xref: /openbmc/linux/drivers/md/raid1.c (revision c819e2cf)
1 /*
2  * raid1.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5  *
6  * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7  *
8  * RAID-1 management functions.
9  *
10  * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11  *
12  * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
13  * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14  *
15  * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16  * bitmapped intelligence in resync:
17  *
18  *      - bitmap marked during normal i/o
19  *      - bitmap used to skip nondirty blocks during sync
20  *
21  * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22  * - persistent bitmap code
23  *
24  * This program is free software; you can redistribute it and/or modify
25  * it under the terms of the GNU General Public License as published by
26  * the Free Software Foundation; either version 2, or (at your option)
27  * any later version.
28  *
29  * You should have received a copy of the GNU General Public License
30  * (for example /usr/src/linux/COPYING); if not, write to the Free
31  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32  */
33 
34 #include <linux/slab.h>
35 #include <linux/delay.h>
36 #include <linux/blkdev.h>
37 #include <linux/module.h>
38 #include <linux/seq_file.h>
39 #include <linux/ratelimit.h>
40 #include "md.h"
41 #include "raid1.h"
42 #include "bitmap.h"
43 
44 /*
45  * Number of guaranteed r1bios in case of extreme VM load:
46  */
47 #define	NR_RAID1_BIOS 256
48 
49 /* when we get a read error on a read-only array, we redirect to another
50  * device without failing the first device, or trying to over-write to
51  * correct the read error.  To keep track of bad blocks on a per-bio
52  * level, we store IO_BLOCKED in the appropriate 'bios' pointer
53  */
54 #define IO_BLOCKED ((struct bio *)1)
55 /* When we successfully write to a known bad-block, we need to remove the
56  * bad-block marking which must be done from process context.  So we record
57  * the success by setting devs[n].bio to IO_MADE_GOOD
58  */
59 #define IO_MADE_GOOD ((struct bio *)2)
60 
61 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
62 
63 /* When there are this many requests queue to be written by
64  * the raid1 thread, we become 'congested' to provide back-pressure
65  * for writeback.
66  */
67 static int max_queued_requests = 1024;
68 
69 static void allow_barrier(struct r1conf *conf, sector_t start_next_window,
70 			  sector_t bi_sector);
71 static void lower_barrier(struct r1conf *conf);
72 
73 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
74 {
75 	struct pool_info *pi = data;
76 	int size = offsetof(struct r1bio, bios[pi->raid_disks]);
77 
78 	/* allocate a r1bio with room for raid_disks entries in the bios array */
79 	return kzalloc(size, gfp_flags);
80 }
81 
82 static void r1bio_pool_free(void *r1_bio, void *data)
83 {
84 	kfree(r1_bio);
85 }
86 
87 #define RESYNC_BLOCK_SIZE (64*1024)
88 #define RESYNC_DEPTH 32
89 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
90 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
91 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
92 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
93 #define NEXT_NORMALIO_DISTANCE (3 * RESYNC_WINDOW_SECTORS)
94 
95 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
96 {
97 	struct pool_info *pi = data;
98 	struct r1bio *r1_bio;
99 	struct bio *bio;
100 	int need_pages;
101 	int i, j;
102 
103 	r1_bio = r1bio_pool_alloc(gfp_flags, pi);
104 	if (!r1_bio)
105 		return NULL;
106 
107 	/*
108 	 * Allocate bios : 1 for reading, n-1 for writing
109 	 */
110 	for (j = pi->raid_disks ; j-- ; ) {
111 		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
112 		if (!bio)
113 			goto out_free_bio;
114 		r1_bio->bios[j] = bio;
115 	}
116 	/*
117 	 * Allocate RESYNC_PAGES data pages and attach them to
118 	 * the first bio.
119 	 * If this is a user-requested check/repair, allocate
120 	 * RESYNC_PAGES for each bio.
121 	 */
122 	if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
123 		need_pages = pi->raid_disks;
124 	else
125 		need_pages = 1;
126 	for (j = 0; j < need_pages; j++) {
127 		bio = r1_bio->bios[j];
128 		bio->bi_vcnt = RESYNC_PAGES;
129 
130 		if (bio_alloc_pages(bio, gfp_flags))
131 			goto out_free_pages;
132 	}
133 	/* If not user-requests, copy the page pointers to all bios */
134 	if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
135 		for (i=0; i<RESYNC_PAGES ; i++)
136 			for (j=1; j<pi->raid_disks; j++)
137 				r1_bio->bios[j]->bi_io_vec[i].bv_page =
138 					r1_bio->bios[0]->bi_io_vec[i].bv_page;
139 	}
140 
141 	r1_bio->master_bio = NULL;
142 
143 	return r1_bio;
144 
145 out_free_pages:
146 	while (--j >= 0) {
147 		struct bio_vec *bv;
148 
149 		bio_for_each_segment_all(bv, r1_bio->bios[j], i)
150 			__free_page(bv->bv_page);
151 	}
152 
153 out_free_bio:
154 	while (++j < pi->raid_disks)
155 		bio_put(r1_bio->bios[j]);
156 	r1bio_pool_free(r1_bio, data);
157 	return NULL;
158 }
159 
160 static void r1buf_pool_free(void *__r1_bio, void *data)
161 {
162 	struct pool_info *pi = data;
163 	int i,j;
164 	struct r1bio *r1bio = __r1_bio;
165 
166 	for (i = 0; i < RESYNC_PAGES; i++)
167 		for (j = pi->raid_disks; j-- ;) {
168 			if (j == 0 ||
169 			    r1bio->bios[j]->bi_io_vec[i].bv_page !=
170 			    r1bio->bios[0]->bi_io_vec[i].bv_page)
171 				safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
172 		}
173 	for (i=0 ; i < pi->raid_disks; i++)
174 		bio_put(r1bio->bios[i]);
175 
176 	r1bio_pool_free(r1bio, data);
177 }
178 
179 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
180 {
181 	int i;
182 
183 	for (i = 0; i < conf->raid_disks * 2; i++) {
184 		struct bio **bio = r1_bio->bios + i;
185 		if (!BIO_SPECIAL(*bio))
186 			bio_put(*bio);
187 		*bio = NULL;
188 	}
189 }
190 
191 static void free_r1bio(struct r1bio *r1_bio)
192 {
193 	struct r1conf *conf = r1_bio->mddev->private;
194 
195 	put_all_bios(conf, r1_bio);
196 	mempool_free(r1_bio, conf->r1bio_pool);
197 }
198 
199 static void put_buf(struct r1bio *r1_bio)
200 {
201 	struct r1conf *conf = r1_bio->mddev->private;
202 	int i;
203 
204 	for (i = 0; i < conf->raid_disks * 2; i++) {
205 		struct bio *bio = r1_bio->bios[i];
206 		if (bio->bi_end_io)
207 			rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
208 	}
209 
210 	mempool_free(r1_bio, conf->r1buf_pool);
211 
212 	lower_barrier(conf);
213 }
214 
215 static void reschedule_retry(struct r1bio *r1_bio)
216 {
217 	unsigned long flags;
218 	struct mddev *mddev = r1_bio->mddev;
219 	struct r1conf *conf = mddev->private;
220 
221 	spin_lock_irqsave(&conf->device_lock, flags);
222 	list_add(&r1_bio->retry_list, &conf->retry_list);
223 	conf->nr_queued ++;
224 	spin_unlock_irqrestore(&conf->device_lock, flags);
225 
226 	wake_up(&conf->wait_barrier);
227 	md_wakeup_thread(mddev->thread);
228 }
229 
230 /*
231  * raid_end_bio_io() is called when we have finished servicing a mirrored
232  * operation and are ready to return a success/failure code to the buffer
233  * cache layer.
234  */
235 static void call_bio_endio(struct r1bio *r1_bio)
236 {
237 	struct bio *bio = r1_bio->master_bio;
238 	int done;
239 	struct r1conf *conf = r1_bio->mddev->private;
240 	sector_t start_next_window = r1_bio->start_next_window;
241 	sector_t bi_sector = bio->bi_iter.bi_sector;
242 
243 	if (bio->bi_phys_segments) {
244 		unsigned long flags;
245 		spin_lock_irqsave(&conf->device_lock, flags);
246 		bio->bi_phys_segments--;
247 		done = (bio->bi_phys_segments == 0);
248 		spin_unlock_irqrestore(&conf->device_lock, flags);
249 		/*
250 		 * make_request() might be waiting for
251 		 * bi_phys_segments to decrease
252 		 */
253 		wake_up(&conf->wait_barrier);
254 	} else
255 		done = 1;
256 
257 	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
258 		clear_bit(BIO_UPTODATE, &bio->bi_flags);
259 	if (done) {
260 		bio_endio(bio, 0);
261 		/*
262 		 * Wake up any possible resync thread that waits for the device
263 		 * to go idle.
264 		 */
265 		allow_barrier(conf, start_next_window, bi_sector);
266 	}
267 }
268 
269 static void raid_end_bio_io(struct r1bio *r1_bio)
270 {
271 	struct bio *bio = r1_bio->master_bio;
272 
273 	/* if nobody has done the final endio yet, do it now */
274 	if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
275 		pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
276 			 (bio_data_dir(bio) == WRITE) ? "write" : "read",
277 			 (unsigned long long) bio->bi_iter.bi_sector,
278 			 (unsigned long long) bio_end_sector(bio) - 1);
279 
280 		call_bio_endio(r1_bio);
281 	}
282 	free_r1bio(r1_bio);
283 }
284 
285 /*
286  * Update disk head position estimator based on IRQ completion info.
287  */
288 static inline void update_head_pos(int disk, struct r1bio *r1_bio)
289 {
290 	struct r1conf *conf = r1_bio->mddev->private;
291 
292 	conf->mirrors[disk].head_position =
293 		r1_bio->sector + (r1_bio->sectors);
294 }
295 
296 /*
297  * Find the disk number which triggered given bio
298  */
299 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
300 {
301 	int mirror;
302 	struct r1conf *conf = r1_bio->mddev->private;
303 	int raid_disks = conf->raid_disks;
304 
305 	for (mirror = 0; mirror < raid_disks * 2; mirror++)
306 		if (r1_bio->bios[mirror] == bio)
307 			break;
308 
309 	BUG_ON(mirror == raid_disks * 2);
310 	update_head_pos(mirror, r1_bio);
311 
312 	return mirror;
313 }
314 
315 static void raid1_end_read_request(struct bio *bio, int error)
316 {
317 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
318 	struct r1bio *r1_bio = bio->bi_private;
319 	int mirror;
320 	struct r1conf *conf = r1_bio->mddev->private;
321 
322 	mirror = r1_bio->read_disk;
323 	/*
324 	 * this branch is our 'one mirror IO has finished' event handler:
325 	 */
326 	update_head_pos(mirror, r1_bio);
327 
328 	if (uptodate)
329 		set_bit(R1BIO_Uptodate, &r1_bio->state);
330 	else {
331 		/* If all other devices have failed, we want to return
332 		 * the error upwards rather than fail the last device.
333 		 * Here we redefine "uptodate" to mean "Don't want to retry"
334 		 */
335 		unsigned long flags;
336 		spin_lock_irqsave(&conf->device_lock, flags);
337 		if (r1_bio->mddev->degraded == conf->raid_disks ||
338 		    (r1_bio->mddev->degraded == conf->raid_disks-1 &&
339 		     !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags)))
340 			uptodate = 1;
341 		spin_unlock_irqrestore(&conf->device_lock, flags);
342 	}
343 
344 	if (uptodate) {
345 		raid_end_bio_io(r1_bio);
346 		rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
347 	} else {
348 		/*
349 		 * oops, read error:
350 		 */
351 		char b[BDEVNAME_SIZE];
352 		printk_ratelimited(
353 			KERN_ERR "md/raid1:%s: %s: "
354 			"rescheduling sector %llu\n",
355 			mdname(conf->mddev),
356 			bdevname(conf->mirrors[mirror].rdev->bdev,
357 				 b),
358 			(unsigned long long)r1_bio->sector);
359 		set_bit(R1BIO_ReadError, &r1_bio->state);
360 		reschedule_retry(r1_bio);
361 		/* don't drop the reference on read_disk yet */
362 	}
363 }
364 
365 static void close_write(struct r1bio *r1_bio)
366 {
367 	/* it really is the end of this request */
368 	if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
369 		/* free extra copy of the data pages */
370 		int i = r1_bio->behind_page_count;
371 		while (i--)
372 			safe_put_page(r1_bio->behind_bvecs[i].bv_page);
373 		kfree(r1_bio->behind_bvecs);
374 		r1_bio->behind_bvecs = NULL;
375 	}
376 	/* clear the bitmap if all writes complete successfully */
377 	bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
378 			r1_bio->sectors,
379 			!test_bit(R1BIO_Degraded, &r1_bio->state),
380 			test_bit(R1BIO_BehindIO, &r1_bio->state));
381 	md_write_end(r1_bio->mddev);
382 }
383 
384 static void r1_bio_write_done(struct r1bio *r1_bio)
385 {
386 	if (!atomic_dec_and_test(&r1_bio->remaining))
387 		return;
388 
389 	if (test_bit(R1BIO_WriteError, &r1_bio->state))
390 		reschedule_retry(r1_bio);
391 	else {
392 		close_write(r1_bio);
393 		if (test_bit(R1BIO_MadeGood, &r1_bio->state))
394 			reschedule_retry(r1_bio);
395 		else
396 			raid_end_bio_io(r1_bio);
397 	}
398 }
399 
400 static void raid1_end_write_request(struct bio *bio, int error)
401 {
402 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
403 	struct r1bio *r1_bio = bio->bi_private;
404 	int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
405 	struct r1conf *conf = r1_bio->mddev->private;
406 	struct bio *to_put = NULL;
407 
408 	mirror = find_bio_disk(r1_bio, bio);
409 
410 	/*
411 	 * 'one mirror IO has finished' event handler:
412 	 */
413 	if (!uptodate) {
414 		set_bit(WriteErrorSeen,
415 			&conf->mirrors[mirror].rdev->flags);
416 		if (!test_and_set_bit(WantReplacement,
417 				      &conf->mirrors[mirror].rdev->flags))
418 			set_bit(MD_RECOVERY_NEEDED, &
419 				conf->mddev->recovery);
420 
421 		set_bit(R1BIO_WriteError, &r1_bio->state);
422 	} else {
423 		/*
424 		 * Set R1BIO_Uptodate in our master bio, so that we
425 		 * will return a good error code for to the higher
426 		 * levels even if IO on some other mirrored buffer
427 		 * fails.
428 		 *
429 		 * The 'master' represents the composite IO operation
430 		 * to user-side. So if something waits for IO, then it
431 		 * will wait for the 'master' bio.
432 		 */
433 		sector_t first_bad;
434 		int bad_sectors;
435 
436 		r1_bio->bios[mirror] = NULL;
437 		to_put = bio;
438 		/*
439 		 * Do not set R1BIO_Uptodate if the current device is
440 		 * rebuilding or Faulty. This is because we cannot use
441 		 * such device for properly reading the data back (we could
442 		 * potentially use it, if the current write would have felt
443 		 * before rdev->recovery_offset, but for simplicity we don't
444 		 * check this here.
445 		 */
446 		if (test_bit(In_sync, &conf->mirrors[mirror].rdev->flags) &&
447 		    !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags))
448 			set_bit(R1BIO_Uptodate, &r1_bio->state);
449 
450 		/* Maybe we can clear some bad blocks. */
451 		if (is_badblock(conf->mirrors[mirror].rdev,
452 				r1_bio->sector, r1_bio->sectors,
453 				&first_bad, &bad_sectors)) {
454 			r1_bio->bios[mirror] = IO_MADE_GOOD;
455 			set_bit(R1BIO_MadeGood, &r1_bio->state);
456 		}
457 	}
458 
459 	if (behind) {
460 		if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
461 			atomic_dec(&r1_bio->behind_remaining);
462 
463 		/*
464 		 * In behind mode, we ACK the master bio once the I/O
465 		 * has safely reached all non-writemostly
466 		 * disks. Setting the Returned bit ensures that this
467 		 * gets done only once -- we don't ever want to return
468 		 * -EIO here, instead we'll wait
469 		 */
470 		if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
471 		    test_bit(R1BIO_Uptodate, &r1_bio->state)) {
472 			/* Maybe we can return now */
473 			if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
474 				struct bio *mbio = r1_bio->master_bio;
475 				pr_debug("raid1: behind end write sectors"
476 					 " %llu-%llu\n",
477 					 (unsigned long long) mbio->bi_iter.bi_sector,
478 					 (unsigned long long) bio_end_sector(mbio) - 1);
479 				call_bio_endio(r1_bio);
480 			}
481 		}
482 	}
483 	if (r1_bio->bios[mirror] == NULL)
484 		rdev_dec_pending(conf->mirrors[mirror].rdev,
485 				 conf->mddev);
486 
487 	/*
488 	 * Let's see if all mirrored write operations have finished
489 	 * already.
490 	 */
491 	r1_bio_write_done(r1_bio);
492 
493 	if (to_put)
494 		bio_put(to_put);
495 }
496 
497 /*
498  * This routine returns the disk from which the requested read should
499  * be done. There is a per-array 'next expected sequential IO' sector
500  * number - if this matches on the next IO then we use the last disk.
501  * There is also a per-disk 'last know head position' sector that is
502  * maintained from IRQ contexts, both the normal and the resync IO
503  * completion handlers update this position correctly. If there is no
504  * perfect sequential match then we pick the disk whose head is closest.
505  *
506  * If there are 2 mirrors in the same 2 devices, performance degrades
507  * because position is mirror, not device based.
508  *
509  * The rdev for the device selected will have nr_pending incremented.
510  */
511 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
512 {
513 	const sector_t this_sector = r1_bio->sector;
514 	int sectors;
515 	int best_good_sectors;
516 	int best_disk, best_dist_disk, best_pending_disk;
517 	int has_nonrot_disk;
518 	int disk;
519 	sector_t best_dist;
520 	unsigned int min_pending;
521 	struct md_rdev *rdev;
522 	int choose_first;
523 	int choose_next_idle;
524 
525 	rcu_read_lock();
526 	/*
527 	 * Check if we can balance. We can balance on the whole
528 	 * device if no resync is going on, or below the resync window.
529 	 * We take the first readable disk when above the resync window.
530 	 */
531  retry:
532 	sectors = r1_bio->sectors;
533 	best_disk = -1;
534 	best_dist_disk = -1;
535 	best_dist = MaxSector;
536 	best_pending_disk = -1;
537 	min_pending = UINT_MAX;
538 	best_good_sectors = 0;
539 	has_nonrot_disk = 0;
540 	choose_next_idle = 0;
541 
542 	choose_first = (conf->mddev->recovery_cp < this_sector + sectors);
543 
544 	for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
545 		sector_t dist;
546 		sector_t first_bad;
547 		int bad_sectors;
548 		unsigned int pending;
549 		bool nonrot;
550 
551 		rdev = rcu_dereference(conf->mirrors[disk].rdev);
552 		if (r1_bio->bios[disk] == IO_BLOCKED
553 		    || rdev == NULL
554 		    || test_bit(Unmerged, &rdev->flags)
555 		    || test_bit(Faulty, &rdev->flags))
556 			continue;
557 		if (!test_bit(In_sync, &rdev->flags) &&
558 		    rdev->recovery_offset < this_sector + sectors)
559 			continue;
560 		if (test_bit(WriteMostly, &rdev->flags)) {
561 			/* Don't balance among write-mostly, just
562 			 * use the first as a last resort */
563 			if (best_disk < 0) {
564 				if (is_badblock(rdev, this_sector, sectors,
565 						&first_bad, &bad_sectors)) {
566 					if (first_bad < this_sector)
567 						/* Cannot use this */
568 						continue;
569 					best_good_sectors = first_bad - this_sector;
570 				} else
571 					best_good_sectors = sectors;
572 				best_disk = disk;
573 			}
574 			continue;
575 		}
576 		/* This is a reasonable device to use.  It might
577 		 * even be best.
578 		 */
579 		if (is_badblock(rdev, this_sector, sectors,
580 				&first_bad, &bad_sectors)) {
581 			if (best_dist < MaxSector)
582 				/* already have a better device */
583 				continue;
584 			if (first_bad <= this_sector) {
585 				/* cannot read here. If this is the 'primary'
586 				 * device, then we must not read beyond
587 				 * bad_sectors from another device..
588 				 */
589 				bad_sectors -= (this_sector - first_bad);
590 				if (choose_first && sectors > bad_sectors)
591 					sectors = bad_sectors;
592 				if (best_good_sectors > sectors)
593 					best_good_sectors = sectors;
594 
595 			} else {
596 				sector_t good_sectors = first_bad - this_sector;
597 				if (good_sectors > best_good_sectors) {
598 					best_good_sectors = good_sectors;
599 					best_disk = disk;
600 				}
601 				if (choose_first)
602 					break;
603 			}
604 			continue;
605 		} else
606 			best_good_sectors = sectors;
607 
608 		nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
609 		has_nonrot_disk |= nonrot;
610 		pending = atomic_read(&rdev->nr_pending);
611 		dist = abs(this_sector - conf->mirrors[disk].head_position);
612 		if (choose_first) {
613 			best_disk = disk;
614 			break;
615 		}
616 		/* Don't change to another disk for sequential reads */
617 		if (conf->mirrors[disk].next_seq_sect == this_sector
618 		    || dist == 0) {
619 			int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
620 			struct raid1_info *mirror = &conf->mirrors[disk];
621 
622 			best_disk = disk;
623 			/*
624 			 * If buffered sequential IO size exceeds optimal
625 			 * iosize, check if there is idle disk. If yes, choose
626 			 * the idle disk. read_balance could already choose an
627 			 * idle disk before noticing it's a sequential IO in
628 			 * this disk. This doesn't matter because this disk
629 			 * will idle, next time it will be utilized after the
630 			 * first disk has IO size exceeds optimal iosize. In
631 			 * this way, iosize of the first disk will be optimal
632 			 * iosize at least. iosize of the second disk might be
633 			 * small, but not a big deal since when the second disk
634 			 * starts IO, the first disk is likely still busy.
635 			 */
636 			if (nonrot && opt_iosize > 0 &&
637 			    mirror->seq_start != MaxSector &&
638 			    mirror->next_seq_sect > opt_iosize &&
639 			    mirror->next_seq_sect - opt_iosize >=
640 			    mirror->seq_start) {
641 				choose_next_idle = 1;
642 				continue;
643 			}
644 			break;
645 		}
646 		/* If device is idle, use it */
647 		if (pending == 0) {
648 			best_disk = disk;
649 			break;
650 		}
651 
652 		if (choose_next_idle)
653 			continue;
654 
655 		if (min_pending > pending) {
656 			min_pending = pending;
657 			best_pending_disk = disk;
658 		}
659 
660 		if (dist < best_dist) {
661 			best_dist = dist;
662 			best_dist_disk = disk;
663 		}
664 	}
665 
666 	/*
667 	 * If all disks are rotational, choose the closest disk. If any disk is
668 	 * non-rotational, choose the disk with less pending request even the
669 	 * disk is rotational, which might/might not be optimal for raids with
670 	 * mixed ratation/non-rotational disks depending on workload.
671 	 */
672 	if (best_disk == -1) {
673 		if (has_nonrot_disk)
674 			best_disk = best_pending_disk;
675 		else
676 			best_disk = best_dist_disk;
677 	}
678 
679 	if (best_disk >= 0) {
680 		rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
681 		if (!rdev)
682 			goto retry;
683 		atomic_inc(&rdev->nr_pending);
684 		if (test_bit(Faulty, &rdev->flags)) {
685 			/* cannot risk returning a device that failed
686 			 * before we inc'ed nr_pending
687 			 */
688 			rdev_dec_pending(rdev, conf->mddev);
689 			goto retry;
690 		}
691 		sectors = best_good_sectors;
692 
693 		if (conf->mirrors[best_disk].next_seq_sect != this_sector)
694 			conf->mirrors[best_disk].seq_start = this_sector;
695 
696 		conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
697 	}
698 	rcu_read_unlock();
699 	*max_sectors = sectors;
700 
701 	return best_disk;
702 }
703 
704 static int raid1_mergeable_bvec(struct request_queue *q,
705 				struct bvec_merge_data *bvm,
706 				struct bio_vec *biovec)
707 {
708 	struct mddev *mddev = q->queuedata;
709 	struct r1conf *conf = mddev->private;
710 	sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
711 	int max = biovec->bv_len;
712 
713 	if (mddev->merge_check_needed) {
714 		int disk;
715 		rcu_read_lock();
716 		for (disk = 0; disk < conf->raid_disks * 2; disk++) {
717 			struct md_rdev *rdev = rcu_dereference(
718 				conf->mirrors[disk].rdev);
719 			if (rdev && !test_bit(Faulty, &rdev->flags)) {
720 				struct request_queue *q =
721 					bdev_get_queue(rdev->bdev);
722 				if (q->merge_bvec_fn) {
723 					bvm->bi_sector = sector +
724 						rdev->data_offset;
725 					bvm->bi_bdev = rdev->bdev;
726 					max = min(max, q->merge_bvec_fn(
727 							  q, bvm, biovec));
728 				}
729 			}
730 		}
731 		rcu_read_unlock();
732 	}
733 	return max;
734 
735 }
736 
737 int md_raid1_congested(struct mddev *mddev, int bits)
738 {
739 	struct r1conf *conf = mddev->private;
740 	int i, ret = 0;
741 
742 	if ((bits & (1 << BDI_async_congested)) &&
743 	    conf->pending_count >= max_queued_requests)
744 		return 1;
745 
746 	rcu_read_lock();
747 	for (i = 0; i < conf->raid_disks * 2; i++) {
748 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
749 		if (rdev && !test_bit(Faulty, &rdev->flags)) {
750 			struct request_queue *q = bdev_get_queue(rdev->bdev);
751 
752 			BUG_ON(!q);
753 
754 			/* Note the '|| 1' - when read_balance prefers
755 			 * non-congested targets, it can be removed
756 			 */
757 			if ((bits & (1<<BDI_async_congested)) || 1)
758 				ret |= bdi_congested(&q->backing_dev_info, bits);
759 			else
760 				ret &= bdi_congested(&q->backing_dev_info, bits);
761 		}
762 	}
763 	rcu_read_unlock();
764 	return ret;
765 }
766 EXPORT_SYMBOL_GPL(md_raid1_congested);
767 
768 static int raid1_congested(void *data, int bits)
769 {
770 	struct mddev *mddev = data;
771 
772 	return mddev_congested(mddev, bits) ||
773 		md_raid1_congested(mddev, bits);
774 }
775 
776 static void flush_pending_writes(struct r1conf *conf)
777 {
778 	/* Any writes that have been queued but are awaiting
779 	 * bitmap updates get flushed here.
780 	 */
781 	spin_lock_irq(&conf->device_lock);
782 
783 	if (conf->pending_bio_list.head) {
784 		struct bio *bio;
785 		bio = bio_list_get(&conf->pending_bio_list);
786 		conf->pending_count = 0;
787 		spin_unlock_irq(&conf->device_lock);
788 		/* flush any pending bitmap writes to
789 		 * disk before proceeding w/ I/O */
790 		bitmap_unplug(conf->mddev->bitmap);
791 		wake_up(&conf->wait_barrier);
792 
793 		while (bio) { /* submit pending writes */
794 			struct bio *next = bio->bi_next;
795 			bio->bi_next = NULL;
796 			if (unlikely((bio->bi_rw & REQ_DISCARD) &&
797 			    !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
798 				/* Just ignore it */
799 				bio_endio(bio, 0);
800 			else
801 				generic_make_request(bio);
802 			bio = next;
803 		}
804 	} else
805 		spin_unlock_irq(&conf->device_lock);
806 }
807 
808 /* Barriers....
809  * Sometimes we need to suspend IO while we do something else,
810  * either some resync/recovery, or reconfigure the array.
811  * To do this we raise a 'barrier'.
812  * The 'barrier' is a counter that can be raised multiple times
813  * to count how many activities are happening which preclude
814  * normal IO.
815  * We can only raise the barrier if there is no pending IO.
816  * i.e. if nr_pending == 0.
817  * We choose only to raise the barrier if no-one is waiting for the
818  * barrier to go down.  This means that as soon as an IO request
819  * is ready, no other operations which require a barrier will start
820  * until the IO request has had a chance.
821  *
822  * So: regular IO calls 'wait_barrier'.  When that returns there
823  *    is no backgroup IO happening,  It must arrange to call
824  *    allow_barrier when it has finished its IO.
825  * backgroup IO calls must call raise_barrier.  Once that returns
826  *    there is no normal IO happeing.  It must arrange to call
827  *    lower_barrier when the particular background IO completes.
828  */
829 static void raise_barrier(struct r1conf *conf, sector_t sector_nr)
830 {
831 	spin_lock_irq(&conf->resync_lock);
832 
833 	/* Wait until no block IO is waiting */
834 	wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
835 			    conf->resync_lock);
836 
837 	/* block any new IO from starting */
838 	conf->barrier++;
839 	conf->next_resync = sector_nr;
840 
841 	/* For these conditions we must wait:
842 	 * A: while the array is in frozen state
843 	 * B: while barrier >= RESYNC_DEPTH, meaning resync reach
844 	 *    the max count which allowed.
845 	 * C: next_resync + RESYNC_SECTORS > start_next_window, meaning
846 	 *    next resync will reach to the window which normal bios are
847 	 *    handling.
848 	 * D: while there are any active requests in the current window.
849 	 */
850 	wait_event_lock_irq(conf->wait_barrier,
851 			    !conf->array_frozen &&
852 			    conf->barrier < RESYNC_DEPTH &&
853 			    conf->current_window_requests == 0 &&
854 			    (conf->start_next_window >=
855 			     conf->next_resync + RESYNC_SECTORS),
856 			    conf->resync_lock);
857 
858 	conf->nr_pending++;
859 	spin_unlock_irq(&conf->resync_lock);
860 }
861 
862 static void lower_barrier(struct r1conf *conf)
863 {
864 	unsigned long flags;
865 	BUG_ON(conf->barrier <= 0);
866 	spin_lock_irqsave(&conf->resync_lock, flags);
867 	conf->barrier--;
868 	conf->nr_pending--;
869 	spin_unlock_irqrestore(&conf->resync_lock, flags);
870 	wake_up(&conf->wait_barrier);
871 }
872 
873 static bool need_to_wait_for_sync(struct r1conf *conf, struct bio *bio)
874 {
875 	bool wait = false;
876 
877 	if (conf->array_frozen || !bio)
878 		wait = true;
879 	else if (conf->barrier && bio_data_dir(bio) == WRITE) {
880 		if ((conf->mddev->curr_resync_completed
881 		     >= bio_end_sector(bio)) ||
882 		    (conf->next_resync + NEXT_NORMALIO_DISTANCE
883 		     <= bio->bi_iter.bi_sector))
884 			wait = false;
885 		else
886 			wait = true;
887 	}
888 
889 	return wait;
890 }
891 
892 static sector_t wait_barrier(struct r1conf *conf, struct bio *bio)
893 {
894 	sector_t sector = 0;
895 
896 	spin_lock_irq(&conf->resync_lock);
897 	if (need_to_wait_for_sync(conf, bio)) {
898 		conf->nr_waiting++;
899 		/* Wait for the barrier to drop.
900 		 * However if there are already pending
901 		 * requests (preventing the barrier from
902 		 * rising completely), and the
903 		 * per-process bio queue isn't empty,
904 		 * then don't wait, as we need to empty
905 		 * that queue to allow conf->start_next_window
906 		 * to increase.
907 		 */
908 		wait_event_lock_irq(conf->wait_barrier,
909 				    !conf->array_frozen &&
910 				    (!conf->barrier ||
911 				     ((conf->start_next_window <
912 				       conf->next_resync + RESYNC_SECTORS) &&
913 				      current->bio_list &&
914 				      !bio_list_empty(current->bio_list))),
915 				    conf->resync_lock);
916 		conf->nr_waiting--;
917 	}
918 
919 	if (bio && bio_data_dir(bio) == WRITE) {
920 		if (bio->bi_iter.bi_sector >=
921 		    conf->mddev->curr_resync_completed) {
922 			if (conf->start_next_window == MaxSector)
923 				conf->start_next_window =
924 					conf->next_resync +
925 					NEXT_NORMALIO_DISTANCE;
926 
927 			if ((conf->start_next_window + NEXT_NORMALIO_DISTANCE)
928 			    <= bio->bi_iter.bi_sector)
929 				conf->next_window_requests++;
930 			else
931 				conf->current_window_requests++;
932 			sector = conf->start_next_window;
933 		}
934 	}
935 
936 	conf->nr_pending++;
937 	spin_unlock_irq(&conf->resync_lock);
938 	return sector;
939 }
940 
941 static void allow_barrier(struct r1conf *conf, sector_t start_next_window,
942 			  sector_t bi_sector)
943 {
944 	unsigned long flags;
945 
946 	spin_lock_irqsave(&conf->resync_lock, flags);
947 	conf->nr_pending--;
948 	if (start_next_window) {
949 		if (start_next_window == conf->start_next_window) {
950 			if (conf->start_next_window + NEXT_NORMALIO_DISTANCE
951 			    <= bi_sector)
952 				conf->next_window_requests--;
953 			else
954 				conf->current_window_requests--;
955 		} else
956 			conf->current_window_requests--;
957 
958 		if (!conf->current_window_requests) {
959 			if (conf->next_window_requests) {
960 				conf->current_window_requests =
961 					conf->next_window_requests;
962 				conf->next_window_requests = 0;
963 				conf->start_next_window +=
964 					NEXT_NORMALIO_DISTANCE;
965 			} else
966 				conf->start_next_window = MaxSector;
967 		}
968 	}
969 	spin_unlock_irqrestore(&conf->resync_lock, flags);
970 	wake_up(&conf->wait_barrier);
971 }
972 
973 static void freeze_array(struct r1conf *conf, int extra)
974 {
975 	/* stop syncio and normal IO and wait for everything to
976 	 * go quite.
977 	 * We wait until nr_pending match nr_queued+extra
978 	 * This is called in the context of one normal IO request
979 	 * that has failed. Thus any sync request that might be pending
980 	 * will be blocked by nr_pending, and we need to wait for
981 	 * pending IO requests to complete or be queued for re-try.
982 	 * Thus the number queued (nr_queued) plus this request (extra)
983 	 * must match the number of pending IOs (nr_pending) before
984 	 * we continue.
985 	 */
986 	spin_lock_irq(&conf->resync_lock);
987 	conf->array_frozen = 1;
988 	wait_event_lock_irq_cmd(conf->wait_barrier,
989 				conf->nr_pending == conf->nr_queued+extra,
990 				conf->resync_lock,
991 				flush_pending_writes(conf));
992 	spin_unlock_irq(&conf->resync_lock);
993 }
994 static void unfreeze_array(struct r1conf *conf)
995 {
996 	/* reverse the effect of the freeze */
997 	spin_lock_irq(&conf->resync_lock);
998 	conf->array_frozen = 0;
999 	wake_up(&conf->wait_barrier);
1000 	spin_unlock_irq(&conf->resync_lock);
1001 }
1002 
1003 /* duplicate the data pages for behind I/O
1004  */
1005 static void alloc_behind_pages(struct bio *bio, struct r1bio *r1_bio)
1006 {
1007 	int i;
1008 	struct bio_vec *bvec;
1009 	struct bio_vec *bvecs = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec),
1010 					GFP_NOIO);
1011 	if (unlikely(!bvecs))
1012 		return;
1013 
1014 	bio_for_each_segment_all(bvec, bio, i) {
1015 		bvecs[i] = *bvec;
1016 		bvecs[i].bv_page = alloc_page(GFP_NOIO);
1017 		if (unlikely(!bvecs[i].bv_page))
1018 			goto do_sync_io;
1019 		memcpy(kmap(bvecs[i].bv_page) + bvec->bv_offset,
1020 		       kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
1021 		kunmap(bvecs[i].bv_page);
1022 		kunmap(bvec->bv_page);
1023 	}
1024 	r1_bio->behind_bvecs = bvecs;
1025 	r1_bio->behind_page_count = bio->bi_vcnt;
1026 	set_bit(R1BIO_BehindIO, &r1_bio->state);
1027 	return;
1028 
1029 do_sync_io:
1030 	for (i = 0; i < bio->bi_vcnt; i++)
1031 		if (bvecs[i].bv_page)
1032 			put_page(bvecs[i].bv_page);
1033 	kfree(bvecs);
1034 	pr_debug("%dB behind alloc failed, doing sync I/O\n",
1035 		 bio->bi_iter.bi_size);
1036 }
1037 
1038 struct raid1_plug_cb {
1039 	struct blk_plug_cb	cb;
1040 	struct bio_list		pending;
1041 	int			pending_cnt;
1042 };
1043 
1044 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1045 {
1046 	struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1047 						  cb);
1048 	struct mddev *mddev = plug->cb.data;
1049 	struct r1conf *conf = mddev->private;
1050 	struct bio *bio;
1051 
1052 	if (from_schedule || current->bio_list) {
1053 		spin_lock_irq(&conf->device_lock);
1054 		bio_list_merge(&conf->pending_bio_list, &plug->pending);
1055 		conf->pending_count += plug->pending_cnt;
1056 		spin_unlock_irq(&conf->device_lock);
1057 		wake_up(&conf->wait_barrier);
1058 		md_wakeup_thread(mddev->thread);
1059 		kfree(plug);
1060 		return;
1061 	}
1062 
1063 	/* we aren't scheduling, so we can do the write-out directly. */
1064 	bio = bio_list_get(&plug->pending);
1065 	bitmap_unplug(mddev->bitmap);
1066 	wake_up(&conf->wait_barrier);
1067 
1068 	while (bio) { /* submit pending writes */
1069 		struct bio *next = bio->bi_next;
1070 		bio->bi_next = NULL;
1071 		if (unlikely((bio->bi_rw & REQ_DISCARD) &&
1072 		    !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
1073 			/* Just ignore it */
1074 			bio_endio(bio, 0);
1075 		else
1076 			generic_make_request(bio);
1077 		bio = next;
1078 	}
1079 	kfree(plug);
1080 }
1081 
1082 static void make_request(struct mddev *mddev, struct bio * bio)
1083 {
1084 	struct r1conf *conf = mddev->private;
1085 	struct raid1_info *mirror;
1086 	struct r1bio *r1_bio;
1087 	struct bio *read_bio;
1088 	int i, disks;
1089 	struct bitmap *bitmap;
1090 	unsigned long flags;
1091 	const int rw = bio_data_dir(bio);
1092 	const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
1093 	const unsigned long do_flush_fua = (bio->bi_rw & (REQ_FLUSH | REQ_FUA));
1094 	const unsigned long do_discard = (bio->bi_rw
1095 					  & (REQ_DISCARD | REQ_SECURE));
1096 	const unsigned long do_same = (bio->bi_rw & REQ_WRITE_SAME);
1097 	struct md_rdev *blocked_rdev;
1098 	struct blk_plug_cb *cb;
1099 	struct raid1_plug_cb *plug = NULL;
1100 	int first_clone;
1101 	int sectors_handled;
1102 	int max_sectors;
1103 	sector_t start_next_window;
1104 
1105 	/*
1106 	 * Register the new request and wait if the reconstruction
1107 	 * thread has put up a bar for new requests.
1108 	 * Continue immediately if no resync is active currently.
1109 	 */
1110 
1111 	md_write_start(mddev, bio); /* wait on superblock update early */
1112 
1113 	if (bio_data_dir(bio) == WRITE &&
1114 	    bio_end_sector(bio) > mddev->suspend_lo &&
1115 	    bio->bi_iter.bi_sector < mddev->suspend_hi) {
1116 		/* As the suspend_* range is controlled by
1117 		 * userspace, we want an interruptible
1118 		 * wait.
1119 		 */
1120 		DEFINE_WAIT(w);
1121 		for (;;) {
1122 			flush_signals(current);
1123 			prepare_to_wait(&conf->wait_barrier,
1124 					&w, TASK_INTERRUPTIBLE);
1125 			if (bio_end_sector(bio) <= mddev->suspend_lo ||
1126 			    bio->bi_iter.bi_sector >= mddev->suspend_hi)
1127 				break;
1128 			schedule();
1129 		}
1130 		finish_wait(&conf->wait_barrier, &w);
1131 	}
1132 
1133 	start_next_window = wait_barrier(conf, bio);
1134 
1135 	bitmap = mddev->bitmap;
1136 
1137 	/*
1138 	 * make_request() can abort the operation when READA is being
1139 	 * used and no empty request is available.
1140 	 *
1141 	 */
1142 	r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1143 
1144 	r1_bio->master_bio = bio;
1145 	r1_bio->sectors = bio_sectors(bio);
1146 	r1_bio->state = 0;
1147 	r1_bio->mddev = mddev;
1148 	r1_bio->sector = bio->bi_iter.bi_sector;
1149 
1150 	/* We might need to issue multiple reads to different
1151 	 * devices if there are bad blocks around, so we keep
1152 	 * track of the number of reads in bio->bi_phys_segments.
1153 	 * If this is 0, there is only one r1_bio and no locking
1154 	 * will be needed when requests complete.  If it is
1155 	 * non-zero, then it is the number of not-completed requests.
1156 	 */
1157 	bio->bi_phys_segments = 0;
1158 	clear_bit(BIO_SEG_VALID, &bio->bi_flags);
1159 
1160 	if (rw == READ) {
1161 		/*
1162 		 * read balancing logic:
1163 		 */
1164 		int rdisk;
1165 
1166 read_again:
1167 		rdisk = read_balance(conf, r1_bio, &max_sectors);
1168 
1169 		if (rdisk < 0) {
1170 			/* couldn't find anywhere to read from */
1171 			raid_end_bio_io(r1_bio);
1172 			return;
1173 		}
1174 		mirror = conf->mirrors + rdisk;
1175 
1176 		if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1177 		    bitmap) {
1178 			/* Reading from a write-mostly device must
1179 			 * take care not to over-take any writes
1180 			 * that are 'behind'
1181 			 */
1182 			wait_event(bitmap->behind_wait,
1183 				   atomic_read(&bitmap->behind_writes) == 0);
1184 		}
1185 		r1_bio->read_disk = rdisk;
1186 		r1_bio->start_next_window = 0;
1187 
1188 		read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1189 		bio_trim(read_bio, r1_bio->sector - bio->bi_iter.bi_sector,
1190 			 max_sectors);
1191 
1192 		r1_bio->bios[rdisk] = read_bio;
1193 
1194 		read_bio->bi_iter.bi_sector = r1_bio->sector +
1195 			mirror->rdev->data_offset;
1196 		read_bio->bi_bdev = mirror->rdev->bdev;
1197 		read_bio->bi_end_io = raid1_end_read_request;
1198 		read_bio->bi_rw = READ | do_sync;
1199 		read_bio->bi_private = r1_bio;
1200 
1201 		if (max_sectors < r1_bio->sectors) {
1202 			/* could not read all from this device, so we will
1203 			 * need another r1_bio.
1204 			 */
1205 
1206 			sectors_handled = (r1_bio->sector + max_sectors
1207 					   - bio->bi_iter.bi_sector);
1208 			r1_bio->sectors = max_sectors;
1209 			spin_lock_irq(&conf->device_lock);
1210 			if (bio->bi_phys_segments == 0)
1211 				bio->bi_phys_segments = 2;
1212 			else
1213 				bio->bi_phys_segments++;
1214 			spin_unlock_irq(&conf->device_lock);
1215 			/* Cannot call generic_make_request directly
1216 			 * as that will be queued in __make_request
1217 			 * and subsequent mempool_alloc might block waiting
1218 			 * for it.  So hand bio over to raid1d.
1219 			 */
1220 			reschedule_retry(r1_bio);
1221 
1222 			r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1223 
1224 			r1_bio->master_bio = bio;
1225 			r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1226 			r1_bio->state = 0;
1227 			r1_bio->mddev = mddev;
1228 			r1_bio->sector = bio->bi_iter.bi_sector +
1229 				sectors_handled;
1230 			goto read_again;
1231 		} else
1232 			generic_make_request(read_bio);
1233 		return;
1234 	}
1235 
1236 	/*
1237 	 * WRITE:
1238 	 */
1239 	if (conf->pending_count >= max_queued_requests) {
1240 		md_wakeup_thread(mddev->thread);
1241 		wait_event(conf->wait_barrier,
1242 			   conf->pending_count < max_queued_requests);
1243 	}
1244 	/* first select target devices under rcu_lock and
1245 	 * inc refcount on their rdev.  Record them by setting
1246 	 * bios[x] to bio
1247 	 * If there are known/acknowledged bad blocks on any device on
1248 	 * which we have seen a write error, we want to avoid writing those
1249 	 * blocks.
1250 	 * This potentially requires several writes to write around
1251 	 * the bad blocks.  Each set of writes gets it's own r1bio
1252 	 * with a set of bios attached.
1253 	 */
1254 
1255 	disks = conf->raid_disks * 2;
1256  retry_write:
1257 	r1_bio->start_next_window = start_next_window;
1258 	blocked_rdev = NULL;
1259 	rcu_read_lock();
1260 	max_sectors = r1_bio->sectors;
1261 	for (i = 0;  i < disks; i++) {
1262 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1263 		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1264 			atomic_inc(&rdev->nr_pending);
1265 			blocked_rdev = rdev;
1266 			break;
1267 		}
1268 		r1_bio->bios[i] = NULL;
1269 		if (!rdev || test_bit(Faulty, &rdev->flags)
1270 		    || test_bit(Unmerged, &rdev->flags)) {
1271 			if (i < conf->raid_disks)
1272 				set_bit(R1BIO_Degraded, &r1_bio->state);
1273 			continue;
1274 		}
1275 
1276 		atomic_inc(&rdev->nr_pending);
1277 		if (test_bit(WriteErrorSeen, &rdev->flags)) {
1278 			sector_t first_bad;
1279 			int bad_sectors;
1280 			int is_bad;
1281 
1282 			is_bad = is_badblock(rdev, r1_bio->sector,
1283 					     max_sectors,
1284 					     &first_bad, &bad_sectors);
1285 			if (is_bad < 0) {
1286 				/* mustn't write here until the bad block is
1287 				 * acknowledged*/
1288 				set_bit(BlockedBadBlocks, &rdev->flags);
1289 				blocked_rdev = rdev;
1290 				break;
1291 			}
1292 			if (is_bad && first_bad <= r1_bio->sector) {
1293 				/* Cannot write here at all */
1294 				bad_sectors -= (r1_bio->sector - first_bad);
1295 				if (bad_sectors < max_sectors)
1296 					/* mustn't write more than bad_sectors
1297 					 * to other devices yet
1298 					 */
1299 					max_sectors = bad_sectors;
1300 				rdev_dec_pending(rdev, mddev);
1301 				/* We don't set R1BIO_Degraded as that
1302 				 * only applies if the disk is
1303 				 * missing, so it might be re-added,
1304 				 * and we want to know to recover this
1305 				 * chunk.
1306 				 * In this case the device is here,
1307 				 * and the fact that this chunk is not
1308 				 * in-sync is recorded in the bad
1309 				 * block log
1310 				 */
1311 				continue;
1312 			}
1313 			if (is_bad) {
1314 				int good_sectors = first_bad - r1_bio->sector;
1315 				if (good_sectors < max_sectors)
1316 					max_sectors = good_sectors;
1317 			}
1318 		}
1319 		r1_bio->bios[i] = bio;
1320 	}
1321 	rcu_read_unlock();
1322 
1323 	if (unlikely(blocked_rdev)) {
1324 		/* Wait for this device to become unblocked */
1325 		int j;
1326 		sector_t old = start_next_window;
1327 
1328 		for (j = 0; j < i; j++)
1329 			if (r1_bio->bios[j])
1330 				rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1331 		r1_bio->state = 0;
1332 		allow_barrier(conf, start_next_window, bio->bi_iter.bi_sector);
1333 		md_wait_for_blocked_rdev(blocked_rdev, mddev);
1334 		start_next_window = wait_barrier(conf, bio);
1335 		/*
1336 		 * We must make sure the multi r1bios of bio have
1337 		 * the same value of bi_phys_segments
1338 		 */
1339 		if (bio->bi_phys_segments && old &&
1340 		    old != start_next_window)
1341 			/* Wait for the former r1bio(s) to complete */
1342 			wait_event(conf->wait_barrier,
1343 				   bio->bi_phys_segments == 1);
1344 		goto retry_write;
1345 	}
1346 
1347 	if (max_sectors < r1_bio->sectors) {
1348 		/* We are splitting this write into multiple parts, so
1349 		 * we need to prepare for allocating another r1_bio.
1350 		 */
1351 		r1_bio->sectors = max_sectors;
1352 		spin_lock_irq(&conf->device_lock);
1353 		if (bio->bi_phys_segments == 0)
1354 			bio->bi_phys_segments = 2;
1355 		else
1356 			bio->bi_phys_segments++;
1357 		spin_unlock_irq(&conf->device_lock);
1358 	}
1359 	sectors_handled = r1_bio->sector + max_sectors - bio->bi_iter.bi_sector;
1360 
1361 	atomic_set(&r1_bio->remaining, 1);
1362 	atomic_set(&r1_bio->behind_remaining, 0);
1363 
1364 	first_clone = 1;
1365 	for (i = 0; i < disks; i++) {
1366 		struct bio *mbio;
1367 		if (!r1_bio->bios[i])
1368 			continue;
1369 
1370 		mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1371 		bio_trim(mbio, r1_bio->sector - bio->bi_iter.bi_sector, max_sectors);
1372 
1373 		if (first_clone) {
1374 			/* do behind I/O ?
1375 			 * Not if there are too many, or cannot
1376 			 * allocate memory, or a reader on WriteMostly
1377 			 * is waiting for behind writes to flush */
1378 			if (bitmap &&
1379 			    (atomic_read(&bitmap->behind_writes)
1380 			     < mddev->bitmap_info.max_write_behind) &&
1381 			    !waitqueue_active(&bitmap->behind_wait))
1382 				alloc_behind_pages(mbio, r1_bio);
1383 
1384 			bitmap_startwrite(bitmap, r1_bio->sector,
1385 					  r1_bio->sectors,
1386 					  test_bit(R1BIO_BehindIO,
1387 						   &r1_bio->state));
1388 			first_clone = 0;
1389 		}
1390 		if (r1_bio->behind_bvecs) {
1391 			struct bio_vec *bvec;
1392 			int j;
1393 
1394 			/*
1395 			 * We trimmed the bio, so _all is legit
1396 			 */
1397 			bio_for_each_segment_all(bvec, mbio, j)
1398 				bvec->bv_page = r1_bio->behind_bvecs[j].bv_page;
1399 			if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1400 				atomic_inc(&r1_bio->behind_remaining);
1401 		}
1402 
1403 		r1_bio->bios[i] = mbio;
1404 
1405 		mbio->bi_iter.bi_sector	= (r1_bio->sector +
1406 				   conf->mirrors[i].rdev->data_offset);
1407 		mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1408 		mbio->bi_end_io	= raid1_end_write_request;
1409 		mbio->bi_rw =
1410 			WRITE | do_flush_fua | do_sync | do_discard | do_same;
1411 		mbio->bi_private = r1_bio;
1412 
1413 		atomic_inc(&r1_bio->remaining);
1414 
1415 		cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1416 		if (cb)
1417 			plug = container_of(cb, struct raid1_plug_cb, cb);
1418 		else
1419 			plug = NULL;
1420 		spin_lock_irqsave(&conf->device_lock, flags);
1421 		if (plug) {
1422 			bio_list_add(&plug->pending, mbio);
1423 			plug->pending_cnt++;
1424 		} else {
1425 			bio_list_add(&conf->pending_bio_list, mbio);
1426 			conf->pending_count++;
1427 		}
1428 		spin_unlock_irqrestore(&conf->device_lock, flags);
1429 		if (!plug)
1430 			md_wakeup_thread(mddev->thread);
1431 	}
1432 	/* Mustn't call r1_bio_write_done before this next test,
1433 	 * as it could result in the bio being freed.
1434 	 */
1435 	if (sectors_handled < bio_sectors(bio)) {
1436 		r1_bio_write_done(r1_bio);
1437 		/* We need another r1_bio.  It has already been counted
1438 		 * in bio->bi_phys_segments
1439 		 */
1440 		r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1441 		r1_bio->master_bio = bio;
1442 		r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1443 		r1_bio->state = 0;
1444 		r1_bio->mddev = mddev;
1445 		r1_bio->sector = bio->bi_iter.bi_sector + sectors_handled;
1446 		goto retry_write;
1447 	}
1448 
1449 	r1_bio_write_done(r1_bio);
1450 
1451 	/* In case raid1d snuck in to freeze_array */
1452 	wake_up(&conf->wait_barrier);
1453 }
1454 
1455 static void status(struct seq_file *seq, struct mddev *mddev)
1456 {
1457 	struct r1conf *conf = mddev->private;
1458 	int i;
1459 
1460 	seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1461 		   conf->raid_disks - mddev->degraded);
1462 	rcu_read_lock();
1463 	for (i = 0; i < conf->raid_disks; i++) {
1464 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1465 		seq_printf(seq, "%s",
1466 			   rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1467 	}
1468 	rcu_read_unlock();
1469 	seq_printf(seq, "]");
1470 }
1471 
1472 static void error(struct mddev *mddev, struct md_rdev *rdev)
1473 {
1474 	char b[BDEVNAME_SIZE];
1475 	struct r1conf *conf = mddev->private;
1476 
1477 	/*
1478 	 * If it is not operational, then we have already marked it as dead
1479 	 * else if it is the last working disks, ignore the error, let the
1480 	 * next level up know.
1481 	 * else mark the drive as failed
1482 	 */
1483 	if (test_bit(In_sync, &rdev->flags)
1484 	    && (conf->raid_disks - mddev->degraded) == 1) {
1485 		/*
1486 		 * Don't fail the drive, act as though we were just a
1487 		 * normal single drive.
1488 		 * However don't try a recovery from this drive as
1489 		 * it is very likely to fail.
1490 		 */
1491 		conf->recovery_disabled = mddev->recovery_disabled;
1492 		return;
1493 	}
1494 	set_bit(Blocked, &rdev->flags);
1495 	if (test_and_clear_bit(In_sync, &rdev->flags)) {
1496 		unsigned long flags;
1497 		spin_lock_irqsave(&conf->device_lock, flags);
1498 		mddev->degraded++;
1499 		set_bit(Faulty, &rdev->flags);
1500 		spin_unlock_irqrestore(&conf->device_lock, flags);
1501 	} else
1502 		set_bit(Faulty, &rdev->flags);
1503 	/*
1504 	 * if recovery is running, make sure it aborts.
1505 	 */
1506 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1507 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
1508 	printk(KERN_ALERT
1509 	       "md/raid1:%s: Disk failure on %s, disabling device.\n"
1510 	       "md/raid1:%s: Operation continuing on %d devices.\n",
1511 	       mdname(mddev), bdevname(rdev->bdev, b),
1512 	       mdname(mddev), conf->raid_disks - mddev->degraded);
1513 }
1514 
1515 static void print_conf(struct r1conf *conf)
1516 {
1517 	int i;
1518 
1519 	printk(KERN_DEBUG "RAID1 conf printout:\n");
1520 	if (!conf) {
1521 		printk(KERN_DEBUG "(!conf)\n");
1522 		return;
1523 	}
1524 	printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1525 		conf->raid_disks);
1526 
1527 	rcu_read_lock();
1528 	for (i = 0; i < conf->raid_disks; i++) {
1529 		char b[BDEVNAME_SIZE];
1530 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1531 		if (rdev)
1532 			printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1533 			       i, !test_bit(In_sync, &rdev->flags),
1534 			       !test_bit(Faulty, &rdev->flags),
1535 			       bdevname(rdev->bdev,b));
1536 	}
1537 	rcu_read_unlock();
1538 }
1539 
1540 static void close_sync(struct r1conf *conf)
1541 {
1542 	wait_barrier(conf, NULL);
1543 	allow_barrier(conf, 0, 0);
1544 
1545 	mempool_destroy(conf->r1buf_pool);
1546 	conf->r1buf_pool = NULL;
1547 
1548 	spin_lock_irq(&conf->resync_lock);
1549 	conf->next_resync = 0;
1550 	conf->start_next_window = MaxSector;
1551 	conf->current_window_requests +=
1552 		conf->next_window_requests;
1553 	conf->next_window_requests = 0;
1554 	spin_unlock_irq(&conf->resync_lock);
1555 }
1556 
1557 static int raid1_spare_active(struct mddev *mddev)
1558 {
1559 	int i;
1560 	struct r1conf *conf = mddev->private;
1561 	int count = 0;
1562 	unsigned long flags;
1563 
1564 	/*
1565 	 * Find all failed disks within the RAID1 configuration
1566 	 * and mark them readable.
1567 	 * Called under mddev lock, so rcu protection not needed.
1568 	 */
1569 	for (i = 0; i < conf->raid_disks; i++) {
1570 		struct md_rdev *rdev = conf->mirrors[i].rdev;
1571 		struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1572 		if (repl
1573 		    && repl->recovery_offset == MaxSector
1574 		    && !test_bit(Faulty, &repl->flags)
1575 		    && !test_and_set_bit(In_sync, &repl->flags)) {
1576 			/* replacement has just become active */
1577 			if (!rdev ||
1578 			    !test_and_clear_bit(In_sync, &rdev->flags))
1579 				count++;
1580 			if (rdev) {
1581 				/* Replaced device not technically
1582 				 * faulty, but we need to be sure
1583 				 * it gets removed and never re-added
1584 				 */
1585 				set_bit(Faulty, &rdev->flags);
1586 				sysfs_notify_dirent_safe(
1587 					rdev->sysfs_state);
1588 			}
1589 		}
1590 		if (rdev
1591 		    && rdev->recovery_offset == MaxSector
1592 		    && !test_bit(Faulty, &rdev->flags)
1593 		    && !test_and_set_bit(In_sync, &rdev->flags)) {
1594 			count++;
1595 			sysfs_notify_dirent_safe(rdev->sysfs_state);
1596 		}
1597 	}
1598 	spin_lock_irqsave(&conf->device_lock, flags);
1599 	mddev->degraded -= count;
1600 	spin_unlock_irqrestore(&conf->device_lock, flags);
1601 
1602 	print_conf(conf);
1603 	return count;
1604 }
1605 
1606 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1607 {
1608 	struct r1conf *conf = mddev->private;
1609 	int err = -EEXIST;
1610 	int mirror = 0;
1611 	struct raid1_info *p;
1612 	int first = 0;
1613 	int last = conf->raid_disks - 1;
1614 	struct request_queue *q = bdev_get_queue(rdev->bdev);
1615 
1616 	if (mddev->recovery_disabled == conf->recovery_disabled)
1617 		return -EBUSY;
1618 
1619 	if (rdev->raid_disk >= 0)
1620 		first = last = rdev->raid_disk;
1621 
1622 	if (q->merge_bvec_fn) {
1623 		set_bit(Unmerged, &rdev->flags);
1624 		mddev->merge_check_needed = 1;
1625 	}
1626 
1627 	for (mirror = first; mirror <= last; mirror++) {
1628 		p = conf->mirrors+mirror;
1629 		if (!p->rdev) {
1630 
1631 			if (mddev->gendisk)
1632 				disk_stack_limits(mddev->gendisk, rdev->bdev,
1633 						  rdev->data_offset << 9);
1634 
1635 			p->head_position = 0;
1636 			rdev->raid_disk = mirror;
1637 			err = 0;
1638 			/* As all devices are equivalent, we don't need a full recovery
1639 			 * if this was recently any drive of the array
1640 			 */
1641 			if (rdev->saved_raid_disk < 0)
1642 				conf->fullsync = 1;
1643 			rcu_assign_pointer(p->rdev, rdev);
1644 			break;
1645 		}
1646 		if (test_bit(WantReplacement, &p->rdev->flags) &&
1647 		    p[conf->raid_disks].rdev == NULL) {
1648 			/* Add this device as a replacement */
1649 			clear_bit(In_sync, &rdev->flags);
1650 			set_bit(Replacement, &rdev->flags);
1651 			rdev->raid_disk = mirror;
1652 			err = 0;
1653 			conf->fullsync = 1;
1654 			rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1655 			break;
1656 		}
1657 	}
1658 	if (err == 0 && test_bit(Unmerged, &rdev->flags)) {
1659 		/* Some requests might not have seen this new
1660 		 * merge_bvec_fn.  We must wait for them to complete
1661 		 * before merging the device fully.
1662 		 * First we make sure any code which has tested
1663 		 * our function has submitted the request, then
1664 		 * we wait for all outstanding requests to complete.
1665 		 */
1666 		synchronize_sched();
1667 		freeze_array(conf, 0);
1668 		unfreeze_array(conf);
1669 		clear_bit(Unmerged, &rdev->flags);
1670 	}
1671 	md_integrity_add_rdev(rdev, mddev);
1672 	if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1673 		queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1674 	print_conf(conf);
1675 	return err;
1676 }
1677 
1678 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1679 {
1680 	struct r1conf *conf = mddev->private;
1681 	int err = 0;
1682 	int number = rdev->raid_disk;
1683 	struct raid1_info *p = conf->mirrors + number;
1684 
1685 	if (rdev != p->rdev)
1686 		p = conf->mirrors + conf->raid_disks + number;
1687 
1688 	print_conf(conf);
1689 	if (rdev == p->rdev) {
1690 		if (test_bit(In_sync, &rdev->flags) ||
1691 		    atomic_read(&rdev->nr_pending)) {
1692 			err = -EBUSY;
1693 			goto abort;
1694 		}
1695 		/* Only remove non-faulty devices if recovery
1696 		 * is not possible.
1697 		 */
1698 		if (!test_bit(Faulty, &rdev->flags) &&
1699 		    mddev->recovery_disabled != conf->recovery_disabled &&
1700 		    mddev->degraded < conf->raid_disks) {
1701 			err = -EBUSY;
1702 			goto abort;
1703 		}
1704 		p->rdev = NULL;
1705 		synchronize_rcu();
1706 		if (atomic_read(&rdev->nr_pending)) {
1707 			/* lost the race, try later */
1708 			err = -EBUSY;
1709 			p->rdev = rdev;
1710 			goto abort;
1711 		} else if (conf->mirrors[conf->raid_disks + number].rdev) {
1712 			/* We just removed a device that is being replaced.
1713 			 * Move down the replacement.  We drain all IO before
1714 			 * doing this to avoid confusion.
1715 			 */
1716 			struct md_rdev *repl =
1717 				conf->mirrors[conf->raid_disks + number].rdev;
1718 			freeze_array(conf, 0);
1719 			clear_bit(Replacement, &repl->flags);
1720 			p->rdev = repl;
1721 			conf->mirrors[conf->raid_disks + number].rdev = NULL;
1722 			unfreeze_array(conf);
1723 			clear_bit(WantReplacement, &rdev->flags);
1724 		} else
1725 			clear_bit(WantReplacement, &rdev->flags);
1726 		err = md_integrity_register(mddev);
1727 	}
1728 abort:
1729 
1730 	print_conf(conf);
1731 	return err;
1732 }
1733 
1734 static void end_sync_read(struct bio *bio, int error)
1735 {
1736 	struct r1bio *r1_bio = bio->bi_private;
1737 
1738 	update_head_pos(r1_bio->read_disk, r1_bio);
1739 
1740 	/*
1741 	 * we have read a block, now it needs to be re-written,
1742 	 * or re-read if the read failed.
1743 	 * We don't do much here, just schedule handling by raid1d
1744 	 */
1745 	if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1746 		set_bit(R1BIO_Uptodate, &r1_bio->state);
1747 
1748 	if (atomic_dec_and_test(&r1_bio->remaining))
1749 		reschedule_retry(r1_bio);
1750 }
1751 
1752 static void end_sync_write(struct bio *bio, int error)
1753 {
1754 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1755 	struct r1bio *r1_bio = bio->bi_private;
1756 	struct mddev *mddev = r1_bio->mddev;
1757 	struct r1conf *conf = mddev->private;
1758 	int mirror=0;
1759 	sector_t first_bad;
1760 	int bad_sectors;
1761 
1762 	mirror = find_bio_disk(r1_bio, bio);
1763 
1764 	if (!uptodate) {
1765 		sector_t sync_blocks = 0;
1766 		sector_t s = r1_bio->sector;
1767 		long sectors_to_go = r1_bio->sectors;
1768 		/* make sure these bits doesn't get cleared. */
1769 		do {
1770 			bitmap_end_sync(mddev->bitmap, s,
1771 					&sync_blocks, 1);
1772 			s += sync_blocks;
1773 			sectors_to_go -= sync_blocks;
1774 		} while (sectors_to_go > 0);
1775 		set_bit(WriteErrorSeen,
1776 			&conf->mirrors[mirror].rdev->flags);
1777 		if (!test_and_set_bit(WantReplacement,
1778 				      &conf->mirrors[mirror].rdev->flags))
1779 			set_bit(MD_RECOVERY_NEEDED, &
1780 				mddev->recovery);
1781 		set_bit(R1BIO_WriteError, &r1_bio->state);
1782 	} else if (is_badblock(conf->mirrors[mirror].rdev,
1783 			       r1_bio->sector,
1784 			       r1_bio->sectors,
1785 			       &first_bad, &bad_sectors) &&
1786 		   !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1787 				r1_bio->sector,
1788 				r1_bio->sectors,
1789 				&first_bad, &bad_sectors)
1790 		)
1791 		set_bit(R1BIO_MadeGood, &r1_bio->state);
1792 
1793 	if (atomic_dec_and_test(&r1_bio->remaining)) {
1794 		int s = r1_bio->sectors;
1795 		if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1796 		    test_bit(R1BIO_WriteError, &r1_bio->state))
1797 			reschedule_retry(r1_bio);
1798 		else {
1799 			put_buf(r1_bio);
1800 			md_done_sync(mddev, s, uptodate);
1801 		}
1802 	}
1803 }
1804 
1805 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1806 			    int sectors, struct page *page, int rw)
1807 {
1808 	if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
1809 		/* success */
1810 		return 1;
1811 	if (rw == WRITE) {
1812 		set_bit(WriteErrorSeen, &rdev->flags);
1813 		if (!test_and_set_bit(WantReplacement,
1814 				      &rdev->flags))
1815 			set_bit(MD_RECOVERY_NEEDED, &
1816 				rdev->mddev->recovery);
1817 	}
1818 	/* need to record an error - either for the block or the device */
1819 	if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1820 		md_error(rdev->mddev, rdev);
1821 	return 0;
1822 }
1823 
1824 static int fix_sync_read_error(struct r1bio *r1_bio)
1825 {
1826 	/* Try some synchronous reads of other devices to get
1827 	 * good data, much like with normal read errors.  Only
1828 	 * read into the pages we already have so we don't
1829 	 * need to re-issue the read request.
1830 	 * We don't need to freeze the array, because being in an
1831 	 * active sync request, there is no normal IO, and
1832 	 * no overlapping syncs.
1833 	 * We don't need to check is_badblock() again as we
1834 	 * made sure that anything with a bad block in range
1835 	 * will have bi_end_io clear.
1836 	 */
1837 	struct mddev *mddev = r1_bio->mddev;
1838 	struct r1conf *conf = mddev->private;
1839 	struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1840 	sector_t sect = r1_bio->sector;
1841 	int sectors = r1_bio->sectors;
1842 	int idx = 0;
1843 
1844 	while(sectors) {
1845 		int s = sectors;
1846 		int d = r1_bio->read_disk;
1847 		int success = 0;
1848 		struct md_rdev *rdev;
1849 		int start;
1850 
1851 		if (s > (PAGE_SIZE>>9))
1852 			s = PAGE_SIZE >> 9;
1853 		do {
1854 			if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1855 				/* No rcu protection needed here devices
1856 				 * can only be removed when no resync is
1857 				 * active, and resync is currently active
1858 				 */
1859 				rdev = conf->mirrors[d].rdev;
1860 				if (sync_page_io(rdev, sect, s<<9,
1861 						 bio->bi_io_vec[idx].bv_page,
1862 						 READ, false)) {
1863 					success = 1;
1864 					break;
1865 				}
1866 			}
1867 			d++;
1868 			if (d == conf->raid_disks * 2)
1869 				d = 0;
1870 		} while (!success && d != r1_bio->read_disk);
1871 
1872 		if (!success) {
1873 			char b[BDEVNAME_SIZE];
1874 			int abort = 0;
1875 			/* Cannot read from anywhere, this block is lost.
1876 			 * Record a bad block on each device.  If that doesn't
1877 			 * work just disable and interrupt the recovery.
1878 			 * Don't fail devices as that won't really help.
1879 			 */
1880 			printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error"
1881 			       " for block %llu\n",
1882 			       mdname(mddev),
1883 			       bdevname(bio->bi_bdev, b),
1884 			       (unsigned long long)r1_bio->sector);
1885 			for (d = 0; d < conf->raid_disks * 2; d++) {
1886 				rdev = conf->mirrors[d].rdev;
1887 				if (!rdev || test_bit(Faulty, &rdev->flags))
1888 					continue;
1889 				if (!rdev_set_badblocks(rdev, sect, s, 0))
1890 					abort = 1;
1891 			}
1892 			if (abort) {
1893 				conf->recovery_disabled =
1894 					mddev->recovery_disabled;
1895 				set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1896 				md_done_sync(mddev, r1_bio->sectors, 0);
1897 				put_buf(r1_bio);
1898 				return 0;
1899 			}
1900 			/* Try next page */
1901 			sectors -= s;
1902 			sect += s;
1903 			idx++;
1904 			continue;
1905 		}
1906 
1907 		start = d;
1908 		/* write it back and re-read */
1909 		while (d != r1_bio->read_disk) {
1910 			if (d == 0)
1911 				d = conf->raid_disks * 2;
1912 			d--;
1913 			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1914 				continue;
1915 			rdev = conf->mirrors[d].rdev;
1916 			if (r1_sync_page_io(rdev, sect, s,
1917 					    bio->bi_io_vec[idx].bv_page,
1918 					    WRITE) == 0) {
1919 				r1_bio->bios[d]->bi_end_io = NULL;
1920 				rdev_dec_pending(rdev, mddev);
1921 			}
1922 		}
1923 		d = start;
1924 		while (d != r1_bio->read_disk) {
1925 			if (d == 0)
1926 				d = conf->raid_disks * 2;
1927 			d--;
1928 			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1929 				continue;
1930 			rdev = conf->mirrors[d].rdev;
1931 			if (r1_sync_page_io(rdev, sect, s,
1932 					    bio->bi_io_vec[idx].bv_page,
1933 					    READ) != 0)
1934 				atomic_add(s, &rdev->corrected_errors);
1935 		}
1936 		sectors -= s;
1937 		sect += s;
1938 		idx ++;
1939 	}
1940 	set_bit(R1BIO_Uptodate, &r1_bio->state);
1941 	set_bit(BIO_UPTODATE, &bio->bi_flags);
1942 	return 1;
1943 }
1944 
1945 static void process_checks(struct r1bio *r1_bio)
1946 {
1947 	/* We have read all readable devices.  If we haven't
1948 	 * got the block, then there is no hope left.
1949 	 * If we have, then we want to do a comparison
1950 	 * and skip the write if everything is the same.
1951 	 * If any blocks failed to read, then we need to
1952 	 * attempt an over-write
1953 	 */
1954 	struct mddev *mddev = r1_bio->mddev;
1955 	struct r1conf *conf = mddev->private;
1956 	int primary;
1957 	int i;
1958 	int vcnt;
1959 
1960 	/* Fix variable parts of all bios */
1961 	vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
1962 	for (i = 0; i < conf->raid_disks * 2; i++) {
1963 		int j;
1964 		int size;
1965 		int uptodate;
1966 		struct bio *b = r1_bio->bios[i];
1967 		if (b->bi_end_io != end_sync_read)
1968 			continue;
1969 		/* fixup the bio for reuse, but preserve BIO_UPTODATE */
1970 		uptodate = test_bit(BIO_UPTODATE, &b->bi_flags);
1971 		bio_reset(b);
1972 		if (!uptodate)
1973 			clear_bit(BIO_UPTODATE, &b->bi_flags);
1974 		b->bi_vcnt = vcnt;
1975 		b->bi_iter.bi_size = r1_bio->sectors << 9;
1976 		b->bi_iter.bi_sector = r1_bio->sector +
1977 			conf->mirrors[i].rdev->data_offset;
1978 		b->bi_bdev = conf->mirrors[i].rdev->bdev;
1979 		b->bi_end_io = end_sync_read;
1980 		b->bi_private = r1_bio;
1981 
1982 		size = b->bi_iter.bi_size;
1983 		for (j = 0; j < vcnt ; j++) {
1984 			struct bio_vec *bi;
1985 			bi = &b->bi_io_vec[j];
1986 			bi->bv_offset = 0;
1987 			if (size > PAGE_SIZE)
1988 				bi->bv_len = PAGE_SIZE;
1989 			else
1990 				bi->bv_len = size;
1991 			size -= PAGE_SIZE;
1992 		}
1993 	}
1994 	for (primary = 0; primary < conf->raid_disks * 2; primary++)
1995 		if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
1996 		    test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) {
1997 			r1_bio->bios[primary]->bi_end_io = NULL;
1998 			rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
1999 			break;
2000 		}
2001 	r1_bio->read_disk = primary;
2002 	for (i = 0; i < conf->raid_disks * 2; i++) {
2003 		int j;
2004 		struct bio *pbio = r1_bio->bios[primary];
2005 		struct bio *sbio = r1_bio->bios[i];
2006 		int uptodate = test_bit(BIO_UPTODATE, &sbio->bi_flags);
2007 
2008 		if (sbio->bi_end_io != end_sync_read)
2009 			continue;
2010 		/* Now we can 'fixup' the BIO_UPTODATE flag */
2011 		set_bit(BIO_UPTODATE, &sbio->bi_flags);
2012 
2013 		if (uptodate) {
2014 			for (j = vcnt; j-- ; ) {
2015 				struct page *p, *s;
2016 				p = pbio->bi_io_vec[j].bv_page;
2017 				s = sbio->bi_io_vec[j].bv_page;
2018 				if (memcmp(page_address(p),
2019 					   page_address(s),
2020 					   sbio->bi_io_vec[j].bv_len))
2021 					break;
2022 			}
2023 		} else
2024 			j = 0;
2025 		if (j >= 0)
2026 			atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
2027 		if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
2028 			      && uptodate)) {
2029 			/* No need to write to this device. */
2030 			sbio->bi_end_io = NULL;
2031 			rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2032 			continue;
2033 		}
2034 
2035 		bio_copy_data(sbio, pbio);
2036 	}
2037 }
2038 
2039 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
2040 {
2041 	struct r1conf *conf = mddev->private;
2042 	int i;
2043 	int disks = conf->raid_disks * 2;
2044 	struct bio *bio, *wbio;
2045 
2046 	bio = r1_bio->bios[r1_bio->read_disk];
2047 
2048 	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2049 		/* ouch - failed to read all of that. */
2050 		if (!fix_sync_read_error(r1_bio))
2051 			return;
2052 
2053 	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2054 		process_checks(r1_bio);
2055 
2056 	/*
2057 	 * schedule writes
2058 	 */
2059 	atomic_set(&r1_bio->remaining, 1);
2060 	for (i = 0; i < disks ; i++) {
2061 		wbio = r1_bio->bios[i];
2062 		if (wbio->bi_end_io == NULL ||
2063 		    (wbio->bi_end_io == end_sync_read &&
2064 		     (i == r1_bio->read_disk ||
2065 		      !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2066 			continue;
2067 
2068 		wbio->bi_rw = WRITE;
2069 		wbio->bi_end_io = end_sync_write;
2070 		atomic_inc(&r1_bio->remaining);
2071 		md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
2072 
2073 		generic_make_request(wbio);
2074 	}
2075 
2076 	if (atomic_dec_and_test(&r1_bio->remaining)) {
2077 		/* if we're here, all write(s) have completed, so clean up */
2078 		int s = r1_bio->sectors;
2079 		if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2080 		    test_bit(R1BIO_WriteError, &r1_bio->state))
2081 			reschedule_retry(r1_bio);
2082 		else {
2083 			put_buf(r1_bio);
2084 			md_done_sync(mddev, s, 1);
2085 		}
2086 	}
2087 }
2088 
2089 /*
2090  * This is a kernel thread which:
2091  *
2092  *	1.	Retries failed read operations on working mirrors.
2093  *	2.	Updates the raid superblock when problems encounter.
2094  *	3.	Performs writes following reads for array synchronising.
2095  */
2096 
2097 static void fix_read_error(struct r1conf *conf, int read_disk,
2098 			   sector_t sect, int sectors)
2099 {
2100 	struct mddev *mddev = conf->mddev;
2101 	while(sectors) {
2102 		int s = sectors;
2103 		int d = read_disk;
2104 		int success = 0;
2105 		int start;
2106 		struct md_rdev *rdev;
2107 
2108 		if (s > (PAGE_SIZE>>9))
2109 			s = PAGE_SIZE >> 9;
2110 
2111 		do {
2112 			/* Note: no rcu protection needed here
2113 			 * as this is synchronous in the raid1d thread
2114 			 * which is the thread that might remove
2115 			 * a device.  If raid1d ever becomes multi-threaded....
2116 			 */
2117 			sector_t first_bad;
2118 			int bad_sectors;
2119 
2120 			rdev = conf->mirrors[d].rdev;
2121 			if (rdev &&
2122 			    (test_bit(In_sync, &rdev->flags) ||
2123 			     (!test_bit(Faulty, &rdev->flags) &&
2124 			      rdev->recovery_offset >= sect + s)) &&
2125 			    is_badblock(rdev, sect, s,
2126 					&first_bad, &bad_sectors) == 0 &&
2127 			    sync_page_io(rdev, sect, s<<9,
2128 					 conf->tmppage, READ, false))
2129 				success = 1;
2130 			else {
2131 				d++;
2132 				if (d == conf->raid_disks * 2)
2133 					d = 0;
2134 			}
2135 		} while (!success && d != read_disk);
2136 
2137 		if (!success) {
2138 			/* Cannot read from anywhere - mark it bad */
2139 			struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2140 			if (!rdev_set_badblocks(rdev, sect, s, 0))
2141 				md_error(mddev, rdev);
2142 			break;
2143 		}
2144 		/* write it back and re-read */
2145 		start = d;
2146 		while (d != read_disk) {
2147 			if (d==0)
2148 				d = conf->raid_disks * 2;
2149 			d--;
2150 			rdev = conf->mirrors[d].rdev;
2151 			if (rdev &&
2152 			    !test_bit(Faulty, &rdev->flags))
2153 				r1_sync_page_io(rdev, sect, s,
2154 						conf->tmppage, WRITE);
2155 		}
2156 		d = start;
2157 		while (d != read_disk) {
2158 			char b[BDEVNAME_SIZE];
2159 			if (d==0)
2160 				d = conf->raid_disks * 2;
2161 			d--;
2162 			rdev = conf->mirrors[d].rdev;
2163 			if (rdev &&
2164 			    !test_bit(Faulty, &rdev->flags)) {
2165 				if (r1_sync_page_io(rdev, sect, s,
2166 						    conf->tmppage, READ)) {
2167 					atomic_add(s, &rdev->corrected_errors);
2168 					printk(KERN_INFO
2169 					       "md/raid1:%s: read error corrected "
2170 					       "(%d sectors at %llu on %s)\n",
2171 					       mdname(mddev), s,
2172 					       (unsigned long long)(sect +
2173 					           rdev->data_offset),
2174 					       bdevname(rdev->bdev, b));
2175 				}
2176 			}
2177 		}
2178 		sectors -= s;
2179 		sect += s;
2180 	}
2181 }
2182 
2183 static int narrow_write_error(struct r1bio *r1_bio, int i)
2184 {
2185 	struct mddev *mddev = r1_bio->mddev;
2186 	struct r1conf *conf = mddev->private;
2187 	struct md_rdev *rdev = conf->mirrors[i].rdev;
2188 
2189 	/* bio has the data to be written to device 'i' where
2190 	 * we just recently had a write error.
2191 	 * We repeatedly clone the bio and trim down to one block,
2192 	 * then try the write.  Where the write fails we record
2193 	 * a bad block.
2194 	 * It is conceivable that the bio doesn't exactly align with
2195 	 * blocks.  We must handle this somehow.
2196 	 *
2197 	 * We currently own a reference on the rdev.
2198 	 */
2199 
2200 	int block_sectors;
2201 	sector_t sector;
2202 	int sectors;
2203 	int sect_to_write = r1_bio->sectors;
2204 	int ok = 1;
2205 
2206 	if (rdev->badblocks.shift < 0)
2207 		return 0;
2208 
2209 	block_sectors = 1 << rdev->badblocks.shift;
2210 	sector = r1_bio->sector;
2211 	sectors = ((sector + block_sectors)
2212 		   & ~(sector_t)(block_sectors - 1))
2213 		- sector;
2214 
2215 	while (sect_to_write) {
2216 		struct bio *wbio;
2217 		if (sectors > sect_to_write)
2218 			sectors = sect_to_write;
2219 		/* Write at 'sector' for 'sectors'*/
2220 
2221 		if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2222 			unsigned vcnt = r1_bio->behind_page_count;
2223 			struct bio_vec *vec = r1_bio->behind_bvecs;
2224 
2225 			while (!vec->bv_page) {
2226 				vec++;
2227 				vcnt--;
2228 			}
2229 
2230 			wbio = bio_alloc_mddev(GFP_NOIO, vcnt, mddev);
2231 			memcpy(wbio->bi_io_vec, vec, vcnt * sizeof(struct bio_vec));
2232 
2233 			wbio->bi_vcnt = vcnt;
2234 		} else {
2235 			wbio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2236 		}
2237 
2238 		wbio->bi_rw = WRITE;
2239 		wbio->bi_iter.bi_sector = r1_bio->sector;
2240 		wbio->bi_iter.bi_size = r1_bio->sectors << 9;
2241 
2242 		bio_trim(wbio, sector - r1_bio->sector, sectors);
2243 		wbio->bi_iter.bi_sector += rdev->data_offset;
2244 		wbio->bi_bdev = rdev->bdev;
2245 		if (submit_bio_wait(WRITE, wbio) == 0)
2246 			/* failure! */
2247 			ok = rdev_set_badblocks(rdev, sector,
2248 						sectors, 0)
2249 				&& ok;
2250 
2251 		bio_put(wbio);
2252 		sect_to_write -= sectors;
2253 		sector += sectors;
2254 		sectors = block_sectors;
2255 	}
2256 	return ok;
2257 }
2258 
2259 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2260 {
2261 	int m;
2262 	int s = r1_bio->sectors;
2263 	for (m = 0; m < conf->raid_disks * 2 ; m++) {
2264 		struct md_rdev *rdev = conf->mirrors[m].rdev;
2265 		struct bio *bio = r1_bio->bios[m];
2266 		if (bio->bi_end_io == NULL)
2267 			continue;
2268 		if (test_bit(BIO_UPTODATE, &bio->bi_flags) &&
2269 		    test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2270 			rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2271 		}
2272 		if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
2273 		    test_bit(R1BIO_WriteError, &r1_bio->state)) {
2274 			if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2275 				md_error(conf->mddev, rdev);
2276 		}
2277 	}
2278 	put_buf(r1_bio);
2279 	md_done_sync(conf->mddev, s, 1);
2280 }
2281 
2282 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2283 {
2284 	int m;
2285 	for (m = 0; m < conf->raid_disks * 2 ; m++)
2286 		if (r1_bio->bios[m] == IO_MADE_GOOD) {
2287 			struct md_rdev *rdev = conf->mirrors[m].rdev;
2288 			rdev_clear_badblocks(rdev,
2289 					     r1_bio->sector,
2290 					     r1_bio->sectors, 0);
2291 			rdev_dec_pending(rdev, conf->mddev);
2292 		} else if (r1_bio->bios[m] != NULL) {
2293 			/* This drive got a write error.  We need to
2294 			 * narrow down and record precise write
2295 			 * errors.
2296 			 */
2297 			if (!narrow_write_error(r1_bio, m)) {
2298 				md_error(conf->mddev,
2299 					 conf->mirrors[m].rdev);
2300 				/* an I/O failed, we can't clear the bitmap */
2301 				set_bit(R1BIO_Degraded, &r1_bio->state);
2302 			}
2303 			rdev_dec_pending(conf->mirrors[m].rdev,
2304 					 conf->mddev);
2305 		}
2306 	if (test_bit(R1BIO_WriteError, &r1_bio->state))
2307 		close_write(r1_bio);
2308 	raid_end_bio_io(r1_bio);
2309 }
2310 
2311 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2312 {
2313 	int disk;
2314 	int max_sectors;
2315 	struct mddev *mddev = conf->mddev;
2316 	struct bio *bio;
2317 	char b[BDEVNAME_SIZE];
2318 	struct md_rdev *rdev;
2319 
2320 	clear_bit(R1BIO_ReadError, &r1_bio->state);
2321 	/* we got a read error. Maybe the drive is bad.  Maybe just
2322 	 * the block and we can fix it.
2323 	 * We freeze all other IO, and try reading the block from
2324 	 * other devices.  When we find one, we re-write
2325 	 * and check it that fixes the read error.
2326 	 * This is all done synchronously while the array is
2327 	 * frozen
2328 	 */
2329 	if (mddev->ro == 0) {
2330 		freeze_array(conf, 1);
2331 		fix_read_error(conf, r1_bio->read_disk,
2332 			       r1_bio->sector, r1_bio->sectors);
2333 		unfreeze_array(conf);
2334 	} else
2335 		md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
2336 	rdev_dec_pending(conf->mirrors[r1_bio->read_disk].rdev, conf->mddev);
2337 
2338 	bio = r1_bio->bios[r1_bio->read_disk];
2339 	bdevname(bio->bi_bdev, b);
2340 read_more:
2341 	disk = read_balance(conf, r1_bio, &max_sectors);
2342 	if (disk == -1) {
2343 		printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O"
2344 		       " read error for block %llu\n",
2345 		       mdname(mddev), b, (unsigned long long)r1_bio->sector);
2346 		raid_end_bio_io(r1_bio);
2347 	} else {
2348 		const unsigned long do_sync
2349 			= r1_bio->master_bio->bi_rw & REQ_SYNC;
2350 		if (bio) {
2351 			r1_bio->bios[r1_bio->read_disk] =
2352 				mddev->ro ? IO_BLOCKED : NULL;
2353 			bio_put(bio);
2354 		}
2355 		r1_bio->read_disk = disk;
2356 		bio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2357 		bio_trim(bio, r1_bio->sector - bio->bi_iter.bi_sector,
2358 			 max_sectors);
2359 		r1_bio->bios[r1_bio->read_disk] = bio;
2360 		rdev = conf->mirrors[disk].rdev;
2361 		printk_ratelimited(KERN_ERR
2362 				   "md/raid1:%s: redirecting sector %llu"
2363 				   " to other mirror: %s\n",
2364 				   mdname(mddev),
2365 				   (unsigned long long)r1_bio->sector,
2366 				   bdevname(rdev->bdev, b));
2367 		bio->bi_iter.bi_sector = r1_bio->sector + rdev->data_offset;
2368 		bio->bi_bdev = rdev->bdev;
2369 		bio->bi_end_io = raid1_end_read_request;
2370 		bio->bi_rw = READ | do_sync;
2371 		bio->bi_private = r1_bio;
2372 		if (max_sectors < r1_bio->sectors) {
2373 			/* Drat - have to split this up more */
2374 			struct bio *mbio = r1_bio->master_bio;
2375 			int sectors_handled = (r1_bio->sector + max_sectors
2376 					       - mbio->bi_iter.bi_sector);
2377 			r1_bio->sectors = max_sectors;
2378 			spin_lock_irq(&conf->device_lock);
2379 			if (mbio->bi_phys_segments == 0)
2380 				mbio->bi_phys_segments = 2;
2381 			else
2382 				mbio->bi_phys_segments++;
2383 			spin_unlock_irq(&conf->device_lock);
2384 			generic_make_request(bio);
2385 			bio = NULL;
2386 
2387 			r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
2388 
2389 			r1_bio->master_bio = mbio;
2390 			r1_bio->sectors = bio_sectors(mbio) - sectors_handled;
2391 			r1_bio->state = 0;
2392 			set_bit(R1BIO_ReadError, &r1_bio->state);
2393 			r1_bio->mddev = mddev;
2394 			r1_bio->sector = mbio->bi_iter.bi_sector +
2395 				sectors_handled;
2396 
2397 			goto read_more;
2398 		} else
2399 			generic_make_request(bio);
2400 	}
2401 }
2402 
2403 static void raid1d(struct md_thread *thread)
2404 {
2405 	struct mddev *mddev = thread->mddev;
2406 	struct r1bio *r1_bio;
2407 	unsigned long flags;
2408 	struct r1conf *conf = mddev->private;
2409 	struct list_head *head = &conf->retry_list;
2410 	struct blk_plug plug;
2411 
2412 	md_check_recovery(mddev);
2413 
2414 	blk_start_plug(&plug);
2415 	for (;;) {
2416 
2417 		flush_pending_writes(conf);
2418 
2419 		spin_lock_irqsave(&conf->device_lock, flags);
2420 		if (list_empty(head)) {
2421 			spin_unlock_irqrestore(&conf->device_lock, flags);
2422 			break;
2423 		}
2424 		r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2425 		list_del(head->prev);
2426 		conf->nr_queued--;
2427 		spin_unlock_irqrestore(&conf->device_lock, flags);
2428 
2429 		mddev = r1_bio->mddev;
2430 		conf = mddev->private;
2431 		if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2432 			if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2433 			    test_bit(R1BIO_WriteError, &r1_bio->state))
2434 				handle_sync_write_finished(conf, r1_bio);
2435 			else
2436 				sync_request_write(mddev, r1_bio);
2437 		} else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2438 			   test_bit(R1BIO_WriteError, &r1_bio->state))
2439 			handle_write_finished(conf, r1_bio);
2440 		else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2441 			handle_read_error(conf, r1_bio);
2442 		else
2443 			/* just a partial read to be scheduled from separate
2444 			 * context
2445 			 */
2446 			generic_make_request(r1_bio->bios[r1_bio->read_disk]);
2447 
2448 		cond_resched();
2449 		if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2450 			md_check_recovery(mddev);
2451 	}
2452 	blk_finish_plug(&plug);
2453 }
2454 
2455 static int init_resync(struct r1conf *conf)
2456 {
2457 	int buffs;
2458 
2459 	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2460 	BUG_ON(conf->r1buf_pool);
2461 	conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2462 					  conf->poolinfo);
2463 	if (!conf->r1buf_pool)
2464 		return -ENOMEM;
2465 	conf->next_resync = 0;
2466 	return 0;
2467 }
2468 
2469 /*
2470  * perform a "sync" on one "block"
2471  *
2472  * We need to make sure that no normal I/O request - particularly write
2473  * requests - conflict with active sync requests.
2474  *
2475  * This is achieved by tracking pending requests and a 'barrier' concept
2476  * that can be installed to exclude normal IO requests.
2477  */
2478 
2479 static sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
2480 {
2481 	struct r1conf *conf = mddev->private;
2482 	struct r1bio *r1_bio;
2483 	struct bio *bio;
2484 	sector_t max_sector, nr_sectors;
2485 	int disk = -1;
2486 	int i;
2487 	int wonly = -1;
2488 	int write_targets = 0, read_targets = 0;
2489 	sector_t sync_blocks;
2490 	int still_degraded = 0;
2491 	int good_sectors = RESYNC_SECTORS;
2492 	int min_bad = 0; /* number of sectors that are bad in all devices */
2493 
2494 	if (!conf->r1buf_pool)
2495 		if (init_resync(conf))
2496 			return 0;
2497 
2498 	max_sector = mddev->dev_sectors;
2499 	if (sector_nr >= max_sector) {
2500 		/* If we aborted, we need to abort the
2501 		 * sync on the 'current' bitmap chunk (there will
2502 		 * only be one in raid1 resync.
2503 		 * We can find the current addess in mddev->curr_resync
2504 		 */
2505 		if (mddev->curr_resync < max_sector) /* aborted */
2506 			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2507 						&sync_blocks, 1);
2508 		else /* completed sync */
2509 			conf->fullsync = 0;
2510 
2511 		bitmap_close_sync(mddev->bitmap);
2512 		close_sync(conf);
2513 		return 0;
2514 	}
2515 
2516 	if (mddev->bitmap == NULL &&
2517 	    mddev->recovery_cp == MaxSector &&
2518 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2519 	    conf->fullsync == 0) {
2520 		*skipped = 1;
2521 		return max_sector - sector_nr;
2522 	}
2523 	/* before building a request, check if we can skip these blocks..
2524 	 * This call the bitmap_start_sync doesn't actually record anything
2525 	 */
2526 	if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2527 	    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2528 		/* We can skip this block, and probably several more */
2529 		*skipped = 1;
2530 		return sync_blocks;
2531 	}
2532 	/*
2533 	 * If there is non-resync activity waiting for a turn,
2534 	 * and resync is going fast enough,
2535 	 * then let it though before starting on this new sync request.
2536 	 */
2537 	if (!go_faster && conf->nr_waiting)
2538 		msleep_interruptible(1000);
2539 
2540 	bitmap_cond_end_sync(mddev->bitmap, sector_nr);
2541 	r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
2542 
2543 	raise_barrier(conf, sector_nr);
2544 
2545 	rcu_read_lock();
2546 	/*
2547 	 * If we get a correctably read error during resync or recovery,
2548 	 * we might want to read from a different device.  So we
2549 	 * flag all drives that could conceivably be read from for READ,
2550 	 * and any others (which will be non-In_sync devices) for WRITE.
2551 	 * If a read fails, we try reading from something else for which READ
2552 	 * is OK.
2553 	 */
2554 
2555 	r1_bio->mddev = mddev;
2556 	r1_bio->sector = sector_nr;
2557 	r1_bio->state = 0;
2558 	set_bit(R1BIO_IsSync, &r1_bio->state);
2559 
2560 	for (i = 0; i < conf->raid_disks * 2; i++) {
2561 		struct md_rdev *rdev;
2562 		bio = r1_bio->bios[i];
2563 		bio_reset(bio);
2564 
2565 		rdev = rcu_dereference(conf->mirrors[i].rdev);
2566 		if (rdev == NULL ||
2567 		    test_bit(Faulty, &rdev->flags)) {
2568 			if (i < conf->raid_disks)
2569 				still_degraded = 1;
2570 		} else if (!test_bit(In_sync, &rdev->flags)) {
2571 			bio->bi_rw = WRITE;
2572 			bio->bi_end_io = end_sync_write;
2573 			write_targets ++;
2574 		} else {
2575 			/* may need to read from here */
2576 			sector_t first_bad = MaxSector;
2577 			int bad_sectors;
2578 
2579 			if (is_badblock(rdev, sector_nr, good_sectors,
2580 					&first_bad, &bad_sectors)) {
2581 				if (first_bad > sector_nr)
2582 					good_sectors = first_bad - sector_nr;
2583 				else {
2584 					bad_sectors -= (sector_nr - first_bad);
2585 					if (min_bad == 0 ||
2586 					    min_bad > bad_sectors)
2587 						min_bad = bad_sectors;
2588 				}
2589 			}
2590 			if (sector_nr < first_bad) {
2591 				if (test_bit(WriteMostly, &rdev->flags)) {
2592 					if (wonly < 0)
2593 						wonly = i;
2594 				} else {
2595 					if (disk < 0)
2596 						disk = i;
2597 				}
2598 				bio->bi_rw = READ;
2599 				bio->bi_end_io = end_sync_read;
2600 				read_targets++;
2601 			} else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2602 				test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2603 				!test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2604 				/*
2605 				 * The device is suitable for reading (InSync),
2606 				 * but has bad block(s) here. Let's try to correct them,
2607 				 * if we are doing resync or repair. Otherwise, leave
2608 				 * this device alone for this sync request.
2609 				 */
2610 				bio->bi_rw = WRITE;
2611 				bio->bi_end_io = end_sync_write;
2612 				write_targets++;
2613 			}
2614 		}
2615 		if (bio->bi_end_io) {
2616 			atomic_inc(&rdev->nr_pending);
2617 			bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
2618 			bio->bi_bdev = rdev->bdev;
2619 			bio->bi_private = r1_bio;
2620 		}
2621 	}
2622 	rcu_read_unlock();
2623 	if (disk < 0)
2624 		disk = wonly;
2625 	r1_bio->read_disk = disk;
2626 
2627 	if (read_targets == 0 && min_bad > 0) {
2628 		/* These sectors are bad on all InSync devices, so we
2629 		 * need to mark them bad on all write targets
2630 		 */
2631 		int ok = 1;
2632 		for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2633 			if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2634 				struct md_rdev *rdev = conf->mirrors[i].rdev;
2635 				ok = rdev_set_badblocks(rdev, sector_nr,
2636 							min_bad, 0
2637 					) && ok;
2638 			}
2639 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
2640 		*skipped = 1;
2641 		put_buf(r1_bio);
2642 
2643 		if (!ok) {
2644 			/* Cannot record the badblocks, so need to
2645 			 * abort the resync.
2646 			 * If there are multiple read targets, could just
2647 			 * fail the really bad ones ???
2648 			 */
2649 			conf->recovery_disabled = mddev->recovery_disabled;
2650 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2651 			return 0;
2652 		} else
2653 			return min_bad;
2654 
2655 	}
2656 	if (min_bad > 0 && min_bad < good_sectors) {
2657 		/* only resync enough to reach the next bad->good
2658 		 * transition */
2659 		good_sectors = min_bad;
2660 	}
2661 
2662 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2663 		/* extra read targets are also write targets */
2664 		write_targets += read_targets-1;
2665 
2666 	if (write_targets == 0 || read_targets == 0) {
2667 		/* There is nowhere to write, so all non-sync
2668 		 * drives must be failed - so we are finished
2669 		 */
2670 		sector_t rv;
2671 		if (min_bad > 0)
2672 			max_sector = sector_nr + min_bad;
2673 		rv = max_sector - sector_nr;
2674 		*skipped = 1;
2675 		put_buf(r1_bio);
2676 		return rv;
2677 	}
2678 
2679 	if (max_sector > mddev->resync_max)
2680 		max_sector = mddev->resync_max; /* Don't do IO beyond here */
2681 	if (max_sector > sector_nr + good_sectors)
2682 		max_sector = sector_nr + good_sectors;
2683 	nr_sectors = 0;
2684 	sync_blocks = 0;
2685 	do {
2686 		struct page *page;
2687 		int len = PAGE_SIZE;
2688 		if (sector_nr + (len>>9) > max_sector)
2689 			len = (max_sector - sector_nr) << 9;
2690 		if (len == 0)
2691 			break;
2692 		if (sync_blocks == 0) {
2693 			if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2694 					       &sync_blocks, still_degraded) &&
2695 			    !conf->fullsync &&
2696 			    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2697 				break;
2698 			BUG_ON(sync_blocks < (PAGE_SIZE>>9));
2699 			if ((len >> 9) > sync_blocks)
2700 				len = sync_blocks<<9;
2701 		}
2702 
2703 		for (i = 0 ; i < conf->raid_disks * 2; i++) {
2704 			bio = r1_bio->bios[i];
2705 			if (bio->bi_end_io) {
2706 				page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
2707 				if (bio_add_page(bio, page, len, 0) == 0) {
2708 					/* stop here */
2709 					bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
2710 					while (i > 0) {
2711 						i--;
2712 						bio = r1_bio->bios[i];
2713 						if (bio->bi_end_io==NULL)
2714 							continue;
2715 						/* remove last page from this bio */
2716 						bio->bi_vcnt--;
2717 						bio->bi_iter.bi_size -= len;
2718 						__clear_bit(BIO_SEG_VALID, &bio->bi_flags);
2719 					}
2720 					goto bio_full;
2721 				}
2722 			}
2723 		}
2724 		nr_sectors += len>>9;
2725 		sector_nr += len>>9;
2726 		sync_blocks -= (len>>9);
2727 	} while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
2728  bio_full:
2729 	r1_bio->sectors = nr_sectors;
2730 
2731 	/* For a user-requested sync, we read all readable devices and do a
2732 	 * compare
2733 	 */
2734 	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2735 		atomic_set(&r1_bio->remaining, read_targets);
2736 		for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2737 			bio = r1_bio->bios[i];
2738 			if (bio->bi_end_io == end_sync_read) {
2739 				read_targets--;
2740 				md_sync_acct(bio->bi_bdev, nr_sectors);
2741 				generic_make_request(bio);
2742 			}
2743 		}
2744 	} else {
2745 		atomic_set(&r1_bio->remaining, 1);
2746 		bio = r1_bio->bios[r1_bio->read_disk];
2747 		md_sync_acct(bio->bi_bdev, nr_sectors);
2748 		generic_make_request(bio);
2749 
2750 	}
2751 	return nr_sectors;
2752 }
2753 
2754 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2755 {
2756 	if (sectors)
2757 		return sectors;
2758 
2759 	return mddev->dev_sectors;
2760 }
2761 
2762 static struct r1conf *setup_conf(struct mddev *mddev)
2763 {
2764 	struct r1conf *conf;
2765 	int i;
2766 	struct raid1_info *disk;
2767 	struct md_rdev *rdev;
2768 	int err = -ENOMEM;
2769 
2770 	conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2771 	if (!conf)
2772 		goto abort;
2773 
2774 	conf->mirrors = kzalloc(sizeof(struct raid1_info)
2775 				* mddev->raid_disks * 2,
2776 				 GFP_KERNEL);
2777 	if (!conf->mirrors)
2778 		goto abort;
2779 
2780 	conf->tmppage = alloc_page(GFP_KERNEL);
2781 	if (!conf->tmppage)
2782 		goto abort;
2783 
2784 	conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
2785 	if (!conf->poolinfo)
2786 		goto abort;
2787 	conf->poolinfo->raid_disks = mddev->raid_disks * 2;
2788 	conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2789 					  r1bio_pool_free,
2790 					  conf->poolinfo);
2791 	if (!conf->r1bio_pool)
2792 		goto abort;
2793 
2794 	conf->poolinfo->mddev = mddev;
2795 
2796 	err = -EINVAL;
2797 	spin_lock_init(&conf->device_lock);
2798 	rdev_for_each(rdev, mddev) {
2799 		struct request_queue *q;
2800 		int disk_idx = rdev->raid_disk;
2801 		if (disk_idx >= mddev->raid_disks
2802 		    || disk_idx < 0)
2803 			continue;
2804 		if (test_bit(Replacement, &rdev->flags))
2805 			disk = conf->mirrors + mddev->raid_disks + disk_idx;
2806 		else
2807 			disk = conf->mirrors + disk_idx;
2808 
2809 		if (disk->rdev)
2810 			goto abort;
2811 		disk->rdev = rdev;
2812 		q = bdev_get_queue(rdev->bdev);
2813 		if (q->merge_bvec_fn)
2814 			mddev->merge_check_needed = 1;
2815 
2816 		disk->head_position = 0;
2817 		disk->seq_start = MaxSector;
2818 	}
2819 	conf->raid_disks = mddev->raid_disks;
2820 	conf->mddev = mddev;
2821 	INIT_LIST_HEAD(&conf->retry_list);
2822 
2823 	spin_lock_init(&conf->resync_lock);
2824 	init_waitqueue_head(&conf->wait_barrier);
2825 
2826 	bio_list_init(&conf->pending_bio_list);
2827 	conf->pending_count = 0;
2828 	conf->recovery_disabled = mddev->recovery_disabled - 1;
2829 
2830 	conf->start_next_window = MaxSector;
2831 	conf->current_window_requests = conf->next_window_requests = 0;
2832 
2833 	err = -EIO;
2834 	for (i = 0; i < conf->raid_disks * 2; i++) {
2835 
2836 		disk = conf->mirrors + i;
2837 
2838 		if (i < conf->raid_disks &&
2839 		    disk[conf->raid_disks].rdev) {
2840 			/* This slot has a replacement. */
2841 			if (!disk->rdev) {
2842 				/* No original, just make the replacement
2843 				 * a recovering spare
2844 				 */
2845 				disk->rdev =
2846 					disk[conf->raid_disks].rdev;
2847 				disk[conf->raid_disks].rdev = NULL;
2848 			} else if (!test_bit(In_sync, &disk->rdev->flags))
2849 				/* Original is not in_sync - bad */
2850 				goto abort;
2851 		}
2852 
2853 		if (!disk->rdev ||
2854 		    !test_bit(In_sync, &disk->rdev->flags)) {
2855 			disk->head_position = 0;
2856 			if (disk->rdev &&
2857 			    (disk->rdev->saved_raid_disk < 0))
2858 				conf->fullsync = 1;
2859 		}
2860 	}
2861 
2862 	err = -ENOMEM;
2863 	conf->thread = md_register_thread(raid1d, mddev, "raid1");
2864 	if (!conf->thread) {
2865 		printk(KERN_ERR
2866 		       "md/raid1:%s: couldn't allocate thread\n",
2867 		       mdname(mddev));
2868 		goto abort;
2869 	}
2870 
2871 	return conf;
2872 
2873  abort:
2874 	if (conf) {
2875 		if (conf->r1bio_pool)
2876 			mempool_destroy(conf->r1bio_pool);
2877 		kfree(conf->mirrors);
2878 		safe_put_page(conf->tmppage);
2879 		kfree(conf->poolinfo);
2880 		kfree(conf);
2881 	}
2882 	return ERR_PTR(err);
2883 }
2884 
2885 static int stop(struct mddev *mddev);
2886 static int run(struct mddev *mddev)
2887 {
2888 	struct r1conf *conf;
2889 	int i;
2890 	struct md_rdev *rdev;
2891 	int ret;
2892 	bool discard_supported = false;
2893 
2894 	if (mddev->level != 1) {
2895 		printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n",
2896 		       mdname(mddev), mddev->level);
2897 		return -EIO;
2898 	}
2899 	if (mddev->reshape_position != MaxSector) {
2900 		printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n",
2901 		       mdname(mddev));
2902 		return -EIO;
2903 	}
2904 	/*
2905 	 * copy the already verified devices into our private RAID1
2906 	 * bookkeeping area. [whatever we allocate in run(),
2907 	 * should be freed in stop()]
2908 	 */
2909 	if (mddev->private == NULL)
2910 		conf = setup_conf(mddev);
2911 	else
2912 		conf = mddev->private;
2913 
2914 	if (IS_ERR(conf))
2915 		return PTR_ERR(conf);
2916 
2917 	if (mddev->queue)
2918 		blk_queue_max_write_same_sectors(mddev->queue, 0);
2919 
2920 	rdev_for_each(rdev, mddev) {
2921 		if (!mddev->gendisk)
2922 			continue;
2923 		disk_stack_limits(mddev->gendisk, rdev->bdev,
2924 				  rdev->data_offset << 9);
2925 		if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
2926 			discard_supported = true;
2927 	}
2928 
2929 	mddev->degraded = 0;
2930 	for (i=0; i < conf->raid_disks; i++)
2931 		if (conf->mirrors[i].rdev == NULL ||
2932 		    !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
2933 		    test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2934 			mddev->degraded++;
2935 
2936 	if (conf->raid_disks - mddev->degraded == 1)
2937 		mddev->recovery_cp = MaxSector;
2938 
2939 	if (mddev->recovery_cp != MaxSector)
2940 		printk(KERN_NOTICE "md/raid1:%s: not clean"
2941 		       " -- starting background reconstruction\n",
2942 		       mdname(mddev));
2943 	printk(KERN_INFO
2944 		"md/raid1:%s: active with %d out of %d mirrors\n",
2945 		mdname(mddev), mddev->raid_disks - mddev->degraded,
2946 		mddev->raid_disks);
2947 
2948 	/*
2949 	 * Ok, everything is just fine now
2950 	 */
2951 	mddev->thread = conf->thread;
2952 	conf->thread = NULL;
2953 	mddev->private = conf;
2954 
2955 	md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
2956 
2957 	if (mddev->queue) {
2958 		mddev->queue->backing_dev_info.congested_fn = raid1_congested;
2959 		mddev->queue->backing_dev_info.congested_data = mddev;
2960 		blk_queue_merge_bvec(mddev->queue, raid1_mergeable_bvec);
2961 
2962 		if (discard_supported)
2963 			queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
2964 						mddev->queue);
2965 		else
2966 			queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
2967 						  mddev->queue);
2968 	}
2969 
2970 	ret =  md_integrity_register(mddev);
2971 	if (ret)
2972 		stop(mddev);
2973 	return ret;
2974 }
2975 
2976 static int stop(struct mddev *mddev)
2977 {
2978 	struct r1conf *conf = mddev->private;
2979 	struct bitmap *bitmap = mddev->bitmap;
2980 
2981 	/* wait for behind writes to complete */
2982 	if (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
2983 		printk(KERN_INFO "md/raid1:%s: behind writes in progress - waiting to stop.\n",
2984 		       mdname(mddev));
2985 		/* need to kick something here to make sure I/O goes? */
2986 		wait_event(bitmap->behind_wait,
2987 			   atomic_read(&bitmap->behind_writes) == 0);
2988 	}
2989 
2990 	freeze_array(conf, 0);
2991 	unfreeze_array(conf);
2992 
2993 	md_unregister_thread(&mddev->thread);
2994 	if (conf->r1bio_pool)
2995 		mempool_destroy(conf->r1bio_pool);
2996 	kfree(conf->mirrors);
2997 	safe_put_page(conf->tmppage);
2998 	kfree(conf->poolinfo);
2999 	kfree(conf);
3000 	mddev->private = NULL;
3001 	return 0;
3002 }
3003 
3004 static int raid1_resize(struct mddev *mddev, sector_t sectors)
3005 {
3006 	/* no resync is happening, and there is enough space
3007 	 * on all devices, so we can resize.
3008 	 * We need to make sure resync covers any new space.
3009 	 * If the array is shrinking we should possibly wait until
3010 	 * any io in the removed space completes, but it hardly seems
3011 	 * worth it.
3012 	 */
3013 	sector_t newsize = raid1_size(mddev, sectors, 0);
3014 	if (mddev->external_size &&
3015 	    mddev->array_sectors > newsize)
3016 		return -EINVAL;
3017 	if (mddev->bitmap) {
3018 		int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0);
3019 		if (ret)
3020 			return ret;
3021 	}
3022 	md_set_array_sectors(mddev, newsize);
3023 	set_capacity(mddev->gendisk, mddev->array_sectors);
3024 	revalidate_disk(mddev->gendisk);
3025 	if (sectors > mddev->dev_sectors &&
3026 	    mddev->recovery_cp > mddev->dev_sectors) {
3027 		mddev->recovery_cp = mddev->dev_sectors;
3028 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3029 	}
3030 	mddev->dev_sectors = sectors;
3031 	mddev->resync_max_sectors = sectors;
3032 	return 0;
3033 }
3034 
3035 static int raid1_reshape(struct mddev *mddev)
3036 {
3037 	/* We need to:
3038 	 * 1/ resize the r1bio_pool
3039 	 * 2/ resize conf->mirrors
3040 	 *
3041 	 * We allocate a new r1bio_pool if we can.
3042 	 * Then raise a device barrier and wait until all IO stops.
3043 	 * Then resize conf->mirrors and swap in the new r1bio pool.
3044 	 *
3045 	 * At the same time, we "pack" the devices so that all the missing
3046 	 * devices have the higher raid_disk numbers.
3047 	 */
3048 	mempool_t *newpool, *oldpool;
3049 	struct pool_info *newpoolinfo;
3050 	struct raid1_info *newmirrors;
3051 	struct r1conf *conf = mddev->private;
3052 	int cnt, raid_disks;
3053 	unsigned long flags;
3054 	int d, d2, err;
3055 
3056 	/* Cannot change chunk_size, layout, or level */
3057 	if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3058 	    mddev->layout != mddev->new_layout ||
3059 	    mddev->level != mddev->new_level) {
3060 		mddev->new_chunk_sectors = mddev->chunk_sectors;
3061 		mddev->new_layout = mddev->layout;
3062 		mddev->new_level = mddev->level;
3063 		return -EINVAL;
3064 	}
3065 
3066 	err = md_allow_write(mddev);
3067 	if (err)
3068 		return err;
3069 
3070 	raid_disks = mddev->raid_disks + mddev->delta_disks;
3071 
3072 	if (raid_disks < conf->raid_disks) {
3073 		cnt=0;
3074 		for (d= 0; d < conf->raid_disks; d++)
3075 			if (conf->mirrors[d].rdev)
3076 				cnt++;
3077 		if (cnt > raid_disks)
3078 			return -EBUSY;
3079 	}
3080 
3081 	newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3082 	if (!newpoolinfo)
3083 		return -ENOMEM;
3084 	newpoolinfo->mddev = mddev;
3085 	newpoolinfo->raid_disks = raid_disks * 2;
3086 
3087 	newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
3088 				 r1bio_pool_free, newpoolinfo);
3089 	if (!newpool) {
3090 		kfree(newpoolinfo);
3091 		return -ENOMEM;
3092 	}
3093 	newmirrors = kzalloc(sizeof(struct raid1_info) * raid_disks * 2,
3094 			     GFP_KERNEL);
3095 	if (!newmirrors) {
3096 		kfree(newpoolinfo);
3097 		mempool_destroy(newpool);
3098 		return -ENOMEM;
3099 	}
3100 
3101 	freeze_array(conf, 0);
3102 
3103 	/* ok, everything is stopped */
3104 	oldpool = conf->r1bio_pool;
3105 	conf->r1bio_pool = newpool;
3106 
3107 	for (d = d2 = 0; d < conf->raid_disks; d++) {
3108 		struct md_rdev *rdev = conf->mirrors[d].rdev;
3109 		if (rdev && rdev->raid_disk != d2) {
3110 			sysfs_unlink_rdev(mddev, rdev);
3111 			rdev->raid_disk = d2;
3112 			sysfs_unlink_rdev(mddev, rdev);
3113 			if (sysfs_link_rdev(mddev, rdev))
3114 				printk(KERN_WARNING
3115 				       "md/raid1:%s: cannot register rd%d\n",
3116 				       mdname(mddev), rdev->raid_disk);
3117 		}
3118 		if (rdev)
3119 			newmirrors[d2++].rdev = rdev;
3120 	}
3121 	kfree(conf->mirrors);
3122 	conf->mirrors = newmirrors;
3123 	kfree(conf->poolinfo);
3124 	conf->poolinfo = newpoolinfo;
3125 
3126 	spin_lock_irqsave(&conf->device_lock, flags);
3127 	mddev->degraded += (raid_disks - conf->raid_disks);
3128 	spin_unlock_irqrestore(&conf->device_lock, flags);
3129 	conf->raid_disks = mddev->raid_disks = raid_disks;
3130 	mddev->delta_disks = 0;
3131 
3132 	unfreeze_array(conf);
3133 
3134 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3135 	md_wakeup_thread(mddev->thread);
3136 
3137 	mempool_destroy(oldpool);
3138 	return 0;
3139 }
3140 
3141 static void raid1_quiesce(struct mddev *mddev, int state)
3142 {
3143 	struct r1conf *conf = mddev->private;
3144 
3145 	switch(state) {
3146 	case 2: /* wake for suspend */
3147 		wake_up(&conf->wait_barrier);
3148 		break;
3149 	case 1:
3150 		freeze_array(conf, 0);
3151 		break;
3152 	case 0:
3153 		unfreeze_array(conf);
3154 		break;
3155 	}
3156 }
3157 
3158 static void *raid1_takeover(struct mddev *mddev)
3159 {
3160 	/* raid1 can take over:
3161 	 *  raid5 with 2 devices, any layout or chunk size
3162 	 */
3163 	if (mddev->level == 5 && mddev->raid_disks == 2) {
3164 		struct r1conf *conf;
3165 		mddev->new_level = 1;
3166 		mddev->new_layout = 0;
3167 		mddev->new_chunk_sectors = 0;
3168 		conf = setup_conf(mddev);
3169 		if (!IS_ERR(conf))
3170 			/* Array must appear to be quiesced */
3171 			conf->array_frozen = 1;
3172 		return conf;
3173 	}
3174 	return ERR_PTR(-EINVAL);
3175 }
3176 
3177 static struct md_personality raid1_personality =
3178 {
3179 	.name		= "raid1",
3180 	.level		= 1,
3181 	.owner		= THIS_MODULE,
3182 	.make_request	= make_request,
3183 	.run		= run,
3184 	.stop		= stop,
3185 	.status		= status,
3186 	.error_handler	= error,
3187 	.hot_add_disk	= raid1_add_disk,
3188 	.hot_remove_disk= raid1_remove_disk,
3189 	.spare_active	= raid1_spare_active,
3190 	.sync_request	= sync_request,
3191 	.resize		= raid1_resize,
3192 	.size		= raid1_size,
3193 	.check_reshape	= raid1_reshape,
3194 	.quiesce	= raid1_quiesce,
3195 	.takeover	= raid1_takeover,
3196 };
3197 
3198 static int __init raid_init(void)
3199 {
3200 	return register_md_personality(&raid1_personality);
3201 }
3202 
3203 static void raid_exit(void)
3204 {
3205 	unregister_md_personality(&raid1_personality);
3206 }
3207 
3208 module_init(raid_init);
3209 module_exit(raid_exit);
3210 MODULE_LICENSE("GPL");
3211 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3212 MODULE_ALIAS("md-personality-3"); /* RAID1 */
3213 MODULE_ALIAS("md-raid1");
3214 MODULE_ALIAS("md-level-1");
3215 
3216 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
3217