xref: /openbmc/linux/drivers/md/raid1.c (revision dd3cb467)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * raid1.c : Multiple Devices driver for Linux
4  *
5  * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
6  *
7  * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
8  *
9  * RAID-1 management functions.
10  *
11  * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
12  *
13  * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
14  * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
15  *
16  * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
17  * bitmapped intelligence in resync:
18  *
19  *      - bitmap marked during normal i/o
20  *      - bitmap used to skip nondirty blocks during sync
21  *
22  * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
23  * - persistent bitmap code
24  */
25 
26 #include <linux/slab.h>
27 #include <linux/delay.h>
28 #include <linux/blkdev.h>
29 #include <linux/module.h>
30 #include <linux/seq_file.h>
31 #include <linux/ratelimit.h>
32 #include <linux/interval_tree_generic.h>
33 
34 #include <trace/events/block.h>
35 
36 #include "md.h"
37 #include "raid1.h"
38 #include "md-bitmap.h"
39 
40 #define UNSUPPORTED_MDDEV_FLAGS		\
41 	((1L << MD_HAS_JOURNAL) |	\
42 	 (1L << MD_JOURNAL_CLEAN) |	\
43 	 (1L << MD_HAS_PPL) |		\
44 	 (1L << MD_HAS_MULTIPLE_PPLS))
45 
46 static void allow_barrier(struct r1conf *conf, sector_t sector_nr);
47 static void lower_barrier(struct r1conf *conf, sector_t sector_nr);
48 
49 #define raid1_log(md, fmt, args...)				\
50 	do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid1 " fmt, ##args); } while (0)
51 
52 #include "raid1-10.c"
53 
54 #define START(node) ((node)->start)
55 #define LAST(node) ((node)->last)
56 INTERVAL_TREE_DEFINE(struct serial_info, node, sector_t, _subtree_last,
57 		     START, LAST, static inline, raid1_rb);
58 
59 static int check_and_add_serial(struct md_rdev *rdev, struct r1bio *r1_bio,
60 				struct serial_info *si, int idx)
61 {
62 	unsigned long flags;
63 	int ret = 0;
64 	sector_t lo = r1_bio->sector;
65 	sector_t hi = lo + r1_bio->sectors;
66 	struct serial_in_rdev *serial = &rdev->serial[idx];
67 
68 	spin_lock_irqsave(&serial->serial_lock, flags);
69 	/* collision happened */
70 	if (raid1_rb_iter_first(&serial->serial_rb, lo, hi))
71 		ret = -EBUSY;
72 	else {
73 		si->start = lo;
74 		si->last = hi;
75 		raid1_rb_insert(si, &serial->serial_rb);
76 	}
77 	spin_unlock_irqrestore(&serial->serial_lock, flags);
78 
79 	return ret;
80 }
81 
82 static void wait_for_serialization(struct md_rdev *rdev, struct r1bio *r1_bio)
83 {
84 	struct mddev *mddev = rdev->mddev;
85 	struct serial_info *si;
86 	int idx = sector_to_idx(r1_bio->sector);
87 	struct serial_in_rdev *serial = &rdev->serial[idx];
88 
89 	if (WARN_ON(!mddev->serial_info_pool))
90 		return;
91 	si = mempool_alloc(mddev->serial_info_pool, GFP_NOIO);
92 	wait_event(serial->serial_io_wait,
93 		   check_and_add_serial(rdev, r1_bio, si, idx) == 0);
94 }
95 
96 static void remove_serial(struct md_rdev *rdev, sector_t lo, sector_t hi)
97 {
98 	struct serial_info *si;
99 	unsigned long flags;
100 	int found = 0;
101 	struct mddev *mddev = rdev->mddev;
102 	int idx = sector_to_idx(lo);
103 	struct serial_in_rdev *serial = &rdev->serial[idx];
104 
105 	spin_lock_irqsave(&serial->serial_lock, flags);
106 	for (si = raid1_rb_iter_first(&serial->serial_rb, lo, hi);
107 	     si; si = raid1_rb_iter_next(si, lo, hi)) {
108 		if (si->start == lo && si->last == hi) {
109 			raid1_rb_remove(si, &serial->serial_rb);
110 			mempool_free(si, mddev->serial_info_pool);
111 			found = 1;
112 			break;
113 		}
114 	}
115 	if (!found)
116 		WARN(1, "The write IO is not recorded for serialization\n");
117 	spin_unlock_irqrestore(&serial->serial_lock, flags);
118 	wake_up(&serial->serial_io_wait);
119 }
120 
121 /*
122  * for resync bio, r1bio pointer can be retrieved from the per-bio
123  * 'struct resync_pages'.
124  */
125 static inline struct r1bio *get_resync_r1bio(struct bio *bio)
126 {
127 	return get_resync_pages(bio)->raid_bio;
128 }
129 
130 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
131 {
132 	struct pool_info *pi = data;
133 	int size = offsetof(struct r1bio, bios[pi->raid_disks]);
134 
135 	/* allocate a r1bio with room for raid_disks entries in the bios array */
136 	return kzalloc(size, gfp_flags);
137 }
138 
139 #define RESYNC_DEPTH 32
140 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
141 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
142 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
143 #define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
144 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
145 
146 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
147 {
148 	struct pool_info *pi = data;
149 	struct r1bio *r1_bio;
150 	struct bio *bio;
151 	int need_pages;
152 	int j;
153 	struct resync_pages *rps;
154 
155 	r1_bio = r1bio_pool_alloc(gfp_flags, pi);
156 	if (!r1_bio)
157 		return NULL;
158 
159 	rps = kmalloc_array(pi->raid_disks, sizeof(struct resync_pages),
160 			    gfp_flags);
161 	if (!rps)
162 		goto out_free_r1bio;
163 
164 	/*
165 	 * Allocate bios : 1 for reading, n-1 for writing
166 	 */
167 	for (j = pi->raid_disks ; j-- ; ) {
168 		bio = bio_kmalloc(RESYNC_PAGES, gfp_flags);
169 		if (!bio)
170 			goto out_free_bio;
171 		bio_init(bio, NULL, bio->bi_inline_vecs, RESYNC_PAGES, 0);
172 		r1_bio->bios[j] = bio;
173 	}
174 	/*
175 	 * Allocate RESYNC_PAGES data pages and attach them to
176 	 * the first bio.
177 	 * If this is a user-requested check/repair, allocate
178 	 * RESYNC_PAGES for each bio.
179 	 */
180 	if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
181 		need_pages = pi->raid_disks;
182 	else
183 		need_pages = 1;
184 	for (j = 0; j < pi->raid_disks; j++) {
185 		struct resync_pages *rp = &rps[j];
186 
187 		bio = r1_bio->bios[j];
188 
189 		if (j < need_pages) {
190 			if (resync_alloc_pages(rp, gfp_flags))
191 				goto out_free_pages;
192 		} else {
193 			memcpy(rp, &rps[0], sizeof(*rp));
194 			resync_get_all_pages(rp);
195 		}
196 
197 		rp->raid_bio = r1_bio;
198 		bio->bi_private = rp;
199 	}
200 
201 	r1_bio->master_bio = NULL;
202 
203 	return r1_bio;
204 
205 out_free_pages:
206 	while (--j >= 0)
207 		resync_free_pages(&rps[j]);
208 
209 out_free_bio:
210 	while (++j < pi->raid_disks) {
211 		bio_uninit(r1_bio->bios[j]);
212 		kfree(r1_bio->bios[j]);
213 	}
214 	kfree(rps);
215 
216 out_free_r1bio:
217 	rbio_pool_free(r1_bio, data);
218 	return NULL;
219 }
220 
221 static void r1buf_pool_free(void *__r1_bio, void *data)
222 {
223 	struct pool_info *pi = data;
224 	int i;
225 	struct r1bio *r1bio = __r1_bio;
226 	struct resync_pages *rp = NULL;
227 
228 	for (i = pi->raid_disks; i--; ) {
229 		rp = get_resync_pages(r1bio->bios[i]);
230 		resync_free_pages(rp);
231 		bio_uninit(r1bio->bios[i]);
232 		kfree(r1bio->bios[i]);
233 	}
234 
235 	/* resync pages array stored in the 1st bio's .bi_private */
236 	kfree(rp);
237 
238 	rbio_pool_free(r1bio, data);
239 }
240 
241 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
242 {
243 	int i;
244 
245 	for (i = 0; i < conf->raid_disks * 2; i++) {
246 		struct bio **bio = r1_bio->bios + i;
247 		if (!BIO_SPECIAL(*bio))
248 			bio_put(*bio);
249 		*bio = NULL;
250 	}
251 }
252 
253 static void free_r1bio(struct r1bio *r1_bio)
254 {
255 	struct r1conf *conf = r1_bio->mddev->private;
256 
257 	put_all_bios(conf, r1_bio);
258 	mempool_free(r1_bio, &conf->r1bio_pool);
259 }
260 
261 static void put_buf(struct r1bio *r1_bio)
262 {
263 	struct r1conf *conf = r1_bio->mddev->private;
264 	sector_t sect = r1_bio->sector;
265 	int i;
266 
267 	for (i = 0; i < conf->raid_disks * 2; i++) {
268 		struct bio *bio = r1_bio->bios[i];
269 		if (bio->bi_end_io)
270 			rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
271 	}
272 
273 	mempool_free(r1_bio, &conf->r1buf_pool);
274 
275 	lower_barrier(conf, sect);
276 }
277 
278 static void reschedule_retry(struct r1bio *r1_bio)
279 {
280 	unsigned long flags;
281 	struct mddev *mddev = r1_bio->mddev;
282 	struct r1conf *conf = mddev->private;
283 	int idx;
284 
285 	idx = sector_to_idx(r1_bio->sector);
286 	spin_lock_irqsave(&conf->device_lock, flags);
287 	list_add(&r1_bio->retry_list, &conf->retry_list);
288 	atomic_inc(&conf->nr_queued[idx]);
289 	spin_unlock_irqrestore(&conf->device_lock, flags);
290 
291 	wake_up(&conf->wait_barrier);
292 	md_wakeup_thread(mddev->thread);
293 }
294 
295 /*
296  * raid_end_bio_io() is called when we have finished servicing a mirrored
297  * operation and are ready to return a success/failure code to the buffer
298  * cache layer.
299  */
300 static void call_bio_endio(struct r1bio *r1_bio)
301 {
302 	struct bio *bio = r1_bio->master_bio;
303 
304 	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
305 		bio->bi_status = BLK_STS_IOERR;
306 
307 	if (blk_queue_io_stat(bio->bi_bdev->bd_disk->queue))
308 		bio_end_io_acct(bio, r1_bio->start_time);
309 	bio_endio(bio);
310 }
311 
312 static void raid_end_bio_io(struct r1bio *r1_bio)
313 {
314 	struct bio *bio = r1_bio->master_bio;
315 	struct r1conf *conf = r1_bio->mddev->private;
316 
317 	/* if nobody has done the final endio yet, do it now */
318 	if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
319 		pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
320 			 (bio_data_dir(bio) == WRITE) ? "write" : "read",
321 			 (unsigned long long) bio->bi_iter.bi_sector,
322 			 (unsigned long long) bio_end_sector(bio) - 1);
323 
324 		call_bio_endio(r1_bio);
325 	}
326 	/*
327 	 * Wake up any possible resync thread that waits for the device
328 	 * to go idle.  All I/Os, even write-behind writes, are done.
329 	 */
330 	allow_barrier(conf, r1_bio->sector);
331 
332 	free_r1bio(r1_bio);
333 }
334 
335 /*
336  * Update disk head position estimator based on IRQ completion info.
337  */
338 static inline void update_head_pos(int disk, struct r1bio *r1_bio)
339 {
340 	struct r1conf *conf = r1_bio->mddev->private;
341 
342 	conf->mirrors[disk].head_position =
343 		r1_bio->sector + (r1_bio->sectors);
344 }
345 
346 /*
347  * Find the disk number which triggered given bio
348  */
349 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
350 {
351 	int mirror;
352 	struct r1conf *conf = r1_bio->mddev->private;
353 	int raid_disks = conf->raid_disks;
354 
355 	for (mirror = 0; mirror < raid_disks * 2; mirror++)
356 		if (r1_bio->bios[mirror] == bio)
357 			break;
358 
359 	BUG_ON(mirror == raid_disks * 2);
360 	update_head_pos(mirror, r1_bio);
361 
362 	return mirror;
363 }
364 
365 static void raid1_end_read_request(struct bio *bio)
366 {
367 	int uptodate = !bio->bi_status;
368 	struct r1bio *r1_bio = bio->bi_private;
369 	struct r1conf *conf = r1_bio->mddev->private;
370 	struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev;
371 
372 	/*
373 	 * this branch is our 'one mirror IO has finished' event handler:
374 	 */
375 	update_head_pos(r1_bio->read_disk, r1_bio);
376 
377 	if (uptodate)
378 		set_bit(R1BIO_Uptodate, &r1_bio->state);
379 	else if (test_bit(FailFast, &rdev->flags) &&
380 		 test_bit(R1BIO_FailFast, &r1_bio->state))
381 		/* This was a fail-fast read so we definitely
382 		 * want to retry */
383 		;
384 	else {
385 		/* If all other devices have failed, we want to return
386 		 * the error upwards rather than fail the last device.
387 		 * Here we redefine "uptodate" to mean "Don't want to retry"
388 		 */
389 		unsigned long flags;
390 		spin_lock_irqsave(&conf->device_lock, flags);
391 		if (r1_bio->mddev->degraded == conf->raid_disks ||
392 		    (r1_bio->mddev->degraded == conf->raid_disks-1 &&
393 		     test_bit(In_sync, &rdev->flags)))
394 			uptodate = 1;
395 		spin_unlock_irqrestore(&conf->device_lock, flags);
396 	}
397 
398 	if (uptodate) {
399 		raid_end_bio_io(r1_bio);
400 		rdev_dec_pending(rdev, conf->mddev);
401 	} else {
402 		/*
403 		 * oops, read error:
404 		 */
405 		pr_err_ratelimited("md/raid1:%s: %pg: rescheduling sector %llu\n",
406 				   mdname(conf->mddev),
407 				   rdev->bdev,
408 				   (unsigned long long)r1_bio->sector);
409 		set_bit(R1BIO_ReadError, &r1_bio->state);
410 		reschedule_retry(r1_bio);
411 		/* don't drop the reference on read_disk yet */
412 	}
413 }
414 
415 static void close_write(struct r1bio *r1_bio)
416 {
417 	/* it really is the end of this request */
418 	if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
419 		bio_free_pages(r1_bio->behind_master_bio);
420 		bio_put(r1_bio->behind_master_bio);
421 		r1_bio->behind_master_bio = NULL;
422 	}
423 	/* clear the bitmap if all writes complete successfully */
424 	md_bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
425 			   r1_bio->sectors,
426 			   !test_bit(R1BIO_Degraded, &r1_bio->state),
427 			   test_bit(R1BIO_BehindIO, &r1_bio->state));
428 	md_write_end(r1_bio->mddev);
429 }
430 
431 static void r1_bio_write_done(struct r1bio *r1_bio)
432 {
433 	if (!atomic_dec_and_test(&r1_bio->remaining))
434 		return;
435 
436 	if (test_bit(R1BIO_WriteError, &r1_bio->state))
437 		reschedule_retry(r1_bio);
438 	else {
439 		close_write(r1_bio);
440 		if (test_bit(R1BIO_MadeGood, &r1_bio->state))
441 			reschedule_retry(r1_bio);
442 		else
443 			raid_end_bio_io(r1_bio);
444 	}
445 }
446 
447 static void raid1_end_write_request(struct bio *bio)
448 {
449 	struct r1bio *r1_bio = bio->bi_private;
450 	int behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
451 	struct r1conf *conf = r1_bio->mddev->private;
452 	struct bio *to_put = NULL;
453 	int mirror = find_bio_disk(r1_bio, bio);
454 	struct md_rdev *rdev = conf->mirrors[mirror].rdev;
455 	bool discard_error;
456 	sector_t lo = r1_bio->sector;
457 	sector_t hi = r1_bio->sector + r1_bio->sectors;
458 
459 	discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
460 
461 	/*
462 	 * 'one mirror IO has finished' event handler:
463 	 */
464 	if (bio->bi_status && !discard_error) {
465 		set_bit(WriteErrorSeen,	&rdev->flags);
466 		if (!test_and_set_bit(WantReplacement, &rdev->flags))
467 			set_bit(MD_RECOVERY_NEEDED, &
468 				conf->mddev->recovery);
469 
470 		if (test_bit(FailFast, &rdev->flags) &&
471 		    (bio->bi_opf & MD_FAILFAST) &&
472 		    /* We never try FailFast to WriteMostly devices */
473 		    !test_bit(WriteMostly, &rdev->flags)) {
474 			md_error(r1_bio->mddev, rdev);
475 		}
476 
477 		/*
478 		 * When the device is faulty, it is not necessary to
479 		 * handle write error.
480 		 */
481 		if (!test_bit(Faulty, &rdev->flags))
482 			set_bit(R1BIO_WriteError, &r1_bio->state);
483 		else {
484 			/* Fail the request */
485 			set_bit(R1BIO_Degraded, &r1_bio->state);
486 			/* Finished with this branch */
487 			r1_bio->bios[mirror] = NULL;
488 			to_put = bio;
489 		}
490 	} else {
491 		/*
492 		 * Set R1BIO_Uptodate in our master bio, so that we
493 		 * will return a good error code for to the higher
494 		 * levels even if IO on some other mirrored buffer
495 		 * fails.
496 		 *
497 		 * The 'master' represents the composite IO operation
498 		 * to user-side. So if something waits for IO, then it
499 		 * will wait for the 'master' bio.
500 		 */
501 		sector_t first_bad;
502 		int bad_sectors;
503 
504 		r1_bio->bios[mirror] = NULL;
505 		to_put = bio;
506 		/*
507 		 * Do not set R1BIO_Uptodate if the current device is
508 		 * rebuilding or Faulty. This is because we cannot use
509 		 * such device for properly reading the data back (we could
510 		 * potentially use it, if the current write would have felt
511 		 * before rdev->recovery_offset, but for simplicity we don't
512 		 * check this here.
513 		 */
514 		if (test_bit(In_sync, &rdev->flags) &&
515 		    !test_bit(Faulty, &rdev->flags))
516 			set_bit(R1BIO_Uptodate, &r1_bio->state);
517 
518 		/* Maybe we can clear some bad blocks. */
519 		if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
520 				&first_bad, &bad_sectors) && !discard_error) {
521 			r1_bio->bios[mirror] = IO_MADE_GOOD;
522 			set_bit(R1BIO_MadeGood, &r1_bio->state);
523 		}
524 	}
525 
526 	if (behind) {
527 		if (test_bit(CollisionCheck, &rdev->flags))
528 			remove_serial(rdev, lo, hi);
529 		if (test_bit(WriteMostly, &rdev->flags))
530 			atomic_dec(&r1_bio->behind_remaining);
531 
532 		/*
533 		 * In behind mode, we ACK the master bio once the I/O
534 		 * has safely reached all non-writemostly
535 		 * disks. Setting the Returned bit ensures that this
536 		 * gets done only once -- we don't ever want to return
537 		 * -EIO here, instead we'll wait
538 		 */
539 		if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
540 		    test_bit(R1BIO_Uptodate, &r1_bio->state)) {
541 			/* Maybe we can return now */
542 			if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
543 				struct bio *mbio = r1_bio->master_bio;
544 				pr_debug("raid1: behind end write sectors"
545 					 " %llu-%llu\n",
546 					 (unsigned long long) mbio->bi_iter.bi_sector,
547 					 (unsigned long long) bio_end_sector(mbio) - 1);
548 				call_bio_endio(r1_bio);
549 			}
550 		}
551 	} else if (rdev->mddev->serialize_policy)
552 		remove_serial(rdev, lo, hi);
553 	if (r1_bio->bios[mirror] == NULL)
554 		rdev_dec_pending(rdev, conf->mddev);
555 
556 	/*
557 	 * Let's see if all mirrored write operations have finished
558 	 * already.
559 	 */
560 	r1_bio_write_done(r1_bio);
561 
562 	if (to_put)
563 		bio_put(to_put);
564 }
565 
566 static sector_t align_to_barrier_unit_end(sector_t start_sector,
567 					  sector_t sectors)
568 {
569 	sector_t len;
570 
571 	WARN_ON(sectors == 0);
572 	/*
573 	 * len is the number of sectors from start_sector to end of the
574 	 * barrier unit which start_sector belongs to.
575 	 */
576 	len = round_up(start_sector + 1, BARRIER_UNIT_SECTOR_SIZE) -
577 	      start_sector;
578 
579 	if (len > sectors)
580 		len = sectors;
581 
582 	return len;
583 }
584 
585 /*
586  * This routine returns the disk from which the requested read should
587  * be done. There is a per-array 'next expected sequential IO' sector
588  * number - if this matches on the next IO then we use the last disk.
589  * There is also a per-disk 'last know head position' sector that is
590  * maintained from IRQ contexts, both the normal and the resync IO
591  * completion handlers update this position correctly. If there is no
592  * perfect sequential match then we pick the disk whose head is closest.
593  *
594  * If there are 2 mirrors in the same 2 devices, performance degrades
595  * because position is mirror, not device based.
596  *
597  * The rdev for the device selected will have nr_pending incremented.
598  */
599 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
600 {
601 	const sector_t this_sector = r1_bio->sector;
602 	int sectors;
603 	int best_good_sectors;
604 	int best_disk, best_dist_disk, best_pending_disk;
605 	int has_nonrot_disk;
606 	int disk;
607 	sector_t best_dist;
608 	unsigned int min_pending;
609 	struct md_rdev *rdev;
610 	int choose_first;
611 	int choose_next_idle;
612 
613 	rcu_read_lock();
614 	/*
615 	 * Check if we can balance. We can balance on the whole
616 	 * device if no resync is going on, or below the resync window.
617 	 * We take the first readable disk when above the resync window.
618 	 */
619  retry:
620 	sectors = r1_bio->sectors;
621 	best_disk = -1;
622 	best_dist_disk = -1;
623 	best_dist = MaxSector;
624 	best_pending_disk = -1;
625 	min_pending = UINT_MAX;
626 	best_good_sectors = 0;
627 	has_nonrot_disk = 0;
628 	choose_next_idle = 0;
629 	clear_bit(R1BIO_FailFast, &r1_bio->state);
630 
631 	if ((conf->mddev->recovery_cp < this_sector + sectors) ||
632 	    (mddev_is_clustered(conf->mddev) &&
633 	    md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
634 		    this_sector + sectors)))
635 		choose_first = 1;
636 	else
637 		choose_first = 0;
638 
639 	for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
640 		sector_t dist;
641 		sector_t first_bad;
642 		int bad_sectors;
643 		unsigned int pending;
644 		bool nonrot;
645 
646 		rdev = rcu_dereference(conf->mirrors[disk].rdev);
647 		if (r1_bio->bios[disk] == IO_BLOCKED
648 		    || rdev == NULL
649 		    || test_bit(Faulty, &rdev->flags))
650 			continue;
651 		if (!test_bit(In_sync, &rdev->flags) &&
652 		    rdev->recovery_offset < this_sector + sectors)
653 			continue;
654 		if (test_bit(WriteMostly, &rdev->flags)) {
655 			/* Don't balance among write-mostly, just
656 			 * use the first as a last resort */
657 			if (best_dist_disk < 0) {
658 				if (is_badblock(rdev, this_sector, sectors,
659 						&first_bad, &bad_sectors)) {
660 					if (first_bad <= this_sector)
661 						/* Cannot use this */
662 						continue;
663 					best_good_sectors = first_bad - this_sector;
664 				} else
665 					best_good_sectors = sectors;
666 				best_dist_disk = disk;
667 				best_pending_disk = disk;
668 			}
669 			continue;
670 		}
671 		/* This is a reasonable device to use.  It might
672 		 * even be best.
673 		 */
674 		if (is_badblock(rdev, this_sector, sectors,
675 				&first_bad, &bad_sectors)) {
676 			if (best_dist < MaxSector)
677 				/* already have a better device */
678 				continue;
679 			if (first_bad <= this_sector) {
680 				/* cannot read here. If this is the 'primary'
681 				 * device, then we must not read beyond
682 				 * bad_sectors from another device..
683 				 */
684 				bad_sectors -= (this_sector - first_bad);
685 				if (choose_first && sectors > bad_sectors)
686 					sectors = bad_sectors;
687 				if (best_good_sectors > sectors)
688 					best_good_sectors = sectors;
689 
690 			} else {
691 				sector_t good_sectors = first_bad - this_sector;
692 				if (good_sectors > best_good_sectors) {
693 					best_good_sectors = good_sectors;
694 					best_disk = disk;
695 				}
696 				if (choose_first)
697 					break;
698 			}
699 			continue;
700 		} else {
701 			if ((sectors > best_good_sectors) && (best_disk >= 0))
702 				best_disk = -1;
703 			best_good_sectors = sectors;
704 		}
705 
706 		if (best_disk >= 0)
707 			/* At least two disks to choose from so failfast is OK */
708 			set_bit(R1BIO_FailFast, &r1_bio->state);
709 
710 		nonrot = bdev_nonrot(rdev->bdev);
711 		has_nonrot_disk |= nonrot;
712 		pending = atomic_read(&rdev->nr_pending);
713 		dist = abs(this_sector - conf->mirrors[disk].head_position);
714 		if (choose_first) {
715 			best_disk = disk;
716 			break;
717 		}
718 		/* Don't change to another disk for sequential reads */
719 		if (conf->mirrors[disk].next_seq_sect == this_sector
720 		    || dist == 0) {
721 			int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
722 			struct raid1_info *mirror = &conf->mirrors[disk];
723 
724 			best_disk = disk;
725 			/*
726 			 * If buffered sequential IO size exceeds optimal
727 			 * iosize, check if there is idle disk. If yes, choose
728 			 * the idle disk. read_balance could already choose an
729 			 * idle disk before noticing it's a sequential IO in
730 			 * this disk. This doesn't matter because this disk
731 			 * will idle, next time it will be utilized after the
732 			 * first disk has IO size exceeds optimal iosize. In
733 			 * this way, iosize of the first disk will be optimal
734 			 * iosize at least. iosize of the second disk might be
735 			 * small, but not a big deal since when the second disk
736 			 * starts IO, the first disk is likely still busy.
737 			 */
738 			if (nonrot && opt_iosize > 0 &&
739 			    mirror->seq_start != MaxSector &&
740 			    mirror->next_seq_sect > opt_iosize &&
741 			    mirror->next_seq_sect - opt_iosize >=
742 			    mirror->seq_start) {
743 				choose_next_idle = 1;
744 				continue;
745 			}
746 			break;
747 		}
748 
749 		if (choose_next_idle)
750 			continue;
751 
752 		if (min_pending > pending) {
753 			min_pending = pending;
754 			best_pending_disk = disk;
755 		}
756 
757 		if (dist < best_dist) {
758 			best_dist = dist;
759 			best_dist_disk = disk;
760 		}
761 	}
762 
763 	/*
764 	 * If all disks are rotational, choose the closest disk. If any disk is
765 	 * non-rotational, choose the disk with less pending request even the
766 	 * disk is rotational, which might/might not be optimal for raids with
767 	 * mixed ratation/non-rotational disks depending on workload.
768 	 */
769 	if (best_disk == -1) {
770 		if (has_nonrot_disk || min_pending == 0)
771 			best_disk = best_pending_disk;
772 		else
773 			best_disk = best_dist_disk;
774 	}
775 
776 	if (best_disk >= 0) {
777 		rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
778 		if (!rdev)
779 			goto retry;
780 		atomic_inc(&rdev->nr_pending);
781 		sectors = best_good_sectors;
782 
783 		if (conf->mirrors[best_disk].next_seq_sect != this_sector)
784 			conf->mirrors[best_disk].seq_start = this_sector;
785 
786 		conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
787 	}
788 	rcu_read_unlock();
789 	*max_sectors = sectors;
790 
791 	return best_disk;
792 }
793 
794 static void flush_bio_list(struct r1conf *conf, struct bio *bio)
795 {
796 	/* flush any pending bitmap writes to disk before proceeding w/ I/O */
797 	md_bitmap_unplug(conf->mddev->bitmap);
798 	wake_up(&conf->wait_barrier);
799 
800 	while (bio) { /* submit pending writes */
801 		struct bio *next = bio->bi_next;
802 		struct md_rdev *rdev = (void *)bio->bi_bdev;
803 		bio->bi_next = NULL;
804 		bio_set_dev(bio, rdev->bdev);
805 		if (test_bit(Faulty, &rdev->flags)) {
806 			bio_io_error(bio);
807 		} else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
808 				    !bdev_max_discard_sectors(bio->bi_bdev)))
809 			/* Just ignore it */
810 			bio_endio(bio);
811 		else
812 			submit_bio_noacct(bio);
813 		bio = next;
814 		cond_resched();
815 	}
816 }
817 
818 static void flush_pending_writes(struct r1conf *conf)
819 {
820 	/* Any writes that have been queued but are awaiting
821 	 * bitmap updates get flushed here.
822 	 */
823 	spin_lock_irq(&conf->device_lock);
824 
825 	if (conf->pending_bio_list.head) {
826 		struct blk_plug plug;
827 		struct bio *bio;
828 
829 		bio = bio_list_get(&conf->pending_bio_list);
830 		spin_unlock_irq(&conf->device_lock);
831 
832 		/*
833 		 * As this is called in a wait_event() loop (see freeze_array),
834 		 * current->state might be TASK_UNINTERRUPTIBLE which will
835 		 * cause a warning when we prepare to wait again.  As it is
836 		 * rare that this path is taken, it is perfectly safe to force
837 		 * us to go around the wait_event() loop again, so the warning
838 		 * is a false-positive.  Silence the warning by resetting
839 		 * thread state
840 		 */
841 		__set_current_state(TASK_RUNNING);
842 		blk_start_plug(&plug);
843 		flush_bio_list(conf, bio);
844 		blk_finish_plug(&plug);
845 	} else
846 		spin_unlock_irq(&conf->device_lock);
847 }
848 
849 /* Barriers....
850  * Sometimes we need to suspend IO while we do something else,
851  * either some resync/recovery, or reconfigure the array.
852  * To do this we raise a 'barrier'.
853  * The 'barrier' is a counter that can be raised multiple times
854  * to count how many activities are happening which preclude
855  * normal IO.
856  * We can only raise the barrier if there is no pending IO.
857  * i.e. if nr_pending == 0.
858  * We choose only to raise the barrier if no-one is waiting for the
859  * barrier to go down.  This means that as soon as an IO request
860  * is ready, no other operations which require a barrier will start
861  * until the IO request has had a chance.
862  *
863  * So: regular IO calls 'wait_barrier'.  When that returns there
864  *    is no backgroup IO happening,  It must arrange to call
865  *    allow_barrier when it has finished its IO.
866  * backgroup IO calls must call raise_barrier.  Once that returns
867  *    there is no normal IO happeing.  It must arrange to call
868  *    lower_barrier when the particular background IO completes.
869  *
870  * If resync/recovery is interrupted, returns -EINTR;
871  * Otherwise, returns 0.
872  */
873 static int raise_barrier(struct r1conf *conf, sector_t sector_nr)
874 {
875 	int idx = sector_to_idx(sector_nr);
876 
877 	spin_lock_irq(&conf->resync_lock);
878 
879 	/* Wait until no block IO is waiting */
880 	wait_event_lock_irq(conf->wait_barrier,
881 			    !atomic_read(&conf->nr_waiting[idx]),
882 			    conf->resync_lock);
883 
884 	/* block any new IO from starting */
885 	atomic_inc(&conf->barrier[idx]);
886 	/*
887 	 * In raise_barrier() we firstly increase conf->barrier[idx] then
888 	 * check conf->nr_pending[idx]. In _wait_barrier() we firstly
889 	 * increase conf->nr_pending[idx] then check conf->barrier[idx].
890 	 * A memory barrier here to make sure conf->nr_pending[idx] won't
891 	 * be fetched before conf->barrier[idx] is increased. Otherwise
892 	 * there will be a race between raise_barrier() and _wait_barrier().
893 	 */
894 	smp_mb__after_atomic();
895 
896 	/* For these conditions we must wait:
897 	 * A: while the array is in frozen state
898 	 * B: while conf->nr_pending[idx] is not 0, meaning regular I/O
899 	 *    existing in corresponding I/O barrier bucket.
900 	 * C: while conf->barrier[idx] >= RESYNC_DEPTH, meaning reaches
901 	 *    max resync count which allowed on current I/O barrier bucket.
902 	 */
903 	wait_event_lock_irq(conf->wait_barrier,
904 			    (!conf->array_frozen &&
905 			     !atomic_read(&conf->nr_pending[idx]) &&
906 			     atomic_read(&conf->barrier[idx]) < RESYNC_DEPTH) ||
907 				test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery),
908 			    conf->resync_lock);
909 
910 	if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
911 		atomic_dec(&conf->barrier[idx]);
912 		spin_unlock_irq(&conf->resync_lock);
913 		wake_up(&conf->wait_barrier);
914 		return -EINTR;
915 	}
916 
917 	atomic_inc(&conf->nr_sync_pending);
918 	spin_unlock_irq(&conf->resync_lock);
919 
920 	return 0;
921 }
922 
923 static void lower_barrier(struct r1conf *conf, sector_t sector_nr)
924 {
925 	int idx = sector_to_idx(sector_nr);
926 
927 	BUG_ON(atomic_read(&conf->barrier[idx]) <= 0);
928 
929 	atomic_dec(&conf->barrier[idx]);
930 	atomic_dec(&conf->nr_sync_pending);
931 	wake_up(&conf->wait_barrier);
932 }
933 
934 static bool _wait_barrier(struct r1conf *conf, int idx, bool nowait)
935 {
936 	bool ret = true;
937 
938 	/*
939 	 * We need to increase conf->nr_pending[idx] very early here,
940 	 * then raise_barrier() can be blocked when it waits for
941 	 * conf->nr_pending[idx] to be 0. Then we can avoid holding
942 	 * conf->resync_lock when there is no barrier raised in same
943 	 * barrier unit bucket. Also if the array is frozen, I/O
944 	 * should be blocked until array is unfrozen.
945 	 */
946 	atomic_inc(&conf->nr_pending[idx]);
947 	/*
948 	 * In _wait_barrier() we firstly increase conf->nr_pending[idx], then
949 	 * check conf->barrier[idx]. In raise_barrier() we firstly increase
950 	 * conf->barrier[idx], then check conf->nr_pending[idx]. A memory
951 	 * barrier is necessary here to make sure conf->barrier[idx] won't be
952 	 * fetched before conf->nr_pending[idx] is increased. Otherwise there
953 	 * will be a race between _wait_barrier() and raise_barrier().
954 	 */
955 	smp_mb__after_atomic();
956 
957 	/*
958 	 * Don't worry about checking two atomic_t variables at same time
959 	 * here. If during we check conf->barrier[idx], the array is
960 	 * frozen (conf->array_frozen is 1), and chonf->barrier[idx] is
961 	 * 0, it is safe to return and make the I/O continue. Because the
962 	 * array is frozen, all I/O returned here will eventually complete
963 	 * or be queued, no race will happen. See code comment in
964 	 * frozen_array().
965 	 */
966 	if (!READ_ONCE(conf->array_frozen) &&
967 	    !atomic_read(&conf->barrier[idx]))
968 		return ret;
969 
970 	/*
971 	 * After holding conf->resync_lock, conf->nr_pending[idx]
972 	 * should be decreased before waiting for barrier to drop.
973 	 * Otherwise, we may encounter a race condition because
974 	 * raise_barrer() might be waiting for conf->nr_pending[idx]
975 	 * to be 0 at same time.
976 	 */
977 	spin_lock_irq(&conf->resync_lock);
978 	atomic_inc(&conf->nr_waiting[idx]);
979 	atomic_dec(&conf->nr_pending[idx]);
980 	/*
981 	 * In case freeze_array() is waiting for
982 	 * get_unqueued_pending() == extra
983 	 */
984 	wake_up(&conf->wait_barrier);
985 	/* Wait for the barrier in same barrier unit bucket to drop. */
986 
987 	/* Return false when nowait flag is set */
988 	if (nowait) {
989 		ret = false;
990 	} else {
991 		wait_event_lock_irq(conf->wait_barrier,
992 				!conf->array_frozen &&
993 				!atomic_read(&conf->barrier[idx]),
994 				conf->resync_lock);
995 		atomic_inc(&conf->nr_pending[idx]);
996 	}
997 
998 	atomic_dec(&conf->nr_waiting[idx]);
999 	spin_unlock_irq(&conf->resync_lock);
1000 	return ret;
1001 }
1002 
1003 static bool wait_read_barrier(struct r1conf *conf, sector_t sector_nr, bool nowait)
1004 {
1005 	int idx = sector_to_idx(sector_nr);
1006 	bool ret = true;
1007 
1008 	/*
1009 	 * Very similar to _wait_barrier(). The difference is, for read
1010 	 * I/O we don't need wait for sync I/O, but if the whole array
1011 	 * is frozen, the read I/O still has to wait until the array is
1012 	 * unfrozen. Since there is no ordering requirement with
1013 	 * conf->barrier[idx] here, memory barrier is unnecessary as well.
1014 	 */
1015 	atomic_inc(&conf->nr_pending[idx]);
1016 
1017 	if (!READ_ONCE(conf->array_frozen))
1018 		return ret;
1019 
1020 	spin_lock_irq(&conf->resync_lock);
1021 	atomic_inc(&conf->nr_waiting[idx]);
1022 	atomic_dec(&conf->nr_pending[idx]);
1023 	/*
1024 	 * In case freeze_array() is waiting for
1025 	 * get_unqueued_pending() == extra
1026 	 */
1027 	wake_up(&conf->wait_barrier);
1028 	/* Wait for array to be unfrozen */
1029 
1030 	/* Return false when nowait flag is set */
1031 	if (nowait) {
1032 		/* Return false when nowait flag is set */
1033 		ret = false;
1034 	} else {
1035 		wait_event_lock_irq(conf->wait_barrier,
1036 				!conf->array_frozen,
1037 				conf->resync_lock);
1038 		atomic_inc(&conf->nr_pending[idx]);
1039 	}
1040 
1041 	atomic_dec(&conf->nr_waiting[idx]);
1042 	spin_unlock_irq(&conf->resync_lock);
1043 	return ret;
1044 }
1045 
1046 static bool wait_barrier(struct r1conf *conf, sector_t sector_nr, bool nowait)
1047 {
1048 	int idx = sector_to_idx(sector_nr);
1049 
1050 	return _wait_barrier(conf, idx, nowait);
1051 }
1052 
1053 static void _allow_barrier(struct r1conf *conf, int idx)
1054 {
1055 	atomic_dec(&conf->nr_pending[idx]);
1056 	wake_up(&conf->wait_barrier);
1057 }
1058 
1059 static void allow_barrier(struct r1conf *conf, sector_t sector_nr)
1060 {
1061 	int idx = sector_to_idx(sector_nr);
1062 
1063 	_allow_barrier(conf, idx);
1064 }
1065 
1066 /* conf->resync_lock should be held */
1067 static int get_unqueued_pending(struct r1conf *conf)
1068 {
1069 	int idx, ret;
1070 
1071 	ret = atomic_read(&conf->nr_sync_pending);
1072 	for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
1073 		ret += atomic_read(&conf->nr_pending[idx]) -
1074 			atomic_read(&conf->nr_queued[idx]);
1075 
1076 	return ret;
1077 }
1078 
1079 static void freeze_array(struct r1conf *conf, int extra)
1080 {
1081 	/* Stop sync I/O and normal I/O and wait for everything to
1082 	 * go quiet.
1083 	 * This is called in two situations:
1084 	 * 1) management command handlers (reshape, remove disk, quiesce).
1085 	 * 2) one normal I/O request failed.
1086 
1087 	 * After array_frozen is set to 1, new sync IO will be blocked at
1088 	 * raise_barrier(), and new normal I/O will blocked at _wait_barrier()
1089 	 * or wait_read_barrier(). The flying I/Os will either complete or be
1090 	 * queued. When everything goes quite, there are only queued I/Os left.
1091 
1092 	 * Every flying I/O contributes to a conf->nr_pending[idx], idx is the
1093 	 * barrier bucket index which this I/O request hits. When all sync and
1094 	 * normal I/O are queued, sum of all conf->nr_pending[] will match sum
1095 	 * of all conf->nr_queued[]. But normal I/O failure is an exception,
1096 	 * in handle_read_error(), we may call freeze_array() before trying to
1097 	 * fix the read error. In this case, the error read I/O is not queued,
1098 	 * so get_unqueued_pending() == 1.
1099 	 *
1100 	 * Therefore before this function returns, we need to wait until
1101 	 * get_unqueued_pendings(conf) gets equal to extra. For
1102 	 * normal I/O context, extra is 1, in rested situations extra is 0.
1103 	 */
1104 	spin_lock_irq(&conf->resync_lock);
1105 	conf->array_frozen = 1;
1106 	raid1_log(conf->mddev, "wait freeze");
1107 	wait_event_lock_irq_cmd(
1108 		conf->wait_barrier,
1109 		get_unqueued_pending(conf) == extra,
1110 		conf->resync_lock,
1111 		flush_pending_writes(conf));
1112 	spin_unlock_irq(&conf->resync_lock);
1113 }
1114 static void unfreeze_array(struct r1conf *conf)
1115 {
1116 	/* reverse the effect of the freeze */
1117 	spin_lock_irq(&conf->resync_lock);
1118 	conf->array_frozen = 0;
1119 	spin_unlock_irq(&conf->resync_lock);
1120 	wake_up(&conf->wait_barrier);
1121 }
1122 
1123 static void alloc_behind_master_bio(struct r1bio *r1_bio,
1124 					   struct bio *bio)
1125 {
1126 	int size = bio->bi_iter.bi_size;
1127 	unsigned vcnt = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1128 	int i = 0;
1129 	struct bio *behind_bio = NULL;
1130 
1131 	behind_bio = bio_alloc_bioset(NULL, vcnt, 0, GFP_NOIO,
1132 				      &r1_bio->mddev->bio_set);
1133 	if (!behind_bio)
1134 		return;
1135 
1136 	/* discard op, we don't support writezero/writesame yet */
1137 	if (!bio_has_data(bio)) {
1138 		behind_bio->bi_iter.bi_size = size;
1139 		goto skip_copy;
1140 	}
1141 
1142 	while (i < vcnt && size) {
1143 		struct page *page;
1144 		int len = min_t(int, PAGE_SIZE, size);
1145 
1146 		page = alloc_page(GFP_NOIO);
1147 		if (unlikely(!page))
1148 			goto free_pages;
1149 
1150 		bio_add_page(behind_bio, page, len, 0);
1151 
1152 		size -= len;
1153 		i++;
1154 	}
1155 
1156 	bio_copy_data(behind_bio, bio);
1157 skip_copy:
1158 	r1_bio->behind_master_bio = behind_bio;
1159 	set_bit(R1BIO_BehindIO, &r1_bio->state);
1160 
1161 	return;
1162 
1163 free_pages:
1164 	pr_debug("%dB behind alloc failed, doing sync I/O\n",
1165 		 bio->bi_iter.bi_size);
1166 	bio_free_pages(behind_bio);
1167 	bio_put(behind_bio);
1168 }
1169 
1170 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1171 {
1172 	struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1173 						  cb);
1174 	struct mddev *mddev = plug->cb.data;
1175 	struct r1conf *conf = mddev->private;
1176 	struct bio *bio;
1177 
1178 	if (from_schedule || current->bio_list) {
1179 		spin_lock_irq(&conf->device_lock);
1180 		bio_list_merge(&conf->pending_bio_list, &plug->pending);
1181 		spin_unlock_irq(&conf->device_lock);
1182 		wake_up(&conf->wait_barrier);
1183 		md_wakeup_thread(mddev->thread);
1184 		kfree(plug);
1185 		return;
1186 	}
1187 
1188 	/* we aren't scheduling, so we can do the write-out directly. */
1189 	bio = bio_list_get(&plug->pending);
1190 	flush_bio_list(conf, bio);
1191 	kfree(plug);
1192 }
1193 
1194 static void init_r1bio(struct r1bio *r1_bio, struct mddev *mddev, struct bio *bio)
1195 {
1196 	r1_bio->master_bio = bio;
1197 	r1_bio->sectors = bio_sectors(bio);
1198 	r1_bio->state = 0;
1199 	r1_bio->mddev = mddev;
1200 	r1_bio->sector = bio->bi_iter.bi_sector;
1201 }
1202 
1203 static inline struct r1bio *
1204 alloc_r1bio(struct mddev *mddev, struct bio *bio)
1205 {
1206 	struct r1conf *conf = mddev->private;
1207 	struct r1bio *r1_bio;
1208 
1209 	r1_bio = mempool_alloc(&conf->r1bio_pool, GFP_NOIO);
1210 	/* Ensure no bio records IO_BLOCKED */
1211 	memset(r1_bio->bios, 0, conf->raid_disks * sizeof(r1_bio->bios[0]));
1212 	init_r1bio(r1_bio, mddev, bio);
1213 	return r1_bio;
1214 }
1215 
1216 static void raid1_read_request(struct mddev *mddev, struct bio *bio,
1217 			       int max_read_sectors, struct r1bio *r1_bio)
1218 {
1219 	struct r1conf *conf = mddev->private;
1220 	struct raid1_info *mirror;
1221 	struct bio *read_bio;
1222 	struct bitmap *bitmap = mddev->bitmap;
1223 	const enum req_op op = bio_op(bio);
1224 	const blk_opf_t do_sync = bio->bi_opf & REQ_SYNC;
1225 	int max_sectors;
1226 	int rdisk;
1227 	bool r1bio_existed = !!r1_bio;
1228 	char b[BDEVNAME_SIZE];
1229 
1230 	/*
1231 	 * If r1_bio is set, we are blocking the raid1d thread
1232 	 * so there is a tiny risk of deadlock.  So ask for
1233 	 * emergency memory if needed.
1234 	 */
1235 	gfp_t gfp = r1_bio ? (GFP_NOIO | __GFP_HIGH) : GFP_NOIO;
1236 
1237 	if (r1bio_existed) {
1238 		/* Need to get the block device name carefully */
1239 		struct md_rdev *rdev;
1240 		rcu_read_lock();
1241 		rdev = rcu_dereference(conf->mirrors[r1_bio->read_disk].rdev);
1242 		if (rdev)
1243 			snprintf(b, sizeof(b), "%pg", rdev->bdev);
1244 		else
1245 			strcpy(b, "???");
1246 		rcu_read_unlock();
1247 	}
1248 
1249 	/*
1250 	 * Still need barrier for READ in case that whole
1251 	 * array is frozen.
1252 	 */
1253 	if (!wait_read_barrier(conf, bio->bi_iter.bi_sector,
1254 				bio->bi_opf & REQ_NOWAIT)) {
1255 		bio_wouldblock_error(bio);
1256 		return;
1257 	}
1258 
1259 	if (!r1_bio)
1260 		r1_bio = alloc_r1bio(mddev, bio);
1261 	else
1262 		init_r1bio(r1_bio, mddev, bio);
1263 	r1_bio->sectors = max_read_sectors;
1264 
1265 	/*
1266 	 * make_request() can abort the operation when read-ahead is being
1267 	 * used and no empty request is available.
1268 	 */
1269 	rdisk = read_balance(conf, r1_bio, &max_sectors);
1270 
1271 	if (rdisk < 0) {
1272 		/* couldn't find anywhere to read from */
1273 		if (r1bio_existed) {
1274 			pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
1275 					    mdname(mddev),
1276 					    b,
1277 					    (unsigned long long)r1_bio->sector);
1278 		}
1279 		raid_end_bio_io(r1_bio);
1280 		return;
1281 	}
1282 	mirror = conf->mirrors + rdisk;
1283 
1284 	if (r1bio_existed)
1285 		pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %pg\n",
1286 				    mdname(mddev),
1287 				    (unsigned long long)r1_bio->sector,
1288 				    mirror->rdev->bdev);
1289 
1290 	if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1291 	    bitmap) {
1292 		/*
1293 		 * Reading from a write-mostly device must take care not to
1294 		 * over-take any writes that are 'behind'
1295 		 */
1296 		raid1_log(mddev, "wait behind writes");
1297 		wait_event(bitmap->behind_wait,
1298 			   atomic_read(&bitmap->behind_writes) == 0);
1299 	}
1300 
1301 	if (max_sectors < bio_sectors(bio)) {
1302 		struct bio *split = bio_split(bio, max_sectors,
1303 					      gfp, &conf->bio_split);
1304 		bio_chain(split, bio);
1305 		submit_bio_noacct(bio);
1306 		bio = split;
1307 		r1_bio->master_bio = bio;
1308 		r1_bio->sectors = max_sectors;
1309 	}
1310 
1311 	r1_bio->read_disk = rdisk;
1312 
1313 	if (!r1bio_existed && blk_queue_io_stat(bio->bi_bdev->bd_disk->queue))
1314 		r1_bio->start_time = bio_start_io_acct(bio);
1315 
1316 	read_bio = bio_alloc_clone(mirror->rdev->bdev, bio, gfp,
1317 				   &mddev->bio_set);
1318 
1319 	r1_bio->bios[rdisk] = read_bio;
1320 
1321 	read_bio->bi_iter.bi_sector = r1_bio->sector +
1322 		mirror->rdev->data_offset;
1323 	read_bio->bi_end_io = raid1_end_read_request;
1324 	bio_set_op_attrs(read_bio, op, do_sync);
1325 	if (test_bit(FailFast, &mirror->rdev->flags) &&
1326 	    test_bit(R1BIO_FailFast, &r1_bio->state))
1327 	        read_bio->bi_opf |= MD_FAILFAST;
1328 	read_bio->bi_private = r1_bio;
1329 
1330 	if (mddev->gendisk)
1331 	        trace_block_bio_remap(read_bio, disk_devt(mddev->gendisk),
1332 				      r1_bio->sector);
1333 
1334 	submit_bio_noacct(read_bio);
1335 }
1336 
1337 static void raid1_write_request(struct mddev *mddev, struct bio *bio,
1338 				int max_write_sectors)
1339 {
1340 	struct r1conf *conf = mddev->private;
1341 	struct r1bio *r1_bio;
1342 	int i, disks;
1343 	struct bitmap *bitmap = mddev->bitmap;
1344 	unsigned long flags;
1345 	struct md_rdev *blocked_rdev;
1346 	struct blk_plug_cb *cb;
1347 	struct raid1_plug_cb *plug = NULL;
1348 	int first_clone;
1349 	int max_sectors;
1350 	bool write_behind = false;
1351 
1352 	if (mddev_is_clustered(mddev) &&
1353 	     md_cluster_ops->area_resyncing(mddev, WRITE,
1354 		     bio->bi_iter.bi_sector, bio_end_sector(bio))) {
1355 
1356 		DEFINE_WAIT(w);
1357 		if (bio->bi_opf & REQ_NOWAIT) {
1358 			bio_wouldblock_error(bio);
1359 			return;
1360 		}
1361 		for (;;) {
1362 			prepare_to_wait(&conf->wait_barrier,
1363 					&w, TASK_IDLE);
1364 			if (!md_cluster_ops->area_resyncing(mddev, WRITE,
1365 							bio->bi_iter.bi_sector,
1366 							bio_end_sector(bio)))
1367 				break;
1368 			schedule();
1369 		}
1370 		finish_wait(&conf->wait_barrier, &w);
1371 	}
1372 
1373 	/*
1374 	 * Register the new request and wait if the reconstruction
1375 	 * thread has put up a bar for new requests.
1376 	 * Continue immediately if no resync is active currently.
1377 	 */
1378 	if (!wait_barrier(conf, bio->bi_iter.bi_sector,
1379 				bio->bi_opf & REQ_NOWAIT)) {
1380 		bio_wouldblock_error(bio);
1381 		return;
1382 	}
1383 
1384 	r1_bio = alloc_r1bio(mddev, bio);
1385 	r1_bio->sectors = max_write_sectors;
1386 
1387 	/* first select target devices under rcu_lock and
1388 	 * inc refcount on their rdev.  Record them by setting
1389 	 * bios[x] to bio
1390 	 * If there are known/acknowledged bad blocks on any device on
1391 	 * which we have seen a write error, we want to avoid writing those
1392 	 * blocks.
1393 	 * This potentially requires several writes to write around
1394 	 * the bad blocks.  Each set of writes gets it's own r1bio
1395 	 * with a set of bios attached.
1396 	 */
1397 
1398 	disks = conf->raid_disks * 2;
1399  retry_write:
1400 	blocked_rdev = NULL;
1401 	rcu_read_lock();
1402 	max_sectors = r1_bio->sectors;
1403 	for (i = 0;  i < disks; i++) {
1404 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1405 
1406 		/*
1407 		 * The write-behind io is only attempted on drives marked as
1408 		 * write-mostly, which means we could allocate write behind
1409 		 * bio later.
1410 		 */
1411 		if (rdev && test_bit(WriteMostly, &rdev->flags))
1412 			write_behind = true;
1413 
1414 		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1415 			atomic_inc(&rdev->nr_pending);
1416 			blocked_rdev = rdev;
1417 			break;
1418 		}
1419 		r1_bio->bios[i] = NULL;
1420 		if (!rdev || test_bit(Faulty, &rdev->flags)) {
1421 			if (i < conf->raid_disks)
1422 				set_bit(R1BIO_Degraded, &r1_bio->state);
1423 			continue;
1424 		}
1425 
1426 		atomic_inc(&rdev->nr_pending);
1427 		if (test_bit(WriteErrorSeen, &rdev->flags)) {
1428 			sector_t first_bad;
1429 			int bad_sectors;
1430 			int is_bad;
1431 
1432 			is_bad = is_badblock(rdev, r1_bio->sector, max_sectors,
1433 					     &first_bad, &bad_sectors);
1434 			if (is_bad < 0) {
1435 				/* mustn't write here until the bad block is
1436 				 * acknowledged*/
1437 				set_bit(BlockedBadBlocks, &rdev->flags);
1438 				blocked_rdev = rdev;
1439 				break;
1440 			}
1441 			if (is_bad && first_bad <= r1_bio->sector) {
1442 				/* Cannot write here at all */
1443 				bad_sectors -= (r1_bio->sector - first_bad);
1444 				if (bad_sectors < max_sectors)
1445 					/* mustn't write more than bad_sectors
1446 					 * to other devices yet
1447 					 */
1448 					max_sectors = bad_sectors;
1449 				rdev_dec_pending(rdev, mddev);
1450 				/* We don't set R1BIO_Degraded as that
1451 				 * only applies if the disk is
1452 				 * missing, so it might be re-added,
1453 				 * and we want to know to recover this
1454 				 * chunk.
1455 				 * In this case the device is here,
1456 				 * and the fact that this chunk is not
1457 				 * in-sync is recorded in the bad
1458 				 * block log
1459 				 */
1460 				continue;
1461 			}
1462 			if (is_bad) {
1463 				int good_sectors = first_bad - r1_bio->sector;
1464 				if (good_sectors < max_sectors)
1465 					max_sectors = good_sectors;
1466 			}
1467 		}
1468 		r1_bio->bios[i] = bio;
1469 	}
1470 	rcu_read_unlock();
1471 
1472 	if (unlikely(blocked_rdev)) {
1473 		/* Wait for this device to become unblocked */
1474 		int j;
1475 
1476 		for (j = 0; j < i; j++)
1477 			if (r1_bio->bios[j])
1478 				rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1479 		r1_bio->state = 0;
1480 		allow_barrier(conf, bio->bi_iter.bi_sector);
1481 
1482 		if (bio->bi_opf & REQ_NOWAIT) {
1483 			bio_wouldblock_error(bio);
1484 			return;
1485 		}
1486 		raid1_log(mddev, "wait rdev %d blocked", blocked_rdev->raid_disk);
1487 		md_wait_for_blocked_rdev(blocked_rdev, mddev);
1488 		wait_barrier(conf, bio->bi_iter.bi_sector, false);
1489 		goto retry_write;
1490 	}
1491 
1492 	/*
1493 	 * When using a bitmap, we may call alloc_behind_master_bio below.
1494 	 * alloc_behind_master_bio allocates a copy of the data payload a page
1495 	 * at a time and thus needs a new bio that can fit the whole payload
1496 	 * this bio in page sized chunks.
1497 	 */
1498 	if (write_behind && bitmap)
1499 		max_sectors = min_t(int, max_sectors,
1500 				    BIO_MAX_VECS * (PAGE_SIZE >> 9));
1501 	if (max_sectors < bio_sectors(bio)) {
1502 		struct bio *split = bio_split(bio, max_sectors,
1503 					      GFP_NOIO, &conf->bio_split);
1504 		bio_chain(split, bio);
1505 		submit_bio_noacct(bio);
1506 		bio = split;
1507 		r1_bio->master_bio = bio;
1508 		r1_bio->sectors = max_sectors;
1509 	}
1510 
1511 	if (blk_queue_io_stat(bio->bi_bdev->bd_disk->queue))
1512 		r1_bio->start_time = bio_start_io_acct(bio);
1513 	atomic_set(&r1_bio->remaining, 1);
1514 	atomic_set(&r1_bio->behind_remaining, 0);
1515 
1516 	first_clone = 1;
1517 
1518 	for (i = 0; i < disks; i++) {
1519 		struct bio *mbio = NULL;
1520 		struct md_rdev *rdev = conf->mirrors[i].rdev;
1521 		if (!r1_bio->bios[i])
1522 			continue;
1523 
1524 		if (first_clone) {
1525 			/* do behind I/O ?
1526 			 * Not if there are too many, or cannot
1527 			 * allocate memory, or a reader on WriteMostly
1528 			 * is waiting for behind writes to flush */
1529 			if (bitmap &&
1530 			    test_bit(WriteMostly, &rdev->flags) &&
1531 			    (atomic_read(&bitmap->behind_writes)
1532 			     < mddev->bitmap_info.max_write_behind) &&
1533 			    !waitqueue_active(&bitmap->behind_wait)) {
1534 				alloc_behind_master_bio(r1_bio, bio);
1535 			}
1536 
1537 			md_bitmap_startwrite(bitmap, r1_bio->sector, r1_bio->sectors,
1538 					     test_bit(R1BIO_BehindIO, &r1_bio->state));
1539 			first_clone = 0;
1540 		}
1541 
1542 		if (r1_bio->behind_master_bio) {
1543 			mbio = bio_alloc_clone(rdev->bdev,
1544 					       r1_bio->behind_master_bio,
1545 					       GFP_NOIO, &mddev->bio_set);
1546 			if (test_bit(CollisionCheck, &rdev->flags))
1547 				wait_for_serialization(rdev, r1_bio);
1548 			if (test_bit(WriteMostly, &rdev->flags))
1549 				atomic_inc(&r1_bio->behind_remaining);
1550 		} else {
1551 			mbio = bio_alloc_clone(rdev->bdev, bio, GFP_NOIO,
1552 					       &mddev->bio_set);
1553 
1554 			if (mddev->serialize_policy)
1555 				wait_for_serialization(rdev, r1_bio);
1556 		}
1557 
1558 		r1_bio->bios[i] = mbio;
1559 
1560 		mbio->bi_iter.bi_sector	= (r1_bio->sector + rdev->data_offset);
1561 		mbio->bi_end_io	= raid1_end_write_request;
1562 		mbio->bi_opf = bio_op(bio) | (bio->bi_opf & (REQ_SYNC | REQ_FUA));
1563 		if (test_bit(FailFast, &rdev->flags) &&
1564 		    !test_bit(WriteMostly, &rdev->flags) &&
1565 		    conf->raid_disks - mddev->degraded > 1)
1566 			mbio->bi_opf |= MD_FAILFAST;
1567 		mbio->bi_private = r1_bio;
1568 
1569 		atomic_inc(&r1_bio->remaining);
1570 
1571 		if (mddev->gendisk)
1572 			trace_block_bio_remap(mbio, disk_devt(mddev->gendisk),
1573 					      r1_bio->sector);
1574 		/* flush_pending_writes() needs access to the rdev so...*/
1575 		mbio->bi_bdev = (void *)rdev;
1576 
1577 		cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1578 		if (cb)
1579 			plug = container_of(cb, struct raid1_plug_cb, cb);
1580 		else
1581 			plug = NULL;
1582 		if (plug) {
1583 			bio_list_add(&plug->pending, mbio);
1584 		} else {
1585 			spin_lock_irqsave(&conf->device_lock, flags);
1586 			bio_list_add(&conf->pending_bio_list, mbio);
1587 			spin_unlock_irqrestore(&conf->device_lock, flags);
1588 			md_wakeup_thread(mddev->thread);
1589 		}
1590 	}
1591 
1592 	r1_bio_write_done(r1_bio);
1593 
1594 	/* In case raid1d snuck in to freeze_array */
1595 	wake_up(&conf->wait_barrier);
1596 }
1597 
1598 static bool raid1_make_request(struct mddev *mddev, struct bio *bio)
1599 {
1600 	sector_t sectors;
1601 
1602 	if (unlikely(bio->bi_opf & REQ_PREFLUSH)
1603 	    && md_flush_request(mddev, bio))
1604 		return true;
1605 
1606 	/*
1607 	 * There is a limit to the maximum size, but
1608 	 * the read/write handler might find a lower limit
1609 	 * due to bad blocks.  To avoid multiple splits,
1610 	 * we pass the maximum number of sectors down
1611 	 * and let the lower level perform the split.
1612 	 */
1613 	sectors = align_to_barrier_unit_end(
1614 		bio->bi_iter.bi_sector, bio_sectors(bio));
1615 
1616 	if (bio_data_dir(bio) == READ)
1617 		raid1_read_request(mddev, bio, sectors, NULL);
1618 	else {
1619 		if (!md_write_start(mddev,bio))
1620 			return false;
1621 		raid1_write_request(mddev, bio, sectors);
1622 	}
1623 	return true;
1624 }
1625 
1626 static void raid1_status(struct seq_file *seq, struct mddev *mddev)
1627 {
1628 	struct r1conf *conf = mddev->private;
1629 	int i;
1630 
1631 	seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1632 		   conf->raid_disks - mddev->degraded);
1633 	rcu_read_lock();
1634 	for (i = 0; i < conf->raid_disks; i++) {
1635 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1636 		seq_printf(seq, "%s",
1637 			   rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1638 	}
1639 	rcu_read_unlock();
1640 	seq_printf(seq, "]");
1641 }
1642 
1643 /**
1644  * raid1_error() - RAID1 error handler.
1645  * @mddev: affected md device.
1646  * @rdev: member device to fail.
1647  *
1648  * The routine acknowledges &rdev failure and determines new @mddev state.
1649  * If it failed, then:
1650  *	- &MD_BROKEN flag is set in &mddev->flags.
1651  *	- recovery is disabled.
1652  * Otherwise, it must be degraded:
1653  *	- recovery is interrupted.
1654  *	- &mddev->degraded is bumped.
1655  *
1656  * @rdev is marked as &Faulty excluding case when array is failed and
1657  * &mddev->fail_last_dev is off.
1658  */
1659 static void raid1_error(struct mddev *mddev, struct md_rdev *rdev)
1660 {
1661 	struct r1conf *conf = mddev->private;
1662 	unsigned long flags;
1663 
1664 	spin_lock_irqsave(&conf->device_lock, flags);
1665 
1666 	if (test_bit(In_sync, &rdev->flags) &&
1667 	    (conf->raid_disks - mddev->degraded) == 1) {
1668 		set_bit(MD_BROKEN, &mddev->flags);
1669 
1670 		if (!mddev->fail_last_dev) {
1671 			conf->recovery_disabled = mddev->recovery_disabled;
1672 			spin_unlock_irqrestore(&conf->device_lock, flags);
1673 			return;
1674 		}
1675 	}
1676 	set_bit(Blocked, &rdev->flags);
1677 	if (test_and_clear_bit(In_sync, &rdev->flags))
1678 		mddev->degraded++;
1679 	set_bit(Faulty, &rdev->flags);
1680 	spin_unlock_irqrestore(&conf->device_lock, flags);
1681 	/*
1682 	 * if recovery is running, make sure it aborts.
1683 	 */
1684 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1685 	set_mask_bits(&mddev->sb_flags, 0,
1686 		      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1687 	pr_crit("md/raid1:%s: Disk failure on %pg, disabling device.\n"
1688 		"md/raid1:%s: Operation continuing on %d devices.\n",
1689 		mdname(mddev), rdev->bdev,
1690 		mdname(mddev), conf->raid_disks - mddev->degraded);
1691 }
1692 
1693 static void print_conf(struct r1conf *conf)
1694 {
1695 	int i;
1696 
1697 	pr_debug("RAID1 conf printout:\n");
1698 	if (!conf) {
1699 		pr_debug("(!conf)\n");
1700 		return;
1701 	}
1702 	pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1703 		 conf->raid_disks);
1704 
1705 	rcu_read_lock();
1706 	for (i = 0; i < conf->raid_disks; i++) {
1707 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1708 		if (rdev)
1709 			pr_debug(" disk %d, wo:%d, o:%d, dev:%pg\n",
1710 				 i, !test_bit(In_sync, &rdev->flags),
1711 				 !test_bit(Faulty, &rdev->flags),
1712 				 rdev->bdev);
1713 	}
1714 	rcu_read_unlock();
1715 }
1716 
1717 static void close_sync(struct r1conf *conf)
1718 {
1719 	int idx;
1720 
1721 	for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++) {
1722 		_wait_barrier(conf, idx, false);
1723 		_allow_barrier(conf, idx);
1724 	}
1725 
1726 	mempool_exit(&conf->r1buf_pool);
1727 }
1728 
1729 static int raid1_spare_active(struct mddev *mddev)
1730 {
1731 	int i;
1732 	struct r1conf *conf = mddev->private;
1733 	int count = 0;
1734 	unsigned long flags;
1735 
1736 	/*
1737 	 * Find all failed disks within the RAID1 configuration
1738 	 * and mark them readable.
1739 	 * Called under mddev lock, so rcu protection not needed.
1740 	 * device_lock used to avoid races with raid1_end_read_request
1741 	 * which expects 'In_sync' flags and ->degraded to be consistent.
1742 	 */
1743 	spin_lock_irqsave(&conf->device_lock, flags);
1744 	for (i = 0; i < conf->raid_disks; i++) {
1745 		struct md_rdev *rdev = conf->mirrors[i].rdev;
1746 		struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1747 		if (repl
1748 		    && !test_bit(Candidate, &repl->flags)
1749 		    && repl->recovery_offset == MaxSector
1750 		    && !test_bit(Faulty, &repl->flags)
1751 		    && !test_and_set_bit(In_sync, &repl->flags)) {
1752 			/* replacement has just become active */
1753 			if (!rdev ||
1754 			    !test_and_clear_bit(In_sync, &rdev->flags))
1755 				count++;
1756 			if (rdev) {
1757 				/* Replaced device not technically
1758 				 * faulty, but we need to be sure
1759 				 * it gets removed and never re-added
1760 				 */
1761 				set_bit(Faulty, &rdev->flags);
1762 				sysfs_notify_dirent_safe(
1763 					rdev->sysfs_state);
1764 			}
1765 		}
1766 		if (rdev
1767 		    && rdev->recovery_offset == MaxSector
1768 		    && !test_bit(Faulty, &rdev->flags)
1769 		    && !test_and_set_bit(In_sync, &rdev->flags)) {
1770 			count++;
1771 			sysfs_notify_dirent_safe(rdev->sysfs_state);
1772 		}
1773 	}
1774 	mddev->degraded -= count;
1775 	spin_unlock_irqrestore(&conf->device_lock, flags);
1776 
1777 	print_conf(conf);
1778 	return count;
1779 }
1780 
1781 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1782 {
1783 	struct r1conf *conf = mddev->private;
1784 	int err = -EEXIST;
1785 	int mirror = 0;
1786 	struct raid1_info *p;
1787 	int first = 0;
1788 	int last = conf->raid_disks - 1;
1789 
1790 	if (mddev->recovery_disabled == conf->recovery_disabled)
1791 		return -EBUSY;
1792 
1793 	if (md_integrity_add_rdev(rdev, mddev))
1794 		return -ENXIO;
1795 
1796 	if (rdev->raid_disk >= 0)
1797 		first = last = rdev->raid_disk;
1798 
1799 	/*
1800 	 * find the disk ... but prefer rdev->saved_raid_disk
1801 	 * if possible.
1802 	 */
1803 	if (rdev->saved_raid_disk >= 0 &&
1804 	    rdev->saved_raid_disk >= first &&
1805 	    rdev->saved_raid_disk < conf->raid_disks &&
1806 	    conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1807 		first = last = rdev->saved_raid_disk;
1808 
1809 	for (mirror = first; mirror <= last; mirror++) {
1810 		p = conf->mirrors + mirror;
1811 		if (!p->rdev) {
1812 			if (mddev->gendisk)
1813 				disk_stack_limits(mddev->gendisk, rdev->bdev,
1814 						  rdev->data_offset << 9);
1815 
1816 			p->head_position = 0;
1817 			rdev->raid_disk = mirror;
1818 			err = 0;
1819 			/* As all devices are equivalent, we don't need a full recovery
1820 			 * if this was recently any drive of the array
1821 			 */
1822 			if (rdev->saved_raid_disk < 0)
1823 				conf->fullsync = 1;
1824 			rcu_assign_pointer(p->rdev, rdev);
1825 			break;
1826 		}
1827 		if (test_bit(WantReplacement, &p->rdev->flags) &&
1828 		    p[conf->raid_disks].rdev == NULL) {
1829 			/* Add this device as a replacement */
1830 			clear_bit(In_sync, &rdev->flags);
1831 			set_bit(Replacement, &rdev->flags);
1832 			rdev->raid_disk = mirror;
1833 			err = 0;
1834 			conf->fullsync = 1;
1835 			rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1836 			break;
1837 		}
1838 	}
1839 	print_conf(conf);
1840 	return err;
1841 }
1842 
1843 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1844 {
1845 	struct r1conf *conf = mddev->private;
1846 	int err = 0;
1847 	int number = rdev->raid_disk;
1848 	struct raid1_info *p = conf->mirrors + number;
1849 
1850 	if (rdev != p->rdev)
1851 		p = conf->mirrors + conf->raid_disks + number;
1852 
1853 	print_conf(conf);
1854 	if (rdev == p->rdev) {
1855 		if (test_bit(In_sync, &rdev->flags) ||
1856 		    atomic_read(&rdev->nr_pending)) {
1857 			err = -EBUSY;
1858 			goto abort;
1859 		}
1860 		/* Only remove non-faulty devices if recovery
1861 		 * is not possible.
1862 		 */
1863 		if (!test_bit(Faulty, &rdev->flags) &&
1864 		    mddev->recovery_disabled != conf->recovery_disabled &&
1865 		    mddev->degraded < conf->raid_disks) {
1866 			err = -EBUSY;
1867 			goto abort;
1868 		}
1869 		p->rdev = NULL;
1870 		if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1871 			synchronize_rcu();
1872 			if (atomic_read(&rdev->nr_pending)) {
1873 				/* lost the race, try later */
1874 				err = -EBUSY;
1875 				p->rdev = rdev;
1876 				goto abort;
1877 			}
1878 		}
1879 		if (conf->mirrors[conf->raid_disks + number].rdev) {
1880 			/* We just removed a device that is being replaced.
1881 			 * Move down the replacement.  We drain all IO before
1882 			 * doing this to avoid confusion.
1883 			 */
1884 			struct md_rdev *repl =
1885 				conf->mirrors[conf->raid_disks + number].rdev;
1886 			freeze_array(conf, 0);
1887 			if (atomic_read(&repl->nr_pending)) {
1888 				/* It means that some queued IO of retry_list
1889 				 * hold repl. Thus, we cannot set replacement
1890 				 * as NULL, avoiding rdev NULL pointer
1891 				 * dereference in sync_request_write and
1892 				 * handle_write_finished.
1893 				 */
1894 				err = -EBUSY;
1895 				unfreeze_array(conf);
1896 				goto abort;
1897 			}
1898 			clear_bit(Replacement, &repl->flags);
1899 			p->rdev = repl;
1900 			conf->mirrors[conf->raid_disks + number].rdev = NULL;
1901 			unfreeze_array(conf);
1902 		}
1903 
1904 		clear_bit(WantReplacement, &rdev->flags);
1905 		err = md_integrity_register(mddev);
1906 	}
1907 abort:
1908 
1909 	print_conf(conf);
1910 	return err;
1911 }
1912 
1913 static void end_sync_read(struct bio *bio)
1914 {
1915 	struct r1bio *r1_bio = get_resync_r1bio(bio);
1916 
1917 	update_head_pos(r1_bio->read_disk, r1_bio);
1918 
1919 	/*
1920 	 * we have read a block, now it needs to be re-written,
1921 	 * or re-read if the read failed.
1922 	 * We don't do much here, just schedule handling by raid1d
1923 	 */
1924 	if (!bio->bi_status)
1925 		set_bit(R1BIO_Uptodate, &r1_bio->state);
1926 
1927 	if (atomic_dec_and_test(&r1_bio->remaining))
1928 		reschedule_retry(r1_bio);
1929 }
1930 
1931 static void abort_sync_write(struct mddev *mddev, struct r1bio *r1_bio)
1932 {
1933 	sector_t sync_blocks = 0;
1934 	sector_t s = r1_bio->sector;
1935 	long sectors_to_go = r1_bio->sectors;
1936 
1937 	/* make sure these bits don't get cleared. */
1938 	do {
1939 		md_bitmap_end_sync(mddev->bitmap, s, &sync_blocks, 1);
1940 		s += sync_blocks;
1941 		sectors_to_go -= sync_blocks;
1942 	} while (sectors_to_go > 0);
1943 }
1944 
1945 static void put_sync_write_buf(struct r1bio *r1_bio, int uptodate)
1946 {
1947 	if (atomic_dec_and_test(&r1_bio->remaining)) {
1948 		struct mddev *mddev = r1_bio->mddev;
1949 		int s = r1_bio->sectors;
1950 
1951 		if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1952 		    test_bit(R1BIO_WriteError, &r1_bio->state))
1953 			reschedule_retry(r1_bio);
1954 		else {
1955 			put_buf(r1_bio);
1956 			md_done_sync(mddev, s, uptodate);
1957 		}
1958 	}
1959 }
1960 
1961 static void end_sync_write(struct bio *bio)
1962 {
1963 	int uptodate = !bio->bi_status;
1964 	struct r1bio *r1_bio = get_resync_r1bio(bio);
1965 	struct mddev *mddev = r1_bio->mddev;
1966 	struct r1conf *conf = mddev->private;
1967 	sector_t first_bad;
1968 	int bad_sectors;
1969 	struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev;
1970 
1971 	if (!uptodate) {
1972 		abort_sync_write(mddev, r1_bio);
1973 		set_bit(WriteErrorSeen, &rdev->flags);
1974 		if (!test_and_set_bit(WantReplacement, &rdev->flags))
1975 			set_bit(MD_RECOVERY_NEEDED, &
1976 				mddev->recovery);
1977 		set_bit(R1BIO_WriteError, &r1_bio->state);
1978 	} else if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
1979 			       &first_bad, &bad_sectors) &&
1980 		   !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1981 				r1_bio->sector,
1982 				r1_bio->sectors,
1983 				&first_bad, &bad_sectors)
1984 		)
1985 		set_bit(R1BIO_MadeGood, &r1_bio->state);
1986 
1987 	put_sync_write_buf(r1_bio, uptodate);
1988 }
1989 
1990 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1991 			   int sectors, struct page *page, int rw)
1992 {
1993 	if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
1994 		/* success */
1995 		return 1;
1996 	if (rw == WRITE) {
1997 		set_bit(WriteErrorSeen, &rdev->flags);
1998 		if (!test_and_set_bit(WantReplacement,
1999 				      &rdev->flags))
2000 			set_bit(MD_RECOVERY_NEEDED, &
2001 				rdev->mddev->recovery);
2002 	}
2003 	/* need to record an error - either for the block or the device */
2004 	if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2005 		md_error(rdev->mddev, rdev);
2006 	return 0;
2007 }
2008 
2009 static int fix_sync_read_error(struct r1bio *r1_bio)
2010 {
2011 	/* Try some synchronous reads of other devices to get
2012 	 * good data, much like with normal read errors.  Only
2013 	 * read into the pages we already have so we don't
2014 	 * need to re-issue the read request.
2015 	 * We don't need to freeze the array, because being in an
2016 	 * active sync request, there is no normal IO, and
2017 	 * no overlapping syncs.
2018 	 * We don't need to check is_badblock() again as we
2019 	 * made sure that anything with a bad block in range
2020 	 * will have bi_end_io clear.
2021 	 */
2022 	struct mddev *mddev = r1_bio->mddev;
2023 	struct r1conf *conf = mddev->private;
2024 	struct bio *bio = r1_bio->bios[r1_bio->read_disk];
2025 	struct page **pages = get_resync_pages(bio)->pages;
2026 	sector_t sect = r1_bio->sector;
2027 	int sectors = r1_bio->sectors;
2028 	int idx = 0;
2029 	struct md_rdev *rdev;
2030 
2031 	rdev = conf->mirrors[r1_bio->read_disk].rdev;
2032 	if (test_bit(FailFast, &rdev->flags)) {
2033 		/* Don't try recovering from here - just fail it
2034 		 * ... unless it is the last working device of course */
2035 		md_error(mddev, rdev);
2036 		if (test_bit(Faulty, &rdev->flags))
2037 			/* Don't try to read from here, but make sure
2038 			 * put_buf does it's thing
2039 			 */
2040 			bio->bi_end_io = end_sync_write;
2041 	}
2042 
2043 	while(sectors) {
2044 		int s = sectors;
2045 		int d = r1_bio->read_disk;
2046 		int success = 0;
2047 		int start;
2048 
2049 		if (s > (PAGE_SIZE>>9))
2050 			s = PAGE_SIZE >> 9;
2051 		do {
2052 			if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
2053 				/* No rcu protection needed here devices
2054 				 * can only be removed when no resync is
2055 				 * active, and resync is currently active
2056 				 */
2057 				rdev = conf->mirrors[d].rdev;
2058 				if (sync_page_io(rdev, sect, s<<9,
2059 						 pages[idx],
2060 						 REQ_OP_READ, false)) {
2061 					success = 1;
2062 					break;
2063 				}
2064 			}
2065 			d++;
2066 			if (d == conf->raid_disks * 2)
2067 				d = 0;
2068 		} while (!success && d != r1_bio->read_disk);
2069 
2070 		if (!success) {
2071 			int abort = 0;
2072 			/* Cannot read from anywhere, this block is lost.
2073 			 * Record a bad block on each device.  If that doesn't
2074 			 * work just disable and interrupt the recovery.
2075 			 * Don't fail devices as that won't really help.
2076 			 */
2077 			pr_crit_ratelimited("md/raid1:%s: %pg: unrecoverable I/O read error for block %llu\n",
2078 					    mdname(mddev), bio->bi_bdev,
2079 					    (unsigned long long)r1_bio->sector);
2080 			for (d = 0; d < conf->raid_disks * 2; d++) {
2081 				rdev = conf->mirrors[d].rdev;
2082 				if (!rdev || test_bit(Faulty, &rdev->flags))
2083 					continue;
2084 				if (!rdev_set_badblocks(rdev, sect, s, 0))
2085 					abort = 1;
2086 			}
2087 			if (abort) {
2088 				conf->recovery_disabled =
2089 					mddev->recovery_disabled;
2090 				set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2091 				md_done_sync(mddev, r1_bio->sectors, 0);
2092 				put_buf(r1_bio);
2093 				return 0;
2094 			}
2095 			/* Try next page */
2096 			sectors -= s;
2097 			sect += s;
2098 			idx++;
2099 			continue;
2100 		}
2101 
2102 		start = d;
2103 		/* write it back and re-read */
2104 		while (d != r1_bio->read_disk) {
2105 			if (d == 0)
2106 				d = conf->raid_disks * 2;
2107 			d--;
2108 			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2109 				continue;
2110 			rdev = conf->mirrors[d].rdev;
2111 			if (r1_sync_page_io(rdev, sect, s,
2112 					    pages[idx],
2113 					    WRITE) == 0) {
2114 				r1_bio->bios[d]->bi_end_io = NULL;
2115 				rdev_dec_pending(rdev, mddev);
2116 			}
2117 		}
2118 		d = start;
2119 		while (d != r1_bio->read_disk) {
2120 			if (d == 0)
2121 				d = conf->raid_disks * 2;
2122 			d--;
2123 			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2124 				continue;
2125 			rdev = conf->mirrors[d].rdev;
2126 			if (r1_sync_page_io(rdev, sect, s,
2127 					    pages[idx],
2128 					    READ) != 0)
2129 				atomic_add(s, &rdev->corrected_errors);
2130 		}
2131 		sectors -= s;
2132 		sect += s;
2133 		idx ++;
2134 	}
2135 	set_bit(R1BIO_Uptodate, &r1_bio->state);
2136 	bio->bi_status = 0;
2137 	return 1;
2138 }
2139 
2140 static void process_checks(struct r1bio *r1_bio)
2141 {
2142 	/* We have read all readable devices.  If we haven't
2143 	 * got the block, then there is no hope left.
2144 	 * If we have, then we want to do a comparison
2145 	 * and skip the write if everything is the same.
2146 	 * If any blocks failed to read, then we need to
2147 	 * attempt an over-write
2148 	 */
2149 	struct mddev *mddev = r1_bio->mddev;
2150 	struct r1conf *conf = mddev->private;
2151 	int primary;
2152 	int i;
2153 	int vcnt;
2154 
2155 	/* Fix variable parts of all bios */
2156 	vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
2157 	for (i = 0; i < conf->raid_disks * 2; i++) {
2158 		blk_status_t status;
2159 		struct bio *b = r1_bio->bios[i];
2160 		struct resync_pages *rp = get_resync_pages(b);
2161 		if (b->bi_end_io != end_sync_read)
2162 			continue;
2163 		/* fixup the bio for reuse, but preserve errno */
2164 		status = b->bi_status;
2165 		bio_reset(b, conf->mirrors[i].rdev->bdev, REQ_OP_READ);
2166 		b->bi_status = status;
2167 		b->bi_iter.bi_sector = r1_bio->sector +
2168 			conf->mirrors[i].rdev->data_offset;
2169 		b->bi_end_io = end_sync_read;
2170 		rp->raid_bio = r1_bio;
2171 		b->bi_private = rp;
2172 
2173 		/* initialize bvec table again */
2174 		md_bio_reset_resync_pages(b, rp, r1_bio->sectors << 9);
2175 	}
2176 	for (primary = 0; primary < conf->raid_disks * 2; primary++)
2177 		if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
2178 		    !r1_bio->bios[primary]->bi_status) {
2179 			r1_bio->bios[primary]->bi_end_io = NULL;
2180 			rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
2181 			break;
2182 		}
2183 	r1_bio->read_disk = primary;
2184 	for (i = 0; i < conf->raid_disks * 2; i++) {
2185 		int j = 0;
2186 		struct bio *pbio = r1_bio->bios[primary];
2187 		struct bio *sbio = r1_bio->bios[i];
2188 		blk_status_t status = sbio->bi_status;
2189 		struct page **ppages = get_resync_pages(pbio)->pages;
2190 		struct page **spages = get_resync_pages(sbio)->pages;
2191 		struct bio_vec *bi;
2192 		int page_len[RESYNC_PAGES] = { 0 };
2193 		struct bvec_iter_all iter_all;
2194 
2195 		if (sbio->bi_end_io != end_sync_read)
2196 			continue;
2197 		/* Now we can 'fixup' the error value */
2198 		sbio->bi_status = 0;
2199 
2200 		bio_for_each_segment_all(bi, sbio, iter_all)
2201 			page_len[j++] = bi->bv_len;
2202 
2203 		if (!status) {
2204 			for (j = vcnt; j-- ; ) {
2205 				if (memcmp(page_address(ppages[j]),
2206 					   page_address(spages[j]),
2207 					   page_len[j]))
2208 					break;
2209 			}
2210 		} else
2211 			j = 0;
2212 		if (j >= 0)
2213 			atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
2214 		if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
2215 			      && !status)) {
2216 			/* No need to write to this device. */
2217 			sbio->bi_end_io = NULL;
2218 			rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2219 			continue;
2220 		}
2221 
2222 		bio_copy_data(sbio, pbio);
2223 	}
2224 }
2225 
2226 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
2227 {
2228 	struct r1conf *conf = mddev->private;
2229 	int i;
2230 	int disks = conf->raid_disks * 2;
2231 	struct bio *wbio;
2232 
2233 	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2234 		/* ouch - failed to read all of that. */
2235 		if (!fix_sync_read_error(r1_bio))
2236 			return;
2237 
2238 	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2239 		process_checks(r1_bio);
2240 
2241 	/*
2242 	 * schedule writes
2243 	 */
2244 	atomic_set(&r1_bio->remaining, 1);
2245 	for (i = 0; i < disks ; i++) {
2246 		wbio = r1_bio->bios[i];
2247 		if (wbio->bi_end_io == NULL ||
2248 		    (wbio->bi_end_io == end_sync_read &&
2249 		     (i == r1_bio->read_disk ||
2250 		      !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2251 			continue;
2252 		if (test_bit(Faulty, &conf->mirrors[i].rdev->flags)) {
2253 			abort_sync_write(mddev, r1_bio);
2254 			continue;
2255 		}
2256 
2257 		bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2258 		if (test_bit(FailFast, &conf->mirrors[i].rdev->flags))
2259 			wbio->bi_opf |= MD_FAILFAST;
2260 
2261 		wbio->bi_end_io = end_sync_write;
2262 		atomic_inc(&r1_bio->remaining);
2263 		md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
2264 
2265 		submit_bio_noacct(wbio);
2266 	}
2267 
2268 	put_sync_write_buf(r1_bio, 1);
2269 }
2270 
2271 /*
2272  * This is a kernel thread which:
2273  *
2274  *	1.	Retries failed read operations on working mirrors.
2275  *	2.	Updates the raid superblock when problems encounter.
2276  *	3.	Performs writes following reads for array synchronising.
2277  */
2278 
2279 static void fix_read_error(struct r1conf *conf, int read_disk,
2280 			   sector_t sect, int sectors)
2281 {
2282 	struct mddev *mddev = conf->mddev;
2283 	while(sectors) {
2284 		int s = sectors;
2285 		int d = read_disk;
2286 		int success = 0;
2287 		int start;
2288 		struct md_rdev *rdev;
2289 
2290 		if (s > (PAGE_SIZE>>9))
2291 			s = PAGE_SIZE >> 9;
2292 
2293 		do {
2294 			sector_t first_bad;
2295 			int bad_sectors;
2296 
2297 			rcu_read_lock();
2298 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2299 			if (rdev &&
2300 			    (test_bit(In_sync, &rdev->flags) ||
2301 			     (!test_bit(Faulty, &rdev->flags) &&
2302 			      rdev->recovery_offset >= sect + s)) &&
2303 			    is_badblock(rdev, sect, s,
2304 					&first_bad, &bad_sectors) == 0) {
2305 				atomic_inc(&rdev->nr_pending);
2306 				rcu_read_unlock();
2307 				if (sync_page_io(rdev, sect, s<<9,
2308 					 conf->tmppage, REQ_OP_READ, false))
2309 					success = 1;
2310 				rdev_dec_pending(rdev, mddev);
2311 				if (success)
2312 					break;
2313 			} else
2314 				rcu_read_unlock();
2315 			d++;
2316 			if (d == conf->raid_disks * 2)
2317 				d = 0;
2318 		} while (!success && d != read_disk);
2319 
2320 		if (!success) {
2321 			/* Cannot read from anywhere - mark it bad */
2322 			struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2323 			if (!rdev_set_badblocks(rdev, sect, s, 0))
2324 				md_error(mddev, rdev);
2325 			break;
2326 		}
2327 		/* write it back and re-read */
2328 		start = d;
2329 		while (d != read_disk) {
2330 			if (d==0)
2331 				d = conf->raid_disks * 2;
2332 			d--;
2333 			rcu_read_lock();
2334 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2335 			if (rdev &&
2336 			    !test_bit(Faulty, &rdev->flags)) {
2337 				atomic_inc(&rdev->nr_pending);
2338 				rcu_read_unlock();
2339 				r1_sync_page_io(rdev, sect, s,
2340 						conf->tmppage, WRITE);
2341 				rdev_dec_pending(rdev, mddev);
2342 			} else
2343 				rcu_read_unlock();
2344 		}
2345 		d = start;
2346 		while (d != read_disk) {
2347 			if (d==0)
2348 				d = conf->raid_disks * 2;
2349 			d--;
2350 			rcu_read_lock();
2351 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2352 			if (rdev &&
2353 			    !test_bit(Faulty, &rdev->flags)) {
2354 				atomic_inc(&rdev->nr_pending);
2355 				rcu_read_unlock();
2356 				if (r1_sync_page_io(rdev, sect, s,
2357 						    conf->tmppage, READ)) {
2358 					atomic_add(s, &rdev->corrected_errors);
2359 					pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %pg)\n",
2360 						mdname(mddev), s,
2361 						(unsigned long long)(sect +
2362 								     rdev->data_offset),
2363 						rdev->bdev);
2364 				}
2365 				rdev_dec_pending(rdev, mddev);
2366 			} else
2367 				rcu_read_unlock();
2368 		}
2369 		sectors -= s;
2370 		sect += s;
2371 	}
2372 }
2373 
2374 static int narrow_write_error(struct r1bio *r1_bio, int i)
2375 {
2376 	struct mddev *mddev = r1_bio->mddev;
2377 	struct r1conf *conf = mddev->private;
2378 	struct md_rdev *rdev = conf->mirrors[i].rdev;
2379 
2380 	/* bio has the data to be written to device 'i' where
2381 	 * we just recently had a write error.
2382 	 * We repeatedly clone the bio and trim down to one block,
2383 	 * then try the write.  Where the write fails we record
2384 	 * a bad block.
2385 	 * It is conceivable that the bio doesn't exactly align with
2386 	 * blocks.  We must handle this somehow.
2387 	 *
2388 	 * We currently own a reference on the rdev.
2389 	 */
2390 
2391 	int block_sectors;
2392 	sector_t sector;
2393 	int sectors;
2394 	int sect_to_write = r1_bio->sectors;
2395 	int ok = 1;
2396 
2397 	if (rdev->badblocks.shift < 0)
2398 		return 0;
2399 
2400 	block_sectors = roundup(1 << rdev->badblocks.shift,
2401 				bdev_logical_block_size(rdev->bdev) >> 9);
2402 	sector = r1_bio->sector;
2403 	sectors = ((sector + block_sectors)
2404 		   & ~(sector_t)(block_sectors - 1))
2405 		- sector;
2406 
2407 	while (sect_to_write) {
2408 		struct bio *wbio;
2409 		if (sectors > sect_to_write)
2410 			sectors = sect_to_write;
2411 		/* Write at 'sector' for 'sectors'*/
2412 
2413 		if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2414 			wbio = bio_alloc_clone(rdev->bdev,
2415 					       r1_bio->behind_master_bio,
2416 					       GFP_NOIO, &mddev->bio_set);
2417 		} else {
2418 			wbio = bio_alloc_clone(rdev->bdev, r1_bio->master_bio,
2419 					       GFP_NOIO, &mddev->bio_set);
2420 		}
2421 
2422 		bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2423 		wbio->bi_iter.bi_sector = r1_bio->sector;
2424 		wbio->bi_iter.bi_size = r1_bio->sectors << 9;
2425 
2426 		bio_trim(wbio, sector - r1_bio->sector, sectors);
2427 		wbio->bi_iter.bi_sector += rdev->data_offset;
2428 
2429 		if (submit_bio_wait(wbio) < 0)
2430 			/* failure! */
2431 			ok = rdev_set_badblocks(rdev, sector,
2432 						sectors, 0)
2433 				&& ok;
2434 
2435 		bio_put(wbio);
2436 		sect_to_write -= sectors;
2437 		sector += sectors;
2438 		sectors = block_sectors;
2439 	}
2440 	return ok;
2441 }
2442 
2443 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2444 {
2445 	int m;
2446 	int s = r1_bio->sectors;
2447 	for (m = 0; m < conf->raid_disks * 2 ; m++) {
2448 		struct md_rdev *rdev = conf->mirrors[m].rdev;
2449 		struct bio *bio = r1_bio->bios[m];
2450 		if (bio->bi_end_io == NULL)
2451 			continue;
2452 		if (!bio->bi_status &&
2453 		    test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2454 			rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2455 		}
2456 		if (bio->bi_status &&
2457 		    test_bit(R1BIO_WriteError, &r1_bio->state)) {
2458 			if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2459 				md_error(conf->mddev, rdev);
2460 		}
2461 	}
2462 	put_buf(r1_bio);
2463 	md_done_sync(conf->mddev, s, 1);
2464 }
2465 
2466 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2467 {
2468 	int m, idx;
2469 	bool fail = false;
2470 
2471 	for (m = 0; m < conf->raid_disks * 2 ; m++)
2472 		if (r1_bio->bios[m] == IO_MADE_GOOD) {
2473 			struct md_rdev *rdev = conf->mirrors[m].rdev;
2474 			rdev_clear_badblocks(rdev,
2475 					     r1_bio->sector,
2476 					     r1_bio->sectors, 0);
2477 			rdev_dec_pending(rdev, conf->mddev);
2478 		} else if (r1_bio->bios[m] != NULL) {
2479 			/* This drive got a write error.  We need to
2480 			 * narrow down and record precise write
2481 			 * errors.
2482 			 */
2483 			fail = true;
2484 			if (!narrow_write_error(r1_bio, m)) {
2485 				md_error(conf->mddev,
2486 					 conf->mirrors[m].rdev);
2487 				/* an I/O failed, we can't clear the bitmap */
2488 				set_bit(R1BIO_Degraded, &r1_bio->state);
2489 			}
2490 			rdev_dec_pending(conf->mirrors[m].rdev,
2491 					 conf->mddev);
2492 		}
2493 	if (fail) {
2494 		spin_lock_irq(&conf->device_lock);
2495 		list_add(&r1_bio->retry_list, &conf->bio_end_io_list);
2496 		idx = sector_to_idx(r1_bio->sector);
2497 		atomic_inc(&conf->nr_queued[idx]);
2498 		spin_unlock_irq(&conf->device_lock);
2499 		/*
2500 		 * In case freeze_array() is waiting for condition
2501 		 * get_unqueued_pending() == extra to be true.
2502 		 */
2503 		wake_up(&conf->wait_barrier);
2504 		md_wakeup_thread(conf->mddev->thread);
2505 	} else {
2506 		if (test_bit(R1BIO_WriteError, &r1_bio->state))
2507 			close_write(r1_bio);
2508 		raid_end_bio_io(r1_bio);
2509 	}
2510 }
2511 
2512 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2513 {
2514 	struct mddev *mddev = conf->mddev;
2515 	struct bio *bio;
2516 	struct md_rdev *rdev;
2517 
2518 	clear_bit(R1BIO_ReadError, &r1_bio->state);
2519 	/* we got a read error. Maybe the drive is bad.  Maybe just
2520 	 * the block and we can fix it.
2521 	 * We freeze all other IO, and try reading the block from
2522 	 * other devices.  When we find one, we re-write
2523 	 * and check it that fixes the read error.
2524 	 * This is all done synchronously while the array is
2525 	 * frozen
2526 	 */
2527 
2528 	bio = r1_bio->bios[r1_bio->read_disk];
2529 	bio_put(bio);
2530 	r1_bio->bios[r1_bio->read_disk] = NULL;
2531 
2532 	rdev = conf->mirrors[r1_bio->read_disk].rdev;
2533 	if (mddev->ro == 0
2534 	    && !test_bit(FailFast, &rdev->flags)) {
2535 		freeze_array(conf, 1);
2536 		fix_read_error(conf, r1_bio->read_disk,
2537 			       r1_bio->sector, r1_bio->sectors);
2538 		unfreeze_array(conf);
2539 	} else if (mddev->ro == 0 && test_bit(FailFast, &rdev->flags)) {
2540 		md_error(mddev, rdev);
2541 	} else {
2542 		r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED;
2543 	}
2544 
2545 	rdev_dec_pending(rdev, conf->mddev);
2546 	allow_barrier(conf, r1_bio->sector);
2547 	bio = r1_bio->master_bio;
2548 
2549 	/* Reuse the old r1_bio so that the IO_BLOCKED settings are preserved */
2550 	r1_bio->state = 0;
2551 	raid1_read_request(mddev, bio, r1_bio->sectors, r1_bio);
2552 }
2553 
2554 static void raid1d(struct md_thread *thread)
2555 {
2556 	struct mddev *mddev = thread->mddev;
2557 	struct r1bio *r1_bio;
2558 	unsigned long flags;
2559 	struct r1conf *conf = mddev->private;
2560 	struct list_head *head = &conf->retry_list;
2561 	struct blk_plug plug;
2562 	int idx;
2563 
2564 	md_check_recovery(mddev);
2565 
2566 	if (!list_empty_careful(&conf->bio_end_io_list) &&
2567 	    !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2568 		LIST_HEAD(tmp);
2569 		spin_lock_irqsave(&conf->device_lock, flags);
2570 		if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
2571 			list_splice_init(&conf->bio_end_io_list, &tmp);
2572 		spin_unlock_irqrestore(&conf->device_lock, flags);
2573 		while (!list_empty(&tmp)) {
2574 			r1_bio = list_first_entry(&tmp, struct r1bio,
2575 						  retry_list);
2576 			list_del(&r1_bio->retry_list);
2577 			idx = sector_to_idx(r1_bio->sector);
2578 			atomic_dec(&conf->nr_queued[idx]);
2579 			if (mddev->degraded)
2580 				set_bit(R1BIO_Degraded, &r1_bio->state);
2581 			if (test_bit(R1BIO_WriteError, &r1_bio->state))
2582 				close_write(r1_bio);
2583 			raid_end_bio_io(r1_bio);
2584 		}
2585 	}
2586 
2587 	blk_start_plug(&plug);
2588 	for (;;) {
2589 
2590 		flush_pending_writes(conf);
2591 
2592 		spin_lock_irqsave(&conf->device_lock, flags);
2593 		if (list_empty(head)) {
2594 			spin_unlock_irqrestore(&conf->device_lock, flags);
2595 			break;
2596 		}
2597 		r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2598 		list_del(head->prev);
2599 		idx = sector_to_idx(r1_bio->sector);
2600 		atomic_dec(&conf->nr_queued[idx]);
2601 		spin_unlock_irqrestore(&conf->device_lock, flags);
2602 
2603 		mddev = r1_bio->mddev;
2604 		conf = mddev->private;
2605 		if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2606 			if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2607 			    test_bit(R1BIO_WriteError, &r1_bio->state))
2608 				handle_sync_write_finished(conf, r1_bio);
2609 			else
2610 				sync_request_write(mddev, r1_bio);
2611 		} else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2612 			   test_bit(R1BIO_WriteError, &r1_bio->state))
2613 			handle_write_finished(conf, r1_bio);
2614 		else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2615 			handle_read_error(conf, r1_bio);
2616 		else
2617 			WARN_ON_ONCE(1);
2618 
2619 		cond_resched();
2620 		if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
2621 			md_check_recovery(mddev);
2622 	}
2623 	blk_finish_plug(&plug);
2624 }
2625 
2626 static int init_resync(struct r1conf *conf)
2627 {
2628 	int buffs;
2629 
2630 	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2631 	BUG_ON(mempool_initialized(&conf->r1buf_pool));
2632 
2633 	return mempool_init(&conf->r1buf_pool, buffs, r1buf_pool_alloc,
2634 			    r1buf_pool_free, conf->poolinfo);
2635 }
2636 
2637 static struct r1bio *raid1_alloc_init_r1buf(struct r1conf *conf)
2638 {
2639 	struct r1bio *r1bio = mempool_alloc(&conf->r1buf_pool, GFP_NOIO);
2640 	struct resync_pages *rps;
2641 	struct bio *bio;
2642 	int i;
2643 
2644 	for (i = conf->poolinfo->raid_disks; i--; ) {
2645 		bio = r1bio->bios[i];
2646 		rps = bio->bi_private;
2647 		bio_reset(bio, NULL, 0);
2648 		bio->bi_private = rps;
2649 	}
2650 	r1bio->master_bio = NULL;
2651 	return r1bio;
2652 }
2653 
2654 /*
2655  * perform a "sync" on one "block"
2656  *
2657  * We need to make sure that no normal I/O request - particularly write
2658  * requests - conflict with active sync requests.
2659  *
2660  * This is achieved by tracking pending requests and a 'barrier' concept
2661  * that can be installed to exclude normal IO requests.
2662  */
2663 
2664 static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr,
2665 				   int *skipped)
2666 {
2667 	struct r1conf *conf = mddev->private;
2668 	struct r1bio *r1_bio;
2669 	struct bio *bio;
2670 	sector_t max_sector, nr_sectors;
2671 	int disk = -1;
2672 	int i;
2673 	int wonly = -1;
2674 	int write_targets = 0, read_targets = 0;
2675 	sector_t sync_blocks;
2676 	int still_degraded = 0;
2677 	int good_sectors = RESYNC_SECTORS;
2678 	int min_bad = 0; /* number of sectors that are bad in all devices */
2679 	int idx = sector_to_idx(sector_nr);
2680 	int page_idx = 0;
2681 
2682 	if (!mempool_initialized(&conf->r1buf_pool))
2683 		if (init_resync(conf))
2684 			return 0;
2685 
2686 	max_sector = mddev->dev_sectors;
2687 	if (sector_nr >= max_sector) {
2688 		/* If we aborted, we need to abort the
2689 		 * sync on the 'current' bitmap chunk (there will
2690 		 * only be one in raid1 resync.
2691 		 * We can find the current addess in mddev->curr_resync
2692 		 */
2693 		if (mddev->curr_resync < max_sector) /* aborted */
2694 			md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2695 					   &sync_blocks, 1);
2696 		else /* completed sync */
2697 			conf->fullsync = 0;
2698 
2699 		md_bitmap_close_sync(mddev->bitmap);
2700 		close_sync(conf);
2701 
2702 		if (mddev_is_clustered(mddev)) {
2703 			conf->cluster_sync_low = 0;
2704 			conf->cluster_sync_high = 0;
2705 		}
2706 		return 0;
2707 	}
2708 
2709 	if (mddev->bitmap == NULL &&
2710 	    mddev->recovery_cp == MaxSector &&
2711 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2712 	    conf->fullsync == 0) {
2713 		*skipped = 1;
2714 		return max_sector - sector_nr;
2715 	}
2716 	/* before building a request, check if we can skip these blocks..
2717 	 * This call the bitmap_start_sync doesn't actually record anything
2718 	 */
2719 	if (!md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2720 	    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2721 		/* We can skip this block, and probably several more */
2722 		*skipped = 1;
2723 		return sync_blocks;
2724 	}
2725 
2726 	/*
2727 	 * If there is non-resync activity waiting for a turn, then let it
2728 	 * though before starting on this new sync request.
2729 	 */
2730 	if (atomic_read(&conf->nr_waiting[idx]))
2731 		schedule_timeout_uninterruptible(1);
2732 
2733 	/* we are incrementing sector_nr below. To be safe, we check against
2734 	 * sector_nr + two times RESYNC_SECTORS
2735 	 */
2736 
2737 	md_bitmap_cond_end_sync(mddev->bitmap, sector_nr,
2738 		mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
2739 
2740 
2741 	if (raise_barrier(conf, sector_nr))
2742 		return 0;
2743 
2744 	r1_bio = raid1_alloc_init_r1buf(conf);
2745 
2746 	rcu_read_lock();
2747 	/*
2748 	 * If we get a correctably read error during resync or recovery,
2749 	 * we might want to read from a different device.  So we
2750 	 * flag all drives that could conceivably be read from for READ,
2751 	 * and any others (which will be non-In_sync devices) for WRITE.
2752 	 * If a read fails, we try reading from something else for which READ
2753 	 * is OK.
2754 	 */
2755 
2756 	r1_bio->mddev = mddev;
2757 	r1_bio->sector = sector_nr;
2758 	r1_bio->state = 0;
2759 	set_bit(R1BIO_IsSync, &r1_bio->state);
2760 	/* make sure good_sectors won't go across barrier unit boundary */
2761 	good_sectors = align_to_barrier_unit_end(sector_nr, good_sectors);
2762 
2763 	for (i = 0; i < conf->raid_disks * 2; i++) {
2764 		struct md_rdev *rdev;
2765 		bio = r1_bio->bios[i];
2766 
2767 		rdev = rcu_dereference(conf->mirrors[i].rdev);
2768 		if (rdev == NULL ||
2769 		    test_bit(Faulty, &rdev->flags)) {
2770 			if (i < conf->raid_disks)
2771 				still_degraded = 1;
2772 		} else if (!test_bit(In_sync, &rdev->flags)) {
2773 			bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2774 			bio->bi_end_io = end_sync_write;
2775 			write_targets ++;
2776 		} else {
2777 			/* may need to read from here */
2778 			sector_t first_bad = MaxSector;
2779 			int bad_sectors;
2780 
2781 			if (is_badblock(rdev, sector_nr, good_sectors,
2782 					&first_bad, &bad_sectors)) {
2783 				if (first_bad > sector_nr)
2784 					good_sectors = first_bad - sector_nr;
2785 				else {
2786 					bad_sectors -= (sector_nr - first_bad);
2787 					if (min_bad == 0 ||
2788 					    min_bad > bad_sectors)
2789 						min_bad = bad_sectors;
2790 				}
2791 			}
2792 			if (sector_nr < first_bad) {
2793 				if (test_bit(WriteMostly, &rdev->flags)) {
2794 					if (wonly < 0)
2795 						wonly = i;
2796 				} else {
2797 					if (disk < 0)
2798 						disk = i;
2799 				}
2800 				bio_set_op_attrs(bio, REQ_OP_READ, 0);
2801 				bio->bi_end_io = end_sync_read;
2802 				read_targets++;
2803 			} else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2804 				test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2805 				!test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2806 				/*
2807 				 * The device is suitable for reading (InSync),
2808 				 * but has bad block(s) here. Let's try to correct them,
2809 				 * if we are doing resync or repair. Otherwise, leave
2810 				 * this device alone for this sync request.
2811 				 */
2812 				bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2813 				bio->bi_end_io = end_sync_write;
2814 				write_targets++;
2815 			}
2816 		}
2817 		if (rdev && bio->bi_end_io) {
2818 			atomic_inc(&rdev->nr_pending);
2819 			bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
2820 			bio_set_dev(bio, rdev->bdev);
2821 			if (test_bit(FailFast, &rdev->flags))
2822 				bio->bi_opf |= MD_FAILFAST;
2823 		}
2824 	}
2825 	rcu_read_unlock();
2826 	if (disk < 0)
2827 		disk = wonly;
2828 	r1_bio->read_disk = disk;
2829 
2830 	if (read_targets == 0 && min_bad > 0) {
2831 		/* These sectors are bad on all InSync devices, so we
2832 		 * need to mark them bad on all write targets
2833 		 */
2834 		int ok = 1;
2835 		for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2836 			if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2837 				struct md_rdev *rdev = conf->mirrors[i].rdev;
2838 				ok = rdev_set_badblocks(rdev, sector_nr,
2839 							min_bad, 0
2840 					) && ok;
2841 			}
2842 		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2843 		*skipped = 1;
2844 		put_buf(r1_bio);
2845 
2846 		if (!ok) {
2847 			/* Cannot record the badblocks, so need to
2848 			 * abort the resync.
2849 			 * If there are multiple read targets, could just
2850 			 * fail the really bad ones ???
2851 			 */
2852 			conf->recovery_disabled = mddev->recovery_disabled;
2853 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2854 			return 0;
2855 		} else
2856 			return min_bad;
2857 
2858 	}
2859 	if (min_bad > 0 && min_bad < good_sectors) {
2860 		/* only resync enough to reach the next bad->good
2861 		 * transition */
2862 		good_sectors = min_bad;
2863 	}
2864 
2865 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2866 		/* extra read targets are also write targets */
2867 		write_targets += read_targets-1;
2868 
2869 	if (write_targets == 0 || read_targets == 0) {
2870 		/* There is nowhere to write, so all non-sync
2871 		 * drives must be failed - so we are finished
2872 		 */
2873 		sector_t rv;
2874 		if (min_bad > 0)
2875 			max_sector = sector_nr + min_bad;
2876 		rv = max_sector - sector_nr;
2877 		*skipped = 1;
2878 		put_buf(r1_bio);
2879 		return rv;
2880 	}
2881 
2882 	if (max_sector > mddev->resync_max)
2883 		max_sector = mddev->resync_max; /* Don't do IO beyond here */
2884 	if (max_sector > sector_nr + good_sectors)
2885 		max_sector = sector_nr + good_sectors;
2886 	nr_sectors = 0;
2887 	sync_blocks = 0;
2888 	do {
2889 		struct page *page;
2890 		int len = PAGE_SIZE;
2891 		if (sector_nr + (len>>9) > max_sector)
2892 			len = (max_sector - sector_nr) << 9;
2893 		if (len == 0)
2894 			break;
2895 		if (sync_blocks == 0) {
2896 			if (!md_bitmap_start_sync(mddev->bitmap, sector_nr,
2897 						  &sync_blocks, still_degraded) &&
2898 			    !conf->fullsync &&
2899 			    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2900 				break;
2901 			if ((len >> 9) > sync_blocks)
2902 				len = sync_blocks<<9;
2903 		}
2904 
2905 		for (i = 0 ; i < conf->raid_disks * 2; i++) {
2906 			struct resync_pages *rp;
2907 
2908 			bio = r1_bio->bios[i];
2909 			rp = get_resync_pages(bio);
2910 			if (bio->bi_end_io) {
2911 				page = resync_fetch_page(rp, page_idx);
2912 
2913 				/*
2914 				 * won't fail because the vec table is big
2915 				 * enough to hold all these pages
2916 				 */
2917 				bio_add_page(bio, page, len, 0);
2918 			}
2919 		}
2920 		nr_sectors += len>>9;
2921 		sector_nr += len>>9;
2922 		sync_blocks -= (len>>9);
2923 	} while (++page_idx < RESYNC_PAGES);
2924 
2925 	r1_bio->sectors = nr_sectors;
2926 
2927 	if (mddev_is_clustered(mddev) &&
2928 			conf->cluster_sync_high < sector_nr + nr_sectors) {
2929 		conf->cluster_sync_low = mddev->curr_resync_completed;
2930 		conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS;
2931 		/* Send resync message */
2932 		md_cluster_ops->resync_info_update(mddev,
2933 				conf->cluster_sync_low,
2934 				conf->cluster_sync_high);
2935 	}
2936 
2937 	/* For a user-requested sync, we read all readable devices and do a
2938 	 * compare
2939 	 */
2940 	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2941 		atomic_set(&r1_bio->remaining, read_targets);
2942 		for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2943 			bio = r1_bio->bios[i];
2944 			if (bio->bi_end_io == end_sync_read) {
2945 				read_targets--;
2946 				md_sync_acct_bio(bio, nr_sectors);
2947 				if (read_targets == 1)
2948 					bio->bi_opf &= ~MD_FAILFAST;
2949 				submit_bio_noacct(bio);
2950 			}
2951 		}
2952 	} else {
2953 		atomic_set(&r1_bio->remaining, 1);
2954 		bio = r1_bio->bios[r1_bio->read_disk];
2955 		md_sync_acct_bio(bio, nr_sectors);
2956 		if (read_targets == 1)
2957 			bio->bi_opf &= ~MD_FAILFAST;
2958 		submit_bio_noacct(bio);
2959 	}
2960 	return nr_sectors;
2961 }
2962 
2963 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2964 {
2965 	if (sectors)
2966 		return sectors;
2967 
2968 	return mddev->dev_sectors;
2969 }
2970 
2971 static struct r1conf *setup_conf(struct mddev *mddev)
2972 {
2973 	struct r1conf *conf;
2974 	int i;
2975 	struct raid1_info *disk;
2976 	struct md_rdev *rdev;
2977 	int err = -ENOMEM;
2978 
2979 	conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2980 	if (!conf)
2981 		goto abort;
2982 
2983 	conf->nr_pending = kcalloc(BARRIER_BUCKETS_NR,
2984 				   sizeof(atomic_t), GFP_KERNEL);
2985 	if (!conf->nr_pending)
2986 		goto abort;
2987 
2988 	conf->nr_waiting = kcalloc(BARRIER_BUCKETS_NR,
2989 				   sizeof(atomic_t), GFP_KERNEL);
2990 	if (!conf->nr_waiting)
2991 		goto abort;
2992 
2993 	conf->nr_queued = kcalloc(BARRIER_BUCKETS_NR,
2994 				  sizeof(atomic_t), GFP_KERNEL);
2995 	if (!conf->nr_queued)
2996 		goto abort;
2997 
2998 	conf->barrier = kcalloc(BARRIER_BUCKETS_NR,
2999 				sizeof(atomic_t), GFP_KERNEL);
3000 	if (!conf->barrier)
3001 		goto abort;
3002 
3003 	conf->mirrors = kzalloc(array3_size(sizeof(struct raid1_info),
3004 					    mddev->raid_disks, 2),
3005 				GFP_KERNEL);
3006 	if (!conf->mirrors)
3007 		goto abort;
3008 
3009 	conf->tmppage = alloc_page(GFP_KERNEL);
3010 	if (!conf->tmppage)
3011 		goto abort;
3012 
3013 	conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
3014 	if (!conf->poolinfo)
3015 		goto abort;
3016 	conf->poolinfo->raid_disks = mddev->raid_disks * 2;
3017 	err = mempool_init(&conf->r1bio_pool, NR_RAID_BIOS, r1bio_pool_alloc,
3018 			   rbio_pool_free, conf->poolinfo);
3019 	if (err)
3020 		goto abort;
3021 
3022 	err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
3023 	if (err)
3024 		goto abort;
3025 
3026 	conf->poolinfo->mddev = mddev;
3027 
3028 	err = -EINVAL;
3029 	spin_lock_init(&conf->device_lock);
3030 	rdev_for_each(rdev, mddev) {
3031 		int disk_idx = rdev->raid_disk;
3032 		if (disk_idx >= mddev->raid_disks
3033 		    || disk_idx < 0)
3034 			continue;
3035 		if (test_bit(Replacement, &rdev->flags))
3036 			disk = conf->mirrors + mddev->raid_disks + disk_idx;
3037 		else
3038 			disk = conf->mirrors + disk_idx;
3039 
3040 		if (disk->rdev)
3041 			goto abort;
3042 		disk->rdev = rdev;
3043 		disk->head_position = 0;
3044 		disk->seq_start = MaxSector;
3045 	}
3046 	conf->raid_disks = mddev->raid_disks;
3047 	conf->mddev = mddev;
3048 	INIT_LIST_HEAD(&conf->retry_list);
3049 	INIT_LIST_HEAD(&conf->bio_end_io_list);
3050 
3051 	spin_lock_init(&conf->resync_lock);
3052 	init_waitqueue_head(&conf->wait_barrier);
3053 
3054 	bio_list_init(&conf->pending_bio_list);
3055 	conf->recovery_disabled = mddev->recovery_disabled - 1;
3056 
3057 	err = -EIO;
3058 	for (i = 0; i < conf->raid_disks * 2; i++) {
3059 
3060 		disk = conf->mirrors + i;
3061 
3062 		if (i < conf->raid_disks &&
3063 		    disk[conf->raid_disks].rdev) {
3064 			/* This slot has a replacement. */
3065 			if (!disk->rdev) {
3066 				/* No original, just make the replacement
3067 				 * a recovering spare
3068 				 */
3069 				disk->rdev =
3070 					disk[conf->raid_disks].rdev;
3071 				disk[conf->raid_disks].rdev = NULL;
3072 			} else if (!test_bit(In_sync, &disk->rdev->flags))
3073 				/* Original is not in_sync - bad */
3074 				goto abort;
3075 		}
3076 
3077 		if (!disk->rdev ||
3078 		    !test_bit(In_sync, &disk->rdev->flags)) {
3079 			disk->head_position = 0;
3080 			if (disk->rdev &&
3081 			    (disk->rdev->saved_raid_disk < 0))
3082 				conf->fullsync = 1;
3083 		}
3084 	}
3085 
3086 	err = -ENOMEM;
3087 	conf->thread = md_register_thread(raid1d, mddev, "raid1");
3088 	if (!conf->thread)
3089 		goto abort;
3090 
3091 	return conf;
3092 
3093  abort:
3094 	if (conf) {
3095 		mempool_exit(&conf->r1bio_pool);
3096 		kfree(conf->mirrors);
3097 		safe_put_page(conf->tmppage);
3098 		kfree(conf->poolinfo);
3099 		kfree(conf->nr_pending);
3100 		kfree(conf->nr_waiting);
3101 		kfree(conf->nr_queued);
3102 		kfree(conf->barrier);
3103 		bioset_exit(&conf->bio_split);
3104 		kfree(conf);
3105 	}
3106 	return ERR_PTR(err);
3107 }
3108 
3109 static void raid1_free(struct mddev *mddev, void *priv);
3110 static int raid1_run(struct mddev *mddev)
3111 {
3112 	struct r1conf *conf;
3113 	int i;
3114 	struct md_rdev *rdev;
3115 	int ret;
3116 
3117 	if (mddev->level != 1) {
3118 		pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n",
3119 			mdname(mddev), mddev->level);
3120 		return -EIO;
3121 	}
3122 	if (mddev->reshape_position != MaxSector) {
3123 		pr_warn("md/raid1:%s: reshape_position set but not supported\n",
3124 			mdname(mddev));
3125 		return -EIO;
3126 	}
3127 	if (mddev_init_writes_pending(mddev) < 0)
3128 		return -ENOMEM;
3129 	/*
3130 	 * copy the already verified devices into our private RAID1
3131 	 * bookkeeping area. [whatever we allocate in run(),
3132 	 * should be freed in raid1_free()]
3133 	 */
3134 	if (mddev->private == NULL)
3135 		conf = setup_conf(mddev);
3136 	else
3137 		conf = mddev->private;
3138 
3139 	if (IS_ERR(conf))
3140 		return PTR_ERR(conf);
3141 
3142 	if (mddev->queue)
3143 		blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
3144 
3145 	rdev_for_each(rdev, mddev) {
3146 		if (!mddev->gendisk)
3147 			continue;
3148 		disk_stack_limits(mddev->gendisk, rdev->bdev,
3149 				  rdev->data_offset << 9);
3150 	}
3151 
3152 	mddev->degraded = 0;
3153 	for (i = 0; i < conf->raid_disks; i++)
3154 		if (conf->mirrors[i].rdev == NULL ||
3155 		    !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
3156 		    test_bit(Faulty, &conf->mirrors[i].rdev->flags))
3157 			mddev->degraded++;
3158 	/*
3159 	 * RAID1 needs at least one disk in active
3160 	 */
3161 	if (conf->raid_disks - mddev->degraded < 1) {
3162 		ret = -EINVAL;
3163 		goto abort;
3164 	}
3165 
3166 	if (conf->raid_disks - mddev->degraded == 1)
3167 		mddev->recovery_cp = MaxSector;
3168 
3169 	if (mddev->recovery_cp != MaxSector)
3170 		pr_info("md/raid1:%s: not clean -- starting background reconstruction\n",
3171 			mdname(mddev));
3172 	pr_info("md/raid1:%s: active with %d out of %d mirrors\n",
3173 		mdname(mddev), mddev->raid_disks - mddev->degraded,
3174 		mddev->raid_disks);
3175 
3176 	/*
3177 	 * Ok, everything is just fine now
3178 	 */
3179 	mddev->thread = conf->thread;
3180 	conf->thread = NULL;
3181 	mddev->private = conf;
3182 	set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
3183 
3184 	md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
3185 
3186 	ret = md_integrity_register(mddev);
3187 	if (ret) {
3188 		md_unregister_thread(&mddev->thread);
3189 		goto abort;
3190 	}
3191 	return 0;
3192 
3193 abort:
3194 	raid1_free(mddev, conf);
3195 	return ret;
3196 }
3197 
3198 static void raid1_free(struct mddev *mddev, void *priv)
3199 {
3200 	struct r1conf *conf = priv;
3201 
3202 	mempool_exit(&conf->r1bio_pool);
3203 	kfree(conf->mirrors);
3204 	safe_put_page(conf->tmppage);
3205 	kfree(conf->poolinfo);
3206 	kfree(conf->nr_pending);
3207 	kfree(conf->nr_waiting);
3208 	kfree(conf->nr_queued);
3209 	kfree(conf->barrier);
3210 	bioset_exit(&conf->bio_split);
3211 	kfree(conf);
3212 }
3213 
3214 static int raid1_resize(struct mddev *mddev, sector_t sectors)
3215 {
3216 	/* no resync is happening, and there is enough space
3217 	 * on all devices, so we can resize.
3218 	 * We need to make sure resync covers any new space.
3219 	 * If the array is shrinking we should possibly wait until
3220 	 * any io in the removed space completes, but it hardly seems
3221 	 * worth it.
3222 	 */
3223 	sector_t newsize = raid1_size(mddev, sectors, 0);
3224 	if (mddev->external_size &&
3225 	    mddev->array_sectors > newsize)
3226 		return -EINVAL;
3227 	if (mddev->bitmap) {
3228 		int ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
3229 		if (ret)
3230 			return ret;
3231 	}
3232 	md_set_array_sectors(mddev, newsize);
3233 	if (sectors > mddev->dev_sectors &&
3234 	    mddev->recovery_cp > mddev->dev_sectors) {
3235 		mddev->recovery_cp = mddev->dev_sectors;
3236 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3237 	}
3238 	mddev->dev_sectors = sectors;
3239 	mddev->resync_max_sectors = sectors;
3240 	return 0;
3241 }
3242 
3243 static int raid1_reshape(struct mddev *mddev)
3244 {
3245 	/* We need to:
3246 	 * 1/ resize the r1bio_pool
3247 	 * 2/ resize conf->mirrors
3248 	 *
3249 	 * We allocate a new r1bio_pool if we can.
3250 	 * Then raise a device barrier and wait until all IO stops.
3251 	 * Then resize conf->mirrors and swap in the new r1bio pool.
3252 	 *
3253 	 * At the same time, we "pack" the devices so that all the missing
3254 	 * devices have the higher raid_disk numbers.
3255 	 */
3256 	mempool_t newpool, oldpool;
3257 	struct pool_info *newpoolinfo;
3258 	struct raid1_info *newmirrors;
3259 	struct r1conf *conf = mddev->private;
3260 	int cnt, raid_disks;
3261 	unsigned long flags;
3262 	int d, d2;
3263 	int ret;
3264 
3265 	memset(&newpool, 0, sizeof(newpool));
3266 	memset(&oldpool, 0, sizeof(oldpool));
3267 
3268 	/* Cannot change chunk_size, layout, or level */
3269 	if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3270 	    mddev->layout != mddev->new_layout ||
3271 	    mddev->level != mddev->new_level) {
3272 		mddev->new_chunk_sectors = mddev->chunk_sectors;
3273 		mddev->new_layout = mddev->layout;
3274 		mddev->new_level = mddev->level;
3275 		return -EINVAL;
3276 	}
3277 
3278 	if (!mddev_is_clustered(mddev))
3279 		md_allow_write(mddev);
3280 
3281 	raid_disks = mddev->raid_disks + mddev->delta_disks;
3282 
3283 	if (raid_disks < conf->raid_disks) {
3284 		cnt=0;
3285 		for (d= 0; d < conf->raid_disks; d++)
3286 			if (conf->mirrors[d].rdev)
3287 				cnt++;
3288 		if (cnt > raid_disks)
3289 			return -EBUSY;
3290 	}
3291 
3292 	newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3293 	if (!newpoolinfo)
3294 		return -ENOMEM;
3295 	newpoolinfo->mddev = mddev;
3296 	newpoolinfo->raid_disks = raid_disks * 2;
3297 
3298 	ret = mempool_init(&newpool, NR_RAID_BIOS, r1bio_pool_alloc,
3299 			   rbio_pool_free, newpoolinfo);
3300 	if (ret) {
3301 		kfree(newpoolinfo);
3302 		return ret;
3303 	}
3304 	newmirrors = kzalloc(array3_size(sizeof(struct raid1_info),
3305 					 raid_disks, 2),
3306 			     GFP_KERNEL);
3307 	if (!newmirrors) {
3308 		kfree(newpoolinfo);
3309 		mempool_exit(&newpool);
3310 		return -ENOMEM;
3311 	}
3312 
3313 	freeze_array(conf, 0);
3314 
3315 	/* ok, everything is stopped */
3316 	oldpool = conf->r1bio_pool;
3317 	conf->r1bio_pool = newpool;
3318 
3319 	for (d = d2 = 0; d < conf->raid_disks; d++) {
3320 		struct md_rdev *rdev = conf->mirrors[d].rdev;
3321 		if (rdev && rdev->raid_disk != d2) {
3322 			sysfs_unlink_rdev(mddev, rdev);
3323 			rdev->raid_disk = d2;
3324 			sysfs_unlink_rdev(mddev, rdev);
3325 			if (sysfs_link_rdev(mddev, rdev))
3326 				pr_warn("md/raid1:%s: cannot register rd%d\n",
3327 					mdname(mddev), rdev->raid_disk);
3328 		}
3329 		if (rdev)
3330 			newmirrors[d2++].rdev = rdev;
3331 	}
3332 	kfree(conf->mirrors);
3333 	conf->mirrors = newmirrors;
3334 	kfree(conf->poolinfo);
3335 	conf->poolinfo = newpoolinfo;
3336 
3337 	spin_lock_irqsave(&conf->device_lock, flags);
3338 	mddev->degraded += (raid_disks - conf->raid_disks);
3339 	spin_unlock_irqrestore(&conf->device_lock, flags);
3340 	conf->raid_disks = mddev->raid_disks = raid_disks;
3341 	mddev->delta_disks = 0;
3342 
3343 	unfreeze_array(conf);
3344 
3345 	set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3346 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3347 	md_wakeup_thread(mddev->thread);
3348 
3349 	mempool_exit(&oldpool);
3350 	return 0;
3351 }
3352 
3353 static void raid1_quiesce(struct mddev *mddev, int quiesce)
3354 {
3355 	struct r1conf *conf = mddev->private;
3356 
3357 	if (quiesce)
3358 		freeze_array(conf, 0);
3359 	else
3360 		unfreeze_array(conf);
3361 }
3362 
3363 static void *raid1_takeover(struct mddev *mddev)
3364 {
3365 	/* raid1 can take over:
3366 	 *  raid5 with 2 devices, any layout or chunk size
3367 	 */
3368 	if (mddev->level == 5 && mddev->raid_disks == 2) {
3369 		struct r1conf *conf;
3370 		mddev->new_level = 1;
3371 		mddev->new_layout = 0;
3372 		mddev->new_chunk_sectors = 0;
3373 		conf = setup_conf(mddev);
3374 		if (!IS_ERR(conf)) {
3375 			/* Array must appear to be quiesced */
3376 			conf->array_frozen = 1;
3377 			mddev_clear_unsupported_flags(mddev,
3378 				UNSUPPORTED_MDDEV_FLAGS);
3379 		}
3380 		return conf;
3381 	}
3382 	return ERR_PTR(-EINVAL);
3383 }
3384 
3385 static struct md_personality raid1_personality =
3386 {
3387 	.name		= "raid1",
3388 	.level		= 1,
3389 	.owner		= THIS_MODULE,
3390 	.make_request	= raid1_make_request,
3391 	.run		= raid1_run,
3392 	.free		= raid1_free,
3393 	.status		= raid1_status,
3394 	.error_handler	= raid1_error,
3395 	.hot_add_disk	= raid1_add_disk,
3396 	.hot_remove_disk= raid1_remove_disk,
3397 	.spare_active	= raid1_spare_active,
3398 	.sync_request	= raid1_sync_request,
3399 	.resize		= raid1_resize,
3400 	.size		= raid1_size,
3401 	.check_reshape	= raid1_reshape,
3402 	.quiesce	= raid1_quiesce,
3403 	.takeover	= raid1_takeover,
3404 };
3405 
3406 static int __init raid_init(void)
3407 {
3408 	return register_md_personality(&raid1_personality);
3409 }
3410 
3411 static void raid_exit(void)
3412 {
3413 	unregister_md_personality(&raid1_personality);
3414 }
3415 
3416 module_init(raid_init);
3417 module_exit(raid_exit);
3418 MODULE_LICENSE("GPL");
3419 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3420 MODULE_ALIAS("md-personality-3"); /* RAID1 */
3421 MODULE_ALIAS("md-raid1");
3422 MODULE_ALIAS("md-level-1");
3423