xref: /openbmc/linux/drivers/md/raid1.c (revision c21b37f6)
1 /*
2  * raid1.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5  *
6  * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7  *
8  * RAID-1 management functions.
9  *
10  * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11  *
12  * Fixes to reconstruction by Jakob �stergaard" <jakob@ostenfeld.dk>
13  * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14  *
15  * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16  * bitmapped intelligence in resync:
17  *
18  *      - bitmap marked during normal i/o
19  *      - bitmap used to skip nondirty blocks during sync
20  *
21  * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22  * - persistent bitmap code
23  *
24  * This program is free software; you can redistribute it and/or modify
25  * it under the terms of the GNU General Public License as published by
26  * the Free Software Foundation; either version 2, or (at your option)
27  * any later version.
28  *
29  * You should have received a copy of the GNU General Public License
30  * (for example /usr/src/linux/COPYING); if not, write to the Free
31  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32  */
33 
34 #include "dm-bio-list.h"
35 #include <linux/raid/raid1.h>
36 #include <linux/raid/bitmap.h>
37 
38 #define DEBUG 0
39 #if DEBUG
40 #define PRINTK(x...) printk(x)
41 #else
42 #define PRINTK(x...)
43 #endif
44 
45 /*
46  * Number of guaranteed r1bios in case of extreme VM load:
47  */
48 #define	NR_RAID1_BIOS 256
49 
50 
51 static void unplug_slaves(mddev_t *mddev);
52 
53 static void allow_barrier(conf_t *conf);
54 static void lower_barrier(conf_t *conf);
55 
56 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
57 {
58 	struct pool_info *pi = data;
59 	r1bio_t *r1_bio;
60 	int size = offsetof(r1bio_t, bios[pi->raid_disks]);
61 
62 	/* allocate a r1bio with room for raid_disks entries in the bios array */
63 	r1_bio = kzalloc(size, gfp_flags);
64 	if (!r1_bio)
65 		unplug_slaves(pi->mddev);
66 
67 	return r1_bio;
68 }
69 
70 static void r1bio_pool_free(void *r1_bio, void *data)
71 {
72 	kfree(r1_bio);
73 }
74 
75 #define RESYNC_BLOCK_SIZE (64*1024)
76 //#define RESYNC_BLOCK_SIZE PAGE_SIZE
77 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
78 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
79 #define RESYNC_WINDOW (2048*1024)
80 
81 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
82 {
83 	struct pool_info *pi = data;
84 	struct page *page;
85 	r1bio_t *r1_bio;
86 	struct bio *bio;
87 	int i, j;
88 
89 	r1_bio = r1bio_pool_alloc(gfp_flags, pi);
90 	if (!r1_bio) {
91 		unplug_slaves(pi->mddev);
92 		return NULL;
93 	}
94 
95 	/*
96 	 * Allocate bios : 1 for reading, n-1 for writing
97 	 */
98 	for (j = pi->raid_disks ; j-- ; ) {
99 		bio = bio_alloc(gfp_flags, RESYNC_PAGES);
100 		if (!bio)
101 			goto out_free_bio;
102 		r1_bio->bios[j] = bio;
103 	}
104 	/*
105 	 * Allocate RESYNC_PAGES data pages and attach them to
106 	 * the first bio.
107 	 * If this is a user-requested check/repair, allocate
108 	 * RESYNC_PAGES for each bio.
109 	 */
110 	if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
111 		j = pi->raid_disks;
112 	else
113 		j = 1;
114 	while(j--) {
115 		bio = r1_bio->bios[j];
116 		for (i = 0; i < RESYNC_PAGES; i++) {
117 			page = alloc_page(gfp_flags);
118 			if (unlikely(!page))
119 				goto out_free_pages;
120 
121 			bio->bi_io_vec[i].bv_page = page;
122 		}
123 	}
124 	/* If not user-requests, copy the page pointers to all bios */
125 	if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
126 		for (i=0; i<RESYNC_PAGES ; i++)
127 			for (j=1; j<pi->raid_disks; j++)
128 				r1_bio->bios[j]->bi_io_vec[i].bv_page =
129 					r1_bio->bios[0]->bi_io_vec[i].bv_page;
130 	}
131 
132 	r1_bio->master_bio = NULL;
133 
134 	return r1_bio;
135 
136 out_free_pages:
137 	for (i=0; i < RESYNC_PAGES ; i++)
138 		for (j=0 ; j < pi->raid_disks; j++)
139 			safe_put_page(r1_bio->bios[j]->bi_io_vec[i].bv_page);
140 	j = -1;
141 out_free_bio:
142 	while ( ++j < pi->raid_disks )
143 		bio_put(r1_bio->bios[j]);
144 	r1bio_pool_free(r1_bio, data);
145 	return NULL;
146 }
147 
148 static void r1buf_pool_free(void *__r1_bio, void *data)
149 {
150 	struct pool_info *pi = data;
151 	int i,j;
152 	r1bio_t *r1bio = __r1_bio;
153 
154 	for (i = 0; i < RESYNC_PAGES; i++)
155 		for (j = pi->raid_disks; j-- ;) {
156 			if (j == 0 ||
157 			    r1bio->bios[j]->bi_io_vec[i].bv_page !=
158 			    r1bio->bios[0]->bi_io_vec[i].bv_page)
159 				safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
160 		}
161 	for (i=0 ; i < pi->raid_disks; i++)
162 		bio_put(r1bio->bios[i]);
163 
164 	r1bio_pool_free(r1bio, data);
165 }
166 
167 static void put_all_bios(conf_t *conf, r1bio_t *r1_bio)
168 {
169 	int i;
170 
171 	for (i = 0; i < conf->raid_disks; i++) {
172 		struct bio **bio = r1_bio->bios + i;
173 		if (*bio && *bio != IO_BLOCKED)
174 			bio_put(*bio);
175 		*bio = NULL;
176 	}
177 }
178 
179 static void free_r1bio(r1bio_t *r1_bio)
180 {
181 	conf_t *conf = mddev_to_conf(r1_bio->mddev);
182 
183 	/*
184 	 * Wake up any possible resync thread that waits for the device
185 	 * to go idle.
186 	 */
187 	allow_barrier(conf);
188 
189 	put_all_bios(conf, r1_bio);
190 	mempool_free(r1_bio, conf->r1bio_pool);
191 }
192 
193 static void put_buf(r1bio_t *r1_bio)
194 {
195 	conf_t *conf = mddev_to_conf(r1_bio->mddev);
196 	int i;
197 
198 	for (i=0; i<conf->raid_disks; i++) {
199 		struct bio *bio = r1_bio->bios[i];
200 		if (bio->bi_end_io)
201 			rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
202 	}
203 
204 	mempool_free(r1_bio, conf->r1buf_pool);
205 
206 	lower_barrier(conf);
207 }
208 
209 static void reschedule_retry(r1bio_t *r1_bio)
210 {
211 	unsigned long flags;
212 	mddev_t *mddev = r1_bio->mddev;
213 	conf_t *conf = mddev_to_conf(mddev);
214 
215 	spin_lock_irqsave(&conf->device_lock, flags);
216 	list_add(&r1_bio->retry_list, &conf->retry_list);
217 	conf->nr_queued ++;
218 	spin_unlock_irqrestore(&conf->device_lock, flags);
219 
220 	wake_up(&conf->wait_barrier);
221 	md_wakeup_thread(mddev->thread);
222 }
223 
224 /*
225  * raid_end_bio_io() is called when we have finished servicing a mirrored
226  * operation and are ready to return a success/failure code to the buffer
227  * cache layer.
228  */
229 static void raid_end_bio_io(r1bio_t *r1_bio)
230 {
231 	struct bio *bio = r1_bio->master_bio;
232 
233 	/* if nobody has done the final endio yet, do it now */
234 	if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
235 		PRINTK(KERN_DEBUG "raid1: sync end %s on sectors %llu-%llu\n",
236 			(bio_data_dir(bio) == WRITE) ? "write" : "read",
237 			(unsigned long long) bio->bi_sector,
238 			(unsigned long long) bio->bi_sector +
239 				(bio->bi_size >> 9) - 1);
240 
241 		bio_endio(bio, bio->bi_size,
242 			test_bit(R1BIO_Uptodate, &r1_bio->state) ? 0 : -EIO);
243 	}
244 	free_r1bio(r1_bio);
245 }
246 
247 /*
248  * Update disk head position estimator based on IRQ completion info.
249  */
250 static inline void update_head_pos(int disk, r1bio_t *r1_bio)
251 {
252 	conf_t *conf = mddev_to_conf(r1_bio->mddev);
253 
254 	conf->mirrors[disk].head_position =
255 		r1_bio->sector + (r1_bio->sectors);
256 }
257 
258 static int raid1_end_read_request(struct bio *bio, unsigned int bytes_done, int error)
259 {
260 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
261 	r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
262 	int mirror;
263 	conf_t *conf = mddev_to_conf(r1_bio->mddev);
264 
265 	if (bio->bi_size)
266 		return 1;
267 
268 	mirror = r1_bio->read_disk;
269 	/*
270 	 * this branch is our 'one mirror IO has finished' event handler:
271 	 */
272 	update_head_pos(mirror, r1_bio);
273 
274 	if (uptodate)
275 		set_bit(R1BIO_Uptodate, &r1_bio->state);
276 	else {
277 		/* If all other devices have failed, we want to return
278 		 * the error upwards rather than fail the last device.
279 		 * Here we redefine "uptodate" to mean "Don't want to retry"
280 		 */
281 		unsigned long flags;
282 		spin_lock_irqsave(&conf->device_lock, flags);
283 		if (r1_bio->mddev->degraded == conf->raid_disks ||
284 		    (r1_bio->mddev->degraded == conf->raid_disks-1 &&
285 		     !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags)))
286 			uptodate = 1;
287 		spin_unlock_irqrestore(&conf->device_lock, flags);
288 	}
289 
290 	if (uptodate)
291 		raid_end_bio_io(r1_bio);
292 	else {
293 		/*
294 		 * oops, read error:
295 		 */
296 		char b[BDEVNAME_SIZE];
297 		if (printk_ratelimit())
298 			printk(KERN_ERR "raid1: %s: rescheduling sector %llu\n",
299 			       bdevname(conf->mirrors[mirror].rdev->bdev,b), (unsigned long long)r1_bio->sector);
300 		reschedule_retry(r1_bio);
301 	}
302 
303 	rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
304 	return 0;
305 }
306 
307 static int raid1_end_write_request(struct bio *bio, unsigned int bytes_done, int error)
308 {
309 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
310 	r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
311 	int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
312 	conf_t *conf = mddev_to_conf(r1_bio->mddev);
313 	struct bio *to_put = NULL;
314 
315 	if (bio->bi_size)
316 		return 1;
317 
318 	for (mirror = 0; mirror < conf->raid_disks; mirror++)
319 		if (r1_bio->bios[mirror] == bio)
320 			break;
321 
322 	if (error == -EOPNOTSUPP && test_bit(R1BIO_Barrier, &r1_bio->state)) {
323 		set_bit(BarriersNotsupp, &conf->mirrors[mirror].rdev->flags);
324 		set_bit(R1BIO_BarrierRetry, &r1_bio->state);
325 		r1_bio->mddev->barriers_work = 0;
326 		/* Don't rdev_dec_pending in this branch - keep it for the retry */
327 	} else {
328 		/*
329 		 * this branch is our 'one mirror IO has finished' event handler:
330 		 */
331 		r1_bio->bios[mirror] = NULL;
332 		to_put = bio;
333 		if (!uptodate) {
334 			md_error(r1_bio->mddev, conf->mirrors[mirror].rdev);
335 			/* an I/O failed, we can't clear the bitmap */
336 			set_bit(R1BIO_Degraded, &r1_bio->state);
337 		} else
338 			/*
339 			 * Set R1BIO_Uptodate in our master bio, so that
340 			 * we will return a good error code for to the higher
341 			 * levels even if IO on some other mirrored buffer fails.
342 			 *
343 			 * The 'master' represents the composite IO operation to
344 			 * user-side. So if something waits for IO, then it will
345 			 * wait for the 'master' bio.
346 			 */
347 			set_bit(R1BIO_Uptodate, &r1_bio->state);
348 
349 		update_head_pos(mirror, r1_bio);
350 
351 		if (behind) {
352 			if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
353 				atomic_dec(&r1_bio->behind_remaining);
354 
355 			/* In behind mode, we ACK the master bio once the I/O has safely
356 			 * reached all non-writemostly disks. Setting the Returned bit
357 			 * ensures that this gets done only once -- we don't ever want to
358 			 * return -EIO here, instead we'll wait */
359 
360 			if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
361 			    test_bit(R1BIO_Uptodate, &r1_bio->state)) {
362 				/* Maybe we can return now */
363 				if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
364 					struct bio *mbio = r1_bio->master_bio;
365 					PRINTK(KERN_DEBUG "raid1: behind end write sectors %llu-%llu\n",
366 					       (unsigned long long) mbio->bi_sector,
367 					       (unsigned long long) mbio->bi_sector +
368 					       (mbio->bi_size >> 9) - 1);
369 					bio_endio(mbio, mbio->bi_size, 0);
370 				}
371 			}
372 		}
373 		rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
374 	}
375 	/*
376 	 *
377 	 * Let's see if all mirrored write operations have finished
378 	 * already.
379 	 */
380 	if (atomic_dec_and_test(&r1_bio->remaining)) {
381 		if (test_bit(R1BIO_BarrierRetry, &r1_bio->state))
382 			reschedule_retry(r1_bio);
383 		else {
384 			/* it really is the end of this request */
385 			if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
386 				/* free extra copy of the data pages */
387 				int i = bio->bi_vcnt;
388 				while (i--)
389 					safe_put_page(bio->bi_io_vec[i].bv_page);
390 			}
391 			/* clear the bitmap if all writes complete successfully */
392 			bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
393 					r1_bio->sectors,
394 					!test_bit(R1BIO_Degraded, &r1_bio->state),
395 					behind);
396 			md_write_end(r1_bio->mddev);
397 			raid_end_bio_io(r1_bio);
398 		}
399 	}
400 
401 	if (to_put)
402 		bio_put(to_put);
403 
404 	return 0;
405 }
406 
407 
408 /*
409  * This routine returns the disk from which the requested read should
410  * be done. There is a per-array 'next expected sequential IO' sector
411  * number - if this matches on the next IO then we use the last disk.
412  * There is also a per-disk 'last know head position' sector that is
413  * maintained from IRQ contexts, both the normal and the resync IO
414  * completion handlers update this position correctly. If there is no
415  * perfect sequential match then we pick the disk whose head is closest.
416  *
417  * If there are 2 mirrors in the same 2 devices, performance degrades
418  * because position is mirror, not device based.
419  *
420  * The rdev for the device selected will have nr_pending incremented.
421  */
422 static int read_balance(conf_t *conf, r1bio_t *r1_bio)
423 {
424 	const unsigned long this_sector = r1_bio->sector;
425 	int new_disk = conf->last_used, disk = new_disk;
426 	int wonly_disk = -1;
427 	const int sectors = r1_bio->sectors;
428 	sector_t new_distance, current_distance;
429 	mdk_rdev_t *rdev;
430 
431 	rcu_read_lock();
432 	/*
433 	 * Check if we can balance. We can balance on the whole
434 	 * device if no resync is going on, or below the resync window.
435 	 * We take the first readable disk when above the resync window.
436 	 */
437  retry:
438 	if (conf->mddev->recovery_cp < MaxSector &&
439 	    (this_sector + sectors >= conf->next_resync)) {
440 		/* Choose the first operation device, for consistancy */
441 		new_disk = 0;
442 
443 		for (rdev = rcu_dereference(conf->mirrors[new_disk].rdev);
444 		     r1_bio->bios[new_disk] == IO_BLOCKED ||
445 		     !rdev || !test_bit(In_sync, &rdev->flags)
446 			     || test_bit(WriteMostly, &rdev->flags);
447 		     rdev = rcu_dereference(conf->mirrors[++new_disk].rdev)) {
448 
449 			if (rdev && test_bit(In_sync, &rdev->flags) &&
450 				r1_bio->bios[new_disk] != IO_BLOCKED)
451 				wonly_disk = new_disk;
452 
453 			if (new_disk == conf->raid_disks - 1) {
454 				new_disk = wonly_disk;
455 				break;
456 			}
457 		}
458 		goto rb_out;
459 	}
460 
461 
462 	/* make sure the disk is operational */
463 	for (rdev = rcu_dereference(conf->mirrors[new_disk].rdev);
464 	     r1_bio->bios[new_disk] == IO_BLOCKED ||
465 	     !rdev || !test_bit(In_sync, &rdev->flags) ||
466 		     test_bit(WriteMostly, &rdev->flags);
467 	     rdev = rcu_dereference(conf->mirrors[new_disk].rdev)) {
468 
469 		if (rdev && test_bit(In_sync, &rdev->flags) &&
470 		    r1_bio->bios[new_disk] != IO_BLOCKED)
471 			wonly_disk = new_disk;
472 
473 		if (new_disk <= 0)
474 			new_disk = conf->raid_disks;
475 		new_disk--;
476 		if (new_disk == disk) {
477 			new_disk = wonly_disk;
478 			break;
479 		}
480 	}
481 
482 	if (new_disk < 0)
483 		goto rb_out;
484 
485 	disk = new_disk;
486 	/* now disk == new_disk == starting point for search */
487 
488 	/*
489 	 * Don't change to another disk for sequential reads:
490 	 */
491 	if (conf->next_seq_sect == this_sector)
492 		goto rb_out;
493 	if (this_sector == conf->mirrors[new_disk].head_position)
494 		goto rb_out;
495 
496 	current_distance = abs(this_sector - conf->mirrors[disk].head_position);
497 
498 	/* Find the disk whose head is closest */
499 
500 	do {
501 		if (disk <= 0)
502 			disk = conf->raid_disks;
503 		disk--;
504 
505 		rdev = rcu_dereference(conf->mirrors[disk].rdev);
506 
507 		if (!rdev || r1_bio->bios[disk] == IO_BLOCKED ||
508 		    !test_bit(In_sync, &rdev->flags) ||
509 		    test_bit(WriteMostly, &rdev->flags))
510 			continue;
511 
512 		if (!atomic_read(&rdev->nr_pending)) {
513 			new_disk = disk;
514 			break;
515 		}
516 		new_distance = abs(this_sector - conf->mirrors[disk].head_position);
517 		if (new_distance < current_distance) {
518 			current_distance = new_distance;
519 			new_disk = disk;
520 		}
521 	} while (disk != conf->last_used);
522 
523  rb_out:
524 
525 
526 	if (new_disk >= 0) {
527 		rdev = rcu_dereference(conf->mirrors[new_disk].rdev);
528 		if (!rdev)
529 			goto retry;
530 		atomic_inc(&rdev->nr_pending);
531 		if (!test_bit(In_sync, &rdev->flags)) {
532 			/* cannot risk returning a device that failed
533 			 * before we inc'ed nr_pending
534 			 */
535 			rdev_dec_pending(rdev, conf->mddev);
536 			goto retry;
537 		}
538 		conf->next_seq_sect = this_sector + sectors;
539 		conf->last_used = new_disk;
540 	}
541 	rcu_read_unlock();
542 
543 	return new_disk;
544 }
545 
546 static void unplug_slaves(mddev_t *mddev)
547 {
548 	conf_t *conf = mddev_to_conf(mddev);
549 	int i;
550 
551 	rcu_read_lock();
552 	for (i=0; i<mddev->raid_disks; i++) {
553 		mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
554 		if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
555 			struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
556 
557 			atomic_inc(&rdev->nr_pending);
558 			rcu_read_unlock();
559 
560 			if (r_queue->unplug_fn)
561 				r_queue->unplug_fn(r_queue);
562 
563 			rdev_dec_pending(rdev, mddev);
564 			rcu_read_lock();
565 		}
566 	}
567 	rcu_read_unlock();
568 }
569 
570 static void raid1_unplug(struct request_queue *q)
571 {
572 	mddev_t *mddev = q->queuedata;
573 
574 	unplug_slaves(mddev);
575 	md_wakeup_thread(mddev->thread);
576 }
577 
578 static int raid1_issue_flush(struct request_queue *q, struct gendisk *disk,
579 			     sector_t *error_sector)
580 {
581 	mddev_t *mddev = q->queuedata;
582 	conf_t *conf = mddev_to_conf(mddev);
583 	int i, ret = 0;
584 
585 	rcu_read_lock();
586 	for (i=0; i<mddev->raid_disks && ret == 0; i++) {
587 		mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
588 		if (rdev && !test_bit(Faulty, &rdev->flags)) {
589 			struct block_device *bdev = rdev->bdev;
590 			struct request_queue *r_queue = bdev_get_queue(bdev);
591 
592 			if (!r_queue->issue_flush_fn)
593 				ret = -EOPNOTSUPP;
594 			else {
595 				atomic_inc(&rdev->nr_pending);
596 				rcu_read_unlock();
597 				ret = r_queue->issue_flush_fn(r_queue, bdev->bd_disk,
598 							      error_sector);
599 				rdev_dec_pending(rdev, mddev);
600 				rcu_read_lock();
601 			}
602 		}
603 	}
604 	rcu_read_unlock();
605 	return ret;
606 }
607 
608 static int raid1_congested(void *data, int bits)
609 {
610 	mddev_t *mddev = data;
611 	conf_t *conf = mddev_to_conf(mddev);
612 	int i, ret = 0;
613 
614 	rcu_read_lock();
615 	for (i = 0; i < mddev->raid_disks; i++) {
616 		mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
617 		if (rdev && !test_bit(Faulty, &rdev->flags)) {
618 			struct request_queue *q = bdev_get_queue(rdev->bdev);
619 
620 			/* Note the '|| 1' - when read_balance prefers
621 			 * non-congested targets, it can be removed
622 			 */
623 			if ((bits & (1<<BDI_write_congested)) || 1)
624 				ret |= bdi_congested(&q->backing_dev_info, bits);
625 			else
626 				ret &= bdi_congested(&q->backing_dev_info, bits);
627 		}
628 	}
629 	rcu_read_unlock();
630 	return ret;
631 }
632 
633 
634 /* Barriers....
635  * Sometimes we need to suspend IO while we do something else,
636  * either some resync/recovery, or reconfigure the array.
637  * To do this we raise a 'barrier'.
638  * The 'barrier' is a counter that can be raised multiple times
639  * to count how many activities are happening which preclude
640  * normal IO.
641  * We can only raise the barrier if there is no pending IO.
642  * i.e. if nr_pending == 0.
643  * We choose only to raise the barrier if no-one is waiting for the
644  * barrier to go down.  This means that as soon as an IO request
645  * is ready, no other operations which require a barrier will start
646  * until the IO request has had a chance.
647  *
648  * So: regular IO calls 'wait_barrier'.  When that returns there
649  *    is no backgroup IO happening,  It must arrange to call
650  *    allow_barrier when it has finished its IO.
651  * backgroup IO calls must call raise_barrier.  Once that returns
652  *    there is no normal IO happeing.  It must arrange to call
653  *    lower_barrier when the particular background IO completes.
654  */
655 #define RESYNC_DEPTH 32
656 
657 static void raise_barrier(conf_t *conf)
658 {
659 	spin_lock_irq(&conf->resync_lock);
660 
661 	/* Wait until no block IO is waiting */
662 	wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
663 			    conf->resync_lock,
664 			    raid1_unplug(conf->mddev->queue));
665 
666 	/* block any new IO from starting */
667 	conf->barrier++;
668 
669 	/* No wait for all pending IO to complete */
670 	wait_event_lock_irq(conf->wait_barrier,
671 			    !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
672 			    conf->resync_lock,
673 			    raid1_unplug(conf->mddev->queue));
674 
675 	spin_unlock_irq(&conf->resync_lock);
676 }
677 
678 static void lower_barrier(conf_t *conf)
679 {
680 	unsigned long flags;
681 	spin_lock_irqsave(&conf->resync_lock, flags);
682 	conf->barrier--;
683 	spin_unlock_irqrestore(&conf->resync_lock, flags);
684 	wake_up(&conf->wait_barrier);
685 }
686 
687 static void wait_barrier(conf_t *conf)
688 {
689 	spin_lock_irq(&conf->resync_lock);
690 	if (conf->barrier) {
691 		conf->nr_waiting++;
692 		wait_event_lock_irq(conf->wait_barrier, !conf->barrier,
693 				    conf->resync_lock,
694 				    raid1_unplug(conf->mddev->queue));
695 		conf->nr_waiting--;
696 	}
697 	conf->nr_pending++;
698 	spin_unlock_irq(&conf->resync_lock);
699 }
700 
701 static void allow_barrier(conf_t *conf)
702 {
703 	unsigned long flags;
704 	spin_lock_irqsave(&conf->resync_lock, flags);
705 	conf->nr_pending--;
706 	spin_unlock_irqrestore(&conf->resync_lock, flags);
707 	wake_up(&conf->wait_barrier);
708 }
709 
710 static void freeze_array(conf_t *conf)
711 {
712 	/* stop syncio and normal IO and wait for everything to
713 	 * go quite.
714 	 * We increment barrier and nr_waiting, and then
715 	 * wait until barrier+nr_pending match nr_queued+2
716 	 */
717 	spin_lock_irq(&conf->resync_lock);
718 	conf->barrier++;
719 	conf->nr_waiting++;
720 	wait_event_lock_irq(conf->wait_barrier,
721 			    conf->barrier+conf->nr_pending == conf->nr_queued+2,
722 			    conf->resync_lock,
723 			    raid1_unplug(conf->mddev->queue));
724 	spin_unlock_irq(&conf->resync_lock);
725 }
726 static void unfreeze_array(conf_t *conf)
727 {
728 	/* reverse the effect of the freeze */
729 	spin_lock_irq(&conf->resync_lock);
730 	conf->barrier--;
731 	conf->nr_waiting--;
732 	wake_up(&conf->wait_barrier);
733 	spin_unlock_irq(&conf->resync_lock);
734 }
735 
736 
737 /* duplicate the data pages for behind I/O */
738 static struct page **alloc_behind_pages(struct bio *bio)
739 {
740 	int i;
741 	struct bio_vec *bvec;
742 	struct page **pages = kzalloc(bio->bi_vcnt * sizeof(struct page *),
743 					GFP_NOIO);
744 	if (unlikely(!pages))
745 		goto do_sync_io;
746 
747 	bio_for_each_segment(bvec, bio, i) {
748 		pages[i] = alloc_page(GFP_NOIO);
749 		if (unlikely(!pages[i]))
750 			goto do_sync_io;
751 		memcpy(kmap(pages[i]) + bvec->bv_offset,
752 			kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
753 		kunmap(pages[i]);
754 		kunmap(bvec->bv_page);
755 	}
756 
757 	return pages;
758 
759 do_sync_io:
760 	if (pages)
761 		for (i = 0; i < bio->bi_vcnt && pages[i]; i++)
762 			put_page(pages[i]);
763 	kfree(pages);
764 	PRINTK("%dB behind alloc failed, doing sync I/O\n", bio->bi_size);
765 	return NULL;
766 }
767 
768 static int make_request(struct request_queue *q, struct bio * bio)
769 {
770 	mddev_t *mddev = q->queuedata;
771 	conf_t *conf = mddev_to_conf(mddev);
772 	mirror_info_t *mirror;
773 	r1bio_t *r1_bio;
774 	struct bio *read_bio;
775 	int i, targets = 0, disks;
776 	mdk_rdev_t *rdev;
777 	struct bitmap *bitmap = mddev->bitmap;
778 	unsigned long flags;
779 	struct bio_list bl;
780 	struct page **behind_pages = NULL;
781 	const int rw = bio_data_dir(bio);
782 	const int do_sync = bio_sync(bio);
783 	int do_barriers;
784 
785 	/*
786 	 * Register the new request and wait if the reconstruction
787 	 * thread has put up a bar for new requests.
788 	 * Continue immediately if no resync is active currently.
789 	 * We test barriers_work *after* md_write_start as md_write_start
790 	 * may cause the first superblock write, and that will check out
791 	 * if barriers work.
792 	 */
793 
794 	md_write_start(mddev, bio); /* wait on superblock update early */
795 
796 	if (unlikely(!mddev->barriers_work && bio_barrier(bio))) {
797 		if (rw == WRITE)
798 			md_write_end(mddev);
799 		bio_endio(bio, bio->bi_size, -EOPNOTSUPP);
800 		return 0;
801 	}
802 
803 	wait_barrier(conf);
804 
805 	disk_stat_inc(mddev->gendisk, ios[rw]);
806 	disk_stat_add(mddev->gendisk, sectors[rw], bio_sectors(bio));
807 
808 	/*
809 	 * make_request() can abort the operation when READA is being
810 	 * used and no empty request is available.
811 	 *
812 	 */
813 	r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
814 
815 	r1_bio->master_bio = bio;
816 	r1_bio->sectors = bio->bi_size >> 9;
817 	r1_bio->state = 0;
818 	r1_bio->mddev = mddev;
819 	r1_bio->sector = bio->bi_sector;
820 
821 	if (rw == READ) {
822 		/*
823 		 * read balancing logic:
824 		 */
825 		int rdisk = read_balance(conf, r1_bio);
826 
827 		if (rdisk < 0) {
828 			/* couldn't find anywhere to read from */
829 			raid_end_bio_io(r1_bio);
830 			return 0;
831 		}
832 		mirror = conf->mirrors + rdisk;
833 
834 		r1_bio->read_disk = rdisk;
835 
836 		read_bio = bio_clone(bio, GFP_NOIO);
837 
838 		r1_bio->bios[rdisk] = read_bio;
839 
840 		read_bio->bi_sector = r1_bio->sector + mirror->rdev->data_offset;
841 		read_bio->bi_bdev = mirror->rdev->bdev;
842 		read_bio->bi_end_io = raid1_end_read_request;
843 		read_bio->bi_rw = READ | do_sync;
844 		read_bio->bi_private = r1_bio;
845 
846 		generic_make_request(read_bio);
847 		return 0;
848 	}
849 
850 	/*
851 	 * WRITE:
852 	 */
853 	/* first select target devices under spinlock and
854 	 * inc refcount on their rdev.  Record them by setting
855 	 * bios[x] to bio
856 	 */
857 	disks = conf->raid_disks;
858 #if 0
859 	{ static int first=1;
860 	if (first) printk("First Write sector %llu disks %d\n",
861 			  (unsigned long long)r1_bio->sector, disks);
862 	first = 0;
863 	}
864 #endif
865 	rcu_read_lock();
866 	for (i = 0;  i < disks; i++) {
867 		if ((rdev=rcu_dereference(conf->mirrors[i].rdev)) != NULL &&
868 		    !test_bit(Faulty, &rdev->flags)) {
869 			atomic_inc(&rdev->nr_pending);
870 			if (test_bit(Faulty, &rdev->flags)) {
871 				rdev_dec_pending(rdev, mddev);
872 				r1_bio->bios[i] = NULL;
873 			} else
874 				r1_bio->bios[i] = bio;
875 			targets++;
876 		} else
877 			r1_bio->bios[i] = NULL;
878 	}
879 	rcu_read_unlock();
880 
881 	BUG_ON(targets == 0); /* we never fail the last device */
882 
883 	if (targets < conf->raid_disks) {
884 		/* array is degraded, we will not clear the bitmap
885 		 * on I/O completion (see raid1_end_write_request) */
886 		set_bit(R1BIO_Degraded, &r1_bio->state);
887 	}
888 
889 	/* do behind I/O ? */
890 	if (bitmap &&
891 	    atomic_read(&bitmap->behind_writes) < bitmap->max_write_behind &&
892 	    (behind_pages = alloc_behind_pages(bio)) != NULL)
893 		set_bit(R1BIO_BehindIO, &r1_bio->state);
894 
895 	atomic_set(&r1_bio->remaining, 0);
896 	atomic_set(&r1_bio->behind_remaining, 0);
897 
898 	do_barriers = bio_barrier(bio);
899 	if (do_barriers)
900 		set_bit(R1BIO_Barrier, &r1_bio->state);
901 
902 	bio_list_init(&bl);
903 	for (i = 0; i < disks; i++) {
904 		struct bio *mbio;
905 		if (!r1_bio->bios[i])
906 			continue;
907 
908 		mbio = bio_clone(bio, GFP_NOIO);
909 		r1_bio->bios[i] = mbio;
910 
911 		mbio->bi_sector	= r1_bio->sector + conf->mirrors[i].rdev->data_offset;
912 		mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
913 		mbio->bi_end_io	= raid1_end_write_request;
914 		mbio->bi_rw = WRITE | do_barriers | do_sync;
915 		mbio->bi_private = r1_bio;
916 
917 		if (behind_pages) {
918 			struct bio_vec *bvec;
919 			int j;
920 
921 			/* Yes, I really want the '__' version so that
922 			 * we clear any unused pointer in the io_vec, rather
923 			 * than leave them unchanged.  This is important
924 			 * because when we come to free the pages, we won't
925 			 * know the originial bi_idx, so we just free
926 			 * them all
927 			 */
928 			__bio_for_each_segment(bvec, mbio, j, 0)
929 				bvec->bv_page = behind_pages[j];
930 			if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
931 				atomic_inc(&r1_bio->behind_remaining);
932 		}
933 
934 		atomic_inc(&r1_bio->remaining);
935 
936 		bio_list_add(&bl, mbio);
937 	}
938 	kfree(behind_pages); /* the behind pages are attached to the bios now */
939 
940 	bitmap_startwrite(bitmap, bio->bi_sector, r1_bio->sectors,
941 				test_bit(R1BIO_BehindIO, &r1_bio->state));
942 	spin_lock_irqsave(&conf->device_lock, flags);
943 	bio_list_merge(&conf->pending_bio_list, &bl);
944 	bio_list_init(&bl);
945 
946 	blk_plug_device(mddev->queue);
947 	spin_unlock_irqrestore(&conf->device_lock, flags);
948 
949 	if (do_sync)
950 		md_wakeup_thread(mddev->thread);
951 #if 0
952 	while ((bio = bio_list_pop(&bl)) != NULL)
953 		generic_make_request(bio);
954 #endif
955 
956 	return 0;
957 }
958 
959 static void status(struct seq_file *seq, mddev_t *mddev)
960 {
961 	conf_t *conf = mddev_to_conf(mddev);
962 	int i;
963 
964 	seq_printf(seq, " [%d/%d] [", conf->raid_disks,
965 		   conf->raid_disks - mddev->degraded);
966 	rcu_read_lock();
967 	for (i = 0; i < conf->raid_disks; i++) {
968 		mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
969 		seq_printf(seq, "%s",
970 			   rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
971 	}
972 	rcu_read_unlock();
973 	seq_printf(seq, "]");
974 }
975 
976 
977 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
978 {
979 	char b[BDEVNAME_SIZE];
980 	conf_t *conf = mddev_to_conf(mddev);
981 
982 	/*
983 	 * If it is not operational, then we have already marked it as dead
984 	 * else if it is the last working disks, ignore the error, let the
985 	 * next level up know.
986 	 * else mark the drive as failed
987 	 */
988 	if (test_bit(In_sync, &rdev->flags)
989 	    && (conf->raid_disks - mddev->degraded) == 1)
990 		/*
991 		 * Don't fail the drive, act as though we were just a
992 		 * normal single drive
993 		 */
994 		return;
995 	if (test_and_clear_bit(In_sync, &rdev->flags)) {
996 		unsigned long flags;
997 		spin_lock_irqsave(&conf->device_lock, flags);
998 		mddev->degraded++;
999 		set_bit(Faulty, &rdev->flags);
1000 		spin_unlock_irqrestore(&conf->device_lock, flags);
1001 		/*
1002 		 * if recovery is running, make sure it aborts.
1003 		 */
1004 		set_bit(MD_RECOVERY_ERR, &mddev->recovery);
1005 	} else
1006 		set_bit(Faulty, &rdev->flags);
1007 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
1008 	printk(KERN_ALERT "raid1: Disk failure on %s, disabling device. \n"
1009 		"	Operation continuing on %d devices\n",
1010 		bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded);
1011 }
1012 
1013 static void print_conf(conf_t *conf)
1014 {
1015 	int i;
1016 
1017 	printk("RAID1 conf printout:\n");
1018 	if (!conf) {
1019 		printk("(!conf)\n");
1020 		return;
1021 	}
1022 	printk(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1023 		conf->raid_disks);
1024 
1025 	rcu_read_lock();
1026 	for (i = 0; i < conf->raid_disks; i++) {
1027 		char b[BDEVNAME_SIZE];
1028 		mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
1029 		if (rdev)
1030 			printk(" disk %d, wo:%d, o:%d, dev:%s\n",
1031 			       i, !test_bit(In_sync, &rdev->flags),
1032 			       !test_bit(Faulty, &rdev->flags),
1033 			       bdevname(rdev->bdev,b));
1034 	}
1035 	rcu_read_unlock();
1036 }
1037 
1038 static void close_sync(conf_t *conf)
1039 {
1040 	wait_barrier(conf);
1041 	allow_barrier(conf);
1042 
1043 	mempool_destroy(conf->r1buf_pool);
1044 	conf->r1buf_pool = NULL;
1045 }
1046 
1047 static int raid1_spare_active(mddev_t *mddev)
1048 {
1049 	int i;
1050 	conf_t *conf = mddev->private;
1051 
1052 	/*
1053 	 * Find all failed disks within the RAID1 configuration
1054 	 * and mark them readable.
1055 	 * Called under mddev lock, so rcu protection not needed.
1056 	 */
1057 	for (i = 0; i < conf->raid_disks; i++) {
1058 		mdk_rdev_t *rdev = conf->mirrors[i].rdev;
1059 		if (rdev
1060 		    && !test_bit(Faulty, &rdev->flags)
1061 		    && !test_and_set_bit(In_sync, &rdev->flags)) {
1062 			unsigned long flags;
1063 			spin_lock_irqsave(&conf->device_lock, flags);
1064 			mddev->degraded--;
1065 			spin_unlock_irqrestore(&conf->device_lock, flags);
1066 		}
1067 	}
1068 
1069 	print_conf(conf);
1070 	return 0;
1071 }
1072 
1073 
1074 static int raid1_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
1075 {
1076 	conf_t *conf = mddev->private;
1077 	int found = 0;
1078 	int mirror = 0;
1079 	mirror_info_t *p;
1080 
1081 	for (mirror=0; mirror < mddev->raid_disks; mirror++)
1082 		if ( !(p=conf->mirrors+mirror)->rdev) {
1083 
1084 			blk_queue_stack_limits(mddev->queue,
1085 					       rdev->bdev->bd_disk->queue);
1086 			/* as we don't honour merge_bvec_fn, we must never risk
1087 			 * violating it, so limit ->max_sector to one PAGE, as
1088 			 * a one page request is never in violation.
1089 			 */
1090 			if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
1091 			    mddev->queue->max_sectors > (PAGE_SIZE>>9))
1092 				blk_queue_max_sectors(mddev->queue, PAGE_SIZE>>9);
1093 
1094 			p->head_position = 0;
1095 			rdev->raid_disk = mirror;
1096 			found = 1;
1097 			/* As all devices are equivalent, we don't need a full recovery
1098 			 * if this was recently any drive of the array
1099 			 */
1100 			if (rdev->saved_raid_disk < 0)
1101 				conf->fullsync = 1;
1102 			rcu_assign_pointer(p->rdev, rdev);
1103 			break;
1104 		}
1105 
1106 	print_conf(conf);
1107 	return found;
1108 }
1109 
1110 static int raid1_remove_disk(mddev_t *mddev, int number)
1111 {
1112 	conf_t *conf = mddev->private;
1113 	int err = 0;
1114 	mdk_rdev_t *rdev;
1115 	mirror_info_t *p = conf->mirrors+ number;
1116 
1117 	print_conf(conf);
1118 	rdev = p->rdev;
1119 	if (rdev) {
1120 		if (test_bit(In_sync, &rdev->flags) ||
1121 		    atomic_read(&rdev->nr_pending)) {
1122 			err = -EBUSY;
1123 			goto abort;
1124 		}
1125 		p->rdev = NULL;
1126 		synchronize_rcu();
1127 		if (atomic_read(&rdev->nr_pending)) {
1128 			/* lost the race, try later */
1129 			err = -EBUSY;
1130 			p->rdev = rdev;
1131 		}
1132 	}
1133 abort:
1134 
1135 	print_conf(conf);
1136 	return err;
1137 }
1138 
1139 
1140 static int end_sync_read(struct bio *bio, unsigned int bytes_done, int error)
1141 {
1142 	r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
1143 	int i;
1144 
1145 	if (bio->bi_size)
1146 		return 1;
1147 
1148 	for (i=r1_bio->mddev->raid_disks; i--; )
1149 		if (r1_bio->bios[i] == bio)
1150 			break;
1151 	BUG_ON(i < 0);
1152 	update_head_pos(i, r1_bio);
1153 	/*
1154 	 * we have read a block, now it needs to be re-written,
1155 	 * or re-read if the read failed.
1156 	 * We don't do much here, just schedule handling by raid1d
1157 	 */
1158 	if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1159 		set_bit(R1BIO_Uptodate, &r1_bio->state);
1160 
1161 	if (atomic_dec_and_test(&r1_bio->remaining))
1162 		reschedule_retry(r1_bio);
1163 	return 0;
1164 }
1165 
1166 static int end_sync_write(struct bio *bio, unsigned int bytes_done, int error)
1167 {
1168 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1169 	r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
1170 	mddev_t *mddev = r1_bio->mddev;
1171 	conf_t *conf = mddev_to_conf(mddev);
1172 	int i;
1173 	int mirror=0;
1174 
1175 	if (bio->bi_size)
1176 		return 1;
1177 
1178 	for (i = 0; i < conf->raid_disks; i++)
1179 		if (r1_bio->bios[i] == bio) {
1180 			mirror = i;
1181 			break;
1182 		}
1183 	if (!uptodate) {
1184 		int sync_blocks = 0;
1185 		sector_t s = r1_bio->sector;
1186 		long sectors_to_go = r1_bio->sectors;
1187 		/* make sure these bits doesn't get cleared. */
1188 		do {
1189 			bitmap_end_sync(mddev->bitmap, s,
1190 					&sync_blocks, 1);
1191 			s += sync_blocks;
1192 			sectors_to_go -= sync_blocks;
1193 		} while (sectors_to_go > 0);
1194 		md_error(mddev, conf->mirrors[mirror].rdev);
1195 	}
1196 
1197 	update_head_pos(mirror, r1_bio);
1198 
1199 	if (atomic_dec_and_test(&r1_bio->remaining)) {
1200 		md_done_sync(mddev, r1_bio->sectors, uptodate);
1201 		put_buf(r1_bio);
1202 	}
1203 	return 0;
1204 }
1205 
1206 static void sync_request_write(mddev_t *mddev, r1bio_t *r1_bio)
1207 {
1208 	conf_t *conf = mddev_to_conf(mddev);
1209 	int i;
1210 	int disks = conf->raid_disks;
1211 	struct bio *bio, *wbio;
1212 
1213 	bio = r1_bio->bios[r1_bio->read_disk];
1214 
1215 
1216 	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
1217 		/* We have read all readable devices.  If we haven't
1218 		 * got the block, then there is no hope left.
1219 		 * If we have, then we want to do a comparison
1220 		 * and skip the write if everything is the same.
1221 		 * If any blocks failed to read, then we need to
1222 		 * attempt an over-write
1223 		 */
1224 		int primary;
1225 		if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) {
1226 			for (i=0; i<mddev->raid_disks; i++)
1227 				if (r1_bio->bios[i]->bi_end_io == end_sync_read)
1228 					md_error(mddev, conf->mirrors[i].rdev);
1229 
1230 			md_done_sync(mddev, r1_bio->sectors, 1);
1231 			put_buf(r1_bio);
1232 			return;
1233 		}
1234 		for (primary=0; primary<mddev->raid_disks; primary++)
1235 			if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
1236 			    test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) {
1237 				r1_bio->bios[primary]->bi_end_io = NULL;
1238 				rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
1239 				break;
1240 			}
1241 		r1_bio->read_disk = primary;
1242 		for (i=0; i<mddev->raid_disks; i++)
1243 			if (r1_bio->bios[i]->bi_end_io == end_sync_read) {
1244 				int j;
1245 				int vcnt = r1_bio->sectors >> (PAGE_SHIFT- 9);
1246 				struct bio *pbio = r1_bio->bios[primary];
1247 				struct bio *sbio = r1_bio->bios[i];
1248 
1249 				if (test_bit(BIO_UPTODATE, &sbio->bi_flags)) {
1250 					for (j = vcnt; j-- ; ) {
1251 						struct page *p, *s;
1252 						p = pbio->bi_io_vec[j].bv_page;
1253 						s = sbio->bi_io_vec[j].bv_page;
1254 						if (memcmp(page_address(p),
1255 							   page_address(s),
1256 							   PAGE_SIZE))
1257 							break;
1258 					}
1259 				} else
1260 					j = 0;
1261 				if (j >= 0)
1262 					mddev->resync_mismatches += r1_bio->sectors;
1263 				if (j < 0 || test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
1264 					sbio->bi_end_io = NULL;
1265 					rdev_dec_pending(conf->mirrors[i].rdev, mddev);
1266 				} else {
1267 					/* fixup the bio for reuse */
1268 					sbio->bi_vcnt = vcnt;
1269 					sbio->bi_size = r1_bio->sectors << 9;
1270 					sbio->bi_idx = 0;
1271 					sbio->bi_phys_segments = 0;
1272 					sbio->bi_hw_segments = 0;
1273 					sbio->bi_hw_front_size = 0;
1274 					sbio->bi_hw_back_size = 0;
1275 					sbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1276 					sbio->bi_flags |= 1 << BIO_UPTODATE;
1277 					sbio->bi_next = NULL;
1278 					sbio->bi_sector = r1_bio->sector +
1279 						conf->mirrors[i].rdev->data_offset;
1280 					sbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1281 					for (j = 0; j < vcnt ; j++)
1282 						memcpy(page_address(sbio->bi_io_vec[j].bv_page),
1283 						       page_address(pbio->bi_io_vec[j].bv_page),
1284 						       PAGE_SIZE);
1285 
1286 				}
1287 			}
1288 	}
1289 	if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) {
1290 		/* ouch - failed to read all of that.
1291 		 * Try some synchronous reads of other devices to get
1292 		 * good data, much like with normal read errors.  Only
1293 		 * read into the pages we already have so we don't
1294 		 * need to re-issue the read request.
1295 		 * We don't need to freeze the array, because being in an
1296 		 * active sync request, there is no normal IO, and
1297 		 * no overlapping syncs.
1298 		 */
1299 		sector_t sect = r1_bio->sector;
1300 		int sectors = r1_bio->sectors;
1301 		int idx = 0;
1302 
1303 		while(sectors) {
1304 			int s = sectors;
1305 			int d = r1_bio->read_disk;
1306 			int success = 0;
1307 			mdk_rdev_t *rdev;
1308 
1309 			if (s > (PAGE_SIZE>>9))
1310 				s = PAGE_SIZE >> 9;
1311 			do {
1312 				if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1313 					/* No rcu protection needed here devices
1314 					 * can only be removed when no resync is
1315 					 * active, and resync is currently active
1316 					 */
1317 					rdev = conf->mirrors[d].rdev;
1318 					if (sync_page_io(rdev->bdev,
1319 							 sect + rdev->data_offset,
1320 							 s<<9,
1321 							 bio->bi_io_vec[idx].bv_page,
1322 							 READ)) {
1323 						success = 1;
1324 						break;
1325 					}
1326 				}
1327 				d++;
1328 				if (d == conf->raid_disks)
1329 					d = 0;
1330 			} while (!success && d != r1_bio->read_disk);
1331 
1332 			if (success) {
1333 				int start = d;
1334 				/* write it back and re-read */
1335 				set_bit(R1BIO_Uptodate, &r1_bio->state);
1336 				while (d != r1_bio->read_disk) {
1337 					if (d == 0)
1338 						d = conf->raid_disks;
1339 					d--;
1340 					if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1341 						continue;
1342 					rdev = conf->mirrors[d].rdev;
1343 					atomic_add(s, &rdev->corrected_errors);
1344 					if (sync_page_io(rdev->bdev,
1345 							 sect + rdev->data_offset,
1346 							 s<<9,
1347 							 bio->bi_io_vec[idx].bv_page,
1348 							 WRITE) == 0)
1349 						md_error(mddev, rdev);
1350 				}
1351 				d = start;
1352 				while (d != r1_bio->read_disk) {
1353 					if (d == 0)
1354 						d = conf->raid_disks;
1355 					d--;
1356 					if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1357 						continue;
1358 					rdev = conf->mirrors[d].rdev;
1359 					if (sync_page_io(rdev->bdev,
1360 							 sect + rdev->data_offset,
1361 							 s<<9,
1362 							 bio->bi_io_vec[idx].bv_page,
1363 							 READ) == 0)
1364 						md_error(mddev, rdev);
1365 				}
1366 			} else {
1367 				char b[BDEVNAME_SIZE];
1368 				/* Cannot read from anywhere, array is toast */
1369 				md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
1370 				printk(KERN_ALERT "raid1: %s: unrecoverable I/O read error"
1371 				       " for block %llu\n",
1372 				       bdevname(bio->bi_bdev,b),
1373 				       (unsigned long long)r1_bio->sector);
1374 				md_done_sync(mddev, r1_bio->sectors, 0);
1375 				put_buf(r1_bio);
1376 				return;
1377 			}
1378 			sectors -= s;
1379 			sect += s;
1380 			idx ++;
1381 		}
1382 	}
1383 
1384 	/*
1385 	 * schedule writes
1386 	 */
1387 	atomic_set(&r1_bio->remaining, 1);
1388 	for (i = 0; i < disks ; i++) {
1389 		wbio = r1_bio->bios[i];
1390 		if (wbio->bi_end_io == NULL ||
1391 		    (wbio->bi_end_io == end_sync_read &&
1392 		     (i == r1_bio->read_disk ||
1393 		      !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
1394 			continue;
1395 
1396 		wbio->bi_rw = WRITE;
1397 		wbio->bi_end_io = end_sync_write;
1398 		atomic_inc(&r1_bio->remaining);
1399 		md_sync_acct(conf->mirrors[i].rdev->bdev, wbio->bi_size >> 9);
1400 
1401 		generic_make_request(wbio);
1402 	}
1403 
1404 	if (atomic_dec_and_test(&r1_bio->remaining)) {
1405 		/* if we're here, all write(s) have completed, so clean up */
1406 		md_done_sync(mddev, r1_bio->sectors, 1);
1407 		put_buf(r1_bio);
1408 	}
1409 }
1410 
1411 /*
1412  * This is a kernel thread which:
1413  *
1414  *	1.	Retries failed read operations on working mirrors.
1415  *	2.	Updates the raid superblock when problems encounter.
1416  *	3.	Performs writes following reads for array syncronising.
1417  */
1418 
1419 static void fix_read_error(conf_t *conf, int read_disk,
1420 			   sector_t sect, int sectors)
1421 {
1422 	mddev_t *mddev = conf->mddev;
1423 	while(sectors) {
1424 		int s = sectors;
1425 		int d = read_disk;
1426 		int success = 0;
1427 		int start;
1428 		mdk_rdev_t *rdev;
1429 
1430 		if (s > (PAGE_SIZE>>9))
1431 			s = PAGE_SIZE >> 9;
1432 
1433 		do {
1434 			/* Note: no rcu protection needed here
1435 			 * as this is synchronous in the raid1d thread
1436 			 * which is the thread that might remove
1437 			 * a device.  If raid1d ever becomes multi-threaded....
1438 			 */
1439 			rdev = conf->mirrors[d].rdev;
1440 			if (rdev &&
1441 			    test_bit(In_sync, &rdev->flags) &&
1442 			    sync_page_io(rdev->bdev,
1443 					 sect + rdev->data_offset,
1444 					 s<<9,
1445 					 conf->tmppage, READ))
1446 				success = 1;
1447 			else {
1448 				d++;
1449 				if (d == conf->raid_disks)
1450 					d = 0;
1451 			}
1452 		} while (!success && d != read_disk);
1453 
1454 		if (!success) {
1455 			/* Cannot read from anywhere -- bye bye array */
1456 			md_error(mddev, conf->mirrors[read_disk].rdev);
1457 			break;
1458 		}
1459 		/* write it back and re-read */
1460 		start = d;
1461 		while (d != read_disk) {
1462 			if (d==0)
1463 				d = conf->raid_disks;
1464 			d--;
1465 			rdev = conf->mirrors[d].rdev;
1466 			if (rdev &&
1467 			    test_bit(In_sync, &rdev->flags)) {
1468 				if (sync_page_io(rdev->bdev,
1469 						 sect + rdev->data_offset,
1470 						 s<<9, conf->tmppage, WRITE)
1471 				    == 0)
1472 					/* Well, this device is dead */
1473 					md_error(mddev, rdev);
1474 			}
1475 		}
1476 		d = start;
1477 		while (d != read_disk) {
1478 			char b[BDEVNAME_SIZE];
1479 			if (d==0)
1480 				d = conf->raid_disks;
1481 			d--;
1482 			rdev = conf->mirrors[d].rdev;
1483 			if (rdev &&
1484 			    test_bit(In_sync, &rdev->flags)) {
1485 				if (sync_page_io(rdev->bdev,
1486 						 sect + rdev->data_offset,
1487 						 s<<9, conf->tmppage, READ)
1488 				    == 0)
1489 					/* Well, this device is dead */
1490 					md_error(mddev, rdev);
1491 				else {
1492 					atomic_add(s, &rdev->corrected_errors);
1493 					printk(KERN_INFO
1494 					       "raid1:%s: read error corrected "
1495 					       "(%d sectors at %llu on %s)\n",
1496 					       mdname(mddev), s,
1497 					       (unsigned long long)(sect +
1498 					           rdev->data_offset),
1499 					       bdevname(rdev->bdev, b));
1500 				}
1501 			}
1502 		}
1503 		sectors -= s;
1504 		sect += s;
1505 	}
1506 }
1507 
1508 static void raid1d(mddev_t *mddev)
1509 {
1510 	r1bio_t *r1_bio;
1511 	struct bio *bio;
1512 	unsigned long flags;
1513 	conf_t *conf = mddev_to_conf(mddev);
1514 	struct list_head *head = &conf->retry_list;
1515 	int unplug=0;
1516 	mdk_rdev_t *rdev;
1517 
1518 	md_check_recovery(mddev);
1519 
1520 	for (;;) {
1521 		char b[BDEVNAME_SIZE];
1522 		spin_lock_irqsave(&conf->device_lock, flags);
1523 
1524 		if (conf->pending_bio_list.head) {
1525 			bio = bio_list_get(&conf->pending_bio_list);
1526 			blk_remove_plug(mddev->queue);
1527 			spin_unlock_irqrestore(&conf->device_lock, flags);
1528 			/* flush any pending bitmap writes to disk before proceeding w/ I/O */
1529 			bitmap_unplug(mddev->bitmap);
1530 
1531 			while (bio) { /* submit pending writes */
1532 				struct bio *next = bio->bi_next;
1533 				bio->bi_next = NULL;
1534 				generic_make_request(bio);
1535 				bio = next;
1536 			}
1537 			unplug = 1;
1538 
1539 			continue;
1540 		}
1541 
1542 		if (list_empty(head))
1543 			break;
1544 		r1_bio = list_entry(head->prev, r1bio_t, retry_list);
1545 		list_del(head->prev);
1546 		conf->nr_queued--;
1547 		spin_unlock_irqrestore(&conf->device_lock, flags);
1548 
1549 		mddev = r1_bio->mddev;
1550 		conf = mddev_to_conf(mddev);
1551 		if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
1552 			sync_request_write(mddev, r1_bio);
1553 			unplug = 1;
1554 		} else if (test_bit(R1BIO_BarrierRetry, &r1_bio->state)) {
1555 			/* some requests in the r1bio were BIO_RW_BARRIER
1556 			 * requests which failed with -EOPNOTSUPP.  Hohumm..
1557 			 * Better resubmit without the barrier.
1558 			 * We know which devices to resubmit for, because
1559 			 * all others have had their bios[] entry cleared.
1560 			 * We already have a nr_pending reference on these rdevs.
1561 			 */
1562 			int i;
1563 			const int do_sync = bio_sync(r1_bio->master_bio);
1564 			clear_bit(R1BIO_BarrierRetry, &r1_bio->state);
1565 			clear_bit(R1BIO_Barrier, &r1_bio->state);
1566 			for (i=0; i < conf->raid_disks; i++)
1567 				if (r1_bio->bios[i])
1568 					atomic_inc(&r1_bio->remaining);
1569 			for (i=0; i < conf->raid_disks; i++)
1570 				if (r1_bio->bios[i]) {
1571 					struct bio_vec *bvec;
1572 					int j;
1573 
1574 					bio = bio_clone(r1_bio->master_bio, GFP_NOIO);
1575 					/* copy pages from the failed bio, as
1576 					 * this might be a write-behind device */
1577 					__bio_for_each_segment(bvec, bio, j, 0)
1578 						bvec->bv_page = bio_iovec_idx(r1_bio->bios[i], j)->bv_page;
1579 					bio_put(r1_bio->bios[i]);
1580 					bio->bi_sector = r1_bio->sector +
1581 						conf->mirrors[i].rdev->data_offset;
1582 					bio->bi_bdev = conf->mirrors[i].rdev->bdev;
1583 					bio->bi_end_io = raid1_end_write_request;
1584 					bio->bi_rw = WRITE | do_sync;
1585 					bio->bi_private = r1_bio;
1586 					r1_bio->bios[i] = bio;
1587 					generic_make_request(bio);
1588 				}
1589 		} else {
1590 			int disk;
1591 
1592 			/* we got a read error. Maybe the drive is bad.  Maybe just
1593 			 * the block and we can fix it.
1594 			 * We freeze all other IO, and try reading the block from
1595 			 * other devices.  When we find one, we re-write
1596 			 * and check it that fixes the read error.
1597 			 * This is all done synchronously while the array is
1598 			 * frozen
1599 			 */
1600 			if (mddev->ro == 0) {
1601 				freeze_array(conf);
1602 				fix_read_error(conf, r1_bio->read_disk,
1603 					       r1_bio->sector,
1604 					       r1_bio->sectors);
1605 				unfreeze_array(conf);
1606 			}
1607 
1608 			bio = r1_bio->bios[r1_bio->read_disk];
1609 			if ((disk=read_balance(conf, r1_bio)) == -1) {
1610 				printk(KERN_ALERT "raid1: %s: unrecoverable I/O"
1611 				       " read error for block %llu\n",
1612 				       bdevname(bio->bi_bdev,b),
1613 				       (unsigned long long)r1_bio->sector);
1614 				raid_end_bio_io(r1_bio);
1615 			} else {
1616 				const int do_sync = bio_sync(r1_bio->master_bio);
1617 				r1_bio->bios[r1_bio->read_disk] =
1618 					mddev->ro ? IO_BLOCKED : NULL;
1619 				r1_bio->read_disk = disk;
1620 				bio_put(bio);
1621 				bio = bio_clone(r1_bio->master_bio, GFP_NOIO);
1622 				r1_bio->bios[r1_bio->read_disk] = bio;
1623 				rdev = conf->mirrors[disk].rdev;
1624 				if (printk_ratelimit())
1625 					printk(KERN_ERR "raid1: %s: redirecting sector %llu to"
1626 					       " another mirror\n",
1627 					       bdevname(rdev->bdev,b),
1628 					       (unsigned long long)r1_bio->sector);
1629 				bio->bi_sector = r1_bio->sector + rdev->data_offset;
1630 				bio->bi_bdev = rdev->bdev;
1631 				bio->bi_end_io = raid1_end_read_request;
1632 				bio->bi_rw = READ | do_sync;
1633 				bio->bi_private = r1_bio;
1634 				unplug = 1;
1635 				generic_make_request(bio);
1636 			}
1637 		}
1638 	}
1639 	spin_unlock_irqrestore(&conf->device_lock, flags);
1640 	if (unplug)
1641 		unplug_slaves(mddev);
1642 }
1643 
1644 
1645 static int init_resync(conf_t *conf)
1646 {
1647 	int buffs;
1648 
1649 	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
1650 	BUG_ON(conf->r1buf_pool);
1651 	conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
1652 					  conf->poolinfo);
1653 	if (!conf->r1buf_pool)
1654 		return -ENOMEM;
1655 	conf->next_resync = 0;
1656 	return 0;
1657 }
1658 
1659 /*
1660  * perform a "sync" on one "block"
1661  *
1662  * We need to make sure that no normal I/O request - particularly write
1663  * requests - conflict with active sync requests.
1664  *
1665  * This is achieved by tracking pending requests and a 'barrier' concept
1666  * that can be installed to exclude normal IO requests.
1667  */
1668 
1669 static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
1670 {
1671 	conf_t *conf = mddev_to_conf(mddev);
1672 	r1bio_t *r1_bio;
1673 	struct bio *bio;
1674 	sector_t max_sector, nr_sectors;
1675 	int disk = -1;
1676 	int i;
1677 	int wonly = -1;
1678 	int write_targets = 0, read_targets = 0;
1679 	int sync_blocks;
1680 	int still_degraded = 0;
1681 
1682 	if (!conf->r1buf_pool)
1683 	{
1684 /*
1685 		printk("sync start - bitmap %p\n", mddev->bitmap);
1686 */
1687 		if (init_resync(conf))
1688 			return 0;
1689 	}
1690 
1691 	max_sector = mddev->size << 1;
1692 	if (sector_nr >= max_sector) {
1693 		/* If we aborted, we need to abort the
1694 		 * sync on the 'current' bitmap chunk (there will
1695 		 * only be one in raid1 resync.
1696 		 * We can find the current addess in mddev->curr_resync
1697 		 */
1698 		if (mddev->curr_resync < max_sector) /* aborted */
1699 			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
1700 						&sync_blocks, 1);
1701 		else /* completed sync */
1702 			conf->fullsync = 0;
1703 
1704 		bitmap_close_sync(mddev->bitmap);
1705 		close_sync(conf);
1706 		return 0;
1707 	}
1708 
1709 	if (mddev->bitmap == NULL &&
1710 	    mddev->recovery_cp == MaxSector &&
1711 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
1712 	    conf->fullsync == 0) {
1713 		*skipped = 1;
1714 		return max_sector - sector_nr;
1715 	}
1716 	/* before building a request, check if we can skip these blocks..
1717 	 * This call the bitmap_start_sync doesn't actually record anything
1718 	 */
1719 	if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
1720 	    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
1721 		/* We can skip this block, and probably several more */
1722 		*skipped = 1;
1723 		return sync_blocks;
1724 	}
1725 	/*
1726 	 * If there is non-resync activity waiting for a turn,
1727 	 * and resync is going fast enough,
1728 	 * then let it though before starting on this new sync request.
1729 	 */
1730 	if (!go_faster && conf->nr_waiting)
1731 		msleep_interruptible(1000);
1732 
1733 	raise_barrier(conf);
1734 
1735 	conf->next_resync = sector_nr;
1736 
1737 	r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
1738 	rcu_read_lock();
1739 	/*
1740 	 * If we get a correctably read error during resync or recovery,
1741 	 * we might want to read from a different device.  So we
1742 	 * flag all drives that could conceivably be read from for READ,
1743 	 * and any others (which will be non-In_sync devices) for WRITE.
1744 	 * If a read fails, we try reading from something else for which READ
1745 	 * is OK.
1746 	 */
1747 
1748 	r1_bio->mddev = mddev;
1749 	r1_bio->sector = sector_nr;
1750 	r1_bio->state = 0;
1751 	set_bit(R1BIO_IsSync, &r1_bio->state);
1752 
1753 	for (i=0; i < conf->raid_disks; i++) {
1754 		mdk_rdev_t *rdev;
1755 		bio = r1_bio->bios[i];
1756 
1757 		/* take from bio_init */
1758 		bio->bi_next = NULL;
1759 		bio->bi_flags |= 1 << BIO_UPTODATE;
1760 		bio->bi_rw = READ;
1761 		bio->bi_vcnt = 0;
1762 		bio->bi_idx = 0;
1763 		bio->bi_phys_segments = 0;
1764 		bio->bi_hw_segments = 0;
1765 		bio->bi_size = 0;
1766 		bio->bi_end_io = NULL;
1767 		bio->bi_private = NULL;
1768 
1769 		rdev = rcu_dereference(conf->mirrors[i].rdev);
1770 		if (rdev == NULL ||
1771 			   test_bit(Faulty, &rdev->flags)) {
1772 			still_degraded = 1;
1773 			continue;
1774 		} else if (!test_bit(In_sync, &rdev->flags)) {
1775 			bio->bi_rw = WRITE;
1776 			bio->bi_end_io = end_sync_write;
1777 			write_targets ++;
1778 		} else {
1779 			/* may need to read from here */
1780 			bio->bi_rw = READ;
1781 			bio->bi_end_io = end_sync_read;
1782 			if (test_bit(WriteMostly, &rdev->flags)) {
1783 				if (wonly < 0)
1784 					wonly = i;
1785 			} else {
1786 				if (disk < 0)
1787 					disk = i;
1788 			}
1789 			read_targets++;
1790 		}
1791 		atomic_inc(&rdev->nr_pending);
1792 		bio->bi_sector = sector_nr + rdev->data_offset;
1793 		bio->bi_bdev = rdev->bdev;
1794 		bio->bi_private = r1_bio;
1795 	}
1796 	rcu_read_unlock();
1797 	if (disk < 0)
1798 		disk = wonly;
1799 	r1_bio->read_disk = disk;
1800 
1801 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
1802 		/* extra read targets are also write targets */
1803 		write_targets += read_targets-1;
1804 
1805 	if (write_targets == 0 || read_targets == 0) {
1806 		/* There is nowhere to write, so all non-sync
1807 		 * drives must be failed - so we are finished
1808 		 */
1809 		sector_t rv = max_sector - sector_nr;
1810 		*skipped = 1;
1811 		put_buf(r1_bio);
1812 		return rv;
1813 	}
1814 
1815 	nr_sectors = 0;
1816 	sync_blocks = 0;
1817 	do {
1818 		struct page *page;
1819 		int len = PAGE_SIZE;
1820 		if (sector_nr + (len>>9) > max_sector)
1821 			len = (max_sector - sector_nr) << 9;
1822 		if (len == 0)
1823 			break;
1824 		if (sync_blocks == 0) {
1825 			if (!bitmap_start_sync(mddev->bitmap, sector_nr,
1826 					       &sync_blocks, still_degraded) &&
1827 			    !conf->fullsync &&
1828 			    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
1829 				break;
1830 			BUG_ON(sync_blocks < (PAGE_SIZE>>9));
1831 			if (len > (sync_blocks<<9))
1832 				len = sync_blocks<<9;
1833 		}
1834 
1835 		for (i=0 ; i < conf->raid_disks; i++) {
1836 			bio = r1_bio->bios[i];
1837 			if (bio->bi_end_io) {
1838 				page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
1839 				if (bio_add_page(bio, page, len, 0) == 0) {
1840 					/* stop here */
1841 					bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
1842 					while (i > 0) {
1843 						i--;
1844 						bio = r1_bio->bios[i];
1845 						if (bio->bi_end_io==NULL)
1846 							continue;
1847 						/* remove last page from this bio */
1848 						bio->bi_vcnt--;
1849 						bio->bi_size -= len;
1850 						bio->bi_flags &= ~(1<< BIO_SEG_VALID);
1851 					}
1852 					goto bio_full;
1853 				}
1854 			}
1855 		}
1856 		nr_sectors += len>>9;
1857 		sector_nr += len>>9;
1858 		sync_blocks -= (len>>9);
1859 	} while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
1860  bio_full:
1861 	r1_bio->sectors = nr_sectors;
1862 
1863 	/* For a user-requested sync, we read all readable devices and do a
1864 	 * compare
1865 	 */
1866 	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
1867 		atomic_set(&r1_bio->remaining, read_targets);
1868 		for (i=0; i<conf->raid_disks; i++) {
1869 			bio = r1_bio->bios[i];
1870 			if (bio->bi_end_io == end_sync_read) {
1871 				md_sync_acct(bio->bi_bdev, nr_sectors);
1872 				generic_make_request(bio);
1873 			}
1874 		}
1875 	} else {
1876 		atomic_set(&r1_bio->remaining, 1);
1877 		bio = r1_bio->bios[r1_bio->read_disk];
1878 		md_sync_acct(bio->bi_bdev, nr_sectors);
1879 		generic_make_request(bio);
1880 
1881 	}
1882 	return nr_sectors;
1883 }
1884 
1885 static int run(mddev_t *mddev)
1886 {
1887 	conf_t *conf;
1888 	int i, j, disk_idx;
1889 	mirror_info_t *disk;
1890 	mdk_rdev_t *rdev;
1891 	struct list_head *tmp;
1892 
1893 	if (mddev->level != 1) {
1894 		printk("raid1: %s: raid level not set to mirroring (%d)\n",
1895 		       mdname(mddev), mddev->level);
1896 		goto out;
1897 	}
1898 	if (mddev->reshape_position != MaxSector) {
1899 		printk("raid1: %s: reshape_position set but not supported\n",
1900 		       mdname(mddev));
1901 		goto out;
1902 	}
1903 	/*
1904 	 * copy the already verified devices into our private RAID1
1905 	 * bookkeeping area. [whatever we allocate in run(),
1906 	 * should be freed in stop()]
1907 	 */
1908 	conf = kzalloc(sizeof(conf_t), GFP_KERNEL);
1909 	mddev->private = conf;
1910 	if (!conf)
1911 		goto out_no_mem;
1912 
1913 	conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks,
1914 				 GFP_KERNEL);
1915 	if (!conf->mirrors)
1916 		goto out_no_mem;
1917 
1918 	conf->tmppage = alloc_page(GFP_KERNEL);
1919 	if (!conf->tmppage)
1920 		goto out_no_mem;
1921 
1922 	conf->poolinfo = kmalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
1923 	if (!conf->poolinfo)
1924 		goto out_no_mem;
1925 	conf->poolinfo->mddev = mddev;
1926 	conf->poolinfo->raid_disks = mddev->raid_disks;
1927 	conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
1928 					  r1bio_pool_free,
1929 					  conf->poolinfo);
1930 	if (!conf->r1bio_pool)
1931 		goto out_no_mem;
1932 
1933 	ITERATE_RDEV(mddev, rdev, tmp) {
1934 		disk_idx = rdev->raid_disk;
1935 		if (disk_idx >= mddev->raid_disks
1936 		    || disk_idx < 0)
1937 			continue;
1938 		disk = conf->mirrors + disk_idx;
1939 
1940 		disk->rdev = rdev;
1941 
1942 		blk_queue_stack_limits(mddev->queue,
1943 				       rdev->bdev->bd_disk->queue);
1944 		/* as we don't honour merge_bvec_fn, we must never risk
1945 		 * violating it, so limit ->max_sector to one PAGE, as
1946 		 * a one page request is never in violation.
1947 		 */
1948 		if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
1949 		    mddev->queue->max_sectors > (PAGE_SIZE>>9))
1950 			blk_queue_max_sectors(mddev->queue, PAGE_SIZE>>9);
1951 
1952 		disk->head_position = 0;
1953 	}
1954 	conf->raid_disks = mddev->raid_disks;
1955 	conf->mddev = mddev;
1956 	spin_lock_init(&conf->device_lock);
1957 	INIT_LIST_HEAD(&conf->retry_list);
1958 
1959 	spin_lock_init(&conf->resync_lock);
1960 	init_waitqueue_head(&conf->wait_barrier);
1961 
1962 	bio_list_init(&conf->pending_bio_list);
1963 	bio_list_init(&conf->flushing_bio_list);
1964 
1965 
1966 	mddev->degraded = 0;
1967 	for (i = 0; i < conf->raid_disks; i++) {
1968 
1969 		disk = conf->mirrors + i;
1970 
1971 		if (!disk->rdev ||
1972 		    !test_bit(In_sync, &disk->rdev->flags)) {
1973 			disk->head_position = 0;
1974 			mddev->degraded++;
1975 			conf->fullsync = 1;
1976 		}
1977 	}
1978 	if (mddev->degraded == conf->raid_disks) {
1979 		printk(KERN_ERR "raid1: no operational mirrors for %s\n",
1980 			mdname(mddev));
1981 		goto out_free_conf;
1982 	}
1983 	if (conf->raid_disks - mddev->degraded == 1)
1984 		mddev->recovery_cp = MaxSector;
1985 
1986 	/*
1987 	 * find the first working one and use it as a starting point
1988 	 * to read balancing.
1989 	 */
1990 	for (j = 0; j < conf->raid_disks &&
1991 		     (!conf->mirrors[j].rdev ||
1992 		      !test_bit(In_sync, &conf->mirrors[j].rdev->flags)) ; j++)
1993 		/* nothing */;
1994 	conf->last_used = j;
1995 
1996 
1997 	mddev->thread = md_register_thread(raid1d, mddev, "%s_raid1");
1998 	if (!mddev->thread) {
1999 		printk(KERN_ERR
2000 		       "raid1: couldn't allocate thread for %s\n",
2001 		       mdname(mddev));
2002 		goto out_free_conf;
2003 	}
2004 
2005 	printk(KERN_INFO
2006 		"raid1: raid set %s active with %d out of %d mirrors\n",
2007 		mdname(mddev), mddev->raid_disks - mddev->degraded,
2008 		mddev->raid_disks);
2009 	/*
2010 	 * Ok, everything is just fine now
2011 	 */
2012 	mddev->array_size = mddev->size;
2013 
2014 	mddev->queue->unplug_fn = raid1_unplug;
2015 	mddev->queue->issue_flush_fn = raid1_issue_flush;
2016 	mddev->queue->backing_dev_info.congested_fn = raid1_congested;
2017 	mddev->queue->backing_dev_info.congested_data = mddev;
2018 
2019 	return 0;
2020 
2021 out_no_mem:
2022 	printk(KERN_ERR "raid1: couldn't allocate memory for %s\n",
2023 	       mdname(mddev));
2024 
2025 out_free_conf:
2026 	if (conf) {
2027 		if (conf->r1bio_pool)
2028 			mempool_destroy(conf->r1bio_pool);
2029 		kfree(conf->mirrors);
2030 		safe_put_page(conf->tmppage);
2031 		kfree(conf->poolinfo);
2032 		kfree(conf);
2033 		mddev->private = NULL;
2034 	}
2035 out:
2036 	return -EIO;
2037 }
2038 
2039 static int stop(mddev_t *mddev)
2040 {
2041 	conf_t *conf = mddev_to_conf(mddev);
2042 	struct bitmap *bitmap = mddev->bitmap;
2043 	int behind_wait = 0;
2044 
2045 	/* wait for behind writes to complete */
2046 	while (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
2047 		behind_wait++;
2048 		printk(KERN_INFO "raid1: behind writes in progress on device %s, waiting to stop (%d)\n", mdname(mddev), behind_wait);
2049 		set_current_state(TASK_UNINTERRUPTIBLE);
2050 		schedule_timeout(HZ); /* wait a second */
2051 		/* need to kick something here to make sure I/O goes? */
2052 	}
2053 
2054 	md_unregister_thread(mddev->thread);
2055 	mddev->thread = NULL;
2056 	blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
2057 	if (conf->r1bio_pool)
2058 		mempool_destroy(conf->r1bio_pool);
2059 	kfree(conf->mirrors);
2060 	kfree(conf->poolinfo);
2061 	kfree(conf);
2062 	mddev->private = NULL;
2063 	return 0;
2064 }
2065 
2066 static int raid1_resize(mddev_t *mddev, sector_t sectors)
2067 {
2068 	/* no resync is happening, and there is enough space
2069 	 * on all devices, so we can resize.
2070 	 * We need to make sure resync covers any new space.
2071 	 * If the array is shrinking we should possibly wait until
2072 	 * any io in the removed space completes, but it hardly seems
2073 	 * worth it.
2074 	 */
2075 	mddev->array_size = sectors>>1;
2076 	set_capacity(mddev->gendisk, mddev->array_size << 1);
2077 	mddev->changed = 1;
2078 	if (mddev->array_size > mddev->size && mddev->recovery_cp == MaxSector) {
2079 		mddev->recovery_cp = mddev->size << 1;
2080 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2081 	}
2082 	mddev->size = mddev->array_size;
2083 	mddev->resync_max_sectors = sectors;
2084 	return 0;
2085 }
2086 
2087 static int raid1_reshape(mddev_t *mddev)
2088 {
2089 	/* We need to:
2090 	 * 1/ resize the r1bio_pool
2091 	 * 2/ resize conf->mirrors
2092 	 *
2093 	 * We allocate a new r1bio_pool if we can.
2094 	 * Then raise a device barrier and wait until all IO stops.
2095 	 * Then resize conf->mirrors and swap in the new r1bio pool.
2096 	 *
2097 	 * At the same time, we "pack" the devices so that all the missing
2098 	 * devices have the higher raid_disk numbers.
2099 	 */
2100 	mempool_t *newpool, *oldpool;
2101 	struct pool_info *newpoolinfo;
2102 	mirror_info_t *newmirrors;
2103 	conf_t *conf = mddev_to_conf(mddev);
2104 	int cnt, raid_disks;
2105 	unsigned long flags;
2106 	int d, d2;
2107 
2108 	/* Cannot change chunk_size, layout, or level */
2109 	if (mddev->chunk_size != mddev->new_chunk ||
2110 	    mddev->layout != mddev->new_layout ||
2111 	    mddev->level != mddev->new_level) {
2112 		mddev->new_chunk = mddev->chunk_size;
2113 		mddev->new_layout = mddev->layout;
2114 		mddev->new_level = mddev->level;
2115 		return -EINVAL;
2116 	}
2117 
2118 	md_allow_write(mddev);
2119 
2120 	raid_disks = mddev->raid_disks + mddev->delta_disks;
2121 
2122 	if (raid_disks < conf->raid_disks) {
2123 		cnt=0;
2124 		for (d= 0; d < conf->raid_disks; d++)
2125 			if (conf->mirrors[d].rdev)
2126 				cnt++;
2127 		if (cnt > raid_disks)
2128 			return -EBUSY;
2129 	}
2130 
2131 	newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
2132 	if (!newpoolinfo)
2133 		return -ENOMEM;
2134 	newpoolinfo->mddev = mddev;
2135 	newpoolinfo->raid_disks = raid_disks;
2136 
2137 	newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2138 				 r1bio_pool_free, newpoolinfo);
2139 	if (!newpool) {
2140 		kfree(newpoolinfo);
2141 		return -ENOMEM;
2142 	}
2143 	newmirrors = kzalloc(sizeof(struct mirror_info) * raid_disks, GFP_KERNEL);
2144 	if (!newmirrors) {
2145 		kfree(newpoolinfo);
2146 		mempool_destroy(newpool);
2147 		return -ENOMEM;
2148 	}
2149 
2150 	raise_barrier(conf);
2151 
2152 	/* ok, everything is stopped */
2153 	oldpool = conf->r1bio_pool;
2154 	conf->r1bio_pool = newpool;
2155 
2156 	for (d=d2=0; d < conf->raid_disks; d++)
2157 		if (conf->mirrors[d].rdev) {
2158 			conf->mirrors[d].rdev->raid_disk = d2;
2159 			newmirrors[d2++].rdev = conf->mirrors[d].rdev;
2160 		}
2161 	kfree(conf->mirrors);
2162 	conf->mirrors = newmirrors;
2163 	kfree(conf->poolinfo);
2164 	conf->poolinfo = newpoolinfo;
2165 
2166 	spin_lock_irqsave(&conf->device_lock, flags);
2167 	mddev->degraded += (raid_disks - conf->raid_disks);
2168 	spin_unlock_irqrestore(&conf->device_lock, flags);
2169 	conf->raid_disks = mddev->raid_disks = raid_disks;
2170 	mddev->delta_disks = 0;
2171 
2172 	conf->last_used = 0; /* just make sure it is in-range */
2173 	lower_barrier(conf);
2174 
2175 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2176 	md_wakeup_thread(mddev->thread);
2177 
2178 	mempool_destroy(oldpool);
2179 	return 0;
2180 }
2181 
2182 static void raid1_quiesce(mddev_t *mddev, int state)
2183 {
2184 	conf_t *conf = mddev_to_conf(mddev);
2185 
2186 	switch(state) {
2187 	case 1:
2188 		raise_barrier(conf);
2189 		break;
2190 	case 0:
2191 		lower_barrier(conf);
2192 		break;
2193 	}
2194 }
2195 
2196 
2197 static struct mdk_personality raid1_personality =
2198 {
2199 	.name		= "raid1",
2200 	.level		= 1,
2201 	.owner		= THIS_MODULE,
2202 	.make_request	= make_request,
2203 	.run		= run,
2204 	.stop		= stop,
2205 	.status		= status,
2206 	.error_handler	= error,
2207 	.hot_add_disk	= raid1_add_disk,
2208 	.hot_remove_disk= raid1_remove_disk,
2209 	.spare_active	= raid1_spare_active,
2210 	.sync_request	= sync_request,
2211 	.resize		= raid1_resize,
2212 	.check_reshape	= raid1_reshape,
2213 	.quiesce	= raid1_quiesce,
2214 };
2215 
2216 static int __init raid_init(void)
2217 {
2218 	return register_md_personality(&raid1_personality);
2219 }
2220 
2221 static void raid_exit(void)
2222 {
2223 	unregister_md_personality(&raid1_personality);
2224 }
2225 
2226 module_init(raid_init);
2227 module_exit(raid_exit);
2228 MODULE_LICENSE("GPL");
2229 MODULE_ALIAS("md-personality-3"); /* RAID1 */
2230 MODULE_ALIAS("md-raid1");
2231 MODULE_ALIAS("md-level-1");
2232