xref: /openbmc/linux/drivers/md/raid1.c (revision df2634f43f5106947f3735a0b61a6527a4b278cd)
1 /*
2  * raid1.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5  *
6  * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7  *
8  * RAID-1 management functions.
9  *
10  * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11  *
12  * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
13  * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14  *
15  * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16  * bitmapped intelligence in resync:
17  *
18  *      - bitmap marked during normal i/o
19  *      - bitmap used to skip nondirty blocks during sync
20  *
21  * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22  * - persistent bitmap code
23  *
24  * This program is free software; you can redistribute it and/or modify
25  * it under the terms of the GNU General Public License as published by
26  * the Free Software Foundation; either version 2, or (at your option)
27  * any later version.
28  *
29  * You should have received a copy of the GNU General Public License
30  * (for example /usr/src/linux/COPYING); if not, write to the Free
31  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32  */
33 
34 #include <linux/slab.h>
35 #include <linux/delay.h>
36 #include <linux/blkdev.h>
37 #include <linux/seq_file.h>
38 #include "md.h"
39 #include "raid1.h"
40 #include "bitmap.h"
41 
42 #define DEBUG 0
43 #if DEBUG
44 #define PRINTK(x...) printk(x)
45 #else
46 #define PRINTK(x...)
47 #endif
48 
49 /*
50  * Number of guaranteed r1bios in case of extreme VM load:
51  */
52 #define	NR_RAID1_BIOS 256
53 
54 
55 static void unplug_slaves(mddev_t *mddev);
56 
57 static void allow_barrier(conf_t *conf);
58 static void lower_barrier(conf_t *conf);
59 
60 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
61 {
62 	struct pool_info *pi = data;
63 	r1bio_t *r1_bio;
64 	int size = offsetof(r1bio_t, bios[pi->raid_disks]);
65 
66 	/* allocate a r1bio with room for raid_disks entries in the bios array */
67 	r1_bio = kzalloc(size, gfp_flags);
68 	if (!r1_bio && pi->mddev)
69 		unplug_slaves(pi->mddev);
70 
71 	return r1_bio;
72 }
73 
74 static void r1bio_pool_free(void *r1_bio, void *data)
75 {
76 	kfree(r1_bio);
77 }
78 
79 #define RESYNC_BLOCK_SIZE (64*1024)
80 //#define RESYNC_BLOCK_SIZE PAGE_SIZE
81 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
82 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
83 #define RESYNC_WINDOW (2048*1024)
84 
85 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
86 {
87 	struct pool_info *pi = data;
88 	struct page *page;
89 	r1bio_t *r1_bio;
90 	struct bio *bio;
91 	int i, j;
92 
93 	r1_bio = r1bio_pool_alloc(gfp_flags, pi);
94 	if (!r1_bio) {
95 		unplug_slaves(pi->mddev);
96 		return NULL;
97 	}
98 
99 	/*
100 	 * Allocate bios : 1 for reading, n-1 for writing
101 	 */
102 	for (j = pi->raid_disks ; j-- ; ) {
103 		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
104 		if (!bio)
105 			goto out_free_bio;
106 		r1_bio->bios[j] = bio;
107 	}
108 	/*
109 	 * Allocate RESYNC_PAGES data pages and attach them to
110 	 * the first bio.
111 	 * If this is a user-requested check/repair, allocate
112 	 * RESYNC_PAGES for each bio.
113 	 */
114 	if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
115 		j = pi->raid_disks;
116 	else
117 		j = 1;
118 	while(j--) {
119 		bio = r1_bio->bios[j];
120 		for (i = 0; i < RESYNC_PAGES; i++) {
121 			page = alloc_page(gfp_flags);
122 			if (unlikely(!page))
123 				goto out_free_pages;
124 
125 			bio->bi_io_vec[i].bv_page = page;
126 			bio->bi_vcnt = i+1;
127 		}
128 	}
129 	/* If not user-requests, copy the page pointers to all bios */
130 	if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
131 		for (i=0; i<RESYNC_PAGES ; i++)
132 			for (j=1; j<pi->raid_disks; j++)
133 				r1_bio->bios[j]->bi_io_vec[i].bv_page =
134 					r1_bio->bios[0]->bi_io_vec[i].bv_page;
135 	}
136 
137 	r1_bio->master_bio = NULL;
138 
139 	return r1_bio;
140 
141 out_free_pages:
142 	for (j=0 ; j < pi->raid_disks; j++)
143 		for (i=0; i < r1_bio->bios[j]->bi_vcnt ; i++)
144 			put_page(r1_bio->bios[j]->bi_io_vec[i].bv_page);
145 	j = -1;
146 out_free_bio:
147 	while ( ++j < pi->raid_disks )
148 		bio_put(r1_bio->bios[j]);
149 	r1bio_pool_free(r1_bio, data);
150 	return NULL;
151 }
152 
153 static void r1buf_pool_free(void *__r1_bio, void *data)
154 {
155 	struct pool_info *pi = data;
156 	int i,j;
157 	r1bio_t *r1bio = __r1_bio;
158 
159 	for (i = 0; i < RESYNC_PAGES; i++)
160 		for (j = pi->raid_disks; j-- ;) {
161 			if (j == 0 ||
162 			    r1bio->bios[j]->bi_io_vec[i].bv_page !=
163 			    r1bio->bios[0]->bi_io_vec[i].bv_page)
164 				safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
165 		}
166 	for (i=0 ; i < pi->raid_disks; i++)
167 		bio_put(r1bio->bios[i]);
168 
169 	r1bio_pool_free(r1bio, data);
170 }
171 
172 static void put_all_bios(conf_t *conf, r1bio_t *r1_bio)
173 {
174 	int i;
175 
176 	for (i = 0; i < conf->raid_disks; i++) {
177 		struct bio **bio = r1_bio->bios + i;
178 		if (*bio && *bio != IO_BLOCKED)
179 			bio_put(*bio);
180 		*bio = NULL;
181 	}
182 }
183 
184 static void free_r1bio(r1bio_t *r1_bio)
185 {
186 	conf_t *conf = r1_bio->mddev->private;
187 
188 	/*
189 	 * Wake up any possible resync thread that waits for the device
190 	 * to go idle.
191 	 */
192 	allow_barrier(conf);
193 
194 	put_all_bios(conf, r1_bio);
195 	mempool_free(r1_bio, conf->r1bio_pool);
196 }
197 
198 static void put_buf(r1bio_t *r1_bio)
199 {
200 	conf_t *conf = r1_bio->mddev->private;
201 	int i;
202 
203 	for (i=0; i<conf->raid_disks; i++) {
204 		struct bio *bio = r1_bio->bios[i];
205 		if (bio->bi_end_io)
206 			rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
207 	}
208 
209 	mempool_free(r1_bio, conf->r1buf_pool);
210 
211 	lower_barrier(conf);
212 }
213 
214 static void reschedule_retry(r1bio_t *r1_bio)
215 {
216 	unsigned long flags;
217 	mddev_t *mddev = r1_bio->mddev;
218 	conf_t *conf = mddev->private;
219 
220 	spin_lock_irqsave(&conf->device_lock, flags);
221 	list_add(&r1_bio->retry_list, &conf->retry_list);
222 	conf->nr_queued ++;
223 	spin_unlock_irqrestore(&conf->device_lock, flags);
224 
225 	wake_up(&conf->wait_barrier);
226 	md_wakeup_thread(mddev->thread);
227 }
228 
229 /*
230  * raid_end_bio_io() is called when we have finished servicing a mirrored
231  * operation and are ready to return a success/failure code to the buffer
232  * cache layer.
233  */
234 static void raid_end_bio_io(r1bio_t *r1_bio)
235 {
236 	struct bio *bio = r1_bio->master_bio;
237 
238 	/* if nobody has done the final endio yet, do it now */
239 	if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
240 		PRINTK(KERN_DEBUG "raid1: sync end %s on sectors %llu-%llu\n",
241 			(bio_data_dir(bio) == WRITE) ? "write" : "read",
242 			(unsigned long long) bio->bi_sector,
243 			(unsigned long long) bio->bi_sector +
244 				(bio->bi_size >> 9) - 1);
245 
246 		bio_endio(bio,
247 			test_bit(R1BIO_Uptodate, &r1_bio->state) ? 0 : -EIO);
248 	}
249 	free_r1bio(r1_bio);
250 }
251 
252 /*
253  * Update disk head position estimator based on IRQ completion info.
254  */
255 static inline void update_head_pos(int disk, r1bio_t *r1_bio)
256 {
257 	conf_t *conf = r1_bio->mddev->private;
258 
259 	conf->mirrors[disk].head_position =
260 		r1_bio->sector + (r1_bio->sectors);
261 }
262 
263 static void raid1_end_read_request(struct bio *bio, int error)
264 {
265 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
266 	r1bio_t *r1_bio = bio->bi_private;
267 	int mirror;
268 	conf_t *conf = r1_bio->mddev->private;
269 
270 	mirror = r1_bio->read_disk;
271 	/*
272 	 * this branch is our 'one mirror IO has finished' event handler:
273 	 */
274 	update_head_pos(mirror, r1_bio);
275 
276 	if (uptodate)
277 		set_bit(R1BIO_Uptodate, &r1_bio->state);
278 	else {
279 		/* If all other devices have failed, we want to return
280 		 * the error upwards rather than fail the last device.
281 		 * Here we redefine "uptodate" to mean "Don't want to retry"
282 		 */
283 		unsigned long flags;
284 		spin_lock_irqsave(&conf->device_lock, flags);
285 		if (r1_bio->mddev->degraded == conf->raid_disks ||
286 		    (r1_bio->mddev->degraded == conf->raid_disks-1 &&
287 		     !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags)))
288 			uptodate = 1;
289 		spin_unlock_irqrestore(&conf->device_lock, flags);
290 	}
291 
292 	if (uptodate)
293 		raid_end_bio_io(r1_bio);
294 	else {
295 		/*
296 		 * oops, read error:
297 		 */
298 		char b[BDEVNAME_SIZE];
299 		if (printk_ratelimit())
300 			printk(KERN_ERR "md/raid1:%s: %s: rescheduling sector %llu\n",
301 			       mdname(conf->mddev),
302 			       bdevname(conf->mirrors[mirror].rdev->bdev,b), (unsigned long long)r1_bio->sector);
303 		reschedule_retry(r1_bio);
304 	}
305 
306 	rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
307 }
308 
309 static void r1_bio_write_done(r1bio_t *r1_bio, int vcnt, struct bio_vec *bv,
310 			      int behind)
311 {
312 	if (atomic_dec_and_test(&r1_bio->remaining))
313 	{
314 		/* it really is the end of this request */
315 		if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
316 			/* free extra copy of the data pages */
317 			int i = vcnt;
318 			while (i--)
319 				safe_put_page(bv[i].bv_page);
320 		}
321 		/* clear the bitmap if all writes complete successfully */
322 		bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
323 				r1_bio->sectors,
324 				!test_bit(R1BIO_Degraded, &r1_bio->state),
325 				behind);
326 		md_write_end(r1_bio->mddev);
327 		raid_end_bio_io(r1_bio);
328 	}
329 }
330 
331 static void raid1_end_write_request(struct bio *bio, int error)
332 {
333 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
334 	r1bio_t *r1_bio = bio->bi_private;
335 	int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
336 	conf_t *conf = r1_bio->mddev->private;
337 	struct bio *to_put = NULL;
338 
339 
340 	for (mirror = 0; mirror < conf->raid_disks; mirror++)
341 		if (r1_bio->bios[mirror] == bio)
342 			break;
343 
344 	/*
345 	 * 'one mirror IO has finished' event handler:
346 	 */
347 	r1_bio->bios[mirror] = NULL;
348 	to_put = bio;
349 	if (!uptodate) {
350 		md_error(r1_bio->mddev, conf->mirrors[mirror].rdev);
351 		/* an I/O failed, we can't clear the bitmap */
352 		set_bit(R1BIO_Degraded, &r1_bio->state);
353 	} else
354 		/*
355 		 * Set R1BIO_Uptodate in our master bio, so that we
356 		 * will return a good error code for to the higher
357 		 * levels even if IO on some other mirrored buffer
358 		 * fails.
359 		 *
360 		 * The 'master' represents the composite IO operation
361 		 * to user-side. So if something waits for IO, then it
362 		 * will wait for the 'master' bio.
363 		 */
364 		set_bit(R1BIO_Uptodate, &r1_bio->state);
365 
366 	update_head_pos(mirror, r1_bio);
367 
368 	if (behind) {
369 		if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
370 			atomic_dec(&r1_bio->behind_remaining);
371 
372 		/*
373 		 * In behind mode, we ACK the master bio once the I/O
374 		 * has safely reached all non-writemostly
375 		 * disks. Setting the Returned bit ensures that this
376 		 * gets done only once -- we don't ever want to return
377 		 * -EIO here, instead we'll wait
378 		 */
379 		if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
380 		    test_bit(R1BIO_Uptodate, &r1_bio->state)) {
381 			/* Maybe we can return now */
382 			if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
383 				struct bio *mbio = r1_bio->master_bio;
384 				PRINTK(KERN_DEBUG "raid1: behind end write sectors %llu-%llu\n",
385 				       (unsigned long long) mbio->bi_sector,
386 				       (unsigned long long) mbio->bi_sector +
387 				       (mbio->bi_size >> 9) - 1);
388 				bio_endio(mbio, 0);
389 			}
390 		}
391 	}
392 	rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
393 
394 	/*
395 	 * Let's see if all mirrored write operations have finished
396 	 * already.
397 	 */
398 	r1_bio_write_done(r1_bio, bio->bi_vcnt, bio->bi_io_vec, behind);
399 
400 	if (to_put)
401 		bio_put(to_put);
402 }
403 
404 
405 /*
406  * This routine returns the disk from which the requested read should
407  * be done. There is a per-array 'next expected sequential IO' sector
408  * number - if this matches on the next IO then we use the last disk.
409  * There is also a per-disk 'last know head position' sector that is
410  * maintained from IRQ contexts, both the normal and the resync IO
411  * completion handlers update this position correctly. If there is no
412  * perfect sequential match then we pick the disk whose head is closest.
413  *
414  * If there are 2 mirrors in the same 2 devices, performance degrades
415  * because position is mirror, not device based.
416  *
417  * The rdev for the device selected will have nr_pending incremented.
418  */
419 static int read_balance(conf_t *conf, r1bio_t *r1_bio)
420 {
421 	const sector_t this_sector = r1_bio->sector;
422 	const int sectors = r1_bio->sectors;
423 	int new_disk = -1;
424 	int start_disk;
425 	int i;
426 	sector_t new_distance, current_distance;
427 	mdk_rdev_t *rdev;
428 	int choose_first;
429 
430 	rcu_read_lock();
431 	/*
432 	 * Check if we can balance. We can balance on the whole
433 	 * device if no resync is going on, or below the resync window.
434 	 * We take the first readable disk when above the resync window.
435 	 */
436  retry:
437 	if (conf->mddev->recovery_cp < MaxSector &&
438 	    (this_sector + sectors >= conf->next_resync)) {
439 		choose_first = 1;
440 		start_disk = 0;
441 	} else {
442 		choose_first = 0;
443 		start_disk = conf->last_used;
444 	}
445 
446 	/* make sure the disk is operational */
447 	for (i = 0 ; i < conf->raid_disks ; i++) {
448 		int disk = start_disk + i;
449 		if (disk >= conf->raid_disks)
450 			disk -= conf->raid_disks;
451 
452 		rdev = rcu_dereference(conf->mirrors[disk].rdev);
453 		if (r1_bio->bios[disk] == IO_BLOCKED
454 		    || rdev == NULL
455 		    || !test_bit(In_sync, &rdev->flags))
456 			continue;
457 
458 		new_disk = disk;
459 		if (!test_bit(WriteMostly, &rdev->flags))
460 			break;
461 	}
462 
463 	if (new_disk < 0 || choose_first)
464 		goto rb_out;
465 
466 	/*
467 	 * Don't change to another disk for sequential reads:
468 	 */
469 	if (conf->next_seq_sect == this_sector)
470 		goto rb_out;
471 	if (this_sector == conf->mirrors[new_disk].head_position)
472 		goto rb_out;
473 
474 	current_distance = abs(this_sector
475 			       - conf->mirrors[new_disk].head_position);
476 
477 	/* look for a better disk - i.e. head is closer */
478 	start_disk = new_disk;
479 	for (i = 1; i < conf->raid_disks; i++) {
480 		int disk = start_disk + 1;
481 		if (disk >= conf->raid_disks)
482 			disk -= conf->raid_disks;
483 
484 		rdev = rcu_dereference(conf->mirrors[disk].rdev);
485 		if (r1_bio->bios[disk] == IO_BLOCKED
486 		    || rdev == NULL
487 		    || !test_bit(In_sync, &rdev->flags)
488 		    || test_bit(WriteMostly, &rdev->flags))
489 			continue;
490 
491 		if (!atomic_read(&rdev->nr_pending)) {
492 			new_disk = disk;
493 			break;
494 		}
495 		new_distance = abs(this_sector - conf->mirrors[disk].head_position);
496 		if (new_distance < current_distance) {
497 			current_distance = new_distance;
498 			new_disk = disk;
499 		}
500 	}
501 
502  rb_out:
503 	if (new_disk >= 0) {
504 		rdev = rcu_dereference(conf->mirrors[new_disk].rdev);
505 		if (!rdev)
506 			goto retry;
507 		atomic_inc(&rdev->nr_pending);
508 		if (!test_bit(In_sync, &rdev->flags)) {
509 			/* cannot risk returning a device that failed
510 			 * before we inc'ed nr_pending
511 			 */
512 			rdev_dec_pending(rdev, conf->mddev);
513 			goto retry;
514 		}
515 		conf->next_seq_sect = this_sector + sectors;
516 		conf->last_used = new_disk;
517 	}
518 	rcu_read_unlock();
519 
520 	return new_disk;
521 }
522 
523 static void unplug_slaves(mddev_t *mddev)
524 {
525 	conf_t *conf = mddev->private;
526 	int i;
527 
528 	rcu_read_lock();
529 	for (i=0; i<mddev->raid_disks; i++) {
530 		mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
531 		if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
532 			struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
533 
534 			atomic_inc(&rdev->nr_pending);
535 			rcu_read_unlock();
536 
537 			blk_unplug(r_queue);
538 
539 			rdev_dec_pending(rdev, mddev);
540 			rcu_read_lock();
541 		}
542 	}
543 	rcu_read_unlock();
544 }
545 
546 static void raid1_unplug(struct request_queue *q)
547 {
548 	mddev_t *mddev = q->queuedata;
549 
550 	unplug_slaves(mddev);
551 	md_wakeup_thread(mddev->thread);
552 }
553 
554 static int raid1_congested(void *data, int bits)
555 {
556 	mddev_t *mddev = data;
557 	conf_t *conf = mddev->private;
558 	int i, ret = 0;
559 
560 	if (mddev_congested(mddev, bits))
561 		return 1;
562 
563 	rcu_read_lock();
564 	for (i = 0; i < mddev->raid_disks; i++) {
565 		mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
566 		if (rdev && !test_bit(Faulty, &rdev->flags)) {
567 			struct request_queue *q = bdev_get_queue(rdev->bdev);
568 
569 			/* Note the '|| 1' - when read_balance prefers
570 			 * non-congested targets, it can be removed
571 			 */
572 			if ((bits & (1<<BDI_async_congested)) || 1)
573 				ret |= bdi_congested(&q->backing_dev_info, bits);
574 			else
575 				ret &= bdi_congested(&q->backing_dev_info, bits);
576 		}
577 	}
578 	rcu_read_unlock();
579 	return ret;
580 }
581 
582 
583 static int flush_pending_writes(conf_t *conf)
584 {
585 	/* Any writes that have been queued but are awaiting
586 	 * bitmap updates get flushed here.
587 	 * We return 1 if any requests were actually submitted.
588 	 */
589 	int rv = 0;
590 
591 	spin_lock_irq(&conf->device_lock);
592 
593 	if (conf->pending_bio_list.head) {
594 		struct bio *bio;
595 		bio = bio_list_get(&conf->pending_bio_list);
596 		blk_remove_plug(conf->mddev->queue);
597 		spin_unlock_irq(&conf->device_lock);
598 		/* flush any pending bitmap writes to
599 		 * disk before proceeding w/ I/O */
600 		bitmap_unplug(conf->mddev->bitmap);
601 
602 		while (bio) { /* submit pending writes */
603 			struct bio *next = bio->bi_next;
604 			bio->bi_next = NULL;
605 			generic_make_request(bio);
606 			bio = next;
607 		}
608 		rv = 1;
609 	} else
610 		spin_unlock_irq(&conf->device_lock);
611 	return rv;
612 }
613 
614 /* Barriers....
615  * Sometimes we need to suspend IO while we do something else,
616  * either some resync/recovery, or reconfigure the array.
617  * To do this we raise a 'barrier'.
618  * The 'barrier' is a counter that can be raised multiple times
619  * to count how many activities are happening which preclude
620  * normal IO.
621  * We can only raise the barrier if there is no pending IO.
622  * i.e. if nr_pending == 0.
623  * We choose only to raise the barrier if no-one is waiting for the
624  * barrier to go down.  This means that as soon as an IO request
625  * is ready, no other operations which require a barrier will start
626  * until the IO request has had a chance.
627  *
628  * So: regular IO calls 'wait_barrier'.  When that returns there
629  *    is no backgroup IO happening,  It must arrange to call
630  *    allow_barrier when it has finished its IO.
631  * backgroup IO calls must call raise_barrier.  Once that returns
632  *    there is no normal IO happeing.  It must arrange to call
633  *    lower_barrier when the particular background IO completes.
634  */
635 #define RESYNC_DEPTH 32
636 
637 static void raise_barrier(conf_t *conf)
638 {
639 	spin_lock_irq(&conf->resync_lock);
640 
641 	/* Wait until no block IO is waiting */
642 	wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
643 			    conf->resync_lock,
644 			    raid1_unplug(conf->mddev->queue));
645 
646 	/* block any new IO from starting */
647 	conf->barrier++;
648 
649 	/* Now wait for all pending IO to complete */
650 	wait_event_lock_irq(conf->wait_barrier,
651 			    !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
652 			    conf->resync_lock,
653 			    raid1_unplug(conf->mddev->queue));
654 
655 	spin_unlock_irq(&conf->resync_lock);
656 }
657 
658 static void lower_barrier(conf_t *conf)
659 {
660 	unsigned long flags;
661 	BUG_ON(conf->barrier <= 0);
662 	spin_lock_irqsave(&conf->resync_lock, flags);
663 	conf->barrier--;
664 	spin_unlock_irqrestore(&conf->resync_lock, flags);
665 	wake_up(&conf->wait_barrier);
666 }
667 
668 static void wait_barrier(conf_t *conf)
669 {
670 	spin_lock_irq(&conf->resync_lock);
671 	if (conf->barrier) {
672 		conf->nr_waiting++;
673 		wait_event_lock_irq(conf->wait_barrier, !conf->barrier,
674 				    conf->resync_lock,
675 				    raid1_unplug(conf->mddev->queue));
676 		conf->nr_waiting--;
677 	}
678 	conf->nr_pending++;
679 	spin_unlock_irq(&conf->resync_lock);
680 }
681 
682 static void allow_barrier(conf_t *conf)
683 {
684 	unsigned long flags;
685 	spin_lock_irqsave(&conf->resync_lock, flags);
686 	conf->nr_pending--;
687 	spin_unlock_irqrestore(&conf->resync_lock, flags);
688 	wake_up(&conf->wait_barrier);
689 }
690 
691 static void freeze_array(conf_t *conf)
692 {
693 	/* stop syncio and normal IO and wait for everything to
694 	 * go quite.
695 	 * We increment barrier and nr_waiting, and then
696 	 * wait until nr_pending match nr_queued+1
697 	 * This is called in the context of one normal IO request
698 	 * that has failed. Thus any sync request that might be pending
699 	 * will be blocked by nr_pending, and we need to wait for
700 	 * pending IO requests to complete or be queued for re-try.
701 	 * Thus the number queued (nr_queued) plus this request (1)
702 	 * must match the number of pending IOs (nr_pending) before
703 	 * we continue.
704 	 */
705 	spin_lock_irq(&conf->resync_lock);
706 	conf->barrier++;
707 	conf->nr_waiting++;
708 	wait_event_lock_irq(conf->wait_barrier,
709 			    conf->nr_pending == conf->nr_queued+1,
710 			    conf->resync_lock,
711 			    ({ flush_pending_writes(conf);
712 			       raid1_unplug(conf->mddev->queue); }));
713 	spin_unlock_irq(&conf->resync_lock);
714 }
715 static void unfreeze_array(conf_t *conf)
716 {
717 	/* reverse the effect of the freeze */
718 	spin_lock_irq(&conf->resync_lock);
719 	conf->barrier--;
720 	conf->nr_waiting--;
721 	wake_up(&conf->wait_barrier);
722 	spin_unlock_irq(&conf->resync_lock);
723 }
724 
725 
726 /* duplicate the data pages for behind I/O
727  * We return a list of bio_vec rather than just page pointers
728  * as it makes freeing easier
729  */
730 static struct bio_vec *alloc_behind_pages(struct bio *bio)
731 {
732 	int i;
733 	struct bio_vec *bvec;
734 	struct bio_vec *pages = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec),
735 					GFP_NOIO);
736 	if (unlikely(!pages))
737 		goto do_sync_io;
738 
739 	bio_for_each_segment(bvec, bio, i) {
740 		pages[i].bv_page = alloc_page(GFP_NOIO);
741 		if (unlikely(!pages[i].bv_page))
742 			goto do_sync_io;
743 		memcpy(kmap(pages[i].bv_page) + bvec->bv_offset,
744 			kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
745 		kunmap(pages[i].bv_page);
746 		kunmap(bvec->bv_page);
747 	}
748 
749 	return pages;
750 
751 do_sync_io:
752 	if (pages)
753 		for (i = 0; i < bio->bi_vcnt && pages[i].bv_page; i++)
754 			put_page(pages[i].bv_page);
755 	kfree(pages);
756 	PRINTK("%dB behind alloc failed, doing sync I/O\n", bio->bi_size);
757 	return NULL;
758 }
759 
760 static int make_request(mddev_t *mddev, struct bio * bio)
761 {
762 	conf_t *conf = mddev->private;
763 	mirror_info_t *mirror;
764 	r1bio_t *r1_bio;
765 	struct bio *read_bio;
766 	int i, targets = 0, disks;
767 	struct bitmap *bitmap;
768 	unsigned long flags;
769 	struct bio_vec *behind_pages = NULL;
770 	const int rw = bio_data_dir(bio);
771 	const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
772 	const unsigned long do_flush_fua = (bio->bi_rw & (REQ_FLUSH | REQ_FUA));
773 	mdk_rdev_t *blocked_rdev;
774 
775 	/*
776 	 * Register the new request and wait if the reconstruction
777 	 * thread has put up a bar for new requests.
778 	 * Continue immediately if no resync is active currently.
779 	 */
780 
781 	md_write_start(mddev, bio); /* wait on superblock update early */
782 
783 	if (bio_data_dir(bio) == WRITE &&
784 	    bio->bi_sector + bio->bi_size/512 > mddev->suspend_lo &&
785 	    bio->bi_sector < mddev->suspend_hi) {
786 		/* As the suspend_* range is controlled by
787 		 * userspace, we want an interruptible
788 		 * wait.
789 		 */
790 		DEFINE_WAIT(w);
791 		for (;;) {
792 			flush_signals(current);
793 			prepare_to_wait(&conf->wait_barrier,
794 					&w, TASK_INTERRUPTIBLE);
795 			if (bio->bi_sector + bio->bi_size/512 <= mddev->suspend_lo ||
796 			    bio->bi_sector >= mddev->suspend_hi)
797 				break;
798 			schedule();
799 		}
800 		finish_wait(&conf->wait_barrier, &w);
801 	}
802 
803 	wait_barrier(conf);
804 
805 	bitmap = mddev->bitmap;
806 
807 	/*
808 	 * make_request() can abort the operation when READA is being
809 	 * used and no empty request is available.
810 	 *
811 	 */
812 	r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
813 
814 	r1_bio->master_bio = bio;
815 	r1_bio->sectors = bio->bi_size >> 9;
816 	r1_bio->state = 0;
817 	r1_bio->mddev = mddev;
818 	r1_bio->sector = bio->bi_sector;
819 
820 	if (rw == READ) {
821 		/*
822 		 * read balancing logic:
823 		 */
824 		int rdisk = read_balance(conf, r1_bio);
825 
826 		if (rdisk < 0) {
827 			/* couldn't find anywhere to read from */
828 			raid_end_bio_io(r1_bio);
829 			return 0;
830 		}
831 		mirror = conf->mirrors + rdisk;
832 
833 		if (test_bit(WriteMostly, &mirror->rdev->flags) &&
834 		    bitmap) {
835 			/* Reading from a write-mostly device must
836 			 * take care not to over-take any writes
837 			 * that are 'behind'
838 			 */
839 			wait_event(bitmap->behind_wait,
840 				   atomic_read(&bitmap->behind_writes) == 0);
841 		}
842 		r1_bio->read_disk = rdisk;
843 
844 		read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
845 
846 		r1_bio->bios[rdisk] = read_bio;
847 
848 		read_bio->bi_sector = r1_bio->sector + mirror->rdev->data_offset;
849 		read_bio->bi_bdev = mirror->rdev->bdev;
850 		read_bio->bi_end_io = raid1_end_read_request;
851 		read_bio->bi_rw = READ | do_sync;
852 		read_bio->bi_private = r1_bio;
853 
854 		generic_make_request(read_bio);
855 		return 0;
856 	}
857 
858 	/*
859 	 * WRITE:
860 	 */
861 	/* first select target devices under spinlock and
862 	 * inc refcount on their rdev.  Record them by setting
863 	 * bios[x] to bio
864 	 */
865 	disks = conf->raid_disks;
866  retry_write:
867 	blocked_rdev = NULL;
868 	rcu_read_lock();
869 	for (i = 0;  i < disks; i++) {
870 		mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
871 		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
872 			atomic_inc(&rdev->nr_pending);
873 			blocked_rdev = rdev;
874 			break;
875 		}
876 		if (rdev && !test_bit(Faulty, &rdev->flags)) {
877 			atomic_inc(&rdev->nr_pending);
878 			if (test_bit(Faulty, &rdev->flags)) {
879 				rdev_dec_pending(rdev, mddev);
880 				r1_bio->bios[i] = NULL;
881 			} else {
882 				r1_bio->bios[i] = bio;
883 				targets++;
884 			}
885 		} else
886 			r1_bio->bios[i] = NULL;
887 	}
888 	rcu_read_unlock();
889 
890 	if (unlikely(blocked_rdev)) {
891 		/* Wait for this device to become unblocked */
892 		int j;
893 
894 		for (j = 0; j < i; j++)
895 			if (r1_bio->bios[j])
896 				rdev_dec_pending(conf->mirrors[j].rdev, mddev);
897 
898 		allow_barrier(conf);
899 		md_wait_for_blocked_rdev(blocked_rdev, mddev);
900 		wait_barrier(conf);
901 		goto retry_write;
902 	}
903 
904 	BUG_ON(targets == 0); /* we never fail the last device */
905 
906 	if (targets < conf->raid_disks) {
907 		/* array is degraded, we will not clear the bitmap
908 		 * on I/O completion (see raid1_end_write_request) */
909 		set_bit(R1BIO_Degraded, &r1_bio->state);
910 	}
911 
912 	/* do behind I/O ?
913 	 * Not if there are too many, or cannot allocate memory,
914 	 * or a reader on WriteMostly is waiting for behind writes
915 	 * to flush */
916 	if (bitmap &&
917 	    (atomic_read(&bitmap->behind_writes)
918 	     < mddev->bitmap_info.max_write_behind) &&
919 	    !waitqueue_active(&bitmap->behind_wait) &&
920 	    (behind_pages = alloc_behind_pages(bio)) != NULL)
921 		set_bit(R1BIO_BehindIO, &r1_bio->state);
922 
923 	atomic_set(&r1_bio->remaining, 1);
924 	atomic_set(&r1_bio->behind_remaining, 0);
925 
926 	bitmap_startwrite(bitmap, bio->bi_sector, r1_bio->sectors,
927 				test_bit(R1BIO_BehindIO, &r1_bio->state));
928 	for (i = 0; i < disks; i++) {
929 		struct bio *mbio;
930 		if (!r1_bio->bios[i])
931 			continue;
932 
933 		mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
934 		r1_bio->bios[i] = mbio;
935 
936 		mbio->bi_sector	= r1_bio->sector + conf->mirrors[i].rdev->data_offset;
937 		mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
938 		mbio->bi_end_io	= raid1_end_write_request;
939 		mbio->bi_rw = WRITE | do_flush_fua | do_sync;
940 		mbio->bi_private = r1_bio;
941 
942 		if (behind_pages) {
943 			struct bio_vec *bvec;
944 			int j;
945 
946 			/* Yes, I really want the '__' version so that
947 			 * we clear any unused pointer in the io_vec, rather
948 			 * than leave them unchanged.  This is important
949 			 * because when we come to free the pages, we won't
950 			 * know the original bi_idx, so we just free
951 			 * them all
952 			 */
953 			__bio_for_each_segment(bvec, mbio, j, 0)
954 				bvec->bv_page = behind_pages[j].bv_page;
955 			if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
956 				atomic_inc(&r1_bio->behind_remaining);
957 		}
958 
959 		atomic_inc(&r1_bio->remaining);
960 		spin_lock_irqsave(&conf->device_lock, flags);
961 		bio_list_add(&conf->pending_bio_list, mbio);
962 		blk_plug_device(mddev->queue);
963 		spin_unlock_irqrestore(&conf->device_lock, flags);
964 	}
965 	r1_bio_write_done(r1_bio, bio->bi_vcnt, behind_pages, behind_pages != NULL);
966 	kfree(behind_pages); /* the behind pages are attached to the bios now */
967 
968 	/* In case raid1d snuck in to freeze_array */
969 	wake_up(&conf->wait_barrier);
970 
971 	if (do_sync)
972 		md_wakeup_thread(mddev->thread);
973 
974 	return 0;
975 }
976 
977 static void status(struct seq_file *seq, mddev_t *mddev)
978 {
979 	conf_t *conf = mddev->private;
980 	int i;
981 
982 	seq_printf(seq, " [%d/%d] [", conf->raid_disks,
983 		   conf->raid_disks - mddev->degraded);
984 	rcu_read_lock();
985 	for (i = 0; i < conf->raid_disks; i++) {
986 		mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
987 		seq_printf(seq, "%s",
988 			   rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
989 	}
990 	rcu_read_unlock();
991 	seq_printf(seq, "]");
992 }
993 
994 
995 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
996 {
997 	char b[BDEVNAME_SIZE];
998 	conf_t *conf = mddev->private;
999 
1000 	/*
1001 	 * If it is not operational, then we have already marked it as dead
1002 	 * else if it is the last working disks, ignore the error, let the
1003 	 * next level up know.
1004 	 * else mark the drive as failed
1005 	 */
1006 	if (test_bit(In_sync, &rdev->flags)
1007 	    && (conf->raid_disks - mddev->degraded) == 1) {
1008 		/*
1009 		 * Don't fail the drive, act as though we were just a
1010 		 * normal single drive.
1011 		 * However don't try a recovery from this drive as
1012 		 * it is very likely to fail.
1013 		 */
1014 		mddev->recovery_disabled = 1;
1015 		return;
1016 	}
1017 	if (test_and_clear_bit(In_sync, &rdev->flags)) {
1018 		unsigned long flags;
1019 		spin_lock_irqsave(&conf->device_lock, flags);
1020 		mddev->degraded++;
1021 		set_bit(Faulty, &rdev->flags);
1022 		spin_unlock_irqrestore(&conf->device_lock, flags);
1023 		/*
1024 		 * if recovery is running, make sure it aborts.
1025 		 */
1026 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1027 	} else
1028 		set_bit(Faulty, &rdev->flags);
1029 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
1030 	printk(KERN_ALERT
1031 	       "md/raid1:%s: Disk failure on %s, disabling device.\n"
1032 	       "md/raid1:%s: Operation continuing on %d devices.\n",
1033 	       mdname(mddev), bdevname(rdev->bdev, b),
1034 	       mdname(mddev), conf->raid_disks - mddev->degraded);
1035 }
1036 
1037 static void print_conf(conf_t *conf)
1038 {
1039 	int i;
1040 
1041 	printk(KERN_DEBUG "RAID1 conf printout:\n");
1042 	if (!conf) {
1043 		printk(KERN_DEBUG "(!conf)\n");
1044 		return;
1045 	}
1046 	printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1047 		conf->raid_disks);
1048 
1049 	rcu_read_lock();
1050 	for (i = 0; i < conf->raid_disks; i++) {
1051 		char b[BDEVNAME_SIZE];
1052 		mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
1053 		if (rdev)
1054 			printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1055 			       i, !test_bit(In_sync, &rdev->flags),
1056 			       !test_bit(Faulty, &rdev->flags),
1057 			       bdevname(rdev->bdev,b));
1058 	}
1059 	rcu_read_unlock();
1060 }
1061 
1062 static void close_sync(conf_t *conf)
1063 {
1064 	wait_barrier(conf);
1065 	allow_barrier(conf);
1066 
1067 	mempool_destroy(conf->r1buf_pool);
1068 	conf->r1buf_pool = NULL;
1069 }
1070 
1071 static int raid1_spare_active(mddev_t *mddev)
1072 {
1073 	int i;
1074 	conf_t *conf = mddev->private;
1075 	int count = 0;
1076 	unsigned long flags;
1077 
1078 	/*
1079 	 * Find all failed disks within the RAID1 configuration
1080 	 * and mark them readable.
1081 	 * Called under mddev lock, so rcu protection not needed.
1082 	 */
1083 	for (i = 0; i < conf->raid_disks; i++) {
1084 		mdk_rdev_t *rdev = conf->mirrors[i].rdev;
1085 		if (rdev
1086 		    && !test_bit(Faulty, &rdev->flags)
1087 		    && !test_and_set_bit(In_sync, &rdev->flags)) {
1088 			count++;
1089 			sysfs_notify_dirent(rdev->sysfs_state);
1090 		}
1091 	}
1092 	spin_lock_irqsave(&conf->device_lock, flags);
1093 	mddev->degraded -= count;
1094 	spin_unlock_irqrestore(&conf->device_lock, flags);
1095 
1096 	print_conf(conf);
1097 	return count;
1098 }
1099 
1100 
1101 static int raid1_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
1102 {
1103 	conf_t *conf = mddev->private;
1104 	int err = -EEXIST;
1105 	int mirror = 0;
1106 	mirror_info_t *p;
1107 	int first = 0;
1108 	int last = mddev->raid_disks - 1;
1109 
1110 	if (rdev->raid_disk >= 0)
1111 		first = last = rdev->raid_disk;
1112 
1113 	for (mirror = first; mirror <= last; mirror++)
1114 		if ( !(p=conf->mirrors+mirror)->rdev) {
1115 
1116 			disk_stack_limits(mddev->gendisk, rdev->bdev,
1117 					  rdev->data_offset << 9);
1118 			/* as we don't honour merge_bvec_fn, we must
1119 			 * never risk violating it, so limit
1120 			 * ->max_segments to one lying with a single
1121 			 * page, as a one page request is never in
1122 			 * violation.
1123 			 */
1124 			if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
1125 				blk_queue_max_segments(mddev->queue, 1);
1126 				blk_queue_segment_boundary(mddev->queue,
1127 							   PAGE_CACHE_SIZE - 1);
1128 			}
1129 
1130 			p->head_position = 0;
1131 			rdev->raid_disk = mirror;
1132 			err = 0;
1133 			/* As all devices are equivalent, we don't need a full recovery
1134 			 * if this was recently any drive of the array
1135 			 */
1136 			if (rdev->saved_raid_disk < 0)
1137 				conf->fullsync = 1;
1138 			rcu_assign_pointer(p->rdev, rdev);
1139 			break;
1140 		}
1141 	md_integrity_add_rdev(rdev, mddev);
1142 	print_conf(conf);
1143 	return err;
1144 }
1145 
1146 static int raid1_remove_disk(mddev_t *mddev, int number)
1147 {
1148 	conf_t *conf = mddev->private;
1149 	int err = 0;
1150 	mdk_rdev_t *rdev;
1151 	mirror_info_t *p = conf->mirrors+ number;
1152 
1153 	print_conf(conf);
1154 	rdev = p->rdev;
1155 	if (rdev) {
1156 		if (test_bit(In_sync, &rdev->flags) ||
1157 		    atomic_read(&rdev->nr_pending)) {
1158 			err = -EBUSY;
1159 			goto abort;
1160 		}
1161 		/* Only remove non-faulty devices if recovery
1162 		 * is not possible.
1163 		 */
1164 		if (!test_bit(Faulty, &rdev->flags) &&
1165 		    !mddev->recovery_disabled &&
1166 		    mddev->degraded < conf->raid_disks) {
1167 			err = -EBUSY;
1168 			goto abort;
1169 		}
1170 		p->rdev = NULL;
1171 		synchronize_rcu();
1172 		if (atomic_read(&rdev->nr_pending)) {
1173 			/* lost the race, try later */
1174 			err = -EBUSY;
1175 			p->rdev = rdev;
1176 			goto abort;
1177 		}
1178 		md_integrity_register(mddev);
1179 	}
1180 abort:
1181 
1182 	print_conf(conf);
1183 	return err;
1184 }
1185 
1186 
1187 static void end_sync_read(struct bio *bio, int error)
1188 {
1189 	r1bio_t *r1_bio = bio->bi_private;
1190 	int i;
1191 
1192 	for (i=r1_bio->mddev->raid_disks; i--; )
1193 		if (r1_bio->bios[i] == bio)
1194 			break;
1195 	BUG_ON(i < 0);
1196 	update_head_pos(i, r1_bio);
1197 	/*
1198 	 * we have read a block, now it needs to be re-written,
1199 	 * or re-read if the read failed.
1200 	 * We don't do much here, just schedule handling by raid1d
1201 	 */
1202 	if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1203 		set_bit(R1BIO_Uptodate, &r1_bio->state);
1204 
1205 	if (atomic_dec_and_test(&r1_bio->remaining))
1206 		reschedule_retry(r1_bio);
1207 }
1208 
1209 static void end_sync_write(struct bio *bio, int error)
1210 {
1211 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1212 	r1bio_t *r1_bio = bio->bi_private;
1213 	mddev_t *mddev = r1_bio->mddev;
1214 	conf_t *conf = mddev->private;
1215 	int i;
1216 	int mirror=0;
1217 
1218 	for (i = 0; i < conf->raid_disks; i++)
1219 		if (r1_bio->bios[i] == bio) {
1220 			mirror = i;
1221 			break;
1222 		}
1223 	if (!uptodate) {
1224 		sector_t sync_blocks = 0;
1225 		sector_t s = r1_bio->sector;
1226 		long sectors_to_go = r1_bio->sectors;
1227 		/* make sure these bits doesn't get cleared. */
1228 		do {
1229 			bitmap_end_sync(mddev->bitmap, s,
1230 					&sync_blocks, 1);
1231 			s += sync_blocks;
1232 			sectors_to_go -= sync_blocks;
1233 		} while (sectors_to_go > 0);
1234 		md_error(mddev, conf->mirrors[mirror].rdev);
1235 	}
1236 
1237 	update_head_pos(mirror, r1_bio);
1238 
1239 	if (atomic_dec_and_test(&r1_bio->remaining)) {
1240 		sector_t s = r1_bio->sectors;
1241 		put_buf(r1_bio);
1242 		md_done_sync(mddev, s, uptodate);
1243 	}
1244 }
1245 
1246 static void sync_request_write(mddev_t *mddev, r1bio_t *r1_bio)
1247 {
1248 	conf_t *conf = mddev->private;
1249 	int i;
1250 	int disks = conf->raid_disks;
1251 	struct bio *bio, *wbio;
1252 
1253 	bio = r1_bio->bios[r1_bio->read_disk];
1254 
1255 
1256 	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
1257 		/* We have read all readable devices.  If we haven't
1258 		 * got the block, then there is no hope left.
1259 		 * If we have, then we want to do a comparison
1260 		 * and skip the write if everything is the same.
1261 		 * If any blocks failed to read, then we need to
1262 		 * attempt an over-write
1263 		 */
1264 		int primary;
1265 		if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) {
1266 			for (i=0; i<mddev->raid_disks; i++)
1267 				if (r1_bio->bios[i]->bi_end_io == end_sync_read)
1268 					md_error(mddev, conf->mirrors[i].rdev);
1269 
1270 			md_done_sync(mddev, r1_bio->sectors, 1);
1271 			put_buf(r1_bio);
1272 			return;
1273 		}
1274 		for (primary=0; primary<mddev->raid_disks; primary++)
1275 			if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
1276 			    test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) {
1277 				r1_bio->bios[primary]->bi_end_io = NULL;
1278 				rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
1279 				break;
1280 			}
1281 		r1_bio->read_disk = primary;
1282 		for (i=0; i<mddev->raid_disks; i++)
1283 			if (r1_bio->bios[i]->bi_end_io == end_sync_read) {
1284 				int j;
1285 				int vcnt = r1_bio->sectors >> (PAGE_SHIFT- 9);
1286 				struct bio *pbio = r1_bio->bios[primary];
1287 				struct bio *sbio = r1_bio->bios[i];
1288 
1289 				if (test_bit(BIO_UPTODATE, &sbio->bi_flags)) {
1290 					for (j = vcnt; j-- ; ) {
1291 						struct page *p, *s;
1292 						p = pbio->bi_io_vec[j].bv_page;
1293 						s = sbio->bi_io_vec[j].bv_page;
1294 						if (memcmp(page_address(p),
1295 							   page_address(s),
1296 							   PAGE_SIZE))
1297 							break;
1298 					}
1299 				} else
1300 					j = 0;
1301 				if (j >= 0)
1302 					mddev->resync_mismatches += r1_bio->sectors;
1303 				if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
1304 					      && test_bit(BIO_UPTODATE, &sbio->bi_flags))) {
1305 					sbio->bi_end_io = NULL;
1306 					rdev_dec_pending(conf->mirrors[i].rdev, mddev);
1307 				} else {
1308 					/* fixup the bio for reuse */
1309 					int size;
1310 					sbio->bi_vcnt = vcnt;
1311 					sbio->bi_size = r1_bio->sectors << 9;
1312 					sbio->bi_idx = 0;
1313 					sbio->bi_phys_segments = 0;
1314 					sbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1315 					sbio->bi_flags |= 1 << BIO_UPTODATE;
1316 					sbio->bi_next = NULL;
1317 					sbio->bi_sector = r1_bio->sector +
1318 						conf->mirrors[i].rdev->data_offset;
1319 					sbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1320 					size = sbio->bi_size;
1321 					for (j = 0; j < vcnt ; j++) {
1322 						struct bio_vec *bi;
1323 						bi = &sbio->bi_io_vec[j];
1324 						bi->bv_offset = 0;
1325 						if (size > PAGE_SIZE)
1326 							bi->bv_len = PAGE_SIZE;
1327 						else
1328 							bi->bv_len = size;
1329 						size -= PAGE_SIZE;
1330 						memcpy(page_address(bi->bv_page),
1331 						       page_address(pbio->bi_io_vec[j].bv_page),
1332 						       PAGE_SIZE);
1333 					}
1334 
1335 				}
1336 			}
1337 	}
1338 	if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) {
1339 		/* ouch - failed to read all of that.
1340 		 * Try some synchronous reads of other devices to get
1341 		 * good data, much like with normal read errors.  Only
1342 		 * read into the pages we already have so we don't
1343 		 * need to re-issue the read request.
1344 		 * We don't need to freeze the array, because being in an
1345 		 * active sync request, there is no normal IO, and
1346 		 * no overlapping syncs.
1347 		 */
1348 		sector_t sect = r1_bio->sector;
1349 		int sectors = r1_bio->sectors;
1350 		int idx = 0;
1351 
1352 		while(sectors) {
1353 			int s = sectors;
1354 			int d = r1_bio->read_disk;
1355 			int success = 0;
1356 			mdk_rdev_t *rdev;
1357 
1358 			if (s > (PAGE_SIZE>>9))
1359 				s = PAGE_SIZE >> 9;
1360 			do {
1361 				if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1362 					/* No rcu protection needed here devices
1363 					 * can only be removed when no resync is
1364 					 * active, and resync is currently active
1365 					 */
1366 					rdev = conf->mirrors[d].rdev;
1367 					if (sync_page_io(rdev,
1368 							 sect,
1369 							 s<<9,
1370 							 bio->bi_io_vec[idx].bv_page,
1371 							 READ, false)) {
1372 						success = 1;
1373 						break;
1374 					}
1375 				}
1376 				d++;
1377 				if (d == conf->raid_disks)
1378 					d = 0;
1379 			} while (!success && d != r1_bio->read_disk);
1380 
1381 			if (success) {
1382 				int start = d;
1383 				/* write it back and re-read */
1384 				set_bit(R1BIO_Uptodate, &r1_bio->state);
1385 				while (d != r1_bio->read_disk) {
1386 					if (d == 0)
1387 						d = conf->raid_disks;
1388 					d--;
1389 					if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1390 						continue;
1391 					rdev = conf->mirrors[d].rdev;
1392 					atomic_add(s, &rdev->corrected_errors);
1393 					if (sync_page_io(rdev,
1394 							 sect,
1395 							 s<<9,
1396 							 bio->bi_io_vec[idx].bv_page,
1397 							 WRITE, false) == 0)
1398 						md_error(mddev, rdev);
1399 				}
1400 				d = start;
1401 				while (d != r1_bio->read_disk) {
1402 					if (d == 0)
1403 						d = conf->raid_disks;
1404 					d--;
1405 					if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1406 						continue;
1407 					rdev = conf->mirrors[d].rdev;
1408 					if (sync_page_io(rdev,
1409 							 sect,
1410 							 s<<9,
1411 							 bio->bi_io_vec[idx].bv_page,
1412 							 READ, false) == 0)
1413 						md_error(mddev, rdev);
1414 				}
1415 			} else {
1416 				char b[BDEVNAME_SIZE];
1417 				/* Cannot read from anywhere, array is toast */
1418 				md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
1419 				printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error"
1420 				       " for block %llu\n",
1421 				       mdname(mddev),
1422 				       bdevname(bio->bi_bdev, b),
1423 				       (unsigned long long)r1_bio->sector);
1424 				md_done_sync(mddev, r1_bio->sectors, 0);
1425 				put_buf(r1_bio);
1426 				return;
1427 			}
1428 			sectors -= s;
1429 			sect += s;
1430 			idx ++;
1431 		}
1432 	}
1433 
1434 	/*
1435 	 * schedule writes
1436 	 */
1437 	atomic_set(&r1_bio->remaining, 1);
1438 	for (i = 0; i < disks ; i++) {
1439 		wbio = r1_bio->bios[i];
1440 		if (wbio->bi_end_io == NULL ||
1441 		    (wbio->bi_end_io == end_sync_read &&
1442 		     (i == r1_bio->read_disk ||
1443 		      !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
1444 			continue;
1445 
1446 		wbio->bi_rw = WRITE;
1447 		wbio->bi_end_io = end_sync_write;
1448 		atomic_inc(&r1_bio->remaining);
1449 		md_sync_acct(conf->mirrors[i].rdev->bdev, wbio->bi_size >> 9);
1450 
1451 		generic_make_request(wbio);
1452 	}
1453 
1454 	if (atomic_dec_and_test(&r1_bio->remaining)) {
1455 		/* if we're here, all write(s) have completed, so clean up */
1456 		md_done_sync(mddev, r1_bio->sectors, 1);
1457 		put_buf(r1_bio);
1458 	}
1459 }
1460 
1461 /*
1462  * This is a kernel thread which:
1463  *
1464  *	1.	Retries failed read operations on working mirrors.
1465  *	2.	Updates the raid superblock when problems encounter.
1466  *	3.	Performs writes following reads for array syncronising.
1467  */
1468 
1469 static void fix_read_error(conf_t *conf, int read_disk,
1470 			   sector_t sect, int sectors)
1471 {
1472 	mddev_t *mddev = conf->mddev;
1473 	while(sectors) {
1474 		int s = sectors;
1475 		int d = read_disk;
1476 		int success = 0;
1477 		int start;
1478 		mdk_rdev_t *rdev;
1479 
1480 		if (s > (PAGE_SIZE>>9))
1481 			s = PAGE_SIZE >> 9;
1482 
1483 		do {
1484 			/* Note: no rcu protection needed here
1485 			 * as this is synchronous in the raid1d thread
1486 			 * which is the thread that might remove
1487 			 * a device.  If raid1d ever becomes multi-threaded....
1488 			 */
1489 			rdev = conf->mirrors[d].rdev;
1490 			if (rdev &&
1491 			    test_bit(In_sync, &rdev->flags) &&
1492 			    sync_page_io(rdev, sect, s<<9,
1493 					 conf->tmppage, READ, false))
1494 				success = 1;
1495 			else {
1496 				d++;
1497 				if (d == conf->raid_disks)
1498 					d = 0;
1499 			}
1500 		} while (!success && d != read_disk);
1501 
1502 		if (!success) {
1503 			/* Cannot read from anywhere -- bye bye array */
1504 			md_error(mddev, conf->mirrors[read_disk].rdev);
1505 			break;
1506 		}
1507 		/* write it back and re-read */
1508 		start = d;
1509 		while (d != read_disk) {
1510 			if (d==0)
1511 				d = conf->raid_disks;
1512 			d--;
1513 			rdev = conf->mirrors[d].rdev;
1514 			if (rdev &&
1515 			    test_bit(In_sync, &rdev->flags)) {
1516 				if (sync_page_io(rdev, sect, s<<9,
1517 						 conf->tmppage, WRITE, false)
1518 				    == 0)
1519 					/* Well, this device is dead */
1520 					md_error(mddev, rdev);
1521 			}
1522 		}
1523 		d = start;
1524 		while (d != read_disk) {
1525 			char b[BDEVNAME_SIZE];
1526 			if (d==0)
1527 				d = conf->raid_disks;
1528 			d--;
1529 			rdev = conf->mirrors[d].rdev;
1530 			if (rdev &&
1531 			    test_bit(In_sync, &rdev->flags)) {
1532 				if (sync_page_io(rdev, sect, s<<9,
1533 						 conf->tmppage, READ, false)
1534 				    == 0)
1535 					/* Well, this device is dead */
1536 					md_error(mddev, rdev);
1537 				else {
1538 					atomic_add(s, &rdev->corrected_errors);
1539 					printk(KERN_INFO
1540 					       "md/raid1:%s: read error corrected "
1541 					       "(%d sectors at %llu on %s)\n",
1542 					       mdname(mddev), s,
1543 					       (unsigned long long)(sect +
1544 					           rdev->data_offset),
1545 					       bdevname(rdev->bdev, b));
1546 				}
1547 			}
1548 		}
1549 		sectors -= s;
1550 		sect += s;
1551 	}
1552 }
1553 
1554 static void raid1d(mddev_t *mddev)
1555 {
1556 	r1bio_t *r1_bio;
1557 	struct bio *bio;
1558 	unsigned long flags;
1559 	conf_t *conf = mddev->private;
1560 	struct list_head *head = &conf->retry_list;
1561 	int unplug=0;
1562 	mdk_rdev_t *rdev;
1563 
1564 	md_check_recovery(mddev);
1565 
1566 	for (;;) {
1567 		char b[BDEVNAME_SIZE];
1568 
1569 		unplug += flush_pending_writes(conf);
1570 
1571 		spin_lock_irqsave(&conf->device_lock, flags);
1572 		if (list_empty(head)) {
1573 			spin_unlock_irqrestore(&conf->device_lock, flags);
1574 			break;
1575 		}
1576 		r1_bio = list_entry(head->prev, r1bio_t, retry_list);
1577 		list_del(head->prev);
1578 		conf->nr_queued--;
1579 		spin_unlock_irqrestore(&conf->device_lock, flags);
1580 
1581 		mddev = r1_bio->mddev;
1582 		conf = mddev->private;
1583 		if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
1584 			sync_request_write(mddev, r1_bio);
1585 			unplug = 1;
1586 		} else {
1587 			int disk;
1588 
1589 			/* we got a read error. Maybe the drive is bad.  Maybe just
1590 			 * the block and we can fix it.
1591 			 * We freeze all other IO, and try reading the block from
1592 			 * other devices.  When we find one, we re-write
1593 			 * and check it that fixes the read error.
1594 			 * This is all done synchronously while the array is
1595 			 * frozen
1596 			 */
1597 			if (mddev->ro == 0) {
1598 				freeze_array(conf);
1599 				fix_read_error(conf, r1_bio->read_disk,
1600 					       r1_bio->sector,
1601 					       r1_bio->sectors);
1602 				unfreeze_array(conf);
1603 			} else
1604 				md_error(mddev,
1605 					 conf->mirrors[r1_bio->read_disk].rdev);
1606 
1607 			bio = r1_bio->bios[r1_bio->read_disk];
1608 			if ((disk=read_balance(conf, r1_bio)) == -1) {
1609 				printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O"
1610 				       " read error for block %llu\n",
1611 				       mdname(mddev),
1612 				       bdevname(bio->bi_bdev,b),
1613 				       (unsigned long long)r1_bio->sector);
1614 				raid_end_bio_io(r1_bio);
1615 			} else {
1616 				const unsigned long do_sync = r1_bio->master_bio->bi_rw & REQ_SYNC;
1617 				r1_bio->bios[r1_bio->read_disk] =
1618 					mddev->ro ? IO_BLOCKED : NULL;
1619 				r1_bio->read_disk = disk;
1620 				bio_put(bio);
1621 				bio = bio_clone_mddev(r1_bio->master_bio,
1622 						      GFP_NOIO, mddev);
1623 				r1_bio->bios[r1_bio->read_disk] = bio;
1624 				rdev = conf->mirrors[disk].rdev;
1625 				if (printk_ratelimit())
1626 					printk(KERN_ERR "md/raid1:%s: redirecting sector %llu to"
1627 					       " other mirror: %s\n",
1628 					       mdname(mddev),
1629 					       (unsigned long long)r1_bio->sector,
1630 					       bdevname(rdev->bdev,b));
1631 				bio->bi_sector = r1_bio->sector + rdev->data_offset;
1632 				bio->bi_bdev = rdev->bdev;
1633 				bio->bi_end_io = raid1_end_read_request;
1634 				bio->bi_rw = READ | do_sync;
1635 				bio->bi_private = r1_bio;
1636 				unplug = 1;
1637 				generic_make_request(bio);
1638 			}
1639 		}
1640 		cond_resched();
1641 	}
1642 	if (unplug)
1643 		unplug_slaves(mddev);
1644 }
1645 
1646 
1647 static int init_resync(conf_t *conf)
1648 {
1649 	int buffs;
1650 
1651 	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
1652 	BUG_ON(conf->r1buf_pool);
1653 	conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
1654 					  conf->poolinfo);
1655 	if (!conf->r1buf_pool)
1656 		return -ENOMEM;
1657 	conf->next_resync = 0;
1658 	return 0;
1659 }
1660 
1661 /*
1662  * perform a "sync" on one "block"
1663  *
1664  * We need to make sure that no normal I/O request - particularly write
1665  * requests - conflict with active sync requests.
1666  *
1667  * This is achieved by tracking pending requests and a 'barrier' concept
1668  * that can be installed to exclude normal IO requests.
1669  */
1670 
1671 static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
1672 {
1673 	conf_t *conf = mddev->private;
1674 	r1bio_t *r1_bio;
1675 	struct bio *bio;
1676 	sector_t max_sector, nr_sectors;
1677 	int disk = -1;
1678 	int i;
1679 	int wonly = -1;
1680 	int write_targets = 0, read_targets = 0;
1681 	sector_t sync_blocks;
1682 	int still_degraded = 0;
1683 
1684 	if (!conf->r1buf_pool)
1685 		if (init_resync(conf))
1686 			return 0;
1687 
1688 	max_sector = mddev->dev_sectors;
1689 	if (sector_nr >= max_sector) {
1690 		/* If we aborted, we need to abort the
1691 		 * sync on the 'current' bitmap chunk (there will
1692 		 * only be one in raid1 resync.
1693 		 * We can find the current addess in mddev->curr_resync
1694 		 */
1695 		if (mddev->curr_resync < max_sector) /* aborted */
1696 			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
1697 						&sync_blocks, 1);
1698 		else /* completed sync */
1699 			conf->fullsync = 0;
1700 
1701 		bitmap_close_sync(mddev->bitmap);
1702 		close_sync(conf);
1703 		return 0;
1704 	}
1705 
1706 	if (mddev->bitmap == NULL &&
1707 	    mddev->recovery_cp == MaxSector &&
1708 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
1709 	    conf->fullsync == 0) {
1710 		*skipped = 1;
1711 		return max_sector - sector_nr;
1712 	}
1713 	/* before building a request, check if we can skip these blocks..
1714 	 * This call the bitmap_start_sync doesn't actually record anything
1715 	 */
1716 	if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
1717 	    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
1718 		/* We can skip this block, and probably several more */
1719 		*skipped = 1;
1720 		return sync_blocks;
1721 	}
1722 	/*
1723 	 * If there is non-resync activity waiting for a turn,
1724 	 * and resync is going fast enough,
1725 	 * then let it though before starting on this new sync request.
1726 	 */
1727 	if (!go_faster && conf->nr_waiting)
1728 		msleep_interruptible(1000);
1729 
1730 	bitmap_cond_end_sync(mddev->bitmap, sector_nr);
1731 	r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
1732 	raise_barrier(conf);
1733 
1734 	conf->next_resync = sector_nr;
1735 
1736 	rcu_read_lock();
1737 	/*
1738 	 * If we get a correctably read error during resync or recovery,
1739 	 * we might want to read from a different device.  So we
1740 	 * flag all drives that could conceivably be read from for READ,
1741 	 * and any others (which will be non-In_sync devices) for WRITE.
1742 	 * If a read fails, we try reading from something else for which READ
1743 	 * is OK.
1744 	 */
1745 
1746 	r1_bio->mddev = mddev;
1747 	r1_bio->sector = sector_nr;
1748 	r1_bio->state = 0;
1749 	set_bit(R1BIO_IsSync, &r1_bio->state);
1750 
1751 	for (i=0; i < conf->raid_disks; i++) {
1752 		mdk_rdev_t *rdev;
1753 		bio = r1_bio->bios[i];
1754 
1755 		/* take from bio_init */
1756 		bio->bi_next = NULL;
1757 		bio->bi_flags &= ~(BIO_POOL_MASK-1);
1758 		bio->bi_flags |= 1 << BIO_UPTODATE;
1759 		bio->bi_comp_cpu = -1;
1760 		bio->bi_rw = READ;
1761 		bio->bi_vcnt = 0;
1762 		bio->bi_idx = 0;
1763 		bio->bi_phys_segments = 0;
1764 		bio->bi_size = 0;
1765 		bio->bi_end_io = NULL;
1766 		bio->bi_private = NULL;
1767 
1768 		rdev = rcu_dereference(conf->mirrors[i].rdev);
1769 		if (rdev == NULL ||
1770 			   test_bit(Faulty, &rdev->flags)) {
1771 			still_degraded = 1;
1772 			continue;
1773 		} else if (!test_bit(In_sync, &rdev->flags)) {
1774 			bio->bi_rw = WRITE;
1775 			bio->bi_end_io = end_sync_write;
1776 			write_targets ++;
1777 		} else {
1778 			/* may need to read from here */
1779 			bio->bi_rw = READ;
1780 			bio->bi_end_io = end_sync_read;
1781 			if (test_bit(WriteMostly, &rdev->flags)) {
1782 				if (wonly < 0)
1783 					wonly = i;
1784 			} else {
1785 				if (disk < 0)
1786 					disk = i;
1787 			}
1788 			read_targets++;
1789 		}
1790 		atomic_inc(&rdev->nr_pending);
1791 		bio->bi_sector = sector_nr + rdev->data_offset;
1792 		bio->bi_bdev = rdev->bdev;
1793 		bio->bi_private = r1_bio;
1794 	}
1795 	rcu_read_unlock();
1796 	if (disk < 0)
1797 		disk = wonly;
1798 	r1_bio->read_disk = disk;
1799 
1800 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
1801 		/* extra read targets are also write targets */
1802 		write_targets += read_targets-1;
1803 
1804 	if (write_targets == 0 || read_targets == 0) {
1805 		/* There is nowhere to write, so all non-sync
1806 		 * drives must be failed - so we are finished
1807 		 */
1808 		sector_t rv = max_sector - sector_nr;
1809 		*skipped = 1;
1810 		put_buf(r1_bio);
1811 		return rv;
1812 	}
1813 
1814 	if (max_sector > mddev->resync_max)
1815 		max_sector = mddev->resync_max; /* Don't do IO beyond here */
1816 	nr_sectors = 0;
1817 	sync_blocks = 0;
1818 	do {
1819 		struct page *page;
1820 		int len = PAGE_SIZE;
1821 		if (sector_nr + (len>>9) > max_sector)
1822 			len = (max_sector - sector_nr) << 9;
1823 		if (len == 0)
1824 			break;
1825 		if (sync_blocks == 0) {
1826 			if (!bitmap_start_sync(mddev->bitmap, sector_nr,
1827 					       &sync_blocks, still_degraded) &&
1828 			    !conf->fullsync &&
1829 			    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
1830 				break;
1831 			BUG_ON(sync_blocks < (PAGE_SIZE>>9));
1832 			if ((len >> 9) > sync_blocks)
1833 				len = sync_blocks<<9;
1834 		}
1835 
1836 		for (i=0 ; i < conf->raid_disks; i++) {
1837 			bio = r1_bio->bios[i];
1838 			if (bio->bi_end_io) {
1839 				page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
1840 				if (bio_add_page(bio, page, len, 0) == 0) {
1841 					/* stop here */
1842 					bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
1843 					while (i > 0) {
1844 						i--;
1845 						bio = r1_bio->bios[i];
1846 						if (bio->bi_end_io==NULL)
1847 							continue;
1848 						/* remove last page from this bio */
1849 						bio->bi_vcnt--;
1850 						bio->bi_size -= len;
1851 						bio->bi_flags &= ~(1<< BIO_SEG_VALID);
1852 					}
1853 					goto bio_full;
1854 				}
1855 			}
1856 		}
1857 		nr_sectors += len>>9;
1858 		sector_nr += len>>9;
1859 		sync_blocks -= (len>>9);
1860 	} while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
1861  bio_full:
1862 	r1_bio->sectors = nr_sectors;
1863 
1864 	/* For a user-requested sync, we read all readable devices and do a
1865 	 * compare
1866 	 */
1867 	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
1868 		atomic_set(&r1_bio->remaining, read_targets);
1869 		for (i=0; i<conf->raid_disks; i++) {
1870 			bio = r1_bio->bios[i];
1871 			if (bio->bi_end_io == end_sync_read) {
1872 				md_sync_acct(bio->bi_bdev, nr_sectors);
1873 				generic_make_request(bio);
1874 			}
1875 		}
1876 	} else {
1877 		atomic_set(&r1_bio->remaining, 1);
1878 		bio = r1_bio->bios[r1_bio->read_disk];
1879 		md_sync_acct(bio->bi_bdev, nr_sectors);
1880 		generic_make_request(bio);
1881 
1882 	}
1883 	return nr_sectors;
1884 }
1885 
1886 static sector_t raid1_size(mddev_t *mddev, sector_t sectors, int raid_disks)
1887 {
1888 	if (sectors)
1889 		return sectors;
1890 
1891 	return mddev->dev_sectors;
1892 }
1893 
1894 static conf_t *setup_conf(mddev_t *mddev)
1895 {
1896 	conf_t *conf;
1897 	int i;
1898 	mirror_info_t *disk;
1899 	mdk_rdev_t *rdev;
1900 	int err = -ENOMEM;
1901 
1902 	conf = kzalloc(sizeof(conf_t), GFP_KERNEL);
1903 	if (!conf)
1904 		goto abort;
1905 
1906 	conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks,
1907 				 GFP_KERNEL);
1908 	if (!conf->mirrors)
1909 		goto abort;
1910 
1911 	conf->tmppage = alloc_page(GFP_KERNEL);
1912 	if (!conf->tmppage)
1913 		goto abort;
1914 
1915 	conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
1916 	if (!conf->poolinfo)
1917 		goto abort;
1918 	conf->poolinfo->raid_disks = mddev->raid_disks;
1919 	conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
1920 					  r1bio_pool_free,
1921 					  conf->poolinfo);
1922 	if (!conf->r1bio_pool)
1923 		goto abort;
1924 
1925 	conf->poolinfo->mddev = mddev;
1926 
1927 	spin_lock_init(&conf->device_lock);
1928 	list_for_each_entry(rdev, &mddev->disks, same_set) {
1929 		int disk_idx = rdev->raid_disk;
1930 		if (disk_idx >= mddev->raid_disks
1931 		    || disk_idx < 0)
1932 			continue;
1933 		disk = conf->mirrors + disk_idx;
1934 
1935 		disk->rdev = rdev;
1936 
1937 		disk->head_position = 0;
1938 	}
1939 	conf->raid_disks = mddev->raid_disks;
1940 	conf->mddev = mddev;
1941 	INIT_LIST_HEAD(&conf->retry_list);
1942 
1943 	spin_lock_init(&conf->resync_lock);
1944 	init_waitqueue_head(&conf->wait_barrier);
1945 
1946 	bio_list_init(&conf->pending_bio_list);
1947 
1948 	conf->last_used = -1;
1949 	for (i = 0; i < conf->raid_disks; i++) {
1950 
1951 		disk = conf->mirrors + i;
1952 
1953 		if (!disk->rdev ||
1954 		    !test_bit(In_sync, &disk->rdev->flags)) {
1955 			disk->head_position = 0;
1956 			if (disk->rdev)
1957 				conf->fullsync = 1;
1958 		} else if (conf->last_used < 0)
1959 			/*
1960 			 * The first working device is used as a
1961 			 * starting point to read balancing.
1962 			 */
1963 			conf->last_used = i;
1964 	}
1965 
1966 	err = -EIO;
1967 	if (conf->last_used < 0) {
1968 		printk(KERN_ERR "md/raid1:%s: no operational mirrors\n",
1969 		       mdname(mddev));
1970 		goto abort;
1971 	}
1972 	err = -ENOMEM;
1973 	conf->thread = md_register_thread(raid1d, mddev, NULL);
1974 	if (!conf->thread) {
1975 		printk(KERN_ERR
1976 		       "md/raid1:%s: couldn't allocate thread\n",
1977 		       mdname(mddev));
1978 		goto abort;
1979 	}
1980 
1981 	return conf;
1982 
1983  abort:
1984 	if (conf) {
1985 		if (conf->r1bio_pool)
1986 			mempool_destroy(conf->r1bio_pool);
1987 		kfree(conf->mirrors);
1988 		safe_put_page(conf->tmppage);
1989 		kfree(conf->poolinfo);
1990 		kfree(conf);
1991 	}
1992 	return ERR_PTR(err);
1993 }
1994 
1995 static int run(mddev_t *mddev)
1996 {
1997 	conf_t *conf;
1998 	int i;
1999 	mdk_rdev_t *rdev;
2000 
2001 	if (mddev->level != 1) {
2002 		printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n",
2003 		       mdname(mddev), mddev->level);
2004 		return -EIO;
2005 	}
2006 	if (mddev->reshape_position != MaxSector) {
2007 		printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n",
2008 		       mdname(mddev));
2009 		return -EIO;
2010 	}
2011 	/*
2012 	 * copy the already verified devices into our private RAID1
2013 	 * bookkeeping area. [whatever we allocate in run(),
2014 	 * should be freed in stop()]
2015 	 */
2016 	if (mddev->private == NULL)
2017 		conf = setup_conf(mddev);
2018 	else
2019 		conf = mddev->private;
2020 
2021 	if (IS_ERR(conf))
2022 		return PTR_ERR(conf);
2023 
2024 	mddev->queue->queue_lock = &conf->device_lock;
2025 	list_for_each_entry(rdev, &mddev->disks, same_set) {
2026 		disk_stack_limits(mddev->gendisk, rdev->bdev,
2027 				  rdev->data_offset << 9);
2028 		/* as we don't honour merge_bvec_fn, we must never risk
2029 		 * violating it, so limit ->max_segments to 1 lying within
2030 		 * a single page, as a one page request is never in violation.
2031 		 */
2032 		if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
2033 			blk_queue_max_segments(mddev->queue, 1);
2034 			blk_queue_segment_boundary(mddev->queue,
2035 						   PAGE_CACHE_SIZE - 1);
2036 		}
2037 	}
2038 
2039 	mddev->degraded = 0;
2040 	for (i=0; i < conf->raid_disks; i++)
2041 		if (conf->mirrors[i].rdev == NULL ||
2042 		    !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
2043 		    test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2044 			mddev->degraded++;
2045 
2046 	if (conf->raid_disks - mddev->degraded == 1)
2047 		mddev->recovery_cp = MaxSector;
2048 
2049 	if (mddev->recovery_cp != MaxSector)
2050 		printk(KERN_NOTICE "md/raid1:%s: not clean"
2051 		       " -- starting background reconstruction\n",
2052 		       mdname(mddev));
2053 	printk(KERN_INFO
2054 		"md/raid1:%s: active with %d out of %d mirrors\n",
2055 		mdname(mddev), mddev->raid_disks - mddev->degraded,
2056 		mddev->raid_disks);
2057 
2058 	/*
2059 	 * Ok, everything is just fine now
2060 	 */
2061 	mddev->thread = conf->thread;
2062 	conf->thread = NULL;
2063 	mddev->private = conf;
2064 
2065 	md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
2066 
2067 	mddev->queue->unplug_fn = raid1_unplug;
2068 	mddev->queue->backing_dev_info.congested_fn = raid1_congested;
2069 	mddev->queue->backing_dev_info.congested_data = mddev;
2070 	md_integrity_register(mddev);
2071 	return 0;
2072 }
2073 
2074 static int stop(mddev_t *mddev)
2075 {
2076 	conf_t *conf = mddev->private;
2077 	struct bitmap *bitmap = mddev->bitmap;
2078 
2079 	/* wait for behind writes to complete */
2080 	if (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
2081 		printk(KERN_INFO "md/raid1:%s: behind writes in progress - waiting to stop.\n",
2082 		       mdname(mddev));
2083 		/* need to kick something here to make sure I/O goes? */
2084 		wait_event(bitmap->behind_wait,
2085 			   atomic_read(&bitmap->behind_writes) == 0);
2086 	}
2087 
2088 	raise_barrier(conf);
2089 	lower_barrier(conf);
2090 
2091 	md_unregister_thread(mddev->thread);
2092 	mddev->thread = NULL;
2093 	blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
2094 	if (conf->r1bio_pool)
2095 		mempool_destroy(conf->r1bio_pool);
2096 	kfree(conf->mirrors);
2097 	kfree(conf->poolinfo);
2098 	kfree(conf);
2099 	mddev->private = NULL;
2100 	return 0;
2101 }
2102 
2103 static int raid1_resize(mddev_t *mddev, sector_t sectors)
2104 {
2105 	/* no resync is happening, and there is enough space
2106 	 * on all devices, so we can resize.
2107 	 * We need to make sure resync covers any new space.
2108 	 * If the array is shrinking we should possibly wait until
2109 	 * any io in the removed space completes, but it hardly seems
2110 	 * worth it.
2111 	 */
2112 	md_set_array_sectors(mddev, raid1_size(mddev, sectors, 0));
2113 	if (mddev->array_sectors > raid1_size(mddev, sectors, 0))
2114 		return -EINVAL;
2115 	set_capacity(mddev->gendisk, mddev->array_sectors);
2116 	revalidate_disk(mddev->gendisk);
2117 	if (sectors > mddev->dev_sectors &&
2118 	    mddev->recovery_cp == MaxSector) {
2119 		mddev->recovery_cp = mddev->dev_sectors;
2120 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2121 	}
2122 	mddev->dev_sectors = sectors;
2123 	mddev->resync_max_sectors = sectors;
2124 	return 0;
2125 }
2126 
2127 static int raid1_reshape(mddev_t *mddev)
2128 {
2129 	/* We need to:
2130 	 * 1/ resize the r1bio_pool
2131 	 * 2/ resize conf->mirrors
2132 	 *
2133 	 * We allocate a new r1bio_pool if we can.
2134 	 * Then raise a device barrier and wait until all IO stops.
2135 	 * Then resize conf->mirrors and swap in the new r1bio pool.
2136 	 *
2137 	 * At the same time, we "pack" the devices so that all the missing
2138 	 * devices have the higher raid_disk numbers.
2139 	 */
2140 	mempool_t *newpool, *oldpool;
2141 	struct pool_info *newpoolinfo;
2142 	mirror_info_t *newmirrors;
2143 	conf_t *conf = mddev->private;
2144 	int cnt, raid_disks;
2145 	unsigned long flags;
2146 	int d, d2, err;
2147 
2148 	/* Cannot change chunk_size, layout, or level */
2149 	if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
2150 	    mddev->layout != mddev->new_layout ||
2151 	    mddev->level != mddev->new_level) {
2152 		mddev->new_chunk_sectors = mddev->chunk_sectors;
2153 		mddev->new_layout = mddev->layout;
2154 		mddev->new_level = mddev->level;
2155 		return -EINVAL;
2156 	}
2157 
2158 	err = md_allow_write(mddev);
2159 	if (err)
2160 		return err;
2161 
2162 	raid_disks = mddev->raid_disks + mddev->delta_disks;
2163 
2164 	if (raid_disks < conf->raid_disks) {
2165 		cnt=0;
2166 		for (d= 0; d < conf->raid_disks; d++)
2167 			if (conf->mirrors[d].rdev)
2168 				cnt++;
2169 		if (cnt > raid_disks)
2170 			return -EBUSY;
2171 	}
2172 
2173 	newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
2174 	if (!newpoolinfo)
2175 		return -ENOMEM;
2176 	newpoolinfo->mddev = mddev;
2177 	newpoolinfo->raid_disks = raid_disks;
2178 
2179 	newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2180 				 r1bio_pool_free, newpoolinfo);
2181 	if (!newpool) {
2182 		kfree(newpoolinfo);
2183 		return -ENOMEM;
2184 	}
2185 	newmirrors = kzalloc(sizeof(struct mirror_info) * raid_disks, GFP_KERNEL);
2186 	if (!newmirrors) {
2187 		kfree(newpoolinfo);
2188 		mempool_destroy(newpool);
2189 		return -ENOMEM;
2190 	}
2191 
2192 	raise_barrier(conf);
2193 
2194 	/* ok, everything is stopped */
2195 	oldpool = conf->r1bio_pool;
2196 	conf->r1bio_pool = newpool;
2197 
2198 	for (d = d2 = 0; d < conf->raid_disks; d++) {
2199 		mdk_rdev_t *rdev = conf->mirrors[d].rdev;
2200 		if (rdev && rdev->raid_disk != d2) {
2201 			char nm[20];
2202 			sprintf(nm, "rd%d", rdev->raid_disk);
2203 			sysfs_remove_link(&mddev->kobj, nm);
2204 			rdev->raid_disk = d2;
2205 			sprintf(nm, "rd%d", rdev->raid_disk);
2206 			sysfs_remove_link(&mddev->kobj, nm);
2207 			if (sysfs_create_link(&mddev->kobj,
2208 					      &rdev->kobj, nm))
2209 				printk(KERN_WARNING
2210 				       "md/raid1:%s: cannot register "
2211 				       "%s\n",
2212 				       mdname(mddev), nm);
2213 		}
2214 		if (rdev)
2215 			newmirrors[d2++].rdev = rdev;
2216 	}
2217 	kfree(conf->mirrors);
2218 	conf->mirrors = newmirrors;
2219 	kfree(conf->poolinfo);
2220 	conf->poolinfo = newpoolinfo;
2221 
2222 	spin_lock_irqsave(&conf->device_lock, flags);
2223 	mddev->degraded += (raid_disks - conf->raid_disks);
2224 	spin_unlock_irqrestore(&conf->device_lock, flags);
2225 	conf->raid_disks = mddev->raid_disks = raid_disks;
2226 	mddev->delta_disks = 0;
2227 
2228 	conf->last_used = 0; /* just make sure it is in-range */
2229 	lower_barrier(conf);
2230 
2231 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2232 	md_wakeup_thread(mddev->thread);
2233 
2234 	mempool_destroy(oldpool);
2235 	return 0;
2236 }
2237 
2238 static void raid1_quiesce(mddev_t *mddev, int state)
2239 {
2240 	conf_t *conf = mddev->private;
2241 
2242 	switch(state) {
2243 	case 2: /* wake for suspend */
2244 		wake_up(&conf->wait_barrier);
2245 		break;
2246 	case 1:
2247 		raise_barrier(conf);
2248 		break;
2249 	case 0:
2250 		lower_barrier(conf);
2251 		break;
2252 	}
2253 }
2254 
2255 static void *raid1_takeover(mddev_t *mddev)
2256 {
2257 	/* raid1 can take over:
2258 	 *  raid5 with 2 devices, any layout or chunk size
2259 	 */
2260 	if (mddev->level == 5 && mddev->raid_disks == 2) {
2261 		conf_t *conf;
2262 		mddev->new_level = 1;
2263 		mddev->new_layout = 0;
2264 		mddev->new_chunk_sectors = 0;
2265 		conf = setup_conf(mddev);
2266 		if (!IS_ERR(conf))
2267 			conf->barrier = 1;
2268 		return conf;
2269 	}
2270 	return ERR_PTR(-EINVAL);
2271 }
2272 
2273 static struct mdk_personality raid1_personality =
2274 {
2275 	.name		= "raid1",
2276 	.level		= 1,
2277 	.owner		= THIS_MODULE,
2278 	.make_request	= make_request,
2279 	.run		= run,
2280 	.stop		= stop,
2281 	.status		= status,
2282 	.error_handler	= error,
2283 	.hot_add_disk	= raid1_add_disk,
2284 	.hot_remove_disk= raid1_remove_disk,
2285 	.spare_active	= raid1_spare_active,
2286 	.sync_request	= sync_request,
2287 	.resize		= raid1_resize,
2288 	.size		= raid1_size,
2289 	.check_reshape	= raid1_reshape,
2290 	.quiesce	= raid1_quiesce,
2291 	.takeover	= raid1_takeover,
2292 };
2293 
2294 static int __init raid_init(void)
2295 {
2296 	return register_md_personality(&raid1_personality);
2297 }
2298 
2299 static void raid_exit(void)
2300 {
2301 	unregister_md_personality(&raid1_personality);
2302 }
2303 
2304 module_init(raid_init);
2305 module_exit(raid_exit);
2306 MODULE_LICENSE("GPL");
2307 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
2308 MODULE_ALIAS("md-personality-3"); /* RAID1 */
2309 MODULE_ALIAS("md-raid1");
2310 MODULE_ALIAS("md-level-1");
2311