xref: /openbmc/linux/drivers/md/raid1.c (revision c2fd4c94)
1 /*
2  * raid1.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5  *
6  * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7  *
8  * RAID-1 management functions.
9  *
10  * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11  *
12  * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
13  * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14  *
15  * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16  * bitmapped intelligence in resync:
17  *
18  *      - bitmap marked during normal i/o
19  *      - bitmap used to skip nondirty blocks during sync
20  *
21  * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22  * - persistent bitmap code
23  *
24  * This program is free software; you can redistribute it and/or modify
25  * it under the terms of the GNU General Public License as published by
26  * the Free Software Foundation; either version 2, or (at your option)
27  * any later version.
28  *
29  * You should have received a copy of the GNU General Public License
30  * (for example /usr/src/linux/COPYING); if not, write to the Free
31  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32  */
33 
34 #include <linux/slab.h>
35 #include <linux/delay.h>
36 #include <linux/blkdev.h>
37 #include <linux/module.h>
38 #include <linux/seq_file.h>
39 #include <linux/ratelimit.h>
40 #include "md.h"
41 #include "raid1.h"
42 #include "bitmap.h"
43 
44 /*
45  * Number of guaranteed r1bios in case of extreme VM load:
46  */
47 #define	NR_RAID1_BIOS 256
48 
49 /* when we get a read error on a read-only array, we redirect to another
50  * device without failing the first device, or trying to over-write to
51  * correct the read error.  To keep track of bad blocks on a per-bio
52  * level, we store IO_BLOCKED in the appropriate 'bios' pointer
53  */
54 #define IO_BLOCKED ((struct bio *)1)
55 /* When we successfully write to a known bad-block, we need to remove the
56  * bad-block marking which must be done from process context.  So we record
57  * the success by setting devs[n].bio to IO_MADE_GOOD
58  */
59 #define IO_MADE_GOOD ((struct bio *)2)
60 
61 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
62 
63 /* When there are this many requests queue to be written by
64  * the raid1 thread, we become 'congested' to provide back-pressure
65  * for writeback.
66  */
67 static int max_queued_requests = 1024;
68 
69 static void allow_barrier(struct r1conf *conf, sector_t start_next_window,
70 			  sector_t bi_sector);
71 static void lower_barrier(struct r1conf *conf);
72 
73 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
74 {
75 	struct pool_info *pi = data;
76 	int size = offsetof(struct r1bio, bios[pi->raid_disks]);
77 
78 	/* allocate a r1bio with room for raid_disks entries in the bios array */
79 	return kzalloc(size, gfp_flags);
80 }
81 
82 static void r1bio_pool_free(void *r1_bio, void *data)
83 {
84 	kfree(r1_bio);
85 }
86 
87 #define RESYNC_BLOCK_SIZE (64*1024)
88 #define RESYNC_DEPTH 32
89 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
90 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
91 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
92 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
93 #define NEXT_NORMALIO_DISTANCE (3 * RESYNC_WINDOW_SECTORS)
94 
95 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
96 {
97 	struct pool_info *pi = data;
98 	struct r1bio *r1_bio;
99 	struct bio *bio;
100 	int need_pages;
101 	int i, j;
102 
103 	r1_bio = r1bio_pool_alloc(gfp_flags, pi);
104 	if (!r1_bio)
105 		return NULL;
106 
107 	/*
108 	 * Allocate bios : 1 for reading, n-1 for writing
109 	 */
110 	for (j = pi->raid_disks ; j-- ; ) {
111 		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
112 		if (!bio)
113 			goto out_free_bio;
114 		r1_bio->bios[j] = bio;
115 	}
116 	/*
117 	 * Allocate RESYNC_PAGES data pages and attach them to
118 	 * the first bio.
119 	 * If this is a user-requested check/repair, allocate
120 	 * RESYNC_PAGES for each bio.
121 	 */
122 	if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
123 		need_pages = pi->raid_disks;
124 	else
125 		need_pages = 1;
126 	for (j = 0; j < need_pages; j++) {
127 		bio = r1_bio->bios[j];
128 		bio->bi_vcnt = RESYNC_PAGES;
129 
130 		if (bio_alloc_pages(bio, gfp_flags))
131 			goto out_free_pages;
132 	}
133 	/* If not user-requests, copy the page pointers to all bios */
134 	if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
135 		for (i=0; i<RESYNC_PAGES ; i++)
136 			for (j=1; j<pi->raid_disks; j++)
137 				r1_bio->bios[j]->bi_io_vec[i].bv_page =
138 					r1_bio->bios[0]->bi_io_vec[i].bv_page;
139 	}
140 
141 	r1_bio->master_bio = NULL;
142 
143 	return r1_bio;
144 
145 out_free_pages:
146 	while (--j >= 0) {
147 		struct bio_vec *bv;
148 
149 		bio_for_each_segment_all(bv, r1_bio->bios[j], i)
150 			__free_page(bv->bv_page);
151 	}
152 
153 out_free_bio:
154 	while (++j < pi->raid_disks)
155 		bio_put(r1_bio->bios[j]);
156 	r1bio_pool_free(r1_bio, data);
157 	return NULL;
158 }
159 
160 static void r1buf_pool_free(void *__r1_bio, void *data)
161 {
162 	struct pool_info *pi = data;
163 	int i,j;
164 	struct r1bio *r1bio = __r1_bio;
165 
166 	for (i = 0; i < RESYNC_PAGES; i++)
167 		for (j = pi->raid_disks; j-- ;) {
168 			if (j == 0 ||
169 			    r1bio->bios[j]->bi_io_vec[i].bv_page !=
170 			    r1bio->bios[0]->bi_io_vec[i].bv_page)
171 				safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
172 		}
173 	for (i=0 ; i < pi->raid_disks; i++)
174 		bio_put(r1bio->bios[i]);
175 
176 	r1bio_pool_free(r1bio, data);
177 }
178 
179 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
180 {
181 	int i;
182 
183 	for (i = 0; i < conf->raid_disks * 2; i++) {
184 		struct bio **bio = r1_bio->bios + i;
185 		if (!BIO_SPECIAL(*bio))
186 			bio_put(*bio);
187 		*bio = NULL;
188 	}
189 }
190 
191 static void free_r1bio(struct r1bio *r1_bio)
192 {
193 	struct r1conf *conf = r1_bio->mddev->private;
194 
195 	put_all_bios(conf, r1_bio);
196 	mempool_free(r1_bio, conf->r1bio_pool);
197 }
198 
199 static void put_buf(struct r1bio *r1_bio)
200 {
201 	struct r1conf *conf = r1_bio->mddev->private;
202 	int i;
203 
204 	for (i = 0; i < conf->raid_disks * 2; i++) {
205 		struct bio *bio = r1_bio->bios[i];
206 		if (bio->bi_end_io)
207 			rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
208 	}
209 
210 	mempool_free(r1_bio, conf->r1buf_pool);
211 
212 	lower_barrier(conf);
213 }
214 
215 static void reschedule_retry(struct r1bio *r1_bio)
216 {
217 	unsigned long flags;
218 	struct mddev *mddev = r1_bio->mddev;
219 	struct r1conf *conf = mddev->private;
220 
221 	spin_lock_irqsave(&conf->device_lock, flags);
222 	list_add(&r1_bio->retry_list, &conf->retry_list);
223 	conf->nr_queued ++;
224 	spin_unlock_irqrestore(&conf->device_lock, flags);
225 
226 	wake_up(&conf->wait_barrier);
227 	md_wakeup_thread(mddev->thread);
228 }
229 
230 /*
231  * raid_end_bio_io() is called when we have finished servicing a mirrored
232  * operation and are ready to return a success/failure code to the buffer
233  * cache layer.
234  */
235 static void call_bio_endio(struct r1bio *r1_bio)
236 {
237 	struct bio *bio = r1_bio->master_bio;
238 	int done;
239 	struct r1conf *conf = r1_bio->mddev->private;
240 	sector_t start_next_window = r1_bio->start_next_window;
241 	sector_t bi_sector = bio->bi_iter.bi_sector;
242 
243 	if (bio->bi_phys_segments) {
244 		unsigned long flags;
245 		spin_lock_irqsave(&conf->device_lock, flags);
246 		bio->bi_phys_segments--;
247 		done = (bio->bi_phys_segments == 0);
248 		spin_unlock_irqrestore(&conf->device_lock, flags);
249 		/*
250 		 * make_request() might be waiting for
251 		 * bi_phys_segments to decrease
252 		 */
253 		wake_up(&conf->wait_barrier);
254 	} else
255 		done = 1;
256 
257 	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
258 		clear_bit(BIO_UPTODATE, &bio->bi_flags);
259 	if (done) {
260 		bio_endio(bio, 0);
261 		/*
262 		 * Wake up any possible resync thread that waits for the device
263 		 * to go idle.
264 		 */
265 		allow_barrier(conf, start_next_window, bi_sector);
266 	}
267 }
268 
269 static void raid_end_bio_io(struct r1bio *r1_bio)
270 {
271 	struct bio *bio = r1_bio->master_bio;
272 
273 	/* if nobody has done the final endio yet, do it now */
274 	if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
275 		pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
276 			 (bio_data_dir(bio) == WRITE) ? "write" : "read",
277 			 (unsigned long long) bio->bi_iter.bi_sector,
278 			 (unsigned long long) bio_end_sector(bio) - 1);
279 
280 		call_bio_endio(r1_bio);
281 	}
282 	free_r1bio(r1_bio);
283 }
284 
285 /*
286  * Update disk head position estimator based on IRQ completion info.
287  */
288 static inline void update_head_pos(int disk, struct r1bio *r1_bio)
289 {
290 	struct r1conf *conf = r1_bio->mddev->private;
291 
292 	conf->mirrors[disk].head_position =
293 		r1_bio->sector + (r1_bio->sectors);
294 }
295 
296 /*
297  * Find the disk number which triggered given bio
298  */
299 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
300 {
301 	int mirror;
302 	struct r1conf *conf = r1_bio->mddev->private;
303 	int raid_disks = conf->raid_disks;
304 
305 	for (mirror = 0; mirror < raid_disks * 2; mirror++)
306 		if (r1_bio->bios[mirror] == bio)
307 			break;
308 
309 	BUG_ON(mirror == raid_disks * 2);
310 	update_head_pos(mirror, r1_bio);
311 
312 	return mirror;
313 }
314 
315 static void raid1_end_read_request(struct bio *bio, int error)
316 {
317 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
318 	struct r1bio *r1_bio = bio->bi_private;
319 	int mirror;
320 	struct r1conf *conf = r1_bio->mddev->private;
321 
322 	mirror = r1_bio->read_disk;
323 	/*
324 	 * this branch is our 'one mirror IO has finished' event handler:
325 	 */
326 	update_head_pos(mirror, r1_bio);
327 
328 	if (uptodate)
329 		set_bit(R1BIO_Uptodate, &r1_bio->state);
330 	else {
331 		/* If all other devices have failed, we want to return
332 		 * the error upwards rather than fail the last device.
333 		 * Here we redefine "uptodate" to mean "Don't want to retry"
334 		 */
335 		unsigned long flags;
336 		spin_lock_irqsave(&conf->device_lock, flags);
337 		if (r1_bio->mddev->degraded == conf->raid_disks ||
338 		    (r1_bio->mddev->degraded == conf->raid_disks-1 &&
339 		     !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags)))
340 			uptodate = 1;
341 		spin_unlock_irqrestore(&conf->device_lock, flags);
342 	}
343 
344 	if (uptodate) {
345 		raid_end_bio_io(r1_bio);
346 		rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
347 	} else {
348 		/*
349 		 * oops, read error:
350 		 */
351 		char b[BDEVNAME_SIZE];
352 		printk_ratelimited(
353 			KERN_ERR "md/raid1:%s: %s: "
354 			"rescheduling sector %llu\n",
355 			mdname(conf->mddev),
356 			bdevname(conf->mirrors[mirror].rdev->bdev,
357 				 b),
358 			(unsigned long long)r1_bio->sector);
359 		set_bit(R1BIO_ReadError, &r1_bio->state);
360 		reschedule_retry(r1_bio);
361 		/* don't drop the reference on read_disk yet */
362 	}
363 }
364 
365 static void close_write(struct r1bio *r1_bio)
366 {
367 	/* it really is the end of this request */
368 	if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
369 		/* free extra copy of the data pages */
370 		int i = r1_bio->behind_page_count;
371 		while (i--)
372 			safe_put_page(r1_bio->behind_bvecs[i].bv_page);
373 		kfree(r1_bio->behind_bvecs);
374 		r1_bio->behind_bvecs = NULL;
375 	}
376 	/* clear the bitmap if all writes complete successfully */
377 	bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
378 			r1_bio->sectors,
379 			!test_bit(R1BIO_Degraded, &r1_bio->state),
380 			test_bit(R1BIO_BehindIO, &r1_bio->state));
381 	md_write_end(r1_bio->mddev);
382 }
383 
384 static void r1_bio_write_done(struct r1bio *r1_bio)
385 {
386 	if (!atomic_dec_and_test(&r1_bio->remaining))
387 		return;
388 
389 	if (test_bit(R1BIO_WriteError, &r1_bio->state))
390 		reschedule_retry(r1_bio);
391 	else {
392 		close_write(r1_bio);
393 		if (test_bit(R1BIO_MadeGood, &r1_bio->state))
394 			reschedule_retry(r1_bio);
395 		else
396 			raid_end_bio_io(r1_bio);
397 	}
398 }
399 
400 static void raid1_end_write_request(struct bio *bio, int error)
401 {
402 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
403 	struct r1bio *r1_bio = bio->bi_private;
404 	int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
405 	struct r1conf *conf = r1_bio->mddev->private;
406 	struct bio *to_put = NULL;
407 
408 	mirror = find_bio_disk(r1_bio, bio);
409 
410 	/*
411 	 * 'one mirror IO has finished' event handler:
412 	 */
413 	if (!uptodate) {
414 		set_bit(WriteErrorSeen,
415 			&conf->mirrors[mirror].rdev->flags);
416 		if (!test_and_set_bit(WantReplacement,
417 				      &conf->mirrors[mirror].rdev->flags))
418 			set_bit(MD_RECOVERY_NEEDED, &
419 				conf->mddev->recovery);
420 
421 		set_bit(R1BIO_WriteError, &r1_bio->state);
422 	} else {
423 		/*
424 		 * Set R1BIO_Uptodate in our master bio, so that we
425 		 * will return a good error code for to the higher
426 		 * levels even if IO on some other mirrored buffer
427 		 * fails.
428 		 *
429 		 * The 'master' represents the composite IO operation
430 		 * to user-side. So if something waits for IO, then it
431 		 * will wait for the 'master' bio.
432 		 */
433 		sector_t first_bad;
434 		int bad_sectors;
435 
436 		r1_bio->bios[mirror] = NULL;
437 		to_put = bio;
438 		/*
439 		 * Do not set R1BIO_Uptodate if the current device is
440 		 * rebuilding or Faulty. This is because we cannot use
441 		 * such device for properly reading the data back (we could
442 		 * potentially use it, if the current write would have felt
443 		 * before rdev->recovery_offset, but for simplicity we don't
444 		 * check this here.
445 		 */
446 		if (test_bit(In_sync, &conf->mirrors[mirror].rdev->flags) &&
447 		    !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags))
448 			set_bit(R1BIO_Uptodate, &r1_bio->state);
449 
450 		/* Maybe we can clear some bad blocks. */
451 		if (is_badblock(conf->mirrors[mirror].rdev,
452 				r1_bio->sector, r1_bio->sectors,
453 				&first_bad, &bad_sectors)) {
454 			r1_bio->bios[mirror] = IO_MADE_GOOD;
455 			set_bit(R1BIO_MadeGood, &r1_bio->state);
456 		}
457 	}
458 
459 	if (behind) {
460 		if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
461 			atomic_dec(&r1_bio->behind_remaining);
462 
463 		/*
464 		 * In behind mode, we ACK the master bio once the I/O
465 		 * has safely reached all non-writemostly
466 		 * disks. Setting the Returned bit ensures that this
467 		 * gets done only once -- we don't ever want to return
468 		 * -EIO here, instead we'll wait
469 		 */
470 		if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
471 		    test_bit(R1BIO_Uptodate, &r1_bio->state)) {
472 			/* Maybe we can return now */
473 			if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
474 				struct bio *mbio = r1_bio->master_bio;
475 				pr_debug("raid1: behind end write sectors"
476 					 " %llu-%llu\n",
477 					 (unsigned long long) mbio->bi_iter.bi_sector,
478 					 (unsigned long long) bio_end_sector(mbio) - 1);
479 				call_bio_endio(r1_bio);
480 			}
481 		}
482 	}
483 	if (r1_bio->bios[mirror] == NULL)
484 		rdev_dec_pending(conf->mirrors[mirror].rdev,
485 				 conf->mddev);
486 
487 	/*
488 	 * Let's see if all mirrored write operations have finished
489 	 * already.
490 	 */
491 	r1_bio_write_done(r1_bio);
492 
493 	if (to_put)
494 		bio_put(to_put);
495 }
496 
497 
498 /*
499  * This routine returns the disk from which the requested read should
500  * be done. There is a per-array 'next expected sequential IO' sector
501  * number - if this matches on the next IO then we use the last disk.
502  * There is also a per-disk 'last know head position' sector that is
503  * maintained from IRQ contexts, both the normal and the resync IO
504  * completion handlers update this position correctly. If there is no
505  * perfect sequential match then we pick the disk whose head is closest.
506  *
507  * If there are 2 mirrors in the same 2 devices, performance degrades
508  * because position is mirror, not device based.
509  *
510  * The rdev for the device selected will have nr_pending incremented.
511  */
512 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
513 {
514 	const sector_t this_sector = r1_bio->sector;
515 	int sectors;
516 	int best_good_sectors;
517 	int best_disk, best_dist_disk, best_pending_disk;
518 	int has_nonrot_disk;
519 	int disk;
520 	sector_t best_dist;
521 	unsigned int min_pending;
522 	struct md_rdev *rdev;
523 	int choose_first;
524 	int choose_next_idle;
525 
526 	rcu_read_lock();
527 	/*
528 	 * Check if we can balance. We can balance on the whole
529 	 * device if no resync is going on, or below the resync window.
530 	 * We take the first readable disk when above the resync window.
531 	 */
532  retry:
533 	sectors = r1_bio->sectors;
534 	best_disk = -1;
535 	best_dist_disk = -1;
536 	best_dist = MaxSector;
537 	best_pending_disk = -1;
538 	min_pending = UINT_MAX;
539 	best_good_sectors = 0;
540 	has_nonrot_disk = 0;
541 	choose_next_idle = 0;
542 
543 	choose_first = (conf->mddev->recovery_cp < this_sector + sectors);
544 
545 	for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
546 		sector_t dist;
547 		sector_t first_bad;
548 		int bad_sectors;
549 		unsigned int pending;
550 		bool nonrot;
551 
552 		rdev = rcu_dereference(conf->mirrors[disk].rdev);
553 		if (r1_bio->bios[disk] == IO_BLOCKED
554 		    || rdev == NULL
555 		    || test_bit(Unmerged, &rdev->flags)
556 		    || test_bit(Faulty, &rdev->flags))
557 			continue;
558 		if (!test_bit(In_sync, &rdev->flags) &&
559 		    rdev->recovery_offset < this_sector + sectors)
560 			continue;
561 		if (test_bit(WriteMostly, &rdev->flags)) {
562 			/* Don't balance among write-mostly, just
563 			 * use the first as a last resort */
564 			if (best_disk < 0) {
565 				if (is_badblock(rdev, this_sector, sectors,
566 						&first_bad, &bad_sectors)) {
567 					if (first_bad < this_sector)
568 						/* Cannot use this */
569 						continue;
570 					best_good_sectors = first_bad - this_sector;
571 				} else
572 					best_good_sectors = sectors;
573 				best_disk = disk;
574 			}
575 			continue;
576 		}
577 		/* This is a reasonable device to use.  It might
578 		 * even be best.
579 		 */
580 		if (is_badblock(rdev, this_sector, sectors,
581 				&first_bad, &bad_sectors)) {
582 			if (best_dist < MaxSector)
583 				/* already have a better device */
584 				continue;
585 			if (first_bad <= this_sector) {
586 				/* cannot read here. If this is the 'primary'
587 				 * device, then we must not read beyond
588 				 * bad_sectors from another device..
589 				 */
590 				bad_sectors -= (this_sector - first_bad);
591 				if (choose_first && sectors > bad_sectors)
592 					sectors = bad_sectors;
593 				if (best_good_sectors > sectors)
594 					best_good_sectors = sectors;
595 
596 			} else {
597 				sector_t good_sectors = first_bad - this_sector;
598 				if (good_sectors > best_good_sectors) {
599 					best_good_sectors = good_sectors;
600 					best_disk = disk;
601 				}
602 				if (choose_first)
603 					break;
604 			}
605 			continue;
606 		} else
607 			best_good_sectors = sectors;
608 
609 		nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
610 		has_nonrot_disk |= nonrot;
611 		pending = atomic_read(&rdev->nr_pending);
612 		dist = abs(this_sector - conf->mirrors[disk].head_position);
613 		if (choose_first) {
614 			best_disk = disk;
615 			break;
616 		}
617 		/* Don't change to another disk for sequential reads */
618 		if (conf->mirrors[disk].next_seq_sect == this_sector
619 		    || dist == 0) {
620 			int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
621 			struct raid1_info *mirror = &conf->mirrors[disk];
622 
623 			best_disk = disk;
624 			/*
625 			 * If buffered sequential IO size exceeds optimal
626 			 * iosize, check if there is idle disk. If yes, choose
627 			 * the idle disk. read_balance could already choose an
628 			 * idle disk before noticing it's a sequential IO in
629 			 * this disk. This doesn't matter because this disk
630 			 * will idle, next time it will be utilized after the
631 			 * first disk has IO size exceeds optimal iosize. In
632 			 * this way, iosize of the first disk will be optimal
633 			 * iosize at least. iosize of the second disk might be
634 			 * small, but not a big deal since when the second disk
635 			 * starts IO, the first disk is likely still busy.
636 			 */
637 			if (nonrot && opt_iosize > 0 &&
638 			    mirror->seq_start != MaxSector &&
639 			    mirror->next_seq_sect > opt_iosize &&
640 			    mirror->next_seq_sect - opt_iosize >=
641 			    mirror->seq_start) {
642 				choose_next_idle = 1;
643 				continue;
644 			}
645 			break;
646 		}
647 		/* If device is idle, use it */
648 		if (pending == 0) {
649 			best_disk = disk;
650 			break;
651 		}
652 
653 		if (choose_next_idle)
654 			continue;
655 
656 		if (min_pending > pending) {
657 			min_pending = pending;
658 			best_pending_disk = disk;
659 		}
660 
661 		if (dist < best_dist) {
662 			best_dist = dist;
663 			best_dist_disk = disk;
664 		}
665 	}
666 
667 	/*
668 	 * If all disks are rotational, choose the closest disk. If any disk is
669 	 * non-rotational, choose the disk with less pending request even the
670 	 * disk is rotational, which might/might not be optimal for raids with
671 	 * mixed ratation/non-rotational disks depending on workload.
672 	 */
673 	if (best_disk == -1) {
674 		if (has_nonrot_disk)
675 			best_disk = best_pending_disk;
676 		else
677 			best_disk = best_dist_disk;
678 	}
679 
680 	if (best_disk >= 0) {
681 		rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
682 		if (!rdev)
683 			goto retry;
684 		atomic_inc(&rdev->nr_pending);
685 		if (test_bit(Faulty, &rdev->flags)) {
686 			/* cannot risk returning a device that failed
687 			 * before we inc'ed nr_pending
688 			 */
689 			rdev_dec_pending(rdev, conf->mddev);
690 			goto retry;
691 		}
692 		sectors = best_good_sectors;
693 
694 		if (conf->mirrors[best_disk].next_seq_sect != this_sector)
695 			conf->mirrors[best_disk].seq_start = this_sector;
696 
697 		conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
698 	}
699 	rcu_read_unlock();
700 	*max_sectors = sectors;
701 
702 	return best_disk;
703 }
704 
705 static int raid1_mergeable_bvec(struct request_queue *q,
706 				struct bvec_merge_data *bvm,
707 				struct bio_vec *biovec)
708 {
709 	struct mddev *mddev = q->queuedata;
710 	struct r1conf *conf = mddev->private;
711 	sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
712 	int max = biovec->bv_len;
713 
714 	if (mddev->merge_check_needed) {
715 		int disk;
716 		rcu_read_lock();
717 		for (disk = 0; disk < conf->raid_disks * 2; disk++) {
718 			struct md_rdev *rdev = rcu_dereference(
719 				conf->mirrors[disk].rdev);
720 			if (rdev && !test_bit(Faulty, &rdev->flags)) {
721 				struct request_queue *q =
722 					bdev_get_queue(rdev->bdev);
723 				if (q->merge_bvec_fn) {
724 					bvm->bi_sector = sector +
725 						rdev->data_offset;
726 					bvm->bi_bdev = rdev->bdev;
727 					max = min(max, q->merge_bvec_fn(
728 							  q, bvm, biovec));
729 				}
730 			}
731 		}
732 		rcu_read_unlock();
733 	}
734 	return max;
735 
736 }
737 
738 int md_raid1_congested(struct mddev *mddev, int bits)
739 {
740 	struct r1conf *conf = mddev->private;
741 	int i, ret = 0;
742 
743 	if ((bits & (1 << BDI_async_congested)) &&
744 	    conf->pending_count >= max_queued_requests)
745 		return 1;
746 
747 	rcu_read_lock();
748 	for (i = 0; i < conf->raid_disks * 2; i++) {
749 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
750 		if (rdev && !test_bit(Faulty, &rdev->flags)) {
751 			struct request_queue *q = bdev_get_queue(rdev->bdev);
752 
753 			BUG_ON(!q);
754 
755 			/* Note the '|| 1' - when read_balance prefers
756 			 * non-congested targets, it can be removed
757 			 */
758 			if ((bits & (1<<BDI_async_congested)) || 1)
759 				ret |= bdi_congested(&q->backing_dev_info, bits);
760 			else
761 				ret &= bdi_congested(&q->backing_dev_info, bits);
762 		}
763 	}
764 	rcu_read_unlock();
765 	return ret;
766 }
767 EXPORT_SYMBOL_GPL(md_raid1_congested);
768 
769 static int raid1_congested(void *data, int bits)
770 {
771 	struct mddev *mddev = data;
772 
773 	return mddev_congested(mddev, bits) ||
774 		md_raid1_congested(mddev, bits);
775 }
776 
777 static void flush_pending_writes(struct r1conf *conf)
778 {
779 	/* Any writes that have been queued but are awaiting
780 	 * bitmap updates get flushed here.
781 	 */
782 	spin_lock_irq(&conf->device_lock);
783 
784 	if (conf->pending_bio_list.head) {
785 		struct bio *bio;
786 		bio = bio_list_get(&conf->pending_bio_list);
787 		conf->pending_count = 0;
788 		spin_unlock_irq(&conf->device_lock);
789 		/* flush any pending bitmap writes to
790 		 * disk before proceeding w/ I/O */
791 		bitmap_unplug(conf->mddev->bitmap);
792 		wake_up(&conf->wait_barrier);
793 
794 		while (bio) { /* submit pending writes */
795 			struct bio *next = bio->bi_next;
796 			bio->bi_next = NULL;
797 			if (unlikely((bio->bi_rw & REQ_DISCARD) &&
798 			    !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
799 				/* Just ignore it */
800 				bio_endio(bio, 0);
801 			else
802 				generic_make_request(bio);
803 			bio = next;
804 		}
805 	} else
806 		spin_unlock_irq(&conf->device_lock);
807 }
808 
809 /* Barriers....
810  * Sometimes we need to suspend IO while we do something else,
811  * either some resync/recovery, or reconfigure the array.
812  * To do this we raise a 'barrier'.
813  * The 'barrier' is a counter that can be raised multiple times
814  * to count how many activities are happening which preclude
815  * normal IO.
816  * We can only raise the barrier if there is no pending IO.
817  * i.e. if nr_pending == 0.
818  * We choose only to raise the barrier if no-one is waiting for the
819  * barrier to go down.  This means that as soon as an IO request
820  * is ready, no other operations which require a barrier will start
821  * until the IO request has had a chance.
822  *
823  * So: regular IO calls 'wait_barrier'.  When that returns there
824  *    is no backgroup IO happening,  It must arrange to call
825  *    allow_barrier when it has finished its IO.
826  * backgroup IO calls must call raise_barrier.  Once that returns
827  *    there is no normal IO happeing.  It must arrange to call
828  *    lower_barrier when the particular background IO completes.
829  */
830 static void raise_barrier(struct r1conf *conf, sector_t sector_nr)
831 {
832 	spin_lock_irq(&conf->resync_lock);
833 
834 	/* Wait until no block IO is waiting */
835 	wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
836 			    conf->resync_lock);
837 
838 	/* block any new IO from starting */
839 	conf->barrier++;
840 	conf->next_resync = sector_nr;
841 
842 	/* For these conditions we must wait:
843 	 * A: while the array is in frozen state
844 	 * B: while barrier >= RESYNC_DEPTH, meaning resync reach
845 	 *    the max count which allowed.
846 	 * C: next_resync + RESYNC_SECTORS > start_next_window, meaning
847 	 *    next resync will reach to the window which normal bios are
848 	 *    handling.
849 	 * D: while there are any active requests in the current window.
850 	 */
851 	wait_event_lock_irq(conf->wait_barrier,
852 			    !conf->array_frozen &&
853 			    conf->barrier < RESYNC_DEPTH &&
854 			    conf->current_window_requests == 0 &&
855 			    (conf->start_next_window >=
856 			     conf->next_resync + RESYNC_SECTORS),
857 			    conf->resync_lock);
858 
859 	spin_unlock_irq(&conf->resync_lock);
860 }
861 
862 static void lower_barrier(struct r1conf *conf)
863 {
864 	unsigned long flags;
865 	BUG_ON(conf->barrier <= 0);
866 	spin_lock_irqsave(&conf->resync_lock, flags);
867 	conf->barrier--;
868 	spin_unlock_irqrestore(&conf->resync_lock, flags);
869 	wake_up(&conf->wait_barrier);
870 }
871 
872 static bool need_to_wait_for_sync(struct r1conf *conf, struct bio *bio)
873 {
874 	bool wait = false;
875 
876 	if (conf->array_frozen || !bio)
877 		wait = true;
878 	else if (conf->barrier && bio_data_dir(bio) == WRITE) {
879 		if ((conf->mddev->curr_resync_completed
880 		     >= bio_end_sector(bio)) ||
881 		    (conf->next_resync + NEXT_NORMALIO_DISTANCE
882 		     <= bio->bi_iter.bi_sector))
883 			wait = false;
884 		else
885 			wait = true;
886 	}
887 
888 	return wait;
889 }
890 
891 static sector_t wait_barrier(struct r1conf *conf, struct bio *bio)
892 {
893 	sector_t sector = 0;
894 
895 	spin_lock_irq(&conf->resync_lock);
896 	if (need_to_wait_for_sync(conf, bio)) {
897 		conf->nr_waiting++;
898 		/* Wait for the barrier to drop.
899 		 * However if there are already pending
900 		 * requests (preventing the barrier from
901 		 * rising completely), and the
902 		 * pre-process bio queue isn't empty,
903 		 * then don't wait, as we need to empty
904 		 * that queue to get the nr_pending
905 		 * count down.
906 		 */
907 		wait_event_lock_irq(conf->wait_barrier,
908 				    !conf->array_frozen &&
909 				    (!conf->barrier ||
910 				    ((conf->start_next_window <
911 				      conf->next_resync + RESYNC_SECTORS) &&
912 				     current->bio_list &&
913 				     !bio_list_empty(current->bio_list))),
914 				    conf->resync_lock);
915 		conf->nr_waiting--;
916 	}
917 
918 	if (bio && bio_data_dir(bio) == WRITE) {
919 		if (bio->bi_iter.bi_sector >=
920 		    conf->mddev->curr_resync_completed) {
921 			if (conf->start_next_window == MaxSector)
922 				conf->start_next_window =
923 					conf->next_resync +
924 					NEXT_NORMALIO_DISTANCE;
925 
926 			if ((conf->start_next_window + NEXT_NORMALIO_DISTANCE)
927 			    <= bio->bi_iter.bi_sector)
928 				conf->next_window_requests++;
929 			else
930 				conf->current_window_requests++;
931 			sector = conf->start_next_window;
932 		}
933 	}
934 
935 	conf->nr_pending++;
936 	spin_unlock_irq(&conf->resync_lock);
937 	return sector;
938 }
939 
940 static void allow_barrier(struct r1conf *conf, sector_t start_next_window,
941 			  sector_t bi_sector)
942 {
943 	unsigned long flags;
944 
945 	spin_lock_irqsave(&conf->resync_lock, flags);
946 	conf->nr_pending--;
947 	if (start_next_window) {
948 		if (start_next_window == conf->start_next_window) {
949 			if (conf->start_next_window + NEXT_NORMALIO_DISTANCE
950 			    <= bi_sector)
951 				conf->next_window_requests--;
952 			else
953 				conf->current_window_requests--;
954 		} else
955 			conf->current_window_requests--;
956 
957 		if (!conf->current_window_requests) {
958 			if (conf->next_window_requests) {
959 				conf->current_window_requests =
960 					conf->next_window_requests;
961 				conf->next_window_requests = 0;
962 				conf->start_next_window +=
963 					NEXT_NORMALIO_DISTANCE;
964 			} else
965 				conf->start_next_window = MaxSector;
966 		}
967 	}
968 	spin_unlock_irqrestore(&conf->resync_lock, flags);
969 	wake_up(&conf->wait_barrier);
970 }
971 
972 static void freeze_array(struct r1conf *conf, int extra)
973 {
974 	/* stop syncio and normal IO and wait for everything to
975 	 * go quite.
976 	 * We wait until nr_pending match nr_queued+extra
977 	 * This is called in the context of one normal IO request
978 	 * that has failed. Thus any sync request that might be pending
979 	 * will be blocked by nr_pending, and we need to wait for
980 	 * pending IO requests to complete or be queued for re-try.
981 	 * Thus the number queued (nr_queued) plus this request (extra)
982 	 * must match the number of pending IOs (nr_pending) before
983 	 * we continue.
984 	 */
985 	spin_lock_irq(&conf->resync_lock);
986 	conf->array_frozen = 1;
987 	wait_event_lock_irq_cmd(conf->wait_barrier,
988 				conf->nr_pending == conf->nr_queued+extra,
989 				conf->resync_lock,
990 				flush_pending_writes(conf));
991 	spin_unlock_irq(&conf->resync_lock);
992 }
993 static void unfreeze_array(struct r1conf *conf)
994 {
995 	/* reverse the effect of the freeze */
996 	spin_lock_irq(&conf->resync_lock);
997 	conf->array_frozen = 0;
998 	wake_up(&conf->wait_barrier);
999 	spin_unlock_irq(&conf->resync_lock);
1000 }
1001 
1002 
1003 /* duplicate the data pages for behind I/O
1004  */
1005 static void alloc_behind_pages(struct bio *bio, struct r1bio *r1_bio)
1006 {
1007 	int i;
1008 	struct bio_vec *bvec;
1009 	struct bio_vec *bvecs = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec),
1010 					GFP_NOIO);
1011 	if (unlikely(!bvecs))
1012 		return;
1013 
1014 	bio_for_each_segment_all(bvec, bio, i) {
1015 		bvecs[i] = *bvec;
1016 		bvecs[i].bv_page = alloc_page(GFP_NOIO);
1017 		if (unlikely(!bvecs[i].bv_page))
1018 			goto do_sync_io;
1019 		memcpy(kmap(bvecs[i].bv_page) + bvec->bv_offset,
1020 		       kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
1021 		kunmap(bvecs[i].bv_page);
1022 		kunmap(bvec->bv_page);
1023 	}
1024 	r1_bio->behind_bvecs = bvecs;
1025 	r1_bio->behind_page_count = bio->bi_vcnt;
1026 	set_bit(R1BIO_BehindIO, &r1_bio->state);
1027 	return;
1028 
1029 do_sync_io:
1030 	for (i = 0; i < bio->bi_vcnt; i++)
1031 		if (bvecs[i].bv_page)
1032 			put_page(bvecs[i].bv_page);
1033 	kfree(bvecs);
1034 	pr_debug("%dB behind alloc failed, doing sync I/O\n",
1035 		 bio->bi_iter.bi_size);
1036 }
1037 
1038 struct raid1_plug_cb {
1039 	struct blk_plug_cb	cb;
1040 	struct bio_list		pending;
1041 	int			pending_cnt;
1042 };
1043 
1044 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1045 {
1046 	struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1047 						  cb);
1048 	struct mddev *mddev = plug->cb.data;
1049 	struct r1conf *conf = mddev->private;
1050 	struct bio *bio;
1051 
1052 	if (from_schedule || current->bio_list) {
1053 		spin_lock_irq(&conf->device_lock);
1054 		bio_list_merge(&conf->pending_bio_list, &plug->pending);
1055 		conf->pending_count += plug->pending_cnt;
1056 		spin_unlock_irq(&conf->device_lock);
1057 		wake_up(&conf->wait_barrier);
1058 		md_wakeup_thread(mddev->thread);
1059 		kfree(plug);
1060 		return;
1061 	}
1062 
1063 	/* we aren't scheduling, so we can do the write-out directly. */
1064 	bio = bio_list_get(&plug->pending);
1065 	bitmap_unplug(mddev->bitmap);
1066 	wake_up(&conf->wait_barrier);
1067 
1068 	while (bio) { /* submit pending writes */
1069 		struct bio *next = bio->bi_next;
1070 		bio->bi_next = NULL;
1071 		if (unlikely((bio->bi_rw & REQ_DISCARD) &&
1072 		    !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
1073 			/* Just ignore it */
1074 			bio_endio(bio, 0);
1075 		else
1076 			generic_make_request(bio);
1077 		bio = next;
1078 	}
1079 	kfree(plug);
1080 }
1081 
1082 static void make_request(struct mddev *mddev, struct bio * bio)
1083 {
1084 	struct r1conf *conf = mddev->private;
1085 	struct raid1_info *mirror;
1086 	struct r1bio *r1_bio;
1087 	struct bio *read_bio;
1088 	int i, disks;
1089 	struct bitmap *bitmap;
1090 	unsigned long flags;
1091 	const int rw = bio_data_dir(bio);
1092 	const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
1093 	const unsigned long do_flush_fua = (bio->bi_rw & (REQ_FLUSH | REQ_FUA));
1094 	const unsigned long do_discard = (bio->bi_rw
1095 					  & (REQ_DISCARD | REQ_SECURE));
1096 	const unsigned long do_same = (bio->bi_rw & REQ_WRITE_SAME);
1097 	struct md_rdev *blocked_rdev;
1098 	struct blk_plug_cb *cb;
1099 	struct raid1_plug_cb *plug = NULL;
1100 	int first_clone;
1101 	int sectors_handled;
1102 	int max_sectors;
1103 	sector_t start_next_window;
1104 
1105 	/*
1106 	 * Register the new request and wait if the reconstruction
1107 	 * thread has put up a bar for new requests.
1108 	 * Continue immediately if no resync is active currently.
1109 	 */
1110 
1111 	md_write_start(mddev, bio); /* wait on superblock update early */
1112 
1113 	if (bio_data_dir(bio) == WRITE &&
1114 	    bio_end_sector(bio) > mddev->suspend_lo &&
1115 	    bio->bi_iter.bi_sector < mddev->suspend_hi) {
1116 		/* As the suspend_* range is controlled by
1117 		 * userspace, we want an interruptible
1118 		 * wait.
1119 		 */
1120 		DEFINE_WAIT(w);
1121 		for (;;) {
1122 			flush_signals(current);
1123 			prepare_to_wait(&conf->wait_barrier,
1124 					&w, TASK_INTERRUPTIBLE);
1125 			if (bio_end_sector(bio) <= mddev->suspend_lo ||
1126 			    bio->bi_iter.bi_sector >= mddev->suspend_hi)
1127 				break;
1128 			schedule();
1129 		}
1130 		finish_wait(&conf->wait_barrier, &w);
1131 	}
1132 
1133 	start_next_window = wait_barrier(conf, bio);
1134 
1135 	bitmap = mddev->bitmap;
1136 
1137 	/*
1138 	 * make_request() can abort the operation when READA is being
1139 	 * used and no empty request is available.
1140 	 *
1141 	 */
1142 	r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1143 
1144 	r1_bio->master_bio = bio;
1145 	r1_bio->sectors = bio_sectors(bio);
1146 	r1_bio->state = 0;
1147 	r1_bio->mddev = mddev;
1148 	r1_bio->sector = bio->bi_iter.bi_sector;
1149 
1150 	/* We might need to issue multiple reads to different
1151 	 * devices if there are bad blocks around, so we keep
1152 	 * track of the number of reads in bio->bi_phys_segments.
1153 	 * If this is 0, there is only one r1_bio and no locking
1154 	 * will be needed when requests complete.  If it is
1155 	 * non-zero, then it is the number of not-completed requests.
1156 	 */
1157 	bio->bi_phys_segments = 0;
1158 	clear_bit(BIO_SEG_VALID, &bio->bi_flags);
1159 
1160 	if (rw == READ) {
1161 		/*
1162 		 * read balancing logic:
1163 		 */
1164 		int rdisk;
1165 
1166 read_again:
1167 		rdisk = read_balance(conf, r1_bio, &max_sectors);
1168 
1169 		if (rdisk < 0) {
1170 			/* couldn't find anywhere to read from */
1171 			raid_end_bio_io(r1_bio);
1172 			return;
1173 		}
1174 		mirror = conf->mirrors + rdisk;
1175 
1176 		if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1177 		    bitmap) {
1178 			/* Reading from a write-mostly device must
1179 			 * take care not to over-take any writes
1180 			 * that are 'behind'
1181 			 */
1182 			wait_event(bitmap->behind_wait,
1183 				   atomic_read(&bitmap->behind_writes) == 0);
1184 		}
1185 		r1_bio->read_disk = rdisk;
1186 		r1_bio->start_next_window = 0;
1187 
1188 		read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1189 		bio_trim(read_bio, r1_bio->sector - bio->bi_iter.bi_sector,
1190 			 max_sectors);
1191 
1192 		r1_bio->bios[rdisk] = read_bio;
1193 
1194 		read_bio->bi_iter.bi_sector = r1_bio->sector +
1195 			mirror->rdev->data_offset;
1196 		read_bio->bi_bdev = mirror->rdev->bdev;
1197 		read_bio->bi_end_io = raid1_end_read_request;
1198 		read_bio->bi_rw = READ | do_sync;
1199 		read_bio->bi_private = r1_bio;
1200 
1201 		if (max_sectors < r1_bio->sectors) {
1202 			/* could not read all from this device, so we will
1203 			 * need another r1_bio.
1204 			 */
1205 
1206 			sectors_handled = (r1_bio->sector + max_sectors
1207 					   - bio->bi_iter.bi_sector);
1208 			r1_bio->sectors = max_sectors;
1209 			spin_lock_irq(&conf->device_lock);
1210 			if (bio->bi_phys_segments == 0)
1211 				bio->bi_phys_segments = 2;
1212 			else
1213 				bio->bi_phys_segments++;
1214 			spin_unlock_irq(&conf->device_lock);
1215 			/* Cannot call generic_make_request directly
1216 			 * as that will be queued in __make_request
1217 			 * and subsequent mempool_alloc might block waiting
1218 			 * for it.  So hand bio over to raid1d.
1219 			 */
1220 			reschedule_retry(r1_bio);
1221 
1222 			r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1223 
1224 			r1_bio->master_bio = bio;
1225 			r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1226 			r1_bio->state = 0;
1227 			r1_bio->mddev = mddev;
1228 			r1_bio->sector = bio->bi_iter.bi_sector +
1229 				sectors_handled;
1230 			goto read_again;
1231 		} else
1232 			generic_make_request(read_bio);
1233 		return;
1234 	}
1235 
1236 	/*
1237 	 * WRITE:
1238 	 */
1239 	if (conf->pending_count >= max_queued_requests) {
1240 		md_wakeup_thread(mddev->thread);
1241 		wait_event(conf->wait_barrier,
1242 			   conf->pending_count < max_queued_requests);
1243 	}
1244 	/* first select target devices under rcu_lock and
1245 	 * inc refcount on their rdev.  Record them by setting
1246 	 * bios[x] to bio
1247 	 * If there are known/acknowledged bad blocks on any device on
1248 	 * which we have seen a write error, we want to avoid writing those
1249 	 * blocks.
1250 	 * This potentially requires several writes to write around
1251 	 * the bad blocks.  Each set of writes gets it's own r1bio
1252 	 * with a set of bios attached.
1253 	 */
1254 
1255 	disks = conf->raid_disks * 2;
1256  retry_write:
1257 	r1_bio->start_next_window = start_next_window;
1258 	blocked_rdev = NULL;
1259 	rcu_read_lock();
1260 	max_sectors = r1_bio->sectors;
1261 	for (i = 0;  i < disks; i++) {
1262 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1263 		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1264 			atomic_inc(&rdev->nr_pending);
1265 			blocked_rdev = rdev;
1266 			break;
1267 		}
1268 		r1_bio->bios[i] = NULL;
1269 		if (!rdev || test_bit(Faulty, &rdev->flags)
1270 		    || test_bit(Unmerged, &rdev->flags)) {
1271 			if (i < conf->raid_disks)
1272 				set_bit(R1BIO_Degraded, &r1_bio->state);
1273 			continue;
1274 		}
1275 
1276 		atomic_inc(&rdev->nr_pending);
1277 		if (test_bit(WriteErrorSeen, &rdev->flags)) {
1278 			sector_t first_bad;
1279 			int bad_sectors;
1280 			int is_bad;
1281 
1282 			is_bad = is_badblock(rdev, r1_bio->sector,
1283 					     max_sectors,
1284 					     &first_bad, &bad_sectors);
1285 			if (is_bad < 0) {
1286 				/* mustn't write here until the bad block is
1287 				 * acknowledged*/
1288 				set_bit(BlockedBadBlocks, &rdev->flags);
1289 				blocked_rdev = rdev;
1290 				break;
1291 			}
1292 			if (is_bad && first_bad <= r1_bio->sector) {
1293 				/* Cannot write here at all */
1294 				bad_sectors -= (r1_bio->sector - first_bad);
1295 				if (bad_sectors < max_sectors)
1296 					/* mustn't write more than bad_sectors
1297 					 * to other devices yet
1298 					 */
1299 					max_sectors = bad_sectors;
1300 				rdev_dec_pending(rdev, mddev);
1301 				/* We don't set R1BIO_Degraded as that
1302 				 * only applies if the disk is
1303 				 * missing, so it might be re-added,
1304 				 * and we want to know to recover this
1305 				 * chunk.
1306 				 * In this case the device is here,
1307 				 * and the fact that this chunk is not
1308 				 * in-sync is recorded in the bad
1309 				 * block log
1310 				 */
1311 				continue;
1312 			}
1313 			if (is_bad) {
1314 				int good_sectors = first_bad - r1_bio->sector;
1315 				if (good_sectors < max_sectors)
1316 					max_sectors = good_sectors;
1317 			}
1318 		}
1319 		r1_bio->bios[i] = bio;
1320 	}
1321 	rcu_read_unlock();
1322 
1323 	if (unlikely(blocked_rdev)) {
1324 		/* Wait for this device to become unblocked */
1325 		int j;
1326 		sector_t old = start_next_window;
1327 
1328 		for (j = 0; j < i; j++)
1329 			if (r1_bio->bios[j])
1330 				rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1331 		r1_bio->state = 0;
1332 		allow_barrier(conf, start_next_window, bio->bi_iter.bi_sector);
1333 		md_wait_for_blocked_rdev(blocked_rdev, mddev);
1334 		start_next_window = wait_barrier(conf, bio);
1335 		/*
1336 		 * We must make sure the multi r1bios of bio have
1337 		 * the same value of bi_phys_segments
1338 		 */
1339 		if (bio->bi_phys_segments && old &&
1340 		    old != start_next_window)
1341 			/* Wait for the former r1bio(s) to complete */
1342 			wait_event(conf->wait_barrier,
1343 				   bio->bi_phys_segments == 1);
1344 		goto retry_write;
1345 	}
1346 
1347 	if (max_sectors < r1_bio->sectors) {
1348 		/* We are splitting this write into multiple parts, so
1349 		 * we need to prepare for allocating another r1_bio.
1350 		 */
1351 		r1_bio->sectors = max_sectors;
1352 		spin_lock_irq(&conf->device_lock);
1353 		if (bio->bi_phys_segments == 0)
1354 			bio->bi_phys_segments = 2;
1355 		else
1356 			bio->bi_phys_segments++;
1357 		spin_unlock_irq(&conf->device_lock);
1358 	}
1359 	sectors_handled = r1_bio->sector + max_sectors - bio->bi_iter.bi_sector;
1360 
1361 	atomic_set(&r1_bio->remaining, 1);
1362 	atomic_set(&r1_bio->behind_remaining, 0);
1363 
1364 	first_clone = 1;
1365 	for (i = 0; i < disks; i++) {
1366 		struct bio *mbio;
1367 		if (!r1_bio->bios[i])
1368 			continue;
1369 
1370 		mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1371 		bio_trim(mbio, r1_bio->sector - bio->bi_iter.bi_sector, max_sectors);
1372 
1373 		if (first_clone) {
1374 			/* do behind I/O ?
1375 			 * Not if there are too many, or cannot
1376 			 * allocate memory, or a reader on WriteMostly
1377 			 * is waiting for behind writes to flush */
1378 			if (bitmap &&
1379 			    (atomic_read(&bitmap->behind_writes)
1380 			     < mddev->bitmap_info.max_write_behind) &&
1381 			    !waitqueue_active(&bitmap->behind_wait))
1382 				alloc_behind_pages(mbio, r1_bio);
1383 
1384 			bitmap_startwrite(bitmap, r1_bio->sector,
1385 					  r1_bio->sectors,
1386 					  test_bit(R1BIO_BehindIO,
1387 						   &r1_bio->state));
1388 			first_clone = 0;
1389 		}
1390 		if (r1_bio->behind_bvecs) {
1391 			struct bio_vec *bvec;
1392 			int j;
1393 
1394 			/*
1395 			 * We trimmed the bio, so _all is legit
1396 			 */
1397 			bio_for_each_segment_all(bvec, mbio, j)
1398 				bvec->bv_page = r1_bio->behind_bvecs[j].bv_page;
1399 			if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1400 				atomic_inc(&r1_bio->behind_remaining);
1401 		}
1402 
1403 		r1_bio->bios[i] = mbio;
1404 
1405 		mbio->bi_iter.bi_sector	= (r1_bio->sector +
1406 				   conf->mirrors[i].rdev->data_offset);
1407 		mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1408 		mbio->bi_end_io	= raid1_end_write_request;
1409 		mbio->bi_rw =
1410 			WRITE | do_flush_fua | do_sync | do_discard | do_same;
1411 		mbio->bi_private = r1_bio;
1412 
1413 		atomic_inc(&r1_bio->remaining);
1414 
1415 		cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1416 		if (cb)
1417 			plug = container_of(cb, struct raid1_plug_cb, cb);
1418 		else
1419 			plug = NULL;
1420 		spin_lock_irqsave(&conf->device_lock, flags);
1421 		if (plug) {
1422 			bio_list_add(&plug->pending, mbio);
1423 			plug->pending_cnt++;
1424 		} else {
1425 			bio_list_add(&conf->pending_bio_list, mbio);
1426 			conf->pending_count++;
1427 		}
1428 		spin_unlock_irqrestore(&conf->device_lock, flags);
1429 		if (!plug)
1430 			md_wakeup_thread(mddev->thread);
1431 	}
1432 	/* Mustn't call r1_bio_write_done before this next test,
1433 	 * as it could result in the bio being freed.
1434 	 */
1435 	if (sectors_handled < bio_sectors(bio)) {
1436 		r1_bio_write_done(r1_bio);
1437 		/* We need another r1_bio.  It has already been counted
1438 		 * in bio->bi_phys_segments
1439 		 */
1440 		r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1441 		r1_bio->master_bio = bio;
1442 		r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1443 		r1_bio->state = 0;
1444 		r1_bio->mddev = mddev;
1445 		r1_bio->sector = bio->bi_iter.bi_sector + sectors_handled;
1446 		goto retry_write;
1447 	}
1448 
1449 	r1_bio_write_done(r1_bio);
1450 
1451 	/* In case raid1d snuck in to freeze_array */
1452 	wake_up(&conf->wait_barrier);
1453 }
1454 
1455 static void status(struct seq_file *seq, struct mddev *mddev)
1456 {
1457 	struct r1conf *conf = mddev->private;
1458 	int i;
1459 
1460 	seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1461 		   conf->raid_disks - mddev->degraded);
1462 	rcu_read_lock();
1463 	for (i = 0; i < conf->raid_disks; i++) {
1464 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1465 		seq_printf(seq, "%s",
1466 			   rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1467 	}
1468 	rcu_read_unlock();
1469 	seq_printf(seq, "]");
1470 }
1471 
1472 
1473 static void error(struct mddev *mddev, struct md_rdev *rdev)
1474 {
1475 	char b[BDEVNAME_SIZE];
1476 	struct r1conf *conf = mddev->private;
1477 
1478 	/*
1479 	 * If it is not operational, then we have already marked it as dead
1480 	 * else if it is the last working disks, ignore the error, let the
1481 	 * next level up know.
1482 	 * else mark the drive as failed
1483 	 */
1484 	if (test_bit(In_sync, &rdev->flags)
1485 	    && (conf->raid_disks - mddev->degraded) == 1) {
1486 		/*
1487 		 * Don't fail the drive, act as though we were just a
1488 		 * normal single drive.
1489 		 * However don't try a recovery from this drive as
1490 		 * it is very likely to fail.
1491 		 */
1492 		conf->recovery_disabled = mddev->recovery_disabled;
1493 		return;
1494 	}
1495 	set_bit(Blocked, &rdev->flags);
1496 	if (test_and_clear_bit(In_sync, &rdev->flags)) {
1497 		unsigned long flags;
1498 		spin_lock_irqsave(&conf->device_lock, flags);
1499 		mddev->degraded++;
1500 		set_bit(Faulty, &rdev->flags);
1501 		spin_unlock_irqrestore(&conf->device_lock, flags);
1502 	} else
1503 		set_bit(Faulty, &rdev->flags);
1504 	/*
1505 	 * if recovery is running, make sure it aborts.
1506 	 */
1507 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1508 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
1509 	printk(KERN_ALERT
1510 	       "md/raid1:%s: Disk failure on %s, disabling device.\n"
1511 	       "md/raid1:%s: Operation continuing on %d devices.\n",
1512 	       mdname(mddev), bdevname(rdev->bdev, b),
1513 	       mdname(mddev), conf->raid_disks - mddev->degraded);
1514 }
1515 
1516 static void print_conf(struct r1conf *conf)
1517 {
1518 	int i;
1519 
1520 	printk(KERN_DEBUG "RAID1 conf printout:\n");
1521 	if (!conf) {
1522 		printk(KERN_DEBUG "(!conf)\n");
1523 		return;
1524 	}
1525 	printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1526 		conf->raid_disks);
1527 
1528 	rcu_read_lock();
1529 	for (i = 0; i < conf->raid_disks; i++) {
1530 		char b[BDEVNAME_SIZE];
1531 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1532 		if (rdev)
1533 			printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1534 			       i, !test_bit(In_sync, &rdev->flags),
1535 			       !test_bit(Faulty, &rdev->flags),
1536 			       bdevname(rdev->bdev,b));
1537 	}
1538 	rcu_read_unlock();
1539 }
1540 
1541 static void close_sync(struct r1conf *conf)
1542 {
1543 	wait_barrier(conf, NULL);
1544 	allow_barrier(conf, 0, 0);
1545 
1546 	mempool_destroy(conf->r1buf_pool);
1547 	conf->r1buf_pool = NULL;
1548 
1549 	spin_lock_irq(&conf->resync_lock);
1550 	conf->next_resync = 0;
1551 	conf->start_next_window = MaxSector;
1552 	conf->current_window_requests +=
1553 		conf->next_window_requests;
1554 	conf->next_window_requests = 0;
1555 	spin_unlock_irq(&conf->resync_lock);
1556 }
1557 
1558 static int raid1_spare_active(struct mddev *mddev)
1559 {
1560 	int i;
1561 	struct r1conf *conf = mddev->private;
1562 	int count = 0;
1563 	unsigned long flags;
1564 
1565 	/*
1566 	 * Find all failed disks within the RAID1 configuration
1567 	 * and mark them readable.
1568 	 * Called under mddev lock, so rcu protection not needed.
1569 	 */
1570 	for (i = 0; i < conf->raid_disks; i++) {
1571 		struct md_rdev *rdev = conf->mirrors[i].rdev;
1572 		struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1573 		if (repl
1574 		    && repl->recovery_offset == MaxSector
1575 		    && !test_bit(Faulty, &repl->flags)
1576 		    && !test_and_set_bit(In_sync, &repl->flags)) {
1577 			/* replacement has just become active */
1578 			if (!rdev ||
1579 			    !test_and_clear_bit(In_sync, &rdev->flags))
1580 				count++;
1581 			if (rdev) {
1582 				/* Replaced device not technically
1583 				 * faulty, but we need to be sure
1584 				 * it gets removed and never re-added
1585 				 */
1586 				set_bit(Faulty, &rdev->flags);
1587 				sysfs_notify_dirent_safe(
1588 					rdev->sysfs_state);
1589 			}
1590 		}
1591 		if (rdev
1592 		    && rdev->recovery_offset == MaxSector
1593 		    && !test_bit(Faulty, &rdev->flags)
1594 		    && !test_and_set_bit(In_sync, &rdev->flags)) {
1595 			count++;
1596 			sysfs_notify_dirent_safe(rdev->sysfs_state);
1597 		}
1598 	}
1599 	spin_lock_irqsave(&conf->device_lock, flags);
1600 	mddev->degraded -= count;
1601 	spin_unlock_irqrestore(&conf->device_lock, flags);
1602 
1603 	print_conf(conf);
1604 	return count;
1605 }
1606 
1607 
1608 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1609 {
1610 	struct r1conf *conf = mddev->private;
1611 	int err = -EEXIST;
1612 	int mirror = 0;
1613 	struct raid1_info *p;
1614 	int first = 0;
1615 	int last = conf->raid_disks - 1;
1616 	struct request_queue *q = bdev_get_queue(rdev->bdev);
1617 
1618 	if (mddev->recovery_disabled == conf->recovery_disabled)
1619 		return -EBUSY;
1620 
1621 	if (rdev->raid_disk >= 0)
1622 		first = last = rdev->raid_disk;
1623 
1624 	if (q->merge_bvec_fn) {
1625 		set_bit(Unmerged, &rdev->flags);
1626 		mddev->merge_check_needed = 1;
1627 	}
1628 
1629 	for (mirror = first; mirror <= last; mirror++) {
1630 		p = conf->mirrors+mirror;
1631 		if (!p->rdev) {
1632 
1633 			if (mddev->gendisk)
1634 				disk_stack_limits(mddev->gendisk, rdev->bdev,
1635 						  rdev->data_offset << 9);
1636 
1637 			p->head_position = 0;
1638 			rdev->raid_disk = mirror;
1639 			err = 0;
1640 			/* As all devices are equivalent, we don't need a full recovery
1641 			 * if this was recently any drive of the array
1642 			 */
1643 			if (rdev->saved_raid_disk < 0)
1644 				conf->fullsync = 1;
1645 			rcu_assign_pointer(p->rdev, rdev);
1646 			break;
1647 		}
1648 		if (test_bit(WantReplacement, &p->rdev->flags) &&
1649 		    p[conf->raid_disks].rdev == NULL) {
1650 			/* Add this device as a replacement */
1651 			clear_bit(In_sync, &rdev->flags);
1652 			set_bit(Replacement, &rdev->flags);
1653 			rdev->raid_disk = mirror;
1654 			err = 0;
1655 			conf->fullsync = 1;
1656 			rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1657 			break;
1658 		}
1659 	}
1660 	if (err == 0 && test_bit(Unmerged, &rdev->flags)) {
1661 		/* Some requests might not have seen this new
1662 		 * merge_bvec_fn.  We must wait for them to complete
1663 		 * before merging the device fully.
1664 		 * First we make sure any code which has tested
1665 		 * our function has submitted the request, then
1666 		 * we wait for all outstanding requests to complete.
1667 		 */
1668 		synchronize_sched();
1669 		freeze_array(conf, 0);
1670 		unfreeze_array(conf);
1671 		clear_bit(Unmerged, &rdev->flags);
1672 	}
1673 	md_integrity_add_rdev(rdev, mddev);
1674 	if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1675 		queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1676 	print_conf(conf);
1677 	return err;
1678 }
1679 
1680 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1681 {
1682 	struct r1conf *conf = mddev->private;
1683 	int err = 0;
1684 	int number = rdev->raid_disk;
1685 	struct raid1_info *p = conf->mirrors + number;
1686 
1687 	if (rdev != p->rdev)
1688 		p = conf->mirrors + conf->raid_disks + number;
1689 
1690 	print_conf(conf);
1691 	if (rdev == p->rdev) {
1692 		if (test_bit(In_sync, &rdev->flags) ||
1693 		    atomic_read(&rdev->nr_pending)) {
1694 			err = -EBUSY;
1695 			goto abort;
1696 		}
1697 		/* Only remove non-faulty devices if recovery
1698 		 * is not possible.
1699 		 */
1700 		if (!test_bit(Faulty, &rdev->flags) &&
1701 		    mddev->recovery_disabled != conf->recovery_disabled &&
1702 		    mddev->degraded < conf->raid_disks) {
1703 			err = -EBUSY;
1704 			goto abort;
1705 		}
1706 		p->rdev = NULL;
1707 		synchronize_rcu();
1708 		if (atomic_read(&rdev->nr_pending)) {
1709 			/* lost the race, try later */
1710 			err = -EBUSY;
1711 			p->rdev = rdev;
1712 			goto abort;
1713 		} else if (conf->mirrors[conf->raid_disks + number].rdev) {
1714 			/* We just removed a device that is being replaced.
1715 			 * Move down the replacement.  We drain all IO before
1716 			 * doing this to avoid confusion.
1717 			 */
1718 			struct md_rdev *repl =
1719 				conf->mirrors[conf->raid_disks + number].rdev;
1720 			freeze_array(conf, 0);
1721 			clear_bit(Replacement, &repl->flags);
1722 			p->rdev = repl;
1723 			conf->mirrors[conf->raid_disks + number].rdev = NULL;
1724 			unfreeze_array(conf);
1725 			clear_bit(WantReplacement, &rdev->flags);
1726 		} else
1727 			clear_bit(WantReplacement, &rdev->flags);
1728 		err = md_integrity_register(mddev);
1729 	}
1730 abort:
1731 
1732 	print_conf(conf);
1733 	return err;
1734 }
1735 
1736 
1737 static void end_sync_read(struct bio *bio, int error)
1738 {
1739 	struct r1bio *r1_bio = bio->bi_private;
1740 
1741 	update_head_pos(r1_bio->read_disk, r1_bio);
1742 
1743 	/*
1744 	 * we have read a block, now it needs to be re-written,
1745 	 * or re-read if the read failed.
1746 	 * We don't do much here, just schedule handling by raid1d
1747 	 */
1748 	if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1749 		set_bit(R1BIO_Uptodate, &r1_bio->state);
1750 
1751 	if (atomic_dec_and_test(&r1_bio->remaining))
1752 		reschedule_retry(r1_bio);
1753 }
1754 
1755 static void end_sync_write(struct bio *bio, int error)
1756 {
1757 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1758 	struct r1bio *r1_bio = bio->bi_private;
1759 	struct mddev *mddev = r1_bio->mddev;
1760 	struct r1conf *conf = mddev->private;
1761 	int mirror=0;
1762 	sector_t first_bad;
1763 	int bad_sectors;
1764 
1765 	mirror = find_bio_disk(r1_bio, bio);
1766 
1767 	if (!uptodate) {
1768 		sector_t sync_blocks = 0;
1769 		sector_t s = r1_bio->sector;
1770 		long sectors_to_go = r1_bio->sectors;
1771 		/* make sure these bits doesn't get cleared. */
1772 		do {
1773 			bitmap_end_sync(mddev->bitmap, s,
1774 					&sync_blocks, 1);
1775 			s += sync_blocks;
1776 			sectors_to_go -= sync_blocks;
1777 		} while (sectors_to_go > 0);
1778 		set_bit(WriteErrorSeen,
1779 			&conf->mirrors[mirror].rdev->flags);
1780 		if (!test_and_set_bit(WantReplacement,
1781 				      &conf->mirrors[mirror].rdev->flags))
1782 			set_bit(MD_RECOVERY_NEEDED, &
1783 				mddev->recovery);
1784 		set_bit(R1BIO_WriteError, &r1_bio->state);
1785 	} else if (is_badblock(conf->mirrors[mirror].rdev,
1786 			       r1_bio->sector,
1787 			       r1_bio->sectors,
1788 			       &first_bad, &bad_sectors) &&
1789 		   !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1790 				r1_bio->sector,
1791 				r1_bio->sectors,
1792 				&first_bad, &bad_sectors)
1793 		)
1794 		set_bit(R1BIO_MadeGood, &r1_bio->state);
1795 
1796 	if (atomic_dec_and_test(&r1_bio->remaining)) {
1797 		int s = r1_bio->sectors;
1798 		if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1799 		    test_bit(R1BIO_WriteError, &r1_bio->state))
1800 			reschedule_retry(r1_bio);
1801 		else {
1802 			put_buf(r1_bio);
1803 			md_done_sync(mddev, s, uptodate);
1804 		}
1805 	}
1806 }
1807 
1808 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1809 			    int sectors, struct page *page, int rw)
1810 {
1811 	if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
1812 		/* success */
1813 		return 1;
1814 	if (rw == WRITE) {
1815 		set_bit(WriteErrorSeen, &rdev->flags);
1816 		if (!test_and_set_bit(WantReplacement,
1817 				      &rdev->flags))
1818 			set_bit(MD_RECOVERY_NEEDED, &
1819 				rdev->mddev->recovery);
1820 	}
1821 	/* need to record an error - either for the block or the device */
1822 	if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1823 		md_error(rdev->mddev, rdev);
1824 	return 0;
1825 }
1826 
1827 static int fix_sync_read_error(struct r1bio *r1_bio)
1828 {
1829 	/* Try some synchronous reads of other devices to get
1830 	 * good data, much like with normal read errors.  Only
1831 	 * read into the pages we already have so we don't
1832 	 * need to re-issue the read request.
1833 	 * We don't need to freeze the array, because being in an
1834 	 * active sync request, there is no normal IO, and
1835 	 * no overlapping syncs.
1836 	 * We don't need to check is_badblock() again as we
1837 	 * made sure that anything with a bad block in range
1838 	 * will have bi_end_io clear.
1839 	 */
1840 	struct mddev *mddev = r1_bio->mddev;
1841 	struct r1conf *conf = mddev->private;
1842 	struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1843 	sector_t sect = r1_bio->sector;
1844 	int sectors = r1_bio->sectors;
1845 	int idx = 0;
1846 
1847 	while(sectors) {
1848 		int s = sectors;
1849 		int d = r1_bio->read_disk;
1850 		int success = 0;
1851 		struct md_rdev *rdev;
1852 		int start;
1853 
1854 		if (s > (PAGE_SIZE>>9))
1855 			s = PAGE_SIZE >> 9;
1856 		do {
1857 			if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1858 				/* No rcu protection needed here devices
1859 				 * can only be removed when no resync is
1860 				 * active, and resync is currently active
1861 				 */
1862 				rdev = conf->mirrors[d].rdev;
1863 				if (sync_page_io(rdev, sect, s<<9,
1864 						 bio->bi_io_vec[idx].bv_page,
1865 						 READ, false)) {
1866 					success = 1;
1867 					break;
1868 				}
1869 			}
1870 			d++;
1871 			if (d == conf->raid_disks * 2)
1872 				d = 0;
1873 		} while (!success && d != r1_bio->read_disk);
1874 
1875 		if (!success) {
1876 			char b[BDEVNAME_SIZE];
1877 			int abort = 0;
1878 			/* Cannot read from anywhere, this block is lost.
1879 			 * Record a bad block on each device.  If that doesn't
1880 			 * work just disable and interrupt the recovery.
1881 			 * Don't fail devices as that won't really help.
1882 			 */
1883 			printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error"
1884 			       " for block %llu\n",
1885 			       mdname(mddev),
1886 			       bdevname(bio->bi_bdev, b),
1887 			       (unsigned long long)r1_bio->sector);
1888 			for (d = 0; d < conf->raid_disks * 2; d++) {
1889 				rdev = conf->mirrors[d].rdev;
1890 				if (!rdev || test_bit(Faulty, &rdev->flags))
1891 					continue;
1892 				if (!rdev_set_badblocks(rdev, sect, s, 0))
1893 					abort = 1;
1894 			}
1895 			if (abort) {
1896 				conf->recovery_disabled =
1897 					mddev->recovery_disabled;
1898 				set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1899 				md_done_sync(mddev, r1_bio->sectors, 0);
1900 				put_buf(r1_bio);
1901 				return 0;
1902 			}
1903 			/* Try next page */
1904 			sectors -= s;
1905 			sect += s;
1906 			idx++;
1907 			continue;
1908 		}
1909 
1910 		start = d;
1911 		/* write it back and re-read */
1912 		while (d != r1_bio->read_disk) {
1913 			if (d == 0)
1914 				d = conf->raid_disks * 2;
1915 			d--;
1916 			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1917 				continue;
1918 			rdev = conf->mirrors[d].rdev;
1919 			if (r1_sync_page_io(rdev, sect, s,
1920 					    bio->bi_io_vec[idx].bv_page,
1921 					    WRITE) == 0) {
1922 				r1_bio->bios[d]->bi_end_io = NULL;
1923 				rdev_dec_pending(rdev, mddev);
1924 			}
1925 		}
1926 		d = start;
1927 		while (d != r1_bio->read_disk) {
1928 			if (d == 0)
1929 				d = conf->raid_disks * 2;
1930 			d--;
1931 			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1932 				continue;
1933 			rdev = conf->mirrors[d].rdev;
1934 			if (r1_sync_page_io(rdev, sect, s,
1935 					    bio->bi_io_vec[idx].bv_page,
1936 					    READ) != 0)
1937 				atomic_add(s, &rdev->corrected_errors);
1938 		}
1939 		sectors -= s;
1940 		sect += s;
1941 		idx ++;
1942 	}
1943 	set_bit(R1BIO_Uptodate, &r1_bio->state);
1944 	set_bit(BIO_UPTODATE, &bio->bi_flags);
1945 	return 1;
1946 }
1947 
1948 static int process_checks(struct r1bio *r1_bio)
1949 {
1950 	/* We have read all readable devices.  If we haven't
1951 	 * got the block, then there is no hope left.
1952 	 * If we have, then we want to do a comparison
1953 	 * and skip the write if everything is the same.
1954 	 * If any blocks failed to read, then we need to
1955 	 * attempt an over-write
1956 	 */
1957 	struct mddev *mddev = r1_bio->mddev;
1958 	struct r1conf *conf = mddev->private;
1959 	int primary;
1960 	int i;
1961 	int vcnt;
1962 
1963 	/* Fix variable parts of all bios */
1964 	vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
1965 	for (i = 0; i < conf->raid_disks * 2; i++) {
1966 		int j;
1967 		int size;
1968 		int uptodate;
1969 		struct bio *b = r1_bio->bios[i];
1970 		if (b->bi_end_io != end_sync_read)
1971 			continue;
1972 		/* fixup the bio for reuse, but preserve BIO_UPTODATE */
1973 		uptodate = test_bit(BIO_UPTODATE, &b->bi_flags);
1974 		bio_reset(b);
1975 		if (!uptodate)
1976 			clear_bit(BIO_UPTODATE, &b->bi_flags);
1977 		b->bi_vcnt = vcnt;
1978 		b->bi_iter.bi_size = r1_bio->sectors << 9;
1979 		b->bi_iter.bi_sector = r1_bio->sector +
1980 			conf->mirrors[i].rdev->data_offset;
1981 		b->bi_bdev = conf->mirrors[i].rdev->bdev;
1982 		b->bi_end_io = end_sync_read;
1983 		b->bi_private = r1_bio;
1984 
1985 		size = b->bi_iter.bi_size;
1986 		for (j = 0; j < vcnt ; j++) {
1987 			struct bio_vec *bi;
1988 			bi = &b->bi_io_vec[j];
1989 			bi->bv_offset = 0;
1990 			if (size > PAGE_SIZE)
1991 				bi->bv_len = PAGE_SIZE;
1992 			else
1993 				bi->bv_len = size;
1994 			size -= PAGE_SIZE;
1995 		}
1996 	}
1997 	for (primary = 0; primary < conf->raid_disks * 2; primary++)
1998 		if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
1999 		    test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) {
2000 			r1_bio->bios[primary]->bi_end_io = NULL;
2001 			rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
2002 			break;
2003 		}
2004 	r1_bio->read_disk = primary;
2005 	for (i = 0; i < conf->raid_disks * 2; i++) {
2006 		int j;
2007 		struct bio *pbio = r1_bio->bios[primary];
2008 		struct bio *sbio = r1_bio->bios[i];
2009 		int uptodate = test_bit(BIO_UPTODATE, &sbio->bi_flags);
2010 
2011 		if (sbio->bi_end_io != end_sync_read)
2012 			continue;
2013 		/* Now we can 'fixup' the BIO_UPTODATE flag */
2014 		set_bit(BIO_UPTODATE, &sbio->bi_flags);
2015 
2016 		if (uptodate) {
2017 			for (j = vcnt; j-- ; ) {
2018 				struct page *p, *s;
2019 				p = pbio->bi_io_vec[j].bv_page;
2020 				s = sbio->bi_io_vec[j].bv_page;
2021 				if (memcmp(page_address(p),
2022 					   page_address(s),
2023 					   sbio->bi_io_vec[j].bv_len))
2024 					break;
2025 			}
2026 		} else
2027 			j = 0;
2028 		if (j >= 0)
2029 			atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
2030 		if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
2031 			      && uptodate)) {
2032 			/* No need to write to this device. */
2033 			sbio->bi_end_io = NULL;
2034 			rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2035 			continue;
2036 		}
2037 
2038 		bio_copy_data(sbio, pbio);
2039 	}
2040 	return 0;
2041 }
2042 
2043 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
2044 {
2045 	struct r1conf *conf = mddev->private;
2046 	int i;
2047 	int disks = conf->raid_disks * 2;
2048 	struct bio *bio, *wbio;
2049 
2050 	bio = r1_bio->bios[r1_bio->read_disk];
2051 
2052 	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2053 		/* ouch - failed to read all of that. */
2054 		if (!fix_sync_read_error(r1_bio))
2055 			return;
2056 
2057 	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2058 		if (process_checks(r1_bio) < 0)
2059 			return;
2060 	/*
2061 	 * schedule writes
2062 	 */
2063 	atomic_set(&r1_bio->remaining, 1);
2064 	for (i = 0; i < disks ; i++) {
2065 		wbio = r1_bio->bios[i];
2066 		if (wbio->bi_end_io == NULL ||
2067 		    (wbio->bi_end_io == end_sync_read &&
2068 		     (i == r1_bio->read_disk ||
2069 		      !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2070 			continue;
2071 
2072 		wbio->bi_rw = WRITE;
2073 		wbio->bi_end_io = end_sync_write;
2074 		atomic_inc(&r1_bio->remaining);
2075 		md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
2076 
2077 		generic_make_request(wbio);
2078 	}
2079 
2080 	if (atomic_dec_and_test(&r1_bio->remaining)) {
2081 		/* if we're here, all write(s) have completed, so clean up */
2082 		int s = r1_bio->sectors;
2083 		if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2084 		    test_bit(R1BIO_WriteError, &r1_bio->state))
2085 			reschedule_retry(r1_bio);
2086 		else {
2087 			put_buf(r1_bio);
2088 			md_done_sync(mddev, s, 1);
2089 		}
2090 	}
2091 }
2092 
2093 /*
2094  * This is a kernel thread which:
2095  *
2096  *	1.	Retries failed read operations on working mirrors.
2097  *	2.	Updates the raid superblock when problems encounter.
2098  *	3.	Performs writes following reads for array synchronising.
2099  */
2100 
2101 static void fix_read_error(struct r1conf *conf, int read_disk,
2102 			   sector_t sect, int sectors)
2103 {
2104 	struct mddev *mddev = conf->mddev;
2105 	while(sectors) {
2106 		int s = sectors;
2107 		int d = read_disk;
2108 		int success = 0;
2109 		int start;
2110 		struct md_rdev *rdev;
2111 
2112 		if (s > (PAGE_SIZE>>9))
2113 			s = PAGE_SIZE >> 9;
2114 
2115 		do {
2116 			/* Note: no rcu protection needed here
2117 			 * as this is synchronous in the raid1d thread
2118 			 * which is the thread that might remove
2119 			 * a device.  If raid1d ever becomes multi-threaded....
2120 			 */
2121 			sector_t first_bad;
2122 			int bad_sectors;
2123 
2124 			rdev = conf->mirrors[d].rdev;
2125 			if (rdev &&
2126 			    (test_bit(In_sync, &rdev->flags) ||
2127 			     (!test_bit(Faulty, &rdev->flags) &&
2128 			      rdev->recovery_offset >= sect + s)) &&
2129 			    is_badblock(rdev, sect, s,
2130 					&first_bad, &bad_sectors) == 0 &&
2131 			    sync_page_io(rdev, sect, s<<9,
2132 					 conf->tmppage, READ, false))
2133 				success = 1;
2134 			else {
2135 				d++;
2136 				if (d == conf->raid_disks * 2)
2137 					d = 0;
2138 			}
2139 		} while (!success && d != read_disk);
2140 
2141 		if (!success) {
2142 			/* Cannot read from anywhere - mark it bad */
2143 			struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2144 			if (!rdev_set_badblocks(rdev, sect, s, 0))
2145 				md_error(mddev, rdev);
2146 			break;
2147 		}
2148 		/* write it back and re-read */
2149 		start = d;
2150 		while (d != read_disk) {
2151 			if (d==0)
2152 				d = conf->raid_disks * 2;
2153 			d--;
2154 			rdev = conf->mirrors[d].rdev;
2155 			if (rdev &&
2156 			    test_bit(In_sync, &rdev->flags))
2157 				r1_sync_page_io(rdev, sect, s,
2158 						conf->tmppage, WRITE);
2159 		}
2160 		d = start;
2161 		while (d != read_disk) {
2162 			char b[BDEVNAME_SIZE];
2163 			if (d==0)
2164 				d = conf->raid_disks * 2;
2165 			d--;
2166 			rdev = conf->mirrors[d].rdev;
2167 			if (rdev &&
2168 			    test_bit(In_sync, &rdev->flags)) {
2169 				if (r1_sync_page_io(rdev, sect, s,
2170 						    conf->tmppage, READ)) {
2171 					atomic_add(s, &rdev->corrected_errors);
2172 					printk(KERN_INFO
2173 					       "md/raid1:%s: read error corrected "
2174 					       "(%d sectors at %llu on %s)\n",
2175 					       mdname(mddev), s,
2176 					       (unsigned long long)(sect +
2177 					           rdev->data_offset),
2178 					       bdevname(rdev->bdev, b));
2179 				}
2180 			}
2181 		}
2182 		sectors -= s;
2183 		sect += s;
2184 	}
2185 }
2186 
2187 static int narrow_write_error(struct r1bio *r1_bio, int i)
2188 {
2189 	struct mddev *mddev = r1_bio->mddev;
2190 	struct r1conf *conf = mddev->private;
2191 	struct md_rdev *rdev = conf->mirrors[i].rdev;
2192 
2193 	/* bio has the data to be written to device 'i' where
2194 	 * we just recently had a write error.
2195 	 * We repeatedly clone the bio and trim down to one block,
2196 	 * then try the write.  Where the write fails we record
2197 	 * a bad block.
2198 	 * It is conceivable that the bio doesn't exactly align with
2199 	 * blocks.  We must handle this somehow.
2200 	 *
2201 	 * We currently own a reference on the rdev.
2202 	 */
2203 
2204 	int block_sectors;
2205 	sector_t sector;
2206 	int sectors;
2207 	int sect_to_write = r1_bio->sectors;
2208 	int ok = 1;
2209 
2210 	if (rdev->badblocks.shift < 0)
2211 		return 0;
2212 
2213 	block_sectors = 1 << rdev->badblocks.shift;
2214 	sector = r1_bio->sector;
2215 	sectors = ((sector + block_sectors)
2216 		   & ~(sector_t)(block_sectors - 1))
2217 		- sector;
2218 
2219 	while (sect_to_write) {
2220 		struct bio *wbio;
2221 		if (sectors > sect_to_write)
2222 			sectors = sect_to_write;
2223 		/* Write at 'sector' for 'sectors'*/
2224 
2225 		if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2226 			unsigned vcnt = r1_bio->behind_page_count;
2227 			struct bio_vec *vec = r1_bio->behind_bvecs;
2228 
2229 			while (!vec->bv_page) {
2230 				vec++;
2231 				vcnt--;
2232 			}
2233 
2234 			wbio = bio_alloc_mddev(GFP_NOIO, vcnt, mddev);
2235 			memcpy(wbio->bi_io_vec, vec, vcnt * sizeof(struct bio_vec));
2236 
2237 			wbio->bi_vcnt = vcnt;
2238 		} else {
2239 			wbio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2240 		}
2241 
2242 		wbio->bi_rw = WRITE;
2243 		wbio->bi_iter.bi_sector = r1_bio->sector;
2244 		wbio->bi_iter.bi_size = r1_bio->sectors << 9;
2245 
2246 		bio_trim(wbio, sector - r1_bio->sector, sectors);
2247 		wbio->bi_iter.bi_sector += rdev->data_offset;
2248 		wbio->bi_bdev = rdev->bdev;
2249 		if (submit_bio_wait(WRITE, wbio) == 0)
2250 			/* failure! */
2251 			ok = rdev_set_badblocks(rdev, sector,
2252 						sectors, 0)
2253 				&& ok;
2254 
2255 		bio_put(wbio);
2256 		sect_to_write -= sectors;
2257 		sector += sectors;
2258 		sectors = block_sectors;
2259 	}
2260 	return ok;
2261 }
2262 
2263 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2264 {
2265 	int m;
2266 	int s = r1_bio->sectors;
2267 	for (m = 0; m < conf->raid_disks * 2 ; m++) {
2268 		struct md_rdev *rdev = conf->mirrors[m].rdev;
2269 		struct bio *bio = r1_bio->bios[m];
2270 		if (bio->bi_end_io == NULL)
2271 			continue;
2272 		if (test_bit(BIO_UPTODATE, &bio->bi_flags) &&
2273 		    test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2274 			rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2275 		}
2276 		if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
2277 		    test_bit(R1BIO_WriteError, &r1_bio->state)) {
2278 			if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2279 				md_error(conf->mddev, rdev);
2280 		}
2281 	}
2282 	put_buf(r1_bio);
2283 	md_done_sync(conf->mddev, s, 1);
2284 }
2285 
2286 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2287 {
2288 	int m;
2289 	for (m = 0; m < conf->raid_disks * 2 ; m++)
2290 		if (r1_bio->bios[m] == IO_MADE_GOOD) {
2291 			struct md_rdev *rdev = conf->mirrors[m].rdev;
2292 			rdev_clear_badblocks(rdev,
2293 					     r1_bio->sector,
2294 					     r1_bio->sectors, 0);
2295 			rdev_dec_pending(rdev, conf->mddev);
2296 		} else if (r1_bio->bios[m] != NULL) {
2297 			/* This drive got a write error.  We need to
2298 			 * narrow down and record precise write
2299 			 * errors.
2300 			 */
2301 			if (!narrow_write_error(r1_bio, m)) {
2302 				md_error(conf->mddev,
2303 					 conf->mirrors[m].rdev);
2304 				/* an I/O failed, we can't clear the bitmap */
2305 				set_bit(R1BIO_Degraded, &r1_bio->state);
2306 			}
2307 			rdev_dec_pending(conf->mirrors[m].rdev,
2308 					 conf->mddev);
2309 		}
2310 	if (test_bit(R1BIO_WriteError, &r1_bio->state))
2311 		close_write(r1_bio);
2312 	raid_end_bio_io(r1_bio);
2313 }
2314 
2315 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2316 {
2317 	int disk;
2318 	int max_sectors;
2319 	struct mddev *mddev = conf->mddev;
2320 	struct bio *bio;
2321 	char b[BDEVNAME_SIZE];
2322 	struct md_rdev *rdev;
2323 
2324 	clear_bit(R1BIO_ReadError, &r1_bio->state);
2325 	/* we got a read error. Maybe the drive is bad.  Maybe just
2326 	 * the block and we can fix it.
2327 	 * We freeze all other IO, and try reading the block from
2328 	 * other devices.  When we find one, we re-write
2329 	 * and check it that fixes the read error.
2330 	 * This is all done synchronously while the array is
2331 	 * frozen
2332 	 */
2333 	if (mddev->ro == 0) {
2334 		freeze_array(conf, 1);
2335 		fix_read_error(conf, r1_bio->read_disk,
2336 			       r1_bio->sector, r1_bio->sectors);
2337 		unfreeze_array(conf);
2338 	} else
2339 		md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
2340 	rdev_dec_pending(conf->mirrors[r1_bio->read_disk].rdev, conf->mddev);
2341 
2342 	bio = r1_bio->bios[r1_bio->read_disk];
2343 	bdevname(bio->bi_bdev, b);
2344 read_more:
2345 	disk = read_balance(conf, r1_bio, &max_sectors);
2346 	if (disk == -1) {
2347 		printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O"
2348 		       " read error for block %llu\n",
2349 		       mdname(mddev), b, (unsigned long long)r1_bio->sector);
2350 		raid_end_bio_io(r1_bio);
2351 	} else {
2352 		const unsigned long do_sync
2353 			= r1_bio->master_bio->bi_rw & REQ_SYNC;
2354 		if (bio) {
2355 			r1_bio->bios[r1_bio->read_disk] =
2356 				mddev->ro ? IO_BLOCKED : NULL;
2357 			bio_put(bio);
2358 		}
2359 		r1_bio->read_disk = disk;
2360 		bio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2361 		bio_trim(bio, r1_bio->sector - bio->bi_iter.bi_sector,
2362 			 max_sectors);
2363 		r1_bio->bios[r1_bio->read_disk] = bio;
2364 		rdev = conf->mirrors[disk].rdev;
2365 		printk_ratelimited(KERN_ERR
2366 				   "md/raid1:%s: redirecting sector %llu"
2367 				   " to other mirror: %s\n",
2368 				   mdname(mddev),
2369 				   (unsigned long long)r1_bio->sector,
2370 				   bdevname(rdev->bdev, b));
2371 		bio->bi_iter.bi_sector = r1_bio->sector + rdev->data_offset;
2372 		bio->bi_bdev = rdev->bdev;
2373 		bio->bi_end_io = raid1_end_read_request;
2374 		bio->bi_rw = READ | do_sync;
2375 		bio->bi_private = r1_bio;
2376 		if (max_sectors < r1_bio->sectors) {
2377 			/* Drat - have to split this up more */
2378 			struct bio *mbio = r1_bio->master_bio;
2379 			int sectors_handled = (r1_bio->sector + max_sectors
2380 					       - mbio->bi_iter.bi_sector);
2381 			r1_bio->sectors = max_sectors;
2382 			spin_lock_irq(&conf->device_lock);
2383 			if (mbio->bi_phys_segments == 0)
2384 				mbio->bi_phys_segments = 2;
2385 			else
2386 				mbio->bi_phys_segments++;
2387 			spin_unlock_irq(&conf->device_lock);
2388 			generic_make_request(bio);
2389 			bio = NULL;
2390 
2391 			r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
2392 
2393 			r1_bio->master_bio = mbio;
2394 			r1_bio->sectors = bio_sectors(mbio) - sectors_handled;
2395 			r1_bio->state = 0;
2396 			set_bit(R1BIO_ReadError, &r1_bio->state);
2397 			r1_bio->mddev = mddev;
2398 			r1_bio->sector = mbio->bi_iter.bi_sector +
2399 				sectors_handled;
2400 
2401 			goto read_more;
2402 		} else
2403 			generic_make_request(bio);
2404 	}
2405 }
2406 
2407 static void raid1d(struct md_thread *thread)
2408 {
2409 	struct mddev *mddev = thread->mddev;
2410 	struct r1bio *r1_bio;
2411 	unsigned long flags;
2412 	struct r1conf *conf = mddev->private;
2413 	struct list_head *head = &conf->retry_list;
2414 	struct blk_plug plug;
2415 
2416 	md_check_recovery(mddev);
2417 
2418 	blk_start_plug(&plug);
2419 	for (;;) {
2420 
2421 		flush_pending_writes(conf);
2422 
2423 		spin_lock_irqsave(&conf->device_lock, flags);
2424 		if (list_empty(head)) {
2425 			spin_unlock_irqrestore(&conf->device_lock, flags);
2426 			break;
2427 		}
2428 		r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2429 		list_del(head->prev);
2430 		conf->nr_queued--;
2431 		spin_unlock_irqrestore(&conf->device_lock, flags);
2432 
2433 		mddev = r1_bio->mddev;
2434 		conf = mddev->private;
2435 		if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2436 			if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2437 			    test_bit(R1BIO_WriteError, &r1_bio->state))
2438 				handle_sync_write_finished(conf, r1_bio);
2439 			else
2440 				sync_request_write(mddev, r1_bio);
2441 		} else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2442 			   test_bit(R1BIO_WriteError, &r1_bio->state))
2443 			handle_write_finished(conf, r1_bio);
2444 		else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2445 			handle_read_error(conf, r1_bio);
2446 		else
2447 			/* just a partial read to be scheduled from separate
2448 			 * context
2449 			 */
2450 			generic_make_request(r1_bio->bios[r1_bio->read_disk]);
2451 
2452 		cond_resched();
2453 		if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2454 			md_check_recovery(mddev);
2455 	}
2456 	blk_finish_plug(&plug);
2457 }
2458 
2459 
2460 static int init_resync(struct r1conf *conf)
2461 {
2462 	int buffs;
2463 
2464 	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2465 	BUG_ON(conf->r1buf_pool);
2466 	conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2467 					  conf->poolinfo);
2468 	if (!conf->r1buf_pool)
2469 		return -ENOMEM;
2470 	conf->next_resync = 0;
2471 	return 0;
2472 }
2473 
2474 /*
2475  * perform a "sync" on one "block"
2476  *
2477  * We need to make sure that no normal I/O request - particularly write
2478  * requests - conflict with active sync requests.
2479  *
2480  * This is achieved by tracking pending requests and a 'barrier' concept
2481  * that can be installed to exclude normal IO requests.
2482  */
2483 
2484 static sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
2485 {
2486 	struct r1conf *conf = mddev->private;
2487 	struct r1bio *r1_bio;
2488 	struct bio *bio;
2489 	sector_t max_sector, nr_sectors;
2490 	int disk = -1;
2491 	int i;
2492 	int wonly = -1;
2493 	int write_targets = 0, read_targets = 0;
2494 	sector_t sync_blocks;
2495 	int still_degraded = 0;
2496 	int good_sectors = RESYNC_SECTORS;
2497 	int min_bad = 0; /* number of sectors that are bad in all devices */
2498 
2499 	if (!conf->r1buf_pool)
2500 		if (init_resync(conf))
2501 			return 0;
2502 
2503 	max_sector = mddev->dev_sectors;
2504 	if (sector_nr >= max_sector) {
2505 		/* If we aborted, we need to abort the
2506 		 * sync on the 'current' bitmap chunk (there will
2507 		 * only be one in raid1 resync.
2508 		 * We can find the current addess in mddev->curr_resync
2509 		 */
2510 		if (mddev->curr_resync < max_sector) /* aborted */
2511 			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2512 						&sync_blocks, 1);
2513 		else /* completed sync */
2514 			conf->fullsync = 0;
2515 
2516 		bitmap_close_sync(mddev->bitmap);
2517 		close_sync(conf);
2518 		return 0;
2519 	}
2520 
2521 	if (mddev->bitmap == NULL &&
2522 	    mddev->recovery_cp == MaxSector &&
2523 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2524 	    conf->fullsync == 0) {
2525 		*skipped = 1;
2526 		return max_sector - sector_nr;
2527 	}
2528 	/* before building a request, check if we can skip these blocks..
2529 	 * This call the bitmap_start_sync doesn't actually record anything
2530 	 */
2531 	if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2532 	    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2533 		/* We can skip this block, and probably several more */
2534 		*skipped = 1;
2535 		return sync_blocks;
2536 	}
2537 	/*
2538 	 * If there is non-resync activity waiting for a turn,
2539 	 * and resync is going fast enough,
2540 	 * then let it though before starting on this new sync request.
2541 	 */
2542 	if (!go_faster && conf->nr_waiting)
2543 		msleep_interruptible(1000);
2544 
2545 	bitmap_cond_end_sync(mddev->bitmap, sector_nr);
2546 	r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
2547 
2548 	raise_barrier(conf, sector_nr);
2549 
2550 	rcu_read_lock();
2551 	/*
2552 	 * If we get a correctably read error during resync or recovery,
2553 	 * we might want to read from a different device.  So we
2554 	 * flag all drives that could conceivably be read from for READ,
2555 	 * and any others (which will be non-In_sync devices) for WRITE.
2556 	 * If a read fails, we try reading from something else for which READ
2557 	 * is OK.
2558 	 */
2559 
2560 	r1_bio->mddev = mddev;
2561 	r1_bio->sector = sector_nr;
2562 	r1_bio->state = 0;
2563 	set_bit(R1BIO_IsSync, &r1_bio->state);
2564 
2565 	for (i = 0; i < conf->raid_disks * 2; i++) {
2566 		struct md_rdev *rdev;
2567 		bio = r1_bio->bios[i];
2568 		bio_reset(bio);
2569 
2570 		rdev = rcu_dereference(conf->mirrors[i].rdev);
2571 		if (rdev == NULL ||
2572 		    test_bit(Faulty, &rdev->flags)) {
2573 			if (i < conf->raid_disks)
2574 				still_degraded = 1;
2575 		} else if (!test_bit(In_sync, &rdev->flags)) {
2576 			bio->bi_rw = WRITE;
2577 			bio->bi_end_io = end_sync_write;
2578 			write_targets ++;
2579 		} else {
2580 			/* may need to read from here */
2581 			sector_t first_bad = MaxSector;
2582 			int bad_sectors;
2583 
2584 			if (is_badblock(rdev, sector_nr, good_sectors,
2585 					&first_bad, &bad_sectors)) {
2586 				if (first_bad > sector_nr)
2587 					good_sectors = first_bad - sector_nr;
2588 				else {
2589 					bad_sectors -= (sector_nr - first_bad);
2590 					if (min_bad == 0 ||
2591 					    min_bad > bad_sectors)
2592 						min_bad = bad_sectors;
2593 				}
2594 			}
2595 			if (sector_nr < first_bad) {
2596 				if (test_bit(WriteMostly, &rdev->flags)) {
2597 					if (wonly < 0)
2598 						wonly = i;
2599 				} else {
2600 					if (disk < 0)
2601 						disk = i;
2602 				}
2603 				bio->bi_rw = READ;
2604 				bio->bi_end_io = end_sync_read;
2605 				read_targets++;
2606 			} else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2607 				test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2608 				!test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2609 				/*
2610 				 * The device is suitable for reading (InSync),
2611 				 * but has bad block(s) here. Let's try to correct them,
2612 				 * if we are doing resync or repair. Otherwise, leave
2613 				 * this device alone for this sync request.
2614 				 */
2615 				bio->bi_rw = WRITE;
2616 				bio->bi_end_io = end_sync_write;
2617 				write_targets++;
2618 			}
2619 		}
2620 		if (bio->bi_end_io) {
2621 			atomic_inc(&rdev->nr_pending);
2622 			bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
2623 			bio->bi_bdev = rdev->bdev;
2624 			bio->bi_private = r1_bio;
2625 		}
2626 	}
2627 	rcu_read_unlock();
2628 	if (disk < 0)
2629 		disk = wonly;
2630 	r1_bio->read_disk = disk;
2631 
2632 	if (read_targets == 0 && min_bad > 0) {
2633 		/* These sectors are bad on all InSync devices, so we
2634 		 * need to mark them bad on all write targets
2635 		 */
2636 		int ok = 1;
2637 		for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2638 			if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2639 				struct md_rdev *rdev = conf->mirrors[i].rdev;
2640 				ok = rdev_set_badblocks(rdev, sector_nr,
2641 							min_bad, 0
2642 					) && ok;
2643 			}
2644 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
2645 		*skipped = 1;
2646 		put_buf(r1_bio);
2647 
2648 		if (!ok) {
2649 			/* Cannot record the badblocks, so need to
2650 			 * abort the resync.
2651 			 * If there are multiple read targets, could just
2652 			 * fail the really bad ones ???
2653 			 */
2654 			conf->recovery_disabled = mddev->recovery_disabled;
2655 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2656 			return 0;
2657 		} else
2658 			return min_bad;
2659 
2660 	}
2661 	if (min_bad > 0 && min_bad < good_sectors) {
2662 		/* only resync enough to reach the next bad->good
2663 		 * transition */
2664 		good_sectors = min_bad;
2665 	}
2666 
2667 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2668 		/* extra read targets are also write targets */
2669 		write_targets += read_targets-1;
2670 
2671 	if (write_targets == 0 || read_targets == 0) {
2672 		/* There is nowhere to write, so all non-sync
2673 		 * drives must be failed - so we are finished
2674 		 */
2675 		sector_t rv;
2676 		if (min_bad > 0)
2677 			max_sector = sector_nr + min_bad;
2678 		rv = max_sector - sector_nr;
2679 		*skipped = 1;
2680 		put_buf(r1_bio);
2681 		return rv;
2682 	}
2683 
2684 	if (max_sector > mddev->resync_max)
2685 		max_sector = mddev->resync_max; /* Don't do IO beyond here */
2686 	if (max_sector > sector_nr + good_sectors)
2687 		max_sector = sector_nr + good_sectors;
2688 	nr_sectors = 0;
2689 	sync_blocks = 0;
2690 	do {
2691 		struct page *page;
2692 		int len = PAGE_SIZE;
2693 		if (sector_nr + (len>>9) > max_sector)
2694 			len = (max_sector - sector_nr) << 9;
2695 		if (len == 0)
2696 			break;
2697 		if (sync_blocks == 0) {
2698 			if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2699 					       &sync_blocks, still_degraded) &&
2700 			    !conf->fullsync &&
2701 			    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2702 				break;
2703 			BUG_ON(sync_blocks < (PAGE_SIZE>>9));
2704 			if ((len >> 9) > sync_blocks)
2705 				len = sync_blocks<<9;
2706 		}
2707 
2708 		for (i = 0 ; i < conf->raid_disks * 2; i++) {
2709 			bio = r1_bio->bios[i];
2710 			if (bio->bi_end_io) {
2711 				page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
2712 				if (bio_add_page(bio, page, len, 0) == 0) {
2713 					/* stop here */
2714 					bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
2715 					while (i > 0) {
2716 						i--;
2717 						bio = r1_bio->bios[i];
2718 						if (bio->bi_end_io==NULL)
2719 							continue;
2720 						/* remove last page from this bio */
2721 						bio->bi_vcnt--;
2722 						bio->bi_iter.bi_size -= len;
2723 						bio->bi_flags &= ~(1<< BIO_SEG_VALID);
2724 					}
2725 					goto bio_full;
2726 				}
2727 			}
2728 		}
2729 		nr_sectors += len>>9;
2730 		sector_nr += len>>9;
2731 		sync_blocks -= (len>>9);
2732 	} while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
2733  bio_full:
2734 	r1_bio->sectors = nr_sectors;
2735 
2736 	/* For a user-requested sync, we read all readable devices and do a
2737 	 * compare
2738 	 */
2739 	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2740 		atomic_set(&r1_bio->remaining, read_targets);
2741 		for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2742 			bio = r1_bio->bios[i];
2743 			if (bio->bi_end_io == end_sync_read) {
2744 				read_targets--;
2745 				md_sync_acct(bio->bi_bdev, nr_sectors);
2746 				generic_make_request(bio);
2747 			}
2748 		}
2749 	} else {
2750 		atomic_set(&r1_bio->remaining, 1);
2751 		bio = r1_bio->bios[r1_bio->read_disk];
2752 		md_sync_acct(bio->bi_bdev, nr_sectors);
2753 		generic_make_request(bio);
2754 
2755 	}
2756 	return nr_sectors;
2757 }
2758 
2759 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2760 {
2761 	if (sectors)
2762 		return sectors;
2763 
2764 	return mddev->dev_sectors;
2765 }
2766 
2767 static struct r1conf *setup_conf(struct mddev *mddev)
2768 {
2769 	struct r1conf *conf;
2770 	int i;
2771 	struct raid1_info *disk;
2772 	struct md_rdev *rdev;
2773 	int err = -ENOMEM;
2774 
2775 	conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2776 	if (!conf)
2777 		goto abort;
2778 
2779 	conf->mirrors = kzalloc(sizeof(struct raid1_info)
2780 				* mddev->raid_disks * 2,
2781 				 GFP_KERNEL);
2782 	if (!conf->mirrors)
2783 		goto abort;
2784 
2785 	conf->tmppage = alloc_page(GFP_KERNEL);
2786 	if (!conf->tmppage)
2787 		goto abort;
2788 
2789 	conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
2790 	if (!conf->poolinfo)
2791 		goto abort;
2792 	conf->poolinfo->raid_disks = mddev->raid_disks * 2;
2793 	conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2794 					  r1bio_pool_free,
2795 					  conf->poolinfo);
2796 	if (!conf->r1bio_pool)
2797 		goto abort;
2798 
2799 	conf->poolinfo->mddev = mddev;
2800 
2801 	err = -EINVAL;
2802 	spin_lock_init(&conf->device_lock);
2803 	rdev_for_each(rdev, mddev) {
2804 		struct request_queue *q;
2805 		int disk_idx = rdev->raid_disk;
2806 		if (disk_idx >= mddev->raid_disks
2807 		    || disk_idx < 0)
2808 			continue;
2809 		if (test_bit(Replacement, &rdev->flags))
2810 			disk = conf->mirrors + mddev->raid_disks + disk_idx;
2811 		else
2812 			disk = conf->mirrors + disk_idx;
2813 
2814 		if (disk->rdev)
2815 			goto abort;
2816 		disk->rdev = rdev;
2817 		q = bdev_get_queue(rdev->bdev);
2818 		if (q->merge_bvec_fn)
2819 			mddev->merge_check_needed = 1;
2820 
2821 		disk->head_position = 0;
2822 		disk->seq_start = MaxSector;
2823 	}
2824 	conf->raid_disks = mddev->raid_disks;
2825 	conf->mddev = mddev;
2826 	INIT_LIST_HEAD(&conf->retry_list);
2827 
2828 	spin_lock_init(&conf->resync_lock);
2829 	init_waitqueue_head(&conf->wait_barrier);
2830 
2831 	bio_list_init(&conf->pending_bio_list);
2832 	conf->pending_count = 0;
2833 	conf->recovery_disabled = mddev->recovery_disabled - 1;
2834 
2835 	conf->start_next_window = MaxSector;
2836 	conf->current_window_requests = conf->next_window_requests = 0;
2837 
2838 	err = -EIO;
2839 	for (i = 0; i < conf->raid_disks * 2; i++) {
2840 
2841 		disk = conf->mirrors + i;
2842 
2843 		if (i < conf->raid_disks &&
2844 		    disk[conf->raid_disks].rdev) {
2845 			/* This slot has a replacement. */
2846 			if (!disk->rdev) {
2847 				/* No original, just make the replacement
2848 				 * a recovering spare
2849 				 */
2850 				disk->rdev =
2851 					disk[conf->raid_disks].rdev;
2852 				disk[conf->raid_disks].rdev = NULL;
2853 			} else if (!test_bit(In_sync, &disk->rdev->flags))
2854 				/* Original is not in_sync - bad */
2855 				goto abort;
2856 		}
2857 
2858 		if (!disk->rdev ||
2859 		    !test_bit(In_sync, &disk->rdev->flags)) {
2860 			disk->head_position = 0;
2861 			if (disk->rdev &&
2862 			    (disk->rdev->saved_raid_disk < 0))
2863 				conf->fullsync = 1;
2864 		}
2865 	}
2866 
2867 	err = -ENOMEM;
2868 	conf->thread = md_register_thread(raid1d, mddev, "raid1");
2869 	if (!conf->thread) {
2870 		printk(KERN_ERR
2871 		       "md/raid1:%s: couldn't allocate thread\n",
2872 		       mdname(mddev));
2873 		goto abort;
2874 	}
2875 
2876 	return conf;
2877 
2878  abort:
2879 	if (conf) {
2880 		if (conf->r1bio_pool)
2881 			mempool_destroy(conf->r1bio_pool);
2882 		kfree(conf->mirrors);
2883 		safe_put_page(conf->tmppage);
2884 		kfree(conf->poolinfo);
2885 		kfree(conf);
2886 	}
2887 	return ERR_PTR(err);
2888 }
2889 
2890 static int stop(struct mddev *mddev);
2891 static int run(struct mddev *mddev)
2892 {
2893 	struct r1conf *conf;
2894 	int i;
2895 	struct md_rdev *rdev;
2896 	int ret;
2897 	bool discard_supported = false;
2898 
2899 	if (mddev->level != 1) {
2900 		printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n",
2901 		       mdname(mddev), mddev->level);
2902 		return -EIO;
2903 	}
2904 	if (mddev->reshape_position != MaxSector) {
2905 		printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n",
2906 		       mdname(mddev));
2907 		return -EIO;
2908 	}
2909 	/*
2910 	 * copy the already verified devices into our private RAID1
2911 	 * bookkeeping area. [whatever we allocate in run(),
2912 	 * should be freed in stop()]
2913 	 */
2914 	if (mddev->private == NULL)
2915 		conf = setup_conf(mddev);
2916 	else
2917 		conf = mddev->private;
2918 
2919 	if (IS_ERR(conf))
2920 		return PTR_ERR(conf);
2921 
2922 	if (mddev->queue)
2923 		blk_queue_max_write_same_sectors(mddev->queue, 0);
2924 
2925 	rdev_for_each(rdev, mddev) {
2926 		if (!mddev->gendisk)
2927 			continue;
2928 		disk_stack_limits(mddev->gendisk, rdev->bdev,
2929 				  rdev->data_offset << 9);
2930 		if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
2931 			discard_supported = true;
2932 	}
2933 
2934 	mddev->degraded = 0;
2935 	for (i=0; i < conf->raid_disks; i++)
2936 		if (conf->mirrors[i].rdev == NULL ||
2937 		    !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
2938 		    test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2939 			mddev->degraded++;
2940 
2941 	if (conf->raid_disks - mddev->degraded == 1)
2942 		mddev->recovery_cp = MaxSector;
2943 
2944 	if (mddev->recovery_cp != MaxSector)
2945 		printk(KERN_NOTICE "md/raid1:%s: not clean"
2946 		       " -- starting background reconstruction\n",
2947 		       mdname(mddev));
2948 	printk(KERN_INFO
2949 		"md/raid1:%s: active with %d out of %d mirrors\n",
2950 		mdname(mddev), mddev->raid_disks - mddev->degraded,
2951 		mddev->raid_disks);
2952 
2953 	/*
2954 	 * Ok, everything is just fine now
2955 	 */
2956 	mddev->thread = conf->thread;
2957 	conf->thread = NULL;
2958 	mddev->private = conf;
2959 
2960 	md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
2961 
2962 	if (mddev->queue) {
2963 		mddev->queue->backing_dev_info.congested_fn = raid1_congested;
2964 		mddev->queue->backing_dev_info.congested_data = mddev;
2965 		blk_queue_merge_bvec(mddev->queue, raid1_mergeable_bvec);
2966 
2967 		if (discard_supported)
2968 			queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
2969 						mddev->queue);
2970 		else
2971 			queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
2972 						  mddev->queue);
2973 	}
2974 
2975 	ret =  md_integrity_register(mddev);
2976 	if (ret)
2977 		stop(mddev);
2978 	return ret;
2979 }
2980 
2981 static int stop(struct mddev *mddev)
2982 {
2983 	struct r1conf *conf = mddev->private;
2984 	struct bitmap *bitmap = mddev->bitmap;
2985 
2986 	/* wait for behind writes to complete */
2987 	if (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
2988 		printk(KERN_INFO "md/raid1:%s: behind writes in progress - waiting to stop.\n",
2989 		       mdname(mddev));
2990 		/* need to kick something here to make sure I/O goes? */
2991 		wait_event(bitmap->behind_wait,
2992 			   atomic_read(&bitmap->behind_writes) == 0);
2993 	}
2994 
2995 	freeze_array(conf, 0);
2996 	unfreeze_array(conf);
2997 
2998 	md_unregister_thread(&mddev->thread);
2999 	if (conf->r1bio_pool)
3000 		mempool_destroy(conf->r1bio_pool);
3001 	kfree(conf->mirrors);
3002 	safe_put_page(conf->tmppage);
3003 	kfree(conf->poolinfo);
3004 	kfree(conf);
3005 	mddev->private = NULL;
3006 	return 0;
3007 }
3008 
3009 static int raid1_resize(struct mddev *mddev, sector_t sectors)
3010 {
3011 	/* no resync is happening, and there is enough space
3012 	 * on all devices, so we can resize.
3013 	 * We need to make sure resync covers any new space.
3014 	 * If the array is shrinking we should possibly wait until
3015 	 * any io in the removed space completes, but it hardly seems
3016 	 * worth it.
3017 	 */
3018 	sector_t newsize = raid1_size(mddev, sectors, 0);
3019 	if (mddev->external_size &&
3020 	    mddev->array_sectors > newsize)
3021 		return -EINVAL;
3022 	if (mddev->bitmap) {
3023 		int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0);
3024 		if (ret)
3025 			return ret;
3026 	}
3027 	md_set_array_sectors(mddev, newsize);
3028 	set_capacity(mddev->gendisk, mddev->array_sectors);
3029 	revalidate_disk(mddev->gendisk);
3030 	if (sectors > mddev->dev_sectors &&
3031 	    mddev->recovery_cp > mddev->dev_sectors) {
3032 		mddev->recovery_cp = mddev->dev_sectors;
3033 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3034 	}
3035 	mddev->dev_sectors = sectors;
3036 	mddev->resync_max_sectors = sectors;
3037 	return 0;
3038 }
3039 
3040 static int raid1_reshape(struct mddev *mddev)
3041 {
3042 	/* We need to:
3043 	 * 1/ resize the r1bio_pool
3044 	 * 2/ resize conf->mirrors
3045 	 *
3046 	 * We allocate a new r1bio_pool if we can.
3047 	 * Then raise a device barrier and wait until all IO stops.
3048 	 * Then resize conf->mirrors and swap in the new r1bio pool.
3049 	 *
3050 	 * At the same time, we "pack" the devices so that all the missing
3051 	 * devices have the higher raid_disk numbers.
3052 	 */
3053 	mempool_t *newpool, *oldpool;
3054 	struct pool_info *newpoolinfo;
3055 	struct raid1_info *newmirrors;
3056 	struct r1conf *conf = mddev->private;
3057 	int cnt, raid_disks;
3058 	unsigned long flags;
3059 	int d, d2, err;
3060 
3061 	/* Cannot change chunk_size, layout, or level */
3062 	if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3063 	    mddev->layout != mddev->new_layout ||
3064 	    mddev->level != mddev->new_level) {
3065 		mddev->new_chunk_sectors = mddev->chunk_sectors;
3066 		mddev->new_layout = mddev->layout;
3067 		mddev->new_level = mddev->level;
3068 		return -EINVAL;
3069 	}
3070 
3071 	err = md_allow_write(mddev);
3072 	if (err)
3073 		return err;
3074 
3075 	raid_disks = mddev->raid_disks + mddev->delta_disks;
3076 
3077 	if (raid_disks < conf->raid_disks) {
3078 		cnt=0;
3079 		for (d= 0; d < conf->raid_disks; d++)
3080 			if (conf->mirrors[d].rdev)
3081 				cnt++;
3082 		if (cnt > raid_disks)
3083 			return -EBUSY;
3084 	}
3085 
3086 	newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3087 	if (!newpoolinfo)
3088 		return -ENOMEM;
3089 	newpoolinfo->mddev = mddev;
3090 	newpoolinfo->raid_disks = raid_disks * 2;
3091 
3092 	newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
3093 				 r1bio_pool_free, newpoolinfo);
3094 	if (!newpool) {
3095 		kfree(newpoolinfo);
3096 		return -ENOMEM;
3097 	}
3098 	newmirrors = kzalloc(sizeof(struct raid1_info) * raid_disks * 2,
3099 			     GFP_KERNEL);
3100 	if (!newmirrors) {
3101 		kfree(newpoolinfo);
3102 		mempool_destroy(newpool);
3103 		return -ENOMEM;
3104 	}
3105 
3106 	freeze_array(conf, 0);
3107 
3108 	/* ok, everything is stopped */
3109 	oldpool = conf->r1bio_pool;
3110 	conf->r1bio_pool = newpool;
3111 
3112 	for (d = d2 = 0; d < conf->raid_disks; d++) {
3113 		struct md_rdev *rdev = conf->mirrors[d].rdev;
3114 		if (rdev && rdev->raid_disk != d2) {
3115 			sysfs_unlink_rdev(mddev, rdev);
3116 			rdev->raid_disk = d2;
3117 			sysfs_unlink_rdev(mddev, rdev);
3118 			if (sysfs_link_rdev(mddev, rdev))
3119 				printk(KERN_WARNING
3120 				       "md/raid1:%s: cannot register rd%d\n",
3121 				       mdname(mddev), rdev->raid_disk);
3122 		}
3123 		if (rdev)
3124 			newmirrors[d2++].rdev = rdev;
3125 	}
3126 	kfree(conf->mirrors);
3127 	conf->mirrors = newmirrors;
3128 	kfree(conf->poolinfo);
3129 	conf->poolinfo = newpoolinfo;
3130 
3131 	spin_lock_irqsave(&conf->device_lock, flags);
3132 	mddev->degraded += (raid_disks - conf->raid_disks);
3133 	spin_unlock_irqrestore(&conf->device_lock, flags);
3134 	conf->raid_disks = mddev->raid_disks = raid_disks;
3135 	mddev->delta_disks = 0;
3136 
3137 	unfreeze_array(conf);
3138 
3139 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3140 	md_wakeup_thread(mddev->thread);
3141 
3142 	mempool_destroy(oldpool);
3143 	return 0;
3144 }
3145 
3146 static void raid1_quiesce(struct mddev *mddev, int state)
3147 {
3148 	struct r1conf *conf = mddev->private;
3149 
3150 	switch(state) {
3151 	case 2: /* wake for suspend */
3152 		wake_up(&conf->wait_barrier);
3153 		break;
3154 	case 1:
3155 		freeze_array(conf, 0);
3156 		break;
3157 	case 0:
3158 		unfreeze_array(conf);
3159 		break;
3160 	}
3161 }
3162 
3163 static void *raid1_takeover(struct mddev *mddev)
3164 {
3165 	/* raid1 can take over:
3166 	 *  raid5 with 2 devices, any layout or chunk size
3167 	 */
3168 	if (mddev->level == 5 && mddev->raid_disks == 2) {
3169 		struct r1conf *conf;
3170 		mddev->new_level = 1;
3171 		mddev->new_layout = 0;
3172 		mddev->new_chunk_sectors = 0;
3173 		conf = setup_conf(mddev);
3174 		if (!IS_ERR(conf))
3175 			/* Array must appear to be quiesced */
3176 			conf->array_frozen = 1;
3177 		return conf;
3178 	}
3179 	return ERR_PTR(-EINVAL);
3180 }
3181 
3182 static struct md_personality raid1_personality =
3183 {
3184 	.name		= "raid1",
3185 	.level		= 1,
3186 	.owner		= THIS_MODULE,
3187 	.make_request	= make_request,
3188 	.run		= run,
3189 	.stop		= stop,
3190 	.status		= status,
3191 	.error_handler	= error,
3192 	.hot_add_disk	= raid1_add_disk,
3193 	.hot_remove_disk= raid1_remove_disk,
3194 	.spare_active	= raid1_spare_active,
3195 	.sync_request	= sync_request,
3196 	.resize		= raid1_resize,
3197 	.size		= raid1_size,
3198 	.check_reshape	= raid1_reshape,
3199 	.quiesce	= raid1_quiesce,
3200 	.takeover	= raid1_takeover,
3201 };
3202 
3203 static int __init raid_init(void)
3204 {
3205 	return register_md_personality(&raid1_personality);
3206 }
3207 
3208 static void raid_exit(void)
3209 {
3210 	unregister_md_personality(&raid1_personality);
3211 }
3212 
3213 module_init(raid_init);
3214 module_exit(raid_exit);
3215 MODULE_LICENSE("GPL");
3216 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3217 MODULE_ALIAS("md-personality-3"); /* RAID1 */
3218 MODULE_ALIAS("md-raid1");
3219 MODULE_ALIAS("md-level-1");
3220 
3221 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
3222