xref: /openbmc/linux/drivers/md/raid1.c (revision d8bcaabe)
1 /*
2  * raid1.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5  *
6  * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7  *
8  * RAID-1 management functions.
9  *
10  * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11  *
12  * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
13  * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14  *
15  * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16  * bitmapped intelligence in resync:
17  *
18  *      - bitmap marked during normal i/o
19  *      - bitmap used to skip nondirty blocks during sync
20  *
21  * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22  * - persistent bitmap code
23  *
24  * This program is free software; you can redistribute it and/or modify
25  * it under the terms of the GNU General Public License as published by
26  * the Free Software Foundation; either version 2, or (at your option)
27  * any later version.
28  *
29  * You should have received a copy of the GNU General Public License
30  * (for example /usr/src/linux/COPYING); if not, write to the Free
31  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32  */
33 
34 #include <linux/slab.h>
35 #include <linux/delay.h>
36 #include <linux/blkdev.h>
37 #include <linux/module.h>
38 #include <linux/seq_file.h>
39 #include <linux/ratelimit.h>
40 #include <linux/sched/signal.h>
41 
42 #include <trace/events/block.h>
43 
44 #include "md.h"
45 #include "raid1.h"
46 #include "bitmap.h"
47 
48 #define UNSUPPORTED_MDDEV_FLAGS		\
49 	((1L << MD_HAS_JOURNAL) |	\
50 	 (1L << MD_JOURNAL_CLEAN) |	\
51 	 (1L << MD_HAS_PPL) |		\
52 	 (1L << MD_HAS_MULTIPLE_PPLS))
53 
54 /*
55  * Number of guaranteed r1bios in case of extreme VM load:
56  */
57 #define	NR_RAID1_BIOS 256
58 
59 /* when we get a read error on a read-only array, we redirect to another
60  * device without failing the first device, or trying to over-write to
61  * correct the read error.  To keep track of bad blocks on a per-bio
62  * level, we store IO_BLOCKED in the appropriate 'bios' pointer
63  */
64 #define IO_BLOCKED ((struct bio *)1)
65 /* When we successfully write to a known bad-block, we need to remove the
66  * bad-block marking which must be done from process context.  So we record
67  * the success by setting devs[n].bio to IO_MADE_GOOD
68  */
69 #define IO_MADE_GOOD ((struct bio *)2)
70 
71 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
72 
73 /* When there are this many requests queue to be written by
74  * the raid1 thread, we become 'congested' to provide back-pressure
75  * for writeback.
76  */
77 static int max_queued_requests = 1024;
78 
79 static void allow_barrier(struct r1conf *conf, sector_t sector_nr);
80 static void lower_barrier(struct r1conf *conf, sector_t sector_nr);
81 
82 #define raid1_log(md, fmt, args...)				\
83 	do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid1 " fmt, ##args); } while (0)
84 
85 #include "raid1-10.c"
86 
87 /*
88  * for resync bio, r1bio pointer can be retrieved from the per-bio
89  * 'struct resync_pages'.
90  */
91 static inline struct r1bio *get_resync_r1bio(struct bio *bio)
92 {
93 	return get_resync_pages(bio)->raid_bio;
94 }
95 
96 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
97 {
98 	struct pool_info *pi = data;
99 	int size = offsetof(struct r1bio, bios[pi->raid_disks]);
100 
101 	/* allocate a r1bio with room for raid_disks entries in the bios array */
102 	return kzalloc(size, gfp_flags);
103 }
104 
105 static void r1bio_pool_free(void *r1_bio, void *data)
106 {
107 	kfree(r1_bio);
108 }
109 
110 #define RESYNC_DEPTH 32
111 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
112 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
113 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
114 #define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
115 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
116 
117 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
118 {
119 	struct pool_info *pi = data;
120 	struct r1bio *r1_bio;
121 	struct bio *bio;
122 	int need_pages;
123 	int j;
124 	struct resync_pages *rps;
125 
126 	r1_bio = r1bio_pool_alloc(gfp_flags, pi);
127 	if (!r1_bio)
128 		return NULL;
129 
130 	rps = kmalloc(sizeof(struct resync_pages) * pi->raid_disks,
131 		      gfp_flags);
132 	if (!rps)
133 		goto out_free_r1bio;
134 
135 	/*
136 	 * Allocate bios : 1 for reading, n-1 for writing
137 	 */
138 	for (j = pi->raid_disks ; j-- ; ) {
139 		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
140 		if (!bio)
141 			goto out_free_bio;
142 		r1_bio->bios[j] = bio;
143 	}
144 	/*
145 	 * Allocate RESYNC_PAGES data pages and attach them to
146 	 * the first bio.
147 	 * If this is a user-requested check/repair, allocate
148 	 * RESYNC_PAGES for each bio.
149 	 */
150 	if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
151 		need_pages = pi->raid_disks;
152 	else
153 		need_pages = 1;
154 	for (j = 0; j < pi->raid_disks; j++) {
155 		struct resync_pages *rp = &rps[j];
156 
157 		bio = r1_bio->bios[j];
158 
159 		if (j < need_pages) {
160 			if (resync_alloc_pages(rp, gfp_flags))
161 				goto out_free_pages;
162 		} else {
163 			memcpy(rp, &rps[0], sizeof(*rp));
164 			resync_get_all_pages(rp);
165 		}
166 
167 		rp->raid_bio = r1_bio;
168 		bio->bi_private = rp;
169 	}
170 
171 	r1_bio->master_bio = NULL;
172 
173 	return r1_bio;
174 
175 out_free_pages:
176 	while (--j >= 0)
177 		resync_free_pages(&rps[j]);
178 
179 out_free_bio:
180 	while (++j < pi->raid_disks)
181 		bio_put(r1_bio->bios[j]);
182 	kfree(rps);
183 
184 out_free_r1bio:
185 	r1bio_pool_free(r1_bio, data);
186 	return NULL;
187 }
188 
189 static void r1buf_pool_free(void *__r1_bio, void *data)
190 {
191 	struct pool_info *pi = data;
192 	int i;
193 	struct r1bio *r1bio = __r1_bio;
194 	struct resync_pages *rp = NULL;
195 
196 	for (i = pi->raid_disks; i--; ) {
197 		rp = get_resync_pages(r1bio->bios[i]);
198 		resync_free_pages(rp);
199 		bio_put(r1bio->bios[i]);
200 	}
201 
202 	/* resync pages array stored in the 1st bio's .bi_private */
203 	kfree(rp);
204 
205 	r1bio_pool_free(r1bio, data);
206 }
207 
208 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
209 {
210 	int i;
211 
212 	for (i = 0; i < conf->raid_disks * 2; i++) {
213 		struct bio **bio = r1_bio->bios + i;
214 		if (!BIO_SPECIAL(*bio))
215 			bio_put(*bio);
216 		*bio = NULL;
217 	}
218 }
219 
220 static void free_r1bio(struct r1bio *r1_bio)
221 {
222 	struct r1conf *conf = r1_bio->mddev->private;
223 
224 	put_all_bios(conf, r1_bio);
225 	mempool_free(r1_bio, conf->r1bio_pool);
226 }
227 
228 static void put_buf(struct r1bio *r1_bio)
229 {
230 	struct r1conf *conf = r1_bio->mddev->private;
231 	sector_t sect = r1_bio->sector;
232 	int i;
233 
234 	for (i = 0; i < conf->raid_disks * 2; i++) {
235 		struct bio *bio = r1_bio->bios[i];
236 		if (bio->bi_end_io)
237 			rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
238 	}
239 
240 	mempool_free(r1_bio, conf->r1buf_pool);
241 
242 	lower_barrier(conf, sect);
243 }
244 
245 static void reschedule_retry(struct r1bio *r1_bio)
246 {
247 	unsigned long flags;
248 	struct mddev *mddev = r1_bio->mddev;
249 	struct r1conf *conf = mddev->private;
250 	int idx;
251 
252 	idx = sector_to_idx(r1_bio->sector);
253 	spin_lock_irqsave(&conf->device_lock, flags);
254 	list_add(&r1_bio->retry_list, &conf->retry_list);
255 	atomic_inc(&conf->nr_queued[idx]);
256 	spin_unlock_irqrestore(&conf->device_lock, flags);
257 
258 	wake_up(&conf->wait_barrier);
259 	md_wakeup_thread(mddev->thread);
260 }
261 
262 /*
263  * raid_end_bio_io() is called when we have finished servicing a mirrored
264  * operation and are ready to return a success/failure code to the buffer
265  * cache layer.
266  */
267 static void call_bio_endio(struct r1bio *r1_bio)
268 {
269 	struct bio *bio = r1_bio->master_bio;
270 	struct r1conf *conf = r1_bio->mddev->private;
271 
272 	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
273 		bio->bi_status = BLK_STS_IOERR;
274 
275 	bio_endio(bio);
276 	/*
277 	 * Wake up any possible resync thread that waits for the device
278 	 * to go idle.
279 	 */
280 	allow_barrier(conf, r1_bio->sector);
281 }
282 
283 static void raid_end_bio_io(struct r1bio *r1_bio)
284 {
285 	struct bio *bio = r1_bio->master_bio;
286 
287 	/* if nobody has done the final endio yet, do it now */
288 	if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
289 		pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
290 			 (bio_data_dir(bio) == WRITE) ? "write" : "read",
291 			 (unsigned long long) bio->bi_iter.bi_sector,
292 			 (unsigned long long) bio_end_sector(bio) - 1);
293 
294 		call_bio_endio(r1_bio);
295 	}
296 	free_r1bio(r1_bio);
297 }
298 
299 /*
300  * Update disk head position estimator based on IRQ completion info.
301  */
302 static inline void update_head_pos(int disk, struct r1bio *r1_bio)
303 {
304 	struct r1conf *conf = r1_bio->mddev->private;
305 
306 	conf->mirrors[disk].head_position =
307 		r1_bio->sector + (r1_bio->sectors);
308 }
309 
310 /*
311  * Find the disk number which triggered given bio
312  */
313 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
314 {
315 	int mirror;
316 	struct r1conf *conf = r1_bio->mddev->private;
317 	int raid_disks = conf->raid_disks;
318 
319 	for (mirror = 0; mirror < raid_disks * 2; mirror++)
320 		if (r1_bio->bios[mirror] == bio)
321 			break;
322 
323 	BUG_ON(mirror == raid_disks * 2);
324 	update_head_pos(mirror, r1_bio);
325 
326 	return mirror;
327 }
328 
329 static void raid1_end_read_request(struct bio *bio)
330 {
331 	int uptodate = !bio->bi_status;
332 	struct r1bio *r1_bio = bio->bi_private;
333 	struct r1conf *conf = r1_bio->mddev->private;
334 	struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev;
335 
336 	/*
337 	 * this branch is our 'one mirror IO has finished' event handler:
338 	 */
339 	update_head_pos(r1_bio->read_disk, r1_bio);
340 
341 	if (uptodate)
342 		set_bit(R1BIO_Uptodate, &r1_bio->state);
343 	else if (test_bit(FailFast, &rdev->flags) &&
344 		 test_bit(R1BIO_FailFast, &r1_bio->state))
345 		/* This was a fail-fast read so we definitely
346 		 * want to retry */
347 		;
348 	else {
349 		/* If all other devices have failed, we want to return
350 		 * the error upwards rather than fail the last device.
351 		 * Here we redefine "uptodate" to mean "Don't want to retry"
352 		 */
353 		unsigned long flags;
354 		spin_lock_irqsave(&conf->device_lock, flags);
355 		if (r1_bio->mddev->degraded == conf->raid_disks ||
356 		    (r1_bio->mddev->degraded == conf->raid_disks-1 &&
357 		     test_bit(In_sync, &rdev->flags)))
358 			uptodate = 1;
359 		spin_unlock_irqrestore(&conf->device_lock, flags);
360 	}
361 
362 	if (uptodate) {
363 		raid_end_bio_io(r1_bio);
364 		rdev_dec_pending(rdev, conf->mddev);
365 	} else {
366 		/*
367 		 * oops, read error:
368 		 */
369 		char b[BDEVNAME_SIZE];
370 		pr_err_ratelimited("md/raid1:%s: %s: rescheduling sector %llu\n",
371 				   mdname(conf->mddev),
372 				   bdevname(rdev->bdev, b),
373 				   (unsigned long long)r1_bio->sector);
374 		set_bit(R1BIO_ReadError, &r1_bio->state);
375 		reschedule_retry(r1_bio);
376 		/* don't drop the reference on read_disk yet */
377 	}
378 }
379 
380 static void close_write(struct r1bio *r1_bio)
381 {
382 	/* it really is the end of this request */
383 	if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
384 		bio_free_pages(r1_bio->behind_master_bio);
385 		bio_put(r1_bio->behind_master_bio);
386 		r1_bio->behind_master_bio = NULL;
387 	}
388 	/* clear the bitmap if all writes complete successfully */
389 	bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
390 			r1_bio->sectors,
391 			!test_bit(R1BIO_Degraded, &r1_bio->state),
392 			test_bit(R1BIO_BehindIO, &r1_bio->state));
393 	md_write_end(r1_bio->mddev);
394 }
395 
396 static void r1_bio_write_done(struct r1bio *r1_bio)
397 {
398 	if (!atomic_dec_and_test(&r1_bio->remaining))
399 		return;
400 
401 	if (test_bit(R1BIO_WriteError, &r1_bio->state))
402 		reschedule_retry(r1_bio);
403 	else {
404 		close_write(r1_bio);
405 		if (test_bit(R1BIO_MadeGood, &r1_bio->state))
406 			reschedule_retry(r1_bio);
407 		else
408 			raid_end_bio_io(r1_bio);
409 	}
410 }
411 
412 static void raid1_end_write_request(struct bio *bio)
413 {
414 	struct r1bio *r1_bio = bio->bi_private;
415 	int behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
416 	struct r1conf *conf = r1_bio->mddev->private;
417 	struct bio *to_put = NULL;
418 	int mirror = find_bio_disk(r1_bio, bio);
419 	struct md_rdev *rdev = conf->mirrors[mirror].rdev;
420 	bool discard_error;
421 
422 	discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
423 
424 	/*
425 	 * 'one mirror IO has finished' event handler:
426 	 */
427 	if (bio->bi_status && !discard_error) {
428 		set_bit(WriteErrorSeen,	&rdev->flags);
429 		if (!test_and_set_bit(WantReplacement, &rdev->flags))
430 			set_bit(MD_RECOVERY_NEEDED, &
431 				conf->mddev->recovery);
432 
433 		if (test_bit(FailFast, &rdev->flags) &&
434 		    (bio->bi_opf & MD_FAILFAST) &&
435 		    /* We never try FailFast to WriteMostly devices */
436 		    !test_bit(WriteMostly, &rdev->flags)) {
437 			md_error(r1_bio->mddev, rdev);
438 			if (!test_bit(Faulty, &rdev->flags))
439 				/* This is the only remaining device,
440 				 * We need to retry the write without
441 				 * FailFast
442 				 */
443 				set_bit(R1BIO_WriteError, &r1_bio->state);
444 			else {
445 				/* Finished with this branch */
446 				r1_bio->bios[mirror] = NULL;
447 				to_put = bio;
448 			}
449 		} else
450 			set_bit(R1BIO_WriteError, &r1_bio->state);
451 	} else {
452 		/*
453 		 * Set R1BIO_Uptodate in our master bio, so that we
454 		 * will return a good error code for to the higher
455 		 * levels even if IO on some other mirrored buffer
456 		 * fails.
457 		 *
458 		 * The 'master' represents the composite IO operation
459 		 * to user-side. So if something waits for IO, then it
460 		 * will wait for the 'master' bio.
461 		 */
462 		sector_t first_bad;
463 		int bad_sectors;
464 
465 		r1_bio->bios[mirror] = NULL;
466 		to_put = bio;
467 		/*
468 		 * Do not set R1BIO_Uptodate if the current device is
469 		 * rebuilding or Faulty. This is because we cannot use
470 		 * such device for properly reading the data back (we could
471 		 * potentially use it, if the current write would have felt
472 		 * before rdev->recovery_offset, but for simplicity we don't
473 		 * check this here.
474 		 */
475 		if (test_bit(In_sync, &rdev->flags) &&
476 		    !test_bit(Faulty, &rdev->flags))
477 			set_bit(R1BIO_Uptodate, &r1_bio->state);
478 
479 		/* Maybe we can clear some bad blocks. */
480 		if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
481 				&first_bad, &bad_sectors) && !discard_error) {
482 			r1_bio->bios[mirror] = IO_MADE_GOOD;
483 			set_bit(R1BIO_MadeGood, &r1_bio->state);
484 		}
485 	}
486 
487 	if (behind) {
488 		if (test_bit(WriteMostly, &rdev->flags))
489 			atomic_dec(&r1_bio->behind_remaining);
490 
491 		/*
492 		 * In behind mode, we ACK the master bio once the I/O
493 		 * has safely reached all non-writemostly
494 		 * disks. Setting the Returned bit ensures that this
495 		 * gets done only once -- we don't ever want to return
496 		 * -EIO here, instead we'll wait
497 		 */
498 		if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
499 		    test_bit(R1BIO_Uptodate, &r1_bio->state)) {
500 			/* Maybe we can return now */
501 			if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
502 				struct bio *mbio = r1_bio->master_bio;
503 				pr_debug("raid1: behind end write sectors"
504 					 " %llu-%llu\n",
505 					 (unsigned long long) mbio->bi_iter.bi_sector,
506 					 (unsigned long long) bio_end_sector(mbio) - 1);
507 				call_bio_endio(r1_bio);
508 			}
509 		}
510 	}
511 	if (r1_bio->bios[mirror] == NULL)
512 		rdev_dec_pending(rdev, conf->mddev);
513 
514 	/*
515 	 * Let's see if all mirrored write operations have finished
516 	 * already.
517 	 */
518 	r1_bio_write_done(r1_bio);
519 
520 	if (to_put)
521 		bio_put(to_put);
522 }
523 
524 static sector_t align_to_barrier_unit_end(sector_t start_sector,
525 					  sector_t sectors)
526 {
527 	sector_t len;
528 
529 	WARN_ON(sectors == 0);
530 	/*
531 	 * len is the number of sectors from start_sector to end of the
532 	 * barrier unit which start_sector belongs to.
533 	 */
534 	len = round_up(start_sector + 1, BARRIER_UNIT_SECTOR_SIZE) -
535 	      start_sector;
536 
537 	if (len > sectors)
538 		len = sectors;
539 
540 	return len;
541 }
542 
543 /*
544  * This routine returns the disk from which the requested read should
545  * be done. There is a per-array 'next expected sequential IO' sector
546  * number - if this matches on the next IO then we use the last disk.
547  * There is also a per-disk 'last know head position' sector that is
548  * maintained from IRQ contexts, both the normal and the resync IO
549  * completion handlers update this position correctly. If there is no
550  * perfect sequential match then we pick the disk whose head is closest.
551  *
552  * If there are 2 mirrors in the same 2 devices, performance degrades
553  * because position is mirror, not device based.
554  *
555  * The rdev for the device selected will have nr_pending incremented.
556  */
557 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
558 {
559 	const sector_t this_sector = r1_bio->sector;
560 	int sectors;
561 	int best_good_sectors;
562 	int best_disk, best_dist_disk, best_pending_disk;
563 	int has_nonrot_disk;
564 	int disk;
565 	sector_t best_dist;
566 	unsigned int min_pending;
567 	struct md_rdev *rdev;
568 	int choose_first;
569 	int choose_next_idle;
570 
571 	rcu_read_lock();
572 	/*
573 	 * Check if we can balance. We can balance on the whole
574 	 * device if no resync is going on, or below the resync window.
575 	 * We take the first readable disk when above the resync window.
576 	 */
577  retry:
578 	sectors = r1_bio->sectors;
579 	best_disk = -1;
580 	best_dist_disk = -1;
581 	best_dist = MaxSector;
582 	best_pending_disk = -1;
583 	min_pending = UINT_MAX;
584 	best_good_sectors = 0;
585 	has_nonrot_disk = 0;
586 	choose_next_idle = 0;
587 	clear_bit(R1BIO_FailFast, &r1_bio->state);
588 
589 	if ((conf->mddev->recovery_cp < this_sector + sectors) ||
590 	    (mddev_is_clustered(conf->mddev) &&
591 	    md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
592 		    this_sector + sectors)))
593 		choose_first = 1;
594 	else
595 		choose_first = 0;
596 
597 	for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
598 		sector_t dist;
599 		sector_t first_bad;
600 		int bad_sectors;
601 		unsigned int pending;
602 		bool nonrot;
603 
604 		rdev = rcu_dereference(conf->mirrors[disk].rdev);
605 		if (r1_bio->bios[disk] == IO_BLOCKED
606 		    || rdev == NULL
607 		    || test_bit(Faulty, &rdev->flags))
608 			continue;
609 		if (!test_bit(In_sync, &rdev->flags) &&
610 		    rdev->recovery_offset < this_sector + sectors)
611 			continue;
612 		if (test_bit(WriteMostly, &rdev->flags)) {
613 			/* Don't balance among write-mostly, just
614 			 * use the first as a last resort */
615 			if (best_dist_disk < 0) {
616 				if (is_badblock(rdev, this_sector, sectors,
617 						&first_bad, &bad_sectors)) {
618 					if (first_bad <= this_sector)
619 						/* Cannot use this */
620 						continue;
621 					best_good_sectors = first_bad - this_sector;
622 				} else
623 					best_good_sectors = sectors;
624 				best_dist_disk = disk;
625 				best_pending_disk = disk;
626 			}
627 			continue;
628 		}
629 		/* This is a reasonable device to use.  It might
630 		 * even be best.
631 		 */
632 		if (is_badblock(rdev, this_sector, sectors,
633 				&first_bad, &bad_sectors)) {
634 			if (best_dist < MaxSector)
635 				/* already have a better device */
636 				continue;
637 			if (first_bad <= this_sector) {
638 				/* cannot read here. If this is the 'primary'
639 				 * device, then we must not read beyond
640 				 * bad_sectors from another device..
641 				 */
642 				bad_sectors -= (this_sector - first_bad);
643 				if (choose_first && sectors > bad_sectors)
644 					sectors = bad_sectors;
645 				if (best_good_sectors > sectors)
646 					best_good_sectors = sectors;
647 
648 			} else {
649 				sector_t good_sectors = first_bad - this_sector;
650 				if (good_sectors > best_good_sectors) {
651 					best_good_sectors = good_sectors;
652 					best_disk = disk;
653 				}
654 				if (choose_first)
655 					break;
656 			}
657 			continue;
658 		} else {
659 			if ((sectors > best_good_sectors) && (best_disk >= 0))
660 				best_disk = -1;
661 			best_good_sectors = sectors;
662 		}
663 
664 		if (best_disk >= 0)
665 			/* At least two disks to choose from so failfast is OK */
666 			set_bit(R1BIO_FailFast, &r1_bio->state);
667 
668 		nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
669 		has_nonrot_disk |= nonrot;
670 		pending = atomic_read(&rdev->nr_pending);
671 		dist = abs(this_sector - conf->mirrors[disk].head_position);
672 		if (choose_first) {
673 			best_disk = disk;
674 			break;
675 		}
676 		/* Don't change to another disk for sequential reads */
677 		if (conf->mirrors[disk].next_seq_sect == this_sector
678 		    || dist == 0) {
679 			int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
680 			struct raid1_info *mirror = &conf->mirrors[disk];
681 
682 			best_disk = disk;
683 			/*
684 			 * If buffered sequential IO size exceeds optimal
685 			 * iosize, check if there is idle disk. If yes, choose
686 			 * the idle disk. read_balance could already choose an
687 			 * idle disk before noticing it's a sequential IO in
688 			 * this disk. This doesn't matter because this disk
689 			 * will idle, next time it will be utilized after the
690 			 * first disk has IO size exceeds optimal iosize. In
691 			 * this way, iosize of the first disk will be optimal
692 			 * iosize at least. iosize of the second disk might be
693 			 * small, but not a big deal since when the second disk
694 			 * starts IO, the first disk is likely still busy.
695 			 */
696 			if (nonrot && opt_iosize > 0 &&
697 			    mirror->seq_start != MaxSector &&
698 			    mirror->next_seq_sect > opt_iosize &&
699 			    mirror->next_seq_sect - opt_iosize >=
700 			    mirror->seq_start) {
701 				choose_next_idle = 1;
702 				continue;
703 			}
704 			break;
705 		}
706 
707 		if (choose_next_idle)
708 			continue;
709 
710 		if (min_pending > pending) {
711 			min_pending = pending;
712 			best_pending_disk = disk;
713 		}
714 
715 		if (dist < best_dist) {
716 			best_dist = dist;
717 			best_dist_disk = disk;
718 		}
719 	}
720 
721 	/*
722 	 * If all disks are rotational, choose the closest disk. If any disk is
723 	 * non-rotational, choose the disk with less pending request even the
724 	 * disk is rotational, which might/might not be optimal for raids with
725 	 * mixed ratation/non-rotational disks depending on workload.
726 	 */
727 	if (best_disk == -1) {
728 		if (has_nonrot_disk || min_pending == 0)
729 			best_disk = best_pending_disk;
730 		else
731 			best_disk = best_dist_disk;
732 	}
733 
734 	if (best_disk >= 0) {
735 		rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
736 		if (!rdev)
737 			goto retry;
738 		atomic_inc(&rdev->nr_pending);
739 		sectors = best_good_sectors;
740 
741 		if (conf->mirrors[best_disk].next_seq_sect != this_sector)
742 			conf->mirrors[best_disk].seq_start = this_sector;
743 
744 		conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
745 	}
746 	rcu_read_unlock();
747 	*max_sectors = sectors;
748 
749 	return best_disk;
750 }
751 
752 static int raid1_congested(struct mddev *mddev, int bits)
753 {
754 	struct r1conf *conf = mddev->private;
755 	int i, ret = 0;
756 
757 	if ((bits & (1 << WB_async_congested)) &&
758 	    conf->pending_count >= max_queued_requests)
759 		return 1;
760 
761 	rcu_read_lock();
762 	for (i = 0; i < conf->raid_disks * 2; i++) {
763 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
764 		if (rdev && !test_bit(Faulty, &rdev->flags)) {
765 			struct request_queue *q = bdev_get_queue(rdev->bdev);
766 
767 			BUG_ON(!q);
768 
769 			/* Note the '|| 1' - when read_balance prefers
770 			 * non-congested targets, it can be removed
771 			 */
772 			if ((bits & (1 << WB_async_congested)) || 1)
773 				ret |= bdi_congested(q->backing_dev_info, bits);
774 			else
775 				ret &= bdi_congested(q->backing_dev_info, bits);
776 		}
777 	}
778 	rcu_read_unlock();
779 	return ret;
780 }
781 
782 static void flush_bio_list(struct r1conf *conf, struct bio *bio)
783 {
784 	/* flush any pending bitmap writes to disk before proceeding w/ I/O */
785 	bitmap_unplug(conf->mddev->bitmap);
786 	wake_up(&conf->wait_barrier);
787 
788 	while (bio) { /* submit pending writes */
789 		struct bio *next = bio->bi_next;
790 		struct md_rdev *rdev = (void *)bio->bi_disk;
791 		bio->bi_next = NULL;
792 		bio_set_dev(bio, rdev->bdev);
793 		if (test_bit(Faulty, &rdev->flags)) {
794 			bio_io_error(bio);
795 		} else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
796 				    !blk_queue_discard(bio->bi_disk->queue)))
797 			/* Just ignore it */
798 			bio_endio(bio);
799 		else
800 			generic_make_request(bio);
801 		bio = next;
802 	}
803 }
804 
805 static void flush_pending_writes(struct r1conf *conf)
806 {
807 	/* Any writes that have been queued but are awaiting
808 	 * bitmap updates get flushed here.
809 	 */
810 	spin_lock_irq(&conf->device_lock);
811 
812 	if (conf->pending_bio_list.head) {
813 		struct bio *bio;
814 		bio = bio_list_get(&conf->pending_bio_list);
815 		conf->pending_count = 0;
816 		spin_unlock_irq(&conf->device_lock);
817 		flush_bio_list(conf, bio);
818 	} else
819 		spin_unlock_irq(&conf->device_lock);
820 }
821 
822 /* Barriers....
823  * Sometimes we need to suspend IO while we do something else,
824  * either some resync/recovery, or reconfigure the array.
825  * To do this we raise a 'barrier'.
826  * The 'barrier' is a counter that can be raised multiple times
827  * to count how many activities are happening which preclude
828  * normal IO.
829  * We can only raise the barrier if there is no pending IO.
830  * i.e. if nr_pending == 0.
831  * We choose only to raise the barrier if no-one is waiting for the
832  * barrier to go down.  This means that as soon as an IO request
833  * is ready, no other operations which require a barrier will start
834  * until the IO request has had a chance.
835  *
836  * So: regular IO calls 'wait_barrier'.  When that returns there
837  *    is no backgroup IO happening,  It must arrange to call
838  *    allow_barrier when it has finished its IO.
839  * backgroup IO calls must call raise_barrier.  Once that returns
840  *    there is no normal IO happeing.  It must arrange to call
841  *    lower_barrier when the particular background IO completes.
842  */
843 static void raise_barrier(struct r1conf *conf, sector_t sector_nr)
844 {
845 	int idx = sector_to_idx(sector_nr);
846 
847 	spin_lock_irq(&conf->resync_lock);
848 
849 	/* Wait until no block IO is waiting */
850 	wait_event_lock_irq(conf->wait_barrier,
851 			    !atomic_read(&conf->nr_waiting[idx]),
852 			    conf->resync_lock);
853 
854 	/* block any new IO from starting */
855 	atomic_inc(&conf->barrier[idx]);
856 	/*
857 	 * In raise_barrier() we firstly increase conf->barrier[idx] then
858 	 * check conf->nr_pending[idx]. In _wait_barrier() we firstly
859 	 * increase conf->nr_pending[idx] then check conf->barrier[idx].
860 	 * A memory barrier here to make sure conf->nr_pending[idx] won't
861 	 * be fetched before conf->barrier[idx] is increased. Otherwise
862 	 * there will be a race between raise_barrier() and _wait_barrier().
863 	 */
864 	smp_mb__after_atomic();
865 
866 	/* For these conditions we must wait:
867 	 * A: while the array is in frozen state
868 	 * B: while conf->nr_pending[idx] is not 0, meaning regular I/O
869 	 *    existing in corresponding I/O barrier bucket.
870 	 * C: while conf->barrier[idx] >= RESYNC_DEPTH, meaning reaches
871 	 *    max resync count which allowed on current I/O barrier bucket.
872 	 */
873 	wait_event_lock_irq(conf->wait_barrier,
874 			    !conf->array_frozen &&
875 			     !atomic_read(&conf->nr_pending[idx]) &&
876 			     atomic_read(&conf->barrier[idx]) < RESYNC_DEPTH,
877 			    conf->resync_lock);
878 
879 	atomic_inc(&conf->nr_sync_pending);
880 	spin_unlock_irq(&conf->resync_lock);
881 }
882 
883 static void lower_barrier(struct r1conf *conf, sector_t sector_nr)
884 {
885 	int idx = sector_to_idx(sector_nr);
886 
887 	BUG_ON(atomic_read(&conf->barrier[idx]) <= 0);
888 
889 	atomic_dec(&conf->barrier[idx]);
890 	atomic_dec(&conf->nr_sync_pending);
891 	wake_up(&conf->wait_barrier);
892 }
893 
894 static void _wait_barrier(struct r1conf *conf, int idx)
895 {
896 	/*
897 	 * We need to increase conf->nr_pending[idx] very early here,
898 	 * then raise_barrier() can be blocked when it waits for
899 	 * conf->nr_pending[idx] to be 0. Then we can avoid holding
900 	 * conf->resync_lock when there is no barrier raised in same
901 	 * barrier unit bucket. Also if the array is frozen, I/O
902 	 * should be blocked until array is unfrozen.
903 	 */
904 	atomic_inc(&conf->nr_pending[idx]);
905 	/*
906 	 * In _wait_barrier() we firstly increase conf->nr_pending[idx], then
907 	 * check conf->barrier[idx]. In raise_barrier() we firstly increase
908 	 * conf->barrier[idx], then check conf->nr_pending[idx]. A memory
909 	 * barrier is necessary here to make sure conf->barrier[idx] won't be
910 	 * fetched before conf->nr_pending[idx] is increased. Otherwise there
911 	 * will be a race between _wait_barrier() and raise_barrier().
912 	 */
913 	smp_mb__after_atomic();
914 
915 	/*
916 	 * Don't worry about checking two atomic_t variables at same time
917 	 * here. If during we check conf->barrier[idx], the array is
918 	 * frozen (conf->array_frozen is 1), and chonf->barrier[idx] is
919 	 * 0, it is safe to return and make the I/O continue. Because the
920 	 * array is frozen, all I/O returned here will eventually complete
921 	 * or be queued, no race will happen. See code comment in
922 	 * frozen_array().
923 	 */
924 	if (!READ_ONCE(conf->array_frozen) &&
925 	    !atomic_read(&conf->barrier[idx]))
926 		return;
927 
928 	/*
929 	 * After holding conf->resync_lock, conf->nr_pending[idx]
930 	 * should be decreased before waiting for barrier to drop.
931 	 * Otherwise, we may encounter a race condition because
932 	 * raise_barrer() might be waiting for conf->nr_pending[idx]
933 	 * to be 0 at same time.
934 	 */
935 	spin_lock_irq(&conf->resync_lock);
936 	atomic_inc(&conf->nr_waiting[idx]);
937 	atomic_dec(&conf->nr_pending[idx]);
938 	/*
939 	 * In case freeze_array() is waiting for
940 	 * get_unqueued_pending() == extra
941 	 */
942 	wake_up(&conf->wait_barrier);
943 	/* Wait for the barrier in same barrier unit bucket to drop. */
944 	wait_event_lock_irq(conf->wait_barrier,
945 			    !conf->array_frozen &&
946 			     !atomic_read(&conf->barrier[idx]),
947 			    conf->resync_lock);
948 	atomic_inc(&conf->nr_pending[idx]);
949 	atomic_dec(&conf->nr_waiting[idx]);
950 	spin_unlock_irq(&conf->resync_lock);
951 }
952 
953 static void wait_read_barrier(struct r1conf *conf, sector_t sector_nr)
954 {
955 	int idx = sector_to_idx(sector_nr);
956 
957 	/*
958 	 * Very similar to _wait_barrier(). The difference is, for read
959 	 * I/O we don't need wait for sync I/O, but if the whole array
960 	 * is frozen, the read I/O still has to wait until the array is
961 	 * unfrozen. Since there is no ordering requirement with
962 	 * conf->barrier[idx] here, memory barrier is unnecessary as well.
963 	 */
964 	atomic_inc(&conf->nr_pending[idx]);
965 
966 	if (!READ_ONCE(conf->array_frozen))
967 		return;
968 
969 	spin_lock_irq(&conf->resync_lock);
970 	atomic_inc(&conf->nr_waiting[idx]);
971 	atomic_dec(&conf->nr_pending[idx]);
972 	/*
973 	 * In case freeze_array() is waiting for
974 	 * get_unqueued_pending() == extra
975 	 */
976 	wake_up(&conf->wait_barrier);
977 	/* Wait for array to be unfrozen */
978 	wait_event_lock_irq(conf->wait_barrier,
979 			    !conf->array_frozen,
980 			    conf->resync_lock);
981 	atomic_inc(&conf->nr_pending[idx]);
982 	atomic_dec(&conf->nr_waiting[idx]);
983 	spin_unlock_irq(&conf->resync_lock);
984 }
985 
986 static void wait_barrier(struct r1conf *conf, sector_t sector_nr)
987 {
988 	int idx = sector_to_idx(sector_nr);
989 
990 	_wait_barrier(conf, idx);
991 }
992 
993 static void wait_all_barriers(struct r1conf *conf)
994 {
995 	int idx;
996 
997 	for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
998 		_wait_barrier(conf, idx);
999 }
1000 
1001 static void _allow_barrier(struct r1conf *conf, int idx)
1002 {
1003 	atomic_dec(&conf->nr_pending[idx]);
1004 	wake_up(&conf->wait_barrier);
1005 }
1006 
1007 static void allow_barrier(struct r1conf *conf, sector_t sector_nr)
1008 {
1009 	int idx = sector_to_idx(sector_nr);
1010 
1011 	_allow_barrier(conf, idx);
1012 }
1013 
1014 static void allow_all_barriers(struct r1conf *conf)
1015 {
1016 	int idx;
1017 
1018 	for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
1019 		_allow_barrier(conf, idx);
1020 }
1021 
1022 /* conf->resync_lock should be held */
1023 static int get_unqueued_pending(struct r1conf *conf)
1024 {
1025 	int idx, ret;
1026 
1027 	ret = atomic_read(&conf->nr_sync_pending);
1028 	for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
1029 		ret += atomic_read(&conf->nr_pending[idx]) -
1030 			atomic_read(&conf->nr_queued[idx]);
1031 
1032 	return ret;
1033 }
1034 
1035 static void freeze_array(struct r1conf *conf, int extra)
1036 {
1037 	/* Stop sync I/O and normal I/O and wait for everything to
1038 	 * go quiet.
1039 	 * This is called in two situations:
1040 	 * 1) management command handlers (reshape, remove disk, quiesce).
1041 	 * 2) one normal I/O request failed.
1042 
1043 	 * After array_frozen is set to 1, new sync IO will be blocked at
1044 	 * raise_barrier(), and new normal I/O will blocked at _wait_barrier()
1045 	 * or wait_read_barrier(). The flying I/Os will either complete or be
1046 	 * queued. When everything goes quite, there are only queued I/Os left.
1047 
1048 	 * Every flying I/O contributes to a conf->nr_pending[idx], idx is the
1049 	 * barrier bucket index which this I/O request hits. When all sync and
1050 	 * normal I/O are queued, sum of all conf->nr_pending[] will match sum
1051 	 * of all conf->nr_queued[]. But normal I/O failure is an exception,
1052 	 * in handle_read_error(), we may call freeze_array() before trying to
1053 	 * fix the read error. In this case, the error read I/O is not queued,
1054 	 * so get_unqueued_pending() == 1.
1055 	 *
1056 	 * Therefore before this function returns, we need to wait until
1057 	 * get_unqueued_pendings(conf) gets equal to extra. For
1058 	 * normal I/O context, extra is 1, in rested situations extra is 0.
1059 	 */
1060 	spin_lock_irq(&conf->resync_lock);
1061 	conf->array_frozen = 1;
1062 	raid1_log(conf->mddev, "wait freeze");
1063 	wait_event_lock_irq_cmd(
1064 		conf->wait_barrier,
1065 		get_unqueued_pending(conf) == extra,
1066 		conf->resync_lock,
1067 		flush_pending_writes(conf));
1068 	spin_unlock_irq(&conf->resync_lock);
1069 }
1070 static void unfreeze_array(struct r1conf *conf)
1071 {
1072 	/* reverse the effect of the freeze */
1073 	spin_lock_irq(&conf->resync_lock);
1074 	conf->array_frozen = 0;
1075 	spin_unlock_irq(&conf->resync_lock);
1076 	wake_up(&conf->wait_barrier);
1077 }
1078 
1079 static void alloc_behind_master_bio(struct r1bio *r1_bio,
1080 					   struct bio *bio)
1081 {
1082 	int size = bio->bi_iter.bi_size;
1083 	unsigned vcnt = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1084 	int i = 0;
1085 	struct bio *behind_bio = NULL;
1086 
1087 	behind_bio = bio_alloc_mddev(GFP_NOIO, vcnt, r1_bio->mddev);
1088 	if (!behind_bio)
1089 		return;
1090 
1091 	/* discard op, we don't support writezero/writesame yet */
1092 	if (!bio_has_data(bio)) {
1093 		behind_bio->bi_iter.bi_size = size;
1094 		goto skip_copy;
1095 	}
1096 
1097 	while (i < vcnt && size) {
1098 		struct page *page;
1099 		int len = min_t(int, PAGE_SIZE, size);
1100 
1101 		page = alloc_page(GFP_NOIO);
1102 		if (unlikely(!page))
1103 			goto free_pages;
1104 
1105 		bio_add_page(behind_bio, page, len, 0);
1106 
1107 		size -= len;
1108 		i++;
1109 	}
1110 
1111 	bio_copy_data(behind_bio, bio);
1112 skip_copy:
1113 	r1_bio->behind_master_bio = behind_bio;;
1114 	set_bit(R1BIO_BehindIO, &r1_bio->state);
1115 
1116 	return;
1117 
1118 free_pages:
1119 	pr_debug("%dB behind alloc failed, doing sync I/O\n",
1120 		 bio->bi_iter.bi_size);
1121 	bio_free_pages(behind_bio);
1122 	bio_put(behind_bio);
1123 }
1124 
1125 struct raid1_plug_cb {
1126 	struct blk_plug_cb	cb;
1127 	struct bio_list		pending;
1128 	int			pending_cnt;
1129 };
1130 
1131 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1132 {
1133 	struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1134 						  cb);
1135 	struct mddev *mddev = plug->cb.data;
1136 	struct r1conf *conf = mddev->private;
1137 	struct bio *bio;
1138 
1139 	if (from_schedule || current->bio_list) {
1140 		spin_lock_irq(&conf->device_lock);
1141 		bio_list_merge(&conf->pending_bio_list, &plug->pending);
1142 		conf->pending_count += plug->pending_cnt;
1143 		spin_unlock_irq(&conf->device_lock);
1144 		wake_up(&conf->wait_barrier);
1145 		md_wakeup_thread(mddev->thread);
1146 		kfree(plug);
1147 		return;
1148 	}
1149 
1150 	/* we aren't scheduling, so we can do the write-out directly. */
1151 	bio = bio_list_get(&plug->pending);
1152 	flush_bio_list(conf, bio);
1153 	kfree(plug);
1154 }
1155 
1156 static void init_r1bio(struct r1bio *r1_bio, struct mddev *mddev, struct bio *bio)
1157 {
1158 	r1_bio->master_bio = bio;
1159 	r1_bio->sectors = bio_sectors(bio);
1160 	r1_bio->state = 0;
1161 	r1_bio->mddev = mddev;
1162 	r1_bio->sector = bio->bi_iter.bi_sector;
1163 }
1164 
1165 static inline struct r1bio *
1166 alloc_r1bio(struct mddev *mddev, struct bio *bio)
1167 {
1168 	struct r1conf *conf = mddev->private;
1169 	struct r1bio *r1_bio;
1170 
1171 	r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1172 	/* Ensure no bio records IO_BLOCKED */
1173 	memset(r1_bio->bios, 0, conf->raid_disks * sizeof(r1_bio->bios[0]));
1174 	init_r1bio(r1_bio, mddev, bio);
1175 	return r1_bio;
1176 }
1177 
1178 static void raid1_read_request(struct mddev *mddev, struct bio *bio,
1179 			       int max_read_sectors, struct r1bio *r1_bio)
1180 {
1181 	struct r1conf *conf = mddev->private;
1182 	struct raid1_info *mirror;
1183 	struct bio *read_bio;
1184 	struct bitmap *bitmap = mddev->bitmap;
1185 	const int op = bio_op(bio);
1186 	const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1187 	int max_sectors;
1188 	int rdisk;
1189 	bool print_msg = !!r1_bio;
1190 	char b[BDEVNAME_SIZE];
1191 
1192 	/*
1193 	 * If r1_bio is set, we are blocking the raid1d thread
1194 	 * so there is a tiny risk of deadlock.  So ask for
1195 	 * emergency memory if needed.
1196 	 */
1197 	gfp_t gfp = r1_bio ? (GFP_NOIO | __GFP_HIGH) : GFP_NOIO;
1198 
1199 	if (print_msg) {
1200 		/* Need to get the block device name carefully */
1201 		struct md_rdev *rdev;
1202 		rcu_read_lock();
1203 		rdev = rcu_dereference(conf->mirrors[r1_bio->read_disk].rdev);
1204 		if (rdev)
1205 			bdevname(rdev->bdev, b);
1206 		else
1207 			strcpy(b, "???");
1208 		rcu_read_unlock();
1209 	}
1210 
1211 	/*
1212 	 * Still need barrier for READ in case that whole
1213 	 * array is frozen.
1214 	 */
1215 	wait_read_barrier(conf, bio->bi_iter.bi_sector);
1216 
1217 	if (!r1_bio)
1218 		r1_bio = alloc_r1bio(mddev, bio);
1219 	else
1220 		init_r1bio(r1_bio, mddev, bio);
1221 	r1_bio->sectors = max_read_sectors;
1222 
1223 	/*
1224 	 * make_request() can abort the operation when read-ahead is being
1225 	 * used and no empty request is available.
1226 	 */
1227 	rdisk = read_balance(conf, r1_bio, &max_sectors);
1228 
1229 	if (rdisk < 0) {
1230 		/* couldn't find anywhere to read from */
1231 		if (print_msg) {
1232 			pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
1233 					    mdname(mddev),
1234 					    b,
1235 					    (unsigned long long)r1_bio->sector);
1236 		}
1237 		raid_end_bio_io(r1_bio);
1238 		return;
1239 	}
1240 	mirror = conf->mirrors + rdisk;
1241 
1242 	if (print_msg)
1243 		pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %s\n",
1244 				    mdname(mddev),
1245 				    (unsigned long long)r1_bio->sector,
1246 				    bdevname(mirror->rdev->bdev, b));
1247 
1248 	if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1249 	    bitmap) {
1250 		/*
1251 		 * Reading from a write-mostly device must take care not to
1252 		 * over-take any writes that are 'behind'
1253 		 */
1254 		raid1_log(mddev, "wait behind writes");
1255 		wait_event(bitmap->behind_wait,
1256 			   atomic_read(&bitmap->behind_writes) == 0);
1257 	}
1258 
1259 	if (max_sectors < bio_sectors(bio)) {
1260 		struct bio *split = bio_split(bio, max_sectors,
1261 					      gfp, conf->bio_split);
1262 		bio_chain(split, bio);
1263 		generic_make_request(bio);
1264 		bio = split;
1265 		r1_bio->master_bio = bio;
1266 		r1_bio->sectors = max_sectors;
1267 	}
1268 
1269 	r1_bio->read_disk = rdisk;
1270 
1271 	read_bio = bio_clone_fast(bio, gfp, mddev->bio_set);
1272 
1273 	r1_bio->bios[rdisk] = read_bio;
1274 
1275 	read_bio->bi_iter.bi_sector = r1_bio->sector +
1276 		mirror->rdev->data_offset;
1277 	bio_set_dev(read_bio, mirror->rdev->bdev);
1278 	read_bio->bi_end_io = raid1_end_read_request;
1279 	bio_set_op_attrs(read_bio, op, do_sync);
1280 	if (test_bit(FailFast, &mirror->rdev->flags) &&
1281 	    test_bit(R1BIO_FailFast, &r1_bio->state))
1282 	        read_bio->bi_opf |= MD_FAILFAST;
1283 	read_bio->bi_private = r1_bio;
1284 
1285 	if (mddev->gendisk)
1286 	        trace_block_bio_remap(read_bio->bi_disk->queue, read_bio,
1287 				disk_devt(mddev->gendisk), r1_bio->sector);
1288 
1289 	generic_make_request(read_bio);
1290 }
1291 
1292 static void raid1_write_request(struct mddev *mddev, struct bio *bio,
1293 				int max_write_sectors)
1294 {
1295 	struct r1conf *conf = mddev->private;
1296 	struct r1bio *r1_bio;
1297 	int i, disks;
1298 	struct bitmap *bitmap = mddev->bitmap;
1299 	unsigned long flags;
1300 	struct md_rdev *blocked_rdev;
1301 	struct blk_plug_cb *cb;
1302 	struct raid1_plug_cb *plug = NULL;
1303 	int first_clone;
1304 	int max_sectors;
1305 
1306 	/*
1307 	 * Register the new request and wait if the reconstruction
1308 	 * thread has put up a bar for new requests.
1309 	 * Continue immediately if no resync is active currently.
1310 	 */
1311 
1312 
1313 	if ((bio_end_sector(bio) > mddev->suspend_lo &&
1314 	    bio->bi_iter.bi_sector < mddev->suspend_hi) ||
1315 	    (mddev_is_clustered(mddev) &&
1316 	     md_cluster_ops->area_resyncing(mddev, WRITE,
1317 		     bio->bi_iter.bi_sector, bio_end_sector(bio)))) {
1318 
1319 		/*
1320 		 * As the suspend_* range is controlled by userspace, we want
1321 		 * an interruptible wait.
1322 		 */
1323 		DEFINE_WAIT(w);
1324 		for (;;) {
1325 			sigset_t full, old;
1326 			prepare_to_wait(&conf->wait_barrier,
1327 					&w, TASK_INTERRUPTIBLE);
1328 			if (bio_end_sector(bio) <= mddev->suspend_lo ||
1329 			    bio->bi_iter.bi_sector >= mddev->suspend_hi ||
1330 			    (mddev_is_clustered(mddev) &&
1331 			     !md_cluster_ops->area_resyncing(mddev, WRITE,
1332 				     bio->bi_iter.bi_sector,
1333 				     bio_end_sector(bio))))
1334 				break;
1335 			sigfillset(&full);
1336 			sigprocmask(SIG_BLOCK, &full, &old);
1337 			schedule();
1338 			sigprocmask(SIG_SETMASK, &old, NULL);
1339 		}
1340 		finish_wait(&conf->wait_barrier, &w);
1341 	}
1342 	wait_barrier(conf, bio->bi_iter.bi_sector);
1343 
1344 	r1_bio = alloc_r1bio(mddev, bio);
1345 	r1_bio->sectors = max_write_sectors;
1346 
1347 	if (conf->pending_count >= max_queued_requests) {
1348 		md_wakeup_thread(mddev->thread);
1349 		raid1_log(mddev, "wait queued");
1350 		wait_event(conf->wait_barrier,
1351 			   conf->pending_count < max_queued_requests);
1352 	}
1353 	/* first select target devices under rcu_lock and
1354 	 * inc refcount on their rdev.  Record them by setting
1355 	 * bios[x] to bio
1356 	 * If there are known/acknowledged bad blocks on any device on
1357 	 * which we have seen a write error, we want to avoid writing those
1358 	 * blocks.
1359 	 * This potentially requires several writes to write around
1360 	 * the bad blocks.  Each set of writes gets it's own r1bio
1361 	 * with a set of bios attached.
1362 	 */
1363 
1364 	disks = conf->raid_disks * 2;
1365  retry_write:
1366 	blocked_rdev = NULL;
1367 	rcu_read_lock();
1368 	max_sectors = r1_bio->sectors;
1369 	for (i = 0;  i < disks; i++) {
1370 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1371 		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1372 			atomic_inc(&rdev->nr_pending);
1373 			blocked_rdev = rdev;
1374 			break;
1375 		}
1376 		r1_bio->bios[i] = NULL;
1377 		if (!rdev || test_bit(Faulty, &rdev->flags)) {
1378 			if (i < conf->raid_disks)
1379 				set_bit(R1BIO_Degraded, &r1_bio->state);
1380 			continue;
1381 		}
1382 
1383 		atomic_inc(&rdev->nr_pending);
1384 		if (test_bit(WriteErrorSeen, &rdev->flags)) {
1385 			sector_t first_bad;
1386 			int bad_sectors;
1387 			int is_bad;
1388 
1389 			is_bad = is_badblock(rdev, r1_bio->sector, max_sectors,
1390 					     &first_bad, &bad_sectors);
1391 			if (is_bad < 0) {
1392 				/* mustn't write here until the bad block is
1393 				 * acknowledged*/
1394 				set_bit(BlockedBadBlocks, &rdev->flags);
1395 				blocked_rdev = rdev;
1396 				break;
1397 			}
1398 			if (is_bad && first_bad <= r1_bio->sector) {
1399 				/* Cannot write here at all */
1400 				bad_sectors -= (r1_bio->sector - first_bad);
1401 				if (bad_sectors < max_sectors)
1402 					/* mustn't write more than bad_sectors
1403 					 * to other devices yet
1404 					 */
1405 					max_sectors = bad_sectors;
1406 				rdev_dec_pending(rdev, mddev);
1407 				/* We don't set R1BIO_Degraded as that
1408 				 * only applies if the disk is
1409 				 * missing, so it might be re-added,
1410 				 * and we want to know to recover this
1411 				 * chunk.
1412 				 * In this case the device is here,
1413 				 * and the fact that this chunk is not
1414 				 * in-sync is recorded in the bad
1415 				 * block log
1416 				 */
1417 				continue;
1418 			}
1419 			if (is_bad) {
1420 				int good_sectors = first_bad - r1_bio->sector;
1421 				if (good_sectors < max_sectors)
1422 					max_sectors = good_sectors;
1423 			}
1424 		}
1425 		r1_bio->bios[i] = bio;
1426 	}
1427 	rcu_read_unlock();
1428 
1429 	if (unlikely(blocked_rdev)) {
1430 		/* Wait for this device to become unblocked */
1431 		int j;
1432 
1433 		for (j = 0; j < i; j++)
1434 			if (r1_bio->bios[j])
1435 				rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1436 		r1_bio->state = 0;
1437 		allow_barrier(conf, bio->bi_iter.bi_sector);
1438 		raid1_log(mddev, "wait rdev %d blocked", blocked_rdev->raid_disk);
1439 		md_wait_for_blocked_rdev(blocked_rdev, mddev);
1440 		wait_barrier(conf, bio->bi_iter.bi_sector);
1441 		goto retry_write;
1442 	}
1443 
1444 	if (max_sectors < bio_sectors(bio)) {
1445 		struct bio *split = bio_split(bio, max_sectors,
1446 					      GFP_NOIO, conf->bio_split);
1447 		bio_chain(split, bio);
1448 		generic_make_request(bio);
1449 		bio = split;
1450 		r1_bio->master_bio = bio;
1451 		r1_bio->sectors = max_sectors;
1452 	}
1453 
1454 	atomic_set(&r1_bio->remaining, 1);
1455 	atomic_set(&r1_bio->behind_remaining, 0);
1456 
1457 	first_clone = 1;
1458 
1459 	for (i = 0; i < disks; i++) {
1460 		struct bio *mbio = NULL;
1461 		if (!r1_bio->bios[i])
1462 			continue;
1463 
1464 
1465 		if (first_clone) {
1466 			/* do behind I/O ?
1467 			 * Not if there are too many, or cannot
1468 			 * allocate memory, or a reader on WriteMostly
1469 			 * is waiting for behind writes to flush */
1470 			if (bitmap &&
1471 			    (atomic_read(&bitmap->behind_writes)
1472 			     < mddev->bitmap_info.max_write_behind) &&
1473 			    !waitqueue_active(&bitmap->behind_wait)) {
1474 				alloc_behind_master_bio(r1_bio, bio);
1475 			}
1476 
1477 			bitmap_startwrite(bitmap, r1_bio->sector,
1478 					  r1_bio->sectors,
1479 					  test_bit(R1BIO_BehindIO,
1480 						   &r1_bio->state));
1481 			first_clone = 0;
1482 		}
1483 
1484 		if (r1_bio->behind_master_bio)
1485 			mbio = bio_clone_fast(r1_bio->behind_master_bio,
1486 					      GFP_NOIO, mddev->bio_set);
1487 		else
1488 			mbio = bio_clone_fast(bio, GFP_NOIO, mddev->bio_set);
1489 
1490 		if (r1_bio->behind_master_bio) {
1491 			if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1492 				atomic_inc(&r1_bio->behind_remaining);
1493 		}
1494 
1495 		r1_bio->bios[i] = mbio;
1496 
1497 		mbio->bi_iter.bi_sector	= (r1_bio->sector +
1498 				   conf->mirrors[i].rdev->data_offset);
1499 		bio_set_dev(mbio, conf->mirrors[i].rdev->bdev);
1500 		mbio->bi_end_io	= raid1_end_write_request;
1501 		mbio->bi_opf = bio_op(bio) | (bio->bi_opf & (REQ_SYNC | REQ_FUA));
1502 		if (test_bit(FailFast, &conf->mirrors[i].rdev->flags) &&
1503 		    !test_bit(WriteMostly, &conf->mirrors[i].rdev->flags) &&
1504 		    conf->raid_disks - mddev->degraded > 1)
1505 			mbio->bi_opf |= MD_FAILFAST;
1506 		mbio->bi_private = r1_bio;
1507 
1508 		atomic_inc(&r1_bio->remaining);
1509 
1510 		if (mddev->gendisk)
1511 			trace_block_bio_remap(mbio->bi_disk->queue,
1512 					      mbio, disk_devt(mddev->gendisk),
1513 					      r1_bio->sector);
1514 		/* flush_pending_writes() needs access to the rdev so...*/
1515 		mbio->bi_disk = (void *)conf->mirrors[i].rdev;
1516 
1517 		cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1518 		if (cb)
1519 			plug = container_of(cb, struct raid1_plug_cb, cb);
1520 		else
1521 			plug = NULL;
1522 		if (plug) {
1523 			bio_list_add(&plug->pending, mbio);
1524 			plug->pending_cnt++;
1525 		} else {
1526 			spin_lock_irqsave(&conf->device_lock, flags);
1527 			bio_list_add(&conf->pending_bio_list, mbio);
1528 			conf->pending_count++;
1529 			spin_unlock_irqrestore(&conf->device_lock, flags);
1530 			md_wakeup_thread(mddev->thread);
1531 		}
1532 	}
1533 
1534 	r1_bio_write_done(r1_bio);
1535 
1536 	/* In case raid1d snuck in to freeze_array */
1537 	wake_up(&conf->wait_barrier);
1538 }
1539 
1540 static bool raid1_make_request(struct mddev *mddev, struct bio *bio)
1541 {
1542 	sector_t sectors;
1543 
1544 	if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1545 		md_flush_request(mddev, bio);
1546 		return true;
1547 	}
1548 
1549 	/*
1550 	 * There is a limit to the maximum size, but
1551 	 * the read/write handler might find a lower limit
1552 	 * due to bad blocks.  To avoid multiple splits,
1553 	 * we pass the maximum number of sectors down
1554 	 * and let the lower level perform the split.
1555 	 */
1556 	sectors = align_to_barrier_unit_end(
1557 		bio->bi_iter.bi_sector, bio_sectors(bio));
1558 
1559 	if (bio_data_dir(bio) == READ)
1560 		raid1_read_request(mddev, bio, sectors, NULL);
1561 	else {
1562 		if (!md_write_start(mddev,bio))
1563 			return false;
1564 		raid1_write_request(mddev, bio, sectors);
1565 	}
1566 	return true;
1567 }
1568 
1569 static void raid1_status(struct seq_file *seq, struct mddev *mddev)
1570 {
1571 	struct r1conf *conf = mddev->private;
1572 	int i;
1573 
1574 	seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1575 		   conf->raid_disks - mddev->degraded);
1576 	rcu_read_lock();
1577 	for (i = 0; i < conf->raid_disks; i++) {
1578 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1579 		seq_printf(seq, "%s",
1580 			   rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1581 	}
1582 	rcu_read_unlock();
1583 	seq_printf(seq, "]");
1584 }
1585 
1586 static void raid1_error(struct mddev *mddev, struct md_rdev *rdev)
1587 {
1588 	char b[BDEVNAME_SIZE];
1589 	struct r1conf *conf = mddev->private;
1590 	unsigned long flags;
1591 
1592 	/*
1593 	 * If it is not operational, then we have already marked it as dead
1594 	 * else if it is the last working disks, ignore the error, let the
1595 	 * next level up know.
1596 	 * else mark the drive as failed
1597 	 */
1598 	spin_lock_irqsave(&conf->device_lock, flags);
1599 	if (test_bit(In_sync, &rdev->flags)
1600 	    && (conf->raid_disks - mddev->degraded) == 1) {
1601 		/*
1602 		 * Don't fail the drive, act as though we were just a
1603 		 * normal single drive.
1604 		 * However don't try a recovery from this drive as
1605 		 * it is very likely to fail.
1606 		 */
1607 		conf->recovery_disabled = mddev->recovery_disabled;
1608 		spin_unlock_irqrestore(&conf->device_lock, flags);
1609 		return;
1610 	}
1611 	set_bit(Blocked, &rdev->flags);
1612 	if (test_and_clear_bit(In_sync, &rdev->flags)) {
1613 		mddev->degraded++;
1614 		set_bit(Faulty, &rdev->flags);
1615 	} else
1616 		set_bit(Faulty, &rdev->flags);
1617 	spin_unlock_irqrestore(&conf->device_lock, flags);
1618 	/*
1619 	 * if recovery is running, make sure it aborts.
1620 	 */
1621 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1622 	set_mask_bits(&mddev->sb_flags, 0,
1623 		      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1624 	pr_crit("md/raid1:%s: Disk failure on %s, disabling device.\n"
1625 		"md/raid1:%s: Operation continuing on %d devices.\n",
1626 		mdname(mddev), bdevname(rdev->bdev, b),
1627 		mdname(mddev), conf->raid_disks - mddev->degraded);
1628 }
1629 
1630 static void print_conf(struct r1conf *conf)
1631 {
1632 	int i;
1633 
1634 	pr_debug("RAID1 conf printout:\n");
1635 	if (!conf) {
1636 		pr_debug("(!conf)\n");
1637 		return;
1638 	}
1639 	pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1640 		 conf->raid_disks);
1641 
1642 	rcu_read_lock();
1643 	for (i = 0; i < conf->raid_disks; i++) {
1644 		char b[BDEVNAME_SIZE];
1645 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1646 		if (rdev)
1647 			pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
1648 				 i, !test_bit(In_sync, &rdev->flags),
1649 				 !test_bit(Faulty, &rdev->flags),
1650 				 bdevname(rdev->bdev,b));
1651 	}
1652 	rcu_read_unlock();
1653 }
1654 
1655 static void close_sync(struct r1conf *conf)
1656 {
1657 	wait_all_barriers(conf);
1658 	allow_all_barriers(conf);
1659 
1660 	mempool_destroy(conf->r1buf_pool);
1661 	conf->r1buf_pool = NULL;
1662 }
1663 
1664 static int raid1_spare_active(struct mddev *mddev)
1665 {
1666 	int i;
1667 	struct r1conf *conf = mddev->private;
1668 	int count = 0;
1669 	unsigned long flags;
1670 
1671 	/*
1672 	 * Find all failed disks within the RAID1 configuration
1673 	 * and mark them readable.
1674 	 * Called under mddev lock, so rcu protection not needed.
1675 	 * device_lock used to avoid races with raid1_end_read_request
1676 	 * which expects 'In_sync' flags and ->degraded to be consistent.
1677 	 */
1678 	spin_lock_irqsave(&conf->device_lock, flags);
1679 	for (i = 0; i < conf->raid_disks; i++) {
1680 		struct md_rdev *rdev = conf->mirrors[i].rdev;
1681 		struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1682 		if (repl
1683 		    && !test_bit(Candidate, &repl->flags)
1684 		    && repl->recovery_offset == MaxSector
1685 		    && !test_bit(Faulty, &repl->flags)
1686 		    && !test_and_set_bit(In_sync, &repl->flags)) {
1687 			/* replacement has just become active */
1688 			if (!rdev ||
1689 			    !test_and_clear_bit(In_sync, &rdev->flags))
1690 				count++;
1691 			if (rdev) {
1692 				/* Replaced device not technically
1693 				 * faulty, but we need to be sure
1694 				 * it gets removed and never re-added
1695 				 */
1696 				set_bit(Faulty, &rdev->flags);
1697 				sysfs_notify_dirent_safe(
1698 					rdev->sysfs_state);
1699 			}
1700 		}
1701 		if (rdev
1702 		    && rdev->recovery_offset == MaxSector
1703 		    && !test_bit(Faulty, &rdev->flags)
1704 		    && !test_and_set_bit(In_sync, &rdev->flags)) {
1705 			count++;
1706 			sysfs_notify_dirent_safe(rdev->sysfs_state);
1707 		}
1708 	}
1709 	mddev->degraded -= count;
1710 	spin_unlock_irqrestore(&conf->device_lock, flags);
1711 
1712 	print_conf(conf);
1713 	return count;
1714 }
1715 
1716 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1717 {
1718 	struct r1conf *conf = mddev->private;
1719 	int err = -EEXIST;
1720 	int mirror = 0;
1721 	struct raid1_info *p;
1722 	int first = 0;
1723 	int last = conf->raid_disks - 1;
1724 
1725 	if (mddev->recovery_disabled == conf->recovery_disabled)
1726 		return -EBUSY;
1727 
1728 	if (md_integrity_add_rdev(rdev, mddev))
1729 		return -ENXIO;
1730 
1731 	if (rdev->raid_disk >= 0)
1732 		first = last = rdev->raid_disk;
1733 
1734 	/*
1735 	 * find the disk ... but prefer rdev->saved_raid_disk
1736 	 * if possible.
1737 	 */
1738 	if (rdev->saved_raid_disk >= 0 &&
1739 	    rdev->saved_raid_disk >= first &&
1740 	    conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1741 		first = last = rdev->saved_raid_disk;
1742 
1743 	for (mirror = first; mirror <= last; mirror++) {
1744 		p = conf->mirrors+mirror;
1745 		if (!p->rdev) {
1746 
1747 			if (mddev->gendisk)
1748 				disk_stack_limits(mddev->gendisk, rdev->bdev,
1749 						  rdev->data_offset << 9);
1750 
1751 			p->head_position = 0;
1752 			rdev->raid_disk = mirror;
1753 			err = 0;
1754 			/* As all devices are equivalent, we don't need a full recovery
1755 			 * if this was recently any drive of the array
1756 			 */
1757 			if (rdev->saved_raid_disk < 0)
1758 				conf->fullsync = 1;
1759 			rcu_assign_pointer(p->rdev, rdev);
1760 			break;
1761 		}
1762 		if (test_bit(WantReplacement, &p->rdev->flags) &&
1763 		    p[conf->raid_disks].rdev == NULL) {
1764 			/* Add this device as a replacement */
1765 			clear_bit(In_sync, &rdev->flags);
1766 			set_bit(Replacement, &rdev->flags);
1767 			rdev->raid_disk = mirror;
1768 			err = 0;
1769 			conf->fullsync = 1;
1770 			rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1771 			break;
1772 		}
1773 	}
1774 	if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1775 		queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1776 	print_conf(conf);
1777 	return err;
1778 }
1779 
1780 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1781 {
1782 	struct r1conf *conf = mddev->private;
1783 	int err = 0;
1784 	int number = rdev->raid_disk;
1785 	struct raid1_info *p = conf->mirrors + number;
1786 
1787 	if (rdev != p->rdev)
1788 		p = conf->mirrors + conf->raid_disks + number;
1789 
1790 	print_conf(conf);
1791 	if (rdev == p->rdev) {
1792 		if (test_bit(In_sync, &rdev->flags) ||
1793 		    atomic_read(&rdev->nr_pending)) {
1794 			err = -EBUSY;
1795 			goto abort;
1796 		}
1797 		/* Only remove non-faulty devices if recovery
1798 		 * is not possible.
1799 		 */
1800 		if (!test_bit(Faulty, &rdev->flags) &&
1801 		    mddev->recovery_disabled != conf->recovery_disabled &&
1802 		    mddev->degraded < conf->raid_disks) {
1803 			err = -EBUSY;
1804 			goto abort;
1805 		}
1806 		p->rdev = NULL;
1807 		if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1808 			synchronize_rcu();
1809 			if (atomic_read(&rdev->nr_pending)) {
1810 				/* lost the race, try later */
1811 				err = -EBUSY;
1812 				p->rdev = rdev;
1813 				goto abort;
1814 			}
1815 		}
1816 		if (conf->mirrors[conf->raid_disks + number].rdev) {
1817 			/* We just removed a device that is being replaced.
1818 			 * Move down the replacement.  We drain all IO before
1819 			 * doing this to avoid confusion.
1820 			 */
1821 			struct md_rdev *repl =
1822 				conf->mirrors[conf->raid_disks + number].rdev;
1823 			freeze_array(conf, 0);
1824 			clear_bit(Replacement, &repl->flags);
1825 			p->rdev = repl;
1826 			conf->mirrors[conf->raid_disks + number].rdev = NULL;
1827 			unfreeze_array(conf);
1828 		}
1829 
1830 		clear_bit(WantReplacement, &rdev->flags);
1831 		err = md_integrity_register(mddev);
1832 	}
1833 abort:
1834 
1835 	print_conf(conf);
1836 	return err;
1837 }
1838 
1839 static void end_sync_read(struct bio *bio)
1840 {
1841 	struct r1bio *r1_bio = get_resync_r1bio(bio);
1842 
1843 	update_head_pos(r1_bio->read_disk, r1_bio);
1844 
1845 	/*
1846 	 * we have read a block, now it needs to be re-written,
1847 	 * or re-read if the read failed.
1848 	 * We don't do much here, just schedule handling by raid1d
1849 	 */
1850 	if (!bio->bi_status)
1851 		set_bit(R1BIO_Uptodate, &r1_bio->state);
1852 
1853 	if (atomic_dec_and_test(&r1_bio->remaining))
1854 		reschedule_retry(r1_bio);
1855 }
1856 
1857 static void end_sync_write(struct bio *bio)
1858 {
1859 	int uptodate = !bio->bi_status;
1860 	struct r1bio *r1_bio = get_resync_r1bio(bio);
1861 	struct mddev *mddev = r1_bio->mddev;
1862 	struct r1conf *conf = mddev->private;
1863 	sector_t first_bad;
1864 	int bad_sectors;
1865 	struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev;
1866 
1867 	if (!uptodate) {
1868 		sector_t sync_blocks = 0;
1869 		sector_t s = r1_bio->sector;
1870 		long sectors_to_go = r1_bio->sectors;
1871 		/* make sure these bits doesn't get cleared. */
1872 		do {
1873 			bitmap_end_sync(mddev->bitmap, s,
1874 					&sync_blocks, 1);
1875 			s += sync_blocks;
1876 			sectors_to_go -= sync_blocks;
1877 		} while (sectors_to_go > 0);
1878 		set_bit(WriteErrorSeen, &rdev->flags);
1879 		if (!test_and_set_bit(WantReplacement, &rdev->flags))
1880 			set_bit(MD_RECOVERY_NEEDED, &
1881 				mddev->recovery);
1882 		set_bit(R1BIO_WriteError, &r1_bio->state);
1883 	} else if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
1884 			       &first_bad, &bad_sectors) &&
1885 		   !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1886 				r1_bio->sector,
1887 				r1_bio->sectors,
1888 				&first_bad, &bad_sectors)
1889 		)
1890 		set_bit(R1BIO_MadeGood, &r1_bio->state);
1891 
1892 	if (atomic_dec_and_test(&r1_bio->remaining)) {
1893 		int s = r1_bio->sectors;
1894 		if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1895 		    test_bit(R1BIO_WriteError, &r1_bio->state))
1896 			reschedule_retry(r1_bio);
1897 		else {
1898 			put_buf(r1_bio);
1899 			md_done_sync(mddev, s, uptodate);
1900 		}
1901 	}
1902 }
1903 
1904 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1905 			    int sectors, struct page *page, int rw)
1906 {
1907 	if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
1908 		/* success */
1909 		return 1;
1910 	if (rw == WRITE) {
1911 		set_bit(WriteErrorSeen, &rdev->flags);
1912 		if (!test_and_set_bit(WantReplacement,
1913 				      &rdev->flags))
1914 			set_bit(MD_RECOVERY_NEEDED, &
1915 				rdev->mddev->recovery);
1916 	}
1917 	/* need to record an error - either for the block or the device */
1918 	if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1919 		md_error(rdev->mddev, rdev);
1920 	return 0;
1921 }
1922 
1923 static int fix_sync_read_error(struct r1bio *r1_bio)
1924 {
1925 	/* Try some synchronous reads of other devices to get
1926 	 * good data, much like with normal read errors.  Only
1927 	 * read into the pages we already have so we don't
1928 	 * need to re-issue the read request.
1929 	 * We don't need to freeze the array, because being in an
1930 	 * active sync request, there is no normal IO, and
1931 	 * no overlapping syncs.
1932 	 * We don't need to check is_badblock() again as we
1933 	 * made sure that anything with a bad block in range
1934 	 * will have bi_end_io clear.
1935 	 */
1936 	struct mddev *mddev = r1_bio->mddev;
1937 	struct r1conf *conf = mddev->private;
1938 	struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1939 	struct page **pages = get_resync_pages(bio)->pages;
1940 	sector_t sect = r1_bio->sector;
1941 	int sectors = r1_bio->sectors;
1942 	int idx = 0;
1943 	struct md_rdev *rdev;
1944 
1945 	rdev = conf->mirrors[r1_bio->read_disk].rdev;
1946 	if (test_bit(FailFast, &rdev->flags)) {
1947 		/* Don't try recovering from here - just fail it
1948 		 * ... unless it is the last working device of course */
1949 		md_error(mddev, rdev);
1950 		if (test_bit(Faulty, &rdev->flags))
1951 			/* Don't try to read from here, but make sure
1952 			 * put_buf does it's thing
1953 			 */
1954 			bio->bi_end_io = end_sync_write;
1955 	}
1956 
1957 	while(sectors) {
1958 		int s = sectors;
1959 		int d = r1_bio->read_disk;
1960 		int success = 0;
1961 		int start;
1962 
1963 		if (s > (PAGE_SIZE>>9))
1964 			s = PAGE_SIZE >> 9;
1965 		do {
1966 			if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1967 				/* No rcu protection needed here devices
1968 				 * can only be removed when no resync is
1969 				 * active, and resync is currently active
1970 				 */
1971 				rdev = conf->mirrors[d].rdev;
1972 				if (sync_page_io(rdev, sect, s<<9,
1973 						 pages[idx],
1974 						 REQ_OP_READ, 0, false)) {
1975 					success = 1;
1976 					break;
1977 				}
1978 			}
1979 			d++;
1980 			if (d == conf->raid_disks * 2)
1981 				d = 0;
1982 		} while (!success && d != r1_bio->read_disk);
1983 
1984 		if (!success) {
1985 			char b[BDEVNAME_SIZE];
1986 			int abort = 0;
1987 			/* Cannot read from anywhere, this block is lost.
1988 			 * Record a bad block on each device.  If that doesn't
1989 			 * work just disable and interrupt the recovery.
1990 			 * Don't fail devices as that won't really help.
1991 			 */
1992 			pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
1993 					    mdname(mddev), bio_devname(bio, b),
1994 					    (unsigned long long)r1_bio->sector);
1995 			for (d = 0; d < conf->raid_disks * 2; d++) {
1996 				rdev = conf->mirrors[d].rdev;
1997 				if (!rdev || test_bit(Faulty, &rdev->flags))
1998 					continue;
1999 				if (!rdev_set_badblocks(rdev, sect, s, 0))
2000 					abort = 1;
2001 			}
2002 			if (abort) {
2003 				conf->recovery_disabled =
2004 					mddev->recovery_disabled;
2005 				set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2006 				md_done_sync(mddev, r1_bio->sectors, 0);
2007 				put_buf(r1_bio);
2008 				return 0;
2009 			}
2010 			/* Try next page */
2011 			sectors -= s;
2012 			sect += s;
2013 			idx++;
2014 			continue;
2015 		}
2016 
2017 		start = d;
2018 		/* write it back and re-read */
2019 		while (d != r1_bio->read_disk) {
2020 			if (d == 0)
2021 				d = conf->raid_disks * 2;
2022 			d--;
2023 			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2024 				continue;
2025 			rdev = conf->mirrors[d].rdev;
2026 			if (r1_sync_page_io(rdev, sect, s,
2027 					    pages[idx],
2028 					    WRITE) == 0) {
2029 				r1_bio->bios[d]->bi_end_io = NULL;
2030 				rdev_dec_pending(rdev, mddev);
2031 			}
2032 		}
2033 		d = start;
2034 		while (d != r1_bio->read_disk) {
2035 			if (d == 0)
2036 				d = conf->raid_disks * 2;
2037 			d--;
2038 			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2039 				continue;
2040 			rdev = conf->mirrors[d].rdev;
2041 			if (r1_sync_page_io(rdev, sect, s,
2042 					    pages[idx],
2043 					    READ) != 0)
2044 				atomic_add(s, &rdev->corrected_errors);
2045 		}
2046 		sectors -= s;
2047 		sect += s;
2048 		idx ++;
2049 	}
2050 	set_bit(R1BIO_Uptodate, &r1_bio->state);
2051 	bio->bi_status = 0;
2052 	return 1;
2053 }
2054 
2055 static void process_checks(struct r1bio *r1_bio)
2056 {
2057 	/* We have read all readable devices.  If we haven't
2058 	 * got the block, then there is no hope left.
2059 	 * If we have, then we want to do a comparison
2060 	 * and skip the write if everything is the same.
2061 	 * If any blocks failed to read, then we need to
2062 	 * attempt an over-write
2063 	 */
2064 	struct mddev *mddev = r1_bio->mddev;
2065 	struct r1conf *conf = mddev->private;
2066 	int primary;
2067 	int i;
2068 	int vcnt;
2069 
2070 	/* Fix variable parts of all bios */
2071 	vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
2072 	for (i = 0; i < conf->raid_disks * 2; i++) {
2073 		blk_status_t status;
2074 		struct bio *b = r1_bio->bios[i];
2075 		struct resync_pages *rp = get_resync_pages(b);
2076 		if (b->bi_end_io != end_sync_read)
2077 			continue;
2078 		/* fixup the bio for reuse, but preserve errno */
2079 		status = b->bi_status;
2080 		bio_reset(b);
2081 		b->bi_status = status;
2082 		b->bi_iter.bi_sector = r1_bio->sector +
2083 			conf->mirrors[i].rdev->data_offset;
2084 		bio_set_dev(b, conf->mirrors[i].rdev->bdev);
2085 		b->bi_end_io = end_sync_read;
2086 		rp->raid_bio = r1_bio;
2087 		b->bi_private = rp;
2088 
2089 		/* initialize bvec table again */
2090 		md_bio_reset_resync_pages(b, rp, r1_bio->sectors << 9);
2091 	}
2092 	for (primary = 0; primary < conf->raid_disks * 2; primary++)
2093 		if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
2094 		    !r1_bio->bios[primary]->bi_status) {
2095 			r1_bio->bios[primary]->bi_end_io = NULL;
2096 			rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
2097 			break;
2098 		}
2099 	r1_bio->read_disk = primary;
2100 	for (i = 0; i < conf->raid_disks * 2; i++) {
2101 		int j;
2102 		struct bio *pbio = r1_bio->bios[primary];
2103 		struct bio *sbio = r1_bio->bios[i];
2104 		blk_status_t status = sbio->bi_status;
2105 		struct page **ppages = get_resync_pages(pbio)->pages;
2106 		struct page **spages = get_resync_pages(sbio)->pages;
2107 		struct bio_vec *bi;
2108 		int page_len[RESYNC_PAGES] = { 0 };
2109 
2110 		if (sbio->bi_end_io != end_sync_read)
2111 			continue;
2112 		/* Now we can 'fixup' the error value */
2113 		sbio->bi_status = 0;
2114 
2115 		bio_for_each_segment_all(bi, sbio, j)
2116 			page_len[j] = bi->bv_len;
2117 
2118 		if (!status) {
2119 			for (j = vcnt; j-- ; ) {
2120 				if (memcmp(page_address(ppages[j]),
2121 					   page_address(spages[j]),
2122 					   page_len[j]))
2123 					break;
2124 			}
2125 		} else
2126 			j = 0;
2127 		if (j >= 0)
2128 			atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
2129 		if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
2130 			      && !status)) {
2131 			/* No need to write to this device. */
2132 			sbio->bi_end_io = NULL;
2133 			rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2134 			continue;
2135 		}
2136 
2137 		bio_copy_data(sbio, pbio);
2138 	}
2139 }
2140 
2141 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
2142 {
2143 	struct r1conf *conf = mddev->private;
2144 	int i;
2145 	int disks = conf->raid_disks * 2;
2146 	struct bio *wbio;
2147 
2148 	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2149 		/* ouch - failed to read all of that. */
2150 		if (!fix_sync_read_error(r1_bio))
2151 			return;
2152 
2153 	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2154 		process_checks(r1_bio);
2155 
2156 	/*
2157 	 * schedule writes
2158 	 */
2159 	atomic_set(&r1_bio->remaining, 1);
2160 	for (i = 0; i < disks ; i++) {
2161 		wbio = r1_bio->bios[i];
2162 		if (wbio->bi_end_io == NULL ||
2163 		    (wbio->bi_end_io == end_sync_read &&
2164 		     (i == r1_bio->read_disk ||
2165 		      !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2166 			continue;
2167 		if (test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2168 			continue;
2169 
2170 		bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2171 		if (test_bit(FailFast, &conf->mirrors[i].rdev->flags))
2172 			wbio->bi_opf |= MD_FAILFAST;
2173 
2174 		wbio->bi_end_io = end_sync_write;
2175 		atomic_inc(&r1_bio->remaining);
2176 		md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
2177 
2178 		generic_make_request(wbio);
2179 	}
2180 
2181 	if (atomic_dec_and_test(&r1_bio->remaining)) {
2182 		/* if we're here, all write(s) have completed, so clean up */
2183 		int s = r1_bio->sectors;
2184 		if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2185 		    test_bit(R1BIO_WriteError, &r1_bio->state))
2186 			reschedule_retry(r1_bio);
2187 		else {
2188 			put_buf(r1_bio);
2189 			md_done_sync(mddev, s, 1);
2190 		}
2191 	}
2192 }
2193 
2194 /*
2195  * This is a kernel thread which:
2196  *
2197  *	1.	Retries failed read operations on working mirrors.
2198  *	2.	Updates the raid superblock when problems encounter.
2199  *	3.	Performs writes following reads for array synchronising.
2200  */
2201 
2202 static void fix_read_error(struct r1conf *conf, int read_disk,
2203 			   sector_t sect, int sectors)
2204 {
2205 	struct mddev *mddev = conf->mddev;
2206 	while(sectors) {
2207 		int s = sectors;
2208 		int d = read_disk;
2209 		int success = 0;
2210 		int start;
2211 		struct md_rdev *rdev;
2212 
2213 		if (s > (PAGE_SIZE>>9))
2214 			s = PAGE_SIZE >> 9;
2215 
2216 		do {
2217 			sector_t first_bad;
2218 			int bad_sectors;
2219 
2220 			rcu_read_lock();
2221 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2222 			if (rdev &&
2223 			    (test_bit(In_sync, &rdev->flags) ||
2224 			     (!test_bit(Faulty, &rdev->flags) &&
2225 			      rdev->recovery_offset >= sect + s)) &&
2226 			    is_badblock(rdev, sect, s,
2227 					&first_bad, &bad_sectors) == 0) {
2228 				atomic_inc(&rdev->nr_pending);
2229 				rcu_read_unlock();
2230 				if (sync_page_io(rdev, sect, s<<9,
2231 					 conf->tmppage, REQ_OP_READ, 0, false))
2232 					success = 1;
2233 				rdev_dec_pending(rdev, mddev);
2234 				if (success)
2235 					break;
2236 			} else
2237 				rcu_read_unlock();
2238 			d++;
2239 			if (d == conf->raid_disks * 2)
2240 				d = 0;
2241 		} while (!success && d != read_disk);
2242 
2243 		if (!success) {
2244 			/* Cannot read from anywhere - mark it bad */
2245 			struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2246 			if (!rdev_set_badblocks(rdev, sect, s, 0))
2247 				md_error(mddev, rdev);
2248 			break;
2249 		}
2250 		/* write it back and re-read */
2251 		start = d;
2252 		while (d != read_disk) {
2253 			if (d==0)
2254 				d = conf->raid_disks * 2;
2255 			d--;
2256 			rcu_read_lock();
2257 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2258 			if (rdev &&
2259 			    !test_bit(Faulty, &rdev->flags)) {
2260 				atomic_inc(&rdev->nr_pending);
2261 				rcu_read_unlock();
2262 				r1_sync_page_io(rdev, sect, s,
2263 						conf->tmppage, WRITE);
2264 				rdev_dec_pending(rdev, mddev);
2265 			} else
2266 				rcu_read_unlock();
2267 		}
2268 		d = start;
2269 		while (d != read_disk) {
2270 			char b[BDEVNAME_SIZE];
2271 			if (d==0)
2272 				d = conf->raid_disks * 2;
2273 			d--;
2274 			rcu_read_lock();
2275 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2276 			if (rdev &&
2277 			    !test_bit(Faulty, &rdev->flags)) {
2278 				atomic_inc(&rdev->nr_pending);
2279 				rcu_read_unlock();
2280 				if (r1_sync_page_io(rdev, sect, s,
2281 						    conf->tmppage, READ)) {
2282 					atomic_add(s, &rdev->corrected_errors);
2283 					pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %s)\n",
2284 						mdname(mddev), s,
2285 						(unsigned long long)(sect +
2286 								     rdev->data_offset),
2287 						bdevname(rdev->bdev, b));
2288 				}
2289 				rdev_dec_pending(rdev, mddev);
2290 			} else
2291 				rcu_read_unlock();
2292 		}
2293 		sectors -= s;
2294 		sect += s;
2295 	}
2296 }
2297 
2298 static int narrow_write_error(struct r1bio *r1_bio, int i)
2299 {
2300 	struct mddev *mddev = r1_bio->mddev;
2301 	struct r1conf *conf = mddev->private;
2302 	struct md_rdev *rdev = conf->mirrors[i].rdev;
2303 
2304 	/* bio has the data to be written to device 'i' where
2305 	 * we just recently had a write error.
2306 	 * We repeatedly clone the bio and trim down to one block,
2307 	 * then try the write.  Where the write fails we record
2308 	 * a bad block.
2309 	 * It is conceivable that the bio doesn't exactly align with
2310 	 * blocks.  We must handle this somehow.
2311 	 *
2312 	 * We currently own a reference on the rdev.
2313 	 */
2314 
2315 	int block_sectors;
2316 	sector_t sector;
2317 	int sectors;
2318 	int sect_to_write = r1_bio->sectors;
2319 	int ok = 1;
2320 
2321 	if (rdev->badblocks.shift < 0)
2322 		return 0;
2323 
2324 	block_sectors = roundup(1 << rdev->badblocks.shift,
2325 				bdev_logical_block_size(rdev->bdev) >> 9);
2326 	sector = r1_bio->sector;
2327 	sectors = ((sector + block_sectors)
2328 		   & ~(sector_t)(block_sectors - 1))
2329 		- sector;
2330 
2331 	while (sect_to_write) {
2332 		struct bio *wbio;
2333 		if (sectors > sect_to_write)
2334 			sectors = sect_to_write;
2335 		/* Write at 'sector' for 'sectors'*/
2336 
2337 		if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2338 			wbio = bio_clone_fast(r1_bio->behind_master_bio,
2339 					      GFP_NOIO,
2340 					      mddev->bio_set);
2341 		} else {
2342 			wbio = bio_clone_fast(r1_bio->master_bio, GFP_NOIO,
2343 					      mddev->bio_set);
2344 		}
2345 
2346 		bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2347 		wbio->bi_iter.bi_sector = r1_bio->sector;
2348 		wbio->bi_iter.bi_size = r1_bio->sectors << 9;
2349 
2350 		bio_trim(wbio, sector - r1_bio->sector, sectors);
2351 		wbio->bi_iter.bi_sector += rdev->data_offset;
2352 		bio_set_dev(wbio, rdev->bdev);
2353 
2354 		if (submit_bio_wait(wbio) < 0)
2355 			/* failure! */
2356 			ok = rdev_set_badblocks(rdev, sector,
2357 						sectors, 0)
2358 				&& ok;
2359 
2360 		bio_put(wbio);
2361 		sect_to_write -= sectors;
2362 		sector += sectors;
2363 		sectors = block_sectors;
2364 	}
2365 	return ok;
2366 }
2367 
2368 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2369 {
2370 	int m;
2371 	int s = r1_bio->sectors;
2372 	for (m = 0; m < conf->raid_disks * 2 ; m++) {
2373 		struct md_rdev *rdev = conf->mirrors[m].rdev;
2374 		struct bio *bio = r1_bio->bios[m];
2375 		if (bio->bi_end_io == NULL)
2376 			continue;
2377 		if (!bio->bi_status &&
2378 		    test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2379 			rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2380 		}
2381 		if (bio->bi_status &&
2382 		    test_bit(R1BIO_WriteError, &r1_bio->state)) {
2383 			if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2384 				md_error(conf->mddev, rdev);
2385 		}
2386 	}
2387 	put_buf(r1_bio);
2388 	md_done_sync(conf->mddev, s, 1);
2389 }
2390 
2391 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2392 {
2393 	int m, idx;
2394 	bool fail = false;
2395 
2396 	for (m = 0; m < conf->raid_disks * 2 ; m++)
2397 		if (r1_bio->bios[m] == IO_MADE_GOOD) {
2398 			struct md_rdev *rdev = conf->mirrors[m].rdev;
2399 			rdev_clear_badblocks(rdev,
2400 					     r1_bio->sector,
2401 					     r1_bio->sectors, 0);
2402 			rdev_dec_pending(rdev, conf->mddev);
2403 		} else if (r1_bio->bios[m] != NULL) {
2404 			/* This drive got a write error.  We need to
2405 			 * narrow down and record precise write
2406 			 * errors.
2407 			 */
2408 			fail = true;
2409 			if (!narrow_write_error(r1_bio, m)) {
2410 				md_error(conf->mddev,
2411 					 conf->mirrors[m].rdev);
2412 				/* an I/O failed, we can't clear the bitmap */
2413 				set_bit(R1BIO_Degraded, &r1_bio->state);
2414 			}
2415 			rdev_dec_pending(conf->mirrors[m].rdev,
2416 					 conf->mddev);
2417 		}
2418 	if (fail) {
2419 		spin_lock_irq(&conf->device_lock);
2420 		list_add(&r1_bio->retry_list, &conf->bio_end_io_list);
2421 		idx = sector_to_idx(r1_bio->sector);
2422 		atomic_inc(&conf->nr_queued[idx]);
2423 		spin_unlock_irq(&conf->device_lock);
2424 		/*
2425 		 * In case freeze_array() is waiting for condition
2426 		 * get_unqueued_pending() == extra to be true.
2427 		 */
2428 		wake_up(&conf->wait_barrier);
2429 		md_wakeup_thread(conf->mddev->thread);
2430 	} else {
2431 		if (test_bit(R1BIO_WriteError, &r1_bio->state))
2432 			close_write(r1_bio);
2433 		raid_end_bio_io(r1_bio);
2434 	}
2435 }
2436 
2437 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2438 {
2439 	struct mddev *mddev = conf->mddev;
2440 	struct bio *bio;
2441 	struct md_rdev *rdev;
2442 	sector_t bio_sector;
2443 
2444 	clear_bit(R1BIO_ReadError, &r1_bio->state);
2445 	/* we got a read error. Maybe the drive is bad.  Maybe just
2446 	 * the block and we can fix it.
2447 	 * We freeze all other IO, and try reading the block from
2448 	 * other devices.  When we find one, we re-write
2449 	 * and check it that fixes the read error.
2450 	 * This is all done synchronously while the array is
2451 	 * frozen
2452 	 */
2453 
2454 	bio = r1_bio->bios[r1_bio->read_disk];
2455 	bio_sector = conf->mirrors[r1_bio->read_disk].rdev->data_offset + r1_bio->sector;
2456 	bio_put(bio);
2457 	r1_bio->bios[r1_bio->read_disk] = NULL;
2458 
2459 	rdev = conf->mirrors[r1_bio->read_disk].rdev;
2460 	if (mddev->ro == 0
2461 	    && !test_bit(FailFast, &rdev->flags)) {
2462 		freeze_array(conf, 1);
2463 		fix_read_error(conf, r1_bio->read_disk,
2464 			       r1_bio->sector, r1_bio->sectors);
2465 		unfreeze_array(conf);
2466 	} else {
2467 		r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED;
2468 	}
2469 
2470 	rdev_dec_pending(rdev, conf->mddev);
2471 	allow_barrier(conf, r1_bio->sector);
2472 	bio = r1_bio->master_bio;
2473 
2474 	/* Reuse the old r1_bio so that the IO_BLOCKED settings are preserved */
2475 	r1_bio->state = 0;
2476 	raid1_read_request(mddev, bio, r1_bio->sectors, r1_bio);
2477 }
2478 
2479 static void raid1d(struct md_thread *thread)
2480 {
2481 	struct mddev *mddev = thread->mddev;
2482 	struct r1bio *r1_bio;
2483 	unsigned long flags;
2484 	struct r1conf *conf = mddev->private;
2485 	struct list_head *head = &conf->retry_list;
2486 	struct blk_plug plug;
2487 	int idx;
2488 
2489 	md_check_recovery(mddev);
2490 
2491 	if (!list_empty_careful(&conf->bio_end_io_list) &&
2492 	    !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2493 		LIST_HEAD(tmp);
2494 		spin_lock_irqsave(&conf->device_lock, flags);
2495 		if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
2496 			list_splice_init(&conf->bio_end_io_list, &tmp);
2497 		spin_unlock_irqrestore(&conf->device_lock, flags);
2498 		while (!list_empty(&tmp)) {
2499 			r1_bio = list_first_entry(&tmp, struct r1bio,
2500 						  retry_list);
2501 			list_del(&r1_bio->retry_list);
2502 			idx = sector_to_idx(r1_bio->sector);
2503 			atomic_dec(&conf->nr_queued[idx]);
2504 			if (mddev->degraded)
2505 				set_bit(R1BIO_Degraded, &r1_bio->state);
2506 			if (test_bit(R1BIO_WriteError, &r1_bio->state))
2507 				close_write(r1_bio);
2508 			raid_end_bio_io(r1_bio);
2509 		}
2510 	}
2511 
2512 	blk_start_plug(&plug);
2513 	for (;;) {
2514 
2515 		flush_pending_writes(conf);
2516 
2517 		spin_lock_irqsave(&conf->device_lock, flags);
2518 		if (list_empty(head)) {
2519 			spin_unlock_irqrestore(&conf->device_lock, flags);
2520 			break;
2521 		}
2522 		r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2523 		list_del(head->prev);
2524 		idx = sector_to_idx(r1_bio->sector);
2525 		atomic_dec(&conf->nr_queued[idx]);
2526 		spin_unlock_irqrestore(&conf->device_lock, flags);
2527 
2528 		mddev = r1_bio->mddev;
2529 		conf = mddev->private;
2530 		if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2531 			if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2532 			    test_bit(R1BIO_WriteError, &r1_bio->state))
2533 				handle_sync_write_finished(conf, r1_bio);
2534 			else
2535 				sync_request_write(mddev, r1_bio);
2536 		} else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2537 			   test_bit(R1BIO_WriteError, &r1_bio->state))
2538 			handle_write_finished(conf, r1_bio);
2539 		else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2540 			handle_read_error(conf, r1_bio);
2541 		else
2542 			WARN_ON_ONCE(1);
2543 
2544 		cond_resched();
2545 		if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
2546 			md_check_recovery(mddev);
2547 	}
2548 	blk_finish_plug(&plug);
2549 }
2550 
2551 static int init_resync(struct r1conf *conf)
2552 {
2553 	int buffs;
2554 
2555 	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2556 	BUG_ON(conf->r1buf_pool);
2557 	conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2558 					  conf->poolinfo);
2559 	if (!conf->r1buf_pool)
2560 		return -ENOMEM;
2561 	return 0;
2562 }
2563 
2564 static struct r1bio *raid1_alloc_init_r1buf(struct r1conf *conf)
2565 {
2566 	struct r1bio *r1bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
2567 	struct resync_pages *rps;
2568 	struct bio *bio;
2569 	int i;
2570 
2571 	for (i = conf->poolinfo->raid_disks; i--; ) {
2572 		bio = r1bio->bios[i];
2573 		rps = bio->bi_private;
2574 		bio_reset(bio);
2575 		bio->bi_private = rps;
2576 	}
2577 	r1bio->master_bio = NULL;
2578 	return r1bio;
2579 }
2580 
2581 /*
2582  * perform a "sync" on one "block"
2583  *
2584  * We need to make sure that no normal I/O request - particularly write
2585  * requests - conflict with active sync requests.
2586  *
2587  * This is achieved by tracking pending requests and a 'barrier' concept
2588  * that can be installed to exclude normal IO requests.
2589  */
2590 
2591 static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr,
2592 				   int *skipped)
2593 {
2594 	struct r1conf *conf = mddev->private;
2595 	struct r1bio *r1_bio;
2596 	struct bio *bio;
2597 	sector_t max_sector, nr_sectors;
2598 	int disk = -1;
2599 	int i;
2600 	int wonly = -1;
2601 	int write_targets = 0, read_targets = 0;
2602 	sector_t sync_blocks;
2603 	int still_degraded = 0;
2604 	int good_sectors = RESYNC_SECTORS;
2605 	int min_bad = 0; /* number of sectors that are bad in all devices */
2606 	int idx = sector_to_idx(sector_nr);
2607 	int page_idx = 0;
2608 
2609 	if (!conf->r1buf_pool)
2610 		if (init_resync(conf))
2611 			return 0;
2612 
2613 	max_sector = mddev->dev_sectors;
2614 	if (sector_nr >= max_sector) {
2615 		/* If we aborted, we need to abort the
2616 		 * sync on the 'current' bitmap chunk (there will
2617 		 * only be one in raid1 resync.
2618 		 * We can find the current addess in mddev->curr_resync
2619 		 */
2620 		if (mddev->curr_resync < max_sector) /* aborted */
2621 			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2622 						&sync_blocks, 1);
2623 		else /* completed sync */
2624 			conf->fullsync = 0;
2625 
2626 		bitmap_close_sync(mddev->bitmap);
2627 		close_sync(conf);
2628 
2629 		if (mddev_is_clustered(mddev)) {
2630 			conf->cluster_sync_low = 0;
2631 			conf->cluster_sync_high = 0;
2632 		}
2633 		return 0;
2634 	}
2635 
2636 	if (mddev->bitmap == NULL &&
2637 	    mddev->recovery_cp == MaxSector &&
2638 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2639 	    conf->fullsync == 0) {
2640 		*skipped = 1;
2641 		return max_sector - sector_nr;
2642 	}
2643 	/* before building a request, check if we can skip these blocks..
2644 	 * This call the bitmap_start_sync doesn't actually record anything
2645 	 */
2646 	if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2647 	    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2648 		/* We can skip this block, and probably several more */
2649 		*skipped = 1;
2650 		return sync_blocks;
2651 	}
2652 
2653 	/*
2654 	 * If there is non-resync activity waiting for a turn, then let it
2655 	 * though before starting on this new sync request.
2656 	 */
2657 	if (atomic_read(&conf->nr_waiting[idx]))
2658 		schedule_timeout_uninterruptible(1);
2659 
2660 	/* we are incrementing sector_nr below. To be safe, we check against
2661 	 * sector_nr + two times RESYNC_SECTORS
2662 	 */
2663 
2664 	bitmap_cond_end_sync(mddev->bitmap, sector_nr,
2665 		mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
2666 	r1_bio = raid1_alloc_init_r1buf(conf);
2667 
2668 	raise_barrier(conf, sector_nr);
2669 
2670 	rcu_read_lock();
2671 	/*
2672 	 * If we get a correctably read error during resync or recovery,
2673 	 * we might want to read from a different device.  So we
2674 	 * flag all drives that could conceivably be read from for READ,
2675 	 * and any others (which will be non-In_sync devices) for WRITE.
2676 	 * If a read fails, we try reading from something else for which READ
2677 	 * is OK.
2678 	 */
2679 
2680 	r1_bio->mddev = mddev;
2681 	r1_bio->sector = sector_nr;
2682 	r1_bio->state = 0;
2683 	set_bit(R1BIO_IsSync, &r1_bio->state);
2684 	/* make sure good_sectors won't go across barrier unit boundary */
2685 	good_sectors = align_to_barrier_unit_end(sector_nr, good_sectors);
2686 
2687 	for (i = 0; i < conf->raid_disks * 2; i++) {
2688 		struct md_rdev *rdev;
2689 		bio = r1_bio->bios[i];
2690 
2691 		rdev = rcu_dereference(conf->mirrors[i].rdev);
2692 		if (rdev == NULL ||
2693 		    test_bit(Faulty, &rdev->flags)) {
2694 			if (i < conf->raid_disks)
2695 				still_degraded = 1;
2696 		} else if (!test_bit(In_sync, &rdev->flags)) {
2697 			bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2698 			bio->bi_end_io = end_sync_write;
2699 			write_targets ++;
2700 		} else {
2701 			/* may need to read from here */
2702 			sector_t first_bad = MaxSector;
2703 			int bad_sectors;
2704 
2705 			if (is_badblock(rdev, sector_nr, good_sectors,
2706 					&first_bad, &bad_sectors)) {
2707 				if (first_bad > sector_nr)
2708 					good_sectors = first_bad - sector_nr;
2709 				else {
2710 					bad_sectors -= (sector_nr - first_bad);
2711 					if (min_bad == 0 ||
2712 					    min_bad > bad_sectors)
2713 						min_bad = bad_sectors;
2714 				}
2715 			}
2716 			if (sector_nr < first_bad) {
2717 				if (test_bit(WriteMostly, &rdev->flags)) {
2718 					if (wonly < 0)
2719 						wonly = i;
2720 				} else {
2721 					if (disk < 0)
2722 						disk = i;
2723 				}
2724 				bio_set_op_attrs(bio, REQ_OP_READ, 0);
2725 				bio->bi_end_io = end_sync_read;
2726 				read_targets++;
2727 			} else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2728 				test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2729 				!test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2730 				/*
2731 				 * The device is suitable for reading (InSync),
2732 				 * but has bad block(s) here. Let's try to correct them,
2733 				 * if we are doing resync or repair. Otherwise, leave
2734 				 * this device alone for this sync request.
2735 				 */
2736 				bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2737 				bio->bi_end_io = end_sync_write;
2738 				write_targets++;
2739 			}
2740 		}
2741 		if (bio->bi_end_io) {
2742 			atomic_inc(&rdev->nr_pending);
2743 			bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
2744 			bio_set_dev(bio, rdev->bdev);
2745 			if (test_bit(FailFast, &rdev->flags))
2746 				bio->bi_opf |= MD_FAILFAST;
2747 		}
2748 	}
2749 	rcu_read_unlock();
2750 	if (disk < 0)
2751 		disk = wonly;
2752 	r1_bio->read_disk = disk;
2753 
2754 	if (read_targets == 0 && min_bad > 0) {
2755 		/* These sectors are bad on all InSync devices, so we
2756 		 * need to mark them bad on all write targets
2757 		 */
2758 		int ok = 1;
2759 		for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2760 			if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2761 				struct md_rdev *rdev = conf->mirrors[i].rdev;
2762 				ok = rdev_set_badblocks(rdev, sector_nr,
2763 							min_bad, 0
2764 					) && ok;
2765 			}
2766 		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2767 		*skipped = 1;
2768 		put_buf(r1_bio);
2769 
2770 		if (!ok) {
2771 			/* Cannot record the badblocks, so need to
2772 			 * abort the resync.
2773 			 * If there are multiple read targets, could just
2774 			 * fail the really bad ones ???
2775 			 */
2776 			conf->recovery_disabled = mddev->recovery_disabled;
2777 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2778 			return 0;
2779 		} else
2780 			return min_bad;
2781 
2782 	}
2783 	if (min_bad > 0 && min_bad < good_sectors) {
2784 		/* only resync enough to reach the next bad->good
2785 		 * transition */
2786 		good_sectors = min_bad;
2787 	}
2788 
2789 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2790 		/* extra read targets are also write targets */
2791 		write_targets += read_targets-1;
2792 
2793 	if (write_targets == 0 || read_targets == 0) {
2794 		/* There is nowhere to write, so all non-sync
2795 		 * drives must be failed - so we are finished
2796 		 */
2797 		sector_t rv;
2798 		if (min_bad > 0)
2799 			max_sector = sector_nr + min_bad;
2800 		rv = max_sector - sector_nr;
2801 		*skipped = 1;
2802 		put_buf(r1_bio);
2803 		return rv;
2804 	}
2805 
2806 	if (max_sector > mddev->resync_max)
2807 		max_sector = mddev->resync_max; /* Don't do IO beyond here */
2808 	if (max_sector > sector_nr + good_sectors)
2809 		max_sector = sector_nr + good_sectors;
2810 	nr_sectors = 0;
2811 	sync_blocks = 0;
2812 	do {
2813 		struct page *page;
2814 		int len = PAGE_SIZE;
2815 		if (sector_nr + (len>>9) > max_sector)
2816 			len = (max_sector - sector_nr) << 9;
2817 		if (len == 0)
2818 			break;
2819 		if (sync_blocks == 0) {
2820 			if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2821 					       &sync_blocks, still_degraded) &&
2822 			    !conf->fullsync &&
2823 			    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2824 				break;
2825 			if ((len >> 9) > sync_blocks)
2826 				len = sync_blocks<<9;
2827 		}
2828 
2829 		for (i = 0 ; i < conf->raid_disks * 2; i++) {
2830 			struct resync_pages *rp;
2831 
2832 			bio = r1_bio->bios[i];
2833 			rp = get_resync_pages(bio);
2834 			if (bio->bi_end_io) {
2835 				page = resync_fetch_page(rp, page_idx);
2836 
2837 				/*
2838 				 * won't fail because the vec table is big
2839 				 * enough to hold all these pages
2840 				 */
2841 				bio_add_page(bio, page, len, 0);
2842 			}
2843 		}
2844 		nr_sectors += len>>9;
2845 		sector_nr += len>>9;
2846 		sync_blocks -= (len>>9);
2847 	} while (++page_idx < RESYNC_PAGES);
2848 
2849 	r1_bio->sectors = nr_sectors;
2850 
2851 	if (mddev_is_clustered(mddev) &&
2852 			conf->cluster_sync_high < sector_nr + nr_sectors) {
2853 		conf->cluster_sync_low = mddev->curr_resync_completed;
2854 		conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS;
2855 		/* Send resync message */
2856 		md_cluster_ops->resync_info_update(mddev,
2857 				conf->cluster_sync_low,
2858 				conf->cluster_sync_high);
2859 	}
2860 
2861 	/* For a user-requested sync, we read all readable devices and do a
2862 	 * compare
2863 	 */
2864 	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2865 		atomic_set(&r1_bio->remaining, read_targets);
2866 		for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2867 			bio = r1_bio->bios[i];
2868 			if (bio->bi_end_io == end_sync_read) {
2869 				read_targets--;
2870 				md_sync_acct_bio(bio, nr_sectors);
2871 				if (read_targets == 1)
2872 					bio->bi_opf &= ~MD_FAILFAST;
2873 				generic_make_request(bio);
2874 			}
2875 		}
2876 	} else {
2877 		atomic_set(&r1_bio->remaining, 1);
2878 		bio = r1_bio->bios[r1_bio->read_disk];
2879 		md_sync_acct_bio(bio, nr_sectors);
2880 		if (read_targets == 1)
2881 			bio->bi_opf &= ~MD_FAILFAST;
2882 		generic_make_request(bio);
2883 
2884 	}
2885 	return nr_sectors;
2886 }
2887 
2888 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2889 {
2890 	if (sectors)
2891 		return sectors;
2892 
2893 	return mddev->dev_sectors;
2894 }
2895 
2896 static struct r1conf *setup_conf(struct mddev *mddev)
2897 {
2898 	struct r1conf *conf;
2899 	int i;
2900 	struct raid1_info *disk;
2901 	struct md_rdev *rdev;
2902 	int err = -ENOMEM;
2903 
2904 	conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2905 	if (!conf)
2906 		goto abort;
2907 
2908 	conf->nr_pending = kcalloc(BARRIER_BUCKETS_NR,
2909 				   sizeof(atomic_t), GFP_KERNEL);
2910 	if (!conf->nr_pending)
2911 		goto abort;
2912 
2913 	conf->nr_waiting = kcalloc(BARRIER_BUCKETS_NR,
2914 				   sizeof(atomic_t), GFP_KERNEL);
2915 	if (!conf->nr_waiting)
2916 		goto abort;
2917 
2918 	conf->nr_queued = kcalloc(BARRIER_BUCKETS_NR,
2919 				  sizeof(atomic_t), GFP_KERNEL);
2920 	if (!conf->nr_queued)
2921 		goto abort;
2922 
2923 	conf->barrier = kcalloc(BARRIER_BUCKETS_NR,
2924 				sizeof(atomic_t), GFP_KERNEL);
2925 	if (!conf->barrier)
2926 		goto abort;
2927 
2928 	conf->mirrors = kzalloc(sizeof(struct raid1_info)
2929 				* mddev->raid_disks * 2,
2930 				 GFP_KERNEL);
2931 	if (!conf->mirrors)
2932 		goto abort;
2933 
2934 	conf->tmppage = alloc_page(GFP_KERNEL);
2935 	if (!conf->tmppage)
2936 		goto abort;
2937 
2938 	conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
2939 	if (!conf->poolinfo)
2940 		goto abort;
2941 	conf->poolinfo->raid_disks = mddev->raid_disks * 2;
2942 	conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2943 					  r1bio_pool_free,
2944 					  conf->poolinfo);
2945 	if (!conf->r1bio_pool)
2946 		goto abort;
2947 
2948 	conf->bio_split = bioset_create(BIO_POOL_SIZE, 0, 0);
2949 	if (!conf->bio_split)
2950 		goto abort;
2951 
2952 	conf->poolinfo->mddev = mddev;
2953 
2954 	err = -EINVAL;
2955 	spin_lock_init(&conf->device_lock);
2956 	rdev_for_each(rdev, mddev) {
2957 		int disk_idx = rdev->raid_disk;
2958 		if (disk_idx >= mddev->raid_disks
2959 		    || disk_idx < 0)
2960 			continue;
2961 		if (test_bit(Replacement, &rdev->flags))
2962 			disk = conf->mirrors + mddev->raid_disks + disk_idx;
2963 		else
2964 			disk = conf->mirrors + disk_idx;
2965 
2966 		if (disk->rdev)
2967 			goto abort;
2968 		disk->rdev = rdev;
2969 		disk->head_position = 0;
2970 		disk->seq_start = MaxSector;
2971 	}
2972 	conf->raid_disks = mddev->raid_disks;
2973 	conf->mddev = mddev;
2974 	INIT_LIST_HEAD(&conf->retry_list);
2975 	INIT_LIST_HEAD(&conf->bio_end_io_list);
2976 
2977 	spin_lock_init(&conf->resync_lock);
2978 	init_waitqueue_head(&conf->wait_barrier);
2979 
2980 	bio_list_init(&conf->pending_bio_list);
2981 	conf->pending_count = 0;
2982 	conf->recovery_disabled = mddev->recovery_disabled - 1;
2983 
2984 	err = -EIO;
2985 	for (i = 0; i < conf->raid_disks * 2; i++) {
2986 
2987 		disk = conf->mirrors + i;
2988 
2989 		if (i < conf->raid_disks &&
2990 		    disk[conf->raid_disks].rdev) {
2991 			/* This slot has a replacement. */
2992 			if (!disk->rdev) {
2993 				/* No original, just make the replacement
2994 				 * a recovering spare
2995 				 */
2996 				disk->rdev =
2997 					disk[conf->raid_disks].rdev;
2998 				disk[conf->raid_disks].rdev = NULL;
2999 			} else if (!test_bit(In_sync, &disk->rdev->flags))
3000 				/* Original is not in_sync - bad */
3001 				goto abort;
3002 		}
3003 
3004 		if (!disk->rdev ||
3005 		    !test_bit(In_sync, &disk->rdev->flags)) {
3006 			disk->head_position = 0;
3007 			if (disk->rdev &&
3008 			    (disk->rdev->saved_raid_disk < 0))
3009 				conf->fullsync = 1;
3010 		}
3011 	}
3012 
3013 	err = -ENOMEM;
3014 	conf->thread = md_register_thread(raid1d, mddev, "raid1");
3015 	if (!conf->thread)
3016 		goto abort;
3017 
3018 	return conf;
3019 
3020  abort:
3021 	if (conf) {
3022 		mempool_destroy(conf->r1bio_pool);
3023 		kfree(conf->mirrors);
3024 		safe_put_page(conf->tmppage);
3025 		kfree(conf->poolinfo);
3026 		kfree(conf->nr_pending);
3027 		kfree(conf->nr_waiting);
3028 		kfree(conf->nr_queued);
3029 		kfree(conf->barrier);
3030 		if (conf->bio_split)
3031 			bioset_free(conf->bio_split);
3032 		kfree(conf);
3033 	}
3034 	return ERR_PTR(err);
3035 }
3036 
3037 static void raid1_free(struct mddev *mddev, void *priv);
3038 static int raid1_run(struct mddev *mddev)
3039 {
3040 	struct r1conf *conf;
3041 	int i;
3042 	struct md_rdev *rdev;
3043 	int ret;
3044 	bool discard_supported = false;
3045 
3046 	if (mddev->level != 1) {
3047 		pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n",
3048 			mdname(mddev), mddev->level);
3049 		return -EIO;
3050 	}
3051 	if (mddev->reshape_position != MaxSector) {
3052 		pr_warn("md/raid1:%s: reshape_position set but not supported\n",
3053 			mdname(mddev));
3054 		return -EIO;
3055 	}
3056 	if (mddev_init_writes_pending(mddev) < 0)
3057 		return -ENOMEM;
3058 	/*
3059 	 * copy the already verified devices into our private RAID1
3060 	 * bookkeeping area. [whatever we allocate in run(),
3061 	 * should be freed in raid1_free()]
3062 	 */
3063 	if (mddev->private == NULL)
3064 		conf = setup_conf(mddev);
3065 	else
3066 		conf = mddev->private;
3067 
3068 	if (IS_ERR(conf))
3069 		return PTR_ERR(conf);
3070 
3071 	if (mddev->queue) {
3072 		blk_queue_max_write_same_sectors(mddev->queue, 0);
3073 		blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
3074 	}
3075 
3076 	rdev_for_each(rdev, mddev) {
3077 		if (!mddev->gendisk)
3078 			continue;
3079 		disk_stack_limits(mddev->gendisk, rdev->bdev,
3080 				  rdev->data_offset << 9);
3081 		if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3082 			discard_supported = true;
3083 	}
3084 
3085 	mddev->degraded = 0;
3086 	for (i=0; i < conf->raid_disks; i++)
3087 		if (conf->mirrors[i].rdev == NULL ||
3088 		    !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
3089 		    test_bit(Faulty, &conf->mirrors[i].rdev->flags))
3090 			mddev->degraded++;
3091 
3092 	if (conf->raid_disks - mddev->degraded == 1)
3093 		mddev->recovery_cp = MaxSector;
3094 
3095 	if (mddev->recovery_cp != MaxSector)
3096 		pr_info("md/raid1:%s: not clean -- starting background reconstruction\n",
3097 			mdname(mddev));
3098 	pr_info("md/raid1:%s: active with %d out of %d mirrors\n",
3099 		mdname(mddev), mddev->raid_disks - mddev->degraded,
3100 		mddev->raid_disks);
3101 
3102 	/*
3103 	 * Ok, everything is just fine now
3104 	 */
3105 	mddev->thread = conf->thread;
3106 	conf->thread = NULL;
3107 	mddev->private = conf;
3108 	set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
3109 
3110 	md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
3111 
3112 	if (mddev->queue) {
3113 		if (discard_supported)
3114 			queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
3115 						mddev->queue);
3116 		else
3117 			queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
3118 						  mddev->queue);
3119 	}
3120 
3121 	ret =  md_integrity_register(mddev);
3122 	if (ret) {
3123 		md_unregister_thread(&mddev->thread);
3124 		raid1_free(mddev, conf);
3125 	}
3126 	return ret;
3127 }
3128 
3129 static void raid1_free(struct mddev *mddev, void *priv)
3130 {
3131 	struct r1conf *conf = priv;
3132 
3133 	mempool_destroy(conf->r1bio_pool);
3134 	kfree(conf->mirrors);
3135 	safe_put_page(conf->tmppage);
3136 	kfree(conf->poolinfo);
3137 	kfree(conf->nr_pending);
3138 	kfree(conf->nr_waiting);
3139 	kfree(conf->nr_queued);
3140 	kfree(conf->barrier);
3141 	if (conf->bio_split)
3142 		bioset_free(conf->bio_split);
3143 	kfree(conf);
3144 }
3145 
3146 static int raid1_resize(struct mddev *mddev, sector_t sectors)
3147 {
3148 	/* no resync is happening, and there is enough space
3149 	 * on all devices, so we can resize.
3150 	 * We need to make sure resync covers any new space.
3151 	 * If the array is shrinking we should possibly wait until
3152 	 * any io in the removed space completes, but it hardly seems
3153 	 * worth it.
3154 	 */
3155 	sector_t newsize = raid1_size(mddev, sectors, 0);
3156 	if (mddev->external_size &&
3157 	    mddev->array_sectors > newsize)
3158 		return -EINVAL;
3159 	if (mddev->bitmap) {
3160 		int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0);
3161 		if (ret)
3162 			return ret;
3163 	}
3164 	md_set_array_sectors(mddev, newsize);
3165 	if (sectors > mddev->dev_sectors &&
3166 	    mddev->recovery_cp > mddev->dev_sectors) {
3167 		mddev->recovery_cp = mddev->dev_sectors;
3168 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3169 	}
3170 	mddev->dev_sectors = sectors;
3171 	mddev->resync_max_sectors = sectors;
3172 	return 0;
3173 }
3174 
3175 static int raid1_reshape(struct mddev *mddev)
3176 {
3177 	/* We need to:
3178 	 * 1/ resize the r1bio_pool
3179 	 * 2/ resize conf->mirrors
3180 	 *
3181 	 * We allocate a new r1bio_pool if we can.
3182 	 * Then raise a device barrier and wait until all IO stops.
3183 	 * Then resize conf->mirrors and swap in the new r1bio pool.
3184 	 *
3185 	 * At the same time, we "pack" the devices so that all the missing
3186 	 * devices have the higher raid_disk numbers.
3187 	 */
3188 	mempool_t *newpool, *oldpool;
3189 	struct pool_info *newpoolinfo;
3190 	struct raid1_info *newmirrors;
3191 	struct r1conf *conf = mddev->private;
3192 	int cnt, raid_disks;
3193 	unsigned long flags;
3194 	int d, d2;
3195 
3196 	/* Cannot change chunk_size, layout, or level */
3197 	if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3198 	    mddev->layout != mddev->new_layout ||
3199 	    mddev->level != mddev->new_level) {
3200 		mddev->new_chunk_sectors = mddev->chunk_sectors;
3201 		mddev->new_layout = mddev->layout;
3202 		mddev->new_level = mddev->level;
3203 		return -EINVAL;
3204 	}
3205 
3206 	if (!mddev_is_clustered(mddev))
3207 		md_allow_write(mddev);
3208 
3209 	raid_disks = mddev->raid_disks + mddev->delta_disks;
3210 
3211 	if (raid_disks < conf->raid_disks) {
3212 		cnt=0;
3213 		for (d= 0; d < conf->raid_disks; d++)
3214 			if (conf->mirrors[d].rdev)
3215 				cnt++;
3216 		if (cnt > raid_disks)
3217 			return -EBUSY;
3218 	}
3219 
3220 	newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3221 	if (!newpoolinfo)
3222 		return -ENOMEM;
3223 	newpoolinfo->mddev = mddev;
3224 	newpoolinfo->raid_disks = raid_disks * 2;
3225 
3226 	newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
3227 				 r1bio_pool_free, newpoolinfo);
3228 	if (!newpool) {
3229 		kfree(newpoolinfo);
3230 		return -ENOMEM;
3231 	}
3232 	newmirrors = kzalloc(sizeof(struct raid1_info) * raid_disks * 2,
3233 			     GFP_KERNEL);
3234 	if (!newmirrors) {
3235 		kfree(newpoolinfo);
3236 		mempool_destroy(newpool);
3237 		return -ENOMEM;
3238 	}
3239 
3240 	freeze_array(conf, 0);
3241 
3242 	/* ok, everything is stopped */
3243 	oldpool = conf->r1bio_pool;
3244 	conf->r1bio_pool = newpool;
3245 
3246 	for (d = d2 = 0; d < conf->raid_disks; d++) {
3247 		struct md_rdev *rdev = conf->mirrors[d].rdev;
3248 		if (rdev && rdev->raid_disk != d2) {
3249 			sysfs_unlink_rdev(mddev, rdev);
3250 			rdev->raid_disk = d2;
3251 			sysfs_unlink_rdev(mddev, rdev);
3252 			if (sysfs_link_rdev(mddev, rdev))
3253 				pr_warn("md/raid1:%s: cannot register rd%d\n",
3254 					mdname(mddev), rdev->raid_disk);
3255 		}
3256 		if (rdev)
3257 			newmirrors[d2++].rdev = rdev;
3258 	}
3259 	kfree(conf->mirrors);
3260 	conf->mirrors = newmirrors;
3261 	kfree(conf->poolinfo);
3262 	conf->poolinfo = newpoolinfo;
3263 
3264 	spin_lock_irqsave(&conf->device_lock, flags);
3265 	mddev->degraded += (raid_disks - conf->raid_disks);
3266 	spin_unlock_irqrestore(&conf->device_lock, flags);
3267 	conf->raid_disks = mddev->raid_disks = raid_disks;
3268 	mddev->delta_disks = 0;
3269 
3270 	unfreeze_array(conf);
3271 
3272 	set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3273 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3274 	md_wakeup_thread(mddev->thread);
3275 
3276 	mempool_destroy(oldpool);
3277 	return 0;
3278 }
3279 
3280 static void raid1_quiesce(struct mddev *mddev, int state)
3281 {
3282 	struct r1conf *conf = mddev->private;
3283 
3284 	switch(state) {
3285 	case 2: /* wake for suspend */
3286 		wake_up(&conf->wait_barrier);
3287 		break;
3288 	case 1:
3289 		freeze_array(conf, 0);
3290 		break;
3291 	case 0:
3292 		unfreeze_array(conf);
3293 		break;
3294 	}
3295 }
3296 
3297 static void *raid1_takeover(struct mddev *mddev)
3298 {
3299 	/* raid1 can take over:
3300 	 *  raid5 with 2 devices, any layout or chunk size
3301 	 */
3302 	if (mddev->level == 5 && mddev->raid_disks == 2) {
3303 		struct r1conf *conf;
3304 		mddev->new_level = 1;
3305 		mddev->new_layout = 0;
3306 		mddev->new_chunk_sectors = 0;
3307 		conf = setup_conf(mddev);
3308 		if (!IS_ERR(conf)) {
3309 			/* Array must appear to be quiesced */
3310 			conf->array_frozen = 1;
3311 			mddev_clear_unsupported_flags(mddev,
3312 				UNSUPPORTED_MDDEV_FLAGS);
3313 		}
3314 		return conf;
3315 	}
3316 	return ERR_PTR(-EINVAL);
3317 }
3318 
3319 static struct md_personality raid1_personality =
3320 {
3321 	.name		= "raid1",
3322 	.level		= 1,
3323 	.owner		= THIS_MODULE,
3324 	.make_request	= raid1_make_request,
3325 	.run		= raid1_run,
3326 	.free		= raid1_free,
3327 	.status		= raid1_status,
3328 	.error_handler	= raid1_error,
3329 	.hot_add_disk	= raid1_add_disk,
3330 	.hot_remove_disk= raid1_remove_disk,
3331 	.spare_active	= raid1_spare_active,
3332 	.sync_request	= raid1_sync_request,
3333 	.resize		= raid1_resize,
3334 	.size		= raid1_size,
3335 	.check_reshape	= raid1_reshape,
3336 	.quiesce	= raid1_quiesce,
3337 	.takeover	= raid1_takeover,
3338 	.congested	= raid1_congested,
3339 };
3340 
3341 static int __init raid_init(void)
3342 {
3343 	return register_md_personality(&raid1_personality);
3344 }
3345 
3346 static void raid_exit(void)
3347 {
3348 	unregister_md_personality(&raid1_personality);
3349 }
3350 
3351 module_init(raid_init);
3352 module_exit(raid_exit);
3353 MODULE_LICENSE("GPL");
3354 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3355 MODULE_ALIAS("md-personality-3"); /* RAID1 */
3356 MODULE_ALIAS("md-raid1");
3357 MODULE_ALIAS("md-level-1");
3358 
3359 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
3360