1 /* 2 * raid1.c : Multiple Devices driver for Linux 3 * 4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat 5 * 6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman 7 * 8 * RAID-1 management functions. 9 * 10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000 11 * 12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk> 13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au> 14 * 15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support 16 * bitmapped intelligence in resync: 17 * 18 * - bitmap marked during normal i/o 19 * - bitmap used to skip nondirty blocks during sync 20 * 21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology: 22 * - persistent bitmap code 23 * 24 * This program is free software; you can redistribute it and/or modify 25 * it under the terms of the GNU General Public License as published by 26 * the Free Software Foundation; either version 2, or (at your option) 27 * any later version. 28 * 29 * You should have received a copy of the GNU General Public License 30 * (for example /usr/src/linux/COPYING); if not, write to the Free 31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 32 */ 33 34 #include <linux/slab.h> 35 #include <linux/delay.h> 36 #include <linux/blkdev.h> 37 #include <linux/module.h> 38 #include <linux/seq_file.h> 39 #include <linux/ratelimit.h> 40 41 #include <trace/events/block.h> 42 43 #include "md.h" 44 #include "raid1.h" 45 #include "md-bitmap.h" 46 47 #define UNSUPPORTED_MDDEV_FLAGS \ 48 ((1L << MD_HAS_JOURNAL) | \ 49 (1L << MD_JOURNAL_CLEAN) | \ 50 (1L << MD_HAS_PPL) | \ 51 (1L << MD_HAS_MULTIPLE_PPLS)) 52 53 /* 54 * Number of guaranteed r1bios in case of extreme VM load: 55 */ 56 #define NR_RAID1_BIOS 256 57 58 /* when we get a read error on a read-only array, we redirect to another 59 * device without failing the first device, or trying to over-write to 60 * correct the read error. To keep track of bad blocks on a per-bio 61 * level, we store IO_BLOCKED in the appropriate 'bios' pointer 62 */ 63 #define IO_BLOCKED ((struct bio *)1) 64 /* When we successfully write to a known bad-block, we need to remove the 65 * bad-block marking which must be done from process context. So we record 66 * the success by setting devs[n].bio to IO_MADE_GOOD 67 */ 68 #define IO_MADE_GOOD ((struct bio *)2) 69 70 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2) 71 72 /* When there are this many requests queue to be written by 73 * the raid1 thread, we become 'congested' to provide back-pressure 74 * for writeback. 75 */ 76 static int max_queued_requests = 1024; 77 78 static void allow_barrier(struct r1conf *conf, sector_t sector_nr); 79 static void lower_barrier(struct r1conf *conf, sector_t sector_nr); 80 81 #define raid1_log(md, fmt, args...) \ 82 do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid1 " fmt, ##args); } while (0) 83 84 #include "raid1-10.c" 85 86 /* 87 * for resync bio, r1bio pointer can be retrieved from the per-bio 88 * 'struct resync_pages'. 89 */ 90 static inline struct r1bio *get_resync_r1bio(struct bio *bio) 91 { 92 return get_resync_pages(bio)->raid_bio; 93 } 94 95 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data) 96 { 97 struct pool_info *pi = data; 98 int size = offsetof(struct r1bio, bios[pi->raid_disks]); 99 100 /* allocate a r1bio with room for raid_disks entries in the bios array */ 101 return kzalloc(size, gfp_flags); 102 } 103 104 static void r1bio_pool_free(void *r1_bio, void *data) 105 { 106 kfree(r1_bio); 107 } 108 109 #define RESYNC_DEPTH 32 110 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9) 111 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH) 112 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9) 113 #define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW) 114 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9) 115 116 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data) 117 { 118 struct pool_info *pi = data; 119 struct r1bio *r1_bio; 120 struct bio *bio; 121 int need_pages; 122 int j; 123 struct resync_pages *rps; 124 125 r1_bio = r1bio_pool_alloc(gfp_flags, pi); 126 if (!r1_bio) 127 return NULL; 128 129 rps = kmalloc_array(pi->raid_disks, sizeof(struct resync_pages), 130 gfp_flags); 131 if (!rps) 132 goto out_free_r1bio; 133 134 /* 135 * Allocate bios : 1 for reading, n-1 for writing 136 */ 137 for (j = pi->raid_disks ; j-- ; ) { 138 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES); 139 if (!bio) 140 goto out_free_bio; 141 r1_bio->bios[j] = bio; 142 } 143 /* 144 * Allocate RESYNC_PAGES data pages and attach them to 145 * the first bio. 146 * If this is a user-requested check/repair, allocate 147 * RESYNC_PAGES for each bio. 148 */ 149 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) 150 need_pages = pi->raid_disks; 151 else 152 need_pages = 1; 153 for (j = 0; j < pi->raid_disks; j++) { 154 struct resync_pages *rp = &rps[j]; 155 156 bio = r1_bio->bios[j]; 157 158 if (j < need_pages) { 159 if (resync_alloc_pages(rp, gfp_flags)) 160 goto out_free_pages; 161 } else { 162 memcpy(rp, &rps[0], sizeof(*rp)); 163 resync_get_all_pages(rp); 164 } 165 166 rp->raid_bio = r1_bio; 167 bio->bi_private = rp; 168 } 169 170 r1_bio->master_bio = NULL; 171 172 return r1_bio; 173 174 out_free_pages: 175 while (--j >= 0) 176 resync_free_pages(&rps[j]); 177 178 out_free_bio: 179 while (++j < pi->raid_disks) 180 bio_put(r1_bio->bios[j]); 181 kfree(rps); 182 183 out_free_r1bio: 184 r1bio_pool_free(r1_bio, data); 185 return NULL; 186 } 187 188 static void r1buf_pool_free(void *__r1_bio, void *data) 189 { 190 struct pool_info *pi = data; 191 int i; 192 struct r1bio *r1bio = __r1_bio; 193 struct resync_pages *rp = NULL; 194 195 for (i = pi->raid_disks; i--; ) { 196 rp = get_resync_pages(r1bio->bios[i]); 197 resync_free_pages(rp); 198 bio_put(r1bio->bios[i]); 199 } 200 201 /* resync pages array stored in the 1st bio's .bi_private */ 202 kfree(rp); 203 204 r1bio_pool_free(r1bio, data); 205 } 206 207 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio) 208 { 209 int i; 210 211 for (i = 0; i < conf->raid_disks * 2; i++) { 212 struct bio **bio = r1_bio->bios + i; 213 if (!BIO_SPECIAL(*bio)) 214 bio_put(*bio); 215 *bio = NULL; 216 } 217 } 218 219 static void free_r1bio(struct r1bio *r1_bio) 220 { 221 struct r1conf *conf = r1_bio->mddev->private; 222 223 put_all_bios(conf, r1_bio); 224 mempool_free(r1_bio, &conf->r1bio_pool); 225 } 226 227 static void put_buf(struct r1bio *r1_bio) 228 { 229 struct r1conf *conf = r1_bio->mddev->private; 230 sector_t sect = r1_bio->sector; 231 int i; 232 233 for (i = 0; i < conf->raid_disks * 2; i++) { 234 struct bio *bio = r1_bio->bios[i]; 235 if (bio->bi_end_io) 236 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev); 237 } 238 239 mempool_free(r1_bio, &conf->r1buf_pool); 240 241 lower_barrier(conf, sect); 242 } 243 244 static void reschedule_retry(struct r1bio *r1_bio) 245 { 246 unsigned long flags; 247 struct mddev *mddev = r1_bio->mddev; 248 struct r1conf *conf = mddev->private; 249 int idx; 250 251 idx = sector_to_idx(r1_bio->sector); 252 spin_lock_irqsave(&conf->device_lock, flags); 253 list_add(&r1_bio->retry_list, &conf->retry_list); 254 atomic_inc(&conf->nr_queued[idx]); 255 spin_unlock_irqrestore(&conf->device_lock, flags); 256 257 wake_up(&conf->wait_barrier); 258 md_wakeup_thread(mddev->thread); 259 } 260 261 /* 262 * raid_end_bio_io() is called when we have finished servicing a mirrored 263 * operation and are ready to return a success/failure code to the buffer 264 * cache layer. 265 */ 266 static void call_bio_endio(struct r1bio *r1_bio) 267 { 268 struct bio *bio = r1_bio->master_bio; 269 struct r1conf *conf = r1_bio->mddev->private; 270 271 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) 272 bio->bi_status = BLK_STS_IOERR; 273 274 bio_endio(bio); 275 /* 276 * Wake up any possible resync thread that waits for the device 277 * to go idle. 278 */ 279 allow_barrier(conf, r1_bio->sector); 280 } 281 282 static void raid_end_bio_io(struct r1bio *r1_bio) 283 { 284 struct bio *bio = r1_bio->master_bio; 285 286 /* if nobody has done the final endio yet, do it now */ 287 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) { 288 pr_debug("raid1: sync end %s on sectors %llu-%llu\n", 289 (bio_data_dir(bio) == WRITE) ? "write" : "read", 290 (unsigned long long) bio->bi_iter.bi_sector, 291 (unsigned long long) bio_end_sector(bio) - 1); 292 293 call_bio_endio(r1_bio); 294 } 295 free_r1bio(r1_bio); 296 } 297 298 /* 299 * Update disk head position estimator based on IRQ completion info. 300 */ 301 static inline void update_head_pos(int disk, struct r1bio *r1_bio) 302 { 303 struct r1conf *conf = r1_bio->mddev->private; 304 305 conf->mirrors[disk].head_position = 306 r1_bio->sector + (r1_bio->sectors); 307 } 308 309 /* 310 * Find the disk number which triggered given bio 311 */ 312 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio) 313 { 314 int mirror; 315 struct r1conf *conf = r1_bio->mddev->private; 316 int raid_disks = conf->raid_disks; 317 318 for (mirror = 0; mirror < raid_disks * 2; mirror++) 319 if (r1_bio->bios[mirror] == bio) 320 break; 321 322 BUG_ON(mirror == raid_disks * 2); 323 update_head_pos(mirror, r1_bio); 324 325 return mirror; 326 } 327 328 static void raid1_end_read_request(struct bio *bio) 329 { 330 int uptodate = !bio->bi_status; 331 struct r1bio *r1_bio = bio->bi_private; 332 struct r1conf *conf = r1_bio->mddev->private; 333 struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev; 334 335 /* 336 * this branch is our 'one mirror IO has finished' event handler: 337 */ 338 update_head_pos(r1_bio->read_disk, r1_bio); 339 340 if (uptodate) 341 set_bit(R1BIO_Uptodate, &r1_bio->state); 342 else if (test_bit(FailFast, &rdev->flags) && 343 test_bit(R1BIO_FailFast, &r1_bio->state)) 344 /* This was a fail-fast read so we definitely 345 * want to retry */ 346 ; 347 else { 348 /* If all other devices have failed, we want to return 349 * the error upwards rather than fail the last device. 350 * Here we redefine "uptodate" to mean "Don't want to retry" 351 */ 352 unsigned long flags; 353 spin_lock_irqsave(&conf->device_lock, flags); 354 if (r1_bio->mddev->degraded == conf->raid_disks || 355 (r1_bio->mddev->degraded == conf->raid_disks-1 && 356 test_bit(In_sync, &rdev->flags))) 357 uptodate = 1; 358 spin_unlock_irqrestore(&conf->device_lock, flags); 359 } 360 361 if (uptodate) { 362 raid_end_bio_io(r1_bio); 363 rdev_dec_pending(rdev, conf->mddev); 364 } else { 365 /* 366 * oops, read error: 367 */ 368 char b[BDEVNAME_SIZE]; 369 pr_err_ratelimited("md/raid1:%s: %s: rescheduling sector %llu\n", 370 mdname(conf->mddev), 371 bdevname(rdev->bdev, b), 372 (unsigned long long)r1_bio->sector); 373 set_bit(R1BIO_ReadError, &r1_bio->state); 374 reschedule_retry(r1_bio); 375 /* don't drop the reference on read_disk yet */ 376 } 377 } 378 379 static void close_write(struct r1bio *r1_bio) 380 { 381 /* it really is the end of this request */ 382 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) { 383 bio_free_pages(r1_bio->behind_master_bio); 384 bio_put(r1_bio->behind_master_bio); 385 r1_bio->behind_master_bio = NULL; 386 } 387 /* clear the bitmap if all writes complete successfully */ 388 bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector, 389 r1_bio->sectors, 390 !test_bit(R1BIO_Degraded, &r1_bio->state), 391 test_bit(R1BIO_BehindIO, &r1_bio->state)); 392 md_write_end(r1_bio->mddev); 393 } 394 395 static void r1_bio_write_done(struct r1bio *r1_bio) 396 { 397 if (!atomic_dec_and_test(&r1_bio->remaining)) 398 return; 399 400 if (test_bit(R1BIO_WriteError, &r1_bio->state)) 401 reschedule_retry(r1_bio); 402 else { 403 close_write(r1_bio); 404 if (test_bit(R1BIO_MadeGood, &r1_bio->state)) 405 reschedule_retry(r1_bio); 406 else 407 raid_end_bio_io(r1_bio); 408 } 409 } 410 411 static void raid1_end_write_request(struct bio *bio) 412 { 413 struct r1bio *r1_bio = bio->bi_private; 414 int behind = test_bit(R1BIO_BehindIO, &r1_bio->state); 415 struct r1conf *conf = r1_bio->mddev->private; 416 struct bio *to_put = NULL; 417 int mirror = find_bio_disk(r1_bio, bio); 418 struct md_rdev *rdev = conf->mirrors[mirror].rdev; 419 bool discard_error; 420 421 discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD; 422 423 /* 424 * 'one mirror IO has finished' event handler: 425 */ 426 if (bio->bi_status && !discard_error) { 427 set_bit(WriteErrorSeen, &rdev->flags); 428 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 429 set_bit(MD_RECOVERY_NEEDED, & 430 conf->mddev->recovery); 431 432 if (test_bit(FailFast, &rdev->flags) && 433 (bio->bi_opf & MD_FAILFAST) && 434 /* We never try FailFast to WriteMostly devices */ 435 !test_bit(WriteMostly, &rdev->flags)) { 436 md_error(r1_bio->mddev, rdev); 437 if (!test_bit(Faulty, &rdev->flags)) 438 /* This is the only remaining device, 439 * We need to retry the write without 440 * FailFast 441 */ 442 set_bit(R1BIO_WriteError, &r1_bio->state); 443 else { 444 /* Finished with this branch */ 445 r1_bio->bios[mirror] = NULL; 446 to_put = bio; 447 } 448 } else 449 set_bit(R1BIO_WriteError, &r1_bio->state); 450 } else { 451 /* 452 * Set R1BIO_Uptodate in our master bio, so that we 453 * will return a good error code for to the higher 454 * levels even if IO on some other mirrored buffer 455 * fails. 456 * 457 * The 'master' represents the composite IO operation 458 * to user-side. So if something waits for IO, then it 459 * will wait for the 'master' bio. 460 */ 461 sector_t first_bad; 462 int bad_sectors; 463 464 r1_bio->bios[mirror] = NULL; 465 to_put = bio; 466 /* 467 * Do not set R1BIO_Uptodate if the current device is 468 * rebuilding or Faulty. This is because we cannot use 469 * such device for properly reading the data back (we could 470 * potentially use it, if the current write would have felt 471 * before rdev->recovery_offset, but for simplicity we don't 472 * check this here. 473 */ 474 if (test_bit(In_sync, &rdev->flags) && 475 !test_bit(Faulty, &rdev->flags)) 476 set_bit(R1BIO_Uptodate, &r1_bio->state); 477 478 /* Maybe we can clear some bad blocks. */ 479 if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors, 480 &first_bad, &bad_sectors) && !discard_error) { 481 r1_bio->bios[mirror] = IO_MADE_GOOD; 482 set_bit(R1BIO_MadeGood, &r1_bio->state); 483 } 484 } 485 486 if (behind) { 487 if (test_bit(WriteMostly, &rdev->flags)) 488 atomic_dec(&r1_bio->behind_remaining); 489 490 /* 491 * In behind mode, we ACK the master bio once the I/O 492 * has safely reached all non-writemostly 493 * disks. Setting the Returned bit ensures that this 494 * gets done only once -- we don't ever want to return 495 * -EIO here, instead we'll wait 496 */ 497 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) && 498 test_bit(R1BIO_Uptodate, &r1_bio->state)) { 499 /* Maybe we can return now */ 500 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) { 501 struct bio *mbio = r1_bio->master_bio; 502 pr_debug("raid1: behind end write sectors" 503 " %llu-%llu\n", 504 (unsigned long long) mbio->bi_iter.bi_sector, 505 (unsigned long long) bio_end_sector(mbio) - 1); 506 call_bio_endio(r1_bio); 507 } 508 } 509 } 510 if (r1_bio->bios[mirror] == NULL) 511 rdev_dec_pending(rdev, conf->mddev); 512 513 /* 514 * Let's see if all mirrored write operations have finished 515 * already. 516 */ 517 r1_bio_write_done(r1_bio); 518 519 if (to_put) 520 bio_put(to_put); 521 } 522 523 static sector_t align_to_barrier_unit_end(sector_t start_sector, 524 sector_t sectors) 525 { 526 sector_t len; 527 528 WARN_ON(sectors == 0); 529 /* 530 * len is the number of sectors from start_sector to end of the 531 * barrier unit which start_sector belongs to. 532 */ 533 len = round_up(start_sector + 1, BARRIER_UNIT_SECTOR_SIZE) - 534 start_sector; 535 536 if (len > sectors) 537 len = sectors; 538 539 return len; 540 } 541 542 /* 543 * This routine returns the disk from which the requested read should 544 * be done. There is a per-array 'next expected sequential IO' sector 545 * number - if this matches on the next IO then we use the last disk. 546 * There is also a per-disk 'last know head position' sector that is 547 * maintained from IRQ contexts, both the normal and the resync IO 548 * completion handlers update this position correctly. If there is no 549 * perfect sequential match then we pick the disk whose head is closest. 550 * 551 * If there are 2 mirrors in the same 2 devices, performance degrades 552 * because position is mirror, not device based. 553 * 554 * The rdev for the device selected will have nr_pending incremented. 555 */ 556 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors) 557 { 558 const sector_t this_sector = r1_bio->sector; 559 int sectors; 560 int best_good_sectors; 561 int best_disk, best_dist_disk, best_pending_disk; 562 int has_nonrot_disk; 563 int disk; 564 sector_t best_dist; 565 unsigned int min_pending; 566 struct md_rdev *rdev; 567 int choose_first; 568 int choose_next_idle; 569 570 rcu_read_lock(); 571 /* 572 * Check if we can balance. We can balance on the whole 573 * device if no resync is going on, or below the resync window. 574 * We take the first readable disk when above the resync window. 575 */ 576 retry: 577 sectors = r1_bio->sectors; 578 best_disk = -1; 579 best_dist_disk = -1; 580 best_dist = MaxSector; 581 best_pending_disk = -1; 582 min_pending = UINT_MAX; 583 best_good_sectors = 0; 584 has_nonrot_disk = 0; 585 choose_next_idle = 0; 586 clear_bit(R1BIO_FailFast, &r1_bio->state); 587 588 if ((conf->mddev->recovery_cp < this_sector + sectors) || 589 (mddev_is_clustered(conf->mddev) && 590 md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector, 591 this_sector + sectors))) 592 choose_first = 1; 593 else 594 choose_first = 0; 595 596 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) { 597 sector_t dist; 598 sector_t first_bad; 599 int bad_sectors; 600 unsigned int pending; 601 bool nonrot; 602 603 rdev = rcu_dereference(conf->mirrors[disk].rdev); 604 if (r1_bio->bios[disk] == IO_BLOCKED 605 || rdev == NULL 606 || test_bit(Faulty, &rdev->flags)) 607 continue; 608 if (!test_bit(In_sync, &rdev->flags) && 609 rdev->recovery_offset < this_sector + sectors) 610 continue; 611 if (test_bit(WriteMostly, &rdev->flags)) { 612 /* Don't balance among write-mostly, just 613 * use the first as a last resort */ 614 if (best_dist_disk < 0) { 615 if (is_badblock(rdev, this_sector, sectors, 616 &first_bad, &bad_sectors)) { 617 if (first_bad <= this_sector) 618 /* Cannot use this */ 619 continue; 620 best_good_sectors = first_bad - this_sector; 621 } else 622 best_good_sectors = sectors; 623 best_dist_disk = disk; 624 best_pending_disk = disk; 625 } 626 continue; 627 } 628 /* This is a reasonable device to use. It might 629 * even be best. 630 */ 631 if (is_badblock(rdev, this_sector, sectors, 632 &first_bad, &bad_sectors)) { 633 if (best_dist < MaxSector) 634 /* already have a better device */ 635 continue; 636 if (first_bad <= this_sector) { 637 /* cannot read here. If this is the 'primary' 638 * device, then we must not read beyond 639 * bad_sectors from another device.. 640 */ 641 bad_sectors -= (this_sector - first_bad); 642 if (choose_first && sectors > bad_sectors) 643 sectors = bad_sectors; 644 if (best_good_sectors > sectors) 645 best_good_sectors = sectors; 646 647 } else { 648 sector_t good_sectors = first_bad - this_sector; 649 if (good_sectors > best_good_sectors) { 650 best_good_sectors = good_sectors; 651 best_disk = disk; 652 } 653 if (choose_first) 654 break; 655 } 656 continue; 657 } else { 658 if ((sectors > best_good_sectors) && (best_disk >= 0)) 659 best_disk = -1; 660 best_good_sectors = sectors; 661 } 662 663 if (best_disk >= 0) 664 /* At least two disks to choose from so failfast is OK */ 665 set_bit(R1BIO_FailFast, &r1_bio->state); 666 667 nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev)); 668 has_nonrot_disk |= nonrot; 669 pending = atomic_read(&rdev->nr_pending); 670 dist = abs(this_sector - conf->mirrors[disk].head_position); 671 if (choose_first) { 672 best_disk = disk; 673 break; 674 } 675 /* Don't change to another disk for sequential reads */ 676 if (conf->mirrors[disk].next_seq_sect == this_sector 677 || dist == 0) { 678 int opt_iosize = bdev_io_opt(rdev->bdev) >> 9; 679 struct raid1_info *mirror = &conf->mirrors[disk]; 680 681 best_disk = disk; 682 /* 683 * If buffered sequential IO size exceeds optimal 684 * iosize, check if there is idle disk. If yes, choose 685 * the idle disk. read_balance could already choose an 686 * idle disk before noticing it's a sequential IO in 687 * this disk. This doesn't matter because this disk 688 * will idle, next time it will be utilized after the 689 * first disk has IO size exceeds optimal iosize. In 690 * this way, iosize of the first disk will be optimal 691 * iosize at least. iosize of the second disk might be 692 * small, but not a big deal since when the second disk 693 * starts IO, the first disk is likely still busy. 694 */ 695 if (nonrot && opt_iosize > 0 && 696 mirror->seq_start != MaxSector && 697 mirror->next_seq_sect > opt_iosize && 698 mirror->next_seq_sect - opt_iosize >= 699 mirror->seq_start) { 700 choose_next_idle = 1; 701 continue; 702 } 703 break; 704 } 705 706 if (choose_next_idle) 707 continue; 708 709 if (min_pending > pending) { 710 min_pending = pending; 711 best_pending_disk = disk; 712 } 713 714 if (dist < best_dist) { 715 best_dist = dist; 716 best_dist_disk = disk; 717 } 718 } 719 720 /* 721 * If all disks are rotational, choose the closest disk. If any disk is 722 * non-rotational, choose the disk with less pending request even the 723 * disk is rotational, which might/might not be optimal for raids with 724 * mixed ratation/non-rotational disks depending on workload. 725 */ 726 if (best_disk == -1) { 727 if (has_nonrot_disk || min_pending == 0) 728 best_disk = best_pending_disk; 729 else 730 best_disk = best_dist_disk; 731 } 732 733 if (best_disk >= 0) { 734 rdev = rcu_dereference(conf->mirrors[best_disk].rdev); 735 if (!rdev) 736 goto retry; 737 atomic_inc(&rdev->nr_pending); 738 sectors = best_good_sectors; 739 740 if (conf->mirrors[best_disk].next_seq_sect != this_sector) 741 conf->mirrors[best_disk].seq_start = this_sector; 742 743 conf->mirrors[best_disk].next_seq_sect = this_sector + sectors; 744 } 745 rcu_read_unlock(); 746 *max_sectors = sectors; 747 748 return best_disk; 749 } 750 751 static int raid1_congested(struct mddev *mddev, int bits) 752 { 753 struct r1conf *conf = mddev->private; 754 int i, ret = 0; 755 756 if ((bits & (1 << WB_async_congested)) && 757 conf->pending_count >= max_queued_requests) 758 return 1; 759 760 rcu_read_lock(); 761 for (i = 0; i < conf->raid_disks * 2; i++) { 762 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 763 if (rdev && !test_bit(Faulty, &rdev->flags)) { 764 struct request_queue *q = bdev_get_queue(rdev->bdev); 765 766 BUG_ON(!q); 767 768 /* Note the '|| 1' - when read_balance prefers 769 * non-congested targets, it can be removed 770 */ 771 if ((bits & (1 << WB_async_congested)) || 1) 772 ret |= bdi_congested(q->backing_dev_info, bits); 773 else 774 ret &= bdi_congested(q->backing_dev_info, bits); 775 } 776 } 777 rcu_read_unlock(); 778 return ret; 779 } 780 781 static void flush_bio_list(struct r1conf *conf, struct bio *bio) 782 { 783 /* flush any pending bitmap writes to disk before proceeding w/ I/O */ 784 bitmap_unplug(conf->mddev->bitmap); 785 wake_up(&conf->wait_barrier); 786 787 while (bio) { /* submit pending writes */ 788 struct bio *next = bio->bi_next; 789 struct md_rdev *rdev = (void *)bio->bi_disk; 790 bio->bi_next = NULL; 791 bio_set_dev(bio, rdev->bdev); 792 if (test_bit(Faulty, &rdev->flags)) { 793 bio_io_error(bio); 794 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) && 795 !blk_queue_discard(bio->bi_disk->queue))) 796 /* Just ignore it */ 797 bio_endio(bio); 798 else 799 generic_make_request(bio); 800 bio = next; 801 } 802 } 803 804 static void flush_pending_writes(struct r1conf *conf) 805 { 806 /* Any writes that have been queued but are awaiting 807 * bitmap updates get flushed here. 808 */ 809 spin_lock_irq(&conf->device_lock); 810 811 if (conf->pending_bio_list.head) { 812 struct blk_plug plug; 813 struct bio *bio; 814 815 bio = bio_list_get(&conf->pending_bio_list); 816 conf->pending_count = 0; 817 spin_unlock_irq(&conf->device_lock); 818 819 /* 820 * As this is called in a wait_event() loop (see freeze_array), 821 * current->state might be TASK_UNINTERRUPTIBLE which will 822 * cause a warning when we prepare to wait again. As it is 823 * rare that this path is taken, it is perfectly safe to force 824 * us to go around the wait_event() loop again, so the warning 825 * is a false-positive. Silence the warning by resetting 826 * thread state 827 */ 828 __set_current_state(TASK_RUNNING); 829 blk_start_plug(&plug); 830 flush_bio_list(conf, bio); 831 blk_finish_plug(&plug); 832 } else 833 spin_unlock_irq(&conf->device_lock); 834 } 835 836 /* Barriers.... 837 * Sometimes we need to suspend IO while we do something else, 838 * either some resync/recovery, or reconfigure the array. 839 * To do this we raise a 'barrier'. 840 * The 'barrier' is a counter that can be raised multiple times 841 * to count how many activities are happening which preclude 842 * normal IO. 843 * We can only raise the barrier if there is no pending IO. 844 * i.e. if nr_pending == 0. 845 * We choose only to raise the barrier if no-one is waiting for the 846 * barrier to go down. This means that as soon as an IO request 847 * is ready, no other operations which require a barrier will start 848 * until the IO request has had a chance. 849 * 850 * So: regular IO calls 'wait_barrier'. When that returns there 851 * is no backgroup IO happening, It must arrange to call 852 * allow_barrier when it has finished its IO. 853 * backgroup IO calls must call raise_barrier. Once that returns 854 * there is no normal IO happeing. It must arrange to call 855 * lower_barrier when the particular background IO completes. 856 */ 857 static sector_t raise_barrier(struct r1conf *conf, sector_t sector_nr) 858 { 859 int idx = sector_to_idx(sector_nr); 860 861 spin_lock_irq(&conf->resync_lock); 862 863 /* Wait until no block IO is waiting */ 864 wait_event_lock_irq(conf->wait_barrier, 865 !atomic_read(&conf->nr_waiting[idx]), 866 conf->resync_lock); 867 868 /* block any new IO from starting */ 869 atomic_inc(&conf->barrier[idx]); 870 /* 871 * In raise_barrier() we firstly increase conf->barrier[idx] then 872 * check conf->nr_pending[idx]. In _wait_barrier() we firstly 873 * increase conf->nr_pending[idx] then check conf->barrier[idx]. 874 * A memory barrier here to make sure conf->nr_pending[idx] won't 875 * be fetched before conf->barrier[idx] is increased. Otherwise 876 * there will be a race between raise_barrier() and _wait_barrier(). 877 */ 878 smp_mb__after_atomic(); 879 880 /* For these conditions we must wait: 881 * A: while the array is in frozen state 882 * B: while conf->nr_pending[idx] is not 0, meaning regular I/O 883 * existing in corresponding I/O barrier bucket. 884 * C: while conf->barrier[idx] >= RESYNC_DEPTH, meaning reaches 885 * max resync count which allowed on current I/O barrier bucket. 886 */ 887 wait_event_lock_irq(conf->wait_barrier, 888 (!conf->array_frozen && 889 !atomic_read(&conf->nr_pending[idx]) && 890 atomic_read(&conf->barrier[idx]) < RESYNC_DEPTH) || 891 test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery), 892 conf->resync_lock); 893 894 if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) { 895 atomic_dec(&conf->barrier[idx]); 896 spin_unlock_irq(&conf->resync_lock); 897 wake_up(&conf->wait_barrier); 898 return -EINTR; 899 } 900 901 atomic_inc(&conf->nr_sync_pending); 902 spin_unlock_irq(&conf->resync_lock); 903 904 return 0; 905 } 906 907 static void lower_barrier(struct r1conf *conf, sector_t sector_nr) 908 { 909 int idx = sector_to_idx(sector_nr); 910 911 BUG_ON(atomic_read(&conf->barrier[idx]) <= 0); 912 913 atomic_dec(&conf->barrier[idx]); 914 atomic_dec(&conf->nr_sync_pending); 915 wake_up(&conf->wait_barrier); 916 } 917 918 static void _wait_barrier(struct r1conf *conf, int idx) 919 { 920 /* 921 * We need to increase conf->nr_pending[idx] very early here, 922 * then raise_barrier() can be blocked when it waits for 923 * conf->nr_pending[idx] to be 0. Then we can avoid holding 924 * conf->resync_lock when there is no barrier raised in same 925 * barrier unit bucket. Also if the array is frozen, I/O 926 * should be blocked until array is unfrozen. 927 */ 928 atomic_inc(&conf->nr_pending[idx]); 929 /* 930 * In _wait_barrier() we firstly increase conf->nr_pending[idx], then 931 * check conf->barrier[idx]. In raise_barrier() we firstly increase 932 * conf->barrier[idx], then check conf->nr_pending[idx]. A memory 933 * barrier is necessary here to make sure conf->barrier[idx] won't be 934 * fetched before conf->nr_pending[idx] is increased. Otherwise there 935 * will be a race between _wait_barrier() and raise_barrier(). 936 */ 937 smp_mb__after_atomic(); 938 939 /* 940 * Don't worry about checking two atomic_t variables at same time 941 * here. If during we check conf->barrier[idx], the array is 942 * frozen (conf->array_frozen is 1), and chonf->barrier[idx] is 943 * 0, it is safe to return and make the I/O continue. Because the 944 * array is frozen, all I/O returned here will eventually complete 945 * or be queued, no race will happen. See code comment in 946 * frozen_array(). 947 */ 948 if (!READ_ONCE(conf->array_frozen) && 949 !atomic_read(&conf->barrier[idx])) 950 return; 951 952 /* 953 * After holding conf->resync_lock, conf->nr_pending[idx] 954 * should be decreased before waiting for barrier to drop. 955 * Otherwise, we may encounter a race condition because 956 * raise_barrer() might be waiting for conf->nr_pending[idx] 957 * to be 0 at same time. 958 */ 959 spin_lock_irq(&conf->resync_lock); 960 atomic_inc(&conf->nr_waiting[idx]); 961 atomic_dec(&conf->nr_pending[idx]); 962 /* 963 * In case freeze_array() is waiting for 964 * get_unqueued_pending() == extra 965 */ 966 wake_up(&conf->wait_barrier); 967 /* Wait for the barrier in same barrier unit bucket to drop. */ 968 wait_event_lock_irq(conf->wait_barrier, 969 !conf->array_frozen && 970 !atomic_read(&conf->barrier[idx]), 971 conf->resync_lock); 972 atomic_inc(&conf->nr_pending[idx]); 973 atomic_dec(&conf->nr_waiting[idx]); 974 spin_unlock_irq(&conf->resync_lock); 975 } 976 977 static void wait_read_barrier(struct r1conf *conf, sector_t sector_nr) 978 { 979 int idx = sector_to_idx(sector_nr); 980 981 /* 982 * Very similar to _wait_barrier(). The difference is, for read 983 * I/O we don't need wait for sync I/O, but if the whole array 984 * is frozen, the read I/O still has to wait until the array is 985 * unfrozen. Since there is no ordering requirement with 986 * conf->barrier[idx] here, memory barrier is unnecessary as well. 987 */ 988 atomic_inc(&conf->nr_pending[idx]); 989 990 if (!READ_ONCE(conf->array_frozen)) 991 return; 992 993 spin_lock_irq(&conf->resync_lock); 994 atomic_inc(&conf->nr_waiting[idx]); 995 atomic_dec(&conf->nr_pending[idx]); 996 /* 997 * In case freeze_array() is waiting for 998 * get_unqueued_pending() == extra 999 */ 1000 wake_up(&conf->wait_barrier); 1001 /* Wait for array to be unfrozen */ 1002 wait_event_lock_irq(conf->wait_barrier, 1003 !conf->array_frozen, 1004 conf->resync_lock); 1005 atomic_inc(&conf->nr_pending[idx]); 1006 atomic_dec(&conf->nr_waiting[idx]); 1007 spin_unlock_irq(&conf->resync_lock); 1008 } 1009 1010 static void wait_barrier(struct r1conf *conf, sector_t sector_nr) 1011 { 1012 int idx = sector_to_idx(sector_nr); 1013 1014 _wait_barrier(conf, idx); 1015 } 1016 1017 static void _allow_barrier(struct r1conf *conf, int idx) 1018 { 1019 atomic_dec(&conf->nr_pending[idx]); 1020 wake_up(&conf->wait_barrier); 1021 } 1022 1023 static void allow_barrier(struct r1conf *conf, sector_t sector_nr) 1024 { 1025 int idx = sector_to_idx(sector_nr); 1026 1027 _allow_barrier(conf, idx); 1028 } 1029 1030 /* conf->resync_lock should be held */ 1031 static int get_unqueued_pending(struct r1conf *conf) 1032 { 1033 int idx, ret; 1034 1035 ret = atomic_read(&conf->nr_sync_pending); 1036 for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++) 1037 ret += atomic_read(&conf->nr_pending[idx]) - 1038 atomic_read(&conf->nr_queued[idx]); 1039 1040 return ret; 1041 } 1042 1043 static void freeze_array(struct r1conf *conf, int extra) 1044 { 1045 /* Stop sync I/O and normal I/O and wait for everything to 1046 * go quiet. 1047 * This is called in two situations: 1048 * 1) management command handlers (reshape, remove disk, quiesce). 1049 * 2) one normal I/O request failed. 1050 1051 * After array_frozen is set to 1, new sync IO will be blocked at 1052 * raise_barrier(), and new normal I/O will blocked at _wait_barrier() 1053 * or wait_read_barrier(). The flying I/Os will either complete or be 1054 * queued. When everything goes quite, there are only queued I/Os left. 1055 1056 * Every flying I/O contributes to a conf->nr_pending[idx], idx is the 1057 * barrier bucket index which this I/O request hits. When all sync and 1058 * normal I/O are queued, sum of all conf->nr_pending[] will match sum 1059 * of all conf->nr_queued[]. But normal I/O failure is an exception, 1060 * in handle_read_error(), we may call freeze_array() before trying to 1061 * fix the read error. In this case, the error read I/O is not queued, 1062 * so get_unqueued_pending() == 1. 1063 * 1064 * Therefore before this function returns, we need to wait until 1065 * get_unqueued_pendings(conf) gets equal to extra. For 1066 * normal I/O context, extra is 1, in rested situations extra is 0. 1067 */ 1068 spin_lock_irq(&conf->resync_lock); 1069 conf->array_frozen = 1; 1070 raid1_log(conf->mddev, "wait freeze"); 1071 wait_event_lock_irq_cmd( 1072 conf->wait_barrier, 1073 get_unqueued_pending(conf) == extra, 1074 conf->resync_lock, 1075 flush_pending_writes(conf)); 1076 spin_unlock_irq(&conf->resync_lock); 1077 } 1078 static void unfreeze_array(struct r1conf *conf) 1079 { 1080 /* reverse the effect of the freeze */ 1081 spin_lock_irq(&conf->resync_lock); 1082 conf->array_frozen = 0; 1083 spin_unlock_irq(&conf->resync_lock); 1084 wake_up(&conf->wait_barrier); 1085 } 1086 1087 static void alloc_behind_master_bio(struct r1bio *r1_bio, 1088 struct bio *bio) 1089 { 1090 int size = bio->bi_iter.bi_size; 1091 unsigned vcnt = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; 1092 int i = 0; 1093 struct bio *behind_bio = NULL; 1094 1095 behind_bio = bio_alloc_mddev(GFP_NOIO, vcnt, r1_bio->mddev); 1096 if (!behind_bio) 1097 return; 1098 1099 /* discard op, we don't support writezero/writesame yet */ 1100 if (!bio_has_data(bio)) { 1101 behind_bio->bi_iter.bi_size = size; 1102 goto skip_copy; 1103 } 1104 1105 behind_bio->bi_write_hint = bio->bi_write_hint; 1106 1107 while (i < vcnt && size) { 1108 struct page *page; 1109 int len = min_t(int, PAGE_SIZE, size); 1110 1111 page = alloc_page(GFP_NOIO); 1112 if (unlikely(!page)) 1113 goto free_pages; 1114 1115 bio_add_page(behind_bio, page, len, 0); 1116 1117 size -= len; 1118 i++; 1119 } 1120 1121 bio_copy_data(behind_bio, bio); 1122 skip_copy: 1123 r1_bio->behind_master_bio = behind_bio; 1124 set_bit(R1BIO_BehindIO, &r1_bio->state); 1125 1126 return; 1127 1128 free_pages: 1129 pr_debug("%dB behind alloc failed, doing sync I/O\n", 1130 bio->bi_iter.bi_size); 1131 bio_free_pages(behind_bio); 1132 bio_put(behind_bio); 1133 } 1134 1135 struct raid1_plug_cb { 1136 struct blk_plug_cb cb; 1137 struct bio_list pending; 1138 int pending_cnt; 1139 }; 1140 1141 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule) 1142 { 1143 struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb, 1144 cb); 1145 struct mddev *mddev = plug->cb.data; 1146 struct r1conf *conf = mddev->private; 1147 struct bio *bio; 1148 1149 if (from_schedule || current->bio_list) { 1150 spin_lock_irq(&conf->device_lock); 1151 bio_list_merge(&conf->pending_bio_list, &plug->pending); 1152 conf->pending_count += plug->pending_cnt; 1153 spin_unlock_irq(&conf->device_lock); 1154 wake_up(&conf->wait_barrier); 1155 md_wakeup_thread(mddev->thread); 1156 kfree(plug); 1157 return; 1158 } 1159 1160 /* we aren't scheduling, so we can do the write-out directly. */ 1161 bio = bio_list_get(&plug->pending); 1162 flush_bio_list(conf, bio); 1163 kfree(plug); 1164 } 1165 1166 static void init_r1bio(struct r1bio *r1_bio, struct mddev *mddev, struct bio *bio) 1167 { 1168 r1_bio->master_bio = bio; 1169 r1_bio->sectors = bio_sectors(bio); 1170 r1_bio->state = 0; 1171 r1_bio->mddev = mddev; 1172 r1_bio->sector = bio->bi_iter.bi_sector; 1173 } 1174 1175 static inline struct r1bio * 1176 alloc_r1bio(struct mddev *mddev, struct bio *bio) 1177 { 1178 struct r1conf *conf = mddev->private; 1179 struct r1bio *r1_bio; 1180 1181 r1_bio = mempool_alloc(&conf->r1bio_pool, GFP_NOIO); 1182 /* Ensure no bio records IO_BLOCKED */ 1183 memset(r1_bio->bios, 0, conf->raid_disks * sizeof(r1_bio->bios[0])); 1184 init_r1bio(r1_bio, mddev, bio); 1185 return r1_bio; 1186 } 1187 1188 static void raid1_read_request(struct mddev *mddev, struct bio *bio, 1189 int max_read_sectors, struct r1bio *r1_bio) 1190 { 1191 struct r1conf *conf = mddev->private; 1192 struct raid1_info *mirror; 1193 struct bio *read_bio; 1194 struct bitmap *bitmap = mddev->bitmap; 1195 const int op = bio_op(bio); 1196 const unsigned long do_sync = (bio->bi_opf & REQ_SYNC); 1197 int max_sectors; 1198 int rdisk; 1199 bool print_msg = !!r1_bio; 1200 char b[BDEVNAME_SIZE]; 1201 1202 /* 1203 * If r1_bio is set, we are blocking the raid1d thread 1204 * so there is a tiny risk of deadlock. So ask for 1205 * emergency memory if needed. 1206 */ 1207 gfp_t gfp = r1_bio ? (GFP_NOIO | __GFP_HIGH) : GFP_NOIO; 1208 1209 if (print_msg) { 1210 /* Need to get the block device name carefully */ 1211 struct md_rdev *rdev; 1212 rcu_read_lock(); 1213 rdev = rcu_dereference(conf->mirrors[r1_bio->read_disk].rdev); 1214 if (rdev) 1215 bdevname(rdev->bdev, b); 1216 else 1217 strcpy(b, "???"); 1218 rcu_read_unlock(); 1219 } 1220 1221 /* 1222 * Still need barrier for READ in case that whole 1223 * array is frozen. 1224 */ 1225 wait_read_barrier(conf, bio->bi_iter.bi_sector); 1226 1227 if (!r1_bio) 1228 r1_bio = alloc_r1bio(mddev, bio); 1229 else 1230 init_r1bio(r1_bio, mddev, bio); 1231 r1_bio->sectors = max_read_sectors; 1232 1233 /* 1234 * make_request() can abort the operation when read-ahead is being 1235 * used and no empty request is available. 1236 */ 1237 rdisk = read_balance(conf, r1_bio, &max_sectors); 1238 1239 if (rdisk < 0) { 1240 /* couldn't find anywhere to read from */ 1241 if (print_msg) { 1242 pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n", 1243 mdname(mddev), 1244 b, 1245 (unsigned long long)r1_bio->sector); 1246 } 1247 raid_end_bio_io(r1_bio); 1248 return; 1249 } 1250 mirror = conf->mirrors + rdisk; 1251 1252 if (print_msg) 1253 pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %s\n", 1254 mdname(mddev), 1255 (unsigned long long)r1_bio->sector, 1256 bdevname(mirror->rdev->bdev, b)); 1257 1258 if (test_bit(WriteMostly, &mirror->rdev->flags) && 1259 bitmap) { 1260 /* 1261 * Reading from a write-mostly device must take care not to 1262 * over-take any writes that are 'behind' 1263 */ 1264 raid1_log(mddev, "wait behind writes"); 1265 wait_event(bitmap->behind_wait, 1266 atomic_read(&bitmap->behind_writes) == 0); 1267 } 1268 1269 if (max_sectors < bio_sectors(bio)) { 1270 struct bio *split = bio_split(bio, max_sectors, 1271 gfp, &conf->bio_split); 1272 bio_chain(split, bio); 1273 generic_make_request(bio); 1274 bio = split; 1275 r1_bio->master_bio = bio; 1276 r1_bio->sectors = max_sectors; 1277 } 1278 1279 r1_bio->read_disk = rdisk; 1280 1281 read_bio = bio_clone_fast(bio, gfp, &mddev->bio_set); 1282 1283 r1_bio->bios[rdisk] = read_bio; 1284 1285 read_bio->bi_iter.bi_sector = r1_bio->sector + 1286 mirror->rdev->data_offset; 1287 bio_set_dev(read_bio, mirror->rdev->bdev); 1288 read_bio->bi_end_io = raid1_end_read_request; 1289 bio_set_op_attrs(read_bio, op, do_sync); 1290 if (test_bit(FailFast, &mirror->rdev->flags) && 1291 test_bit(R1BIO_FailFast, &r1_bio->state)) 1292 read_bio->bi_opf |= MD_FAILFAST; 1293 read_bio->bi_private = r1_bio; 1294 1295 if (mddev->gendisk) 1296 trace_block_bio_remap(read_bio->bi_disk->queue, read_bio, 1297 disk_devt(mddev->gendisk), r1_bio->sector); 1298 1299 generic_make_request(read_bio); 1300 } 1301 1302 static void raid1_write_request(struct mddev *mddev, struct bio *bio, 1303 int max_write_sectors) 1304 { 1305 struct r1conf *conf = mddev->private; 1306 struct r1bio *r1_bio; 1307 int i, disks; 1308 struct bitmap *bitmap = mddev->bitmap; 1309 unsigned long flags; 1310 struct md_rdev *blocked_rdev; 1311 struct blk_plug_cb *cb; 1312 struct raid1_plug_cb *plug = NULL; 1313 int first_clone; 1314 int max_sectors; 1315 1316 if (mddev_is_clustered(mddev) && 1317 md_cluster_ops->area_resyncing(mddev, WRITE, 1318 bio->bi_iter.bi_sector, bio_end_sector(bio))) { 1319 1320 DEFINE_WAIT(w); 1321 for (;;) { 1322 prepare_to_wait(&conf->wait_barrier, 1323 &w, TASK_IDLE); 1324 if (!md_cluster_ops->area_resyncing(mddev, WRITE, 1325 bio->bi_iter.bi_sector, 1326 bio_end_sector(bio))) 1327 break; 1328 schedule(); 1329 } 1330 finish_wait(&conf->wait_barrier, &w); 1331 } 1332 1333 /* 1334 * Register the new request and wait if the reconstruction 1335 * thread has put up a bar for new requests. 1336 * Continue immediately if no resync is active currently. 1337 */ 1338 wait_barrier(conf, bio->bi_iter.bi_sector); 1339 1340 r1_bio = alloc_r1bio(mddev, bio); 1341 r1_bio->sectors = max_write_sectors; 1342 1343 if (conf->pending_count >= max_queued_requests) { 1344 md_wakeup_thread(mddev->thread); 1345 raid1_log(mddev, "wait queued"); 1346 wait_event(conf->wait_barrier, 1347 conf->pending_count < max_queued_requests); 1348 } 1349 /* first select target devices under rcu_lock and 1350 * inc refcount on their rdev. Record them by setting 1351 * bios[x] to bio 1352 * If there are known/acknowledged bad blocks on any device on 1353 * which we have seen a write error, we want to avoid writing those 1354 * blocks. 1355 * This potentially requires several writes to write around 1356 * the bad blocks. Each set of writes gets it's own r1bio 1357 * with a set of bios attached. 1358 */ 1359 1360 disks = conf->raid_disks * 2; 1361 retry_write: 1362 blocked_rdev = NULL; 1363 rcu_read_lock(); 1364 max_sectors = r1_bio->sectors; 1365 for (i = 0; i < disks; i++) { 1366 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 1367 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) { 1368 atomic_inc(&rdev->nr_pending); 1369 blocked_rdev = rdev; 1370 break; 1371 } 1372 r1_bio->bios[i] = NULL; 1373 if (!rdev || test_bit(Faulty, &rdev->flags)) { 1374 if (i < conf->raid_disks) 1375 set_bit(R1BIO_Degraded, &r1_bio->state); 1376 continue; 1377 } 1378 1379 atomic_inc(&rdev->nr_pending); 1380 if (test_bit(WriteErrorSeen, &rdev->flags)) { 1381 sector_t first_bad; 1382 int bad_sectors; 1383 int is_bad; 1384 1385 is_bad = is_badblock(rdev, r1_bio->sector, max_sectors, 1386 &first_bad, &bad_sectors); 1387 if (is_bad < 0) { 1388 /* mustn't write here until the bad block is 1389 * acknowledged*/ 1390 set_bit(BlockedBadBlocks, &rdev->flags); 1391 blocked_rdev = rdev; 1392 break; 1393 } 1394 if (is_bad && first_bad <= r1_bio->sector) { 1395 /* Cannot write here at all */ 1396 bad_sectors -= (r1_bio->sector - first_bad); 1397 if (bad_sectors < max_sectors) 1398 /* mustn't write more than bad_sectors 1399 * to other devices yet 1400 */ 1401 max_sectors = bad_sectors; 1402 rdev_dec_pending(rdev, mddev); 1403 /* We don't set R1BIO_Degraded as that 1404 * only applies if the disk is 1405 * missing, so it might be re-added, 1406 * and we want to know to recover this 1407 * chunk. 1408 * In this case the device is here, 1409 * and the fact that this chunk is not 1410 * in-sync is recorded in the bad 1411 * block log 1412 */ 1413 continue; 1414 } 1415 if (is_bad) { 1416 int good_sectors = first_bad - r1_bio->sector; 1417 if (good_sectors < max_sectors) 1418 max_sectors = good_sectors; 1419 } 1420 } 1421 r1_bio->bios[i] = bio; 1422 } 1423 rcu_read_unlock(); 1424 1425 if (unlikely(blocked_rdev)) { 1426 /* Wait for this device to become unblocked */ 1427 int j; 1428 1429 for (j = 0; j < i; j++) 1430 if (r1_bio->bios[j]) 1431 rdev_dec_pending(conf->mirrors[j].rdev, mddev); 1432 r1_bio->state = 0; 1433 allow_barrier(conf, bio->bi_iter.bi_sector); 1434 raid1_log(mddev, "wait rdev %d blocked", blocked_rdev->raid_disk); 1435 md_wait_for_blocked_rdev(blocked_rdev, mddev); 1436 wait_barrier(conf, bio->bi_iter.bi_sector); 1437 goto retry_write; 1438 } 1439 1440 if (max_sectors < bio_sectors(bio)) { 1441 struct bio *split = bio_split(bio, max_sectors, 1442 GFP_NOIO, &conf->bio_split); 1443 bio_chain(split, bio); 1444 generic_make_request(bio); 1445 bio = split; 1446 r1_bio->master_bio = bio; 1447 r1_bio->sectors = max_sectors; 1448 } 1449 1450 atomic_set(&r1_bio->remaining, 1); 1451 atomic_set(&r1_bio->behind_remaining, 0); 1452 1453 first_clone = 1; 1454 1455 for (i = 0; i < disks; i++) { 1456 struct bio *mbio = NULL; 1457 if (!r1_bio->bios[i]) 1458 continue; 1459 1460 1461 if (first_clone) { 1462 /* do behind I/O ? 1463 * Not if there are too many, or cannot 1464 * allocate memory, or a reader on WriteMostly 1465 * is waiting for behind writes to flush */ 1466 if (bitmap && 1467 (atomic_read(&bitmap->behind_writes) 1468 < mddev->bitmap_info.max_write_behind) && 1469 !waitqueue_active(&bitmap->behind_wait)) { 1470 alloc_behind_master_bio(r1_bio, bio); 1471 } 1472 1473 bitmap_startwrite(bitmap, r1_bio->sector, 1474 r1_bio->sectors, 1475 test_bit(R1BIO_BehindIO, 1476 &r1_bio->state)); 1477 first_clone = 0; 1478 } 1479 1480 if (r1_bio->behind_master_bio) 1481 mbio = bio_clone_fast(r1_bio->behind_master_bio, 1482 GFP_NOIO, &mddev->bio_set); 1483 else 1484 mbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set); 1485 1486 if (r1_bio->behind_master_bio) { 1487 if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags)) 1488 atomic_inc(&r1_bio->behind_remaining); 1489 } 1490 1491 r1_bio->bios[i] = mbio; 1492 1493 mbio->bi_iter.bi_sector = (r1_bio->sector + 1494 conf->mirrors[i].rdev->data_offset); 1495 bio_set_dev(mbio, conf->mirrors[i].rdev->bdev); 1496 mbio->bi_end_io = raid1_end_write_request; 1497 mbio->bi_opf = bio_op(bio) | (bio->bi_opf & (REQ_SYNC | REQ_FUA)); 1498 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags) && 1499 !test_bit(WriteMostly, &conf->mirrors[i].rdev->flags) && 1500 conf->raid_disks - mddev->degraded > 1) 1501 mbio->bi_opf |= MD_FAILFAST; 1502 mbio->bi_private = r1_bio; 1503 1504 atomic_inc(&r1_bio->remaining); 1505 1506 if (mddev->gendisk) 1507 trace_block_bio_remap(mbio->bi_disk->queue, 1508 mbio, disk_devt(mddev->gendisk), 1509 r1_bio->sector); 1510 /* flush_pending_writes() needs access to the rdev so...*/ 1511 mbio->bi_disk = (void *)conf->mirrors[i].rdev; 1512 1513 cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug)); 1514 if (cb) 1515 plug = container_of(cb, struct raid1_plug_cb, cb); 1516 else 1517 plug = NULL; 1518 if (plug) { 1519 bio_list_add(&plug->pending, mbio); 1520 plug->pending_cnt++; 1521 } else { 1522 spin_lock_irqsave(&conf->device_lock, flags); 1523 bio_list_add(&conf->pending_bio_list, mbio); 1524 conf->pending_count++; 1525 spin_unlock_irqrestore(&conf->device_lock, flags); 1526 md_wakeup_thread(mddev->thread); 1527 } 1528 } 1529 1530 r1_bio_write_done(r1_bio); 1531 1532 /* In case raid1d snuck in to freeze_array */ 1533 wake_up(&conf->wait_barrier); 1534 } 1535 1536 static bool raid1_make_request(struct mddev *mddev, struct bio *bio) 1537 { 1538 sector_t sectors; 1539 1540 if (unlikely(bio->bi_opf & REQ_PREFLUSH)) { 1541 md_flush_request(mddev, bio); 1542 return true; 1543 } 1544 1545 /* 1546 * There is a limit to the maximum size, but 1547 * the read/write handler might find a lower limit 1548 * due to bad blocks. To avoid multiple splits, 1549 * we pass the maximum number of sectors down 1550 * and let the lower level perform the split. 1551 */ 1552 sectors = align_to_barrier_unit_end( 1553 bio->bi_iter.bi_sector, bio_sectors(bio)); 1554 1555 if (bio_data_dir(bio) == READ) 1556 raid1_read_request(mddev, bio, sectors, NULL); 1557 else { 1558 if (!md_write_start(mddev,bio)) 1559 return false; 1560 raid1_write_request(mddev, bio, sectors); 1561 } 1562 return true; 1563 } 1564 1565 static void raid1_status(struct seq_file *seq, struct mddev *mddev) 1566 { 1567 struct r1conf *conf = mddev->private; 1568 int i; 1569 1570 seq_printf(seq, " [%d/%d] [", conf->raid_disks, 1571 conf->raid_disks - mddev->degraded); 1572 rcu_read_lock(); 1573 for (i = 0; i < conf->raid_disks; i++) { 1574 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 1575 seq_printf(seq, "%s", 1576 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_"); 1577 } 1578 rcu_read_unlock(); 1579 seq_printf(seq, "]"); 1580 } 1581 1582 static void raid1_error(struct mddev *mddev, struct md_rdev *rdev) 1583 { 1584 char b[BDEVNAME_SIZE]; 1585 struct r1conf *conf = mddev->private; 1586 unsigned long flags; 1587 1588 /* 1589 * If it is not operational, then we have already marked it as dead 1590 * else if it is the last working disks, ignore the error, let the 1591 * next level up know. 1592 * else mark the drive as failed 1593 */ 1594 spin_lock_irqsave(&conf->device_lock, flags); 1595 if (test_bit(In_sync, &rdev->flags) 1596 && (conf->raid_disks - mddev->degraded) == 1) { 1597 /* 1598 * Don't fail the drive, act as though we were just a 1599 * normal single drive. 1600 * However don't try a recovery from this drive as 1601 * it is very likely to fail. 1602 */ 1603 conf->recovery_disabled = mddev->recovery_disabled; 1604 spin_unlock_irqrestore(&conf->device_lock, flags); 1605 return; 1606 } 1607 set_bit(Blocked, &rdev->flags); 1608 if (test_and_clear_bit(In_sync, &rdev->flags)) { 1609 mddev->degraded++; 1610 set_bit(Faulty, &rdev->flags); 1611 } else 1612 set_bit(Faulty, &rdev->flags); 1613 spin_unlock_irqrestore(&conf->device_lock, flags); 1614 /* 1615 * if recovery is running, make sure it aborts. 1616 */ 1617 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 1618 set_mask_bits(&mddev->sb_flags, 0, 1619 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING)); 1620 pr_crit("md/raid1:%s: Disk failure on %s, disabling device.\n" 1621 "md/raid1:%s: Operation continuing on %d devices.\n", 1622 mdname(mddev), bdevname(rdev->bdev, b), 1623 mdname(mddev), conf->raid_disks - mddev->degraded); 1624 } 1625 1626 static void print_conf(struct r1conf *conf) 1627 { 1628 int i; 1629 1630 pr_debug("RAID1 conf printout:\n"); 1631 if (!conf) { 1632 pr_debug("(!conf)\n"); 1633 return; 1634 } 1635 pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded, 1636 conf->raid_disks); 1637 1638 rcu_read_lock(); 1639 for (i = 0; i < conf->raid_disks; i++) { 1640 char b[BDEVNAME_SIZE]; 1641 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 1642 if (rdev) 1643 pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n", 1644 i, !test_bit(In_sync, &rdev->flags), 1645 !test_bit(Faulty, &rdev->flags), 1646 bdevname(rdev->bdev,b)); 1647 } 1648 rcu_read_unlock(); 1649 } 1650 1651 static void close_sync(struct r1conf *conf) 1652 { 1653 int idx; 1654 1655 for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++) { 1656 _wait_barrier(conf, idx); 1657 _allow_barrier(conf, idx); 1658 } 1659 1660 mempool_exit(&conf->r1buf_pool); 1661 } 1662 1663 static int raid1_spare_active(struct mddev *mddev) 1664 { 1665 int i; 1666 struct r1conf *conf = mddev->private; 1667 int count = 0; 1668 unsigned long flags; 1669 1670 /* 1671 * Find all failed disks within the RAID1 configuration 1672 * and mark them readable. 1673 * Called under mddev lock, so rcu protection not needed. 1674 * device_lock used to avoid races with raid1_end_read_request 1675 * which expects 'In_sync' flags and ->degraded to be consistent. 1676 */ 1677 spin_lock_irqsave(&conf->device_lock, flags); 1678 for (i = 0; i < conf->raid_disks; i++) { 1679 struct md_rdev *rdev = conf->mirrors[i].rdev; 1680 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev; 1681 if (repl 1682 && !test_bit(Candidate, &repl->flags) 1683 && repl->recovery_offset == MaxSector 1684 && !test_bit(Faulty, &repl->flags) 1685 && !test_and_set_bit(In_sync, &repl->flags)) { 1686 /* replacement has just become active */ 1687 if (!rdev || 1688 !test_and_clear_bit(In_sync, &rdev->flags)) 1689 count++; 1690 if (rdev) { 1691 /* Replaced device not technically 1692 * faulty, but we need to be sure 1693 * it gets removed and never re-added 1694 */ 1695 set_bit(Faulty, &rdev->flags); 1696 sysfs_notify_dirent_safe( 1697 rdev->sysfs_state); 1698 } 1699 } 1700 if (rdev 1701 && rdev->recovery_offset == MaxSector 1702 && !test_bit(Faulty, &rdev->flags) 1703 && !test_and_set_bit(In_sync, &rdev->flags)) { 1704 count++; 1705 sysfs_notify_dirent_safe(rdev->sysfs_state); 1706 } 1707 } 1708 mddev->degraded -= count; 1709 spin_unlock_irqrestore(&conf->device_lock, flags); 1710 1711 print_conf(conf); 1712 return count; 1713 } 1714 1715 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev) 1716 { 1717 struct r1conf *conf = mddev->private; 1718 int err = -EEXIST; 1719 int mirror = 0; 1720 struct raid1_info *p; 1721 int first = 0; 1722 int last = conf->raid_disks - 1; 1723 1724 if (mddev->recovery_disabled == conf->recovery_disabled) 1725 return -EBUSY; 1726 1727 if (md_integrity_add_rdev(rdev, mddev)) 1728 return -ENXIO; 1729 1730 if (rdev->raid_disk >= 0) 1731 first = last = rdev->raid_disk; 1732 1733 /* 1734 * find the disk ... but prefer rdev->saved_raid_disk 1735 * if possible. 1736 */ 1737 if (rdev->saved_raid_disk >= 0 && 1738 rdev->saved_raid_disk >= first && 1739 conf->mirrors[rdev->saved_raid_disk].rdev == NULL) 1740 first = last = rdev->saved_raid_disk; 1741 1742 for (mirror = first; mirror <= last; mirror++) { 1743 p = conf->mirrors+mirror; 1744 if (!p->rdev) { 1745 1746 if (mddev->gendisk) 1747 disk_stack_limits(mddev->gendisk, rdev->bdev, 1748 rdev->data_offset << 9); 1749 1750 p->head_position = 0; 1751 rdev->raid_disk = mirror; 1752 err = 0; 1753 /* As all devices are equivalent, we don't need a full recovery 1754 * if this was recently any drive of the array 1755 */ 1756 if (rdev->saved_raid_disk < 0) 1757 conf->fullsync = 1; 1758 rcu_assign_pointer(p->rdev, rdev); 1759 break; 1760 } 1761 if (test_bit(WantReplacement, &p->rdev->flags) && 1762 p[conf->raid_disks].rdev == NULL) { 1763 /* Add this device as a replacement */ 1764 clear_bit(In_sync, &rdev->flags); 1765 set_bit(Replacement, &rdev->flags); 1766 rdev->raid_disk = mirror; 1767 err = 0; 1768 conf->fullsync = 1; 1769 rcu_assign_pointer(p[conf->raid_disks].rdev, rdev); 1770 break; 1771 } 1772 } 1773 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev))) 1774 blk_queue_flag_set(QUEUE_FLAG_DISCARD, mddev->queue); 1775 print_conf(conf); 1776 return err; 1777 } 1778 1779 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev) 1780 { 1781 struct r1conf *conf = mddev->private; 1782 int err = 0; 1783 int number = rdev->raid_disk; 1784 struct raid1_info *p = conf->mirrors + number; 1785 1786 if (rdev != p->rdev) 1787 p = conf->mirrors + conf->raid_disks + number; 1788 1789 print_conf(conf); 1790 if (rdev == p->rdev) { 1791 if (test_bit(In_sync, &rdev->flags) || 1792 atomic_read(&rdev->nr_pending)) { 1793 err = -EBUSY; 1794 goto abort; 1795 } 1796 /* Only remove non-faulty devices if recovery 1797 * is not possible. 1798 */ 1799 if (!test_bit(Faulty, &rdev->flags) && 1800 mddev->recovery_disabled != conf->recovery_disabled && 1801 mddev->degraded < conf->raid_disks) { 1802 err = -EBUSY; 1803 goto abort; 1804 } 1805 p->rdev = NULL; 1806 if (!test_bit(RemoveSynchronized, &rdev->flags)) { 1807 synchronize_rcu(); 1808 if (atomic_read(&rdev->nr_pending)) { 1809 /* lost the race, try later */ 1810 err = -EBUSY; 1811 p->rdev = rdev; 1812 goto abort; 1813 } 1814 } 1815 if (conf->mirrors[conf->raid_disks + number].rdev) { 1816 /* We just removed a device that is being replaced. 1817 * Move down the replacement. We drain all IO before 1818 * doing this to avoid confusion. 1819 */ 1820 struct md_rdev *repl = 1821 conf->mirrors[conf->raid_disks + number].rdev; 1822 freeze_array(conf, 0); 1823 if (atomic_read(&repl->nr_pending)) { 1824 /* It means that some queued IO of retry_list 1825 * hold repl. Thus, we cannot set replacement 1826 * as NULL, avoiding rdev NULL pointer 1827 * dereference in sync_request_write and 1828 * handle_write_finished. 1829 */ 1830 err = -EBUSY; 1831 unfreeze_array(conf); 1832 goto abort; 1833 } 1834 clear_bit(Replacement, &repl->flags); 1835 p->rdev = repl; 1836 conf->mirrors[conf->raid_disks + number].rdev = NULL; 1837 unfreeze_array(conf); 1838 } 1839 1840 clear_bit(WantReplacement, &rdev->flags); 1841 err = md_integrity_register(mddev); 1842 } 1843 abort: 1844 1845 print_conf(conf); 1846 return err; 1847 } 1848 1849 static void end_sync_read(struct bio *bio) 1850 { 1851 struct r1bio *r1_bio = get_resync_r1bio(bio); 1852 1853 update_head_pos(r1_bio->read_disk, r1_bio); 1854 1855 /* 1856 * we have read a block, now it needs to be re-written, 1857 * or re-read if the read failed. 1858 * We don't do much here, just schedule handling by raid1d 1859 */ 1860 if (!bio->bi_status) 1861 set_bit(R1BIO_Uptodate, &r1_bio->state); 1862 1863 if (atomic_dec_and_test(&r1_bio->remaining)) 1864 reschedule_retry(r1_bio); 1865 } 1866 1867 static void end_sync_write(struct bio *bio) 1868 { 1869 int uptodate = !bio->bi_status; 1870 struct r1bio *r1_bio = get_resync_r1bio(bio); 1871 struct mddev *mddev = r1_bio->mddev; 1872 struct r1conf *conf = mddev->private; 1873 sector_t first_bad; 1874 int bad_sectors; 1875 struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev; 1876 1877 if (!uptodate) { 1878 sector_t sync_blocks = 0; 1879 sector_t s = r1_bio->sector; 1880 long sectors_to_go = r1_bio->sectors; 1881 /* make sure these bits doesn't get cleared. */ 1882 do { 1883 bitmap_end_sync(mddev->bitmap, s, 1884 &sync_blocks, 1); 1885 s += sync_blocks; 1886 sectors_to_go -= sync_blocks; 1887 } while (sectors_to_go > 0); 1888 set_bit(WriteErrorSeen, &rdev->flags); 1889 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 1890 set_bit(MD_RECOVERY_NEEDED, & 1891 mddev->recovery); 1892 set_bit(R1BIO_WriteError, &r1_bio->state); 1893 } else if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors, 1894 &first_bad, &bad_sectors) && 1895 !is_badblock(conf->mirrors[r1_bio->read_disk].rdev, 1896 r1_bio->sector, 1897 r1_bio->sectors, 1898 &first_bad, &bad_sectors) 1899 ) 1900 set_bit(R1BIO_MadeGood, &r1_bio->state); 1901 1902 if (atomic_dec_and_test(&r1_bio->remaining)) { 1903 int s = r1_bio->sectors; 1904 if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 1905 test_bit(R1BIO_WriteError, &r1_bio->state)) 1906 reschedule_retry(r1_bio); 1907 else { 1908 put_buf(r1_bio); 1909 md_done_sync(mddev, s, uptodate); 1910 } 1911 } 1912 } 1913 1914 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector, 1915 int sectors, struct page *page, int rw) 1916 { 1917 if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false)) 1918 /* success */ 1919 return 1; 1920 if (rw == WRITE) { 1921 set_bit(WriteErrorSeen, &rdev->flags); 1922 if (!test_and_set_bit(WantReplacement, 1923 &rdev->flags)) 1924 set_bit(MD_RECOVERY_NEEDED, & 1925 rdev->mddev->recovery); 1926 } 1927 /* need to record an error - either for the block or the device */ 1928 if (!rdev_set_badblocks(rdev, sector, sectors, 0)) 1929 md_error(rdev->mddev, rdev); 1930 return 0; 1931 } 1932 1933 static int fix_sync_read_error(struct r1bio *r1_bio) 1934 { 1935 /* Try some synchronous reads of other devices to get 1936 * good data, much like with normal read errors. Only 1937 * read into the pages we already have so we don't 1938 * need to re-issue the read request. 1939 * We don't need to freeze the array, because being in an 1940 * active sync request, there is no normal IO, and 1941 * no overlapping syncs. 1942 * We don't need to check is_badblock() again as we 1943 * made sure that anything with a bad block in range 1944 * will have bi_end_io clear. 1945 */ 1946 struct mddev *mddev = r1_bio->mddev; 1947 struct r1conf *conf = mddev->private; 1948 struct bio *bio = r1_bio->bios[r1_bio->read_disk]; 1949 struct page **pages = get_resync_pages(bio)->pages; 1950 sector_t sect = r1_bio->sector; 1951 int sectors = r1_bio->sectors; 1952 int idx = 0; 1953 struct md_rdev *rdev; 1954 1955 rdev = conf->mirrors[r1_bio->read_disk].rdev; 1956 if (test_bit(FailFast, &rdev->flags)) { 1957 /* Don't try recovering from here - just fail it 1958 * ... unless it is the last working device of course */ 1959 md_error(mddev, rdev); 1960 if (test_bit(Faulty, &rdev->flags)) 1961 /* Don't try to read from here, but make sure 1962 * put_buf does it's thing 1963 */ 1964 bio->bi_end_io = end_sync_write; 1965 } 1966 1967 while(sectors) { 1968 int s = sectors; 1969 int d = r1_bio->read_disk; 1970 int success = 0; 1971 int start; 1972 1973 if (s > (PAGE_SIZE>>9)) 1974 s = PAGE_SIZE >> 9; 1975 do { 1976 if (r1_bio->bios[d]->bi_end_io == end_sync_read) { 1977 /* No rcu protection needed here devices 1978 * can only be removed when no resync is 1979 * active, and resync is currently active 1980 */ 1981 rdev = conf->mirrors[d].rdev; 1982 if (sync_page_io(rdev, sect, s<<9, 1983 pages[idx], 1984 REQ_OP_READ, 0, false)) { 1985 success = 1; 1986 break; 1987 } 1988 } 1989 d++; 1990 if (d == conf->raid_disks * 2) 1991 d = 0; 1992 } while (!success && d != r1_bio->read_disk); 1993 1994 if (!success) { 1995 char b[BDEVNAME_SIZE]; 1996 int abort = 0; 1997 /* Cannot read from anywhere, this block is lost. 1998 * Record a bad block on each device. If that doesn't 1999 * work just disable and interrupt the recovery. 2000 * Don't fail devices as that won't really help. 2001 */ 2002 pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n", 2003 mdname(mddev), bio_devname(bio, b), 2004 (unsigned long long)r1_bio->sector); 2005 for (d = 0; d < conf->raid_disks * 2; d++) { 2006 rdev = conf->mirrors[d].rdev; 2007 if (!rdev || test_bit(Faulty, &rdev->flags)) 2008 continue; 2009 if (!rdev_set_badblocks(rdev, sect, s, 0)) 2010 abort = 1; 2011 } 2012 if (abort) { 2013 conf->recovery_disabled = 2014 mddev->recovery_disabled; 2015 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 2016 md_done_sync(mddev, r1_bio->sectors, 0); 2017 put_buf(r1_bio); 2018 return 0; 2019 } 2020 /* Try next page */ 2021 sectors -= s; 2022 sect += s; 2023 idx++; 2024 continue; 2025 } 2026 2027 start = d; 2028 /* write it back and re-read */ 2029 while (d != r1_bio->read_disk) { 2030 if (d == 0) 2031 d = conf->raid_disks * 2; 2032 d--; 2033 if (r1_bio->bios[d]->bi_end_io != end_sync_read) 2034 continue; 2035 rdev = conf->mirrors[d].rdev; 2036 if (r1_sync_page_io(rdev, sect, s, 2037 pages[idx], 2038 WRITE) == 0) { 2039 r1_bio->bios[d]->bi_end_io = NULL; 2040 rdev_dec_pending(rdev, mddev); 2041 } 2042 } 2043 d = start; 2044 while (d != r1_bio->read_disk) { 2045 if (d == 0) 2046 d = conf->raid_disks * 2; 2047 d--; 2048 if (r1_bio->bios[d]->bi_end_io != end_sync_read) 2049 continue; 2050 rdev = conf->mirrors[d].rdev; 2051 if (r1_sync_page_io(rdev, sect, s, 2052 pages[idx], 2053 READ) != 0) 2054 atomic_add(s, &rdev->corrected_errors); 2055 } 2056 sectors -= s; 2057 sect += s; 2058 idx ++; 2059 } 2060 set_bit(R1BIO_Uptodate, &r1_bio->state); 2061 bio->bi_status = 0; 2062 return 1; 2063 } 2064 2065 static void process_checks(struct r1bio *r1_bio) 2066 { 2067 /* We have read all readable devices. If we haven't 2068 * got the block, then there is no hope left. 2069 * If we have, then we want to do a comparison 2070 * and skip the write if everything is the same. 2071 * If any blocks failed to read, then we need to 2072 * attempt an over-write 2073 */ 2074 struct mddev *mddev = r1_bio->mddev; 2075 struct r1conf *conf = mddev->private; 2076 int primary; 2077 int i; 2078 int vcnt; 2079 2080 /* Fix variable parts of all bios */ 2081 vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9); 2082 for (i = 0; i < conf->raid_disks * 2; i++) { 2083 blk_status_t status; 2084 struct bio *b = r1_bio->bios[i]; 2085 struct resync_pages *rp = get_resync_pages(b); 2086 if (b->bi_end_io != end_sync_read) 2087 continue; 2088 /* fixup the bio for reuse, but preserve errno */ 2089 status = b->bi_status; 2090 bio_reset(b); 2091 b->bi_status = status; 2092 b->bi_iter.bi_sector = r1_bio->sector + 2093 conf->mirrors[i].rdev->data_offset; 2094 bio_set_dev(b, conf->mirrors[i].rdev->bdev); 2095 b->bi_end_io = end_sync_read; 2096 rp->raid_bio = r1_bio; 2097 b->bi_private = rp; 2098 2099 /* initialize bvec table again */ 2100 md_bio_reset_resync_pages(b, rp, r1_bio->sectors << 9); 2101 } 2102 for (primary = 0; primary < conf->raid_disks * 2; primary++) 2103 if (r1_bio->bios[primary]->bi_end_io == end_sync_read && 2104 !r1_bio->bios[primary]->bi_status) { 2105 r1_bio->bios[primary]->bi_end_io = NULL; 2106 rdev_dec_pending(conf->mirrors[primary].rdev, mddev); 2107 break; 2108 } 2109 r1_bio->read_disk = primary; 2110 for (i = 0; i < conf->raid_disks * 2; i++) { 2111 int j; 2112 struct bio *pbio = r1_bio->bios[primary]; 2113 struct bio *sbio = r1_bio->bios[i]; 2114 blk_status_t status = sbio->bi_status; 2115 struct page **ppages = get_resync_pages(pbio)->pages; 2116 struct page **spages = get_resync_pages(sbio)->pages; 2117 struct bio_vec *bi; 2118 int page_len[RESYNC_PAGES] = { 0 }; 2119 2120 if (sbio->bi_end_io != end_sync_read) 2121 continue; 2122 /* Now we can 'fixup' the error value */ 2123 sbio->bi_status = 0; 2124 2125 bio_for_each_segment_all(bi, sbio, j) 2126 page_len[j] = bi->bv_len; 2127 2128 if (!status) { 2129 for (j = vcnt; j-- ; ) { 2130 if (memcmp(page_address(ppages[j]), 2131 page_address(spages[j]), 2132 page_len[j])) 2133 break; 2134 } 2135 } else 2136 j = 0; 2137 if (j >= 0) 2138 atomic64_add(r1_bio->sectors, &mddev->resync_mismatches); 2139 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery) 2140 && !status)) { 2141 /* No need to write to this device. */ 2142 sbio->bi_end_io = NULL; 2143 rdev_dec_pending(conf->mirrors[i].rdev, mddev); 2144 continue; 2145 } 2146 2147 bio_copy_data(sbio, pbio); 2148 } 2149 } 2150 2151 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio) 2152 { 2153 struct r1conf *conf = mddev->private; 2154 int i; 2155 int disks = conf->raid_disks * 2; 2156 struct bio *wbio; 2157 2158 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) 2159 /* ouch - failed to read all of that. */ 2160 if (!fix_sync_read_error(r1_bio)) 2161 return; 2162 2163 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 2164 process_checks(r1_bio); 2165 2166 /* 2167 * schedule writes 2168 */ 2169 atomic_set(&r1_bio->remaining, 1); 2170 for (i = 0; i < disks ; i++) { 2171 wbio = r1_bio->bios[i]; 2172 if (wbio->bi_end_io == NULL || 2173 (wbio->bi_end_io == end_sync_read && 2174 (i == r1_bio->read_disk || 2175 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery)))) 2176 continue; 2177 if (test_bit(Faulty, &conf->mirrors[i].rdev->flags)) 2178 continue; 2179 2180 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0); 2181 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags)) 2182 wbio->bi_opf |= MD_FAILFAST; 2183 2184 wbio->bi_end_io = end_sync_write; 2185 atomic_inc(&r1_bio->remaining); 2186 md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio)); 2187 2188 generic_make_request(wbio); 2189 } 2190 2191 if (atomic_dec_and_test(&r1_bio->remaining)) { 2192 /* if we're here, all write(s) have completed, so clean up */ 2193 int s = r1_bio->sectors; 2194 if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 2195 test_bit(R1BIO_WriteError, &r1_bio->state)) 2196 reschedule_retry(r1_bio); 2197 else { 2198 put_buf(r1_bio); 2199 md_done_sync(mddev, s, 1); 2200 } 2201 } 2202 } 2203 2204 /* 2205 * This is a kernel thread which: 2206 * 2207 * 1. Retries failed read operations on working mirrors. 2208 * 2. Updates the raid superblock when problems encounter. 2209 * 3. Performs writes following reads for array synchronising. 2210 */ 2211 2212 static void fix_read_error(struct r1conf *conf, int read_disk, 2213 sector_t sect, int sectors) 2214 { 2215 struct mddev *mddev = conf->mddev; 2216 while(sectors) { 2217 int s = sectors; 2218 int d = read_disk; 2219 int success = 0; 2220 int start; 2221 struct md_rdev *rdev; 2222 2223 if (s > (PAGE_SIZE>>9)) 2224 s = PAGE_SIZE >> 9; 2225 2226 do { 2227 sector_t first_bad; 2228 int bad_sectors; 2229 2230 rcu_read_lock(); 2231 rdev = rcu_dereference(conf->mirrors[d].rdev); 2232 if (rdev && 2233 (test_bit(In_sync, &rdev->flags) || 2234 (!test_bit(Faulty, &rdev->flags) && 2235 rdev->recovery_offset >= sect + s)) && 2236 is_badblock(rdev, sect, s, 2237 &first_bad, &bad_sectors) == 0) { 2238 atomic_inc(&rdev->nr_pending); 2239 rcu_read_unlock(); 2240 if (sync_page_io(rdev, sect, s<<9, 2241 conf->tmppage, REQ_OP_READ, 0, false)) 2242 success = 1; 2243 rdev_dec_pending(rdev, mddev); 2244 if (success) 2245 break; 2246 } else 2247 rcu_read_unlock(); 2248 d++; 2249 if (d == conf->raid_disks * 2) 2250 d = 0; 2251 } while (!success && d != read_disk); 2252 2253 if (!success) { 2254 /* Cannot read from anywhere - mark it bad */ 2255 struct md_rdev *rdev = conf->mirrors[read_disk].rdev; 2256 if (!rdev_set_badblocks(rdev, sect, s, 0)) 2257 md_error(mddev, rdev); 2258 break; 2259 } 2260 /* write it back and re-read */ 2261 start = d; 2262 while (d != read_disk) { 2263 if (d==0) 2264 d = conf->raid_disks * 2; 2265 d--; 2266 rcu_read_lock(); 2267 rdev = rcu_dereference(conf->mirrors[d].rdev); 2268 if (rdev && 2269 !test_bit(Faulty, &rdev->flags)) { 2270 atomic_inc(&rdev->nr_pending); 2271 rcu_read_unlock(); 2272 r1_sync_page_io(rdev, sect, s, 2273 conf->tmppage, WRITE); 2274 rdev_dec_pending(rdev, mddev); 2275 } else 2276 rcu_read_unlock(); 2277 } 2278 d = start; 2279 while (d != read_disk) { 2280 char b[BDEVNAME_SIZE]; 2281 if (d==0) 2282 d = conf->raid_disks * 2; 2283 d--; 2284 rcu_read_lock(); 2285 rdev = rcu_dereference(conf->mirrors[d].rdev); 2286 if (rdev && 2287 !test_bit(Faulty, &rdev->flags)) { 2288 atomic_inc(&rdev->nr_pending); 2289 rcu_read_unlock(); 2290 if (r1_sync_page_io(rdev, sect, s, 2291 conf->tmppage, READ)) { 2292 atomic_add(s, &rdev->corrected_errors); 2293 pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %s)\n", 2294 mdname(mddev), s, 2295 (unsigned long long)(sect + 2296 rdev->data_offset), 2297 bdevname(rdev->bdev, b)); 2298 } 2299 rdev_dec_pending(rdev, mddev); 2300 } else 2301 rcu_read_unlock(); 2302 } 2303 sectors -= s; 2304 sect += s; 2305 } 2306 } 2307 2308 static int narrow_write_error(struct r1bio *r1_bio, int i) 2309 { 2310 struct mddev *mddev = r1_bio->mddev; 2311 struct r1conf *conf = mddev->private; 2312 struct md_rdev *rdev = conf->mirrors[i].rdev; 2313 2314 /* bio has the data to be written to device 'i' where 2315 * we just recently had a write error. 2316 * We repeatedly clone the bio and trim down to one block, 2317 * then try the write. Where the write fails we record 2318 * a bad block. 2319 * It is conceivable that the bio doesn't exactly align with 2320 * blocks. We must handle this somehow. 2321 * 2322 * We currently own a reference on the rdev. 2323 */ 2324 2325 int block_sectors; 2326 sector_t sector; 2327 int sectors; 2328 int sect_to_write = r1_bio->sectors; 2329 int ok = 1; 2330 2331 if (rdev->badblocks.shift < 0) 2332 return 0; 2333 2334 block_sectors = roundup(1 << rdev->badblocks.shift, 2335 bdev_logical_block_size(rdev->bdev) >> 9); 2336 sector = r1_bio->sector; 2337 sectors = ((sector + block_sectors) 2338 & ~(sector_t)(block_sectors - 1)) 2339 - sector; 2340 2341 while (sect_to_write) { 2342 struct bio *wbio; 2343 if (sectors > sect_to_write) 2344 sectors = sect_to_write; 2345 /* Write at 'sector' for 'sectors'*/ 2346 2347 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) { 2348 wbio = bio_clone_fast(r1_bio->behind_master_bio, 2349 GFP_NOIO, 2350 &mddev->bio_set); 2351 } else { 2352 wbio = bio_clone_fast(r1_bio->master_bio, GFP_NOIO, 2353 &mddev->bio_set); 2354 } 2355 2356 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0); 2357 wbio->bi_iter.bi_sector = r1_bio->sector; 2358 wbio->bi_iter.bi_size = r1_bio->sectors << 9; 2359 2360 bio_trim(wbio, sector - r1_bio->sector, sectors); 2361 wbio->bi_iter.bi_sector += rdev->data_offset; 2362 bio_set_dev(wbio, rdev->bdev); 2363 2364 if (submit_bio_wait(wbio) < 0) 2365 /* failure! */ 2366 ok = rdev_set_badblocks(rdev, sector, 2367 sectors, 0) 2368 && ok; 2369 2370 bio_put(wbio); 2371 sect_to_write -= sectors; 2372 sector += sectors; 2373 sectors = block_sectors; 2374 } 2375 return ok; 2376 } 2377 2378 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio) 2379 { 2380 int m; 2381 int s = r1_bio->sectors; 2382 for (m = 0; m < conf->raid_disks * 2 ; m++) { 2383 struct md_rdev *rdev = conf->mirrors[m].rdev; 2384 struct bio *bio = r1_bio->bios[m]; 2385 if (bio->bi_end_io == NULL) 2386 continue; 2387 if (!bio->bi_status && 2388 test_bit(R1BIO_MadeGood, &r1_bio->state)) { 2389 rdev_clear_badblocks(rdev, r1_bio->sector, s, 0); 2390 } 2391 if (bio->bi_status && 2392 test_bit(R1BIO_WriteError, &r1_bio->state)) { 2393 if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0)) 2394 md_error(conf->mddev, rdev); 2395 } 2396 } 2397 put_buf(r1_bio); 2398 md_done_sync(conf->mddev, s, 1); 2399 } 2400 2401 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio) 2402 { 2403 int m, idx; 2404 bool fail = false; 2405 2406 for (m = 0; m < conf->raid_disks * 2 ; m++) 2407 if (r1_bio->bios[m] == IO_MADE_GOOD) { 2408 struct md_rdev *rdev = conf->mirrors[m].rdev; 2409 rdev_clear_badblocks(rdev, 2410 r1_bio->sector, 2411 r1_bio->sectors, 0); 2412 rdev_dec_pending(rdev, conf->mddev); 2413 } else if (r1_bio->bios[m] != NULL) { 2414 /* This drive got a write error. We need to 2415 * narrow down and record precise write 2416 * errors. 2417 */ 2418 fail = true; 2419 if (!narrow_write_error(r1_bio, m)) { 2420 md_error(conf->mddev, 2421 conf->mirrors[m].rdev); 2422 /* an I/O failed, we can't clear the bitmap */ 2423 set_bit(R1BIO_Degraded, &r1_bio->state); 2424 } 2425 rdev_dec_pending(conf->mirrors[m].rdev, 2426 conf->mddev); 2427 } 2428 if (fail) { 2429 spin_lock_irq(&conf->device_lock); 2430 list_add(&r1_bio->retry_list, &conf->bio_end_io_list); 2431 idx = sector_to_idx(r1_bio->sector); 2432 atomic_inc(&conf->nr_queued[idx]); 2433 spin_unlock_irq(&conf->device_lock); 2434 /* 2435 * In case freeze_array() is waiting for condition 2436 * get_unqueued_pending() == extra to be true. 2437 */ 2438 wake_up(&conf->wait_barrier); 2439 md_wakeup_thread(conf->mddev->thread); 2440 } else { 2441 if (test_bit(R1BIO_WriteError, &r1_bio->state)) 2442 close_write(r1_bio); 2443 raid_end_bio_io(r1_bio); 2444 } 2445 } 2446 2447 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio) 2448 { 2449 struct mddev *mddev = conf->mddev; 2450 struct bio *bio; 2451 struct md_rdev *rdev; 2452 2453 clear_bit(R1BIO_ReadError, &r1_bio->state); 2454 /* we got a read error. Maybe the drive is bad. Maybe just 2455 * the block and we can fix it. 2456 * We freeze all other IO, and try reading the block from 2457 * other devices. When we find one, we re-write 2458 * and check it that fixes the read error. 2459 * This is all done synchronously while the array is 2460 * frozen 2461 */ 2462 2463 bio = r1_bio->bios[r1_bio->read_disk]; 2464 bio_put(bio); 2465 r1_bio->bios[r1_bio->read_disk] = NULL; 2466 2467 rdev = conf->mirrors[r1_bio->read_disk].rdev; 2468 if (mddev->ro == 0 2469 && !test_bit(FailFast, &rdev->flags)) { 2470 freeze_array(conf, 1); 2471 fix_read_error(conf, r1_bio->read_disk, 2472 r1_bio->sector, r1_bio->sectors); 2473 unfreeze_array(conf); 2474 } else if (mddev->ro == 0 && test_bit(FailFast, &rdev->flags)) { 2475 md_error(mddev, rdev); 2476 } else { 2477 r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED; 2478 } 2479 2480 rdev_dec_pending(rdev, conf->mddev); 2481 allow_barrier(conf, r1_bio->sector); 2482 bio = r1_bio->master_bio; 2483 2484 /* Reuse the old r1_bio so that the IO_BLOCKED settings are preserved */ 2485 r1_bio->state = 0; 2486 raid1_read_request(mddev, bio, r1_bio->sectors, r1_bio); 2487 } 2488 2489 static void raid1d(struct md_thread *thread) 2490 { 2491 struct mddev *mddev = thread->mddev; 2492 struct r1bio *r1_bio; 2493 unsigned long flags; 2494 struct r1conf *conf = mddev->private; 2495 struct list_head *head = &conf->retry_list; 2496 struct blk_plug plug; 2497 int idx; 2498 2499 md_check_recovery(mddev); 2500 2501 if (!list_empty_careful(&conf->bio_end_io_list) && 2502 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) { 2503 LIST_HEAD(tmp); 2504 spin_lock_irqsave(&conf->device_lock, flags); 2505 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) 2506 list_splice_init(&conf->bio_end_io_list, &tmp); 2507 spin_unlock_irqrestore(&conf->device_lock, flags); 2508 while (!list_empty(&tmp)) { 2509 r1_bio = list_first_entry(&tmp, struct r1bio, 2510 retry_list); 2511 list_del(&r1_bio->retry_list); 2512 idx = sector_to_idx(r1_bio->sector); 2513 atomic_dec(&conf->nr_queued[idx]); 2514 if (mddev->degraded) 2515 set_bit(R1BIO_Degraded, &r1_bio->state); 2516 if (test_bit(R1BIO_WriteError, &r1_bio->state)) 2517 close_write(r1_bio); 2518 raid_end_bio_io(r1_bio); 2519 } 2520 } 2521 2522 blk_start_plug(&plug); 2523 for (;;) { 2524 2525 flush_pending_writes(conf); 2526 2527 spin_lock_irqsave(&conf->device_lock, flags); 2528 if (list_empty(head)) { 2529 spin_unlock_irqrestore(&conf->device_lock, flags); 2530 break; 2531 } 2532 r1_bio = list_entry(head->prev, struct r1bio, retry_list); 2533 list_del(head->prev); 2534 idx = sector_to_idx(r1_bio->sector); 2535 atomic_dec(&conf->nr_queued[idx]); 2536 spin_unlock_irqrestore(&conf->device_lock, flags); 2537 2538 mddev = r1_bio->mddev; 2539 conf = mddev->private; 2540 if (test_bit(R1BIO_IsSync, &r1_bio->state)) { 2541 if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 2542 test_bit(R1BIO_WriteError, &r1_bio->state)) 2543 handle_sync_write_finished(conf, r1_bio); 2544 else 2545 sync_request_write(mddev, r1_bio); 2546 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 2547 test_bit(R1BIO_WriteError, &r1_bio->state)) 2548 handle_write_finished(conf, r1_bio); 2549 else if (test_bit(R1BIO_ReadError, &r1_bio->state)) 2550 handle_read_error(conf, r1_bio); 2551 else 2552 WARN_ON_ONCE(1); 2553 2554 cond_resched(); 2555 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING)) 2556 md_check_recovery(mddev); 2557 } 2558 blk_finish_plug(&plug); 2559 } 2560 2561 static int init_resync(struct r1conf *conf) 2562 { 2563 int buffs; 2564 2565 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE; 2566 BUG_ON(mempool_initialized(&conf->r1buf_pool)); 2567 2568 return mempool_init(&conf->r1buf_pool, buffs, r1buf_pool_alloc, 2569 r1buf_pool_free, conf->poolinfo); 2570 } 2571 2572 static struct r1bio *raid1_alloc_init_r1buf(struct r1conf *conf) 2573 { 2574 struct r1bio *r1bio = mempool_alloc(&conf->r1buf_pool, GFP_NOIO); 2575 struct resync_pages *rps; 2576 struct bio *bio; 2577 int i; 2578 2579 for (i = conf->poolinfo->raid_disks; i--; ) { 2580 bio = r1bio->bios[i]; 2581 rps = bio->bi_private; 2582 bio_reset(bio); 2583 bio->bi_private = rps; 2584 } 2585 r1bio->master_bio = NULL; 2586 return r1bio; 2587 } 2588 2589 /* 2590 * perform a "sync" on one "block" 2591 * 2592 * We need to make sure that no normal I/O request - particularly write 2593 * requests - conflict with active sync requests. 2594 * 2595 * This is achieved by tracking pending requests and a 'barrier' concept 2596 * that can be installed to exclude normal IO requests. 2597 */ 2598 2599 static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr, 2600 int *skipped) 2601 { 2602 struct r1conf *conf = mddev->private; 2603 struct r1bio *r1_bio; 2604 struct bio *bio; 2605 sector_t max_sector, nr_sectors; 2606 int disk = -1; 2607 int i; 2608 int wonly = -1; 2609 int write_targets = 0, read_targets = 0; 2610 sector_t sync_blocks; 2611 int still_degraded = 0; 2612 int good_sectors = RESYNC_SECTORS; 2613 int min_bad = 0; /* number of sectors that are bad in all devices */ 2614 int idx = sector_to_idx(sector_nr); 2615 int page_idx = 0; 2616 2617 if (!mempool_initialized(&conf->r1buf_pool)) 2618 if (init_resync(conf)) 2619 return 0; 2620 2621 max_sector = mddev->dev_sectors; 2622 if (sector_nr >= max_sector) { 2623 /* If we aborted, we need to abort the 2624 * sync on the 'current' bitmap chunk (there will 2625 * only be one in raid1 resync. 2626 * We can find the current addess in mddev->curr_resync 2627 */ 2628 if (mddev->curr_resync < max_sector) /* aborted */ 2629 bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 2630 &sync_blocks, 1); 2631 else /* completed sync */ 2632 conf->fullsync = 0; 2633 2634 bitmap_close_sync(mddev->bitmap); 2635 close_sync(conf); 2636 2637 if (mddev_is_clustered(mddev)) { 2638 conf->cluster_sync_low = 0; 2639 conf->cluster_sync_high = 0; 2640 } 2641 return 0; 2642 } 2643 2644 if (mddev->bitmap == NULL && 2645 mddev->recovery_cp == MaxSector && 2646 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 2647 conf->fullsync == 0) { 2648 *skipped = 1; 2649 return max_sector - sector_nr; 2650 } 2651 /* before building a request, check if we can skip these blocks.. 2652 * This call the bitmap_start_sync doesn't actually record anything 2653 */ 2654 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) && 2655 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 2656 /* We can skip this block, and probably several more */ 2657 *skipped = 1; 2658 return sync_blocks; 2659 } 2660 2661 /* 2662 * If there is non-resync activity waiting for a turn, then let it 2663 * though before starting on this new sync request. 2664 */ 2665 if (atomic_read(&conf->nr_waiting[idx])) 2666 schedule_timeout_uninterruptible(1); 2667 2668 /* we are incrementing sector_nr below. To be safe, we check against 2669 * sector_nr + two times RESYNC_SECTORS 2670 */ 2671 2672 bitmap_cond_end_sync(mddev->bitmap, sector_nr, 2673 mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high)); 2674 2675 2676 if (raise_barrier(conf, sector_nr)) 2677 return 0; 2678 2679 r1_bio = raid1_alloc_init_r1buf(conf); 2680 2681 rcu_read_lock(); 2682 /* 2683 * If we get a correctably read error during resync or recovery, 2684 * we might want to read from a different device. So we 2685 * flag all drives that could conceivably be read from for READ, 2686 * and any others (which will be non-In_sync devices) for WRITE. 2687 * If a read fails, we try reading from something else for which READ 2688 * is OK. 2689 */ 2690 2691 r1_bio->mddev = mddev; 2692 r1_bio->sector = sector_nr; 2693 r1_bio->state = 0; 2694 set_bit(R1BIO_IsSync, &r1_bio->state); 2695 /* make sure good_sectors won't go across barrier unit boundary */ 2696 good_sectors = align_to_barrier_unit_end(sector_nr, good_sectors); 2697 2698 for (i = 0; i < conf->raid_disks * 2; i++) { 2699 struct md_rdev *rdev; 2700 bio = r1_bio->bios[i]; 2701 2702 rdev = rcu_dereference(conf->mirrors[i].rdev); 2703 if (rdev == NULL || 2704 test_bit(Faulty, &rdev->flags)) { 2705 if (i < conf->raid_disks) 2706 still_degraded = 1; 2707 } else if (!test_bit(In_sync, &rdev->flags)) { 2708 bio_set_op_attrs(bio, REQ_OP_WRITE, 0); 2709 bio->bi_end_io = end_sync_write; 2710 write_targets ++; 2711 } else { 2712 /* may need to read from here */ 2713 sector_t first_bad = MaxSector; 2714 int bad_sectors; 2715 2716 if (is_badblock(rdev, sector_nr, good_sectors, 2717 &first_bad, &bad_sectors)) { 2718 if (first_bad > sector_nr) 2719 good_sectors = first_bad - sector_nr; 2720 else { 2721 bad_sectors -= (sector_nr - first_bad); 2722 if (min_bad == 0 || 2723 min_bad > bad_sectors) 2724 min_bad = bad_sectors; 2725 } 2726 } 2727 if (sector_nr < first_bad) { 2728 if (test_bit(WriteMostly, &rdev->flags)) { 2729 if (wonly < 0) 2730 wonly = i; 2731 } else { 2732 if (disk < 0) 2733 disk = i; 2734 } 2735 bio_set_op_attrs(bio, REQ_OP_READ, 0); 2736 bio->bi_end_io = end_sync_read; 2737 read_targets++; 2738 } else if (!test_bit(WriteErrorSeen, &rdev->flags) && 2739 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && 2740 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) { 2741 /* 2742 * The device is suitable for reading (InSync), 2743 * but has bad block(s) here. Let's try to correct them, 2744 * if we are doing resync or repair. Otherwise, leave 2745 * this device alone for this sync request. 2746 */ 2747 bio_set_op_attrs(bio, REQ_OP_WRITE, 0); 2748 bio->bi_end_io = end_sync_write; 2749 write_targets++; 2750 } 2751 } 2752 if (bio->bi_end_io) { 2753 atomic_inc(&rdev->nr_pending); 2754 bio->bi_iter.bi_sector = sector_nr + rdev->data_offset; 2755 bio_set_dev(bio, rdev->bdev); 2756 if (test_bit(FailFast, &rdev->flags)) 2757 bio->bi_opf |= MD_FAILFAST; 2758 } 2759 } 2760 rcu_read_unlock(); 2761 if (disk < 0) 2762 disk = wonly; 2763 r1_bio->read_disk = disk; 2764 2765 if (read_targets == 0 && min_bad > 0) { 2766 /* These sectors are bad on all InSync devices, so we 2767 * need to mark them bad on all write targets 2768 */ 2769 int ok = 1; 2770 for (i = 0 ; i < conf->raid_disks * 2 ; i++) 2771 if (r1_bio->bios[i]->bi_end_io == end_sync_write) { 2772 struct md_rdev *rdev = conf->mirrors[i].rdev; 2773 ok = rdev_set_badblocks(rdev, sector_nr, 2774 min_bad, 0 2775 ) && ok; 2776 } 2777 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2778 *skipped = 1; 2779 put_buf(r1_bio); 2780 2781 if (!ok) { 2782 /* Cannot record the badblocks, so need to 2783 * abort the resync. 2784 * If there are multiple read targets, could just 2785 * fail the really bad ones ??? 2786 */ 2787 conf->recovery_disabled = mddev->recovery_disabled; 2788 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 2789 return 0; 2790 } else 2791 return min_bad; 2792 2793 } 2794 if (min_bad > 0 && min_bad < good_sectors) { 2795 /* only resync enough to reach the next bad->good 2796 * transition */ 2797 good_sectors = min_bad; 2798 } 2799 2800 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0) 2801 /* extra read targets are also write targets */ 2802 write_targets += read_targets-1; 2803 2804 if (write_targets == 0 || read_targets == 0) { 2805 /* There is nowhere to write, so all non-sync 2806 * drives must be failed - so we are finished 2807 */ 2808 sector_t rv; 2809 if (min_bad > 0) 2810 max_sector = sector_nr + min_bad; 2811 rv = max_sector - sector_nr; 2812 *skipped = 1; 2813 put_buf(r1_bio); 2814 return rv; 2815 } 2816 2817 if (max_sector > mddev->resync_max) 2818 max_sector = mddev->resync_max; /* Don't do IO beyond here */ 2819 if (max_sector > sector_nr + good_sectors) 2820 max_sector = sector_nr + good_sectors; 2821 nr_sectors = 0; 2822 sync_blocks = 0; 2823 do { 2824 struct page *page; 2825 int len = PAGE_SIZE; 2826 if (sector_nr + (len>>9) > max_sector) 2827 len = (max_sector - sector_nr) << 9; 2828 if (len == 0) 2829 break; 2830 if (sync_blocks == 0) { 2831 if (!bitmap_start_sync(mddev->bitmap, sector_nr, 2832 &sync_blocks, still_degraded) && 2833 !conf->fullsync && 2834 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 2835 break; 2836 if ((len >> 9) > sync_blocks) 2837 len = sync_blocks<<9; 2838 } 2839 2840 for (i = 0 ; i < conf->raid_disks * 2; i++) { 2841 struct resync_pages *rp; 2842 2843 bio = r1_bio->bios[i]; 2844 rp = get_resync_pages(bio); 2845 if (bio->bi_end_io) { 2846 page = resync_fetch_page(rp, page_idx); 2847 2848 /* 2849 * won't fail because the vec table is big 2850 * enough to hold all these pages 2851 */ 2852 bio_add_page(bio, page, len, 0); 2853 } 2854 } 2855 nr_sectors += len>>9; 2856 sector_nr += len>>9; 2857 sync_blocks -= (len>>9); 2858 } while (++page_idx < RESYNC_PAGES); 2859 2860 r1_bio->sectors = nr_sectors; 2861 2862 if (mddev_is_clustered(mddev) && 2863 conf->cluster_sync_high < sector_nr + nr_sectors) { 2864 conf->cluster_sync_low = mddev->curr_resync_completed; 2865 conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS; 2866 /* Send resync message */ 2867 md_cluster_ops->resync_info_update(mddev, 2868 conf->cluster_sync_low, 2869 conf->cluster_sync_high); 2870 } 2871 2872 /* For a user-requested sync, we read all readable devices and do a 2873 * compare 2874 */ 2875 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 2876 atomic_set(&r1_bio->remaining, read_targets); 2877 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) { 2878 bio = r1_bio->bios[i]; 2879 if (bio->bi_end_io == end_sync_read) { 2880 read_targets--; 2881 md_sync_acct_bio(bio, nr_sectors); 2882 if (read_targets == 1) 2883 bio->bi_opf &= ~MD_FAILFAST; 2884 generic_make_request(bio); 2885 } 2886 } 2887 } else { 2888 atomic_set(&r1_bio->remaining, 1); 2889 bio = r1_bio->bios[r1_bio->read_disk]; 2890 md_sync_acct_bio(bio, nr_sectors); 2891 if (read_targets == 1) 2892 bio->bi_opf &= ~MD_FAILFAST; 2893 generic_make_request(bio); 2894 2895 } 2896 return nr_sectors; 2897 } 2898 2899 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks) 2900 { 2901 if (sectors) 2902 return sectors; 2903 2904 return mddev->dev_sectors; 2905 } 2906 2907 static struct r1conf *setup_conf(struct mddev *mddev) 2908 { 2909 struct r1conf *conf; 2910 int i; 2911 struct raid1_info *disk; 2912 struct md_rdev *rdev; 2913 int err = -ENOMEM; 2914 2915 conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL); 2916 if (!conf) 2917 goto abort; 2918 2919 conf->nr_pending = kcalloc(BARRIER_BUCKETS_NR, 2920 sizeof(atomic_t), GFP_KERNEL); 2921 if (!conf->nr_pending) 2922 goto abort; 2923 2924 conf->nr_waiting = kcalloc(BARRIER_BUCKETS_NR, 2925 sizeof(atomic_t), GFP_KERNEL); 2926 if (!conf->nr_waiting) 2927 goto abort; 2928 2929 conf->nr_queued = kcalloc(BARRIER_BUCKETS_NR, 2930 sizeof(atomic_t), GFP_KERNEL); 2931 if (!conf->nr_queued) 2932 goto abort; 2933 2934 conf->barrier = kcalloc(BARRIER_BUCKETS_NR, 2935 sizeof(atomic_t), GFP_KERNEL); 2936 if (!conf->barrier) 2937 goto abort; 2938 2939 conf->mirrors = kzalloc(array3_size(sizeof(struct raid1_info), 2940 mddev->raid_disks, 2), 2941 GFP_KERNEL); 2942 if (!conf->mirrors) 2943 goto abort; 2944 2945 conf->tmppage = alloc_page(GFP_KERNEL); 2946 if (!conf->tmppage) 2947 goto abort; 2948 2949 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL); 2950 if (!conf->poolinfo) 2951 goto abort; 2952 conf->poolinfo->raid_disks = mddev->raid_disks * 2; 2953 err = mempool_init(&conf->r1bio_pool, NR_RAID1_BIOS, r1bio_pool_alloc, 2954 r1bio_pool_free, conf->poolinfo); 2955 if (err) 2956 goto abort; 2957 2958 err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0); 2959 if (err) 2960 goto abort; 2961 2962 conf->poolinfo->mddev = mddev; 2963 2964 err = -EINVAL; 2965 spin_lock_init(&conf->device_lock); 2966 rdev_for_each(rdev, mddev) { 2967 int disk_idx = rdev->raid_disk; 2968 if (disk_idx >= mddev->raid_disks 2969 || disk_idx < 0) 2970 continue; 2971 if (test_bit(Replacement, &rdev->flags)) 2972 disk = conf->mirrors + mddev->raid_disks + disk_idx; 2973 else 2974 disk = conf->mirrors + disk_idx; 2975 2976 if (disk->rdev) 2977 goto abort; 2978 disk->rdev = rdev; 2979 disk->head_position = 0; 2980 disk->seq_start = MaxSector; 2981 } 2982 conf->raid_disks = mddev->raid_disks; 2983 conf->mddev = mddev; 2984 INIT_LIST_HEAD(&conf->retry_list); 2985 INIT_LIST_HEAD(&conf->bio_end_io_list); 2986 2987 spin_lock_init(&conf->resync_lock); 2988 init_waitqueue_head(&conf->wait_barrier); 2989 2990 bio_list_init(&conf->pending_bio_list); 2991 conf->pending_count = 0; 2992 conf->recovery_disabled = mddev->recovery_disabled - 1; 2993 2994 err = -EIO; 2995 for (i = 0; i < conf->raid_disks * 2; i++) { 2996 2997 disk = conf->mirrors + i; 2998 2999 if (i < conf->raid_disks && 3000 disk[conf->raid_disks].rdev) { 3001 /* This slot has a replacement. */ 3002 if (!disk->rdev) { 3003 /* No original, just make the replacement 3004 * a recovering spare 3005 */ 3006 disk->rdev = 3007 disk[conf->raid_disks].rdev; 3008 disk[conf->raid_disks].rdev = NULL; 3009 } else if (!test_bit(In_sync, &disk->rdev->flags)) 3010 /* Original is not in_sync - bad */ 3011 goto abort; 3012 } 3013 3014 if (!disk->rdev || 3015 !test_bit(In_sync, &disk->rdev->flags)) { 3016 disk->head_position = 0; 3017 if (disk->rdev && 3018 (disk->rdev->saved_raid_disk < 0)) 3019 conf->fullsync = 1; 3020 } 3021 } 3022 3023 err = -ENOMEM; 3024 conf->thread = md_register_thread(raid1d, mddev, "raid1"); 3025 if (!conf->thread) 3026 goto abort; 3027 3028 return conf; 3029 3030 abort: 3031 if (conf) { 3032 mempool_exit(&conf->r1bio_pool); 3033 kfree(conf->mirrors); 3034 safe_put_page(conf->tmppage); 3035 kfree(conf->poolinfo); 3036 kfree(conf->nr_pending); 3037 kfree(conf->nr_waiting); 3038 kfree(conf->nr_queued); 3039 kfree(conf->barrier); 3040 bioset_exit(&conf->bio_split); 3041 kfree(conf); 3042 } 3043 return ERR_PTR(err); 3044 } 3045 3046 static void raid1_free(struct mddev *mddev, void *priv); 3047 static int raid1_run(struct mddev *mddev) 3048 { 3049 struct r1conf *conf; 3050 int i; 3051 struct md_rdev *rdev; 3052 int ret; 3053 bool discard_supported = false; 3054 3055 if (mddev->level != 1) { 3056 pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n", 3057 mdname(mddev), mddev->level); 3058 return -EIO; 3059 } 3060 if (mddev->reshape_position != MaxSector) { 3061 pr_warn("md/raid1:%s: reshape_position set but not supported\n", 3062 mdname(mddev)); 3063 return -EIO; 3064 } 3065 if (mddev_init_writes_pending(mddev) < 0) 3066 return -ENOMEM; 3067 /* 3068 * copy the already verified devices into our private RAID1 3069 * bookkeeping area. [whatever we allocate in run(), 3070 * should be freed in raid1_free()] 3071 */ 3072 if (mddev->private == NULL) 3073 conf = setup_conf(mddev); 3074 else 3075 conf = mddev->private; 3076 3077 if (IS_ERR(conf)) 3078 return PTR_ERR(conf); 3079 3080 if (mddev->queue) { 3081 blk_queue_max_write_same_sectors(mddev->queue, 0); 3082 blk_queue_max_write_zeroes_sectors(mddev->queue, 0); 3083 } 3084 3085 rdev_for_each(rdev, mddev) { 3086 if (!mddev->gendisk) 3087 continue; 3088 disk_stack_limits(mddev->gendisk, rdev->bdev, 3089 rdev->data_offset << 9); 3090 if (blk_queue_discard(bdev_get_queue(rdev->bdev))) 3091 discard_supported = true; 3092 } 3093 3094 mddev->degraded = 0; 3095 for (i=0; i < conf->raid_disks; i++) 3096 if (conf->mirrors[i].rdev == NULL || 3097 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) || 3098 test_bit(Faulty, &conf->mirrors[i].rdev->flags)) 3099 mddev->degraded++; 3100 3101 if (conf->raid_disks - mddev->degraded == 1) 3102 mddev->recovery_cp = MaxSector; 3103 3104 if (mddev->recovery_cp != MaxSector) 3105 pr_info("md/raid1:%s: not clean -- starting background reconstruction\n", 3106 mdname(mddev)); 3107 pr_info("md/raid1:%s: active with %d out of %d mirrors\n", 3108 mdname(mddev), mddev->raid_disks - mddev->degraded, 3109 mddev->raid_disks); 3110 3111 /* 3112 * Ok, everything is just fine now 3113 */ 3114 mddev->thread = conf->thread; 3115 conf->thread = NULL; 3116 mddev->private = conf; 3117 set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags); 3118 3119 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0)); 3120 3121 if (mddev->queue) { 3122 if (discard_supported) 3123 blk_queue_flag_set(QUEUE_FLAG_DISCARD, 3124 mddev->queue); 3125 else 3126 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, 3127 mddev->queue); 3128 } 3129 3130 ret = md_integrity_register(mddev); 3131 if (ret) { 3132 md_unregister_thread(&mddev->thread); 3133 raid1_free(mddev, conf); 3134 } 3135 return ret; 3136 } 3137 3138 static void raid1_free(struct mddev *mddev, void *priv) 3139 { 3140 struct r1conf *conf = priv; 3141 3142 mempool_exit(&conf->r1bio_pool); 3143 kfree(conf->mirrors); 3144 safe_put_page(conf->tmppage); 3145 kfree(conf->poolinfo); 3146 kfree(conf->nr_pending); 3147 kfree(conf->nr_waiting); 3148 kfree(conf->nr_queued); 3149 kfree(conf->barrier); 3150 bioset_exit(&conf->bio_split); 3151 kfree(conf); 3152 } 3153 3154 static int raid1_resize(struct mddev *mddev, sector_t sectors) 3155 { 3156 /* no resync is happening, and there is enough space 3157 * on all devices, so we can resize. 3158 * We need to make sure resync covers any new space. 3159 * If the array is shrinking we should possibly wait until 3160 * any io in the removed space completes, but it hardly seems 3161 * worth it. 3162 */ 3163 sector_t newsize = raid1_size(mddev, sectors, 0); 3164 if (mddev->external_size && 3165 mddev->array_sectors > newsize) 3166 return -EINVAL; 3167 if (mddev->bitmap) { 3168 int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0); 3169 if (ret) 3170 return ret; 3171 } 3172 md_set_array_sectors(mddev, newsize); 3173 if (sectors > mddev->dev_sectors && 3174 mddev->recovery_cp > mddev->dev_sectors) { 3175 mddev->recovery_cp = mddev->dev_sectors; 3176 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3177 } 3178 mddev->dev_sectors = sectors; 3179 mddev->resync_max_sectors = sectors; 3180 return 0; 3181 } 3182 3183 static int raid1_reshape(struct mddev *mddev) 3184 { 3185 /* We need to: 3186 * 1/ resize the r1bio_pool 3187 * 2/ resize conf->mirrors 3188 * 3189 * We allocate a new r1bio_pool if we can. 3190 * Then raise a device barrier and wait until all IO stops. 3191 * Then resize conf->mirrors and swap in the new r1bio pool. 3192 * 3193 * At the same time, we "pack" the devices so that all the missing 3194 * devices have the higher raid_disk numbers. 3195 */ 3196 mempool_t newpool, oldpool; 3197 struct pool_info *newpoolinfo; 3198 struct raid1_info *newmirrors; 3199 struct r1conf *conf = mddev->private; 3200 int cnt, raid_disks; 3201 unsigned long flags; 3202 int d, d2; 3203 int ret; 3204 3205 memset(&newpool, 0, sizeof(newpool)); 3206 memset(&oldpool, 0, sizeof(oldpool)); 3207 3208 /* Cannot change chunk_size, layout, or level */ 3209 if (mddev->chunk_sectors != mddev->new_chunk_sectors || 3210 mddev->layout != mddev->new_layout || 3211 mddev->level != mddev->new_level) { 3212 mddev->new_chunk_sectors = mddev->chunk_sectors; 3213 mddev->new_layout = mddev->layout; 3214 mddev->new_level = mddev->level; 3215 return -EINVAL; 3216 } 3217 3218 if (!mddev_is_clustered(mddev)) 3219 md_allow_write(mddev); 3220 3221 raid_disks = mddev->raid_disks + mddev->delta_disks; 3222 3223 if (raid_disks < conf->raid_disks) { 3224 cnt=0; 3225 for (d= 0; d < conf->raid_disks; d++) 3226 if (conf->mirrors[d].rdev) 3227 cnt++; 3228 if (cnt > raid_disks) 3229 return -EBUSY; 3230 } 3231 3232 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL); 3233 if (!newpoolinfo) 3234 return -ENOMEM; 3235 newpoolinfo->mddev = mddev; 3236 newpoolinfo->raid_disks = raid_disks * 2; 3237 3238 ret = mempool_init(&newpool, NR_RAID1_BIOS, r1bio_pool_alloc, 3239 r1bio_pool_free, newpoolinfo); 3240 if (ret) { 3241 kfree(newpoolinfo); 3242 return ret; 3243 } 3244 newmirrors = kzalloc(array3_size(sizeof(struct raid1_info), 3245 raid_disks, 2), 3246 GFP_KERNEL); 3247 if (!newmirrors) { 3248 kfree(newpoolinfo); 3249 mempool_exit(&newpool); 3250 return -ENOMEM; 3251 } 3252 3253 freeze_array(conf, 0); 3254 3255 /* ok, everything is stopped */ 3256 oldpool = conf->r1bio_pool; 3257 conf->r1bio_pool = newpool; 3258 3259 for (d = d2 = 0; d < conf->raid_disks; d++) { 3260 struct md_rdev *rdev = conf->mirrors[d].rdev; 3261 if (rdev && rdev->raid_disk != d2) { 3262 sysfs_unlink_rdev(mddev, rdev); 3263 rdev->raid_disk = d2; 3264 sysfs_unlink_rdev(mddev, rdev); 3265 if (sysfs_link_rdev(mddev, rdev)) 3266 pr_warn("md/raid1:%s: cannot register rd%d\n", 3267 mdname(mddev), rdev->raid_disk); 3268 } 3269 if (rdev) 3270 newmirrors[d2++].rdev = rdev; 3271 } 3272 kfree(conf->mirrors); 3273 conf->mirrors = newmirrors; 3274 kfree(conf->poolinfo); 3275 conf->poolinfo = newpoolinfo; 3276 3277 spin_lock_irqsave(&conf->device_lock, flags); 3278 mddev->degraded += (raid_disks - conf->raid_disks); 3279 spin_unlock_irqrestore(&conf->device_lock, flags); 3280 conf->raid_disks = mddev->raid_disks = raid_disks; 3281 mddev->delta_disks = 0; 3282 3283 unfreeze_array(conf); 3284 3285 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 3286 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3287 md_wakeup_thread(mddev->thread); 3288 3289 mempool_exit(&oldpool); 3290 return 0; 3291 } 3292 3293 static void raid1_quiesce(struct mddev *mddev, int quiesce) 3294 { 3295 struct r1conf *conf = mddev->private; 3296 3297 if (quiesce) 3298 freeze_array(conf, 0); 3299 else 3300 unfreeze_array(conf); 3301 } 3302 3303 static void *raid1_takeover(struct mddev *mddev) 3304 { 3305 /* raid1 can take over: 3306 * raid5 with 2 devices, any layout or chunk size 3307 */ 3308 if (mddev->level == 5 && mddev->raid_disks == 2) { 3309 struct r1conf *conf; 3310 mddev->new_level = 1; 3311 mddev->new_layout = 0; 3312 mddev->new_chunk_sectors = 0; 3313 conf = setup_conf(mddev); 3314 if (!IS_ERR(conf)) { 3315 /* Array must appear to be quiesced */ 3316 conf->array_frozen = 1; 3317 mddev_clear_unsupported_flags(mddev, 3318 UNSUPPORTED_MDDEV_FLAGS); 3319 } 3320 return conf; 3321 } 3322 return ERR_PTR(-EINVAL); 3323 } 3324 3325 static struct md_personality raid1_personality = 3326 { 3327 .name = "raid1", 3328 .level = 1, 3329 .owner = THIS_MODULE, 3330 .make_request = raid1_make_request, 3331 .run = raid1_run, 3332 .free = raid1_free, 3333 .status = raid1_status, 3334 .error_handler = raid1_error, 3335 .hot_add_disk = raid1_add_disk, 3336 .hot_remove_disk= raid1_remove_disk, 3337 .spare_active = raid1_spare_active, 3338 .sync_request = raid1_sync_request, 3339 .resize = raid1_resize, 3340 .size = raid1_size, 3341 .check_reshape = raid1_reshape, 3342 .quiesce = raid1_quiesce, 3343 .takeover = raid1_takeover, 3344 .congested = raid1_congested, 3345 }; 3346 3347 static int __init raid_init(void) 3348 { 3349 return register_md_personality(&raid1_personality); 3350 } 3351 3352 static void raid_exit(void) 3353 { 3354 unregister_md_personality(&raid1_personality); 3355 } 3356 3357 module_init(raid_init); 3358 module_exit(raid_exit); 3359 MODULE_LICENSE("GPL"); 3360 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD"); 3361 MODULE_ALIAS("md-personality-3"); /* RAID1 */ 3362 MODULE_ALIAS("md-raid1"); 3363 MODULE_ALIAS("md-level-1"); 3364 3365 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR); 3366