1 /* 2 * raid1.c : Multiple Devices driver for Linux 3 * 4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat 5 * 6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman 7 * 8 * RAID-1 management functions. 9 * 10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000 11 * 12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk> 13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au> 14 * 15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support 16 * bitmapped intelligence in resync: 17 * 18 * - bitmap marked during normal i/o 19 * - bitmap used to skip nondirty blocks during sync 20 * 21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology: 22 * - persistent bitmap code 23 * 24 * This program is free software; you can redistribute it and/or modify 25 * it under the terms of the GNU General Public License as published by 26 * the Free Software Foundation; either version 2, or (at your option) 27 * any later version. 28 * 29 * You should have received a copy of the GNU General Public License 30 * (for example /usr/src/linux/COPYING); if not, write to the Free 31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 32 */ 33 34 #include <linux/slab.h> 35 #include <linux/delay.h> 36 #include <linux/blkdev.h> 37 #include <linux/seq_file.h> 38 #include "md.h" 39 #include "raid1.h" 40 #include "bitmap.h" 41 42 #define DEBUG 0 43 #if DEBUG 44 #define PRINTK(x...) printk(x) 45 #else 46 #define PRINTK(x...) 47 #endif 48 49 /* 50 * Number of guaranteed r1bios in case of extreme VM load: 51 */ 52 #define NR_RAID1_BIOS 256 53 54 55 static void unplug_slaves(mddev_t *mddev); 56 57 static void allow_barrier(conf_t *conf); 58 static void lower_barrier(conf_t *conf); 59 60 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data) 61 { 62 struct pool_info *pi = data; 63 r1bio_t *r1_bio; 64 int size = offsetof(r1bio_t, bios[pi->raid_disks]); 65 66 /* allocate a r1bio with room for raid_disks entries in the bios array */ 67 r1_bio = kzalloc(size, gfp_flags); 68 if (!r1_bio && pi->mddev) 69 unplug_slaves(pi->mddev); 70 71 return r1_bio; 72 } 73 74 static void r1bio_pool_free(void *r1_bio, void *data) 75 { 76 kfree(r1_bio); 77 } 78 79 #define RESYNC_BLOCK_SIZE (64*1024) 80 //#define RESYNC_BLOCK_SIZE PAGE_SIZE 81 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9) 82 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE) 83 #define RESYNC_WINDOW (2048*1024) 84 85 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data) 86 { 87 struct pool_info *pi = data; 88 struct page *page; 89 r1bio_t *r1_bio; 90 struct bio *bio; 91 int i, j; 92 93 r1_bio = r1bio_pool_alloc(gfp_flags, pi); 94 if (!r1_bio) { 95 unplug_slaves(pi->mddev); 96 return NULL; 97 } 98 99 /* 100 * Allocate bios : 1 for reading, n-1 for writing 101 */ 102 for (j = pi->raid_disks ; j-- ; ) { 103 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES); 104 if (!bio) 105 goto out_free_bio; 106 r1_bio->bios[j] = bio; 107 } 108 /* 109 * Allocate RESYNC_PAGES data pages and attach them to 110 * the first bio. 111 * If this is a user-requested check/repair, allocate 112 * RESYNC_PAGES for each bio. 113 */ 114 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) 115 j = pi->raid_disks; 116 else 117 j = 1; 118 while(j--) { 119 bio = r1_bio->bios[j]; 120 for (i = 0; i < RESYNC_PAGES; i++) { 121 page = alloc_page(gfp_flags); 122 if (unlikely(!page)) 123 goto out_free_pages; 124 125 bio->bi_io_vec[i].bv_page = page; 126 bio->bi_vcnt = i+1; 127 } 128 } 129 /* If not user-requests, copy the page pointers to all bios */ 130 if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) { 131 for (i=0; i<RESYNC_PAGES ; i++) 132 for (j=1; j<pi->raid_disks; j++) 133 r1_bio->bios[j]->bi_io_vec[i].bv_page = 134 r1_bio->bios[0]->bi_io_vec[i].bv_page; 135 } 136 137 r1_bio->master_bio = NULL; 138 139 return r1_bio; 140 141 out_free_pages: 142 for (j=0 ; j < pi->raid_disks; j++) 143 for (i=0; i < r1_bio->bios[j]->bi_vcnt ; i++) 144 put_page(r1_bio->bios[j]->bi_io_vec[i].bv_page); 145 j = -1; 146 out_free_bio: 147 while ( ++j < pi->raid_disks ) 148 bio_put(r1_bio->bios[j]); 149 r1bio_pool_free(r1_bio, data); 150 return NULL; 151 } 152 153 static void r1buf_pool_free(void *__r1_bio, void *data) 154 { 155 struct pool_info *pi = data; 156 int i,j; 157 r1bio_t *r1bio = __r1_bio; 158 159 for (i = 0; i < RESYNC_PAGES; i++) 160 for (j = pi->raid_disks; j-- ;) { 161 if (j == 0 || 162 r1bio->bios[j]->bi_io_vec[i].bv_page != 163 r1bio->bios[0]->bi_io_vec[i].bv_page) 164 safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page); 165 } 166 for (i=0 ; i < pi->raid_disks; i++) 167 bio_put(r1bio->bios[i]); 168 169 r1bio_pool_free(r1bio, data); 170 } 171 172 static void put_all_bios(conf_t *conf, r1bio_t *r1_bio) 173 { 174 int i; 175 176 for (i = 0; i < conf->raid_disks; i++) { 177 struct bio **bio = r1_bio->bios + i; 178 if (*bio && *bio != IO_BLOCKED) 179 bio_put(*bio); 180 *bio = NULL; 181 } 182 } 183 184 static void free_r1bio(r1bio_t *r1_bio) 185 { 186 conf_t *conf = r1_bio->mddev->private; 187 188 /* 189 * Wake up any possible resync thread that waits for the device 190 * to go idle. 191 */ 192 allow_barrier(conf); 193 194 put_all_bios(conf, r1_bio); 195 mempool_free(r1_bio, conf->r1bio_pool); 196 } 197 198 static void put_buf(r1bio_t *r1_bio) 199 { 200 conf_t *conf = r1_bio->mddev->private; 201 int i; 202 203 for (i=0; i<conf->raid_disks; i++) { 204 struct bio *bio = r1_bio->bios[i]; 205 if (bio->bi_end_io) 206 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev); 207 } 208 209 mempool_free(r1_bio, conf->r1buf_pool); 210 211 lower_barrier(conf); 212 } 213 214 static void reschedule_retry(r1bio_t *r1_bio) 215 { 216 unsigned long flags; 217 mddev_t *mddev = r1_bio->mddev; 218 conf_t *conf = mddev->private; 219 220 spin_lock_irqsave(&conf->device_lock, flags); 221 list_add(&r1_bio->retry_list, &conf->retry_list); 222 conf->nr_queued ++; 223 spin_unlock_irqrestore(&conf->device_lock, flags); 224 225 wake_up(&conf->wait_barrier); 226 md_wakeup_thread(mddev->thread); 227 } 228 229 /* 230 * raid_end_bio_io() is called when we have finished servicing a mirrored 231 * operation and are ready to return a success/failure code to the buffer 232 * cache layer. 233 */ 234 static void raid_end_bio_io(r1bio_t *r1_bio) 235 { 236 struct bio *bio = r1_bio->master_bio; 237 238 /* if nobody has done the final endio yet, do it now */ 239 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) { 240 PRINTK(KERN_DEBUG "raid1: sync end %s on sectors %llu-%llu\n", 241 (bio_data_dir(bio) == WRITE) ? "write" : "read", 242 (unsigned long long) bio->bi_sector, 243 (unsigned long long) bio->bi_sector + 244 (bio->bi_size >> 9) - 1); 245 246 bio_endio(bio, 247 test_bit(R1BIO_Uptodate, &r1_bio->state) ? 0 : -EIO); 248 } 249 free_r1bio(r1_bio); 250 } 251 252 /* 253 * Update disk head position estimator based on IRQ completion info. 254 */ 255 static inline void update_head_pos(int disk, r1bio_t *r1_bio) 256 { 257 conf_t *conf = r1_bio->mddev->private; 258 259 conf->mirrors[disk].head_position = 260 r1_bio->sector + (r1_bio->sectors); 261 } 262 263 static void raid1_end_read_request(struct bio *bio, int error) 264 { 265 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 266 r1bio_t *r1_bio = bio->bi_private; 267 int mirror; 268 conf_t *conf = r1_bio->mddev->private; 269 270 mirror = r1_bio->read_disk; 271 /* 272 * this branch is our 'one mirror IO has finished' event handler: 273 */ 274 update_head_pos(mirror, r1_bio); 275 276 if (uptodate) 277 set_bit(R1BIO_Uptodate, &r1_bio->state); 278 else { 279 /* If all other devices have failed, we want to return 280 * the error upwards rather than fail the last device. 281 * Here we redefine "uptodate" to mean "Don't want to retry" 282 */ 283 unsigned long flags; 284 spin_lock_irqsave(&conf->device_lock, flags); 285 if (r1_bio->mddev->degraded == conf->raid_disks || 286 (r1_bio->mddev->degraded == conf->raid_disks-1 && 287 !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags))) 288 uptodate = 1; 289 spin_unlock_irqrestore(&conf->device_lock, flags); 290 } 291 292 if (uptodate) 293 raid_end_bio_io(r1_bio); 294 else { 295 /* 296 * oops, read error: 297 */ 298 char b[BDEVNAME_SIZE]; 299 if (printk_ratelimit()) 300 printk(KERN_ERR "md/raid1:%s: %s: rescheduling sector %llu\n", 301 mdname(conf->mddev), 302 bdevname(conf->mirrors[mirror].rdev->bdev,b), (unsigned long long)r1_bio->sector); 303 reschedule_retry(r1_bio); 304 } 305 306 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev); 307 } 308 309 static void r1_bio_write_done(r1bio_t *r1_bio, int vcnt, struct bio_vec *bv, 310 int behind) 311 { 312 if (atomic_dec_and_test(&r1_bio->remaining)) 313 { 314 /* it really is the end of this request */ 315 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) { 316 /* free extra copy of the data pages */ 317 int i = vcnt; 318 while (i--) 319 safe_put_page(bv[i].bv_page); 320 } 321 /* clear the bitmap if all writes complete successfully */ 322 bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector, 323 r1_bio->sectors, 324 !test_bit(R1BIO_Degraded, &r1_bio->state), 325 behind); 326 md_write_end(r1_bio->mddev); 327 raid_end_bio_io(r1_bio); 328 } 329 } 330 331 static void raid1_end_write_request(struct bio *bio, int error) 332 { 333 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 334 r1bio_t *r1_bio = bio->bi_private; 335 int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state); 336 conf_t *conf = r1_bio->mddev->private; 337 struct bio *to_put = NULL; 338 339 340 for (mirror = 0; mirror < conf->raid_disks; mirror++) 341 if (r1_bio->bios[mirror] == bio) 342 break; 343 344 /* 345 * 'one mirror IO has finished' event handler: 346 */ 347 r1_bio->bios[mirror] = NULL; 348 to_put = bio; 349 if (!uptodate) { 350 md_error(r1_bio->mddev, conf->mirrors[mirror].rdev); 351 /* an I/O failed, we can't clear the bitmap */ 352 set_bit(R1BIO_Degraded, &r1_bio->state); 353 } else 354 /* 355 * Set R1BIO_Uptodate in our master bio, so that we 356 * will return a good error code for to the higher 357 * levels even if IO on some other mirrored buffer 358 * fails. 359 * 360 * The 'master' represents the composite IO operation 361 * to user-side. So if something waits for IO, then it 362 * will wait for the 'master' bio. 363 */ 364 set_bit(R1BIO_Uptodate, &r1_bio->state); 365 366 update_head_pos(mirror, r1_bio); 367 368 if (behind) { 369 if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags)) 370 atomic_dec(&r1_bio->behind_remaining); 371 372 /* 373 * In behind mode, we ACK the master bio once the I/O 374 * has safely reached all non-writemostly 375 * disks. Setting the Returned bit ensures that this 376 * gets done only once -- we don't ever want to return 377 * -EIO here, instead we'll wait 378 */ 379 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) && 380 test_bit(R1BIO_Uptodate, &r1_bio->state)) { 381 /* Maybe we can return now */ 382 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) { 383 struct bio *mbio = r1_bio->master_bio; 384 PRINTK(KERN_DEBUG "raid1: behind end write sectors %llu-%llu\n", 385 (unsigned long long) mbio->bi_sector, 386 (unsigned long long) mbio->bi_sector + 387 (mbio->bi_size >> 9) - 1); 388 bio_endio(mbio, 0); 389 } 390 } 391 } 392 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev); 393 394 /* 395 * Let's see if all mirrored write operations have finished 396 * already. 397 */ 398 r1_bio_write_done(r1_bio, bio->bi_vcnt, bio->bi_io_vec, behind); 399 400 if (to_put) 401 bio_put(to_put); 402 } 403 404 405 /* 406 * This routine returns the disk from which the requested read should 407 * be done. There is a per-array 'next expected sequential IO' sector 408 * number - if this matches on the next IO then we use the last disk. 409 * There is also a per-disk 'last know head position' sector that is 410 * maintained from IRQ contexts, both the normal and the resync IO 411 * completion handlers update this position correctly. If there is no 412 * perfect sequential match then we pick the disk whose head is closest. 413 * 414 * If there are 2 mirrors in the same 2 devices, performance degrades 415 * because position is mirror, not device based. 416 * 417 * The rdev for the device selected will have nr_pending incremented. 418 */ 419 static int read_balance(conf_t *conf, r1bio_t *r1_bio) 420 { 421 const sector_t this_sector = r1_bio->sector; 422 const int sectors = r1_bio->sectors; 423 int new_disk = -1; 424 int start_disk; 425 int i; 426 sector_t new_distance, current_distance; 427 mdk_rdev_t *rdev; 428 int choose_first; 429 430 rcu_read_lock(); 431 /* 432 * Check if we can balance. We can balance on the whole 433 * device if no resync is going on, or below the resync window. 434 * We take the first readable disk when above the resync window. 435 */ 436 retry: 437 if (conf->mddev->recovery_cp < MaxSector && 438 (this_sector + sectors >= conf->next_resync)) { 439 choose_first = 1; 440 start_disk = 0; 441 } else { 442 choose_first = 0; 443 start_disk = conf->last_used; 444 } 445 446 /* make sure the disk is operational */ 447 for (i = 0 ; i < conf->raid_disks ; i++) { 448 int disk = start_disk + i; 449 if (disk >= conf->raid_disks) 450 disk -= conf->raid_disks; 451 452 rdev = rcu_dereference(conf->mirrors[disk].rdev); 453 if (r1_bio->bios[disk] == IO_BLOCKED 454 || rdev == NULL 455 || !test_bit(In_sync, &rdev->flags)) 456 continue; 457 458 new_disk = disk; 459 if (!test_bit(WriteMostly, &rdev->flags)) 460 break; 461 } 462 463 if (new_disk < 0 || choose_first) 464 goto rb_out; 465 466 /* 467 * Don't change to another disk for sequential reads: 468 */ 469 if (conf->next_seq_sect == this_sector) 470 goto rb_out; 471 if (this_sector == conf->mirrors[new_disk].head_position) 472 goto rb_out; 473 474 current_distance = abs(this_sector 475 - conf->mirrors[new_disk].head_position); 476 477 /* look for a better disk - i.e. head is closer */ 478 start_disk = new_disk; 479 for (i = 1; i < conf->raid_disks; i++) { 480 int disk = start_disk + 1; 481 if (disk >= conf->raid_disks) 482 disk -= conf->raid_disks; 483 484 rdev = rcu_dereference(conf->mirrors[disk].rdev); 485 if (r1_bio->bios[disk] == IO_BLOCKED 486 || rdev == NULL 487 || !test_bit(In_sync, &rdev->flags) 488 || test_bit(WriteMostly, &rdev->flags)) 489 continue; 490 491 if (!atomic_read(&rdev->nr_pending)) { 492 new_disk = disk; 493 break; 494 } 495 new_distance = abs(this_sector - conf->mirrors[disk].head_position); 496 if (new_distance < current_distance) { 497 current_distance = new_distance; 498 new_disk = disk; 499 } 500 } 501 502 rb_out: 503 if (new_disk >= 0) { 504 rdev = rcu_dereference(conf->mirrors[new_disk].rdev); 505 if (!rdev) 506 goto retry; 507 atomic_inc(&rdev->nr_pending); 508 if (!test_bit(In_sync, &rdev->flags)) { 509 /* cannot risk returning a device that failed 510 * before we inc'ed nr_pending 511 */ 512 rdev_dec_pending(rdev, conf->mddev); 513 goto retry; 514 } 515 conf->next_seq_sect = this_sector + sectors; 516 conf->last_used = new_disk; 517 } 518 rcu_read_unlock(); 519 520 return new_disk; 521 } 522 523 static void unplug_slaves(mddev_t *mddev) 524 { 525 conf_t *conf = mddev->private; 526 int i; 527 528 rcu_read_lock(); 529 for (i=0; i<mddev->raid_disks; i++) { 530 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev); 531 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) { 532 struct request_queue *r_queue = bdev_get_queue(rdev->bdev); 533 534 atomic_inc(&rdev->nr_pending); 535 rcu_read_unlock(); 536 537 blk_unplug(r_queue); 538 539 rdev_dec_pending(rdev, mddev); 540 rcu_read_lock(); 541 } 542 } 543 rcu_read_unlock(); 544 } 545 546 static void raid1_unplug(struct request_queue *q) 547 { 548 mddev_t *mddev = q->queuedata; 549 550 unplug_slaves(mddev); 551 md_wakeup_thread(mddev->thread); 552 } 553 554 static int raid1_congested(void *data, int bits) 555 { 556 mddev_t *mddev = data; 557 conf_t *conf = mddev->private; 558 int i, ret = 0; 559 560 if (mddev_congested(mddev, bits)) 561 return 1; 562 563 rcu_read_lock(); 564 for (i = 0; i < mddev->raid_disks; i++) { 565 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev); 566 if (rdev && !test_bit(Faulty, &rdev->flags)) { 567 struct request_queue *q = bdev_get_queue(rdev->bdev); 568 569 /* Note the '|| 1' - when read_balance prefers 570 * non-congested targets, it can be removed 571 */ 572 if ((bits & (1<<BDI_async_congested)) || 1) 573 ret |= bdi_congested(&q->backing_dev_info, bits); 574 else 575 ret &= bdi_congested(&q->backing_dev_info, bits); 576 } 577 } 578 rcu_read_unlock(); 579 return ret; 580 } 581 582 583 static int flush_pending_writes(conf_t *conf) 584 { 585 /* Any writes that have been queued but are awaiting 586 * bitmap updates get flushed here. 587 * We return 1 if any requests were actually submitted. 588 */ 589 int rv = 0; 590 591 spin_lock_irq(&conf->device_lock); 592 593 if (conf->pending_bio_list.head) { 594 struct bio *bio; 595 bio = bio_list_get(&conf->pending_bio_list); 596 blk_remove_plug(conf->mddev->queue); 597 spin_unlock_irq(&conf->device_lock); 598 /* flush any pending bitmap writes to 599 * disk before proceeding w/ I/O */ 600 bitmap_unplug(conf->mddev->bitmap); 601 602 while (bio) { /* submit pending writes */ 603 struct bio *next = bio->bi_next; 604 bio->bi_next = NULL; 605 generic_make_request(bio); 606 bio = next; 607 } 608 rv = 1; 609 } else 610 spin_unlock_irq(&conf->device_lock); 611 return rv; 612 } 613 614 /* Barriers.... 615 * Sometimes we need to suspend IO while we do something else, 616 * either some resync/recovery, or reconfigure the array. 617 * To do this we raise a 'barrier'. 618 * The 'barrier' is a counter that can be raised multiple times 619 * to count how many activities are happening which preclude 620 * normal IO. 621 * We can only raise the barrier if there is no pending IO. 622 * i.e. if nr_pending == 0. 623 * We choose only to raise the barrier if no-one is waiting for the 624 * barrier to go down. This means that as soon as an IO request 625 * is ready, no other operations which require a barrier will start 626 * until the IO request has had a chance. 627 * 628 * So: regular IO calls 'wait_barrier'. When that returns there 629 * is no backgroup IO happening, It must arrange to call 630 * allow_barrier when it has finished its IO. 631 * backgroup IO calls must call raise_barrier. Once that returns 632 * there is no normal IO happeing. It must arrange to call 633 * lower_barrier when the particular background IO completes. 634 */ 635 #define RESYNC_DEPTH 32 636 637 static void raise_barrier(conf_t *conf) 638 { 639 spin_lock_irq(&conf->resync_lock); 640 641 /* Wait until no block IO is waiting */ 642 wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting, 643 conf->resync_lock, 644 raid1_unplug(conf->mddev->queue)); 645 646 /* block any new IO from starting */ 647 conf->barrier++; 648 649 /* Now wait for all pending IO to complete */ 650 wait_event_lock_irq(conf->wait_barrier, 651 !conf->nr_pending && conf->barrier < RESYNC_DEPTH, 652 conf->resync_lock, 653 raid1_unplug(conf->mddev->queue)); 654 655 spin_unlock_irq(&conf->resync_lock); 656 } 657 658 static void lower_barrier(conf_t *conf) 659 { 660 unsigned long flags; 661 BUG_ON(conf->barrier <= 0); 662 spin_lock_irqsave(&conf->resync_lock, flags); 663 conf->barrier--; 664 spin_unlock_irqrestore(&conf->resync_lock, flags); 665 wake_up(&conf->wait_barrier); 666 } 667 668 static void wait_barrier(conf_t *conf) 669 { 670 spin_lock_irq(&conf->resync_lock); 671 if (conf->barrier) { 672 conf->nr_waiting++; 673 wait_event_lock_irq(conf->wait_barrier, !conf->barrier, 674 conf->resync_lock, 675 raid1_unplug(conf->mddev->queue)); 676 conf->nr_waiting--; 677 } 678 conf->nr_pending++; 679 spin_unlock_irq(&conf->resync_lock); 680 } 681 682 static void allow_barrier(conf_t *conf) 683 { 684 unsigned long flags; 685 spin_lock_irqsave(&conf->resync_lock, flags); 686 conf->nr_pending--; 687 spin_unlock_irqrestore(&conf->resync_lock, flags); 688 wake_up(&conf->wait_barrier); 689 } 690 691 static void freeze_array(conf_t *conf) 692 { 693 /* stop syncio and normal IO and wait for everything to 694 * go quite. 695 * We increment barrier and nr_waiting, and then 696 * wait until nr_pending match nr_queued+1 697 * This is called in the context of one normal IO request 698 * that has failed. Thus any sync request that might be pending 699 * will be blocked by nr_pending, and we need to wait for 700 * pending IO requests to complete or be queued for re-try. 701 * Thus the number queued (nr_queued) plus this request (1) 702 * must match the number of pending IOs (nr_pending) before 703 * we continue. 704 */ 705 spin_lock_irq(&conf->resync_lock); 706 conf->barrier++; 707 conf->nr_waiting++; 708 wait_event_lock_irq(conf->wait_barrier, 709 conf->nr_pending == conf->nr_queued+1, 710 conf->resync_lock, 711 ({ flush_pending_writes(conf); 712 raid1_unplug(conf->mddev->queue); })); 713 spin_unlock_irq(&conf->resync_lock); 714 } 715 static void unfreeze_array(conf_t *conf) 716 { 717 /* reverse the effect of the freeze */ 718 spin_lock_irq(&conf->resync_lock); 719 conf->barrier--; 720 conf->nr_waiting--; 721 wake_up(&conf->wait_barrier); 722 spin_unlock_irq(&conf->resync_lock); 723 } 724 725 726 /* duplicate the data pages for behind I/O 727 * We return a list of bio_vec rather than just page pointers 728 * as it makes freeing easier 729 */ 730 static struct bio_vec *alloc_behind_pages(struct bio *bio) 731 { 732 int i; 733 struct bio_vec *bvec; 734 struct bio_vec *pages = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec), 735 GFP_NOIO); 736 if (unlikely(!pages)) 737 goto do_sync_io; 738 739 bio_for_each_segment(bvec, bio, i) { 740 pages[i].bv_page = alloc_page(GFP_NOIO); 741 if (unlikely(!pages[i].bv_page)) 742 goto do_sync_io; 743 memcpy(kmap(pages[i].bv_page) + bvec->bv_offset, 744 kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len); 745 kunmap(pages[i].bv_page); 746 kunmap(bvec->bv_page); 747 } 748 749 return pages; 750 751 do_sync_io: 752 if (pages) 753 for (i = 0; i < bio->bi_vcnt && pages[i].bv_page; i++) 754 put_page(pages[i].bv_page); 755 kfree(pages); 756 PRINTK("%dB behind alloc failed, doing sync I/O\n", bio->bi_size); 757 return NULL; 758 } 759 760 static int make_request(mddev_t *mddev, struct bio * bio) 761 { 762 conf_t *conf = mddev->private; 763 mirror_info_t *mirror; 764 r1bio_t *r1_bio; 765 struct bio *read_bio; 766 int i, targets = 0, disks; 767 struct bitmap *bitmap; 768 unsigned long flags; 769 struct bio_vec *behind_pages = NULL; 770 const int rw = bio_data_dir(bio); 771 const unsigned long do_sync = (bio->bi_rw & REQ_SYNC); 772 const unsigned long do_flush_fua = (bio->bi_rw & (REQ_FLUSH | REQ_FUA)); 773 mdk_rdev_t *blocked_rdev; 774 775 /* 776 * Register the new request and wait if the reconstruction 777 * thread has put up a bar for new requests. 778 * Continue immediately if no resync is active currently. 779 */ 780 781 md_write_start(mddev, bio); /* wait on superblock update early */ 782 783 if (bio_data_dir(bio) == WRITE && 784 bio->bi_sector + bio->bi_size/512 > mddev->suspend_lo && 785 bio->bi_sector < mddev->suspend_hi) { 786 /* As the suspend_* range is controlled by 787 * userspace, we want an interruptible 788 * wait. 789 */ 790 DEFINE_WAIT(w); 791 for (;;) { 792 flush_signals(current); 793 prepare_to_wait(&conf->wait_barrier, 794 &w, TASK_INTERRUPTIBLE); 795 if (bio->bi_sector + bio->bi_size/512 <= mddev->suspend_lo || 796 bio->bi_sector >= mddev->suspend_hi) 797 break; 798 schedule(); 799 } 800 finish_wait(&conf->wait_barrier, &w); 801 } 802 803 wait_barrier(conf); 804 805 bitmap = mddev->bitmap; 806 807 /* 808 * make_request() can abort the operation when READA is being 809 * used and no empty request is available. 810 * 811 */ 812 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO); 813 814 r1_bio->master_bio = bio; 815 r1_bio->sectors = bio->bi_size >> 9; 816 r1_bio->state = 0; 817 r1_bio->mddev = mddev; 818 r1_bio->sector = bio->bi_sector; 819 820 if (rw == READ) { 821 /* 822 * read balancing logic: 823 */ 824 int rdisk = read_balance(conf, r1_bio); 825 826 if (rdisk < 0) { 827 /* couldn't find anywhere to read from */ 828 raid_end_bio_io(r1_bio); 829 return 0; 830 } 831 mirror = conf->mirrors + rdisk; 832 833 if (test_bit(WriteMostly, &mirror->rdev->flags) && 834 bitmap) { 835 /* Reading from a write-mostly device must 836 * take care not to over-take any writes 837 * that are 'behind' 838 */ 839 wait_event(bitmap->behind_wait, 840 atomic_read(&bitmap->behind_writes) == 0); 841 } 842 r1_bio->read_disk = rdisk; 843 844 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev); 845 846 r1_bio->bios[rdisk] = read_bio; 847 848 read_bio->bi_sector = r1_bio->sector + mirror->rdev->data_offset; 849 read_bio->bi_bdev = mirror->rdev->bdev; 850 read_bio->bi_end_io = raid1_end_read_request; 851 read_bio->bi_rw = READ | do_sync; 852 read_bio->bi_private = r1_bio; 853 854 generic_make_request(read_bio); 855 return 0; 856 } 857 858 /* 859 * WRITE: 860 */ 861 /* first select target devices under spinlock and 862 * inc refcount on their rdev. Record them by setting 863 * bios[x] to bio 864 */ 865 disks = conf->raid_disks; 866 retry_write: 867 blocked_rdev = NULL; 868 rcu_read_lock(); 869 for (i = 0; i < disks; i++) { 870 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev); 871 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) { 872 atomic_inc(&rdev->nr_pending); 873 blocked_rdev = rdev; 874 break; 875 } 876 if (rdev && !test_bit(Faulty, &rdev->flags)) { 877 atomic_inc(&rdev->nr_pending); 878 if (test_bit(Faulty, &rdev->flags)) { 879 rdev_dec_pending(rdev, mddev); 880 r1_bio->bios[i] = NULL; 881 } else { 882 r1_bio->bios[i] = bio; 883 targets++; 884 } 885 } else 886 r1_bio->bios[i] = NULL; 887 } 888 rcu_read_unlock(); 889 890 if (unlikely(blocked_rdev)) { 891 /* Wait for this device to become unblocked */ 892 int j; 893 894 for (j = 0; j < i; j++) 895 if (r1_bio->bios[j]) 896 rdev_dec_pending(conf->mirrors[j].rdev, mddev); 897 898 allow_barrier(conf); 899 md_wait_for_blocked_rdev(blocked_rdev, mddev); 900 wait_barrier(conf); 901 goto retry_write; 902 } 903 904 BUG_ON(targets == 0); /* we never fail the last device */ 905 906 if (targets < conf->raid_disks) { 907 /* array is degraded, we will not clear the bitmap 908 * on I/O completion (see raid1_end_write_request) */ 909 set_bit(R1BIO_Degraded, &r1_bio->state); 910 } 911 912 /* do behind I/O ? 913 * Not if there are too many, or cannot allocate memory, 914 * or a reader on WriteMostly is waiting for behind writes 915 * to flush */ 916 if (bitmap && 917 (atomic_read(&bitmap->behind_writes) 918 < mddev->bitmap_info.max_write_behind) && 919 !waitqueue_active(&bitmap->behind_wait) && 920 (behind_pages = alloc_behind_pages(bio)) != NULL) 921 set_bit(R1BIO_BehindIO, &r1_bio->state); 922 923 atomic_set(&r1_bio->remaining, 1); 924 atomic_set(&r1_bio->behind_remaining, 0); 925 926 bitmap_startwrite(bitmap, bio->bi_sector, r1_bio->sectors, 927 test_bit(R1BIO_BehindIO, &r1_bio->state)); 928 for (i = 0; i < disks; i++) { 929 struct bio *mbio; 930 if (!r1_bio->bios[i]) 931 continue; 932 933 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev); 934 r1_bio->bios[i] = mbio; 935 936 mbio->bi_sector = r1_bio->sector + conf->mirrors[i].rdev->data_offset; 937 mbio->bi_bdev = conf->mirrors[i].rdev->bdev; 938 mbio->bi_end_io = raid1_end_write_request; 939 mbio->bi_rw = WRITE | do_flush_fua | do_sync; 940 mbio->bi_private = r1_bio; 941 942 if (behind_pages) { 943 struct bio_vec *bvec; 944 int j; 945 946 /* Yes, I really want the '__' version so that 947 * we clear any unused pointer in the io_vec, rather 948 * than leave them unchanged. This is important 949 * because when we come to free the pages, we won't 950 * know the original bi_idx, so we just free 951 * them all 952 */ 953 __bio_for_each_segment(bvec, mbio, j, 0) 954 bvec->bv_page = behind_pages[j].bv_page; 955 if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags)) 956 atomic_inc(&r1_bio->behind_remaining); 957 } 958 959 atomic_inc(&r1_bio->remaining); 960 spin_lock_irqsave(&conf->device_lock, flags); 961 bio_list_add(&conf->pending_bio_list, mbio); 962 blk_plug_device(mddev->queue); 963 spin_unlock_irqrestore(&conf->device_lock, flags); 964 } 965 r1_bio_write_done(r1_bio, bio->bi_vcnt, behind_pages, behind_pages != NULL); 966 kfree(behind_pages); /* the behind pages are attached to the bios now */ 967 968 /* In case raid1d snuck in to freeze_array */ 969 wake_up(&conf->wait_barrier); 970 971 if (do_sync) 972 md_wakeup_thread(mddev->thread); 973 974 return 0; 975 } 976 977 static void status(struct seq_file *seq, mddev_t *mddev) 978 { 979 conf_t *conf = mddev->private; 980 int i; 981 982 seq_printf(seq, " [%d/%d] [", conf->raid_disks, 983 conf->raid_disks - mddev->degraded); 984 rcu_read_lock(); 985 for (i = 0; i < conf->raid_disks; i++) { 986 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev); 987 seq_printf(seq, "%s", 988 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_"); 989 } 990 rcu_read_unlock(); 991 seq_printf(seq, "]"); 992 } 993 994 995 static void error(mddev_t *mddev, mdk_rdev_t *rdev) 996 { 997 char b[BDEVNAME_SIZE]; 998 conf_t *conf = mddev->private; 999 1000 /* 1001 * If it is not operational, then we have already marked it as dead 1002 * else if it is the last working disks, ignore the error, let the 1003 * next level up know. 1004 * else mark the drive as failed 1005 */ 1006 if (test_bit(In_sync, &rdev->flags) 1007 && (conf->raid_disks - mddev->degraded) == 1) { 1008 /* 1009 * Don't fail the drive, act as though we were just a 1010 * normal single drive. 1011 * However don't try a recovery from this drive as 1012 * it is very likely to fail. 1013 */ 1014 mddev->recovery_disabled = 1; 1015 return; 1016 } 1017 if (test_and_clear_bit(In_sync, &rdev->flags)) { 1018 unsigned long flags; 1019 spin_lock_irqsave(&conf->device_lock, flags); 1020 mddev->degraded++; 1021 set_bit(Faulty, &rdev->flags); 1022 spin_unlock_irqrestore(&conf->device_lock, flags); 1023 /* 1024 * if recovery is running, make sure it aborts. 1025 */ 1026 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 1027 } else 1028 set_bit(Faulty, &rdev->flags); 1029 set_bit(MD_CHANGE_DEVS, &mddev->flags); 1030 printk(KERN_ALERT 1031 "md/raid1:%s: Disk failure on %s, disabling device.\n" 1032 "md/raid1:%s: Operation continuing on %d devices.\n", 1033 mdname(mddev), bdevname(rdev->bdev, b), 1034 mdname(mddev), conf->raid_disks - mddev->degraded); 1035 } 1036 1037 static void print_conf(conf_t *conf) 1038 { 1039 int i; 1040 1041 printk(KERN_DEBUG "RAID1 conf printout:\n"); 1042 if (!conf) { 1043 printk(KERN_DEBUG "(!conf)\n"); 1044 return; 1045 } 1046 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded, 1047 conf->raid_disks); 1048 1049 rcu_read_lock(); 1050 for (i = 0; i < conf->raid_disks; i++) { 1051 char b[BDEVNAME_SIZE]; 1052 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev); 1053 if (rdev) 1054 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n", 1055 i, !test_bit(In_sync, &rdev->flags), 1056 !test_bit(Faulty, &rdev->flags), 1057 bdevname(rdev->bdev,b)); 1058 } 1059 rcu_read_unlock(); 1060 } 1061 1062 static void close_sync(conf_t *conf) 1063 { 1064 wait_barrier(conf); 1065 allow_barrier(conf); 1066 1067 mempool_destroy(conf->r1buf_pool); 1068 conf->r1buf_pool = NULL; 1069 } 1070 1071 static int raid1_spare_active(mddev_t *mddev) 1072 { 1073 int i; 1074 conf_t *conf = mddev->private; 1075 int count = 0; 1076 unsigned long flags; 1077 1078 /* 1079 * Find all failed disks within the RAID1 configuration 1080 * and mark them readable. 1081 * Called under mddev lock, so rcu protection not needed. 1082 */ 1083 for (i = 0; i < conf->raid_disks; i++) { 1084 mdk_rdev_t *rdev = conf->mirrors[i].rdev; 1085 if (rdev 1086 && !test_bit(Faulty, &rdev->flags) 1087 && !test_and_set_bit(In_sync, &rdev->flags)) { 1088 count++; 1089 sysfs_notify_dirent(rdev->sysfs_state); 1090 } 1091 } 1092 spin_lock_irqsave(&conf->device_lock, flags); 1093 mddev->degraded -= count; 1094 spin_unlock_irqrestore(&conf->device_lock, flags); 1095 1096 print_conf(conf); 1097 return count; 1098 } 1099 1100 1101 static int raid1_add_disk(mddev_t *mddev, mdk_rdev_t *rdev) 1102 { 1103 conf_t *conf = mddev->private; 1104 int err = -EEXIST; 1105 int mirror = 0; 1106 mirror_info_t *p; 1107 int first = 0; 1108 int last = mddev->raid_disks - 1; 1109 1110 if (rdev->raid_disk >= 0) 1111 first = last = rdev->raid_disk; 1112 1113 for (mirror = first; mirror <= last; mirror++) 1114 if ( !(p=conf->mirrors+mirror)->rdev) { 1115 1116 disk_stack_limits(mddev->gendisk, rdev->bdev, 1117 rdev->data_offset << 9); 1118 /* as we don't honour merge_bvec_fn, we must 1119 * never risk violating it, so limit 1120 * ->max_segments to one lying with a single 1121 * page, as a one page request is never in 1122 * violation. 1123 */ 1124 if (rdev->bdev->bd_disk->queue->merge_bvec_fn) { 1125 blk_queue_max_segments(mddev->queue, 1); 1126 blk_queue_segment_boundary(mddev->queue, 1127 PAGE_CACHE_SIZE - 1); 1128 } 1129 1130 p->head_position = 0; 1131 rdev->raid_disk = mirror; 1132 err = 0; 1133 /* As all devices are equivalent, we don't need a full recovery 1134 * if this was recently any drive of the array 1135 */ 1136 if (rdev->saved_raid_disk < 0) 1137 conf->fullsync = 1; 1138 rcu_assign_pointer(p->rdev, rdev); 1139 break; 1140 } 1141 md_integrity_add_rdev(rdev, mddev); 1142 print_conf(conf); 1143 return err; 1144 } 1145 1146 static int raid1_remove_disk(mddev_t *mddev, int number) 1147 { 1148 conf_t *conf = mddev->private; 1149 int err = 0; 1150 mdk_rdev_t *rdev; 1151 mirror_info_t *p = conf->mirrors+ number; 1152 1153 print_conf(conf); 1154 rdev = p->rdev; 1155 if (rdev) { 1156 if (test_bit(In_sync, &rdev->flags) || 1157 atomic_read(&rdev->nr_pending)) { 1158 err = -EBUSY; 1159 goto abort; 1160 } 1161 /* Only remove non-faulty devices if recovery 1162 * is not possible. 1163 */ 1164 if (!test_bit(Faulty, &rdev->flags) && 1165 !mddev->recovery_disabled && 1166 mddev->degraded < conf->raid_disks) { 1167 err = -EBUSY; 1168 goto abort; 1169 } 1170 p->rdev = NULL; 1171 synchronize_rcu(); 1172 if (atomic_read(&rdev->nr_pending)) { 1173 /* lost the race, try later */ 1174 err = -EBUSY; 1175 p->rdev = rdev; 1176 goto abort; 1177 } 1178 md_integrity_register(mddev); 1179 } 1180 abort: 1181 1182 print_conf(conf); 1183 return err; 1184 } 1185 1186 1187 static void end_sync_read(struct bio *bio, int error) 1188 { 1189 r1bio_t *r1_bio = bio->bi_private; 1190 int i; 1191 1192 for (i=r1_bio->mddev->raid_disks; i--; ) 1193 if (r1_bio->bios[i] == bio) 1194 break; 1195 BUG_ON(i < 0); 1196 update_head_pos(i, r1_bio); 1197 /* 1198 * we have read a block, now it needs to be re-written, 1199 * or re-read if the read failed. 1200 * We don't do much here, just schedule handling by raid1d 1201 */ 1202 if (test_bit(BIO_UPTODATE, &bio->bi_flags)) 1203 set_bit(R1BIO_Uptodate, &r1_bio->state); 1204 1205 if (atomic_dec_and_test(&r1_bio->remaining)) 1206 reschedule_retry(r1_bio); 1207 } 1208 1209 static void end_sync_write(struct bio *bio, int error) 1210 { 1211 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 1212 r1bio_t *r1_bio = bio->bi_private; 1213 mddev_t *mddev = r1_bio->mddev; 1214 conf_t *conf = mddev->private; 1215 int i; 1216 int mirror=0; 1217 1218 for (i = 0; i < conf->raid_disks; i++) 1219 if (r1_bio->bios[i] == bio) { 1220 mirror = i; 1221 break; 1222 } 1223 if (!uptodate) { 1224 sector_t sync_blocks = 0; 1225 sector_t s = r1_bio->sector; 1226 long sectors_to_go = r1_bio->sectors; 1227 /* make sure these bits doesn't get cleared. */ 1228 do { 1229 bitmap_end_sync(mddev->bitmap, s, 1230 &sync_blocks, 1); 1231 s += sync_blocks; 1232 sectors_to_go -= sync_blocks; 1233 } while (sectors_to_go > 0); 1234 md_error(mddev, conf->mirrors[mirror].rdev); 1235 } 1236 1237 update_head_pos(mirror, r1_bio); 1238 1239 if (atomic_dec_and_test(&r1_bio->remaining)) { 1240 sector_t s = r1_bio->sectors; 1241 put_buf(r1_bio); 1242 md_done_sync(mddev, s, uptodate); 1243 } 1244 } 1245 1246 static void sync_request_write(mddev_t *mddev, r1bio_t *r1_bio) 1247 { 1248 conf_t *conf = mddev->private; 1249 int i; 1250 int disks = conf->raid_disks; 1251 struct bio *bio, *wbio; 1252 1253 bio = r1_bio->bios[r1_bio->read_disk]; 1254 1255 1256 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 1257 /* We have read all readable devices. If we haven't 1258 * got the block, then there is no hope left. 1259 * If we have, then we want to do a comparison 1260 * and skip the write if everything is the same. 1261 * If any blocks failed to read, then we need to 1262 * attempt an over-write 1263 */ 1264 int primary; 1265 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) { 1266 for (i=0; i<mddev->raid_disks; i++) 1267 if (r1_bio->bios[i]->bi_end_io == end_sync_read) 1268 md_error(mddev, conf->mirrors[i].rdev); 1269 1270 md_done_sync(mddev, r1_bio->sectors, 1); 1271 put_buf(r1_bio); 1272 return; 1273 } 1274 for (primary=0; primary<mddev->raid_disks; primary++) 1275 if (r1_bio->bios[primary]->bi_end_io == end_sync_read && 1276 test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) { 1277 r1_bio->bios[primary]->bi_end_io = NULL; 1278 rdev_dec_pending(conf->mirrors[primary].rdev, mddev); 1279 break; 1280 } 1281 r1_bio->read_disk = primary; 1282 for (i=0; i<mddev->raid_disks; i++) 1283 if (r1_bio->bios[i]->bi_end_io == end_sync_read) { 1284 int j; 1285 int vcnt = r1_bio->sectors >> (PAGE_SHIFT- 9); 1286 struct bio *pbio = r1_bio->bios[primary]; 1287 struct bio *sbio = r1_bio->bios[i]; 1288 1289 if (test_bit(BIO_UPTODATE, &sbio->bi_flags)) { 1290 for (j = vcnt; j-- ; ) { 1291 struct page *p, *s; 1292 p = pbio->bi_io_vec[j].bv_page; 1293 s = sbio->bi_io_vec[j].bv_page; 1294 if (memcmp(page_address(p), 1295 page_address(s), 1296 PAGE_SIZE)) 1297 break; 1298 } 1299 } else 1300 j = 0; 1301 if (j >= 0) 1302 mddev->resync_mismatches += r1_bio->sectors; 1303 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery) 1304 && test_bit(BIO_UPTODATE, &sbio->bi_flags))) { 1305 sbio->bi_end_io = NULL; 1306 rdev_dec_pending(conf->mirrors[i].rdev, mddev); 1307 } else { 1308 /* fixup the bio for reuse */ 1309 int size; 1310 sbio->bi_vcnt = vcnt; 1311 sbio->bi_size = r1_bio->sectors << 9; 1312 sbio->bi_idx = 0; 1313 sbio->bi_phys_segments = 0; 1314 sbio->bi_flags &= ~(BIO_POOL_MASK - 1); 1315 sbio->bi_flags |= 1 << BIO_UPTODATE; 1316 sbio->bi_next = NULL; 1317 sbio->bi_sector = r1_bio->sector + 1318 conf->mirrors[i].rdev->data_offset; 1319 sbio->bi_bdev = conf->mirrors[i].rdev->bdev; 1320 size = sbio->bi_size; 1321 for (j = 0; j < vcnt ; j++) { 1322 struct bio_vec *bi; 1323 bi = &sbio->bi_io_vec[j]; 1324 bi->bv_offset = 0; 1325 if (size > PAGE_SIZE) 1326 bi->bv_len = PAGE_SIZE; 1327 else 1328 bi->bv_len = size; 1329 size -= PAGE_SIZE; 1330 memcpy(page_address(bi->bv_page), 1331 page_address(pbio->bi_io_vec[j].bv_page), 1332 PAGE_SIZE); 1333 } 1334 1335 } 1336 } 1337 } 1338 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) { 1339 /* ouch - failed to read all of that. 1340 * Try some synchronous reads of other devices to get 1341 * good data, much like with normal read errors. Only 1342 * read into the pages we already have so we don't 1343 * need to re-issue the read request. 1344 * We don't need to freeze the array, because being in an 1345 * active sync request, there is no normal IO, and 1346 * no overlapping syncs. 1347 */ 1348 sector_t sect = r1_bio->sector; 1349 int sectors = r1_bio->sectors; 1350 int idx = 0; 1351 1352 while(sectors) { 1353 int s = sectors; 1354 int d = r1_bio->read_disk; 1355 int success = 0; 1356 mdk_rdev_t *rdev; 1357 1358 if (s > (PAGE_SIZE>>9)) 1359 s = PAGE_SIZE >> 9; 1360 do { 1361 if (r1_bio->bios[d]->bi_end_io == end_sync_read) { 1362 /* No rcu protection needed here devices 1363 * can only be removed when no resync is 1364 * active, and resync is currently active 1365 */ 1366 rdev = conf->mirrors[d].rdev; 1367 if (sync_page_io(rdev, 1368 sect, 1369 s<<9, 1370 bio->bi_io_vec[idx].bv_page, 1371 READ, false)) { 1372 success = 1; 1373 break; 1374 } 1375 } 1376 d++; 1377 if (d == conf->raid_disks) 1378 d = 0; 1379 } while (!success && d != r1_bio->read_disk); 1380 1381 if (success) { 1382 int start = d; 1383 /* write it back and re-read */ 1384 set_bit(R1BIO_Uptodate, &r1_bio->state); 1385 while (d != r1_bio->read_disk) { 1386 if (d == 0) 1387 d = conf->raid_disks; 1388 d--; 1389 if (r1_bio->bios[d]->bi_end_io != end_sync_read) 1390 continue; 1391 rdev = conf->mirrors[d].rdev; 1392 atomic_add(s, &rdev->corrected_errors); 1393 if (sync_page_io(rdev, 1394 sect, 1395 s<<9, 1396 bio->bi_io_vec[idx].bv_page, 1397 WRITE, false) == 0) 1398 md_error(mddev, rdev); 1399 } 1400 d = start; 1401 while (d != r1_bio->read_disk) { 1402 if (d == 0) 1403 d = conf->raid_disks; 1404 d--; 1405 if (r1_bio->bios[d]->bi_end_io != end_sync_read) 1406 continue; 1407 rdev = conf->mirrors[d].rdev; 1408 if (sync_page_io(rdev, 1409 sect, 1410 s<<9, 1411 bio->bi_io_vec[idx].bv_page, 1412 READ, false) == 0) 1413 md_error(mddev, rdev); 1414 } 1415 } else { 1416 char b[BDEVNAME_SIZE]; 1417 /* Cannot read from anywhere, array is toast */ 1418 md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev); 1419 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error" 1420 " for block %llu\n", 1421 mdname(mddev), 1422 bdevname(bio->bi_bdev, b), 1423 (unsigned long long)r1_bio->sector); 1424 md_done_sync(mddev, r1_bio->sectors, 0); 1425 put_buf(r1_bio); 1426 return; 1427 } 1428 sectors -= s; 1429 sect += s; 1430 idx ++; 1431 } 1432 } 1433 1434 /* 1435 * schedule writes 1436 */ 1437 atomic_set(&r1_bio->remaining, 1); 1438 for (i = 0; i < disks ; i++) { 1439 wbio = r1_bio->bios[i]; 1440 if (wbio->bi_end_io == NULL || 1441 (wbio->bi_end_io == end_sync_read && 1442 (i == r1_bio->read_disk || 1443 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery)))) 1444 continue; 1445 1446 wbio->bi_rw = WRITE; 1447 wbio->bi_end_io = end_sync_write; 1448 atomic_inc(&r1_bio->remaining); 1449 md_sync_acct(conf->mirrors[i].rdev->bdev, wbio->bi_size >> 9); 1450 1451 generic_make_request(wbio); 1452 } 1453 1454 if (atomic_dec_and_test(&r1_bio->remaining)) { 1455 /* if we're here, all write(s) have completed, so clean up */ 1456 md_done_sync(mddev, r1_bio->sectors, 1); 1457 put_buf(r1_bio); 1458 } 1459 } 1460 1461 /* 1462 * This is a kernel thread which: 1463 * 1464 * 1. Retries failed read operations on working mirrors. 1465 * 2. Updates the raid superblock when problems encounter. 1466 * 3. Performs writes following reads for array syncronising. 1467 */ 1468 1469 static void fix_read_error(conf_t *conf, int read_disk, 1470 sector_t sect, int sectors) 1471 { 1472 mddev_t *mddev = conf->mddev; 1473 while(sectors) { 1474 int s = sectors; 1475 int d = read_disk; 1476 int success = 0; 1477 int start; 1478 mdk_rdev_t *rdev; 1479 1480 if (s > (PAGE_SIZE>>9)) 1481 s = PAGE_SIZE >> 9; 1482 1483 do { 1484 /* Note: no rcu protection needed here 1485 * as this is synchronous in the raid1d thread 1486 * which is the thread that might remove 1487 * a device. If raid1d ever becomes multi-threaded.... 1488 */ 1489 rdev = conf->mirrors[d].rdev; 1490 if (rdev && 1491 test_bit(In_sync, &rdev->flags) && 1492 sync_page_io(rdev, sect, s<<9, 1493 conf->tmppage, READ, false)) 1494 success = 1; 1495 else { 1496 d++; 1497 if (d == conf->raid_disks) 1498 d = 0; 1499 } 1500 } while (!success && d != read_disk); 1501 1502 if (!success) { 1503 /* Cannot read from anywhere -- bye bye array */ 1504 md_error(mddev, conf->mirrors[read_disk].rdev); 1505 break; 1506 } 1507 /* write it back and re-read */ 1508 start = d; 1509 while (d != read_disk) { 1510 if (d==0) 1511 d = conf->raid_disks; 1512 d--; 1513 rdev = conf->mirrors[d].rdev; 1514 if (rdev && 1515 test_bit(In_sync, &rdev->flags)) { 1516 if (sync_page_io(rdev, sect, s<<9, 1517 conf->tmppage, WRITE, false) 1518 == 0) 1519 /* Well, this device is dead */ 1520 md_error(mddev, rdev); 1521 } 1522 } 1523 d = start; 1524 while (d != read_disk) { 1525 char b[BDEVNAME_SIZE]; 1526 if (d==0) 1527 d = conf->raid_disks; 1528 d--; 1529 rdev = conf->mirrors[d].rdev; 1530 if (rdev && 1531 test_bit(In_sync, &rdev->flags)) { 1532 if (sync_page_io(rdev, sect, s<<9, 1533 conf->tmppage, READ, false) 1534 == 0) 1535 /* Well, this device is dead */ 1536 md_error(mddev, rdev); 1537 else { 1538 atomic_add(s, &rdev->corrected_errors); 1539 printk(KERN_INFO 1540 "md/raid1:%s: read error corrected " 1541 "(%d sectors at %llu on %s)\n", 1542 mdname(mddev), s, 1543 (unsigned long long)(sect + 1544 rdev->data_offset), 1545 bdevname(rdev->bdev, b)); 1546 } 1547 } 1548 } 1549 sectors -= s; 1550 sect += s; 1551 } 1552 } 1553 1554 static void raid1d(mddev_t *mddev) 1555 { 1556 r1bio_t *r1_bio; 1557 struct bio *bio; 1558 unsigned long flags; 1559 conf_t *conf = mddev->private; 1560 struct list_head *head = &conf->retry_list; 1561 int unplug=0; 1562 mdk_rdev_t *rdev; 1563 1564 md_check_recovery(mddev); 1565 1566 for (;;) { 1567 char b[BDEVNAME_SIZE]; 1568 1569 unplug += flush_pending_writes(conf); 1570 1571 spin_lock_irqsave(&conf->device_lock, flags); 1572 if (list_empty(head)) { 1573 spin_unlock_irqrestore(&conf->device_lock, flags); 1574 break; 1575 } 1576 r1_bio = list_entry(head->prev, r1bio_t, retry_list); 1577 list_del(head->prev); 1578 conf->nr_queued--; 1579 spin_unlock_irqrestore(&conf->device_lock, flags); 1580 1581 mddev = r1_bio->mddev; 1582 conf = mddev->private; 1583 if (test_bit(R1BIO_IsSync, &r1_bio->state)) { 1584 sync_request_write(mddev, r1_bio); 1585 unplug = 1; 1586 } else { 1587 int disk; 1588 1589 /* we got a read error. Maybe the drive is bad. Maybe just 1590 * the block and we can fix it. 1591 * We freeze all other IO, and try reading the block from 1592 * other devices. When we find one, we re-write 1593 * and check it that fixes the read error. 1594 * This is all done synchronously while the array is 1595 * frozen 1596 */ 1597 if (mddev->ro == 0) { 1598 freeze_array(conf); 1599 fix_read_error(conf, r1_bio->read_disk, 1600 r1_bio->sector, 1601 r1_bio->sectors); 1602 unfreeze_array(conf); 1603 } else 1604 md_error(mddev, 1605 conf->mirrors[r1_bio->read_disk].rdev); 1606 1607 bio = r1_bio->bios[r1_bio->read_disk]; 1608 if ((disk=read_balance(conf, r1_bio)) == -1) { 1609 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O" 1610 " read error for block %llu\n", 1611 mdname(mddev), 1612 bdevname(bio->bi_bdev,b), 1613 (unsigned long long)r1_bio->sector); 1614 raid_end_bio_io(r1_bio); 1615 } else { 1616 const unsigned long do_sync = r1_bio->master_bio->bi_rw & REQ_SYNC; 1617 r1_bio->bios[r1_bio->read_disk] = 1618 mddev->ro ? IO_BLOCKED : NULL; 1619 r1_bio->read_disk = disk; 1620 bio_put(bio); 1621 bio = bio_clone_mddev(r1_bio->master_bio, 1622 GFP_NOIO, mddev); 1623 r1_bio->bios[r1_bio->read_disk] = bio; 1624 rdev = conf->mirrors[disk].rdev; 1625 if (printk_ratelimit()) 1626 printk(KERN_ERR "md/raid1:%s: redirecting sector %llu to" 1627 " other mirror: %s\n", 1628 mdname(mddev), 1629 (unsigned long long)r1_bio->sector, 1630 bdevname(rdev->bdev,b)); 1631 bio->bi_sector = r1_bio->sector + rdev->data_offset; 1632 bio->bi_bdev = rdev->bdev; 1633 bio->bi_end_io = raid1_end_read_request; 1634 bio->bi_rw = READ | do_sync; 1635 bio->bi_private = r1_bio; 1636 unplug = 1; 1637 generic_make_request(bio); 1638 } 1639 } 1640 cond_resched(); 1641 } 1642 if (unplug) 1643 unplug_slaves(mddev); 1644 } 1645 1646 1647 static int init_resync(conf_t *conf) 1648 { 1649 int buffs; 1650 1651 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE; 1652 BUG_ON(conf->r1buf_pool); 1653 conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free, 1654 conf->poolinfo); 1655 if (!conf->r1buf_pool) 1656 return -ENOMEM; 1657 conf->next_resync = 0; 1658 return 0; 1659 } 1660 1661 /* 1662 * perform a "sync" on one "block" 1663 * 1664 * We need to make sure that no normal I/O request - particularly write 1665 * requests - conflict with active sync requests. 1666 * 1667 * This is achieved by tracking pending requests and a 'barrier' concept 1668 * that can be installed to exclude normal IO requests. 1669 */ 1670 1671 static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster) 1672 { 1673 conf_t *conf = mddev->private; 1674 r1bio_t *r1_bio; 1675 struct bio *bio; 1676 sector_t max_sector, nr_sectors; 1677 int disk = -1; 1678 int i; 1679 int wonly = -1; 1680 int write_targets = 0, read_targets = 0; 1681 sector_t sync_blocks; 1682 int still_degraded = 0; 1683 1684 if (!conf->r1buf_pool) 1685 if (init_resync(conf)) 1686 return 0; 1687 1688 max_sector = mddev->dev_sectors; 1689 if (sector_nr >= max_sector) { 1690 /* If we aborted, we need to abort the 1691 * sync on the 'current' bitmap chunk (there will 1692 * only be one in raid1 resync. 1693 * We can find the current addess in mddev->curr_resync 1694 */ 1695 if (mddev->curr_resync < max_sector) /* aborted */ 1696 bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 1697 &sync_blocks, 1); 1698 else /* completed sync */ 1699 conf->fullsync = 0; 1700 1701 bitmap_close_sync(mddev->bitmap); 1702 close_sync(conf); 1703 return 0; 1704 } 1705 1706 if (mddev->bitmap == NULL && 1707 mddev->recovery_cp == MaxSector && 1708 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 1709 conf->fullsync == 0) { 1710 *skipped = 1; 1711 return max_sector - sector_nr; 1712 } 1713 /* before building a request, check if we can skip these blocks.. 1714 * This call the bitmap_start_sync doesn't actually record anything 1715 */ 1716 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) && 1717 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 1718 /* We can skip this block, and probably several more */ 1719 *skipped = 1; 1720 return sync_blocks; 1721 } 1722 /* 1723 * If there is non-resync activity waiting for a turn, 1724 * and resync is going fast enough, 1725 * then let it though before starting on this new sync request. 1726 */ 1727 if (!go_faster && conf->nr_waiting) 1728 msleep_interruptible(1000); 1729 1730 bitmap_cond_end_sync(mddev->bitmap, sector_nr); 1731 r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO); 1732 raise_barrier(conf); 1733 1734 conf->next_resync = sector_nr; 1735 1736 rcu_read_lock(); 1737 /* 1738 * If we get a correctably read error during resync or recovery, 1739 * we might want to read from a different device. So we 1740 * flag all drives that could conceivably be read from for READ, 1741 * and any others (which will be non-In_sync devices) for WRITE. 1742 * If a read fails, we try reading from something else for which READ 1743 * is OK. 1744 */ 1745 1746 r1_bio->mddev = mddev; 1747 r1_bio->sector = sector_nr; 1748 r1_bio->state = 0; 1749 set_bit(R1BIO_IsSync, &r1_bio->state); 1750 1751 for (i=0; i < conf->raid_disks; i++) { 1752 mdk_rdev_t *rdev; 1753 bio = r1_bio->bios[i]; 1754 1755 /* take from bio_init */ 1756 bio->bi_next = NULL; 1757 bio->bi_flags &= ~(BIO_POOL_MASK-1); 1758 bio->bi_flags |= 1 << BIO_UPTODATE; 1759 bio->bi_comp_cpu = -1; 1760 bio->bi_rw = READ; 1761 bio->bi_vcnt = 0; 1762 bio->bi_idx = 0; 1763 bio->bi_phys_segments = 0; 1764 bio->bi_size = 0; 1765 bio->bi_end_io = NULL; 1766 bio->bi_private = NULL; 1767 1768 rdev = rcu_dereference(conf->mirrors[i].rdev); 1769 if (rdev == NULL || 1770 test_bit(Faulty, &rdev->flags)) { 1771 still_degraded = 1; 1772 continue; 1773 } else if (!test_bit(In_sync, &rdev->flags)) { 1774 bio->bi_rw = WRITE; 1775 bio->bi_end_io = end_sync_write; 1776 write_targets ++; 1777 } else { 1778 /* may need to read from here */ 1779 bio->bi_rw = READ; 1780 bio->bi_end_io = end_sync_read; 1781 if (test_bit(WriteMostly, &rdev->flags)) { 1782 if (wonly < 0) 1783 wonly = i; 1784 } else { 1785 if (disk < 0) 1786 disk = i; 1787 } 1788 read_targets++; 1789 } 1790 atomic_inc(&rdev->nr_pending); 1791 bio->bi_sector = sector_nr + rdev->data_offset; 1792 bio->bi_bdev = rdev->bdev; 1793 bio->bi_private = r1_bio; 1794 } 1795 rcu_read_unlock(); 1796 if (disk < 0) 1797 disk = wonly; 1798 r1_bio->read_disk = disk; 1799 1800 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0) 1801 /* extra read targets are also write targets */ 1802 write_targets += read_targets-1; 1803 1804 if (write_targets == 0 || read_targets == 0) { 1805 /* There is nowhere to write, so all non-sync 1806 * drives must be failed - so we are finished 1807 */ 1808 sector_t rv = max_sector - sector_nr; 1809 *skipped = 1; 1810 put_buf(r1_bio); 1811 return rv; 1812 } 1813 1814 if (max_sector > mddev->resync_max) 1815 max_sector = mddev->resync_max; /* Don't do IO beyond here */ 1816 nr_sectors = 0; 1817 sync_blocks = 0; 1818 do { 1819 struct page *page; 1820 int len = PAGE_SIZE; 1821 if (sector_nr + (len>>9) > max_sector) 1822 len = (max_sector - sector_nr) << 9; 1823 if (len == 0) 1824 break; 1825 if (sync_blocks == 0) { 1826 if (!bitmap_start_sync(mddev->bitmap, sector_nr, 1827 &sync_blocks, still_degraded) && 1828 !conf->fullsync && 1829 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 1830 break; 1831 BUG_ON(sync_blocks < (PAGE_SIZE>>9)); 1832 if ((len >> 9) > sync_blocks) 1833 len = sync_blocks<<9; 1834 } 1835 1836 for (i=0 ; i < conf->raid_disks; i++) { 1837 bio = r1_bio->bios[i]; 1838 if (bio->bi_end_io) { 1839 page = bio->bi_io_vec[bio->bi_vcnt].bv_page; 1840 if (bio_add_page(bio, page, len, 0) == 0) { 1841 /* stop here */ 1842 bio->bi_io_vec[bio->bi_vcnt].bv_page = page; 1843 while (i > 0) { 1844 i--; 1845 bio = r1_bio->bios[i]; 1846 if (bio->bi_end_io==NULL) 1847 continue; 1848 /* remove last page from this bio */ 1849 bio->bi_vcnt--; 1850 bio->bi_size -= len; 1851 bio->bi_flags &= ~(1<< BIO_SEG_VALID); 1852 } 1853 goto bio_full; 1854 } 1855 } 1856 } 1857 nr_sectors += len>>9; 1858 sector_nr += len>>9; 1859 sync_blocks -= (len>>9); 1860 } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES); 1861 bio_full: 1862 r1_bio->sectors = nr_sectors; 1863 1864 /* For a user-requested sync, we read all readable devices and do a 1865 * compare 1866 */ 1867 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 1868 atomic_set(&r1_bio->remaining, read_targets); 1869 for (i=0; i<conf->raid_disks; i++) { 1870 bio = r1_bio->bios[i]; 1871 if (bio->bi_end_io == end_sync_read) { 1872 md_sync_acct(bio->bi_bdev, nr_sectors); 1873 generic_make_request(bio); 1874 } 1875 } 1876 } else { 1877 atomic_set(&r1_bio->remaining, 1); 1878 bio = r1_bio->bios[r1_bio->read_disk]; 1879 md_sync_acct(bio->bi_bdev, nr_sectors); 1880 generic_make_request(bio); 1881 1882 } 1883 return nr_sectors; 1884 } 1885 1886 static sector_t raid1_size(mddev_t *mddev, sector_t sectors, int raid_disks) 1887 { 1888 if (sectors) 1889 return sectors; 1890 1891 return mddev->dev_sectors; 1892 } 1893 1894 static conf_t *setup_conf(mddev_t *mddev) 1895 { 1896 conf_t *conf; 1897 int i; 1898 mirror_info_t *disk; 1899 mdk_rdev_t *rdev; 1900 int err = -ENOMEM; 1901 1902 conf = kzalloc(sizeof(conf_t), GFP_KERNEL); 1903 if (!conf) 1904 goto abort; 1905 1906 conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks, 1907 GFP_KERNEL); 1908 if (!conf->mirrors) 1909 goto abort; 1910 1911 conf->tmppage = alloc_page(GFP_KERNEL); 1912 if (!conf->tmppage) 1913 goto abort; 1914 1915 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL); 1916 if (!conf->poolinfo) 1917 goto abort; 1918 conf->poolinfo->raid_disks = mddev->raid_disks; 1919 conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc, 1920 r1bio_pool_free, 1921 conf->poolinfo); 1922 if (!conf->r1bio_pool) 1923 goto abort; 1924 1925 conf->poolinfo->mddev = mddev; 1926 1927 spin_lock_init(&conf->device_lock); 1928 list_for_each_entry(rdev, &mddev->disks, same_set) { 1929 int disk_idx = rdev->raid_disk; 1930 if (disk_idx >= mddev->raid_disks 1931 || disk_idx < 0) 1932 continue; 1933 disk = conf->mirrors + disk_idx; 1934 1935 disk->rdev = rdev; 1936 1937 disk->head_position = 0; 1938 } 1939 conf->raid_disks = mddev->raid_disks; 1940 conf->mddev = mddev; 1941 INIT_LIST_HEAD(&conf->retry_list); 1942 1943 spin_lock_init(&conf->resync_lock); 1944 init_waitqueue_head(&conf->wait_barrier); 1945 1946 bio_list_init(&conf->pending_bio_list); 1947 1948 conf->last_used = -1; 1949 for (i = 0; i < conf->raid_disks; i++) { 1950 1951 disk = conf->mirrors + i; 1952 1953 if (!disk->rdev || 1954 !test_bit(In_sync, &disk->rdev->flags)) { 1955 disk->head_position = 0; 1956 if (disk->rdev) 1957 conf->fullsync = 1; 1958 } else if (conf->last_used < 0) 1959 /* 1960 * The first working device is used as a 1961 * starting point to read balancing. 1962 */ 1963 conf->last_used = i; 1964 } 1965 1966 err = -EIO; 1967 if (conf->last_used < 0) { 1968 printk(KERN_ERR "md/raid1:%s: no operational mirrors\n", 1969 mdname(mddev)); 1970 goto abort; 1971 } 1972 err = -ENOMEM; 1973 conf->thread = md_register_thread(raid1d, mddev, NULL); 1974 if (!conf->thread) { 1975 printk(KERN_ERR 1976 "md/raid1:%s: couldn't allocate thread\n", 1977 mdname(mddev)); 1978 goto abort; 1979 } 1980 1981 return conf; 1982 1983 abort: 1984 if (conf) { 1985 if (conf->r1bio_pool) 1986 mempool_destroy(conf->r1bio_pool); 1987 kfree(conf->mirrors); 1988 safe_put_page(conf->tmppage); 1989 kfree(conf->poolinfo); 1990 kfree(conf); 1991 } 1992 return ERR_PTR(err); 1993 } 1994 1995 static int run(mddev_t *mddev) 1996 { 1997 conf_t *conf; 1998 int i; 1999 mdk_rdev_t *rdev; 2000 2001 if (mddev->level != 1) { 2002 printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n", 2003 mdname(mddev), mddev->level); 2004 return -EIO; 2005 } 2006 if (mddev->reshape_position != MaxSector) { 2007 printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n", 2008 mdname(mddev)); 2009 return -EIO; 2010 } 2011 /* 2012 * copy the already verified devices into our private RAID1 2013 * bookkeeping area. [whatever we allocate in run(), 2014 * should be freed in stop()] 2015 */ 2016 if (mddev->private == NULL) 2017 conf = setup_conf(mddev); 2018 else 2019 conf = mddev->private; 2020 2021 if (IS_ERR(conf)) 2022 return PTR_ERR(conf); 2023 2024 mddev->queue->queue_lock = &conf->device_lock; 2025 list_for_each_entry(rdev, &mddev->disks, same_set) { 2026 disk_stack_limits(mddev->gendisk, rdev->bdev, 2027 rdev->data_offset << 9); 2028 /* as we don't honour merge_bvec_fn, we must never risk 2029 * violating it, so limit ->max_segments to 1 lying within 2030 * a single page, as a one page request is never in violation. 2031 */ 2032 if (rdev->bdev->bd_disk->queue->merge_bvec_fn) { 2033 blk_queue_max_segments(mddev->queue, 1); 2034 blk_queue_segment_boundary(mddev->queue, 2035 PAGE_CACHE_SIZE - 1); 2036 } 2037 } 2038 2039 mddev->degraded = 0; 2040 for (i=0; i < conf->raid_disks; i++) 2041 if (conf->mirrors[i].rdev == NULL || 2042 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) || 2043 test_bit(Faulty, &conf->mirrors[i].rdev->flags)) 2044 mddev->degraded++; 2045 2046 if (conf->raid_disks - mddev->degraded == 1) 2047 mddev->recovery_cp = MaxSector; 2048 2049 if (mddev->recovery_cp != MaxSector) 2050 printk(KERN_NOTICE "md/raid1:%s: not clean" 2051 " -- starting background reconstruction\n", 2052 mdname(mddev)); 2053 printk(KERN_INFO 2054 "md/raid1:%s: active with %d out of %d mirrors\n", 2055 mdname(mddev), mddev->raid_disks - mddev->degraded, 2056 mddev->raid_disks); 2057 2058 /* 2059 * Ok, everything is just fine now 2060 */ 2061 mddev->thread = conf->thread; 2062 conf->thread = NULL; 2063 mddev->private = conf; 2064 2065 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0)); 2066 2067 mddev->queue->unplug_fn = raid1_unplug; 2068 mddev->queue->backing_dev_info.congested_fn = raid1_congested; 2069 mddev->queue->backing_dev_info.congested_data = mddev; 2070 md_integrity_register(mddev); 2071 return 0; 2072 } 2073 2074 static int stop(mddev_t *mddev) 2075 { 2076 conf_t *conf = mddev->private; 2077 struct bitmap *bitmap = mddev->bitmap; 2078 2079 /* wait for behind writes to complete */ 2080 if (bitmap && atomic_read(&bitmap->behind_writes) > 0) { 2081 printk(KERN_INFO "md/raid1:%s: behind writes in progress - waiting to stop.\n", 2082 mdname(mddev)); 2083 /* need to kick something here to make sure I/O goes? */ 2084 wait_event(bitmap->behind_wait, 2085 atomic_read(&bitmap->behind_writes) == 0); 2086 } 2087 2088 raise_barrier(conf); 2089 lower_barrier(conf); 2090 2091 md_unregister_thread(mddev->thread); 2092 mddev->thread = NULL; 2093 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/ 2094 if (conf->r1bio_pool) 2095 mempool_destroy(conf->r1bio_pool); 2096 kfree(conf->mirrors); 2097 kfree(conf->poolinfo); 2098 kfree(conf); 2099 mddev->private = NULL; 2100 return 0; 2101 } 2102 2103 static int raid1_resize(mddev_t *mddev, sector_t sectors) 2104 { 2105 /* no resync is happening, and there is enough space 2106 * on all devices, so we can resize. 2107 * We need to make sure resync covers any new space. 2108 * If the array is shrinking we should possibly wait until 2109 * any io in the removed space completes, but it hardly seems 2110 * worth it. 2111 */ 2112 md_set_array_sectors(mddev, raid1_size(mddev, sectors, 0)); 2113 if (mddev->array_sectors > raid1_size(mddev, sectors, 0)) 2114 return -EINVAL; 2115 set_capacity(mddev->gendisk, mddev->array_sectors); 2116 revalidate_disk(mddev->gendisk); 2117 if (sectors > mddev->dev_sectors && 2118 mddev->recovery_cp == MaxSector) { 2119 mddev->recovery_cp = mddev->dev_sectors; 2120 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 2121 } 2122 mddev->dev_sectors = sectors; 2123 mddev->resync_max_sectors = sectors; 2124 return 0; 2125 } 2126 2127 static int raid1_reshape(mddev_t *mddev) 2128 { 2129 /* We need to: 2130 * 1/ resize the r1bio_pool 2131 * 2/ resize conf->mirrors 2132 * 2133 * We allocate a new r1bio_pool if we can. 2134 * Then raise a device barrier and wait until all IO stops. 2135 * Then resize conf->mirrors and swap in the new r1bio pool. 2136 * 2137 * At the same time, we "pack" the devices so that all the missing 2138 * devices have the higher raid_disk numbers. 2139 */ 2140 mempool_t *newpool, *oldpool; 2141 struct pool_info *newpoolinfo; 2142 mirror_info_t *newmirrors; 2143 conf_t *conf = mddev->private; 2144 int cnt, raid_disks; 2145 unsigned long flags; 2146 int d, d2, err; 2147 2148 /* Cannot change chunk_size, layout, or level */ 2149 if (mddev->chunk_sectors != mddev->new_chunk_sectors || 2150 mddev->layout != mddev->new_layout || 2151 mddev->level != mddev->new_level) { 2152 mddev->new_chunk_sectors = mddev->chunk_sectors; 2153 mddev->new_layout = mddev->layout; 2154 mddev->new_level = mddev->level; 2155 return -EINVAL; 2156 } 2157 2158 err = md_allow_write(mddev); 2159 if (err) 2160 return err; 2161 2162 raid_disks = mddev->raid_disks + mddev->delta_disks; 2163 2164 if (raid_disks < conf->raid_disks) { 2165 cnt=0; 2166 for (d= 0; d < conf->raid_disks; d++) 2167 if (conf->mirrors[d].rdev) 2168 cnt++; 2169 if (cnt > raid_disks) 2170 return -EBUSY; 2171 } 2172 2173 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL); 2174 if (!newpoolinfo) 2175 return -ENOMEM; 2176 newpoolinfo->mddev = mddev; 2177 newpoolinfo->raid_disks = raid_disks; 2178 2179 newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc, 2180 r1bio_pool_free, newpoolinfo); 2181 if (!newpool) { 2182 kfree(newpoolinfo); 2183 return -ENOMEM; 2184 } 2185 newmirrors = kzalloc(sizeof(struct mirror_info) * raid_disks, GFP_KERNEL); 2186 if (!newmirrors) { 2187 kfree(newpoolinfo); 2188 mempool_destroy(newpool); 2189 return -ENOMEM; 2190 } 2191 2192 raise_barrier(conf); 2193 2194 /* ok, everything is stopped */ 2195 oldpool = conf->r1bio_pool; 2196 conf->r1bio_pool = newpool; 2197 2198 for (d = d2 = 0; d < conf->raid_disks; d++) { 2199 mdk_rdev_t *rdev = conf->mirrors[d].rdev; 2200 if (rdev && rdev->raid_disk != d2) { 2201 char nm[20]; 2202 sprintf(nm, "rd%d", rdev->raid_disk); 2203 sysfs_remove_link(&mddev->kobj, nm); 2204 rdev->raid_disk = d2; 2205 sprintf(nm, "rd%d", rdev->raid_disk); 2206 sysfs_remove_link(&mddev->kobj, nm); 2207 if (sysfs_create_link(&mddev->kobj, 2208 &rdev->kobj, nm)) 2209 printk(KERN_WARNING 2210 "md/raid1:%s: cannot register " 2211 "%s\n", 2212 mdname(mddev), nm); 2213 } 2214 if (rdev) 2215 newmirrors[d2++].rdev = rdev; 2216 } 2217 kfree(conf->mirrors); 2218 conf->mirrors = newmirrors; 2219 kfree(conf->poolinfo); 2220 conf->poolinfo = newpoolinfo; 2221 2222 spin_lock_irqsave(&conf->device_lock, flags); 2223 mddev->degraded += (raid_disks - conf->raid_disks); 2224 spin_unlock_irqrestore(&conf->device_lock, flags); 2225 conf->raid_disks = mddev->raid_disks = raid_disks; 2226 mddev->delta_disks = 0; 2227 2228 conf->last_used = 0; /* just make sure it is in-range */ 2229 lower_barrier(conf); 2230 2231 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 2232 md_wakeup_thread(mddev->thread); 2233 2234 mempool_destroy(oldpool); 2235 return 0; 2236 } 2237 2238 static void raid1_quiesce(mddev_t *mddev, int state) 2239 { 2240 conf_t *conf = mddev->private; 2241 2242 switch(state) { 2243 case 2: /* wake for suspend */ 2244 wake_up(&conf->wait_barrier); 2245 break; 2246 case 1: 2247 raise_barrier(conf); 2248 break; 2249 case 0: 2250 lower_barrier(conf); 2251 break; 2252 } 2253 } 2254 2255 static void *raid1_takeover(mddev_t *mddev) 2256 { 2257 /* raid1 can take over: 2258 * raid5 with 2 devices, any layout or chunk size 2259 */ 2260 if (mddev->level == 5 && mddev->raid_disks == 2) { 2261 conf_t *conf; 2262 mddev->new_level = 1; 2263 mddev->new_layout = 0; 2264 mddev->new_chunk_sectors = 0; 2265 conf = setup_conf(mddev); 2266 if (!IS_ERR(conf)) 2267 conf->barrier = 1; 2268 return conf; 2269 } 2270 return ERR_PTR(-EINVAL); 2271 } 2272 2273 static struct mdk_personality raid1_personality = 2274 { 2275 .name = "raid1", 2276 .level = 1, 2277 .owner = THIS_MODULE, 2278 .make_request = make_request, 2279 .run = run, 2280 .stop = stop, 2281 .status = status, 2282 .error_handler = error, 2283 .hot_add_disk = raid1_add_disk, 2284 .hot_remove_disk= raid1_remove_disk, 2285 .spare_active = raid1_spare_active, 2286 .sync_request = sync_request, 2287 .resize = raid1_resize, 2288 .size = raid1_size, 2289 .check_reshape = raid1_reshape, 2290 .quiesce = raid1_quiesce, 2291 .takeover = raid1_takeover, 2292 }; 2293 2294 static int __init raid_init(void) 2295 { 2296 return register_md_personality(&raid1_personality); 2297 } 2298 2299 static void raid_exit(void) 2300 { 2301 unregister_md_personality(&raid1_personality); 2302 } 2303 2304 module_init(raid_init); 2305 module_exit(raid_exit); 2306 MODULE_LICENSE("GPL"); 2307 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD"); 2308 MODULE_ALIAS("md-personality-3"); /* RAID1 */ 2309 MODULE_ALIAS("md-raid1"); 2310 MODULE_ALIAS("md-level-1"); 2311