xref: /openbmc/linux/drivers/md/raid1.c (revision d2a266fa)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * raid1.c : Multiple Devices driver for Linux
4  *
5  * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
6  *
7  * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
8  *
9  * RAID-1 management functions.
10  *
11  * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
12  *
13  * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
14  * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
15  *
16  * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
17  * bitmapped intelligence in resync:
18  *
19  *      - bitmap marked during normal i/o
20  *      - bitmap used to skip nondirty blocks during sync
21  *
22  * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
23  * - persistent bitmap code
24  */
25 
26 #include <linux/slab.h>
27 #include <linux/delay.h>
28 #include <linux/blkdev.h>
29 #include <linux/module.h>
30 #include <linux/seq_file.h>
31 #include <linux/ratelimit.h>
32 #include <linux/interval_tree_generic.h>
33 
34 #include <trace/events/block.h>
35 
36 #include "md.h"
37 #include "raid1.h"
38 #include "md-bitmap.h"
39 
40 #define UNSUPPORTED_MDDEV_FLAGS		\
41 	((1L << MD_HAS_JOURNAL) |	\
42 	 (1L << MD_JOURNAL_CLEAN) |	\
43 	 (1L << MD_HAS_PPL) |		\
44 	 (1L << MD_HAS_MULTIPLE_PPLS))
45 
46 static void allow_barrier(struct r1conf *conf, sector_t sector_nr);
47 static void lower_barrier(struct r1conf *conf, sector_t sector_nr);
48 
49 #define raid1_log(md, fmt, args...)				\
50 	do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid1 " fmt, ##args); } while (0)
51 
52 #include "raid1-10.c"
53 
54 #define START(node) ((node)->start)
55 #define LAST(node) ((node)->last)
56 INTERVAL_TREE_DEFINE(struct serial_info, node, sector_t, _subtree_last,
57 		     START, LAST, static inline, raid1_rb);
58 
59 static int check_and_add_serial(struct md_rdev *rdev, struct r1bio *r1_bio,
60 				struct serial_info *si, int idx)
61 {
62 	unsigned long flags;
63 	int ret = 0;
64 	sector_t lo = r1_bio->sector;
65 	sector_t hi = lo + r1_bio->sectors;
66 	struct serial_in_rdev *serial = &rdev->serial[idx];
67 
68 	spin_lock_irqsave(&serial->serial_lock, flags);
69 	/* collision happened */
70 	if (raid1_rb_iter_first(&serial->serial_rb, lo, hi))
71 		ret = -EBUSY;
72 	else {
73 		si->start = lo;
74 		si->last = hi;
75 		raid1_rb_insert(si, &serial->serial_rb);
76 	}
77 	spin_unlock_irqrestore(&serial->serial_lock, flags);
78 
79 	return ret;
80 }
81 
82 static void wait_for_serialization(struct md_rdev *rdev, struct r1bio *r1_bio)
83 {
84 	struct mddev *mddev = rdev->mddev;
85 	struct serial_info *si;
86 	int idx = sector_to_idx(r1_bio->sector);
87 	struct serial_in_rdev *serial = &rdev->serial[idx];
88 
89 	if (WARN_ON(!mddev->serial_info_pool))
90 		return;
91 	si = mempool_alloc(mddev->serial_info_pool, GFP_NOIO);
92 	wait_event(serial->serial_io_wait,
93 		   check_and_add_serial(rdev, r1_bio, si, idx) == 0);
94 }
95 
96 static void remove_serial(struct md_rdev *rdev, sector_t lo, sector_t hi)
97 {
98 	struct serial_info *si;
99 	unsigned long flags;
100 	int found = 0;
101 	struct mddev *mddev = rdev->mddev;
102 	int idx = sector_to_idx(lo);
103 	struct serial_in_rdev *serial = &rdev->serial[idx];
104 
105 	spin_lock_irqsave(&serial->serial_lock, flags);
106 	for (si = raid1_rb_iter_first(&serial->serial_rb, lo, hi);
107 	     si; si = raid1_rb_iter_next(si, lo, hi)) {
108 		if (si->start == lo && si->last == hi) {
109 			raid1_rb_remove(si, &serial->serial_rb);
110 			mempool_free(si, mddev->serial_info_pool);
111 			found = 1;
112 			break;
113 		}
114 	}
115 	if (!found)
116 		WARN(1, "The write IO is not recorded for serialization\n");
117 	spin_unlock_irqrestore(&serial->serial_lock, flags);
118 	wake_up(&serial->serial_io_wait);
119 }
120 
121 /*
122  * for resync bio, r1bio pointer can be retrieved from the per-bio
123  * 'struct resync_pages'.
124  */
125 static inline struct r1bio *get_resync_r1bio(struct bio *bio)
126 {
127 	return get_resync_pages(bio)->raid_bio;
128 }
129 
130 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
131 {
132 	struct pool_info *pi = data;
133 	int size = offsetof(struct r1bio, bios[pi->raid_disks]);
134 
135 	/* allocate a r1bio with room for raid_disks entries in the bios array */
136 	return kzalloc(size, gfp_flags);
137 }
138 
139 #define RESYNC_DEPTH 32
140 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
141 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
142 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
143 #define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
144 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
145 
146 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
147 {
148 	struct pool_info *pi = data;
149 	struct r1bio *r1_bio;
150 	struct bio *bio;
151 	int need_pages;
152 	int j;
153 	struct resync_pages *rps;
154 
155 	r1_bio = r1bio_pool_alloc(gfp_flags, pi);
156 	if (!r1_bio)
157 		return NULL;
158 
159 	rps = kmalloc_array(pi->raid_disks, sizeof(struct resync_pages),
160 			    gfp_flags);
161 	if (!rps)
162 		goto out_free_r1bio;
163 
164 	/*
165 	 * Allocate bios : 1 for reading, n-1 for writing
166 	 */
167 	for (j = pi->raid_disks ; j-- ; ) {
168 		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
169 		if (!bio)
170 			goto out_free_bio;
171 		r1_bio->bios[j] = bio;
172 	}
173 	/*
174 	 * Allocate RESYNC_PAGES data pages and attach them to
175 	 * the first bio.
176 	 * If this is a user-requested check/repair, allocate
177 	 * RESYNC_PAGES for each bio.
178 	 */
179 	if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
180 		need_pages = pi->raid_disks;
181 	else
182 		need_pages = 1;
183 	for (j = 0; j < pi->raid_disks; j++) {
184 		struct resync_pages *rp = &rps[j];
185 
186 		bio = r1_bio->bios[j];
187 
188 		if (j < need_pages) {
189 			if (resync_alloc_pages(rp, gfp_flags))
190 				goto out_free_pages;
191 		} else {
192 			memcpy(rp, &rps[0], sizeof(*rp));
193 			resync_get_all_pages(rp);
194 		}
195 
196 		rp->raid_bio = r1_bio;
197 		bio->bi_private = rp;
198 	}
199 
200 	r1_bio->master_bio = NULL;
201 
202 	return r1_bio;
203 
204 out_free_pages:
205 	while (--j >= 0)
206 		resync_free_pages(&rps[j]);
207 
208 out_free_bio:
209 	while (++j < pi->raid_disks)
210 		bio_put(r1_bio->bios[j]);
211 	kfree(rps);
212 
213 out_free_r1bio:
214 	rbio_pool_free(r1_bio, data);
215 	return NULL;
216 }
217 
218 static void r1buf_pool_free(void *__r1_bio, void *data)
219 {
220 	struct pool_info *pi = data;
221 	int i;
222 	struct r1bio *r1bio = __r1_bio;
223 	struct resync_pages *rp = NULL;
224 
225 	for (i = pi->raid_disks; i--; ) {
226 		rp = get_resync_pages(r1bio->bios[i]);
227 		resync_free_pages(rp);
228 		bio_put(r1bio->bios[i]);
229 	}
230 
231 	/* resync pages array stored in the 1st bio's .bi_private */
232 	kfree(rp);
233 
234 	rbio_pool_free(r1bio, data);
235 }
236 
237 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
238 {
239 	int i;
240 
241 	for (i = 0; i < conf->raid_disks * 2; i++) {
242 		struct bio **bio = r1_bio->bios + i;
243 		if (!BIO_SPECIAL(*bio))
244 			bio_put(*bio);
245 		*bio = NULL;
246 	}
247 }
248 
249 static void free_r1bio(struct r1bio *r1_bio)
250 {
251 	struct r1conf *conf = r1_bio->mddev->private;
252 
253 	put_all_bios(conf, r1_bio);
254 	mempool_free(r1_bio, &conf->r1bio_pool);
255 }
256 
257 static void put_buf(struct r1bio *r1_bio)
258 {
259 	struct r1conf *conf = r1_bio->mddev->private;
260 	sector_t sect = r1_bio->sector;
261 	int i;
262 
263 	for (i = 0; i < conf->raid_disks * 2; i++) {
264 		struct bio *bio = r1_bio->bios[i];
265 		if (bio->bi_end_io)
266 			rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
267 	}
268 
269 	mempool_free(r1_bio, &conf->r1buf_pool);
270 
271 	lower_barrier(conf, sect);
272 }
273 
274 static void reschedule_retry(struct r1bio *r1_bio)
275 {
276 	unsigned long flags;
277 	struct mddev *mddev = r1_bio->mddev;
278 	struct r1conf *conf = mddev->private;
279 	int idx;
280 
281 	idx = sector_to_idx(r1_bio->sector);
282 	spin_lock_irqsave(&conf->device_lock, flags);
283 	list_add(&r1_bio->retry_list, &conf->retry_list);
284 	atomic_inc(&conf->nr_queued[idx]);
285 	spin_unlock_irqrestore(&conf->device_lock, flags);
286 
287 	wake_up(&conf->wait_barrier);
288 	md_wakeup_thread(mddev->thread);
289 }
290 
291 /*
292  * raid_end_bio_io() is called when we have finished servicing a mirrored
293  * operation and are ready to return a success/failure code to the buffer
294  * cache layer.
295  */
296 static void call_bio_endio(struct r1bio *r1_bio)
297 {
298 	struct bio *bio = r1_bio->master_bio;
299 
300 	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
301 		bio->bi_status = BLK_STS_IOERR;
302 
303 	if (blk_queue_io_stat(bio->bi_bdev->bd_disk->queue))
304 		bio_end_io_acct(bio, r1_bio->start_time);
305 	bio_endio(bio);
306 }
307 
308 static void raid_end_bio_io(struct r1bio *r1_bio)
309 {
310 	struct bio *bio = r1_bio->master_bio;
311 	struct r1conf *conf = r1_bio->mddev->private;
312 
313 	/* if nobody has done the final endio yet, do it now */
314 	if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
315 		pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
316 			 (bio_data_dir(bio) == WRITE) ? "write" : "read",
317 			 (unsigned long long) bio->bi_iter.bi_sector,
318 			 (unsigned long long) bio_end_sector(bio) - 1);
319 
320 		call_bio_endio(r1_bio);
321 	}
322 	/*
323 	 * Wake up any possible resync thread that waits for the device
324 	 * to go idle.  All I/Os, even write-behind writes, are done.
325 	 */
326 	allow_barrier(conf, r1_bio->sector);
327 
328 	free_r1bio(r1_bio);
329 }
330 
331 /*
332  * Update disk head position estimator based on IRQ completion info.
333  */
334 static inline void update_head_pos(int disk, struct r1bio *r1_bio)
335 {
336 	struct r1conf *conf = r1_bio->mddev->private;
337 
338 	conf->mirrors[disk].head_position =
339 		r1_bio->sector + (r1_bio->sectors);
340 }
341 
342 /*
343  * Find the disk number which triggered given bio
344  */
345 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
346 {
347 	int mirror;
348 	struct r1conf *conf = r1_bio->mddev->private;
349 	int raid_disks = conf->raid_disks;
350 
351 	for (mirror = 0; mirror < raid_disks * 2; mirror++)
352 		if (r1_bio->bios[mirror] == bio)
353 			break;
354 
355 	BUG_ON(mirror == raid_disks * 2);
356 	update_head_pos(mirror, r1_bio);
357 
358 	return mirror;
359 }
360 
361 static void raid1_end_read_request(struct bio *bio)
362 {
363 	int uptodate = !bio->bi_status;
364 	struct r1bio *r1_bio = bio->bi_private;
365 	struct r1conf *conf = r1_bio->mddev->private;
366 	struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev;
367 
368 	/*
369 	 * this branch is our 'one mirror IO has finished' event handler:
370 	 */
371 	update_head_pos(r1_bio->read_disk, r1_bio);
372 
373 	if (uptodate)
374 		set_bit(R1BIO_Uptodate, &r1_bio->state);
375 	else if (test_bit(FailFast, &rdev->flags) &&
376 		 test_bit(R1BIO_FailFast, &r1_bio->state))
377 		/* This was a fail-fast read so we definitely
378 		 * want to retry */
379 		;
380 	else {
381 		/* If all other devices have failed, we want to return
382 		 * the error upwards rather than fail the last device.
383 		 * Here we redefine "uptodate" to mean "Don't want to retry"
384 		 */
385 		unsigned long flags;
386 		spin_lock_irqsave(&conf->device_lock, flags);
387 		if (r1_bio->mddev->degraded == conf->raid_disks ||
388 		    (r1_bio->mddev->degraded == conf->raid_disks-1 &&
389 		     test_bit(In_sync, &rdev->flags)))
390 			uptodate = 1;
391 		spin_unlock_irqrestore(&conf->device_lock, flags);
392 	}
393 
394 	if (uptodate) {
395 		raid_end_bio_io(r1_bio);
396 		rdev_dec_pending(rdev, conf->mddev);
397 	} else {
398 		/*
399 		 * oops, read error:
400 		 */
401 		char b[BDEVNAME_SIZE];
402 		pr_err_ratelimited("md/raid1:%s: %s: rescheduling sector %llu\n",
403 				   mdname(conf->mddev),
404 				   bdevname(rdev->bdev, b),
405 				   (unsigned long long)r1_bio->sector);
406 		set_bit(R1BIO_ReadError, &r1_bio->state);
407 		reschedule_retry(r1_bio);
408 		/* don't drop the reference on read_disk yet */
409 	}
410 }
411 
412 static void close_write(struct r1bio *r1_bio)
413 {
414 	/* it really is the end of this request */
415 	if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
416 		bio_free_pages(r1_bio->behind_master_bio);
417 		bio_put(r1_bio->behind_master_bio);
418 		r1_bio->behind_master_bio = NULL;
419 	}
420 	/* clear the bitmap if all writes complete successfully */
421 	md_bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
422 			   r1_bio->sectors,
423 			   !test_bit(R1BIO_Degraded, &r1_bio->state),
424 			   test_bit(R1BIO_BehindIO, &r1_bio->state));
425 	md_write_end(r1_bio->mddev);
426 }
427 
428 static void r1_bio_write_done(struct r1bio *r1_bio)
429 {
430 	if (!atomic_dec_and_test(&r1_bio->remaining))
431 		return;
432 
433 	if (test_bit(R1BIO_WriteError, &r1_bio->state))
434 		reschedule_retry(r1_bio);
435 	else {
436 		close_write(r1_bio);
437 		if (test_bit(R1BIO_MadeGood, &r1_bio->state))
438 			reschedule_retry(r1_bio);
439 		else
440 			raid_end_bio_io(r1_bio);
441 	}
442 }
443 
444 static void raid1_end_write_request(struct bio *bio)
445 {
446 	struct r1bio *r1_bio = bio->bi_private;
447 	int behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
448 	struct r1conf *conf = r1_bio->mddev->private;
449 	struct bio *to_put = NULL;
450 	int mirror = find_bio_disk(r1_bio, bio);
451 	struct md_rdev *rdev = conf->mirrors[mirror].rdev;
452 	bool discard_error;
453 	sector_t lo = r1_bio->sector;
454 	sector_t hi = r1_bio->sector + r1_bio->sectors;
455 
456 	discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
457 
458 	/*
459 	 * 'one mirror IO has finished' event handler:
460 	 */
461 	if (bio->bi_status && !discard_error) {
462 		set_bit(WriteErrorSeen,	&rdev->flags);
463 		if (!test_and_set_bit(WantReplacement, &rdev->flags))
464 			set_bit(MD_RECOVERY_NEEDED, &
465 				conf->mddev->recovery);
466 
467 		if (test_bit(FailFast, &rdev->flags) &&
468 		    (bio->bi_opf & MD_FAILFAST) &&
469 		    /* We never try FailFast to WriteMostly devices */
470 		    !test_bit(WriteMostly, &rdev->flags)) {
471 			md_error(r1_bio->mddev, rdev);
472 		}
473 
474 		/*
475 		 * When the device is faulty, it is not necessary to
476 		 * handle write error.
477 		 * For failfast, this is the only remaining device,
478 		 * We need to retry the write without FailFast.
479 		 */
480 		if (!test_bit(Faulty, &rdev->flags))
481 			set_bit(R1BIO_WriteError, &r1_bio->state);
482 		else {
483 			/* Fail the request */
484 			set_bit(R1BIO_Degraded, &r1_bio->state);
485 			/* Finished with this branch */
486 			r1_bio->bios[mirror] = NULL;
487 			to_put = bio;
488 		}
489 	} else {
490 		/*
491 		 * Set R1BIO_Uptodate in our master bio, so that we
492 		 * will return a good error code for to the higher
493 		 * levels even if IO on some other mirrored buffer
494 		 * fails.
495 		 *
496 		 * The 'master' represents the composite IO operation
497 		 * to user-side. So if something waits for IO, then it
498 		 * will wait for the 'master' bio.
499 		 */
500 		sector_t first_bad;
501 		int bad_sectors;
502 
503 		r1_bio->bios[mirror] = NULL;
504 		to_put = bio;
505 		/*
506 		 * Do not set R1BIO_Uptodate if the current device is
507 		 * rebuilding or Faulty. This is because we cannot use
508 		 * such device for properly reading the data back (we could
509 		 * potentially use it, if the current write would have felt
510 		 * before rdev->recovery_offset, but for simplicity we don't
511 		 * check this here.
512 		 */
513 		if (test_bit(In_sync, &rdev->flags) &&
514 		    !test_bit(Faulty, &rdev->flags))
515 			set_bit(R1BIO_Uptodate, &r1_bio->state);
516 
517 		/* Maybe we can clear some bad blocks. */
518 		if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
519 				&first_bad, &bad_sectors) && !discard_error) {
520 			r1_bio->bios[mirror] = IO_MADE_GOOD;
521 			set_bit(R1BIO_MadeGood, &r1_bio->state);
522 		}
523 	}
524 
525 	if (behind) {
526 		if (test_bit(CollisionCheck, &rdev->flags))
527 			remove_serial(rdev, lo, hi);
528 		if (test_bit(WriteMostly, &rdev->flags))
529 			atomic_dec(&r1_bio->behind_remaining);
530 
531 		/*
532 		 * In behind mode, we ACK the master bio once the I/O
533 		 * has safely reached all non-writemostly
534 		 * disks. Setting the Returned bit ensures that this
535 		 * gets done only once -- we don't ever want to return
536 		 * -EIO here, instead we'll wait
537 		 */
538 		if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
539 		    test_bit(R1BIO_Uptodate, &r1_bio->state)) {
540 			/* Maybe we can return now */
541 			if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
542 				struct bio *mbio = r1_bio->master_bio;
543 				pr_debug("raid1: behind end write sectors"
544 					 " %llu-%llu\n",
545 					 (unsigned long long) mbio->bi_iter.bi_sector,
546 					 (unsigned long long) bio_end_sector(mbio) - 1);
547 				call_bio_endio(r1_bio);
548 			}
549 		}
550 	} else if (rdev->mddev->serialize_policy)
551 		remove_serial(rdev, lo, hi);
552 	if (r1_bio->bios[mirror] == NULL)
553 		rdev_dec_pending(rdev, conf->mddev);
554 
555 	/*
556 	 * Let's see if all mirrored write operations have finished
557 	 * already.
558 	 */
559 	r1_bio_write_done(r1_bio);
560 
561 	if (to_put)
562 		bio_put(to_put);
563 }
564 
565 static sector_t align_to_barrier_unit_end(sector_t start_sector,
566 					  sector_t sectors)
567 {
568 	sector_t len;
569 
570 	WARN_ON(sectors == 0);
571 	/*
572 	 * len is the number of sectors from start_sector to end of the
573 	 * barrier unit which start_sector belongs to.
574 	 */
575 	len = round_up(start_sector + 1, BARRIER_UNIT_SECTOR_SIZE) -
576 	      start_sector;
577 
578 	if (len > sectors)
579 		len = sectors;
580 
581 	return len;
582 }
583 
584 /*
585  * This routine returns the disk from which the requested read should
586  * be done. There is a per-array 'next expected sequential IO' sector
587  * number - if this matches on the next IO then we use the last disk.
588  * There is also a per-disk 'last know head position' sector that is
589  * maintained from IRQ contexts, both the normal and the resync IO
590  * completion handlers update this position correctly. If there is no
591  * perfect sequential match then we pick the disk whose head is closest.
592  *
593  * If there are 2 mirrors in the same 2 devices, performance degrades
594  * because position is mirror, not device based.
595  *
596  * The rdev for the device selected will have nr_pending incremented.
597  */
598 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
599 {
600 	const sector_t this_sector = r1_bio->sector;
601 	int sectors;
602 	int best_good_sectors;
603 	int best_disk, best_dist_disk, best_pending_disk;
604 	int has_nonrot_disk;
605 	int disk;
606 	sector_t best_dist;
607 	unsigned int min_pending;
608 	struct md_rdev *rdev;
609 	int choose_first;
610 	int choose_next_idle;
611 
612 	rcu_read_lock();
613 	/*
614 	 * Check if we can balance. We can balance on the whole
615 	 * device if no resync is going on, or below the resync window.
616 	 * We take the first readable disk when above the resync window.
617 	 */
618  retry:
619 	sectors = r1_bio->sectors;
620 	best_disk = -1;
621 	best_dist_disk = -1;
622 	best_dist = MaxSector;
623 	best_pending_disk = -1;
624 	min_pending = UINT_MAX;
625 	best_good_sectors = 0;
626 	has_nonrot_disk = 0;
627 	choose_next_idle = 0;
628 	clear_bit(R1BIO_FailFast, &r1_bio->state);
629 
630 	if ((conf->mddev->recovery_cp < this_sector + sectors) ||
631 	    (mddev_is_clustered(conf->mddev) &&
632 	    md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
633 		    this_sector + sectors)))
634 		choose_first = 1;
635 	else
636 		choose_first = 0;
637 
638 	for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
639 		sector_t dist;
640 		sector_t first_bad;
641 		int bad_sectors;
642 		unsigned int pending;
643 		bool nonrot;
644 
645 		rdev = rcu_dereference(conf->mirrors[disk].rdev);
646 		if (r1_bio->bios[disk] == IO_BLOCKED
647 		    || rdev == NULL
648 		    || test_bit(Faulty, &rdev->flags))
649 			continue;
650 		if (!test_bit(In_sync, &rdev->flags) &&
651 		    rdev->recovery_offset < this_sector + sectors)
652 			continue;
653 		if (test_bit(WriteMostly, &rdev->flags)) {
654 			/* Don't balance among write-mostly, just
655 			 * use the first as a last resort */
656 			if (best_dist_disk < 0) {
657 				if (is_badblock(rdev, this_sector, sectors,
658 						&first_bad, &bad_sectors)) {
659 					if (first_bad <= this_sector)
660 						/* Cannot use this */
661 						continue;
662 					best_good_sectors = first_bad - this_sector;
663 				} else
664 					best_good_sectors = sectors;
665 				best_dist_disk = disk;
666 				best_pending_disk = disk;
667 			}
668 			continue;
669 		}
670 		/* This is a reasonable device to use.  It might
671 		 * even be best.
672 		 */
673 		if (is_badblock(rdev, this_sector, sectors,
674 				&first_bad, &bad_sectors)) {
675 			if (best_dist < MaxSector)
676 				/* already have a better device */
677 				continue;
678 			if (first_bad <= this_sector) {
679 				/* cannot read here. If this is the 'primary'
680 				 * device, then we must not read beyond
681 				 * bad_sectors from another device..
682 				 */
683 				bad_sectors -= (this_sector - first_bad);
684 				if (choose_first && sectors > bad_sectors)
685 					sectors = bad_sectors;
686 				if (best_good_sectors > sectors)
687 					best_good_sectors = sectors;
688 
689 			} else {
690 				sector_t good_sectors = first_bad - this_sector;
691 				if (good_sectors > best_good_sectors) {
692 					best_good_sectors = good_sectors;
693 					best_disk = disk;
694 				}
695 				if (choose_first)
696 					break;
697 			}
698 			continue;
699 		} else {
700 			if ((sectors > best_good_sectors) && (best_disk >= 0))
701 				best_disk = -1;
702 			best_good_sectors = sectors;
703 		}
704 
705 		if (best_disk >= 0)
706 			/* At least two disks to choose from so failfast is OK */
707 			set_bit(R1BIO_FailFast, &r1_bio->state);
708 
709 		nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
710 		has_nonrot_disk |= nonrot;
711 		pending = atomic_read(&rdev->nr_pending);
712 		dist = abs(this_sector - conf->mirrors[disk].head_position);
713 		if (choose_first) {
714 			best_disk = disk;
715 			break;
716 		}
717 		/* Don't change to another disk for sequential reads */
718 		if (conf->mirrors[disk].next_seq_sect == this_sector
719 		    || dist == 0) {
720 			int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
721 			struct raid1_info *mirror = &conf->mirrors[disk];
722 
723 			best_disk = disk;
724 			/*
725 			 * If buffered sequential IO size exceeds optimal
726 			 * iosize, check if there is idle disk. If yes, choose
727 			 * the idle disk. read_balance could already choose an
728 			 * idle disk before noticing it's a sequential IO in
729 			 * this disk. This doesn't matter because this disk
730 			 * will idle, next time it will be utilized after the
731 			 * first disk has IO size exceeds optimal iosize. In
732 			 * this way, iosize of the first disk will be optimal
733 			 * iosize at least. iosize of the second disk might be
734 			 * small, but not a big deal since when the second disk
735 			 * starts IO, the first disk is likely still busy.
736 			 */
737 			if (nonrot && opt_iosize > 0 &&
738 			    mirror->seq_start != MaxSector &&
739 			    mirror->next_seq_sect > opt_iosize &&
740 			    mirror->next_seq_sect - opt_iosize >=
741 			    mirror->seq_start) {
742 				choose_next_idle = 1;
743 				continue;
744 			}
745 			break;
746 		}
747 
748 		if (choose_next_idle)
749 			continue;
750 
751 		if (min_pending > pending) {
752 			min_pending = pending;
753 			best_pending_disk = disk;
754 		}
755 
756 		if (dist < best_dist) {
757 			best_dist = dist;
758 			best_dist_disk = disk;
759 		}
760 	}
761 
762 	/*
763 	 * If all disks are rotational, choose the closest disk. If any disk is
764 	 * non-rotational, choose the disk with less pending request even the
765 	 * disk is rotational, which might/might not be optimal for raids with
766 	 * mixed ratation/non-rotational disks depending on workload.
767 	 */
768 	if (best_disk == -1) {
769 		if (has_nonrot_disk || min_pending == 0)
770 			best_disk = best_pending_disk;
771 		else
772 			best_disk = best_dist_disk;
773 	}
774 
775 	if (best_disk >= 0) {
776 		rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
777 		if (!rdev)
778 			goto retry;
779 		atomic_inc(&rdev->nr_pending);
780 		sectors = best_good_sectors;
781 
782 		if (conf->mirrors[best_disk].next_seq_sect != this_sector)
783 			conf->mirrors[best_disk].seq_start = this_sector;
784 
785 		conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
786 	}
787 	rcu_read_unlock();
788 	*max_sectors = sectors;
789 
790 	return best_disk;
791 }
792 
793 static void flush_bio_list(struct r1conf *conf, struct bio *bio)
794 {
795 	/* flush any pending bitmap writes to disk before proceeding w/ I/O */
796 	md_bitmap_unplug(conf->mddev->bitmap);
797 	wake_up(&conf->wait_barrier);
798 
799 	while (bio) { /* submit pending writes */
800 		struct bio *next = bio->bi_next;
801 		struct md_rdev *rdev = (void *)bio->bi_bdev;
802 		bio->bi_next = NULL;
803 		bio_set_dev(bio, rdev->bdev);
804 		if (test_bit(Faulty, &rdev->flags)) {
805 			bio_io_error(bio);
806 		} else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
807 				    !blk_queue_discard(bio->bi_bdev->bd_disk->queue)))
808 			/* Just ignore it */
809 			bio_endio(bio);
810 		else
811 			submit_bio_noacct(bio);
812 		bio = next;
813 		cond_resched();
814 	}
815 }
816 
817 static void flush_pending_writes(struct r1conf *conf)
818 {
819 	/* Any writes that have been queued but are awaiting
820 	 * bitmap updates get flushed here.
821 	 */
822 	spin_lock_irq(&conf->device_lock);
823 
824 	if (conf->pending_bio_list.head) {
825 		struct blk_plug plug;
826 		struct bio *bio;
827 
828 		bio = bio_list_get(&conf->pending_bio_list);
829 		conf->pending_count = 0;
830 		spin_unlock_irq(&conf->device_lock);
831 
832 		/*
833 		 * As this is called in a wait_event() loop (see freeze_array),
834 		 * current->state might be TASK_UNINTERRUPTIBLE which will
835 		 * cause a warning when we prepare to wait again.  As it is
836 		 * rare that this path is taken, it is perfectly safe to force
837 		 * us to go around the wait_event() loop again, so the warning
838 		 * is a false-positive.  Silence the warning by resetting
839 		 * thread state
840 		 */
841 		__set_current_state(TASK_RUNNING);
842 		blk_start_plug(&plug);
843 		flush_bio_list(conf, bio);
844 		blk_finish_plug(&plug);
845 	} else
846 		spin_unlock_irq(&conf->device_lock);
847 }
848 
849 /* Barriers....
850  * Sometimes we need to suspend IO while we do something else,
851  * either some resync/recovery, or reconfigure the array.
852  * To do this we raise a 'barrier'.
853  * The 'barrier' is a counter that can be raised multiple times
854  * to count how many activities are happening which preclude
855  * normal IO.
856  * We can only raise the barrier if there is no pending IO.
857  * i.e. if nr_pending == 0.
858  * We choose only to raise the barrier if no-one is waiting for the
859  * barrier to go down.  This means that as soon as an IO request
860  * is ready, no other operations which require a barrier will start
861  * until the IO request has had a chance.
862  *
863  * So: regular IO calls 'wait_barrier'.  When that returns there
864  *    is no backgroup IO happening,  It must arrange to call
865  *    allow_barrier when it has finished its IO.
866  * backgroup IO calls must call raise_barrier.  Once that returns
867  *    there is no normal IO happeing.  It must arrange to call
868  *    lower_barrier when the particular background IO completes.
869  *
870  * If resync/recovery is interrupted, returns -EINTR;
871  * Otherwise, returns 0.
872  */
873 static int raise_barrier(struct r1conf *conf, sector_t sector_nr)
874 {
875 	int idx = sector_to_idx(sector_nr);
876 
877 	spin_lock_irq(&conf->resync_lock);
878 
879 	/* Wait until no block IO is waiting */
880 	wait_event_lock_irq(conf->wait_barrier,
881 			    !atomic_read(&conf->nr_waiting[idx]),
882 			    conf->resync_lock);
883 
884 	/* block any new IO from starting */
885 	atomic_inc(&conf->barrier[idx]);
886 	/*
887 	 * In raise_barrier() we firstly increase conf->barrier[idx] then
888 	 * check conf->nr_pending[idx]. In _wait_barrier() we firstly
889 	 * increase conf->nr_pending[idx] then check conf->barrier[idx].
890 	 * A memory barrier here to make sure conf->nr_pending[idx] won't
891 	 * be fetched before conf->barrier[idx] is increased. Otherwise
892 	 * there will be a race between raise_barrier() and _wait_barrier().
893 	 */
894 	smp_mb__after_atomic();
895 
896 	/* For these conditions we must wait:
897 	 * A: while the array is in frozen state
898 	 * B: while conf->nr_pending[idx] is not 0, meaning regular I/O
899 	 *    existing in corresponding I/O barrier bucket.
900 	 * C: while conf->barrier[idx] >= RESYNC_DEPTH, meaning reaches
901 	 *    max resync count which allowed on current I/O barrier bucket.
902 	 */
903 	wait_event_lock_irq(conf->wait_barrier,
904 			    (!conf->array_frozen &&
905 			     !atomic_read(&conf->nr_pending[idx]) &&
906 			     atomic_read(&conf->barrier[idx]) < RESYNC_DEPTH) ||
907 				test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery),
908 			    conf->resync_lock);
909 
910 	if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
911 		atomic_dec(&conf->barrier[idx]);
912 		spin_unlock_irq(&conf->resync_lock);
913 		wake_up(&conf->wait_barrier);
914 		return -EINTR;
915 	}
916 
917 	atomic_inc(&conf->nr_sync_pending);
918 	spin_unlock_irq(&conf->resync_lock);
919 
920 	return 0;
921 }
922 
923 static void lower_barrier(struct r1conf *conf, sector_t sector_nr)
924 {
925 	int idx = sector_to_idx(sector_nr);
926 
927 	BUG_ON(atomic_read(&conf->barrier[idx]) <= 0);
928 
929 	atomic_dec(&conf->barrier[idx]);
930 	atomic_dec(&conf->nr_sync_pending);
931 	wake_up(&conf->wait_barrier);
932 }
933 
934 static void _wait_barrier(struct r1conf *conf, int idx)
935 {
936 	/*
937 	 * We need to increase conf->nr_pending[idx] very early here,
938 	 * then raise_barrier() can be blocked when it waits for
939 	 * conf->nr_pending[idx] to be 0. Then we can avoid holding
940 	 * conf->resync_lock when there is no barrier raised in same
941 	 * barrier unit bucket. Also if the array is frozen, I/O
942 	 * should be blocked until array is unfrozen.
943 	 */
944 	atomic_inc(&conf->nr_pending[idx]);
945 	/*
946 	 * In _wait_barrier() we firstly increase conf->nr_pending[idx], then
947 	 * check conf->barrier[idx]. In raise_barrier() we firstly increase
948 	 * conf->barrier[idx], then check conf->nr_pending[idx]. A memory
949 	 * barrier is necessary here to make sure conf->barrier[idx] won't be
950 	 * fetched before conf->nr_pending[idx] is increased. Otherwise there
951 	 * will be a race between _wait_barrier() and raise_barrier().
952 	 */
953 	smp_mb__after_atomic();
954 
955 	/*
956 	 * Don't worry about checking two atomic_t variables at same time
957 	 * here. If during we check conf->barrier[idx], the array is
958 	 * frozen (conf->array_frozen is 1), and chonf->barrier[idx] is
959 	 * 0, it is safe to return and make the I/O continue. Because the
960 	 * array is frozen, all I/O returned here will eventually complete
961 	 * or be queued, no race will happen. See code comment in
962 	 * frozen_array().
963 	 */
964 	if (!READ_ONCE(conf->array_frozen) &&
965 	    !atomic_read(&conf->barrier[idx]))
966 		return;
967 
968 	/*
969 	 * After holding conf->resync_lock, conf->nr_pending[idx]
970 	 * should be decreased before waiting for barrier to drop.
971 	 * Otherwise, we may encounter a race condition because
972 	 * raise_barrer() might be waiting for conf->nr_pending[idx]
973 	 * to be 0 at same time.
974 	 */
975 	spin_lock_irq(&conf->resync_lock);
976 	atomic_inc(&conf->nr_waiting[idx]);
977 	atomic_dec(&conf->nr_pending[idx]);
978 	/*
979 	 * In case freeze_array() is waiting for
980 	 * get_unqueued_pending() == extra
981 	 */
982 	wake_up(&conf->wait_barrier);
983 	/* Wait for the barrier in same barrier unit bucket to drop. */
984 	wait_event_lock_irq(conf->wait_barrier,
985 			    !conf->array_frozen &&
986 			     !atomic_read(&conf->barrier[idx]),
987 			    conf->resync_lock);
988 	atomic_inc(&conf->nr_pending[idx]);
989 	atomic_dec(&conf->nr_waiting[idx]);
990 	spin_unlock_irq(&conf->resync_lock);
991 }
992 
993 static void wait_read_barrier(struct r1conf *conf, sector_t sector_nr)
994 {
995 	int idx = sector_to_idx(sector_nr);
996 
997 	/*
998 	 * Very similar to _wait_barrier(). The difference is, for read
999 	 * I/O we don't need wait for sync I/O, but if the whole array
1000 	 * is frozen, the read I/O still has to wait until the array is
1001 	 * unfrozen. Since there is no ordering requirement with
1002 	 * conf->barrier[idx] here, memory barrier is unnecessary as well.
1003 	 */
1004 	atomic_inc(&conf->nr_pending[idx]);
1005 
1006 	if (!READ_ONCE(conf->array_frozen))
1007 		return;
1008 
1009 	spin_lock_irq(&conf->resync_lock);
1010 	atomic_inc(&conf->nr_waiting[idx]);
1011 	atomic_dec(&conf->nr_pending[idx]);
1012 	/*
1013 	 * In case freeze_array() is waiting for
1014 	 * get_unqueued_pending() == extra
1015 	 */
1016 	wake_up(&conf->wait_barrier);
1017 	/* Wait for array to be unfrozen */
1018 	wait_event_lock_irq(conf->wait_barrier,
1019 			    !conf->array_frozen,
1020 			    conf->resync_lock);
1021 	atomic_inc(&conf->nr_pending[idx]);
1022 	atomic_dec(&conf->nr_waiting[idx]);
1023 	spin_unlock_irq(&conf->resync_lock);
1024 }
1025 
1026 static void wait_barrier(struct r1conf *conf, sector_t sector_nr)
1027 {
1028 	int idx = sector_to_idx(sector_nr);
1029 
1030 	_wait_barrier(conf, idx);
1031 }
1032 
1033 static void _allow_barrier(struct r1conf *conf, int idx)
1034 {
1035 	atomic_dec(&conf->nr_pending[idx]);
1036 	wake_up(&conf->wait_barrier);
1037 }
1038 
1039 static void allow_barrier(struct r1conf *conf, sector_t sector_nr)
1040 {
1041 	int idx = sector_to_idx(sector_nr);
1042 
1043 	_allow_barrier(conf, idx);
1044 }
1045 
1046 /* conf->resync_lock should be held */
1047 static int get_unqueued_pending(struct r1conf *conf)
1048 {
1049 	int idx, ret;
1050 
1051 	ret = atomic_read(&conf->nr_sync_pending);
1052 	for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
1053 		ret += atomic_read(&conf->nr_pending[idx]) -
1054 			atomic_read(&conf->nr_queued[idx]);
1055 
1056 	return ret;
1057 }
1058 
1059 static void freeze_array(struct r1conf *conf, int extra)
1060 {
1061 	/* Stop sync I/O and normal I/O and wait for everything to
1062 	 * go quiet.
1063 	 * This is called in two situations:
1064 	 * 1) management command handlers (reshape, remove disk, quiesce).
1065 	 * 2) one normal I/O request failed.
1066 
1067 	 * After array_frozen is set to 1, new sync IO will be blocked at
1068 	 * raise_barrier(), and new normal I/O will blocked at _wait_barrier()
1069 	 * or wait_read_barrier(). The flying I/Os will either complete or be
1070 	 * queued. When everything goes quite, there are only queued I/Os left.
1071 
1072 	 * Every flying I/O contributes to a conf->nr_pending[idx], idx is the
1073 	 * barrier bucket index which this I/O request hits. When all sync and
1074 	 * normal I/O are queued, sum of all conf->nr_pending[] will match sum
1075 	 * of all conf->nr_queued[]. But normal I/O failure is an exception,
1076 	 * in handle_read_error(), we may call freeze_array() before trying to
1077 	 * fix the read error. In this case, the error read I/O is not queued,
1078 	 * so get_unqueued_pending() == 1.
1079 	 *
1080 	 * Therefore before this function returns, we need to wait until
1081 	 * get_unqueued_pendings(conf) gets equal to extra. For
1082 	 * normal I/O context, extra is 1, in rested situations extra is 0.
1083 	 */
1084 	spin_lock_irq(&conf->resync_lock);
1085 	conf->array_frozen = 1;
1086 	raid1_log(conf->mddev, "wait freeze");
1087 	wait_event_lock_irq_cmd(
1088 		conf->wait_barrier,
1089 		get_unqueued_pending(conf) == extra,
1090 		conf->resync_lock,
1091 		flush_pending_writes(conf));
1092 	spin_unlock_irq(&conf->resync_lock);
1093 }
1094 static void unfreeze_array(struct r1conf *conf)
1095 {
1096 	/* reverse the effect of the freeze */
1097 	spin_lock_irq(&conf->resync_lock);
1098 	conf->array_frozen = 0;
1099 	spin_unlock_irq(&conf->resync_lock);
1100 	wake_up(&conf->wait_barrier);
1101 }
1102 
1103 static void alloc_behind_master_bio(struct r1bio *r1_bio,
1104 					   struct bio *bio)
1105 {
1106 	int size = bio->bi_iter.bi_size;
1107 	unsigned vcnt = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1108 	int i = 0;
1109 	struct bio *behind_bio = NULL;
1110 
1111 	behind_bio = bio_alloc_bioset(GFP_NOIO, vcnt, &r1_bio->mddev->bio_set);
1112 	if (!behind_bio)
1113 		return;
1114 
1115 	/* discard op, we don't support writezero/writesame yet */
1116 	if (!bio_has_data(bio)) {
1117 		behind_bio->bi_iter.bi_size = size;
1118 		goto skip_copy;
1119 	}
1120 
1121 	behind_bio->bi_write_hint = bio->bi_write_hint;
1122 
1123 	while (i < vcnt && size) {
1124 		struct page *page;
1125 		int len = min_t(int, PAGE_SIZE, size);
1126 
1127 		page = alloc_page(GFP_NOIO);
1128 		if (unlikely(!page))
1129 			goto free_pages;
1130 
1131 		bio_add_page(behind_bio, page, len, 0);
1132 
1133 		size -= len;
1134 		i++;
1135 	}
1136 
1137 	bio_copy_data(behind_bio, bio);
1138 skip_copy:
1139 	r1_bio->behind_master_bio = behind_bio;
1140 	set_bit(R1BIO_BehindIO, &r1_bio->state);
1141 
1142 	return;
1143 
1144 free_pages:
1145 	pr_debug("%dB behind alloc failed, doing sync I/O\n",
1146 		 bio->bi_iter.bi_size);
1147 	bio_free_pages(behind_bio);
1148 	bio_put(behind_bio);
1149 }
1150 
1151 struct raid1_plug_cb {
1152 	struct blk_plug_cb	cb;
1153 	struct bio_list		pending;
1154 	int			pending_cnt;
1155 };
1156 
1157 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1158 {
1159 	struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1160 						  cb);
1161 	struct mddev *mddev = plug->cb.data;
1162 	struct r1conf *conf = mddev->private;
1163 	struct bio *bio;
1164 
1165 	if (from_schedule || current->bio_list) {
1166 		spin_lock_irq(&conf->device_lock);
1167 		bio_list_merge(&conf->pending_bio_list, &plug->pending);
1168 		conf->pending_count += plug->pending_cnt;
1169 		spin_unlock_irq(&conf->device_lock);
1170 		wake_up(&conf->wait_barrier);
1171 		md_wakeup_thread(mddev->thread);
1172 		kfree(plug);
1173 		return;
1174 	}
1175 
1176 	/* we aren't scheduling, so we can do the write-out directly. */
1177 	bio = bio_list_get(&plug->pending);
1178 	flush_bio_list(conf, bio);
1179 	kfree(plug);
1180 }
1181 
1182 static void init_r1bio(struct r1bio *r1_bio, struct mddev *mddev, struct bio *bio)
1183 {
1184 	r1_bio->master_bio = bio;
1185 	r1_bio->sectors = bio_sectors(bio);
1186 	r1_bio->state = 0;
1187 	r1_bio->mddev = mddev;
1188 	r1_bio->sector = bio->bi_iter.bi_sector;
1189 }
1190 
1191 static inline struct r1bio *
1192 alloc_r1bio(struct mddev *mddev, struct bio *bio)
1193 {
1194 	struct r1conf *conf = mddev->private;
1195 	struct r1bio *r1_bio;
1196 
1197 	r1_bio = mempool_alloc(&conf->r1bio_pool, GFP_NOIO);
1198 	/* Ensure no bio records IO_BLOCKED */
1199 	memset(r1_bio->bios, 0, conf->raid_disks * sizeof(r1_bio->bios[0]));
1200 	init_r1bio(r1_bio, mddev, bio);
1201 	return r1_bio;
1202 }
1203 
1204 static void raid1_read_request(struct mddev *mddev, struct bio *bio,
1205 			       int max_read_sectors, struct r1bio *r1_bio)
1206 {
1207 	struct r1conf *conf = mddev->private;
1208 	struct raid1_info *mirror;
1209 	struct bio *read_bio;
1210 	struct bitmap *bitmap = mddev->bitmap;
1211 	const int op = bio_op(bio);
1212 	const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1213 	int max_sectors;
1214 	int rdisk;
1215 	bool r1bio_existed = !!r1_bio;
1216 	char b[BDEVNAME_SIZE];
1217 
1218 	/*
1219 	 * If r1_bio is set, we are blocking the raid1d thread
1220 	 * so there is a tiny risk of deadlock.  So ask for
1221 	 * emergency memory if needed.
1222 	 */
1223 	gfp_t gfp = r1_bio ? (GFP_NOIO | __GFP_HIGH) : GFP_NOIO;
1224 
1225 	if (r1bio_existed) {
1226 		/* Need to get the block device name carefully */
1227 		struct md_rdev *rdev;
1228 		rcu_read_lock();
1229 		rdev = rcu_dereference(conf->mirrors[r1_bio->read_disk].rdev);
1230 		if (rdev)
1231 			bdevname(rdev->bdev, b);
1232 		else
1233 			strcpy(b, "???");
1234 		rcu_read_unlock();
1235 	}
1236 
1237 	/*
1238 	 * Still need barrier for READ in case that whole
1239 	 * array is frozen.
1240 	 */
1241 	wait_read_barrier(conf, bio->bi_iter.bi_sector);
1242 
1243 	if (!r1_bio)
1244 		r1_bio = alloc_r1bio(mddev, bio);
1245 	else
1246 		init_r1bio(r1_bio, mddev, bio);
1247 	r1_bio->sectors = max_read_sectors;
1248 
1249 	/*
1250 	 * make_request() can abort the operation when read-ahead is being
1251 	 * used and no empty request is available.
1252 	 */
1253 	rdisk = read_balance(conf, r1_bio, &max_sectors);
1254 
1255 	if (rdisk < 0) {
1256 		/* couldn't find anywhere to read from */
1257 		if (r1bio_existed) {
1258 			pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
1259 					    mdname(mddev),
1260 					    b,
1261 					    (unsigned long long)r1_bio->sector);
1262 		}
1263 		raid_end_bio_io(r1_bio);
1264 		return;
1265 	}
1266 	mirror = conf->mirrors + rdisk;
1267 
1268 	if (r1bio_existed)
1269 		pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %s\n",
1270 				    mdname(mddev),
1271 				    (unsigned long long)r1_bio->sector,
1272 				    bdevname(mirror->rdev->bdev, b));
1273 
1274 	if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1275 	    bitmap) {
1276 		/*
1277 		 * Reading from a write-mostly device must take care not to
1278 		 * over-take any writes that are 'behind'
1279 		 */
1280 		raid1_log(mddev, "wait behind writes");
1281 		wait_event(bitmap->behind_wait,
1282 			   atomic_read(&bitmap->behind_writes) == 0);
1283 	}
1284 
1285 	if (max_sectors < bio_sectors(bio)) {
1286 		struct bio *split = bio_split(bio, max_sectors,
1287 					      gfp, &conf->bio_split);
1288 		bio_chain(split, bio);
1289 		submit_bio_noacct(bio);
1290 		bio = split;
1291 		r1_bio->master_bio = bio;
1292 		r1_bio->sectors = max_sectors;
1293 	}
1294 
1295 	r1_bio->read_disk = rdisk;
1296 
1297 	if (!r1bio_existed && blk_queue_io_stat(bio->bi_bdev->bd_disk->queue))
1298 		r1_bio->start_time = bio_start_io_acct(bio);
1299 
1300 	read_bio = bio_clone_fast(bio, gfp, &mddev->bio_set);
1301 
1302 	r1_bio->bios[rdisk] = read_bio;
1303 
1304 	read_bio->bi_iter.bi_sector = r1_bio->sector +
1305 		mirror->rdev->data_offset;
1306 	bio_set_dev(read_bio, mirror->rdev->bdev);
1307 	read_bio->bi_end_io = raid1_end_read_request;
1308 	bio_set_op_attrs(read_bio, op, do_sync);
1309 	if (test_bit(FailFast, &mirror->rdev->flags) &&
1310 	    test_bit(R1BIO_FailFast, &r1_bio->state))
1311 	        read_bio->bi_opf |= MD_FAILFAST;
1312 	read_bio->bi_private = r1_bio;
1313 
1314 	if (mddev->gendisk)
1315 	        trace_block_bio_remap(read_bio, disk_devt(mddev->gendisk),
1316 				      r1_bio->sector);
1317 
1318 	submit_bio_noacct(read_bio);
1319 }
1320 
1321 static void raid1_write_request(struct mddev *mddev, struct bio *bio,
1322 				int max_write_sectors)
1323 {
1324 	struct r1conf *conf = mddev->private;
1325 	struct r1bio *r1_bio;
1326 	int i, disks;
1327 	struct bitmap *bitmap = mddev->bitmap;
1328 	unsigned long flags;
1329 	struct md_rdev *blocked_rdev;
1330 	struct blk_plug_cb *cb;
1331 	struct raid1_plug_cb *plug = NULL;
1332 	int first_clone;
1333 	int max_sectors;
1334 
1335 	if (mddev_is_clustered(mddev) &&
1336 	     md_cluster_ops->area_resyncing(mddev, WRITE,
1337 		     bio->bi_iter.bi_sector, bio_end_sector(bio))) {
1338 
1339 		DEFINE_WAIT(w);
1340 		for (;;) {
1341 			prepare_to_wait(&conf->wait_barrier,
1342 					&w, TASK_IDLE);
1343 			if (!md_cluster_ops->area_resyncing(mddev, WRITE,
1344 							bio->bi_iter.bi_sector,
1345 							bio_end_sector(bio)))
1346 				break;
1347 			schedule();
1348 		}
1349 		finish_wait(&conf->wait_barrier, &w);
1350 	}
1351 
1352 	/*
1353 	 * Register the new request and wait if the reconstruction
1354 	 * thread has put up a bar for new requests.
1355 	 * Continue immediately if no resync is active currently.
1356 	 */
1357 	wait_barrier(conf, bio->bi_iter.bi_sector);
1358 
1359 	r1_bio = alloc_r1bio(mddev, bio);
1360 	r1_bio->sectors = max_write_sectors;
1361 
1362 	if (conf->pending_count >= max_queued_requests) {
1363 		md_wakeup_thread(mddev->thread);
1364 		raid1_log(mddev, "wait queued");
1365 		wait_event(conf->wait_barrier,
1366 			   conf->pending_count < max_queued_requests);
1367 	}
1368 	/* first select target devices under rcu_lock and
1369 	 * inc refcount on their rdev.  Record them by setting
1370 	 * bios[x] to bio
1371 	 * If there are known/acknowledged bad blocks on any device on
1372 	 * which we have seen a write error, we want to avoid writing those
1373 	 * blocks.
1374 	 * This potentially requires several writes to write around
1375 	 * the bad blocks.  Each set of writes gets it's own r1bio
1376 	 * with a set of bios attached.
1377 	 */
1378 
1379 	disks = conf->raid_disks * 2;
1380  retry_write:
1381 	blocked_rdev = NULL;
1382 	rcu_read_lock();
1383 	max_sectors = r1_bio->sectors;
1384 	for (i = 0;  i < disks; i++) {
1385 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1386 		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1387 			atomic_inc(&rdev->nr_pending);
1388 			blocked_rdev = rdev;
1389 			break;
1390 		}
1391 		r1_bio->bios[i] = NULL;
1392 		if (!rdev || test_bit(Faulty, &rdev->flags)) {
1393 			if (i < conf->raid_disks)
1394 				set_bit(R1BIO_Degraded, &r1_bio->state);
1395 			continue;
1396 		}
1397 
1398 		atomic_inc(&rdev->nr_pending);
1399 		if (test_bit(WriteErrorSeen, &rdev->flags)) {
1400 			sector_t first_bad;
1401 			int bad_sectors;
1402 			int is_bad;
1403 
1404 			is_bad = is_badblock(rdev, r1_bio->sector, max_sectors,
1405 					     &first_bad, &bad_sectors);
1406 			if (is_bad < 0) {
1407 				/* mustn't write here until the bad block is
1408 				 * acknowledged*/
1409 				set_bit(BlockedBadBlocks, &rdev->flags);
1410 				blocked_rdev = rdev;
1411 				break;
1412 			}
1413 			if (is_bad && first_bad <= r1_bio->sector) {
1414 				/* Cannot write here at all */
1415 				bad_sectors -= (r1_bio->sector - first_bad);
1416 				if (bad_sectors < max_sectors)
1417 					/* mustn't write more than bad_sectors
1418 					 * to other devices yet
1419 					 */
1420 					max_sectors = bad_sectors;
1421 				rdev_dec_pending(rdev, mddev);
1422 				/* We don't set R1BIO_Degraded as that
1423 				 * only applies if the disk is
1424 				 * missing, so it might be re-added,
1425 				 * and we want to know to recover this
1426 				 * chunk.
1427 				 * In this case the device is here,
1428 				 * and the fact that this chunk is not
1429 				 * in-sync is recorded in the bad
1430 				 * block log
1431 				 */
1432 				continue;
1433 			}
1434 			if (is_bad) {
1435 				int good_sectors = first_bad - r1_bio->sector;
1436 				if (good_sectors < max_sectors)
1437 					max_sectors = good_sectors;
1438 			}
1439 		}
1440 		r1_bio->bios[i] = bio;
1441 	}
1442 	rcu_read_unlock();
1443 
1444 	if (unlikely(blocked_rdev)) {
1445 		/* Wait for this device to become unblocked */
1446 		int j;
1447 
1448 		for (j = 0; j < i; j++)
1449 			if (r1_bio->bios[j])
1450 				rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1451 		r1_bio->state = 0;
1452 		allow_barrier(conf, bio->bi_iter.bi_sector);
1453 		raid1_log(mddev, "wait rdev %d blocked", blocked_rdev->raid_disk);
1454 		md_wait_for_blocked_rdev(blocked_rdev, mddev);
1455 		wait_barrier(conf, bio->bi_iter.bi_sector);
1456 		goto retry_write;
1457 	}
1458 
1459 	if (max_sectors < bio_sectors(bio)) {
1460 		struct bio *split = bio_split(bio, max_sectors,
1461 					      GFP_NOIO, &conf->bio_split);
1462 		bio_chain(split, bio);
1463 		submit_bio_noacct(bio);
1464 		bio = split;
1465 		r1_bio->master_bio = bio;
1466 		r1_bio->sectors = max_sectors;
1467 	}
1468 
1469 	if (blk_queue_io_stat(bio->bi_bdev->bd_disk->queue))
1470 		r1_bio->start_time = bio_start_io_acct(bio);
1471 	atomic_set(&r1_bio->remaining, 1);
1472 	atomic_set(&r1_bio->behind_remaining, 0);
1473 
1474 	first_clone = 1;
1475 
1476 	for (i = 0; i < disks; i++) {
1477 		struct bio *mbio = NULL;
1478 		struct md_rdev *rdev = conf->mirrors[i].rdev;
1479 		if (!r1_bio->bios[i])
1480 			continue;
1481 
1482 		if (first_clone) {
1483 			/* do behind I/O ?
1484 			 * Not if there are too many, or cannot
1485 			 * allocate memory, or a reader on WriteMostly
1486 			 * is waiting for behind writes to flush */
1487 			if (bitmap &&
1488 			    (atomic_read(&bitmap->behind_writes)
1489 			     < mddev->bitmap_info.max_write_behind) &&
1490 			    !waitqueue_active(&bitmap->behind_wait)) {
1491 				alloc_behind_master_bio(r1_bio, bio);
1492 			}
1493 
1494 			md_bitmap_startwrite(bitmap, r1_bio->sector, r1_bio->sectors,
1495 					     test_bit(R1BIO_BehindIO, &r1_bio->state));
1496 			first_clone = 0;
1497 		}
1498 
1499 		if (r1_bio->behind_master_bio)
1500 			mbio = bio_clone_fast(r1_bio->behind_master_bio,
1501 					      GFP_NOIO, &mddev->bio_set);
1502 		else
1503 			mbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set);
1504 
1505 		if (r1_bio->behind_master_bio) {
1506 			if (test_bit(CollisionCheck, &rdev->flags))
1507 				wait_for_serialization(rdev, r1_bio);
1508 			if (test_bit(WriteMostly, &rdev->flags))
1509 				atomic_inc(&r1_bio->behind_remaining);
1510 		} else if (mddev->serialize_policy)
1511 			wait_for_serialization(rdev, r1_bio);
1512 
1513 		r1_bio->bios[i] = mbio;
1514 
1515 		mbio->bi_iter.bi_sector	= (r1_bio->sector +
1516 				   conf->mirrors[i].rdev->data_offset);
1517 		bio_set_dev(mbio, conf->mirrors[i].rdev->bdev);
1518 		mbio->bi_end_io	= raid1_end_write_request;
1519 		mbio->bi_opf = bio_op(bio) | (bio->bi_opf & (REQ_SYNC | REQ_FUA));
1520 		if (test_bit(FailFast, &conf->mirrors[i].rdev->flags) &&
1521 		    !test_bit(WriteMostly, &conf->mirrors[i].rdev->flags) &&
1522 		    conf->raid_disks - mddev->degraded > 1)
1523 			mbio->bi_opf |= MD_FAILFAST;
1524 		mbio->bi_private = r1_bio;
1525 
1526 		atomic_inc(&r1_bio->remaining);
1527 
1528 		if (mddev->gendisk)
1529 			trace_block_bio_remap(mbio, disk_devt(mddev->gendisk),
1530 					      r1_bio->sector);
1531 		/* flush_pending_writes() needs access to the rdev so...*/
1532 		mbio->bi_bdev = (void *)conf->mirrors[i].rdev;
1533 
1534 		cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1535 		if (cb)
1536 			plug = container_of(cb, struct raid1_plug_cb, cb);
1537 		else
1538 			plug = NULL;
1539 		if (plug) {
1540 			bio_list_add(&plug->pending, mbio);
1541 			plug->pending_cnt++;
1542 		} else {
1543 			spin_lock_irqsave(&conf->device_lock, flags);
1544 			bio_list_add(&conf->pending_bio_list, mbio);
1545 			conf->pending_count++;
1546 			spin_unlock_irqrestore(&conf->device_lock, flags);
1547 			md_wakeup_thread(mddev->thread);
1548 		}
1549 	}
1550 
1551 	r1_bio_write_done(r1_bio);
1552 
1553 	/* In case raid1d snuck in to freeze_array */
1554 	wake_up(&conf->wait_barrier);
1555 }
1556 
1557 static bool raid1_make_request(struct mddev *mddev, struct bio *bio)
1558 {
1559 	sector_t sectors;
1560 
1561 	if (unlikely(bio->bi_opf & REQ_PREFLUSH)
1562 	    && md_flush_request(mddev, bio))
1563 		return true;
1564 
1565 	/*
1566 	 * There is a limit to the maximum size, but
1567 	 * the read/write handler might find a lower limit
1568 	 * due to bad blocks.  To avoid multiple splits,
1569 	 * we pass the maximum number of sectors down
1570 	 * and let the lower level perform the split.
1571 	 */
1572 	sectors = align_to_barrier_unit_end(
1573 		bio->bi_iter.bi_sector, bio_sectors(bio));
1574 
1575 	if (bio_data_dir(bio) == READ)
1576 		raid1_read_request(mddev, bio, sectors, NULL);
1577 	else {
1578 		if (!md_write_start(mddev,bio))
1579 			return false;
1580 		raid1_write_request(mddev, bio, sectors);
1581 	}
1582 	return true;
1583 }
1584 
1585 static void raid1_status(struct seq_file *seq, struct mddev *mddev)
1586 {
1587 	struct r1conf *conf = mddev->private;
1588 	int i;
1589 
1590 	seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1591 		   conf->raid_disks - mddev->degraded);
1592 	rcu_read_lock();
1593 	for (i = 0; i < conf->raid_disks; i++) {
1594 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1595 		seq_printf(seq, "%s",
1596 			   rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1597 	}
1598 	rcu_read_unlock();
1599 	seq_printf(seq, "]");
1600 }
1601 
1602 static void raid1_error(struct mddev *mddev, struct md_rdev *rdev)
1603 {
1604 	char b[BDEVNAME_SIZE];
1605 	struct r1conf *conf = mddev->private;
1606 	unsigned long flags;
1607 
1608 	/*
1609 	 * If it is not operational, then we have already marked it as dead
1610 	 * else if it is the last working disks with "fail_last_dev == false",
1611 	 * ignore the error, let the next level up know.
1612 	 * else mark the drive as failed
1613 	 */
1614 	spin_lock_irqsave(&conf->device_lock, flags);
1615 	if (test_bit(In_sync, &rdev->flags) && !mddev->fail_last_dev
1616 	    && (conf->raid_disks - mddev->degraded) == 1) {
1617 		/*
1618 		 * Don't fail the drive, act as though we were just a
1619 		 * normal single drive.
1620 		 * However don't try a recovery from this drive as
1621 		 * it is very likely to fail.
1622 		 */
1623 		conf->recovery_disabled = mddev->recovery_disabled;
1624 		spin_unlock_irqrestore(&conf->device_lock, flags);
1625 		return;
1626 	}
1627 	set_bit(Blocked, &rdev->flags);
1628 	if (test_and_clear_bit(In_sync, &rdev->flags))
1629 		mddev->degraded++;
1630 	set_bit(Faulty, &rdev->flags);
1631 	spin_unlock_irqrestore(&conf->device_lock, flags);
1632 	/*
1633 	 * if recovery is running, make sure it aborts.
1634 	 */
1635 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1636 	set_mask_bits(&mddev->sb_flags, 0,
1637 		      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1638 	pr_crit("md/raid1:%s: Disk failure on %s, disabling device.\n"
1639 		"md/raid1:%s: Operation continuing on %d devices.\n",
1640 		mdname(mddev), bdevname(rdev->bdev, b),
1641 		mdname(mddev), conf->raid_disks - mddev->degraded);
1642 }
1643 
1644 static void print_conf(struct r1conf *conf)
1645 {
1646 	int i;
1647 
1648 	pr_debug("RAID1 conf printout:\n");
1649 	if (!conf) {
1650 		pr_debug("(!conf)\n");
1651 		return;
1652 	}
1653 	pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1654 		 conf->raid_disks);
1655 
1656 	rcu_read_lock();
1657 	for (i = 0; i < conf->raid_disks; i++) {
1658 		char b[BDEVNAME_SIZE];
1659 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1660 		if (rdev)
1661 			pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
1662 				 i, !test_bit(In_sync, &rdev->flags),
1663 				 !test_bit(Faulty, &rdev->flags),
1664 				 bdevname(rdev->bdev,b));
1665 	}
1666 	rcu_read_unlock();
1667 }
1668 
1669 static void close_sync(struct r1conf *conf)
1670 {
1671 	int idx;
1672 
1673 	for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++) {
1674 		_wait_barrier(conf, idx);
1675 		_allow_barrier(conf, idx);
1676 	}
1677 
1678 	mempool_exit(&conf->r1buf_pool);
1679 }
1680 
1681 static int raid1_spare_active(struct mddev *mddev)
1682 {
1683 	int i;
1684 	struct r1conf *conf = mddev->private;
1685 	int count = 0;
1686 	unsigned long flags;
1687 
1688 	/*
1689 	 * Find all failed disks within the RAID1 configuration
1690 	 * and mark them readable.
1691 	 * Called under mddev lock, so rcu protection not needed.
1692 	 * device_lock used to avoid races with raid1_end_read_request
1693 	 * which expects 'In_sync' flags and ->degraded to be consistent.
1694 	 */
1695 	spin_lock_irqsave(&conf->device_lock, flags);
1696 	for (i = 0; i < conf->raid_disks; i++) {
1697 		struct md_rdev *rdev = conf->mirrors[i].rdev;
1698 		struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1699 		if (repl
1700 		    && !test_bit(Candidate, &repl->flags)
1701 		    && repl->recovery_offset == MaxSector
1702 		    && !test_bit(Faulty, &repl->flags)
1703 		    && !test_and_set_bit(In_sync, &repl->flags)) {
1704 			/* replacement has just become active */
1705 			if (!rdev ||
1706 			    !test_and_clear_bit(In_sync, &rdev->flags))
1707 				count++;
1708 			if (rdev) {
1709 				/* Replaced device not technically
1710 				 * faulty, but we need to be sure
1711 				 * it gets removed and never re-added
1712 				 */
1713 				set_bit(Faulty, &rdev->flags);
1714 				sysfs_notify_dirent_safe(
1715 					rdev->sysfs_state);
1716 			}
1717 		}
1718 		if (rdev
1719 		    && rdev->recovery_offset == MaxSector
1720 		    && !test_bit(Faulty, &rdev->flags)
1721 		    && !test_and_set_bit(In_sync, &rdev->flags)) {
1722 			count++;
1723 			sysfs_notify_dirent_safe(rdev->sysfs_state);
1724 		}
1725 	}
1726 	mddev->degraded -= count;
1727 	spin_unlock_irqrestore(&conf->device_lock, flags);
1728 
1729 	print_conf(conf);
1730 	return count;
1731 }
1732 
1733 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1734 {
1735 	struct r1conf *conf = mddev->private;
1736 	int err = -EEXIST;
1737 	int mirror = 0;
1738 	struct raid1_info *p;
1739 	int first = 0;
1740 	int last = conf->raid_disks - 1;
1741 
1742 	if (mddev->recovery_disabled == conf->recovery_disabled)
1743 		return -EBUSY;
1744 
1745 	if (md_integrity_add_rdev(rdev, mddev))
1746 		return -ENXIO;
1747 
1748 	if (rdev->raid_disk >= 0)
1749 		first = last = rdev->raid_disk;
1750 
1751 	/*
1752 	 * find the disk ... but prefer rdev->saved_raid_disk
1753 	 * if possible.
1754 	 */
1755 	if (rdev->saved_raid_disk >= 0 &&
1756 	    rdev->saved_raid_disk >= first &&
1757 	    rdev->saved_raid_disk < conf->raid_disks &&
1758 	    conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1759 		first = last = rdev->saved_raid_disk;
1760 
1761 	for (mirror = first; mirror <= last; mirror++) {
1762 		p = conf->mirrors + mirror;
1763 		if (!p->rdev) {
1764 			if (mddev->gendisk)
1765 				disk_stack_limits(mddev->gendisk, rdev->bdev,
1766 						  rdev->data_offset << 9);
1767 
1768 			p->head_position = 0;
1769 			rdev->raid_disk = mirror;
1770 			err = 0;
1771 			/* As all devices are equivalent, we don't need a full recovery
1772 			 * if this was recently any drive of the array
1773 			 */
1774 			if (rdev->saved_raid_disk < 0)
1775 				conf->fullsync = 1;
1776 			rcu_assign_pointer(p->rdev, rdev);
1777 			break;
1778 		}
1779 		if (test_bit(WantReplacement, &p->rdev->flags) &&
1780 		    p[conf->raid_disks].rdev == NULL) {
1781 			/* Add this device as a replacement */
1782 			clear_bit(In_sync, &rdev->flags);
1783 			set_bit(Replacement, &rdev->flags);
1784 			rdev->raid_disk = mirror;
1785 			err = 0;
1786 			conf->fullsync = 1;
1787 			rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1788 			break;
1789 		}
1790 	}
1791 	if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1792 		blk_queue_flag_set(QUEUE_FLAG_DISCARD, mddev->queue);
1793 	print_conf(conf);
1794 	return err;
1795 }
1796 
1797 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1798 {
1799 	struct r1conf *conf = mddev->private;
1800 	int err = 0;
1801 	int number = rdev->raid_disk;
1802 	struct raid1_info *p = conf->mirrors + number;
1803 
1804 	if (rdev != p->rdev)
1805 		p = conf->mirrors + conf->raid_disks + number;
1806 
1807 	print_conf(conf);
1808 	if (rdev == p->rdev) {
1809 		if (test_bit(In_sync, &rdev->flags) ||
1810 		    atomic_read(&rdev->nr_pending)) {
1811 			err = -EBUSY;
1812 			goto abort;
1813 		}
1814 		/* Only remove non-faulty devices if recovery
1815 		 * is not possible.
1816 		 */
1817 		if (!test_bit(Faulty, &rdev->flags) &&
1818 		    mddev->recovery_disabled != conf->recovery_disabled &&
1819 		    mddev->degraded < conf->raid_disks) {
1820 			err = -EBUSY;
1821 			goto abort;
1822 		}
1823 		p->rdev = NULL;
1824 		if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1825 			synchronize_rcu();
1826 			if (atomic_read(&rdev->nr_pending)) {
1827 				/* lost the race, try later */
1828 				err = -EBUSY;
1829 				p->rdev = rdev;
1830 				goto abort;
1831 			}
1832 		}
1833 		if (conf->mirrors[conf->raid_disks + number].rdev) {
1834 			/* We just removed a device that is being replaced.
1835 			 * Move down the replacement.  We drain all IO before
1836 			 * doing this to avoid confusion.
1837 			 */
1838 			struct md_rdev *repl =
1839 				conf->mirrors[conf->raid_disks + number].rdev;
1840 			freeze_array(conf, 0);
1841 			if (atomic_read(&repl->nr_pending)) {
1842 				/* It means that some queued IO of retry_list
1843 				 * hold repl. Thus, we cannot set replacement
1844 				 * as NULL, avoiding rdev NULL pointer
1845 				 * dereference in sync_request_write and
1846 				 * handle_write_finished.
1847 				 */
1848 				err = -EBUSY;
1849 				unfreeze_array(conf);
1850 				goto abort;
1851 			}
1852 			clear_bit(Replacement, &repl->flags);
1853 			p->rdev = repl;
1854 			conf->mirrors[conf->raid_disks + number].rdev = NULL;
1855 			unfreeze_array(conf);
1856 		}
1857 
1858 		clear_bit(WantReplacement, &rdev->flags);
1859 		err = md_integrity_register(mddev);
1860 	}
1861 abort:
1862 
1863 	print_conf(conf);
1864 	return err;
1865 }
1866 
1867 static void end_sync_read(struct bio *bio)
1868 {
1869 	struct r1bio *r1_bio = get_resync_r1bio(bio);
1870 
1871 	update_head_pos(r1_bio->read_disk, r1_bio);
1872 
1873 	/*
1874 	 * we have read a block, now it needs to be re-written,
1875 	 * or re-read if the read failed.
1876 	 * We don't do much here, just schedule handling by raid1d
1877 	 */
1878 	if (!bio->bi_status)
1879 		set_bit(R1BIO_Uptodate, &r1_bio->state);
1880 
1881 	if (atomic_dec_and_test(&r1_bio->remaining))
1882 		reschedule_retry(r1_bio);
1883 }
1884 
1885 static void abort_sync_write(struct mddev *mddev, struct r1bio *r1_bio)
1886 {
1887 	sector_t sync_blocks = 0;
1888 	sector_t s = r1_bio->sector;
1889 	long sectors_to_go = r1_bio->sectors;
1890 
1891 	/* make sure these bits don't get cleared. */
1892 	do {
1893 		md_bitmap_end_sync(mddev->bitmap, s, &sync_blocks, 1);
1894 		s += sync_blocks;
1895 		sectors_to_go -= sync_blocks;
1896 	} while (sectors_to_go > 0);
1897 }
1898 
1899 static void put_sync_write_buf(struct r1bio *r1_bio, int uptodate)
1900 {
1901 	if (atomic_dec_and_test(&r1_bio->remaining)) {
1902 		struct mddev *mddev = r1_bio->mddev;
1903 		int s = r1_bio->sectors;
1904 
1905 		if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1906 		    test_bit(R1BIO_WriteError, &r1_bio->state))
1907 			reschedule_retry(r1_bio);
1908 		else {
1909 			put_buf(r1_bio);
1910 			md_done_sync(mddev, s, uptodate);
1911 		}
1912 	}
1913 }
1914 
1915 static void end_sync_write(struct bio *bio)
1916 {
1917 	int uptodate = !bio->bi_status;
1918 	struct r1bio *r1_bio = get_resync_r1bio(bio);
1919 	struct mddev *mddev = r1_bio->mddev;
1920 	struct r1conf *conf = mddev->private;
1921 	sector_t first_bad;
1922 	int bad_sectors;
1923 	struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev;
1924 
1925 	if (!uptodate) {
1926 		abort_sync_write(mddev, r1_bio);
1927 		set_bit(WriteErrorSeen, &rdev->flags);
1928 		if (!test_and_set_bit(WantReplacement, &rdev->flags))
1929 			set_bit(MD_RECOVERY_NEEDED, &
1930 				mddev->recovery);
1931 		set_bit(R1BIO_WriteError, &r1_bio->state);
1932 	} else if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
1933 			       &first_bad, &bad_sectors) &&
1934 		   !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1935 				r1_bio->sector,
1936 				r1_bio->sectors,
1937 				&first_bad, &bad_sectors)
1938 		)
1939 		set_bit(R1BIO_MadeGood, &r1_bio->state);
1940 
1941 	put_sync_write_buf(r1_bio, uptodate);
1942 }
1943 
1944 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1945 			    int sectors, struct page *page, int rw)
1946 {
1947 	if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
1948 		/* success */
1949 		return 1;
1950 	if (rw == WRITE) {
1951 		set_bit(WriteErrorSeen, &rdev->flags);
1952 		if (!test_and_set_bit(WantReplacement,
1953 				      &rdev->flags))
1954 			set_bit(MD_RECOVERY_NEEDED, &
1955 				rdev->mddev->recovery);
1956 	}
1957 	/* need to record an error - either for the block or the device */
1958 	if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1959 		md_error(rdev->mddev, rdev);
1960 	return 0;
1961 }
1962 
1963 static int fix_sync_read_error(struct r1bio *r1_bio)
1964 {
1965 	/* Try some synchronous reads of other devices to get
1966 	 * good data, much like with normal read errors.  Only
1967 	 * read into the pages we already have so we don't
1968 	 * need to re-issue the read request.
1969 	 * We don't need to freeze the array, because being in an
1970 	 * active sync request, there is no normal IO, and
1971 	 * no overlapping syncs.
1972 	 * We don't need to check is_badblock() again as we
1973 	 * made sure that anything with a bad block in range
1974 	 * will have bi_end_io clear.
1975 	 */
1976 	struct mddev *mddev = r1_bio->mddev;
1977 	struct r1conf *conf = mddev->private;
1978 	struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1979 	struct page **pages = get_resync_pages(bio)->pages;
1980 	sector_t sect = r1_bio->sector;
1981 	int sectors = r1_bio->sectors;
1982 	int idx = 0;
1983 	struct md_rdev *rdev;
1984 
1985 	rdev = conf->mirrors[r1_bio->read_disk].rdev;
1986 	if (test_bit(FailFast, &rdev->flags)) {
1987 		/* Don't try recovering from here - just fail it
1988 		 * ... unless it is the last working device of course */
1989 		md_error(mddev, rdev);
1990 		if (test_bit(Faulty, &rdev->flags))
1991 			/* Don't try to read from here, but make sure
1992 			 * put_buf does it's thing
1993 			 */
1994 			bio->bi_end_io = end_sync_write;
1995 	}
1996 
1997 	while(sectors) {
1998 		int s = sectors;
1999 		int d = r1_bio->read_disk;
2000 		int success = 0;
2001 		int start;
2002 
2003 		if (s > (PAGE_SIZE>>9))
2004 			s = PAGE_SIZE >> 9;
2005 		do {
2006 			if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
2007 				/* No rcu protection needed here devices
2008 				 * can only be removed when no resync is
2009 				 * active, and resync is currently active
2010 				 */
2011 				rdev = conf->mirrors[d].rdev;
2012 				if (sync_page_io(rdev, sect, s<<9,
2013 						 pages[idx],
2014 						 REQ_OP_READ, 0, false)) {
2015 					success = 1;
2016 					break;
2017 				}
2018 			}
2019 			d++;
2020 			if (d == conf->raid_disks * 2)
2021 				d = 0;
2022 		} while (!success && d != r1_bio->read_disk);
2023 
2024 		if (!success) {
2025 			char b[BDEVNAME_SIZE];
2026 			int abort = 0;
2027 			/* Cannot read from anywhere, this block is lost.
2028 			 * Record a bad block on each device.  If that doesn't
2029 			 * work just disable and interrupt the recovery.
2030 			 * Don't fail devices as that won't really help.
2031 			 */
2032 			pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
2033 					    mdname(mddev), bio_devname(bio, b),
2034 					    (unsigned long long)r1_bio->sector);
2035 			for (d = 0; d < conf->raid_disks * 2; d++) {
2036 				rdev = conf->mirrors[d].rdev;
2037 				if (!rdev || test_bit(Faulty, &rdev->flags))
2038 					continue;
2039 				if (!rdev_set_badblocks(rdev, sect, s, 0))
2040 					abort = 1;
2041 			}
2042 			if (abort) {
2043 				conf->recovery_disabled =
2044 					mddev->recovery_disabled;
2045 				set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2046 				md_done_sync(mddev, r1_bio->sectors, 0);
2047 				put_buf(r1_bio);
2048 				return 0;
2049 			}
2050 			/* Try next page */
2051 			sectors -= s;
2052 			sect += s;
2053 			idx++;
2054 			continue;
2055 		}
2056 
2057 		start = d;
2058 		/* write it back and re-read */
2059 		while (d != r1_bio->read_disk) {
2060 			if (d == 0)
2061 				d = conf->raid_disks * 2;
2062 			d--;
2063 			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2064 				continue;
2065 			rdev = conf->mirrors[d].rdev;
2066 			if (r1_sync_page_io(rdev, sect, s,
2067 					    pages[idx],
2068 					    WRITE) == 0) {
2069 				r1_bio->bios[d]->bi_end_io = NULL;
2070 				rdev_dec_pending(rdev, mddev);
2071 			}
2072 		}
2073 		d = start;
2074 		while (d != r1_bio->read_disk) {
2075 			if (d == 0)
2076 				d = conf->raid_disks * 2;
2077 			d--;
2078 			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2079 				continue;
2080 			rdev = conf->mirrors[d].rdev;
2081 			if (r1_sync_page_io(rdev, sect, s,
2082 					    pages[idx],
2083 					    READ) != 0)
2084 				atomic_add(s, &rdev->corrected_errors);
2085 		}
2086 		sectors -= s;
2087 		sect += s;
2088 		idx ++;
2089 	}
2090 	set_bit(R1BIO_Uptodate, &r1_bio->state);
2091 	bio->bi_status = 0;
2092 	return 1;
2093 }
2094 
2095 static void process_checks(struct r1bio *r1_bio)
2096 {
2097 	/* We have read all readable devices.  If we haven't
2098 	 * got the block, then there is no hope left.
2099 	 * If we have, then we want to do a comparison
2100 	 * and skip the write if everything is the same.
2101 	 * If any blocks failed to read, then we need to
2102 	 * attempt an over-write
2103 	 */
2104 	struct mddev *mddev = r1_bio->mddev;
2105 	struct r1conf *conf = mddev->private;
2106 	int primary;
2107 	int i;
2108 	int vcnt;
2109 
2110 	/* Fix variable parts of all bios */
2111 	vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
2112 	for (i = 0; i < conf->raid_disks * 2; i++) {
2113 		blk_status_t status;
2114 		struct bio *b = r1_bio->bios[i];
2115 		struct resync_pages *rp = get_resync_pages(b);
2116 		if (b->bi_end_io != end_sync_read)
2117 			continue;
2118 		/* fixup the bio for reuse, but preserve errno */
2119 		status = b->bi_status;
2120 		bio_reset(b);
2121 		b->bi_status = status;
2122 		b->bi_iter.bi_sector = r1_bio->sector +
2123 			conf->mirrors[i].rdev->data_offset;
2124 		bio_set_dev(b, conf->mirrors[i].rdev->bdev);
2125 		b->bi_end_io = end_sync_read;
2126 		rp->raid_bio = r1_bio;
2127 		b->bi_private = rp;
2128 
2129 		/* initialize bvec table again */
2130 		md_bio_reset_resync_pages(b, rp, r1_bio->sectors << 9);
2131 	}
2132 	for (primary = 0; primary < conf->raid_disks * 2; primary++)
2133 		if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
2134 		    !r1_bio->bios[primary]->bi_status) {
2135 			r1_bio->bios[primary]->bi_end_io = NULL;
2136 			rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
2137 			break;
2138 		}
2139 	r1_bio->read_disk = primary;
2140 	for (i = 0; i < conf->raid_disks * 2; i++) {
2141 		int j = 0;
2142 		struct bio *pbio = r1_bio->bios[primary];
2143 		struct bio *sbio = r1_bio->bios[i];
2144 		blk_status_t status = sbio->bi_status;
2145 		struct page **ppages = get_resync_pages(pbio)->pages;
2146 		struct page **spages = get_resync_pages(sbio)->pages;
2147 		struct bio_vec *bi;
2148 		int page_len[RESYNC_PAGES] = { 0 };
2149 		struct bvec_iter_all iter_all;
2150 
2151 		if (sbio->bi_end_io != end_sync_read)
2152 			continue;
2153 		/* Now we can 'fixup' the error value */
2154 		sbio->bi_status = 0;
2155 
2156 		bio_for_each_segment_all(bi, sbio, iter_all)
2157 			page_len[j++] = bi->bv_len;
2158 
2159 		if (!status) {
2160 			for (j = vcnt; j-- ; ) {
2161 				if (memcmp(page_address(ppages[j]),
2162 					   page_address(spages[j]),
2163 					   page_len[j]))
2164 					break;
2165 			}
2166 		} else
2167 			j = 0;
2168 		if (j >= 0)
2169 			atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
2170 		if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
2171 			      && !status)) {
2172 			/* No need to write to this device. */
2173 			sbio->bi_end_io = NULL;
2174 			rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2175 			continue;
2176 		}
2177 
2178 		bio_copy_data(sbio, pbio);
2179 	}
2180 }
2181 
2182 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
2183 {
2184 	struct r1conf *conf = mddev->private;
2185 	int i;
2186 	int disks = conf->raid_disks * 2;
2187 	struct bio *wbio;
2188 
2189 	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2190 		/* ouch - failed to read all of that. */
2191 		if (!fix_sync_read_error(r1_bio))
2192 			return;
2193 
2194 	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2195 		process_checks(r1_bio);
2196 
2197 	/*
2198 	 * schedule writes
2199 	 */
2200 	atomic_set(&r1_bio->remaining, 1);
2201 	for (i = 0; i < disks ; i++) {
2202 		wbio = r1_bio->bios[i];
2203 		if (wbio->bi_end_io == NULL ||
2204 		    (wbio->bi_end_io == end_sync_read &&
2205 		     (i == r1_bio->read_disk ||
2206 		      !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2207 			continue;
2208 		if (test_bit(Faulty, &conf->mirrors[i].rdev->flags)) {
2209 			abort_sync_write(mddev, r1_bio);
2210 			continue;
2211 		}
2212 
2213 		bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2214 		if (test_bit(FailFast, &conf->mirrors[i].rdev->flags))
2215 			wbio->bi_opf |= MD_FAILFAST;
2216 
2217 		wbio->bi_end_io = end_sync_write;
2218 		atomic_inc(&r1_bio->remaining);
2219 		md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
2220 
2221 		submit_bio_noacct(wbio);
2222 	}
2223 
2224 	put_sync_write_buf(r1_bio, 1);
2225 }
2226 
2227 /*
2228  * This is a kernel thread which:
2229  *
2230  *	1.	Retries failed read operations on working mirrors.
2231  *	2.	Updates the raid superblock when problems encounter.
2232  *	3.	Performs writes following reads for array synchronising.
2233  */
2234 
2235 static void fix_read_error(struct r1conf *conf, int read_disk,
2236 			   sector_t sect, int sectors)
2237 {
2238 	struct mddev *mddev = conf->mddev;
2239 	while(sectors) {
2240 		int s = sectors;
2241 		int d = read_disk;
2242 		int success = 0;
2243 		int start;
2244 		struct md_rdev *rdev;
2245 
2246 		if (s > (PAGE_SIZE>>9))
2247 			s = PAGE_SIZE >> 9;
2248 
2249 		do {
2250 			sector_t first_bad;
2251 			int bad_sectors;
2252 
2253 			rcu_read_lock();
2254 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2255 			if (rdev &&
2256 			    (test_bit(In_sync, &rdev->flags) ||
2257 			     (!test_bit(Faulty, &rdev->flags) &&
2258 			      rdev->recovery_offset >= sect + s)) &&
2259 			    is_badblock(rdev, sect, s,
2260 					&first_bad, &bad_sectors) == 0) {
2261 				atomic_inc(&rdev->nr_pending);
2262 				rcu_read_unlock();
2263 				if (sync_page_io(rdev, sect, s<<9,
2264 					 conf->tmppage, REQ_OP_READ, 0, false))
2265 					success = 1;
2266 				rdev_dec_pending(rdev, mddev);
2267 				if (success)
2268 					break;
2269 			} else
2270 				rcu_read_unlock();
2271 			d++;
2272 			if (d == conf->raid_disks * 2)
2273 				d = 0;
2274 		} while (!success && d != read_disk);
2275 
2276 		if (!success) {
2277 			/* Cannot read from anywhere - mark it bad */
2278 			struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2279 			if (!rdev_set_badblocks(rdev, sect, s, 0))
2280 				md_error(mddev, rdev);
2281 			break;
2282 		}
2283 		/* write it back and re-read */
2284 		start = d;
2285 		while (d != read_disk) {
2286 			if (d==0)
2287 				d = conf->raid_disks * 2;
2288 			d--;
2289 			rcu_read_lock();
2290 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2291 			if (rdev &&
2292 			    !test_bit(Faulty, &rdev->flags)) {
2293 				atomic_inc(&rdev->nr_pending);
2294 				rcu_read_unlock();
2295 				r1_sync_page_io(rdev, sect, s,
2296 						conf->tmppage, WRITE);
2297 				rdev_dec_pending(rdev, mddev);
2298 			} else
2299 				rcu_read_unlock();
2300 		}
2301 		d = start;
2302 		while (d != read_disk) {
2303 			char b[BDEVNAME_SIZE];
2304 			if (d==0)
2305 				d = conf->raid_disks * 2;
2306 			d--;
2307 			rcu_read_lock();
2308 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2309 			if (rdev &&
2310 			    !test_bit(Faulty, &rdev->flags)) {
2311 				atomic_inc(&rdev->nr_pending);
2312 				rcu_read_unlock();
2313 				if (r1_sync_page_io(rdev, sect, s,
2314 						    conf->tmppage, READ)) {
2315 					atomic_add(s, &rdev->corrected_errors);
2316 					pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %s)\n",
2317 						mdname(mddev), s,
2318 						(unsigned long long)(sect +
2319 								     rdev->data_offset),
2320 						bdevname(rdev->bdev, b));
2321 				}
2322 				rdev_dec_pending(rdev, mddev);
2323 			} else
2324 				rcu_read_unlock();
2325 		}
2326 		sectors -= s;
2327 		sect += s;
2328 	}
2329 }
2330 
2331 static int narrow_write_error(struct r1bio *r1_bio, int i)
2332 {
2333 	struct mddev *mddev = r1_bio->mddev;
2334 	struct r1conf *conf = mddev->private;
2335 	struct md_rdev *rdev = conf->mirrors[i].rdev;
2336 
2337 	/* bio has the data to be written to device 'i' where
2338 	 * we just recently had a write error.
2339 	 * We repeatedly clone the bio and trim down to one block,
2340 	 * then try the write.  Where the write fails we record
2341 	 * a bad block.
2342 	 * It is conceivable that the bio doesn't exactly align with
2343 	 * blocks.  We must handle this somehow.
2344 	 *
2345 	 * We currently own a reference on the rdev.
2346 	 */
2347 
2348 	int block_sectors;
2349 	sector_t sector;
2350 	int sectors;
2351 	int sect_to_write = r1_bio->sectors;
2352 	int ok = 1;
2353 
2354 	if (rdev->badblocks.shift < 0)
2355 		return 0;
2356 
2357 	block_sectors = roundup(1 << rdev->badblocks.shift,
2358 				bdev_logical_block_size(rdev->bdev) >> 9);
2359 	sector = r1_bio->sector;
2360 	sectors = ((sector + block_sectors)
2361 		   & ~(sector_t)(block_sectors - 1))
2362 		- sector;
2363 
2364 	while (sect_to_write) {
2365 		struct bio *wbio;
2366 		if (sectors > sect_to_write)
2367 			sectors = sect_to_write;
2368 		/* Write at 'sector' for 'sectors'*/
2369 
2370 		if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2371 			wbio = bio_clone_fast(r1_bio->behind_master_bio,
2372 					      GFP_NOIO,
2373 					      &mddev->bio_set);
2374 		} else {
2375 			wbio = bio_clone_fast(r1_bio->master_bio, GFP_NOIO,
2376 					      &mddev->bio_set);
2377 		}
2378 
2379 		bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2380 		wbio->bi_iter.bi_sector = r1_bio->sector;
2381 		wbio->bi_iter.bi_size = r1_bio->sectors << 9;
2382 
2383 		bio_trim(wbio, sector - r1_bio->sector, sectors);
2384 		wbio->bi_iter.bi_sector += rdev->data_offset;
2385 		bio_set_dev(wbio, rdev->bdev);
2386 
2387 		if (submit_bio_wait(wbio) < 0)
2388 			/* failure! */
2389 			ok = rdev_set_badblocks(rdev, sector,
2390 						sectors, 0)
2391 				&& ok;
2392 
2393 		bio_put(wbio);
2394 		sect_to_write -= sectors;
2395 		sector += sectors;
2396 		sectors = block_sectors;
2397 	}
2398 	return ok;
2399 }
2400 
2401 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2402 {
2403 	int m;
2404 	int s = r1_bio->sectors;
2405 	for (m = 0; m < conf->raid_disks * 2 ; m++) {
2406 		struct md_rdev *rdev = conf->mirrors[m].rdev;
2407 		struct bio *bio = r1_bio->bios[m];
2408 		if (bio->bi_end_io == NULL)
2409 			continue;
2410 		if (!bio->bi_status &&
2411 		    test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2412 			rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2413 		}
2414 		if (bio->bi_status &&
2415 		    test_bit(R1BIO_WriteError, &r1_bio->state)) {
2416 			if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2417 				md_error(conf->mddev, rdev);
2418 		}
2419 	}
2420 	put_buf(r1_bio);
2421 	md_done_sync(conf->mddev, s, 1);
2422 }
2423 
2424 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2425 {
2426 	int m, idx;
2427 	bool fail = false;
2428 
2429 	for (m = 0; m < conf->raid_disks * 2 ; m++)
2430 		if (r1_bio->bios[m] == IO_MADE_GOOD) {
2431 			struct md_rdev *rdev = conf->mirrors[m].rdev;
2432 			rdev_clear_badblocks(rdev,
2433 					     r1_bio->sector,
2434 					     r1_bio->sectors, 0);
2435 			rdev_dec_pending(rdev, conf->mddev);
2436 		} else if (r1_bio->bios[m] != NULL) {
2437 			/* This drive got a write error.  We need to
2438 			 * narrow down and record precise write
2439 			 * errors.
2440 			 */
2441 			fail = true;
2442 			if (!narrow_write_error(r1_bio, m)) {
2443 				md_error(conf->mddev,
2444 					 conf->mirrors[m].rdev);
2445 				/* an I/O failed, we can't clear the bitmap */
2446 				set_bit(R1BIO_Degraded, &r1_bio->state);
2447 			}
2448 			rdev_dec_pending(conf->mirrors[m].rdev,
2449 					 conf->mddev);
2450 		}
2451 	if (fail) {
2452 		spin_lock_irq(&conf->device_lock);
2453 		list_add(&r1_bio->retry_list, &conf->bio_end_io_list);
2454 		idx = sector_to_idx(r1_bio->sector);
2455 		atomic_inc(&conf->nr_queued[idx]);
2456 		spin_unlock_irq(&conf->device_lock);
2457 		/*
2458 		 * In case freeze_array() is waiting for condition
2459 		 * get_unqueued_pending() == extra to be true.
2460 		 */
2461 		wake_up(&conf->wait_barrier);
2462 		md_wakeup_thread(conf->mddev->thread);
2463 	} else {
2464 		if (test_bit(R1BIO_WriteError, &r1_bio->state))
2465 			close_write(r1_bio);
2466 		raid_end_bio_io(r1_bio);
2467 	}
2468 }
2469 
2470 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2471 {
2472 	struct mddev *mddev = conf->mddev;
2473 	struct bio *bio;
2474 	struct md_rdev *rdev;
2475 
2476 	clear_bit(R1BIO_ReadError, &r1_bio->state);
2477 	/* we got a read error. Maybe the drive is bad.  Maybe just
2478 	 * the block and we can fix it.
2479 	 * We freeze all other IO, and try reading the block from
2480 	 * other devices.  When we find one, we re-write
2481 	 * and check it that fixes the read error.
2482 	 * This is all done synchronously while the array is
2483 	 * frozen
2484 	 */
2485 
2486 	bio = r1_bio->bios[r1_bio->read_disk];
2487 	bio_put(bio);
2488 	r1_bio->bios[r1_bio->read_disk] = NULL;
2489 
2490 	rdev = conf->mirrors[r1_bio->read_disk].rdev;
2491 	if (mddev->ro == 0
2492 	    && !test_bit(FailFast, &rdev->flags)) {
2493 		freeze_array(conf, 1);
2494 		fix_read_error(conf, r1_bio->read_disk,
2495 			       r1_bio->sector, r1_bio->sectors);
2496 		unfreeze_array(conf);
2497 	} else if (mddev->ro == 0 && test_bit(FailFast, &rdev->flags)) {
2498 		md_error(mddev, rdev);
2499 	} else {
2500 		r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED;
2501 	}
2502 
2503 	rdev_dec_pending(rdev, conf->mddev);
2504 	allow_barrier(conf, r1_bio->sector);
2505 	bio = r1_bio->master_bio;
2506 
2507 	/* Reuse the old r1_bio so that the IO_BLOCKED settings are preserved */
2508 	r1_bio->state = 0;
2509 	raid1_read_request(mddev, bio, r1_bio->sectors, r1_bio);
2510 }
2511 
2512 static void raid1d(struct md_thread *thread)
2513 {
2514 	struct mddev *mddev = thread->mddev;
2515 	struct r1bio *r1_bio;
2516 	unsigned long flags;
2517 	struct r1conf *conf = mddev->private;
2518 	struct list_head *head = &conf->retry_list;
2519 	struct blk_plug plug;
2520 	int idx;
2521 
2522 	md_check_recovery(mddev);
2523 
2524 	if (!list_empty_careful(&conf->bio_end_io_list) &&
2525 	    !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2526 		LIST_HEAD(tmp);
2527 		spin_lock_irqsave(&conf->device_lock, flags);
2528 		if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
2529 			list_splice_init(&conf->bio_end_io_list, &tmp);
2530 		spin_unlock_irqrestore(&conf->device_lock, flags);
2531 		while (!list_empty(&tmp)) {
2532 			r1_bio = list_first_entry(&tmp, struct r1bio,
2533 						  retry_list);
2534 			list_del(&r1_bio->retry_list);
2535 			idx = sector_to_idx(r1_bio->sector);
2536 			atomic_dec(&conf->nr_queued[idx]);
2537 			if (mddev->degraded)
2538 				set_bit(R1BIO_Degraded, &r1_bio->state);
2539 			if (test_bit(R1BIO_WriteError, &r1_bio->state))
2540 				close_write(r1_bio);
2541 			raid_end_bio_io(r1_bio);
2542 		}
2543 	}
2544 
2545 	blk_start_plug(&plug);
2546 	for (;;) {
2547 
2548 		flush_pending_writes(conf);
2549 
2550 		spin_lock_irqsave(&conf->device_lock, flags);
2551 		if (list_empty(head)) {
2552 			spin_unlock_irqrestore(&conf->device_lock, flags);
2553 			break;
2554 		}
2555 		r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2556 		list_del(head->prev);
2557 		idx = sector_to_idx(r1_bio->sector);
2558 		atomic_dec(&conf->nr_queued[idx]);
2559 		spin_unlock_irqrestore(&conf->device_lock, flags);
2560 
2561 		mddev = r1_bio->mddev;
2562 		conf = mddev->private;
2563 		if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2564 			if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2565 			    test_bit(R1BIO_WriteError, &r1_bio->state))
2566 				handle_sync_write_finished(conf, r1_bio);
2567 			else
2568 				sync_request_write(mddev, r1_bio);
2569 		} else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2570 			   test_bit(R1BIO_WriteError, &r1_bio->state))
2571 			handle_write_finished(conf, r1_bio);
2572 		else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2573 			handle_read_error(conf, r1_bio);
2574 		else
2575 			WARN_ON_ONCE(1);
2576 
2577 		cond_resched();
2578 		if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
2579 			md_check_recovery(mddev);
2580 	}
2581 	blk_finish_plug(&plug);
2582 }
2583 
2584 static int init_resync(struct r1conf *conf)
2585 {
2586 	int buffs;
2587 
2588 	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2589 	BUG_ON(mempool_initialized(&conf->r1buf_pool));
2590 
2591 	return mempool_init(&conf->r1buf_pool, buffs, r1buf_pool_alloc,
2592 			    r1buf_pool_free, conf->poolinfo);
2593 }
2594 
2595 static struct r1bio *raid1_alloc_init_r1buf(struct r1conf *conf)
2596 {
2597 	struct r1bio *r1bio = mempool_alloc(&conf->r1buf_pool, GFP_NOIO);
2598 	struct resync_pages *rps;
2599 	struct bio *bio;
2600 	int i;
2601 
2602 	for (i = conf->poolinfo->raid_disks; i--; ) {
2603 		bio = r1bio->bios[i];
2604 		rps = bio->bi_private;
2605 		bio_reset(bio);
2606 		bio->bi_private = rps;
2607 	}
2608 	r1bio->master_bio = NULL;
2609 	return r1bio;
2610 }
2611 
2612 /*
2613  * perform a "sync" on one "block"
2614  *
2615  * We need to make sure that no normal I/O request - particularly write
2616  * requests - conflict with active sync requests.
2617  *
2618  * This is achieved by tracking pending requests and a 'barrier' concept
2619  * that can be installed to exclude normal IO requests.
2620  */
2621 
2622 static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr,
2623 				   int *skipped)
2624 {
2625 	struct r1conf *conf = mddev->private;
2626 	struct r1bio *r1_bio;
2627 	struct bio *bio;
2628 	sector_t max_sector, nr_sectors;
2629 	int disk = -1;
2630 	int i;
2631 	int wonly = -1;
2632 	int write_targets = 0, read_targets = 0;
2633 	sector_t sync_blocks;
2634 	int still_degraded = 0;
2635 	int good_sectors = RESYNC_SECTORS;
2636 	int min_bad = 0; /* number of sectors that are bad in all devices */
2637 	int idx = sector_to_idx(sector_nr);
2638 	int page_idx = 0;
2639 
2640 	if (!mempool_initialized(&conf->r1buf_pool))
2641 		if (init_resync(conf))
2642 			return 0;
2643 
2644 	max_sector = mddev->dev_sectors;
2645 	if (sector_nr >= max_sector) {
2646 		/* If we aborted, we need to abort the
2647 		 * sync on the 'current' bitmap chunk (there will
2648 		 * only be one in raid1 resync.
2649 		 * We can find the current addess in mddev->curr_resync
2650 		 */
2651 		if (mddev->curr_resync < max_sector) /* aborted */
2652 			md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2653 					   &sync_blocks, 1);
2654 		else /* completed sync */
2655 			conf->fullsync = 0;
2656 
2657 		md_bitmap_close_sync(mddev->bitmap);
2658 		close_sync(conf);
2659 
2660 		if (mddev_is_clustered(mddev)) {
2661 			conf->cluster_sync_low = 0;
2662 			conf->cluster_sync_high = 0;
2663 		}
2664 		return 0;
2665 	}
2666 
2667 	if (mddev->bitmap == NULL &&
2668 	    mddev->recovery_cp == MaxSector &&
2669 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2670 	    conf->fullsync == 0) {
2671 		*skipped = 1;
2672 		return max_sector - sector_nr;
2673 	}
2674 	/* before building a request, check if we can skip these blocks..
2675 	 * This call the bitmap_start_sync doesn't actually record anything
2676 	 */
2677 	if (!md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2678 	    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2679 		/* We can skip this block, and probably several more */
2680 		*skipped = 1;
2681 		return sync_blocks;
2682 	}
2683 
2684 	/*
2685 	 * If there is non-resync activity waiting for a turn, then let it
2686 	 * though before starting on this new sync request.
2687 	 */
2688 	if (atomic_read(&conf->nr_waiting[idx]))
2689 		schedule_timeout_uninterruptible(1);
2690 
2691 	/* we are incrementing sector_nr below. To be safe, we check against
2692 	 * sector_nr + two times RESYNC_SECTORS
2693 	 */
2694 
2695 	md_bitmap_cond_end_sync(mddev->bitmap, sector_nr,
2696 		mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
2697 
2698 
2699 	if (raise_barrier(conf, sector_nr))
2700 		return 0;
2701 
2702 	r1_bio = raid1_alloc_init_r1buf(conf);
2703 
2704 	rcu_read_lock();
2705 	/*
2706 	 * If we get a correctably read error during resync or recovery,
2707 	 * we might want to read from a different device.  So we
2708 	 * flag all drives that could conceivably be read from for READ,
2709 	 * and any others (which will be non-In_sync devices) for WRITE.
2710 	 * If a read fails, we try reading from something else for which READ
2711 	 * is OK.
2712 	 */
2713 
2714 	r1_bio->mddev = mddev;
2715 	r1_bio->sector = sector_nr;
2716 	r1_bio->state = 0;
2717 	set_bit(R1BIO_IsSync, &r1_bio->state);
2718 	/* make sure good_sectors won't go across barrier unit boundary */
2719 	good_sectors = align_to_barrier_unit_end(sector_nr, good_sectors);
2720 
2721 	for (i = 0; i < conf->raid_disks * 2; i++) {
2722 		struct md_rdev *rdev;
2723 		bio = r1_bio->bios[i];
2724 
2725 		rdev = rcu_dereference(conf->mirrors[i].rdev);
2726 		if (rdev == NULL ||
2727 		    test_bit(Faulty, &rdev->flags)) {
2728 			if (i < conf->raid_disks)
2729 				still_degraded = 1;
2730 		} else if (!test_bit(In_sync, &rdev->flags)) {
2731 			bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2732 			bio->bi_end_io = end_sync_write;
2733 			write_targets ++;
2734 		} else {
2735 			/* may need to read from here */
2736 			sector_t first_bad = MaxSector;
2737 			int bad_sectors;
2738 
2739 			if (is_badblock(rdev, sector_nr, good_sectors,
2740 					&first_bad, &bad_sectors)) {
2741 				if (first_bad > sector_nr)
2742 					good_sectors = first_bad - sector_nr;
2743 				else {
2744 					bad_sectors -= (sector_nr - first_bad);
2745 					if (min_bad == 0 ||
2746 					    min_bad > bad_sectors)
2747 						min_bad = bad_sectors;
2748 				}
2749 			}
2750 			if (sector_nr < first_bad) {
2751 				if (test_bit(WriteMostly, &rdev->flags)) {
2752 					if (wonly < 0)
2753 						wonly = i;
2754 				} else {
2755 					if (disk < 0)
2756 						disk = i;
2757 				}
2758 				bio_set_op_attrs(bio, REQ_OP_READ, 0);
2759 				bio->bi_end_io = end_sync_read;
2760 				read_targets++;
2761 			} else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2762 				test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2763 				!test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2764 				/*
2765 				 * The device is suitable for reading (InSync),
2766 				 * but has bad block(s) here. Let's try to correct them,
2767 				 * if we are doing resync or repair. Otherwise, leave
2768 				 * this device alone for this sync request.
2769 				 */
2770 				bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2771 				bio->bi_end_io = end_sync_write;
2772 				write_targets++;
2773 			}
2774 		}
2775 		if (rdev && bio->bi_end_io) {
2776 			atomic_inc(&rdev->nr_pending);
2777 			bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
2778 			bio_set_dev(bio, rdev->bdev);
2779 			if (test_bit(FailFast, &rdev->flags))
2780 				bio->bi_opf |= MD_FAILFAST;
2781 		}
2782 	}
2783 	rcu_read_unlock();
2784 	if (disk < 0)
2785 		disk = wonly;
2786 	r1_bio->read_disk = disk;
2787 
2788 	if (read_targets == 0 && min_bad > 0) {
2789 		/* These sectors are bad on all InSync devices, so we
2790 		 * need to mark them bad on all write targets
2791 		 */
2792 		int ok = 1;
2793 		for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2794 			if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2795 				struct md_rdev *rdev = conf->mirrors[i].rdev;
2796 				ok = rdev_set_badblocks(rdev, sector_nr,
2797 							min_bad, 0
2798 					) && ok;
2799 			}
2800 		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2801 		*skipped = 1;
2802 		put_buf(r1_bio);
2803 
2804 		if (!ok) {
2805 			/* Cannot record the badblocks, so need to
2806 			 * abort the resync.
2807 			 * If there are multiple read targets, could just
2808 			 * fail the really bad ones ???
2809 			 */
2810 			conf->recovery_disabled = mddev->recovery_disabled;
2811 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2812 			return 0;
2813 		} else
2814 			return min_bad;
2815 
2816 	}
2817 	if (min_bad > 0 && min_bad < good_sectors) {
2818 		/* only resync enough to reach the next bad->good
2819 		 * transition */
2820 		good_sectors = min_bad;
2821 	}
2822 
2823 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2824 		/* extra read targets are also write targets */
2825 		write_targets += read_targets-1;
2826 
2827 	if (write_targets == 0 || read_targets == 0) {
2828 		/* There is nowhere to write, so all non-sync
2829 		 * drives must be failed - so we are finished
2830 		 */
2831 		sector_t rv;
2832 		if (min_bad > 0)
2833 			max_sector = sector_nr + min_bad;
2834 		rv = max_sector - sector_nr;
2835 		*skipped = 1;
2836 		put_buf(r1_bio);
2837 		return rv;
2838 	}
2839 
2840 	if (max_sector > mddev->resync_max)
2841 		max_sector = mddev->resync_max; /* Don't do IO beyond here */
2842 	if (max_sector > sector_nr + good_sectors)
2843 		max_sector = sector_nr + good_sectors;
2844 	nr_sectors = 0;
2845 	sync_blocks = 0;
2846 	do {
2847 		struct page *page;
2848 		int len = PAGE_SIZE;
2849 		if (sector_nr + (len>>9) > max_sector)
2850 			len = (max_sector - sector_nr) << 9;
2851 		if (len == 0)
2852 			break;
2853 		if (sync_blocks == 0) {
2854 			if (!md_bitmap_start_sync(mddev->bitmap, sector_nr,
2855 						  &sync_blocks, still_degraded) &&
2856 			    !conf->fullsync &&
2857 			    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2858 				break;
2859 			if ((len >> 9) > sync_blocks)
2860 				len = sync_blocks<<9;
2861 		}
2862 
2863 		for (i = 0 ; i < conf->raid_disks * 2; i++) {
2864 			struct resync_pages *rp;
2865 
2866 			bio = r1_bio->bios[i];
2867 			rp = get_resync_pages(bio);
2868 			if (bio->bi_end_io) {
2869 				page = resync_fetch_page(rp, page_idx);
2870 
2871 				/*
2872 				 * won't fail because the vec table is big
2873 				 * enough to hold all these pages
2874 				 */
2875 				bio_add_page(bio, page, len, 0);
2876 			}
2877 		}
2878 		nr_sectors += len>>9;
2879 		sector_nr += len>>9;
2880 		sync_blocks -= (len>>9);
2881 	} while (++page_idx < RESYNC_PAGES);
2882 
2883 	r1_bio->sectors = nr_sectors;
2884 
2885 	if (mddev_is_clustered(mddev) &&
2886 			conf->cluster_sync_high < sector_nr + nr_sectors) {
2887 		conf->cluster_sync_low = mddev->curr_resync_completed;
2888 		conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS;
2889 		/* Send resync message */
2890 		md_cluster_ops->resync_info_update(mddev,
2891 				conf->cluster_sync_low,
2892 				conf->cluster_sync_high);
2893 	}
2894 
2895 	/* For a user-requested sync, we read all readable devices and do a
2896 	 * compare
2897 	 */
2898 	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2899 		atomic_set(&r1_bio->remaining, read_targets);
2900 		for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2901 			bio = r1_bio->bios[i];
2902 			if (bio->bi_end_io == end_sync_read) {
2903 				read_targets--;
2904 				md_sync_acct_bio(bio, nr_sectors);
2905 				if (read_targets == 1)
2906 					bio->bi_opf &= ~MD_FAILFAST;
2907 				submit_bio_noacct(bio);
2908 			}
2909 		}
2910 	} else {
2911 		atomic_set(&r1_bio->remaining, 1);
2912 		bio = r1_bio->bios[r1_bio->read_disk];
2913 		md_sync_acct_bio(bio, nr_sectors);
2914 		if (read_targets == 1)
2915 			bio->bi_opf &= ~MD_FAILFAST;
2916 		submit_bio_noacct(bio);
2917 	}
2918 	return nr_sectors;
2919 }
2920 
2921 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2922 {
2923 	if (sectors)
2924 		return sectors;
2925 
2926 	return mddev->dev_sectors;
2927 }
2928 
2929 static struct r1conf *setup_conf(struct mddev *mddev)
2930 {
2931 	struct r1conf *conf;
2932 	int i;
2933 	struct raid1_info *disk;
2934 	struct md_rdev *rdev;
2935 	int err = -ENOMEM;
2936 
2937 	conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2938 	if (!conf)
2939 		goto abort;
2940 
2941 	conf->nr_pending = kcalloc(BARRIER_BUCKETS_NR,
2942 				   sizeof(atomic_t), GFP_KERNEL);
2943 	if (!conf->nr_pending)
2944 		goto abort;
2945 
2946 	conf->nr_waiting = kcalloc(BARRIER_BUCKETS_NR,
2947 				   sizeof(atomic_t), GFP_KERNEL);
2948 	if (!conf->nr_waiting)
2949 		goto abort;
2950 
2951 	conf->nr_queued = kcalloc(BARRIER_BUCKETS_NR,
2952 				  sizeof(atomic_t), GFP_KERNEL);
2953 	if (!conf->nr_queued)
2954 		goto abort;
2955 
2956 	conf->barrier = kcalloc(BARRIER_BUCKETS_NR,
2957 				sizeof(atomic_t), GFP_KERNEL);
2958 	if (!conf->barrier)
2959 		goto abort;
2960 
2961 	conf->mirrors = kzalloc(array3_size(sizeof(struct raid1_info),
2962 					    mddev->raid_disks, 2),
2963 				GFP_KERNEL);
2964 	if (!conf->mirrors)
2965 		goto abort;
2966 
2967 	conf->tmppage = alloc_page(GFP_KERNEL);
2968 	if (!conf->tmppage)
2969 		goto abort;
2970 
2971 	conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
2972 	if (!conf->poolinfo)
2973 		goto abort;
2974 	conf->poolinfo->raid_disks = mddev->raid_disks * 2;
2975 	err = mempool_init(&conf->r1bio_pool, NR_RAID_BIOS, r1bio_pool_alloc,
2976 			   rbio_pool_free, conf->poolinfo);
2977 	if (err)
2978 		goto abort;
2979 
2980 	err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
2981 	if (err)
2982 		goto abort;
2983 
2984 	conf->poolinfo->mddev = mddev;
2985 
2986 	err = -EINVAL;
2987 	spin_lock_init(&conf->device_lock);
2988 	rdev_for_each(rdev, mddev) {
2989 		int disk_idx = rdev->raid_disk;
2990 		if (disk_idx >= mddev->raid_disks
2991 		    || disk_idx < 0)
2992 			continue;
2993 		if (test_bit(Replacement, &rdev->flags))
2994 			disk = conf->mirrors + mddev->raid_disks + disk_idx;
2995 		else
2996 			disk = conf->mirrors + disk_idx;
2997 
2998 		if (disk->rdev)
2999 			goto abort;
3000 		disk->rdev = rdev;
3001 		disk->head_position = 0;
3002 		disk->seq_start = MaxSector;
3003 	}
3004 	conf->raid_disks = mddev->raid_disks;
3005 	conf->mddev = mddev;
3006 	INIT_LIST_HEAD(&conf->retry_list);
3007 	INIT_LIST_HEAD(&conf->bio_end_io_list);
3008 
3009 	spin_lock_init(&conf->resync_lock);
3010 	init_waitqueue_head(&conf->wait_barrier);
3011 
3012 	bio_list_init(&conf->pending_bio_list);
3013 	conf->pending_count = 0;
3014 	conf->recovery_disabled = mddev->recovery_disabled - 1;
3015 
3016 	err = -EIO;
3017 	for (i = 0; i < conf->raid_disks * 2; i++) {
3018 
3019 		disk = conf->mirrors + i;
3020 
3021 		if (i < conf->raid_disks &&
3022 		    disk[conf->raid_disks].rdev) {
3023 			/* This slot has a replacement. */
3024 			if (!disk->rdev) {
3025 				/* No original, just make the replacement
3026 				 * a recovering spare
3027 				 */
3028 				disk->rdev =
3029 					disk[conf->raid_disks].rdev;
3030 				disk[conf->raid_disks].rdev = NULL;
3031 			} else if (!test_bit(In_sync, &disk->rdev->flags))
3032 				/* Original is not in_sync - bad */
3033 				goto abort;
3034 		}
3035 
3036 		if (!disk->rdev ||
3037 		    !test_bit(In_sync, &disk->rdev->flags)) {
3038 			disk->head_position = 0;
3039 			if (disk->rdev &&
3040 			    (disk->rdev->saved_raid_disk < 0))
3041 				conf->fullsync = 1;
3042 		}
3043 	}
3044 
3045 	err = -ENOMEM;
3046 	conf->thread = md_register_thread(raid1d, mddev, "raid1");
3047 	if (!conf->thread)
3048 		goto abort;
3049 
3050 	return conf;
3051 
3052  abort:
3053 	if (conf) {
3054 		mempool_exit(&conf->r1bio_pool);
3055 		kfree(conf->mirrors);
3056 		safe_put_page(conf->tmppage);
3057 		kfree(conf->poolinfo);
3058 		kfree(conf->nr_pending);
3059 		kfree(conf->nr_waiting);
3060 		kfree(conf->nr_queued);
3061 		kfree(conf->barrier);
3062 		bioset_exit(&conf->bio_split);
3063 		kfree(conf);
3064 	}
3065 	return ERR_PTR(err);
3066 }
3067 
3068 static void raid1_free(struct mddev *mddev, void *priv);
3069 static int raid1_run(struct mddev *mddev)
3070 {
3071 	struct r1conf *conf;
3072 	int i;
3073 	struct md_rdev *rdev;
3074 	int ret;
3075 	bool discard_supported = false;
3076 
3077 	if (mddev->level != 1) {
3078 		pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n",
3079 			mdname(mddev), mddev->level);
3080 		return -EIO;
3081 	}
3082 	if (mddev->reshape_position != MaxSector) {
3083 		pr_warn("md/raid1:%s: reshape_position set but not supported\n",
3084 			mdname(mddev));
3085 		return -EIO;
3086 	}
3087 	if (mddev_init_writes_pending(mddev) < 0)
3088 		return -ENOMEM;
3089 	/*
3090 	 * copy the already verified devices into our private RAID1
3091 	 * bookkeeping area. [whatever we allocate in run(),
3092 	 * should be freed in raid1_free()]
3093 	 */
3094 	if (mddev->private == NULL)
3095 		conf = setup_conf(mddev);
3096 	else
3097 		conf = mddev->private;
3098 
3099 	if (IS_ERR(conf))
3100 		return PTR_ERR(conf);
3101 
3102 	if (mddev->queue) {
3103 		blk_queue_max_write_same_sectors(mddev->queue, 0);
3104 		blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
3105 	}
3106 
3107 	rdev_for_each(rdev, mddev) {
3108 		if (!mddev->gendisk)
3109 			continue;
3110 		disk_stack_limits(mddev->gendisk, rdev->bdev,
3111 				  rdev->data_offset << 9);
3112 		if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3113 			discard_supported = true;
3114 	}
3115 
3116 	mddev->degraded = 0;
3117 	for (i = 0; i < conf->raid_disks; i++)
3118 		if (conf->mirrors[i].rdev == NULL ||
3119 		    !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
3120 		    test_bit(Faulty, &conf->mirrors[i].rdev->flags))
3121 			mddev->degraded++;
3122 	/*
3123 	 * RAID1 needs at least one disk in active
3124 	 */
3125 	if (conf->raid_disks - mddev->degraded < 1) {
3126 		ret = -EINVAL;
3127 		goto abort;
3128 	}
3129 
3130 	if (conf->raid_disks - mddev->degraded == 1)
3131 		mddev->recovery_cp = MaxSector;
3132 
3133 	if (mddev->recovery_cp != MaxSector)
3134 		pr_info("md/raid1:%s: not clean -- starting background reconstruction\n",
3135 			mdname(mddev));
3136 	pr_info("md/raid1:%s: active with %d out of %d mirrors\n",
3137 		mdname(mddev), mddev->raid_disks - mddev->degraded,
3138 		mddev->raid_disks);
3139 
3140 	/*
3141 	 * Ok, everything is just fine now
3142 	 */
3143 	mddev->thread = conf->thread;
3144 	conf->thread = NULL;
3145 	mddev->private = conf;
3146 	set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
3147 
3148 	md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
3149 
3150 	if (mddev->queue) {
3151 		if (discard_supported)
3152 			blk_queue_flag_set(QUEUE_FLAG_DISCARD,
3153 						mddev->queue);
3154 		else
3155 			blk_queue_flag_clear(QUEUE_FLAG_DISCARD,
3156 						  mddev->queue);
3157 	}
3158 
3159 	ret = md_integrity_register(mddev);
3160 	if (ret) {
3161 		md_unregister_thread(&mddev->thread);
3162 		goto abort;
3163 	}
3164 	return 0;
3165 
3166 abort:
3167 	raid1_free(mddev, conf);
3168 	return ret;
3169 }
3170 
3171 static void raid1_free(struct mddev *mddev, void *priv)
3172 {
3173 	struct r1conf *conf = priv;
3174 
3175 	mempool_exit(&conf->r1bio_pool);
3176 	kfree(conf->mirrors);
3177 	safe_put_page(conf->tmppage);
3178 	kfree(conf->poolinfo);
3179 	kfree(conf->nr_pending);
3180 	kfree(conf->nr_waiting);
3181 	kfree(conf->nr_queued);
3182 	kfree(conf->barrier);
3183 	bioset_exit(&conf->bio_split);
3184 	kfree(conf);
3185 }
3186 
3187 static int raid1_resize(struct mddev *mddev, sector_t sectors)
3188 {
3189 	/* no resync is happening, and there is enough space
3190 	 * on all devices, so we can resize.
3191 	 * We need to make sure resync covers any new space.
3192 	 * If the array is shrinking we should possibly wait until
3193 	 * any io in the removed space completes, but it hardly seems
3194 	 * worth it.
3195 	 */
3196 	sector_t newsize = raid1_size(mddev, sectors, 0);
3197 	if (mddev->external_size &&
3198 	    mddev->array_sectors > newsize)
3199 		return -EINVAL;
3200 	if (mddev->bitmap) {
3201 		int ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
3202 		if (ret)
3203 			return ret;
3204 	}
3205 	md_set_array_sectors(mddev, newsize);
3206 	if (sectors > mddev->dev_sectors &&
3207 	    mddev->recovery_cp > mddev->dev_sectors) {
3208 		mddev->recovery_cp = mddev->dev_sectors;
3209 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3210 	}
3211 	mddev->dev_sectors = sectors;
3212 	mddev->resync_max_sectors = sectors;
3213 	return 0;
3214 }
3215 
3216 static int raid1_reshape(struct mddev *mddev)
3217 {
3218 	/* We need to:
3219 	 * 1/ resize the r1bio_pool
3220 	 * 2/ resize conf->mirrors
3221 	 *
3222 	 * We allocate a new r1bio_pool if we can.
3223 	 * Then raise a device barrier and wait until all IO stops.
3224 	 * Then resize conf->mirrors and swap in the new r1bio pool.
3225 	 *
3226 	 * At the same time, we "pack" the devices so that all the missing
3227 	 * devices have the higher raid_disk numbers.
3228 	 */
3229 	mempool_t newpool, oldpool;
3230 	struct pool_info *newpoolinfo;
3231 	struct raid1_info *newmirrors;
3232 	struct r1conf *conf = mddev->private;
3233 	int cnt, raid_disks;
3234 	unsigned long flags;
3235 	int d, d2;
3236 	int ret;
3237 
3238 	memset(&newpool, 0, sizeof(newpool));
3239 	memset(&oldpool, 0, sizeof(oldpool));
3240 
3241 	/* Cannot change chunk_size, layout, or level */
3242 	if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3243 	    mddev->layout != mddev->new_layout ||
3244 	    mddev->level != mddev->new_level) {
3245 		mddev->new_chunk_sectors = mddev->chunk_sectors;
3246 		mddev->new_layout = mddev->layout;
3247 		mddev->new_level = mddev->level;
3248 		return -EINVAL;
3249 	}
3250 
3251 	if (!mddev_is_clustered(mddev))
3252 		md_allow_write(mddev);
3253 
3254 	raid_disks = mddev->raid_disks + mddev->delta_disks;
3255 
3256 	if (raid_disks < conf->raid_disks) {
3257 		cnt=0;
3258 		for (d= 0; d < conf->raid_disks; d++)
3259 			if (conf->mirrors[d].rdev)
3260 				cnt++;
3261 		if (cnt > raid_disks)
3262 			return -EBUSY;
3263 	}
3264 
3265 	newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3266 	if (!newpoolinfo)
3267 		return -ENOMEM;
3268 	newpoolinfo->mddev = mddev;
3269 	newpoolinfo->raid_disks = raid_disks * 2;
3270 
3271 	ret = mempool_init(&newpool, NR_RAID_BIOS, r1bio_pool_alloc,
3272 			   rbio_pool_free, newpoolinfo);
3273 	if (ret) {
3274 		kfree(newpoolinfo);
3275 		return ret;
3276 	}
3277 	newmirrors = kzalloc(array3_size(sizeof(struct raid1_info),
3278 					 raid_disks, 2),
3279 			     GFP_KERNEL);
3280 	if (!newmirrors) {
3281 		kfree(newpoolinfo);
3282 		mempool_exit(&newpool);
3283 		return -ENOMEM;
3284 	}
3285 
3286 	freeze_array(conf, 0);
3287 
3288 	/* ok, everything is stopped */
3289 	oldpool = conf->r1bio_pool;
3290 	conf->r1bio_pool = newpool;
3291 
3292 	for (d = d2 = 0; d < conf->raid_disks; d++) {
3293 		struct md_rdev *rdev = conf->mirrors[d].rdev;
3294 		if (rdev && rdev->raid_disk != d2) {
3295 			sysfs_unlink_rdev(mddev, rdev);
3296 			rdev->raid_disk = d2;
3297 			sysfs_unlink_rdev(mddev, rdev);
3298 			if (sysfs_link_rdev(mddev, rdev))
3299 				pr_warn("md/raid1:%s: cannot register rd%d\n",
3300 					mdname(mddev), rdev->raid_disk);
3301 		}
3302 		if (rdev)
3303 			newmirrors[d2++].rdev = rdev;
3304 	}
3305 	kfree(conf->mirrors);
3306 	conf->mirrors = newmirrors;
3307 	kfree(conf->poolinfo);
3308 	conf->poolinfo = newpoolinfo;
3309 
3310 	spin_lock_irqsave(&conf->device_lock, flags);
3311 	mddev->degraded += (raid_disks - conf->raid_disks);
3312 	spin_unlock_irqrestore(&conf->device_lock, flags);
3313 	conf->raid_disks = mddev->raid_disks = raid_disks;
3314 	mddev->delta_disks = 0;
3315 
3316 	unfreeze_array(conf);
3317 
3318 	set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3319 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3320 	md_wakeup_thread(mddev->thread);
3321 
3322 	mempool_exit(&oldpool);
3323 	return 0;
3324 }
3325 
3326 static void raid1_quiesce(struct mddev *mddev, int quiesce)
3327 {
3328 	struct r1conf *conf = mddev->private;
3329 
3330 	if (quiesce)
3331 		freeze_array(conf, 0);
3332 	else
3333 		unfreeze_array(conf);
3334 }
3335 
3336 static void *raid1_takeover(struct mddev *mddev)
3337 {
3338 	/* raid1 can take over:
3339 	 *  raid5 with 2 devices, any layout or chunk size
3340 	 */
3341 	if (mddev->level == 5 && mddev->raid_disks == 2) {
3342 		struct r1conf *conf;
3343 		mddev->new_level = 1;
3344 		mddev->new_layout = 0;
3345 		mddev->new_chunk_sectors = 0;
3346 		conf = setup_conf(mddev);
3347 		if (!IS_ERR(conf)) {
3348 			/* Array must appear to be quiesced */
3349 			conf->array_frozen = 1;
3350 			mddev_clear_unsupported_flags(mddev,
3351 				UNSUPPORTED_MDDEV_FLAGS);
3352 		}
3353 		return conf;
3354 	}
3355 	return ERR_PTR(-EINVAL);
3356 }
3357 
3358 static struct md_personality raid1_personality =
3359 {
3360 	.name		= "raid1",
3361 	.level		= 1,
3362 	.owner		= THIS_MODULE,
3363 	.make_request	= raid1_make_request,
3364 	.run		= raid1_run,
3365 	.free		= raid1_free,
3366 	.status		= raid1_status,
3367 	.error_handler	= raid1_error,
3368 	.hot_add_disk	= raid1_add_disk,
3369 	.hot_remove_disk= raid1_remove_disk,
3370 	.spare_active	= raid1_spare_active,
3371 	.sync_request	= raid1_sync_request,
3372 	.resize		= raid1_resize,
3373 	.size		= raid1_size,
3374 	.check_reshape	= raid1_reshape,
3375 	.quiesce	= raid1_quiesce,
3376 	.takeover	= raid1_takeover,
3377 };
3378 
3379 static int __init raid_init(void)
3380 {
3381 	return register_md_personality(&raid1_personality);
3382 }
3383 
3384 static void raid_exit(void)
3385 {
3386 	unregister_md_personality(&raid1_personality);
3387 }
3388 
3389 module_init(raid_init);
3390 module_exit(raid_exit);
3391 MODULE_LICENSE("GPL");
3392 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3393 MODULE_ALIAS("md-personality-3"); /* RAID1 */
3394 MODULE_ALIAS("md-raid1");
3395 MODULE_ALIAS("md-level-1");
3396 
3397 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
3398