk->rdev->flags)) { 2030 disk->head_position = 0; 2031 mddev->degraded++; 2032 if (disk->rdev) 2033 conf->fullsync = 1; 2034 } 2035 } 2036 if (mddev->degraded == conf->raid_disks) { 2037 printk(KERN_ERR "raid1: no operational mirrors for %s\n", 2038 mdname(mddev)); 2039 goto out_free_conf; 2040 } 2041 if (conf->raid_disks - mddev->degraded == 1) 2042 mddev->recovery_cp = MaxSector; 2043 2044 /* 2045 * find the first working one and use it as a starting point 2046 * to read balancing. 2047 */ 2048 for (j = 0; j < conf->raid_disks && 2049 (!conf->mirrors[j].rdev || 2050 !test_bit(In_sync, &conf->mirrors[j].rdev->flags)) ; j++) 2051 /* nothing */; 2052 conf->last_used = j; 2053 2054 2055 mddev->thread = md_register_thread(raid1d, mddev, NULL); 2056 if (!mddev->thread) { 2057 printk(KERN_ERR 2058 "raid1: couldn't allocate thread for %s\n", 2059 mdname(mddev)); 2060 goto out_free_conf; 2061 } 2062 2063 if (mddev->recovery_cp != MaxSector) 2064 printk(KERN_NOTICE "raid1: %s is not clean" 2065 " -- starting background reconstruction\n", 2066 mdname(mddev)); 2067 printk(KERN_INFO 2068 "raid1: raid set %s active with %d out of %d mirrors\n", 2069 mdname(mddev), mddev->raid_disks - mddev->degraded, 2070 mddev->raid_disks); 2071 /* 2072 * Ok, everything is just fine now 2073 */ 2074 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0)); 2075 2076 mddev->queue->unplug_fn = raid1_unplug; 2077 mddev->queue->backing_dev_info.congested_fn = raid1_congested; 2078 mddev->queue->backing_dev_info.congested_data = mddev; 2079 md_integrity_register(mddev); 2080 return 0; 2081 2082 out_no_mem: 2083 printk(KERN_ERR "raid1: couldn't allocate memory for %s\n", 2084 mdname(mddev)); 2085 2086 out_free_conf: 2087 if (conf) { 2088 if (conf->r1bio_pool) 2089 mempool_destroy(conf->r1bio_pool); 2090 kfree(conf->mirrors); 2091 safe_put_page(conf->tmppage); 2092 kfree(conf->poolinfo); 2093 kfree(conf); 2094 mddev->private = NULL; 2095 } 2096 out: 2097 return -EIO; 2098 } 2099 2100 static int stop(mddev_t *mddev) 2101 { 2102 conf_t *conf = mddev->private; 2103 struct bitmap *bitmap = mddev->bitmap; 2104 int behind_wait = 0; 2105 2106 /* wait for behind writes to complete */ 2107 while (bitmap && atomic_read(&bitmap->behind_writes) > 0) { 2108 behind_wait++; 2109 printk(KERN_INFO "raid1: behind writes in progress on device %s, waiting to stop (%d)\n", mdname(mddev), behind_wait); 2110 set_current_state(TASK_UNINTERRUPTIBLE); 2111 schedule_timeout(HZ); /* wait a second */ 2112 /* need to kick something here to make sure I/O goes? */ 2113 } 2114 2115 raise_barrier(conf); 2116 lower_barrier(conf); 2117 2118 md_unregister_thread(mddev->thread); 2119 mddev->thread = NULL; 2120 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/ 2121 if (conf->r1bio_pool) 2122 mempool_destroy(conf->r1bio_pool); 2123 kfree(conf->mirrors); 2124 kfree(conf->poolinfo); 2125 kfree(conf); 2126 mddev->private = NULL; 2127 return 0; 2128 } 2129 2130 static int raid1_resize(mddev_t *mddev, sector_t sectors) 2131 { 2132 /* no resync is happening, and there is enough space 2133 * on all devices, so we can resize. 2134 * We need to make sure resync covers any new space. 2135 * If the array is shrinking we should possibly wait until 2136 * any io in the removed space completes, but it hardly seems 2137 * worth it. 2138 */ 2139 md_set_array_sectors(mddev, raid1_size(mddev, sectors, 0)); 2140 if (mddev->array_sectors > raid1_size(mddev, sectors, 0)) 2141 return -EINVAL; 2142 set_capacity(mddev->gendisk, mddev->array_sectors); 2143 mddev->changed = 1; 2144 revalidate_disk(mddev->gendisk); 2145 if (sectors > mddev->dev_sectors && 2146 mddev->recovery_cp == MaxSector) { 2147 mddev->recovery_cp = mddev->dev_sectors; 2148 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 2149 } 2150 mddev->dev_sectors = sectors; 2151 mddev->resync_max_sectors = sectors; 2152 return 0; 2153 } 2154 2155 static int raid1_reshape(mddev_t *mddev) 2156 { 2157 /* We need to: 2158 * 1/ resize the r1bio_pool 2159 * 2/ resize conf->mirrors 2160 * 2161 * We allocate a new r1bio_pool if we can. 2162 * Then raise a device barrier and wait until all IO stops. 2163 * Then resize conf->mirrors and swap in the new r1bio pool. 2164 * 2165 * At the same time, we "pack" the devices so that all the missing 2166 * devices have the higher raid_disk numbers. 2167 */ 2168 mempool_t *newpool, *oldpool; 2169 struct pool_info *newpoolinfo; 2170 mirror_info_t *newmirrors; 2171 conf_t *conf = mddev->private; 2172 int cnt, raid_disks; 2173 unsigned long flags; 2174 int d, d2, err; 2175 2176 /* Cannot change chunk_size, layout, or level */ 2177 if (mddev->chunk_sectors != mddev->new_chunk_sectors || 2178 mddev->layout != mddev->new_layout || 2179 mddev->level != mddev->new_level) { 2180 mddev->new_chunk_sectors = mddev->chunk_sectors; 2181 mddev->new_layout = mddev->layout; 2182 mddev->new_level = mddev->level; 2183 return -EINVAL; 2184 } 2185 2186 err = md_allow_write(mddev); 2187 if (err) 2188 return err; 2189 2190 raid_disks = mddev->raid_disks + mddev->delta_disks; 2191 2192 if (raid_disks < conf->raid_disks) { 2193 cnt=0; 2194 for (d= 0; d < conf->raid_disks; d++) 2195 if (conf->mirrors[d].rdev) 2196 cnt++; 2197 if (cnt > raid_disks) 2198 return -EBUSY; 2199 } 2200 2201 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL); 2202 if (!newpoolinfo) 2203 return -ENOMEM; 2204 newpoolinfo->mddev = mddev; 2205 newpoolinfo->raid_disks = raid_disks; 2206 2207 newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc, 2208 r1bio_pool_free, newpoolinfo); 2209 if (!newpool) { 2210 kfree(newpoolinfo); 2211 return -ENOMEM; 2212 } 2213 newmirrors = kzalloc(sizeof(struct mirror_info) * raid_disks, GFP_KERNEL); 2214 if (!newmirrors) { 2215 kfree(newpoolinfo); 2216 mempool_destroy(newpool); 2217 return -ENOMEM; 2218 } 2219 2220 raise_barrier(conf); 2221 2222 /* ok, everything is stopped */ 2223 oldpool = conf->r1bio_pool; 2224 conf->r1bio_pool = newpool; 2225 2226 for (d = d2 = 0; d < conf->raid_disks; d++) { 2227 mdk_rdev_t *rdev = conf->mirrors[d].rdev; 2228 if (rdev && rdev->raid_disk != d2) { 2229 char nm[20]; 2230 sprintf(nm, "rd%d", rdev->raid_disk); 2231 sysfs_remove_link(&mddev->kobj, nm); 2232 rdev->raid_disk = d2; 2233 sprintf(nm, "rd%d", rdev->raid_disk); 2234 sysfs_remove_link(&mddev->kobj, nm); 2235 if (sysfs_create_link(&mddev->kobj, 2236 &rdev->kobj, nm)) 2237 printk(KERN_WARNING 2238 "md/raid1: cannot register " 2239 "%s for %s\n", 2240 nm, mdname(mddev)); 2241 } 2242 if (rdev) 2243 newmirrors[d2++].rdev = rdev; 2244 } 2245 kfree(conf->mirrors); 2246 conf->mirrors = newmirrors; 2247 kfree(conf->poolinfo); 2248 conf->poolinfo = newpoolinfo; 2249 2250 spin_lock_irqsave(&conf->device_lock, flags); 2251 mddev->degraded += (raid_disks - conf->raid_disks); 2252 spin_unlock_irqrestore(&conf->device_lock, flags); 2253 conf->raid_disks = mddev->raid_disks = raid_disks; 2254 mddev->delta_disks = 0; 2255 2256 conf->last_used = 0; /* just make sure it is in-range */ 2257 lower_barrier(conf); 2258 2259 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 2260 md_wakeup_thread(mddev->thread); 2261 2262 mempool_destroy(oldpool); 2263 return 0; 2264 } 2265 2266 static void raid1_quiesce(mddev_t *mddev, int state) 2267 { 2268 conf_t *conf = mddev->private; 2269 2270 switch(state) { 2271 case 1: 2272 raise_barrier(conf); 2273 break; 2274 case 0: 2275 lower_barrier(conf); 2276 break; 2277 } 2278 } 2279 2280 2281 static struct mdk_personality raid1_personality = 2282 { 2283 .name = "raid1", 2284 .level = 1, 2285 .owner = THIS_MODULE, 2286 .make_request = make_request, 2287 .run = run, 2288 .stop = stop, 2289 .status = status, 2290 .error_handler = error, 2291 .hot_add_disk = raid1_add_disk, 2292 .hot_remove_disk= raid1_remove_disk, 2293 .spare_active = raid1_spare_active, 2294 .sync_request = sync_request, 2295 .resize = raid1_resize, 2296 .size = raid1_size, 2297 .check_reshape = raid1_reshape, 2298 .quiesce = raid1_quiesce, 2299 }; 2300 2301 static int __init raid_init(void) 2302 { 2303 return register_md_personality(&raid1_personality); 2304 } 2305 2306 static void raid_exit(void) 2307 { 2308 unregister_md_personality(&raid1_personality); 2309 } 2310 2311 module_init(raid_init); 2312 module_exit(raid_exit); 2313 MODULE_LICENSE("GPL"); 2314 MODULE_ALIAS("md-personality-3"); /* RAID1 */ 2315 MODULE_ALIAS("md-raid1"); 2316 MODULE_ALIAS("md-level-1"); 2317