1 /* 2 * raid1.c : Multiple Devices driver for Linux 3 * 4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat 5 * 6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman 7 * 8 * RAID-1 management functions. 9 * 10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000 11 * 12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk> 13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au> 14 * 15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support 16 * bitmapped intelligence in resync: 17 * 18 * - bitmap marked during normal i/o 19 * - bitmap used to skip nondirty blocks during sync 20 * 21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology: 22 * - persistent bitmap code 23 * 24 * This program is free software; you can redistribute it and/or modify 25 * it under the terms of the GNU General Public License as published by 26 * the Free Software Foundation; either version 2, or (at your option) 27 * any later version. 28 * 29 * You should have received a copy of the GNU General Public License 30 * (for example /usr/src/linux/COPYING); if not, write to the Free 31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 32 */ 33 34 #include <linux/slab.h> 35 #include <linux/delay.h> 36 #include <linux/blkdev.h> 37 #include <linux/module.h> 38 #include <linux/seq_file.h> 39 #include <linux/ratelimit.h> 40 #include "md.h" 41 #include "raid1.h" 42 #include "bitmap.h" 43 44 /* 45 * Number of guaranteed r1bios in case of extreme VM load: 46 */ 47 #define NR_RAID1_BIOS 256 48 49 /* when we get a read error on a read-only array, we redirect to another 50 * device without failing the first device, or trying to over-write to 51 * correct the read error. To keep track of bad blocks on a per-bio 52 * level, we store IO_BLOCKED in the appropriate 'bios' pointer 53 */ 54 #define IO_BLOCKED ((struct bio *)1) 55 /* When we successfully write to a known bad-block, we need to remove the 56 * bad-block marking which must be done from process context. So we record 57 * the success by setting devs[n].bio to IO_MADE_GOOD 58 */ 59 #define IO_MADE_GOOD ((struct bio *)2) 60 61 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2) 62 63 /* When there are this many requests queue to be written by 64 * the raid1 thread, we become 'congested' to provide back-pressure 65 * for writeback. 66 */ 67 static int max_queued_requests = 1024; 68 69 static void allow_barrier(struct r1conf *conf, sector_t start_next_window, 70 sector_t bi_sector); 71 static void lower_barrier(struct r1conf *conf); 72 73 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data) 74 { 75 struct pool_info *pi = data; 76 int size = offsetof(struct r1bio, bios[pi->raid_disks]); 77 78 /* allocate a r1bio with room for raid_disks entries in the bios array */ 79 return kzalloc(size, gfp_flags); 80 } 81 82 static void r1bio_pool_free(void *r1_bio, void *data) 83 { 84 kfree(r1_bio); 85 } 86 87 #define RESYNC_BLOCK_SIZE (64*1024) 88 #define RESYNC_DEPTH 32 89 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9) 90 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE) 91 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH) 92 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9) 93 #define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW) 94 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9) 95 #define NEXT_NORMALIO_DISTANCE (3 * RESYNC_WINDOW_SECTORS) 96 97 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data) 98 { 99 struct pool_info *pi = data; 100 struct r1bio *r1_bio; 101 struct bio *bio; 102 int need_pages; 103 int i, j; 104 105 r1_bio = r1bio_pool_alloc(gfp_flags, pi); 106 if (!r1_bio) 107 return NULL; 108 109 /* 110 * Allocate bios : 1 for reading, n-1 for writing 111 */ 112 for (j = pi->raid_disks ; j-- ; ) { 113 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES); 114 if (!bio) 115 goto out_free_bio; 116 r1_bio->bios[j] = bio; 117 } 118 /* 119 * Allocate RESYNC_PAGES data pages and attach them to 120 * the first bio. 121 * If this is a user-requested check/repair, allocate 122 * RESYNC_PAGES for each bio. 123 */ 124 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) 125 need_pages = pi->raid_disks; 126 else 127 need_pages = 1; 128 for (j = 0; j < need_pages; j++) { 129 bio = r1_bio->bios[j]; 130 bio->bi_vcnt = RESYNC_PAGES; 131 132 if (bio_alloc_pages(bio, gfp_flags)) 133 goto out_free_pages; 134 } 135 /* If not user-requests, copy the page pointers to all bios */ 136 if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) { 137 for (i=0; i<RESYNC_PAGES ; i++) 138 for (j=1; j<pi->raid_disks; j++) 139 r1_bio->bios[j]->bi_io_vec[i].bv_page = 140 r1_bio->bios[0]->bi_io_vec[i].bv_page; 141 } 142 143 r1_bio->master_bio = NULL; 144 145 return r1_bio; 146 147 out_free_pages: 148 while (--j >= 0) { 149 struct bio_vec *bv; 150 151 bio_for_each_segment_all(bv, r1_bio->bios[j], i) 152 __free_page(bv->bv_page); 153 } 154 155 out_free_bio: 156 while (++j < pi->raid_disks) 157 bio_put(r1_bio->bios[j]); 158 r1bio_pool_free(r1_bio, data); 159 return NULL; 160 } 161 162 static void r1buf_pool_free(void *__r1_bio, void *data) 163 { 164 struct pool_info *pi = data; 165 int i,j; 166 struct r1bio *r1bio = __r1_bio; 167 168 for (i = 0; i < RESYNC_PAGES; i++) 169 for (j = pi->raid_disks; j-- ;) { 170 if (j == 0 || 171 r1bio->bios[j]->bi_io_vec[i].bv_page != 172 r1bio->bios[0]->bi_io_vec[i].bv_page) 173 safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page); 174 } 175 for (i=0 ; i < pi->raid_disks; i++) 176 bio_put(r1bio->bios[i]); 177 178 r1bio_pool_free(r1bio, data); 179 } 180 181 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio) 182 { 183 int i; 184 185 for (i = 0; i < conf->raid_disks * 2; i++) { 186 struct bio **bio = r1_bio->bios + i; 187 if (!BIO_SPECIAL(*bio)) 188 bio_put(*bio); 189 *bio = NULL; 190 } 191 } 192 193 static void free_r1bio(struct r1bio *r1_bio) 194 { 195 struct r1conf *conf = r1_bio->mddev->private; 196 197 put_all_bios(conf, r1_bio); 198 mempool_free(r1_bio, conf->r1bio_pool); 199 } 200 201 static void put_buf(struct r1bio *r1_bio) 202 { 203 struct r1conf *conf = r1_bio->mddev->private; 204 int i; 205 206 for (i = 0; i < conf->raid_disks * 2; i++) { 207 struct bio *bio = r1_bio->bios[i]; 208 if (bio->bi_end_io) 209 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev); 210 } 211 212 mempool_free(r1_bio, conf->r1buf_pool); 213 214 lower_barrier(conf); 215 } 216 217 static void reschedule_retry(struct r1bio *r1_bio) 218 { 219 unsigned long flags; 220 struct mddev *mddev = r1_bio->mddev; 221 struct r1conf *conf = mddev->private; 222 223 spin_lock_irqsave(&conf->device_lock, flags); 224 list_add(&r1_bio->retry_list, &conf->retry_list); 225 conf->nr_queued ++; 226 spin_unlock_irqrestore(&conf->device_lock, flags); 227 228 wake_up(&conf->wait_barrier); 229 md_wakeup_thread(mddev->thread); 230 } 231 232 /* 233 * raid_end_bio_io() is called when we have finished servicing a mirrored 234 * operation and are ready to return a success/failure code to the buffer 235 * cache layer. 236 */ 237 static void call_bio_endio(struct r1bio *r1_bio) 238 { 239 struct bio *bio = r1_bio->master_bio; 240 int done; 241 struct r1conf *conf = r1_bio->mddev->private; 242 sector_t start_next_window = r1_bio->start_next_window; 243 sector_t bi_sector = bio->bi_iter.bi_sector; 244 245 if (bio->bi_phys_segments) { 246 unsigned long flags; 247 spin_lock_irqsave(&conf->device_lock, flags); 248 bio->bi_phys_segments--; 249 done = (bio->bi_phys_segments == 0); 250 spin_unlock_irqrestore(&conf->device_lock, flags); 251 /* 252 * make_request() might be waiting for 253 * bi_phys_segments to decrease 254 */ 255 wake_up(&conf->wait_barrier); 256 } else 257 done = 1; 258 259 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) 260 bio->bi_error = -EIO; 261 262 if (done) { 263 bio_endio(bio); 264 /* 265 * Wake up any possible resync thread that waits for the device 266 * to go idle. 267 */ 268 allow_barrier(conf, start_next_window, bi_sector); 269 } 270 } 271 272 static void raid_end_bio_io(struct r1bio *r1_bio) 273 { 274 struct bio *bio = r1_bio->master_bio; 275 276 /* if nobody has done the final endio yet, do it now */ 277 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) { 278 pr_debug("raid1: sync end %s on sectors %llu-%llu\n", 279 (bio_data_dir(bio) == WRITE) ? "write" : "read", 280 (unsigned long long) bio->bi_iter.bi_sector, 281 (unsigned long long) bio_end_sector(bio) - 1); 282 283 call_bio_endio(r1_bio); 284 } 285 free_r1bio(r1_bio); 286 } 287 288 /* 289 * Update disk head position estimator based on IRQ completion info. 290 */ 291 static inline void update_head_pos(int disk, struct r1bio *r1_bio) 292 { 293 struct r1conf *conf = r1_bio->mddev->private; 294 295 conf->mirrors[disk].head_position = 296 r1_bio->sector + (r1_bio->sectors); 297 } 298 299 /* 300 * Find the disk number which triggered given bio 301 */ 302 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio) 303 { 304 int mirror; 305 struct r1conf *conf = r1_bio->mddev->private; 306 int raid_disks = conf->raid_disks; 307 308 for (mirror = 0; mirror < raid_disks * 2; mirror++) 309 if (r1_bio->bios[mirror] == bio) 310 break; 311 312 BUG_ON(mirror == raid_disks * 2); 313 update_head_pos(mirror, r1_bio); 314 315 return mirror; 316 } 317 318 static void raid1_end_read_request(struct bio *bio) 319 { 320 int uptodate = !bio->bi_error; 321 struct r1bio *r1_bio = bio->bi_private; 322 struct r1conf *conf = r1_bio->mddev->private; 323 struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev; 324 325 /* 326 * this branch is our 'one mirror IO has finished' event handler: 327 */ 328 update_head_pos(r1_bio->read_disk, r1_bio); 329 330 if (uptodate) 331 set_bit(R1BIO_Uptodate, &r1_bio->state); 332 else { 333 /* If all other devices have failed, we want to return 334 * the error upwards rather than fail the last device. 335 * Here we redefine "uptodate" to mean "Don't want to retry" 336 */ 337 unsigned long flags; 338 spin_lock_irqsave(&conf->device_lock, flags); 339 if (r1_bio->mddev->degraded == conf->raid_disks || 340 (r1_bio->mddev->degraded == conf->raid_disks-1 && 341 test_bit(In_sync, &rdev->flags))) 342 uptodate = 1; 343 spin_unlock_irqrestore(&conf->device_lock, flags); 344 } 345 346 if (uptodate) { 347 raid_end_bio_io(r1_bio); 348 rdev_dec_pending(rdev, conf->mddev); 349 } else { 350 /* 351 * oops, read error: 352 */ 353 char b[BDEVNAME_SIZE]; 354 printk_ratelimited( 355 KERN_ERR "md/raid1:%s: %s: " 356 "rescheduling sector %llu\n", 357 mdname(conf->mddev), 358 bdevname(rdev->bdev, 359 b), 360 (unsigned long long)r1_bio->sector); 361 set_bit(R1BIO_ReadError, &r1_bio->state); 362 reschedule_retry(r1_bio); 363 /* don't drop the reference on read_disk yet */ 364 } 365 } 366 367 static void close_write(struct r1bio *r1_bio) 368 { 369 /* it really is the end of this request */ 370 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) { 371 /* free extra copy of the data pages */ 372 int i = r1_bio->behind_page_count; 373 while (i--) 374 safe_put_page(r1_bio->behind_bvecs[i].bv_page); 375 kfree(r1_bio->behind_bvecs); 376 r1_bio->behind_bvecs = NULL; 377 } 378 /* clear the bitmap if all writes complete successfully */ 379 bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector, 380 r1_bio->sectors, 381 !test_bit(R1BIO_Degraded, &r1_bio->state), 382 test_bit(R1BIO_BehindIO, &r1_bio->state)); 383 md_write_end(r1_bio->mddev); 384 } 385 386 static void r1_bio_write_done(struct r1bio *r1_bio) 387 { 388 if (!atomic_dec_and_test(&r1_bio->remaining)) 389 return; 390 391 if (test_bit(R1BIO_WriteError, &r1_bio->state)) 392 reschedule_retry(r1_bio); 393 else { 394 close_write(r1_bio); 395 if (test_bit(R1BIO_MadeGood, &r1_bio->state)) 396 reschedule_retry(r1_bio); 397 else 398 raid_end_bio_io(r1_bio); 399 } 400 } 401 402 static void raid1_end_write_request(struct bio *bio) 403 { 404 struct r1bio *r1_bio = bio->bi_private; 405 int behind = test_bit(R1BIO_BehindIO, &r1_bio->state); 406 struct r1conf *conf = r1_bio->mddev->private; 407 struct bio *to_put = NULL; 408 int mirror = find_bio_disk(r1_bio, bio); 409 struct md_rdev *rdev = conf->mirrors[mirror].rdev; 410 411 /* 412 * 'one mirror IO has finished' event handler: 413 */ 414 if (bio->bi_error) { 415 set_bit(WriteErrorSeen, &rdev->flags); 416 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 417 set_bit(MD_RECOVERY_NEEDED, & 418 conf->mddev->recovery); 419 420 set_bit(R1BIO_WriteError, &r1_bio->state); 421 } else { 422 /* 423 * Set R1BIO_Uptodate in our master bio, so that we 424 * will return a good error code for to the higher 425 * levels even if IO on some other mirrored buffer 426 * fails. 427 * 428 * The 'master' represents the composite IO operation 429 * to user-side. So if something waits for IO, then it 430 * will wait for the 'master' bio. 431 */ 432 sector_t first_bad; 433 int bad_sectors; 434 435 r1_bio->bios[mirror] = NULL; 436 to_put = bio; 437 /* 438 * Do not set R1BIO_Uptodate if the current device is 439 * rebuilding or Faulty. This is because we cannot use 440 * such device for properly reading the data back (we could 441 * potentially use it, if the current write would have felt 442 * before rdev->recovery_offset, but for simplicity we don't 443 * check this here. 444 */ 445 if (test_bit(In_sync, &rdev->flags) && 446 !test_bit(Faulty, &rdev->flags)) 447 set_bit(R1BIO_Uptodate, &r1_bio->state); 448 449 /* Maybe we can clear some bad blocks. */ 450 if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors, 451 &first_bad, &bad_sectors)) { 452 r1_bio->bios[mirror] = IO_MADE_GOOD; 453 set_bit(R1BIO_MadeGood, &r1_bio->state); 454 } 455 } 456 457 if (behind) { 458 if (test_bit(WriteMostly, &rdev->flags)) 459 atomic_dec(&r1_bio->behind_remaining); 460 461 /* 462 * In behind mode, we ACK the master bio once the I/O 463 * has safely reached all non-writemostly 464 * disks. Setting the Returned bit ensures that this 465 * gets done only once -- we don't ever want to return 466 * -EIO here, instead we'll wait 467 */ 468 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) && 469 test_bit(R1BIO_Uptodate, &r1_bio->state)) { 470 /* Maybe we can return now */ 471 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) { 472 struct bio *mbio = r1_bio->master_bio; 473 pr_debug("raid1: behind end write sectors" 474 " %llu-%llu\n", 475 (unsigned long long) mbio->bi_iter.bi_sector, 476 (unsigned long long) bio_end_sector(mbio) - 1); 477 call_bio_endio(r1_bio); 478 } 479 } 480 } 481 if (r1_bio->bios[mirror] == NULL) 482 rdev_dec_pending(rdev, conf->mddev); 483 484 /* 485 * Let's see if all mirrored write operations have finished 486 * already. 487 */ 488 r1_bio_write_done(r1_bio); 489 490 if (to_put) 491 bio_put(to_put); 492 } 493 494 /* 495 * This routine returns the disk from which the requested read should 496 * be done. There is a per-array 'next expected sequential IO' sector 497 * number - if this matches on the next IO then we use the last disk. 498 * There is also a per-disk 'last know head position' sector that is 499 * maintained from IRQ contexts, both the normal and the resync IO 500 * completion handlers update this position correctly. If there is no 501 * perfect sequential match then we pick the disk whose head is closest. 502 * 503 * If there are 2 mirrors in the same 2 devices, performance degrades 504 * because position is mirror, not device based. 505 * 506 * The rdev for the device selected will have nr_pending incremented. 507 */ 508 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors) 509 { 510 const sector_t this_sector = r1_bio->sector; 511 int sectors; 512 int best_good_sectors; 513 int best_disk, best_dist_disk, best_pending_disk; 514 int has_nonrot_disk; 515 int disk; 516 sector_t best_dist; 517 unsigned int min_pending; 518 struct md_rdev *rdev; 519 int choose_first; 520 int choose_next_idle; 521 522 rcu_read_lock(); 523 /* 524 * Check if we can balance. We can balance on the whole 525 * device if no resync is going on, or below the resync window. 526 * We take the first readable disk when above the resync window. 527 */ 528 retry: 529 sectors = r1_bio->sectors; 530 best_disk = -1; 531 best_dist_disk = -1; 532 best_dist = MaxSector; 533 best_pending_disk = -1; 534 min_pending = UINT_MAX; 535 best_good_sectors = 0; 536 has_nonrot_disk = 0; 537 choose_next_idle = 0; 538 539 if ((conf->mddev->recovery_cp < this_sector + sectors) || 540 (mddev_is_clustered(conf->mddev) && 541 md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector, 542 this_sector + sectors))) 543 choose_first = 1; 544 else 545 choose_first = 0; 546 547 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) { 548 sector_t dist; 549 sector_t first_bad; 550 int bad_sectors; 551 unsigned int pending; 552 bool nonrot; 553 554 rdev = rcu_dereference(conf->mirrors[disk].rdev); 555 if (r1_bio->bios[disk] == IO_BLOCKED 556 || rdev == NULL 557 || test_bit(Faulty, &rdev->flags)) 558 continue; 559 if (!test_bit(In_sync, &rdev->flags) && 560 rdev->recovery_offset < this_sector + sectors) 561 continue; 562 if (test_bit(WriteMostly, &rdev->flags)) { 563 /* Don't balance among write-mostly, just 564 * use the first as a last resort */ 565 if (best_dist_disk < 0) { 566 if (is_badblock(rdev, this_sector, sectors, 567 &first_bad, &bad_sectors)) { 568 if (first_bad <= this_sector) 569 /* Cannot use this */ 570 continue; 571 best_good_sectors = first_bad - this_sector; 572 } else 573 best_good_sectors = sectors; 574 best_dist_disk = disk; 575 best_pending_disk = disk; 576 } 577 continue; 578 } 579 /* This is a reasonable device to use. It might 580 * even be best. 581 */ 582 if (is_badblock(rdev, this_sector, sectors, 583 &first_bad, &bad_sectors)) { 584 if (best_dist < MaxSector) 585 /* already have a better device */ 586 continue; 587 if (first_bad <= this_sector) { 588 /* cannot read here. If this is the 'primary' 589 * device, then we must not read beyond 590 * bad_sectors from another device.. 591 */ 592 bad_sectors -= (this_sector - first_bad); 593 if (choose_first && sectors > bad_sectors) 594 sectors = bad_sectors; 595 if (best_good_sectors > sectors) 596 best_good_sectors = sectors; 597 598 } else { 599 sector_t good_sectors = first_bad - this_sector; 600 if (good_sectors > best_good_sectors) { 601 best_good_sectors = good_sectors; 602 best_disk = disk; 603 } 604 if (choose_first) 605 break; 606 } 607 continue; 608 } else 609 best_good_sectors = sectors; 610 611 nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev)); 612 has_nonrot_disk |= nonrot; 613 pending = atomic_read(&rdev->nr_pending); 614 dist = abs(this_sector - conf->mirrors[disk].head_position); 615 if (choose_first) { 616 best_disk = disk; 617 break; 618 } 619 /* Don't change to another disk for sequential reads */ 620 if (conf->mirrors[disk].next_seq_sect == this_sector 621 || dist == 0) { 622 int opt_iosize = bdev_io_opt(rdev->bdev) >> 9; 623 struct raid1_info *mirror = &conf->mirrors[disk]; 624 625 best_disk = disk; 626 /* 627 * If buffered sequential IO size exceeds optimal 628 * iosize, check if there is idle disk. If yes, choose 629 * the idle disk. read_balance could already choose an 630 * idle disk before noticing it's a sequential IO in 631 * this disk. This doesn't matter because this disk 632 * will idle, next time it will be utilized after the 633 * first disk has IO size exceeds optimal iosize. In 634 * this way, iosize of the first disk will be optimal 635 * iosize at least. iosize of the second disk might be 636 * small, but not a big deal since when the second disk 637 * starts IO, the first disk is likely still busy. 638 */ 639 if (nonrot && opt_iosize > 0 && 640 mirror->seq_start != MaxSector && 641 mirror->next_seq_sect > opt_iosize && 642 mirror->next_seq_sect - opt_iosize >= 643 mirror->seq_start) { 644 choose_next_idle = 1; 645 continue; 646 } 647 break; 648 } 649 /* If device is idle, use it */ 650 if (pending == 0) { 651 best_disk = disk; 652 break; 653 } 654 655 if (choose_next_idle) 656 continue; 657 658 if (min_pending > pending) { 659 min_pending = pending; 660 best_pending_disk = disk; 661 } 662 663 if (dist < best_dist) { 664 best_dist = dist; 665 best_dist_disk = disk; 666 } 667 } 668 669 /* 670 * If all disks are rotational, choose the closest disk. If any disk is 671 * non-rotational, choose the disk with less pending request even the 672 * disk is rotational, which might/might not be optimal for raids with 673 * mixed ratation/non-rotational disks depending on workload. 674 */ 675 if (best_disk == -1) { 676 if (has_nonrot_disk) 677 best_disk = best_pending_disk; 678 else 679 best_disk = best_dist_disk; 680 } 681 682 if (best_disk >= 0) { 683 rdev = rcu_dereference(conf->mirrors[best_disk].rdev); 684 if (!rdev) 685 goto retry; 686 atomic_inc(&rdev->nr_pending); 687 sectors = best_good_sectors; 688 689 if (conf->mirrors[best_disk].next_seq_sect != this_sector) 690 conf->mirrors[best_disk].seq_start = this_sector; 691 692 conf->mirrors[best_disk].next_seq_sect = this_sector + sectors; 693 } 694 rcu_read_unlock(); 695 *max_sectors = sectors; 696 697 return best_disk; 698 } 699 700 static int raid1_congested(struct mddev *mddev, int bits) 701 { 702 struct r1conf *conf = mddev->private; 703 int i, ret = 0; 704 705 if ((bits & (1 << WB_async_congested)) && 706 conf->pending_count >= max_queued_requests) 707 return 1; 708 709 rcu_read_lock(); 710 for (i = 0; i < conf->raid_disks * 2; i++) { 711 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 712 if (rdev && !test_bit(Faulty, &rdev->flags)) { 713 struct request_queue *q = bdev_get_queue(rdev->bdev); 714 715 BUG_ON(!q); 716 717 /* Note the '|| 1' - when read_balance prefers 718 * non-congested targets, it can be removed 719 */ 720 if ((bits & (1 << WB_async_congested)) || 1) 721 ret |= bdi_congested(&q->backing_dev_info, bits); 722 else 723 ret &= bdi_congested(&q->backing_dev_info, bits); 724 } 725 } 726 rcu_read_unlock(); 727 return ret; 728 } 729 730 static void flush_pending_writes(struct r1conf *conf) 731 { 732 /* Any writes that have been queued but are awaiting 733 * bitmap updates get flushed here. 734 */ 735 spin_lock_irq(&conf->device_lock); 736 737 if (conf->pending_bio_list.head) { 738 struct bio *bio; 739 bio = bio_list_get(&conf->pending_bio_list); 740 conf->pending_count = 0; 741 spin_unlock_irq(&conf->device_lock); 742 /* flush any pending bitmap writes to 743 * disk before proceeding w/ I/O */ 744 bitmap_unplug(conf->mddev->bitmap); 745 wake_up(&conf->wait_barrier); 746 747 while (bio) { /* submit pending writes */ 748 struct bio *next = bio->bi_next; 749 bio->bi_next = NULL; 750 if (unlikely((bio_op(bio) == REQ_OP_DISCARD) && 751 !blk_queue_discard(bdev_get_queue(bio->bi_bdev)))) 752 /* Just ignore it */ 753 bio_endio(bio); 754 else 755 generic_make_request(bio); 756 bio = next; 757 } 758 } else 759 spin_unlock_irq(&conf->device_lock); 760 } 761 762 /* Barriers.... 763 * Sometimes we need to suspend IO while we do something else, 764 * either some resync/recovery, or reconfigure the array. 765 * To do this we raise a 'barrier'. 766 * The 'barrier' is a counter that can be raised multiple times 767 * to count how many activities are happening which preclude 768 * normal IO. 769 * We can only raise the barrier if there is no pending IO. 770 * i.e. if nr_pending == 0. 771 * We choose only to raise the barrier if no-one is waiting for the 772 * barrier to go down. This means that as soon as an IO request 773 * is ready, no other operations which require a barrier will start 774 * until the IO request has had a chance. 775 * 776 * So: regular IO calls 'wait_barrier'. When that returns there 777 * is no backgroup IO happening, It must arrange to call 778 * allow_barrier when it has finished its IO. 779 * backgroup IO calls must call raise_barrier. Once that returns 780 * there is no normal IO happeing. It must arrange to call 781 * lower_barrier when the particular background IO completes. 782 */ 783 static void raise_barrier(struct r1conf *conf, sector_t sector_nr) 784 { 785 spin_lock_irq(&conf->resync_lock); 786 787 /* Wait until no block IO is waiting */ 788 wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting, 789 conf->resync_lock); 790 791 /* block any new IO from starting */ 792 conf->barrier++; 793 conf->next_resync = sector_nr; 794 795 /* For these conditions we must wait: 796 * A: while the array is in frozen state 797 * B: while barrier >= RESYNC_DEPTH, meaning resync reach 798 * the max count which allowed. 799 * C: next_resync + RESYNC_SECTORS > start_next_window, meaning 800 * next resync will reach to the window which normal bios are 801 * handling. 802 * D: while there are any active requests in the current window. 803 */ 804 wait_event_lock_irq(conf->wait_barrier, 805 !conf->array_frozen && 806 conf->barrier < RESYNC_DEPTH && 807 conf->current_window_requests == 0 && 808 (conf->start_next_window >= 809 conf->next_resync + RESYNC_SECTORS), 810 conf->resync_lock); 811 812 conf->nr_pending++; 813 spin_unlock_irq(&conf->resync_lock); 814 } 815 816 static void lower_barrier(struct r1conf *conf) 817 { 818 unsigned long flags; 819 BUG_ON(conf->barrier <= 0); 820 spin_lock_irqsave(&conf->resync_lock, flags); 821 conf->barrier--; 822 conf->nr_pending--; 823 spin_unlock_irqrestore(&conf->resync_lock, flags); 824 wake_up(&conf->wait_barrier); 825 } 826 827 static bool need_to_wait_for_sync(struct r1conf *conf, struct bio *bio) 828 { 829 bool wait = false; 830 831 if (conf->array_frozen || !bio) 832 wait = true; 833 else if (conf->barrier && bio_data_dir(bio) == WRITE) { 834 if ((conf->mddev->curr_resync_completed 835 >= bio_end_sector(bio)) || 836 (conf->next_resync + NEXT_NORMALIO_DISTANCE 837 <= bio->bi_iter.bi_sector)) 838 wait = false; 839 else 840 wait = true; 841 } 842 843 return wait; 844 } 845 846 static sector_t wait_barrier(struct r1conf *conf, struct bio *bio) 847 { 848 sector_t sector = 0; 849 850 spin_lock_irq(&conf->resync_lock); 851 if (need_to_wait_for_sync(conf, bio)) { 852 conf->nr_waiting++; 853 /* Wait for the barrier to drop. 854 * However if there are already pending 855 * requests (preventing the barrier from 856 * rising completely), and the 857 * per-process bio queue isn't empty, 858 * then don't wait, as we need to empty 859 * that queue to allow conf->start_next_window 860 * to increase. 861 */ 862 wait_event_lock_irq(conf->wait_barrier, 863 !conf->array_frozen && 864 (!conf->barrier || 865 ((conf->start_next_window < 866 conf->next_resync + RESYNC_SECTORS) && 867 current->bio_list && 868 !bio_list_empty(current->bio_list))), 869 conf->resync_lock); 870 conf->nr_waiting--; 871 } 872 873 if (bio && bio_data_dir(bio) == WRITE) { 874 if (bio->bi_iter.bi_sector >= conf->next_resync) { 875 if (conf->start_next_window == MaxSector) 876 conf->start_next_window = 877 conf->next_resync + 878 NEXT_NORMALIO_DISTANCE; 879 880 if ((conf->start_next_window + NEXT_NORMALIO_DISTANCE) 881 <= bio->bi_iter.bi_sector) 882 conf->next_window_requests++; 883 else 884 conf->current_window_requests++; 885 sector = conf->start_next_window; 886 } 887 } 888 889 conf->nr_pending++; 890 spin_unlock_irq(&conf->resync_lock); 891 return sector; 892 } 893 894 static void allow_barrier(struct r1conf *conf, sector_t start_next_window, 895 sector_t bi_sector) 896 { 897 unsigned long flags; 898 899 spin_lock_irqsave(&conf->resync_lock, flags); 900 conf->nr_pending--; 901 if (start_next_window) { 902 if (start_next_window == conf->start_next_window) { 903 if (conf->start_next_window + NEXT_NORMALIO_DISTANCE 904 <= bi_sector) 905 conf->next_window_requests--; 906 else 907 conf->current_window_requests--; 908 } else 909 conf->current_window_requests--; 910 911 if (!conf->current_window_requests) { 912 if (conf->next_window_requests) { 913 conf->current_window_requests = 914 conf->next_window_requests; 915 conf->next_window_requests = 0; 916 conf->start_next_window += 917 NEXT_NORMALIO_DISTANCE; 918 } else 919 conf->start_next_window = MaxSector; 920 } 921 } 922 spin_unlock_irqrestore(&conf->resync_lock, flags); 923 wake_up(&conf->wait_barrier); 924 } 925 926 static void freeze_array(struct r1conf *conf, int extra) 927 { 928 /* stop syncio and normal IO and wait for everything to 929 * go quite. 930 * We wait until nr_pending match nr_queued+extra 931 * This is called in the context of one normal IO request 932 * that has failed. Thus any sync request that might be pending 933 * will be blocked by nr_pending, and we need to wait for 934 * pending IO requests to complete or be queued for re-try. 935 * Thus the number queued (nr_queued) plus this request (extra) 936 * must match the number of pending IOs (nr_pending) before 937 * we continue. 938 */ 939 spin_lock_irq(&conf->resync_lock); 940 conf->array_frozen = 1; 941 wait_event_lock_irq_cmd(conf->wait_barrier, 942 conf->nr_pending == conf->nr_queued+extra, 943 conf->resync_lock, 944 flush_pending_writes(conf)); 945 spin_unlock_irq(&conf->resync_lock); 946 } 947 static void unfreeze_array(struct r1conf *conf) 948 { 949 /* reverse the effect of the freeze */ 950 spin_lock_irq(&conf->resync_lock); 951 conf->array_frozen = 0; 952 wake_up(&conf->wait_barrier); 953 spin_unlock_irq(&conf->resync_lock); 954 } 955 956 /* duplicate the data pages for behind I/O 957 */ 958 static void alloc_behind_pages(struct bio *bio, struct r1bio *r1_bio) 959 { 960 int i; 961 struct bio_vec *bvec; 962 struct bio_vec *bvecs = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec), 963 GFP_NOIO); 964 if (unlikely(!bvecs)) 965 return; 966 967 bio_for_each_segment_all(bvec, bio, i) { 968 bvecs[i] = *bvec; 969 bvecs[i].bv_page = alloc_page(GFP_NOIO); 970 if (unlikely(!bvecs[i].bv_page)) 971 goto do_sync_io; 972 memcpy(kmap(bvecs[i].bv_page) + bvec->bv_offset, 973 kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len); 974 kunmap(bvecs[i].bv_page); 975 kunmap(bvec->bv_page); 976 } 977 r1_bio->behind_bvecs = bvecs; 978 r1_bio->behind_page_count = bio->bi_vcnt; 979 set_bit(R1BIO_BehindIO, &r1_bio->state); 980 return; 981 982 do_sync_io: 983 for (i = 0; i < bio->bi_vcnt; i++) 984 if (bvecs[i].bv_page) 985 put_page(bvecs[i].bv_page); 986 kfree(bvecs); 987 pr_debug("%dB behind alloc failed, doing sync I/O\n", 988 bio->bi_iter.bi_size); 989 } 990 991 struct raid1_plug_cb { 992 struct blk_plug_cb cb; 993 struct bio_list pending; 994 int pending_cnt; 995 }; 996 997 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule) 998 { 999 struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb, 1000 cb); 1001 struct mddev *mddev = plug->cb.data; 1002 struct r1conf *conf = mddev->private; 1003 struct bio *bio; 1004 1005 if (from_schedule || current->bio_list) { 1006 spin_lock_irq(&conf->device_lock); 1007 bio_list_merge(&conf->pending_bio_list, &plug->pending); 1008 conf->pending_count += plug->pending_cnt; 1009 spin_unlock_irq(&conf->device_lock); 1010 wake_up(&conf->wait_barrier); 1011 md_wakeup_thread(mddev->thread); 1012 kfree(plug); 1013 return; 1014 } 1015 1016 /* we aren't scheduling, so we can do the write-out directly. */ 1017 bio = bio_list_get(&plug->pending); 1018 bitmap_unplug(mddev->bitmap); 1019 wake_up(&conf->wait_barrier); 1020 1021 while (bio) { /* submit pending writes */ 1022 struct bio *next = bio->bi_next; 1023 bio->bi_next = NULL; 1024 if (unlikely((bio_op(bio) == REQ_OP_DISCARD) && 1025 !blk_queue_discard(bdev_get_queue(bio->bi_bdev)))) 1026 /* Just ignore it */ 1027 bio_endio(bio); 1028 else 1029 generic_make_request(bio); 1030 bio = next; 1031 } 1032 kfree(plug); 1033 } 1034 1035 static void raid1_make_request(struct mddev *mddev, struct bio * bio) 1036 { 1037 struct r1conf *conf = mddev->private; 1038 struct raid1_info *mirror; 1039 struct r1bio *r1_bio; 1040 struct bio *read_bio; 1041 int i, disks; 1042 struct bitmap *bitmap; 1043 unsigned long flags; 1044 const int op = bio_op(bio); 1045 const int rw = bio_data_dir(bio); 1046 const unsigned long do_sync = (bio->bi_opf & REQ_SYNC); 1047 const unsigned long do_flush_fua = (bio->bi_opf & 1048 (REQ_PREFLUSH | REQ_FUA)); 1049 struct md_rdev *blocked_rdev; 1050 struct blk_plug_cb *cb; 1051 struct raid1_plug_cb *plug = NULL; 1052 int first_clone; 1053 int sectors_handled; 1054 int max_sectors; 1055 sector_t start_next_window; 1056 1057 /* 1058 * Register the new request and wait if the reconstruction 1059 * thread has put up a bar for new requests. 1060 * Continue immediately if no resync is active currently. 1061 */ 1062 1063 md_write_start(mddev, bio); /* wait on superblock update early */ 1064 1065 if (bio_data_dir(bio) == WRITE && 1066 ((bio_end_sector(bio) > mddev->suspend_lo && 1067 bio->bi_iter.bi_sector < mddev->suspend_hi) || 1068 (mddev_is_clustered(mddev) && 1069 md_cluster_ops->area_resyncing(mddev, WRITE, 1070 bio->bi_iter.bi_sector, bio_end_sector(bio))))) { 1071 /* As the suspend_* range is controlled by 1072 * userspace, we want an interruptible 1073 * wait. 1074 */ 1075 DEFINE_WAIT(w); 1076 for (;;) { 1077 flush_signals(current); 1078 prepare_to_wait(&conf->wait_barrier, 1079 &w, TASK_INTERRUPTIBLE); 1080 if (bio_end_sector(bio) <= mddev->suspend_lo || 1081 bio->bi_iter.bi_sector >= mddev->suspend_hi || 1082 (mddev_is_clustered(mddev) && 1083 !md_cluster_ops->area_resyncing(mddev, WRITE, 1084 bio->bi_iter.bi_sector, bio_end_sector(bio)))) 1085 break; 1086 schedule(); 1087 } 1088 finish_wait(&conf->wait_barrier, &w); 1089 } 1090 1091 start_next_window = wait_barrier(conf, bio); 1092 1093 bitmap = mddev->bitmap; 1094 1095 /* 1096 * make_request() can abort the operation when read-ahead is being 1097 * used and no empty request is available. 1098 * 1099 */ 1100 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO); 1101 1102 r1_bio->master_bio = bio; 1103 r1_bio->sectors = bio_sectors(bio); 1104 r1_bio->state = 0; 1105 r1_bio->mddev = mddev; 1106 r1_bio->sector = bio->bi_iter.bi_sector; 1107 1108 /* We might need to issue multiple reads to different 1109 * devices if there are bad blocks around, so we keep 1110 * track of the number of reads in bio->bi_phys_segments. 1111 * If this is 0, there is only one r1_bio and no locking 1112 * will be needed when requests complete. If it is 1113 * non-zero, then it is the number of not-completed requests. 1114 */ 1115 bio->bi_phys_segments = 0; 1116 bio_clear_flag(bio, BIO_SEG_VALID); 1117 1118 if (rw == READ) { 1119 /* 1120 * read balancing logic: 1121 */ 1122 int rdisk; 1123 1124 read_again: 1125 rdisk = read_balance(conf, r1_bio, &max_sectors); 1126 1127 if (rdisk < 0) { 1128 /* couldn't find anywhere to read from */ 1129 raid_end_bio_io(r1_bio); 1130 return; 1131 } 1132 mirror = conf->mirrors + rdisk; 1133 1134 if (test_bit(WriteMostly, &mirror->rdev->flags) && 1135 bitmap) { 1136 /* Reading from a write-mostly device must 1137 * take care not to over-take any writes 1138 * that are 'behind' 1139 */ 1140 wait_event(bitmap->behind_wait, 1141 atomic_read(&bitmap->behind_writes) == 0); 1142 } 1143 r1_bio->read_disk = rdisk; 1144 r1_bio->start_next_window = 0; 1145 1146 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev); 1147 bio_trim(read_bio, r1_bio->sector - bio->bi_iter.bi_sector, 1148 max_sectors); 1149 1150 r1_bio->bios[rdisk] = read_bio; 1151 1152 read_bio->bi_iter.bi_sector = r1_bio->sector + 1153 mirror->rdev->data_offset; 1154 read_bio->bi_bdev = mirror->rdev->bdev; 1155 read_bio->bi_end_io = raid1_end_read_request; 1156 bio_set_op_attrs(read_bio, op, do_sync); 1157 read_bio->bi_private = r1_bio; 1158 1159 if (max_sectors < r1_bio->sectors) { 1160 /* could not read all from this device, so we will 1161 * need another r1_bio. 1162 */ 1163 1164 sectors_handled = (r1_bio->sector + max_sectors 1165 - bio->bi_iter.bi_sector); 1166 r1_bio->sectors = max_sectors; 1167 spin_lock_irq(&conf->device_lock); 1168 if (bio->bi_phys_segments == 0) 1169 bio->bi_phys_segments = 2; 1170 else 1171 bio->bi_phys_segments++; 1172 spin_unlock_irq(&conf->device_lock); 1173 /* Cannot call generic_make_request directly 1174 * as that will be queued in __make_request 1175 * and subsequent mempool_alloc might block waiting 1176 * for it. So hand bio over to raid1d. 1177 */ 1178 reschedule_retry(r1_bio); 1179 1180 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO); 1181 1182 r1_bio->master_bio = bio; 1183 r1_bio->sectors = bio_sectors(bio) - sectors_handled; 1184 r1_bio->state = 0; 1185 r1_bio->mddev = mddev; 1186 r1_bio->sector = bio->bi_iter.bi_sector + 1187 sectors_handled; 1188 goto read_again; 1189 } else 1190 generic_make_request(read_bio); 1191 return; 1192 } 1193 1194 /* 1195 * WRITE: 1196 */ 1197 if (conf->pending_count >= max_queued_requests) { 1198 md_wakeup_thread(mddev->thread); 1199 wait_event(conf->wait_barrier, 1200 conf->pending_count < max_queued_requests); 1201 } 1202 /* first select target devices under rcu_lock and 1203 * inc refcount on their rdev. Record them by setting 1204 * bios[x] to bio 1205 * If there are known/acknowledged bad blocks on any device on 1206 * which we have seen a write error, we want to avoid writing those 1207 * blocks. 1208 * This potentially requires several writes to write around 1209 * the bad blocks. Each set of writes gets it's own r1bio 1210 * with a set of bios attached. 1211 */ 1212 1213 disks = conf->raid_disks * 2; 1214 retry_write: 1215 r1_bio->start_next_window = start_next_window; 1216 blocked_rdev = NULL; 1217 rcu_read_lock(); 1218 max_sectors = r1_bio->sectors; 1219 for (i = 0; i < disks; i++) { 1220 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 1221 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) { 1222 atomic_inc(&rdev->nr_pending); 1223 blocked_rdev = rdev; 1224 break; 1225 } 1226 r1_bio->bios[i] = NULL; 1227 if (!rdev || test_bit(Faulty, &rdev->flags)) { 1228 if (i < conf->raid_disks) 1229 set_bit(R1BIO_Degraded, &r1_bio->state); 1230 continue; 1231 } 1232 1233 atomic_inc(&rdev->nr_pending); 1234 if (test_bit(WriteErrorSeen, &rdev->flags)) { 1235 sector_t first_bad; 1236 int bad_sectors; 1237 int is_bad; 1238 1239 is_bad = is_badblock(rdev, r1_bio->sector, 1240 max_sectors, 1241 &first_bad, &bad_sectors); 1242 if (is_bad < 0) { 1243 /* mustn't write here until the bad block is 1244 * acknowledged*/ 1245 set_bit(BlockedBadBlocks, &rdev->flags); 1246 blocked_rdev = rdev; 1247 break; 1248 } 1249 if (is_bad && first_bad <= r1_bio->sector) { 1250 /* Cannot write here at all */ 1251 bad_sectors -= (r1_bio->sector - first_bad); 1252 if (bad_sectors < max_sectors) 1253 /* mustn't write more than bad_sectors 1254 * to other devices yet 1255 */ 1256 max_sectors = bad_sectors; 1257 rdev_dec_pending(rdev, mddev); 1258 /* We don't set R1BIO_Degraded as that 1259 * only applies if the disk is 1260 * missing, so it might be re-added, 1261 * and we want to know to recover this 1262 * chunk. 1263 * In this case the device is here, 1264 * and the fact that this chunk is not 1265 * in-sync is recorded in the bad 1266 * block log 1267 */ 1268 continue; 1269 } 1270 if (is_bad) { 1271 int good_sectors = first_bad - r1_bio->sector; 1272 if (good_sectors < max_sectors) 1273 max_sectors = good_sectors; 1274 } 1275 } 1276 r1_bio->bios[i] = bio; 1277 } 1278 rcu_read_unlock(); 1279 1280 if (unlikely(blocked_rdev)) { 1281 /* Wait for this device to become unblocked */ 1282 int j; 1283 sector_t old = start_next_window; 1284 1285 for (j = 0; j < i; j++) 1286 if (r1_bio->bios[j]) 1287 rdev_dec_pending(conf->mirrors[j].rdev, mddev); 1288 r1_bio->state = 0; 1289 allow_barrier(conf, start_next_window, bio->bi_iter.bi_sector); 1290 md_wait_for_blocked_rdev(blocked_rdev, mddev); 1291 start_next_window = wait_barrier(conf, bio); 1292 /* 1293 * We must make sure the multi r1bios of bio have 1294 * the same value of bi_phys_segments 1295 */ 1296 if (bio->bi_phys_segments && old && 1297 old != start_next_window) 1298 /* Wait for the former r1bio(s) to complete */ 1299 wait_event(conf->wait_barrier, 1300 bio->bi_phys_segments == 1); 1301 goto retry_write; 1302 } 1303 1304 if (max_sectors < r1_bio->sectors) { 1305 /* We are splitting this write into multiple parts, so 1306 * we need to prepare for allocating another r1_bio. 1307 */ 1308 r1_bio->sectors = max_sectors; 1309 spin_lock_irq(&conf->device_lock); 1310 if (bio->bi_phys_segments == 0) 1311 bio->bi_phys_segments = 2; 1312 else 1313 bio->bi_phys_segments++; 1314 spin_unlock_irq(&conf->device_lock); 1315 } 1316 sectors_handled = r1_bio->sector + max_sectors - bio->bi_iter.bi_sector; 1317 1318 atomic_set(&r1_bio->remaining, 1); 1319 atomic_set(&r1_bio->behind_remaining, 0); 1320 1321 first_clone = 1; 1322 for (i = 0; i < disks; i++) { 1323 struct bio *mbio; 1324 if (!r1_bio->bios[i]) 1325 continue; 1326 1327 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev); 1328 bio_trim(mbio, r1_bio->sector - bio->bi_iter.bi_sector, max_sectors); 1329 1330 if (first_clone) { 1331 /* do behind I/O ? 1332 * Not if there are too many, or cannot 1333 * allocate memory, or a reader on WriteMostly 1334 * is waiting for behind writes to flush */ 1335 if (bitmap && 1336 (atomic_read(&bitmap->behind_writes) 1337 < mddev->bitmap_info.max_write_behind) && 1338 !waitqueue_active(&bitmap->behind_wait)) 1339 alloc_behind_pages(mbio, r1_bio); 1340 1341 bitmap_startwrite(bitmap, r1_bio->sector, 1342 r1_bio->sectors, 1343 test_bit(R1BIO_BehindIO, 1344 &r1_bio->state)); 1345 first_clone = 0; 1346 } 1347 if (r1_bio->behind_bvecs) { 1348 struct bio_vec *bvec; 1349 int j; 1350 1351 /* 1352 * We trimmed the bio, so _all is legit 1353 */ 1354 bio_for_each_segment_all(bvec, mbio, j) 1355 bvec->bv_page = r1_bio->behind_bvecs[j].bv_page; 1356 if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags)) 1357 atomic_inc(&r1_bio->behind_remaining); 1358 } 1359 1360 r1_bio->bios[i] = mbio; 1361 1362 mbio->bi_iter.bi_sector = (r1_bio->sector + 1363 conf->mirrors[i].rdev->data_offset); 1364 mbio->bi_bdev = conf->mirrors[i].rdev->bdev; 1365 mbio->bi_end_io = raid1_end_write_request; 1366 bio_set_op_attrs(mbio, op, do_flush_fua | do_sync); 1367 mbio->bi_private = r1_bio; 1368 1369 atomic_inc(&r1_bio->remaining); 1370 1371 cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug)); 1372 if (cb) 1373 plug = container_of(cb, struct raid1_plug_cb, cb); 1374 else 1375 plug = NULL; 1376 spin_lock_irqsave(&conf->device_lock, flags); 1377 if (plug) { 1378 bio_list_add(&plug->pending, mbio); 1379 plug->pending_cnt++; 1380 } else { 1381 bio_list_add(&conf->pending_bio_list, mbio); 1382 conf->pending_count++; 1383 } 1384 spin_unlock_irqrestore(&conf->device_lock, flags); 1385 if (!plug) 1386 md_wakeup_thread(mddev->thread); 1387 } 1388 /* Mustn't call r1_bio_write_done before this next test, 1389 * as it could result in the bio being freed. 1390 */ 1391 if (sectors_handled < bio_sectors(bio)) { 1392 r1_bio_write_done(r1_bio); 1393 /* We need another r1_bio. It has already been counted 1394 * in bio->bi_phys_segments 1395 */ 1396 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO); 1397 r1_bio->master_bio = bio; 1398 r1_bio->sectors = bio_sectors(bio) - sectors_handled; 1399 r1_bio->state = 0; 1400 r1_bio->mddev = mddev; 1401 r1_bio->sector = bio->bi_iter.bi_sector + sectors_handled; 1402 goto retry_write; 1403 } 1404 1405 r1_bio_write_done(r1_bio); 1406 1407 /* In case raid1d snuck in to freeze_array */ 1408 wake_up(&conf->wait_barrier); 1409 } 1410 1411 static void raid1_status(struct seq_file *seq, struct mddev *mddev) 1412 { 1413 struct r1conf *conf = mddev->private; 1414 int i; 1415 1416 seq_printf(seq, " [%d/%d] [", conf->raid_disks, 1417 conf->raid_disks - mddev->degraded); 1418 rcu_read_lock(); 1419 for (i = 0; i < conf->raid_disks; i++) { 1420 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 1421 seq_printf(seq, "%s", 1422 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_"); 1423 } 1424 rcu_read_unlock(); 1425 seq_printf(seq, "]"); 1426 } 1427 1428 static void raid1_error(struct mddev *mddev, struct md_rdev *rdev) 1429 { 1430 char b[BDEVNAME_SIZE]; 1431 struct r1conf *conf = mddev->private; 1432 unsigned long flags; 1433 1434 /* 1435 * If it is not operational, then we have already marked it as dead 1436 * else if it is the last working disks, ignore the error, let the 1437 * next level up know. 1438 * else mark the drive as failed 1439 */ 1440 if (test_bit(In_sync, &rdev->flags) 1441 && (conf->raid_disks - mddev->degraded) == 1) { 1442 /* 1443 * Don't fail the drive, act as though we were just a 1444 * normal single drive. 1445 * However don't try a recovery from this drive as 1446 * it is very likely to fail. 1447 */ 1448 conf->recovery_disabled = mddev->recovery_disabled; 1449 return; 1450 } 1451 set_bit(Blocked, &rdev->flags); 1452 spin_lock_irqsave(&conf->device_lock, flags); 1453 if (test_and_clear_bit(In_sync, &rdev->flags)) { 1454 mddev->degraded++; 1455 set_bit(Faulty, &rdev->flags); 1456 } else 1457 set_bit(Faulty, &rdev->flags); 1458 spin_unlock_irqrestore(&conf->device_lock, flags); 1459 /* 1460 * if recovery is running, make sure it aborts. 1461 */ 1462 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 1463 set_mask_bits(&mddev->flags, 0, 1464 BIT(MD_CHANGE_DEVS) | BIT(MD_CHANGE_PENDING)); 1465 printk(KERN_ALERT 1466 "md/raid1:%s: Disk failure on %s, disabling device.\n" 1467 "md/raid1:%s: Operation continuing on %d devices.\n", 1468 mdname(mddev), bdevname(rdev->bdev, b), 1469 mdname(mddev), conf->raid_disks - mddev->degraded); 1470 } 1471 1472 static void print_conf(struct r1conf *conf) 1473 { 1474 int i; 1475 1476 printk(KERN_DEBUG "RAID1 conf printout:\n"); 1477 if (!conf) { 1478 printk(KERN_DEBUG "(!conf)\n"); 1479 return; 1480 } 1481 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded, 1482 conf->raid_disks); 1483 1484 rcu_read_lock(); 1485 for (i = 0; i < conf->raid_disks; i++) { 1486 char b[BDEVNAME_SIZE]; 1487 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 1488 if (rdev) 1489 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n", 1490 i, !test_bit(In_sync, &rdev->flags), 1491 !test_bit(Faulty, &rdev->flags), 1492 bdevname(rdev->bdev,b)); 1493 } 1494 rcu_read_unlock(); 1495 } 1496 1497 static void close_sync(struct r1conf *conf) 1498 { 1499 wait_barrier(conf, NULL); 1500 allow_barrier(conf, 0, 0); 1501 1502 mempool_destroy(conf->r1buf_pool); 1503 conf->r1buf_pool = NULL; 1504 1505 spin_lock_irq(&conf->resync_lock); 1506 conf->next_resync = MaxSector - 2 * NEXT_NORMALIO_DISTANCE; 1507 conf->start_next_window = MaxSector; 1508 conf->current_window_requests += 1509 conf->next_window_requests; 1510 conf->next_window_requests = 0; 1511 spin_unlock_irq(&conf->resync_lock); 1512 } 1513 1514 static int raid1_spare_active(struct mddev *mddev) 1515 { 1516 int i; 1517 struct r1conf *conf = mddev->private; 1518 int count = 0; 1519 unsigned long flags; 1520 1521 /* 1522 * Find all failed disks within the RAID1 configuration 1523 * and mark them readable. 1524 * Called under mddev lock, so rcu protection not needed. 1525 * device_lock used to avoid races with raid1_end_read_request 1526 * which expects 'In_sync' flags and ->degraded to be consistent. 1527 */ 1528 spin_lock_irqsave(&conf->device_lock, flags); 1529 for (i = 0; i < conf->raid_disks; i++) { 1530 struct md_rdev *rdev = conf->mirrors[i].rdev; 1531 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev; 1532 if (repl 1533 && !test_bit(Candidate, &repl->flags) 1534 && repl->recovery_offset == MaxSector 1535 && !test_bit(Faulty, &repl->flags) 1536 && !test_and_set_bit(In_sync, &repl->flags)) { 1537 /* replacement has just become active */ 1538 if (!rdev || 1539 !test_and_clear_bit(In_sync, &rdev->flags)) 1540 count++; 1541 if (rdev) { 1542 /* Replaced device not technically 1543 * faulty, but we need to be sure 1544 * it gets removed and never re-added 1545 */ 1546 set_bit(Faulty, &rdev->flags); 1547 sysfs_notify_dirent_safe( 1548 rdev->sysfs_state); 1549 } 1550 } 1551 if (rdev 1552 && rdev->recovery_offset == MaxSector 1553 && !test_bit(Faulty, &rdev->flags) 1554 && !test_and_set_bit(In_sync, &rdev->flags)) { 1555 count++; 1556 sysfs_notify_dirent_safe(rdev->sysfs_state); 1557 } 1558 } 1559 mddev->degraded -= count; 1560 spin_unlock_irqrestore(&conf->device_lock, flags); 1561 1562 print_conf(conf); 1563 return count; 1564 } 1565 1566 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev) 1567 { 1568 struct r1conf *conf = mddev->private; 1569 int err = -EEXIST; 1570 int mirror = 0; 1571 struct raid1_info *p; 1572 int first = 0; 1573 int last = conf->raid_disks - 1; 1574 1575 if (mddev->recovery_disabled == conf->recovery_disabled) 1576 return -EBUSY; 1577 1578 if (md_integrity_add_rdev(rdev, mddev)) 1579 return -ENXIO; 1580 1581 if (rdev->raid_disk >= 0) 1582 first = last = rdev->raid_disk; 1583 1584 /* 1585 * find the disk ... but prefer rdev->saved_raid_disk 1586 * if possible. 1587 */ 1588 if (rdev->saved_raid_disk >= 0 && 1589 rdev->saved_raid_disk >= first && 1590 conf->mirrors[rdev->saved_raid_disk].rdev == NULL) 1591 first = last = rdev->saved_raid_disk; 1592 1593 for (mirror = first; mirror <= last; mirror++) { 1594 p = conf->mirrors+mirror; 1595 if (!p->rdev) { 1596 1597 if (mddev->gendisk) 1598 disk_stack_limits(mddev->gendisk, rdev->bdev, 1599 rdev->data_offset << 9); 1600 1601 p->head_position = 0; 1602 rdev->raid_disk = mirror; 1603 err = 0; 1604 /* As all devices are equivalent, we don't need a full recovery 1605 * if this was recently any drive of the array 1606 */ 1607 if (rdev->saved_raid_disk < 0) 1608 conf->fullsync = 1; 1609 rcu_assign_pointer(p->rdev, rdev); 1610 break; 1611 } 1612 if (test_bit(WantReplacement, &p->rdev->flags) && 1613 p[conf->raid_disks].rdev == NULL) { 1614 /* Add this device as a replacement */ 1615 clear_bit(In_sync, &rdev->flags); 1616 set_bit(Replacement, &rdev->flags); 1617 rdev->raid_disk = mirror; 1618 err = 0; 1619 conf->fullsync = 1; 1620 rcu_assign_pointer(p[conf->raid_disks].rdev, rdev); 1621 break; 1622 } 1623 } 1624 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev))) 1625 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue); 1626 print_conf(conf); 1627 return err; 1628 } 1629 1630 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev) 1631 { 1632 struct r1conf *conf = mddev->private; 1633 int err = 0; 1634 int number = rdev->raid_disk; 1635 struct raid1_info *p = conf->mirrors + number; 1636 1637 if (rdev != p->rdev) 1638 p = conf->mirrors + conf->raid_disks + number; 1639 1640 print_conf(conf); 1641 if (rdev == p->rdev) { 1642 if (test_bit(In_sync, &rdev->flags) || 1643 atomic_read(&rdev->nr_pending)) { 1644 err = -EBUSY; 1645 goto abort; 1646 } 1647 /* Only remove non-faulty devices if recovery 1648 * is not possible. 1649 */ 1650 if (!test_bit(Faulty, &rdev->flags) && 1651 mddev->recovery_disabled != conf->recovery_disabled && 1652 mddev->degraded < conf->raid_disks) { 1653 err = -EBUSY; 1654 goto abort; 1655 } 1656 p->rdev = NULL; 1657 if (!test_bit(RemoveSynchronized, &rdev->flags)) { 1658 synchronize_rcu(); 1659 if (atomic_read(&rdev->nr_pending)) { 1660 /* lost the race, try later */ 1661 err = -EBUSY; 1662 p->rdev = rdev; 1663 goto abort; 1664 } 1665 } 1666 if (conf->mirrors[conf->raid_disks + number].rdev) { 1667 /* We just removed a device that is being replaced. 1668 * Move down the replacement. We drain all IO before 1669 * doing this to avoid confusion. 1670 */ 1671 struct md_rdev *repl = 1672 conf->mirrors[conf->raid_disks + number].rdev; 1673 freeze_array(conf, 0); 1674 clear_bit(Replacement, &repl->flags); 1675 p->rdev = repl; 1676 conf->mirrors[conf->raid_disks + number].rdev = NULL; 1677 unfreeze_array(conf); 1678 clear_bit(WantReplacement, &rdev->flags); 1679 } else 1680 clear_bit(WantReplacement, &rdev->flags); 1681 err = md_integrity_register(mddev); 1682 } 1683 abort: 1684 1685 print_conf(conf); 1686 return err; 1687 } 1688 1689 static void end_sync_read(struct bio *bio) 1690 { 1691 struct r1bio *r1_bio = bio->bi_private; 1692 1693 update_head_pos(r1_bio->read_disk, r1_bio); 1694 1695 /* 1696 * we have read a block, now it needs to be re-written, 1697 * or re-read if the read failed. 1698 * We don't do much here, just schedule handling by raid1d 1699 */ 1700 if (!bio->bi_error) 1701 set_bit(R1BIO_Uptodate, &r1_bio->state); 1702 1703 if (atomic_dec_and_test(&r1_bio->remaining)) 1704 reschedule_retry(r1_bio); 1705 } 1706 1707 static void end_sync_write(struct bio *bio) 1708 { 1709 int uptodate = !bio->bi_error; 1710 struct r1bio *r1_bio = bio->bi_private; 1711 struct mddev *mddev = r1_bio->mddev; 1712 struct r1conf *conf = mddev->private; 1713 sector_t first_bad; 1714 int bad_sectors; 1715 struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev; 1716 1717 if (!uptodate) { 1718 sector_t sync_blocks = 0; 1719 sector_t s = r1_bio->sector; 1720 long sectors_to_go = r1_bio->sectors; 1721 /* make sure these bits doesn't get cleared. */ 1722 do { 1723 bitmap_end_sync(mddev->bitmap, s, 1724 &sync_blocks, 1); 1725 s += sync_blocks; 1726 sectors_to_go -= sync_blocks; 1727 } while (sectors_to_go > 0); 1728 set_bit(WriteErrorSeen, &rdev->flags); 1729 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 1730 set_bit(MD_RECOVERY_NEEDED, & 1731 mddev->recovery); 1732 set_bit(R1BIO_WriteError, &r1_bio->state); 1733 } else if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors, 1734 &first_bad, &bad_sectors) && 1735 !is_badblock(conf->mirrors[r1_bio->read_disk].rdev, 1736 r1_bio->sector, 1737 r1_bio->sectors, 1738 &first_bad, &bad_sectors) 1739 ) 1740 set_bit(R1BIO_MadeGood, &r1_bio->state); 1741 1742 if (atomic_dec_and_test(&r1_bio->remaining)) { 1743 int s = r1_bio->sectors; 1744 if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 1745 test_bit(R1BIO_WriteError, &r1_bio->state)) 1746 reschedule_retry(r1_bio); 1747 else { 1748 put_buf(r1_bio); 1749 md_done_sync(mddev, s, uptodate); 1750 } 1751 } 1752 } 1753 1754 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector, 1755 int sectors, struct page *page, int rw) 1756 { 1757 if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false)) 1758 /* success */ 1759 return 1; 1760 if (rw == WRITE) { 1761 set_bit(WriteErrorSeen, &rdev->flags); 1762 if (!test_and_set_bit(WantReplacement, 1763 &rdev->flags)) 1764 set_bit(MD_RECOVERY_NEEDED, & 1765 rdev->mddev->recovery); 1766 } 1767 /* need to record an error - either for the block or the device */ 1768 if (!rdev_set_badblocks(rdev, sector, sectors, 0)) 1769 md_error(rdev->mddev, rdev); 1770 return 0; 1771 } 1772 1773 static int fix_sync_read_error(struct r1bio *r1_bio) 1774 { 1775 /* Try some synchronous reads of other devices to get 1776 * good data, much like with normal read errors. Only 1777 * read into the pages we already have so we don't 1778 * need to re-issue the read request. 1779 * We don't need to freeze the array, because being in an 1780 * active sync request, there is no normal IO, and 1781 * no overlapping syncs. 1782 * We don't need to check is_badblock() again as we 1783 * made sure that anything with a bad block in range 1784 * will have bi_end_io clear. 1785 */ 1786 struct mddev *mddev = r1_bio->mddev; 1787 struct r1conf *conf = mddev->private; 1788 struct bio *bio = r1_bio->bios[r1_bio->read_disk]; 1789 sector_t sect = r1_bio->sector; 1790 int sectors = r1_bio->sectors; 1791 int idx = 0; 1792 1793 while(sectors) { 1794 int s = sectors; 1795 int d = r1_bio->read_disk; 1796 int success = 0; 1797 struct md_rdev *rdev; 1798 int start; 1799 1800 if (s > (PAGE_SIZE>>9)) 1801 s = PAGE_SIZE >> 9; 1802 do { 1803 if (r1_bio->bios[d]->bi_end_io == end_sync_read) { 1804 /* No rcu protection needed here devices 1805 * can only be removed when no resync is 1806 * active, and resync is currently active 1807 */ 1808 rdev = conf->mirrors[d].rdev; 1809 if (sync_page_io(rdev, sect, s<<9, 1810 bio->bi_io_vec[idx].bv_page, 1811 REQ_OP_READ, 0, false)) { 1812 success = 1; 1813 break; 1814 } 1815 } 1816 d++; 1817 if (d == conf->raid_disks * 2) 1818 d = 0; 1819 } while (!success && d != r1_bio->read_disk); 1820 1821 if (!success) { 1822 char b[BDEVNAME_SIZE]; 1823 int abort = 0; 1824 /* Cannot read from anywhere, this block is lost. 1825 * Record a bad block on each device. If that doesn't 1826 * work just disable and interrupt the recovery. 1827 * Don't fail devices as that won't really help. 1828 */ 1829 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error" 1830 " for block %llu\n", 1831 mdname(mddev), 1832 bdevname(bio->bi_bdev, b), 1833 (unsigned long long)r1_bio->sector); 1834 for (d = 0; d < conf->raid_disks * 2; d++) { 1835 rdev = conf->mirrors[d].rdev; 1836 if (!rdev || test_bit(Faulty, &rdev->flags)) 1837 continue; 1838 if (!rdev_set_badblocks(rdev, sect, s, 0)) 1839 abort = 1; 1840 } 1841 if (abort) { 1842 conf->recovery_disabled = 1843 mddev->recovery_disabled; 1844 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 1845 md_done_sync(mddev, r1_bio->sectors, 0); 1846 put_buf(r1_bio); 1847 return 0; 1848 } 1849 /* Try next page */ 1850 sectors -= s; 1851 sect += s; 1852 idx++; 1853 continue; 1854 } 1855 1856 start = d; 1857 /* write it back and re-read */ 1858 while (d != r1_bio->read_disk) { 1859 if (d == 0) 1860 d = conf->raid_disks * 2; 1861 d--; 1862 if (r1_bio->bios[d]->bi_end_io != end_sync_read) 1863 continue; 1864 rdev = conf->mirrors[d].rdev; 1865 if (r1_sync_page_io(rdev, sect, s, 1866 bio->bi_io_vec[idx].bv_page, 1867 WRITE) == 0) { 1868 r1_bio->bios[d]->bi_end_io = NULL; 1869 rdev_dec_pending(rdev, mddev); 1870 } 1871 } 1872 d = start; 1873 while (d != r1_bio->read_disk) { 1874 if (d == 0) 1875 d = conf->raid_disks * 2; 1876 d--; 1877 if (r1_bio->bios[d]->bi_end_io != end_sync_read) 1878 continue; 1879 rdev = conf->mirrors[d].rdev; 1880 if (r1_sync_page_io(rdev, sect, s, 1881 bio->bi_io_vec[idx].bv_page, 1882 READ) != 0) 1883 atomic_add(s, &rdev->corrected_errors); 1884 } 1885 sectors -= s; 1886 sect += s; 1887 idx ++; 1888 } 1889 set_bit(R1BIO_Uptodate, &r1_bio->state); 1890 bio->bi_error = 0; 1891 return 1; 1892 } 1893 1894 static void process_checks(struct r1bio *r1_bio) 1895 { 1896 /* We have read all readable devices. If we haven't 1897 * got the block, then there is no hope left. 1898 * If we have, then we want to do a comparison 1899 * and skip the write if everything is the same. 1900 * If any blocks failed to read, then we need to 1901 * attempt an over-write 1902 */ 1903 struct mddev *mddev = r1_bio->mddev; 1904 struct r1conf *conf = mddev->private; 1905 int primary; 1906 int i; 1907 int vcnt; 1908 1909 /* Fix variable parts of all bios */ 1910 vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9); 1911 for (i = 0; i < conf->raid_disks * 2; i++) { 1912 int j; 1913 int size; 1914 int error; 1915 struct bio *b = r1_bio->bios[i]; 1916 if (b->bi_end_io != end_sync_read) 1917 continue; 1918 /* fixup the bio for reuse, but preserve errno */ 1919 error = b->bi_error; 1920 bio_reset(b); 1921 b->bi_error = error; 1922 b->bi_vcnt = vcnt; 1923 b->bi_iter.bi_size = r1_bio->sectors << 9; 1924 b->bi_iter.bi_sector = r1_bio->sector + 1925 conf->mirrors[i].rdev->data_offset; 1926 b->bi_bdev = conf->mirrors[i].rdev->bdev; 1927 b->bi_end_io = end_sync_read; 1928 b->bi_private = r1_bio; 1929 1930 size = b->bi_iter.bi_size; 1931 for (j = 0; j < vcnt ; j++) { 1932 struct bio_vec *bi; 1933 bi = &b->bi_io_vec[j]; 1934 bi->bv_offset = 0; 1935 if (size > PAGE_SIZE) 1936 bi->bv_len = PAGE_SIZE; 1937 else 1938 bi->bv_len = size; 1939 size -= PAGE_SIZE; 1940 } 1941 } 1942 for (primary = 0; primary < conf->raid_disks * 2; primary++) 1943 if (r1_bio->bios[primary]->bi_end_io == end_sync_read && 1944 !r1_bio->bios[primary]->bi_error) { 1945 r1_bio->bios[primary]->bi_end_io = NULL; 1946 rdev_dec_pending(conf->mirrors[primary].rdev, mddev); 1947 break; 1948 } 1949 r1_bio->read_disk = primary; 1950 for (i = 0; i < conf->raid_disks * 2; i++) { 1951 int j; 1952 struct bio *pbio = r1_bio->bios[primary]; 1953 struct bio *sbio = r1_bio->bios[i]; 1954 int error = sbio->bi_error; 1955 1956 if (sbio->bi_end_io != end_sync_read) 1957 continue; 1958 /* Now we can 'fixup' the error value */ 1959 sbio->bi_error = 0; 1960 1961 if (!error) { 1962 for (j = vcnt; j-- ; ) { 1963 struct page *p, *s; 1964 p = pbio->bi_io_vec[j].bv_page; 1965 s = sbio->bi_io_vec[j].bv_page; 1966 if (memcmp(page_address(p), 1967 page_address(s), 1968 sbio->bi_io_vec[j].bv_len)) 1969 break; 1970 } 1971 } else 1972 j = 0; 1973 if (j >= 0) 1974 atomic64_add(r1_bio->sectors, &mddev->resync_mismatches); 1975 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery) 1976 && !error)) { 1977 /* No need to write to this device. */ 1978 sbio->bi_end_io = NULL; 1979 rdev_dec_pending(conf->mirrors[i].rdev, mddev); 1980 continue; 1981 } 1982 1983 bio_copy_data(sbio, pbio); 1984 } 1985 } 1986 1987 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio) 1988 { 1989 struct r1conf *conf = mddev->private; 1990 int i; 1991 int disks = conf->raid_disks * 2; 1992 struct bio *bio, *wbio; 1993 1994 bio = r1_bio->bios[r1_bio->read_disk]; 1995 1996 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) 1997 /* ouch - failed to read all of that. */ 1998 if (!fix_sync_read_error(r1_bio)) 1999 return; 2000 2001 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 2002 process_checks(r1_bio); 2003 2004 /* 2005 * schedule writes 2006 */ 2007 atomic_set(&r1_bio->remaining, 1); 2008 for (i = 0; i < disks ; i++) { 2009 wbio = r1_bio->bios[i]; 2010 if (wbio->bi_end_io == NULL || 2011 (wbio->bi_end_io == end_sync_read && 2012 (i == r1_bio->read_disk || 2013 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery)))) 2014 continue; 2015 2016 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0); 2017 wbio->bi_end_io = end_sync_write; 2018 atomic_inc(&r1_bio->remaining); 2019 md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio)); 2020 2021 generic_make_request(wbio); 2022 } 2023 2024 if (atomic_dec_and_test(&r1_bio->remaining)) { 2025 /* if we're here, all write(s) have completed, so clean up */ 2026 int s = r1_bio->sectors; 2027 if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 2028 test_bit(R1BIO_WriteError, &r1_bio->state)) 2029 reschedule_retry(r1_bio); 2030 else { 2031 put_buf(r1_bio); 2032 md_done_sync(mddev, s, 1); 2033 } 2034 } 2035 } 2036 2037 /* 2038 * This is a kernel thread which: 2039 * 2040 * 1. Retries failed read operations on working mirrors. 2041 * 2. Updates the raid superblock when problems encounter. 2042 * 3. Performs writes following reads for array synchronising. 2043 */ 2044 2045 static void fix_read_error(struct r1conf *conf, int read_disk, 2046 sector_t sect, int sectors) 2047 { 2048 struct mddev *mddev = conf->mddev; 2049 while(sectors) { 2050 int s = sectors; 2051 int d = read_disk; 2052 int success = 0; 2053 int start; 2054 struct md_rdev *rdev; 2055 2056 if (s > (PAGE_SIZE>>9)) 2057 s = PAGE_SIZE >> 9; 2058 2059 do { 2060 sector_t first_bad; 2061 int bad_sectors; 2062 2063 rcu_read_lock(); 2064 rdev = rcu_dereference(conf->mirrors[d].rdev); 2065 if (rdev && 2066 (test_bit(In_sync, &rdev->flags) || 2067 (!test_bit(Faulty, &rdev->flags) && 2068 rdev->recovery_offset >= sect + s)) && 2069 is_badblock(rdev, sect, s, 2070 &first_bad, &bad_sectors) == 0) { 2071 atomic_inc(&rdev->nr_pending); 2072 rcu_read_unlock(); 2073 if (sync_page_io(rdev, sect, s<<9, 2074 conf->tmppage, REQ_OP_READ, 0, false)) 2075 success = 1; 2076 rdev_dec_pending(rdev, mddev); 2077 if (success) 2078 break; 2079 } else 2080 rcu_read_unlock(); 2081 d++; 2082 if (d == conf->raid_disks * 2) 2083 d = 0; 2084 } while (!success && d != read_disk); 2085 2086 if (!success) { 2087 /* Cannot read from anywhere - mark it bad */ 2088 struct md_rdev *rdev = conf->mirrors[read_disk].rdev; 2089 if (!rdev_set_badblocks(rdev, sect, s, 0)) 2090 md_error(mddev, rdev); 2091 break; 2092 } 2093 /* write it back and re-read */ 2094 start = d; 2095 while (d != read_disk) { 2096 if (d==0) 2097 d = conf->raid_disks * 2; 2098 d--; 2099 rcu_read_lock(); 2100 rdev = rcu_dereference(conf->mirrors[d].rdev); 2101 if (rdev && 2102 !test_bit(Faulty, &rdev->flags)) { 2103 atomic_inc(&rdev->nr_pending); 2104 rcu_read_unlock(); 2105 r1_sync_page_io(rdev, sect, s, 2106 conf->tmppage, WRITE); 2107 rdev_dec_pending(rdev, mddev); 2108 } else 2109 rcu_read_unlock(); 2110 } 2111 d = start; 2112 while (d != read_disk) { 2113 char b[BDEVNAME_SIZE]; 2114 if (d==0) 2115 d = conf->raid_disks * 2; 2116 d--; 2117 rcu_read_lock(); 2118 rdev = rcu_dereference(conf->mirrors[d].rdev); 2119 if (rdev && 2120 !test_bit(Faulty, &rdev->flags)) { 2121 atomic_inc(&rdev->nr_pending); 2122 rcu_read_unlock(); 2123 if (r1_sync_page_io(rdev, sect, s, 2124 conf->tmppage, READ)) { 2125 atomic_add(s, &rdev->corrected_errors); 2126 printk(KERN_INFO 2127 "md/raid1:%s: read error corrected " 2128 "(%d sectors at %llu on %s)\n", 2129 mdname(mddev), s, 2130 (unsigned long long)(sect + 2131 rdev->data_offset), 2132 bdevname(rdev->bdev, b)); 2133 } 2134 rdev_dec_pending(rdev, mddev); 2135 } else 2136 rcu_read_unlock(); 2137 } 2138 sectors -= s; 2139 sect += s; 2140 } 2141 } 2142 2143 static int narrow_write_error(struct r1bio *r1_bio, int i) 2144 { 2145 struct mddev *mddev = r1_bio->mddev; 2146 struct r1conf *conf = mddev->private; 2147 struct md_rdev *rdev = conf->mirrors[i].rdev; 2148 2149 /* bio has the data to be written to device 'i' where 2150 * we just recently had a write error. 2151 * We repeatedly clone the bio and trim down to one block, 2152 * then try the write. Where the write fails we record 2153 * a bad block. 2154 * It is conceivable that the bio doesn't exactly align with 2155 * blocks. We must handle this somehow. 2156 * 2157 * We currently own a reference on the rdev. 2158 */ 2159 2160 int block_sectors; 2161 sector_t sector; 2162 int sectors; 2163 int sect_to_write = r1_bio->sectors; 2164 int ok = 1; 2165 2166 if (rdev->badblocks.shift < 0) 2167 return 0; 2168 2169 block_sectors = roundup(1 << rdev->badblocks.shift, 2170 bdev_logical_block_size(rdev->bdev) >> 9); 2171 sector = r1_bio->sector; 2172 sectors = ((sector + block_sectors) 2173 & ~(sector_t)(block_sectors - 1)) 2174 - sector; 2175 2176 while (sect_to_write) { 2177 struct bio *wbio; 2178 if (sectors > sect_to_write) 2179 sectors = sect_to_write; 2180 /* Write at 'sector' for 'sectors'*/ 2181 2182 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) { 2183 unsigned vcnt = r1_bio->behind_page_count; 2184 struct bio_vec *vec = r1_bio->behind_bvecs; 2185 2186 while (!vec->bv_page) { 2187 vec++; 2188 vcnt--; 2189 } 2190 2191 wbio = bio_alloc_mddev(GFP_NOIO, vcnt, mddev); 2192 memcpy(wbio->bi_io_vec, vec, vcnt * sizeof(struct bio_vec)); 2193 2194 wbio->bi_vcnt = vcnt; 2195 } else { 2196 wbio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev); 2197 } 2198 2199 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0); 2200 wbio->bi_iter.bi_sector = r1_bio->sector; 2201 wbio->bi_iter.bi_size = r1_bio->sectors << 9; 2202 2203 bio_trim(wbio, sector - r1_bio->sector, sectors); 2204 wbio->bi_iter.bi_sector += rdev->data_offset; 2205 wbio->bi_bdev = rdev->bdev; 2206 2207 if (submit_bio_wait(wbio) < 0) 2208 /* failure! */ 2209 ok = rdev_set_badblocks(rdev, sector, 2210 sectors, 0) 2211 && ok; 2212 2213 bio_put(wbio); 2214 sect_to_write -= sectors; 2215 sector += sectors; 2216 sectors = block_sectors; 2217 } 2218 return ok; 2219 } 2220 2221 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio) 2222 { 2223 int m; 2224 int s = r1_bio->sectors; 2225 for (m = 0; m < conf->raid_disks * 2 ; m++) { 2226 struct md_rdev *rdev = conf->mirrors[m].rdev; 2227 struct bio *bio = r1_bio->bios[m]; 2228 if (bio->bi_end_io == NULL) 2229 continue; 2230 if (!bio->bi_error && 2231 test_bit(R1BIO_MadeGood, &r1_bio->state)) { 2232 rdev_clear_badblocks(rdev, r1_bio->sector, s, 0); 2233 } 2234 if (bio->bi_error && 2235 test_bit(R1BIO_WriteError, &r1_bio->state)) { 2236 if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0)) 2237 md_error(conf->mddev, rdev); 2238 } 2239 } 2240 put_buf(r1_bio); 2241 md_done_sync(conf->mddev, s, 1); 2242 } 2243 2244 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio) 2245 { 2246 int m; 2247 bool fail = false; 2248 for (m = 0; m < conf->raid_disks * 2 ; m++) 2249 if (r1_bio->bios[m] == IO_MADE_GOOD) { 2250 struct md_rdev *rdev = conf->mirrors[m].rdev; 2251 rdev_clear_badblocks(rdev, 2252 r1_bio->sector, 2253 r1_bio->sectors, 0); 2254 rdev_dec_pending(rdev, conf->mddev); 2255 } else if (r1_bio->bios[m] != NULL) { 2256 /* This drive got a write error. We need to 2257 * narrow down and record precise write 2258 * errors. 2259 */ 2260 fail = true; 2261 if (!narrow_write_error(r1_bio, m)) { 2262 md_error(conf->mddev, 2263 conf->mirrors[m].rdev); 2264 /* an I/O failed, we can't clear the bitmap */ 2265 set_bit(R1BIO_Degraded, &r1_bio->state); 2266 } 2267 rdev_dec_pending(conf->mirrors[m].rdev, 2268 conf->mddev); 2269 } 2270 if (fail) { 2271 spin_lock_irq(&conf->device_lock); 2272 list_add(&r1_bio->retry_list, &conf->bio_end_io_list); 2273 conf->nr_queued++; 2274 spin_unlock_irq(&conf->device_lock); 2275 md_wakeup_thread(conf->mddev->thread); 2276 } else { 2277 if (test_bit(R1BIO_WriteError, &r1_bio->state)) 2278 close_write(r1_bio); 2279 raid_end_bio_io(r1_bio); 2280 } 2281 } 2282 2283 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio) 2284 { 2285 int disk; 2286 int max_sectors; 2287 struct mddev *mddev = conf->mddev; 2288 struct bio *bio; 2289 char b[BDEVNAME_SIZE]; 2290 struct md_rdev *rdev; 2291 2292 clear_bit(R1BIO_ReadError, &r1_bio->state); 2293 /* we got a read error. Maybe the drive is bad. Maybe just 2294 * the block and we can fix it. 2295 * We freeze all other IO, and try reading the block from 2296 * other devices. When we find one, we re-write 2297 * and check it that fixes the read error. 2298 * This is all done synchronously while the array is 2299 * frozen 2300 */ 2301 if (mddev->ro == 0) { 2302 freeze_array(conf, 1); 2303 fix_read_error(conf, r1_bio->read_disk, 2304 r1_bio->sector, r1_bio->sectors); 2305 unfreeze_array(conf); 2306 } else 2307 md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev); 2308 rdev_dec_pending(conf->mirrors[r1_bio->read_disk].rdev, conf->mddev); 2309 2310 bio = r1_bio->bios[r1_bio->read_disk]; 2311 bdevname(bio->bi_bdev, b); 2312 read_more: 2313 disk = read_balance(conf, r1_bio, &max_sectors); 2314 if (disk == -1) { 2315 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O" 2316 " read error for block %llu\n", 2317 mdname(mddev), b, (unsigned long long)r1_bio->sector); 2318 raid_end_bio_io(r1_bio); 2319 } else { 2320 const unsigned long do_sync 2321 = r1_bio->master_bio->bi_opf & REQ_SYNC; 2322 if (bio) { 2323 r1_bio->bios[r1_bio->read_disk] = 2324 mddev->ro ? IO_BLOCKED : NULL; 2325 bio_put(bio); 2326 } 2327 r1_bio->read_disk = disk; 2328 bio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev); 2329 bio_trim(bio, r1_bio->sector - bio->bi_iter.bi_sector, 2330 max_sectors); 2331 r1_bio->bios[r1_bio->read_disk] = bio; 2332 rdev = conf->mirrors[disk].rdev; 2333 printk_ratelimited(KERN_ERR 2334 "md/raid1:%s: redirecting sector %llu" 2335 " to other mirror: %s\n", 2336 mdname(mddev), 2337 (unsigned long long)r1_bio->sector, 2338 bdevname(rdev->bdev, b)); 2339 bio->bi_iter.bi_sector = r1_bio->sector + rdev->data_offset; 2340 bio->bi_bdev = rdev->bdev; 2341 bio->bi_end_io = raid1_end_read_request; 2342 bio_set_op_attrs(bio, REQ_OP_READ, do_sync); 2343 bio->bi_private = r1_bio; 2344 if (max_sectors < r1_bio->sectors) { 2345 /* Drat - have to split this up more */ 2346 struct bio *mbio = r1_bio->master_bio; 2347 int sectors_handled = (r1_bio->sector + max_sectors 2348 - mbio->bi_iter.bi_sector); 2349 r1_bio->sectors = max_sectors; 2350 spin_lock_irq(&conf->device_lock); 2351 if (mbio->bi_phys_segments == 0) 2352 mbio->bi_phys_segments = 2; 2353 else 2354 mbio->bi_phys_segments++; 2355 spin_unlock_irq(&conf->device_lock); 2356 generic_make_request(bio); 2357 bio = NULL; 2358 2359 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO); 2360 2361 r1_bio->master_bio = mbio; 2362 r1_bio->sectors = bio_sectors(mbio) - sectors_handled; 2363 r1_bio->state = 0; 2364 set_bit(R1BIO_ReadError, &r1_bio->state); 2365 r1_bio->mddev = mddev; 2366 r1_bio->sector = mbio->bi_iter.bi_sector + 2367 sectors_handled; 2368 2369 goto read_more; 2370 } else 2371 generic_make_request(bio); 2372 } 2373 } 2374 2375 static void raid1d(struct md_thread *thread) 2376 { 2377 struct mddev *mddev = thread->mddev; 2378 struct r1bio *r1_bio; 2379 unsigned long flags; 2380 struct r1conf *conf = mddev->private; 2381 struct list_head *head = &conf->retry_list; 2382 struct blk_plug plug; 2383 2384 md_check_recovery(mddev); 2385 2386 if (!list_empty_careful(&conf->bio_end_io_list) && 2387 !test_bit(MD_CHANGE_PENDING, &mddev->flags)) { 2388 LIST_HEAD(tmp); 2389 spin_lock_irqsave(&conf->device_lock, flags); 2390 if (!test_bit(MD_CHANGE_PENDING, &mddev->flags)) { 2391 while (!list_empty(&conf->bio_end_io_list)) { 2392 list_move(conf->bio_end_io_list.prev, &tmp); 2393 conf->nr_queued--; 2394 } 2395 } 2396 spin_unlock_irqrestore(&conf->device_lock, flags); 2397 while (!list_empty(&tmp)) { 2398 r1_bio = list_first_entry(&tmp, struct r1bio, 2399 retry_list); 2400 list_del(&r1_bio->retry_list); 2401 if (mddev->degraded) 2402 set_bit(R1BIO_Degraded, &r1_bio->state); 2403 if (test_bit(R1BIO_WriteError, &r1_bio->state)) 2404 close_write(r1_bio); 2405 raid_end_bio_io(r1_bio); 2406 } 2407 } 2408 2409 blk_start_plug(&plug); 2410 for (;;) { 2411 2412 flush_pending_writes(conf); 2413 2414 spin_lock_irqsave(&conf->device_lock, flags); 2415 if (list_empty(head)) { 2416 spin_unlock_irqrestore(&conf->device_lock, flags); 2417 break; 2418 } 2419 r1_bio = list_entry(head->prev, struct r1bio, retry_list); 2420 list_del(head->prev); 2421 conf->nr_queued--; 2422 spin_unlock_irqrestore(&conf->device_lock, flags); 2423 2424 mddev = r1_bio->mddev; 2425 conf = mddev->private; 2426 if (test_bit(R1BIO_IsSync, &r1_bio->state)) { 2427 if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 2428 test_bit(R1BIO_WriteError, &r1_bio->state)) 2429 handle_sync_write_finished(conf, r1_bio); 2430 else 2431 sync_request_write(mddev, r1_bio); 2432 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 2433 test_bit(R1BIO_WriteError, &r1_bio->state)) 2434 handle_write_finished(conf, r1_bio); 2435 else if (test_bit(R1BIO_ReadError, &r1_bio->state)) 2436 handle_read_error(conf, r1_bio); 2437 else 2438 /* just a partial read to be scheduled from separate 2439 * context 2440 */ 2441 generic_make_request(r1_bio->bios[r1_bio->read_disk]); 2442 2443 cond_resched(); 2444 if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) 2445 md_check_recovery(mddev); 2446 } 2447 blk_finish_plug(&plug); 2448 } 2449 2450 static int init_resync(struct r1conf *conf) 2451 { 2452 int buffs; 2453 2454 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE; 2455 BUG_ON(conf->r1buf_pool); 2456 conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free, 2457 conf->poolinfo); 2458 if (!conf->r1buf_pool) 2459 return -ENOMEM; 2460 conf->next_resync = 0; 2461 return 0; 2462 } 2463 2464 /* 2465 * perform a "sync" on one "block" 2466 * 2467 * We need to make sure that no normal I/O request - particularly write 2468 * requests - conflict with active sync requests. 2469 * 2470 * This is achieved by tracking pending requests and a 'barrier' concept 2471 * that can be installed to exclude normal IO requests. 2472 */ 2473 2474 static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr, 2475 int *skipped) 2476 { 2477 struct r1conf *conf = mddev->private; 2478 struct r1bio *r1_bio; 2479 struct bio *bio; 2480 sector_t max_sector, nr_sectors; 2481 int disk = -1; 2482 int i; 2483 int wonly = -1; 2484 int write_targets = 0, read_targets = 0; 2485 sector_t sync_blocks; 2486 int still_degraded = 0; 2487 int good_sectors = RESYNC_SECTORS; 2488 int min_bad = 0; /* number of sectors that are bad in all devices */ 2489 2490 if (!conf->r1buf_pool) 2491 if (init_resync(conf)) 2492 return 0; 2493 2494 max_sector = mddev->dev_sectors; 2495 if (sector_nr >= max_sector) { 2496 /* If we aborted, we need to abort the 2497 * sync on the 'current' bitmap chunk (there will 2498 * only be one in raid1 resync. 2499 * We can find the current addess in mddev->curr_resync 2500 */ 2501 if (mddev->curr_resync < max_sector) /* aborted */ 2502 bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 2503 &sync_blocks, 1); 2504 else /* completed sync */ 2505 conf->fullsync = 0; 2506 2507 bitmap_close_sync(mddev->bitmap); 2508 close_sync(conf); 2509 2510 if (mddev_is_clustered(mddev)) { 2511 conf->cluster_sync_low = 0; 2512 conf->cluster_sync_high = 0; 2513 } 2514 return 0; 2515 } 2516 2517 if (mddev->bitmap == NULL && 2518 mddev->recovery_cp == MaxSector && 2519 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 2520 conf->fullsync == 0) { 2521 *skipped = 1; 2522 return max_sector - sector_nr; 2523 } 2524 /* before building a request, check if we can skip these blocks.. 2525 * This call the bitmap_start_sync doesn't actually record anything 2526 */ 2527 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) && 2528 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 2529 /* We can skip this block, and probably several more */ 2530 *skipped = 1; 2531 return sync_blocks; 2532 } 2533 2534 /* 2535 * If there is non-resync activity waiting for a turn, then let it 2536 * though before starting on this new sync request. 2537 */ 2538 if (conf->nr_waiting) 2539 schedule_timeout_uninterruptible(1); 2540 2541 /* we are incrementing sector_nr below. To be safe, we check against 2542 * sector_nr + two times RESYNC_SECTORS 2543 */ 2544 2545 bitmap_cond_end_sync(mddev->bitmap, sector_nr, 2546 mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high)); 2547 r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO); 2548 2549 raise_barrier(conf, sector_nr); 2550 2551 rcu_read_lock(); 2552 /* 2553 * If we get a correctably read error during resync or recovery, 2554 * we might want to read from a different device. So we 2555 * flag all drives that could conceivably be read from for READ, 2556 * and any others (which will be non-In_sync devices) for WRITE. 2557 * If a read fails, we try reading from something else for which READ 2558 * is OK. 2559 */ 2560 2561 r1_bio->mddev = mddev; 2562 r1_bio->sector = sector_nr; 2563 r1_bio->state = 0; 2564 set_bit(R1BIO_IsSync, &r1_bio->state); 2565 2566 for (i = 0; i < conf->raid_disks * 2; i++) { 2567 struct md_rdev *rdev; 2568 bio = r1_bio->bios[i]; 2569 bio_reset(bio); 2570 2571 rdev = rcu_dereference(conf->mirrors[i].rdev); 2572 if (rdev == NULL || 2573 test_bit(Faulty, &rdev->flags)) { 2574 if (i < conf->raid_disks) 2575 still_degraded = 1; 2576 } else if (!test_bit(In_sync, &rdev->flags)) { 2577 bio_set_op_attrs(bio, REQ_OP_WRITE, 0); 2578 bio->bi_end_io = end_sync_write; 2579 write_targets ++; 2580 } else { 2581 /* may need to read from here */ 2582 sector_t first_bad = MaxSector; 2583 int bad_sectors; 2584 2585 if (is_badblock(rdev, sector_nr, good_sectors, 2586 &first_bad, &bad_sectors)) { 2587 if (first_bad > sector_nr) 2588 good_sectors = first_bad - sector_nr; 2589 else { 2590 bad_sectors -= (sector_nr - first_bad); 2591 if (min_bad == 0 || 2592 min_bad > bad_sectors) 2593 min_bad = bad_sectors; 2594 } 2595 } 2596 if (sector_nr < first_bad) { 2597 if (test_bit(WriteMostly, &rdev->flags)) { 2598 if (wonly < 0) 2599 wonly = i; 2600 } else { 2601 if (disk < 0) 2602 disk = i; 2603 } 2604 bio_set_op_attrs(bio, REQ_OP_READ, 0); 2605 bio->bi_end_io = end_sync_read; 2606 read_targets++; 2607 } else if (!test_bit(WriteErrorSeen, &rdev->flags) && 2608 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && 2609 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) { 2610 /* 2611 * The device is suitable for reading (InSync), 2612 * but has bad block(s) here. Let's try to correct them, 2613 * if we are doing resync or repair. Otherwise, leave 2614 * this device alone for this sync request. 2615 */ 2616 bio_set_op_attrs(bio, REQ_OP_WRITE, 0); 2617 bio->bi_end_io = end_sync_write; 2618 write_targets++; 2619 } 2620 } 2621 if (bio->bi_end_io) { 2622 atomic_inc(&rdev->nr_pending); 2623 bio->bi_iter.bi_sector = sector_nr + rdev->data_offset; 2624 bio->bi_bdev = rdev->bdev; 2625 bio->bi_private = r1_bio; 2626 } 2627 } 2628 rcu_read_unlock(); 2629 if (disk < 0) 2630 disk = wonly; 2631 r1_bio->read_disk = disk; 2632 2633 if (read_targets == 0 && min_bad > 0) { 2634 /* These sectors are bad on all InSync devices, so we 2635 * need to mark them bad on all write targets 2636 */ 2637 int ok = 1; 2638 for (i = 0 ; i < conf->raid_disks * 2 ; i++) 2639 if (r1_bio->bios[i]->bi_end_io == end_sync_write) { 2640 struct md_rdev *rdev = conf->mirrors[i].rdev; 2641 ok = rdev_set_badblocks(rdev, sector_nr, 2642 min_bad, 0 2643 ) && ok; 2644 } 2645 set_bit(MD_CHANGE_DEVS, &mddev->flags); 2646 *skipped = 1; 2647 put_buf(r1_bio); 2648 2649 if (!ok) { 2650 /* Cannot record the badblocks, so need to 2651 * abort the resync. 2652 * If there are multiple read targets, could just 2653 * fail the really bad ones ??? 2654 */ 2655 conf->recovery_disabled = mddev->recovery_disabled; 2656 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 2657 return 0; 2658 } else 2659 return min_bad; 2660 2661 } 2662 if (min_bad > 0 && min_bad < good_sectors) { 2663 /* only resync enough to reach the next bad->good 2664 * transition */ 2665 good_sectors = min_bad; 2666 } 2667 2668 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0) 2669 /* extra read targets are also write targets */ 2670 write_targets += read_targets-1; 2671 2672 if (write_targets == 0 || read_targets == 0) { 2673 /* There is nowhere to write, so all non-sync 2674 * drives must be failed - so we are finished 2675 */ 2676 sector_t rv; 2677 if (min_bad > 0) 2678 max_sector = sector_nr + min_bad; 2679 rv = max_sector - sector_nr; 2680 *skipped = 1; 2681 put_buf(r1_bio); 2682 return rv; 2683 } 2684 2685 if (max_sector > mddev->resync_max) 2686 max_sector = mddev->resync_max; /* Don't do IO beyond here */ 2687 if (max_sector > sector_nr + good_sectors) 2688 max_sector = sector_nr + good_sectors; 2689 nr_sectors = 0; 2690 sync_blocks = 0; 2691 do { 2692 struct page *page; 2693 int len = PAGE_SIZE; 2694 if (sector_nr + (len>>9) > max_sector) 2695 len = (max_sector - sector_nr) << 9; 2696 if (len == 0) 2697 break; 2698 if (sync_blocks == 0) { 2699 if (!bitmap_start_sync(mddev->bitmap, sector_nr, 2700 &sync_blocks, still_degraded) && 2701 !conf->fullsync && 2702 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 2703 break; 2704 if ((len >> 9) > sync_blocks) 2705 len = sync_blocks<<9; 2706 } 2707 2708 for (i = 0 ; i < conf->raid_disks * 2; i++) { 2709 bio = r1_bio->bios[i]; 2710 if (bio->bi_end_io) { 2711 page = bio->bi_io_vec[bio->bi_vcnt].bv_page; 2712 if (bio_add_page(bio, page, len, 0) == 0) { 2713 /* stop here */ 2714 bio->bi_io_vec[bio->bi_vcnt].bv_page = page; 2715 while (i > 0) { 2716 i--; 2717 bio = r1_bio->bios[i]; 2718 if (bio->bi_end_io==NULL) 2719 continue; 2720 /* remove last page from this bio */ 2721 bio->bi_vcnt--; 2722 bio->bi_iter.bi_size -= len; 2723 bio_clear_flag(bio, BIO_SEG_VALID); 2724 } 2725 goto bio_full; 2726 } 2727 } 2728 } 2729 nr_sectors += len>>9; 2730 sector_nr += len>>9; 2731 sync_blocks -= (len>>9); 2732 } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES); 2733 bio_full: 2734 r1_bio->sectors = nr_sectors; 2735 2736 if (mddev_is_clustered(mddev) && 2737 conf->cluster_sync_high < sector_nr + nr_sectors) { 2738 conf->cluster_sync_low = mddev->curr_resync_completed; 2739 conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS; 2740 /* Send resync message */ 2741 md_cluster_ops->resync_info_update(mddev, 2742 conf->cluster_sync_low, 2743 conf->cluster_sync_high); 2744 } 2745 2746 /* For a user-requested sync, we read all readable devices and do a 2747 * compare 2748 */ 2749 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 2750 atomic_set(&r1_bio->remaining, read_targets); 2751 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) { 2752 bio = r1_bio->bios[i]; 2753 if (bio->bi_end_io == end_sync_read) { 2754 read_targets--; 2755 md_sync_acct(bio->bi_bdev, nr_sectors); 2756 generic_make_request(bio); 2757 } 2758 } 2759 } else { 2760 atomic_set(&r1_bio->remaining, 1); 2761 bio = r1_bio->bios[r1_bio->read_disk]; 2762 md_sync_acct(bio->bi_bdev, nr_sectors); 2763 generic_make_request(bio); 2764 2765 } 2766 return nr_sectors; 2767 } 2768 2769 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks) 2770 { 2771 if (sectors) 2772 return sectors; 2773 2774 return mddev->dev_sectors; 2775 } 2776 2777 static struct r1conf *setup_conf(struct mddev *mddev) 2778 { 2779 struct r1conf *conf; 2780 int i; 2781 struct raid1_info *disk; 2782 struct md_rdev *rdev; 2783 int err = -ENOMEM; 2784 2785 conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL); 2786 if (!conf) 2787 goto abort; 2788 2789 conf->mirrors = kzalloc(sizeof(struct raid1_info) 2790 * mddev->raid_disks * 2, 2791 GFP_KERNEL); 2792 if (!conf->mirrors) 2793 goto abort; 2794 2795 conf->tmppage = alloc_page(GFP_KERNEL); 2796 if (!conf->tmppage) 2797 goto abort; 2798 2799 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL); 2800 if (!conf->poolinfo) 2801 goto abort; 2802 conf->poolinfo->raid_disks = mddev->raid_disks * 2; 2803 conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc, 2804 r1bio_pool_free, 2805 conf->poolinfo); 2806 if (!conf->r1bio_pool) 2807 goto abort; 2808 2809 conf->poolinfo->mddev = mddev; 2810 2811 err = -EINVAL; 2812 spin_lock_init(&conf->device_lock); 2813 rdev_for_each(rdev, mddev) { 2814 struct request_queue *q; 2815 int disk_idx = rdev->raid_disk; 2816 if (disk_idx >= mddev->raid_disks 2817 || disk_idx < 0) 2818 continue; 2819 if (test_bit(Replacement, &rdev->flags)) 2820 disk = conf->mirrors + mddev->raid_disks + disk_idx; 2821 else 2822 disk = conf->mirrors + disk_idx; 2823 2824 if (disk->rdev) 2825 goto abort; 2826 disk->rdev = rdev; 2827 q = bdev_get_queue(rdev->bdev); 2828 2829 disk->head_position = 0; 2830 disk->seq_start = MaxSector; 2831 } 2832 conf->raid_disks = mddev->raid_disks; 2833 conf->mddev = mddev; 2834 INIT_LIST_HEAD(&conf->retry_list); 2835 INIT_LIST_HEAD(&conf->bio_end_io_list); 2836 2837 spin_lock_init(&conf->resync_lock); 2838 init_waitqueue_head(&conf->wait_barrier); 2839 2840 bio_list_init(&conf->pending_bio_list); 2841 conf->pending_count = 0; 2842 conf->recovery_disabled = mddev->recovery_disabled - 1; 2843 2844 conf->start_next_window = MaxSector; 2845 conf->current_window_requests = conf->next_window_requests = 0; 2846 2847 err = -EIO; 2848 for (i = 0; i < conf->raid_disks * 2; i++) { 2849 2850 disk = conf->mirrors + i; 2851 2852 if (i < conf->raid_disks && 2853 disk[conf->raid_disks].rdev) { 2854 /* This slot has a replacement. */ 2855 if (!disk->rdev) { 2856 /* No original, just make the replacement 2857 * a recovering spare 2858 */ 2859 disk->rdev = 2860 disk[conf->raid_disks].rdev; 2861 disk[conf->raid_disks].rdev = NULL; 2862 } else if (!test_bit(In_sync, &disk->rdev->flags)) 2863 /* Original is not in_sync - bad */ 2864 goto abort; 2865 } 2866 2867 if (!disk->rdev || 2868 !test_bit(In_sync, &disk->rdev->flags)) { 2869 disk->head_position = 0; 2870 if (disk->rdev && 2871 (disk->rdev->saved_raid_disk < 0)) 2872 conf->fullsync = 1; 2873 } 2874 } 2875 2876 err = -ENOMEM; 2877 conf->thread = md_register_thread(raid1d, mddev, "raid1"); 2878 if (!conf->thread) { 2879 printk(KERN_ERR 2880 "md/raid1:%s: couldn't allocate thread\n", 2881 mdname(mddev)); 2882 goto abort; 2883 } 2884 2885 return conf; 2886 2887 abort: 2888 if (conf) { 2889 mempool_destroy(conf->r1bio_pool); 2890 kfree(conf->mirrors); 2891 safe_put_page(conf->tmppage); 2892 kfree(conf->poolinfo); 2893 kfree(conf); 2894 } 2895 return ERR_PTR(err); 2896 } 2897 2898 static void raid1_free(struct mddev *mddev, void *priv); 2899 static int raid1_run(struct mddev *mddev) 2900 { 2901 struct r1conf *conf; 2902 int i; 2903 struct md_rdev *rdev; 2904 int ret; 2905 bool discard_supported = false; 2906 2907 if (mddev->level != 1) { 2908 printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n", 2909 mdname(mddev), mddev->level); 2910 return -EIO; 2911 } 2912 if (mddev->reshape_position != MaxSector) { 2913 printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n", 2914 mdname(mddev)); 2915 return -EIO; 2916 } 2917 /* 2918 * copy the already verified devices into our private RAID1 2919 * bookkeeping area. [whatever we allocate in run(), 2920 * should be freed in raid1_free()] 2921 */ 2922 if (mddev->private == NULL) 2923 conf = setup_conf(mddev); 2924 else 2925 conf = mddev->private; 2926 2927 if (IS_ERR(conf)) 2928 return PTR_ERR(conf); 2929 2930 if (mddev->queue) 2931 blk_queue_max_write_same_sectors(mddev->queue, 0); 2932 2933 rdev_for_each(rdev, mddev) { 2934 if (!mddev->gendisk) 2935 continue; 2936 disk_stack_limits(mddev->gendisk, rdev->bdev, 2937 rdev->data_offset << 9); 2938 if (blk_queue_discard(bdev_get_queue(rdev->bdev))) 2939 discard_supported = true; 2940 } 2941 2942 mddev->degraded = 0; 2943 for (i=0; i < conf->raid_disks; i++) 2944 if (conf->mirrors[i].rdev == NULL || 2945 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) || 2946 test_bit(Faulty, &conf->mirrors[i].rdev->flags)) 2947 mddev->degraded++; 2948 2949 if (conf->raid_disks - mddev->degraded == 1) 2950 mddev->recovery_cp = MaxSector; 2951 2952 if (mddev->recovery_cp != MaxSector) 2953 printk(KERN_NOTICE "md/raid1:%s: not clean" 2954 " -- starting background reconstruction\n", 2955 mdname(mddev)); 2956 printk(KERN_INFO 2957 "md/raid1:%s: active with %d out of %d mirrors\n", 2958 mdname(mddev), mddev->raid_disks - mddev->degraded, 2959 mddev->raid_disks); 2960 2961 /* 2962 * Ok, everything is just fine now 2963 */ 2964 mddev->thread = conf->thread; 2965 conf->thread = NULL; 2966 mddev->private = conf; 2967 2968 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0)); 2969 2970 if (mddev->queue) { 2971 if (discard_supported) 2972 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, 2973 mddev->queue); 2974 else 2975 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, 2976 mddev->queue); 2977 } 2978 2979 ret = md_integrity_register(mddev); 2980 if (ret) { 2981 md_unregister_thread(&mddev->thread); 2982 raid1_free(mddev, conf); 2983 } 2984 return ret; 2985 } 2986 2987 static void raid1_free(struct mddev *mddev, void *priv) 2988 { 2989 struct r1conf *conf = priv; 2990 2991 mempool_destroy(conf->r1bio_pool); 2992 kfree(conf->mirrors); 2993 safe_put_page(conf->tmppage); 2994 kfree(conf->poolinfo); 2995 kfree(conf); 2996 } 2997 2998 static int raid1_resize(struct mddev *mddev, sector_t sectors) 2999 { 3000 /* no resync is happening, and there is enough space 3001 * on all devices, so we can resize. 3002 * We need to make sure resync covers any new space. 3003 * If the array is shrinking we should possibly wait until 3004 * any io in the removed space completes, but it hardly seems 3005 * worth it. 3006 */ 3007 sector_t newsize = raid1_size(mddev, sectors, 0); 3008 if (mddev->external_size && 3009 mddev->array_sectors > newsize) 3010 return -EINVAL; 3011 if (mddev->bitmap) { 3012 int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0); 3013 if (ret) 3014 return ret; 3015 } 3016 md_set_array_sectors(mddev, newsize); 3017 set_capacity(mddev->gendisk, mddev->array_sectors); 3018 revalidate_disk(mddev->gendisk); 3019 if (sectors > mddev->dev_sectors && 3020 mddev->recovery_cp > mddev->dev_sectors) { 3021 mddev->recovery_cp = mddev->dev_sectors; 3022 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3023 } 3024 mddev->dev_sectors = sectors; 3025 mddev->resync_max_sectors = sectors; 3026 return 0; 3027 } 3028 3029 static int raid1_reshape(struct mddev *mddev) 3030 { 3031 /* We need to: 3032 * 1/ resize the r1bio_pool 3033 * 2/ resize conf->mirrors 3034 * 3035 * We allocate a new r1bio_pool if we can. 3036 * Then raise a device barrier and wait until all IO stops. 3037 * Then resize conf->mirrors and swap in the new r1bio pool. 3038 * 3039 * At the same time, we "pack" the devices so that all the missing 3040 * devices have the higher raid_disk numbers. 3041 */ 3042 mempool_t *newpool, *oldpool; 3043 struct pool_info *newpoolinfo; 3044 struct raid1_info *newmirrors; 3045 struct r1conf *conf = mddev->private; 3046 int cnt, raid_disks; 3047 unsigned long flags; 3048 int d, d2, err; 3049 3050 /* Cannot change chunk_size, layout, or level */ 3051 if (mddev->chunk_sectors != mddev->new_chunk_sectors || 3052 mddev->layout != mddev->new_layout || 3053 mddev->level != mddev->new_level) { 3054 mddev->new_chunk_sectors = mddev->chunk_sectors; 3055 mddev->new_layout = mddev->layout; 3056 mddev->new_level = mddev->level; 3057 return -EINVAL; 3058 } 3059 3060 if (!mddev_is_clustered(mddev)) { 3061 err = md_allow_write(mddev); 3062 if (err) 3063 return err; 3064 } 3065 3066 raid_disks = mddev->raid_disks + mddev->delta_disks; 3067 3068 if (raid_disks < conf->raid_disks) { 3069 cnt=0; 3070 for (d= 0; d < conf->raid_disks; d++) 3071 if (conf->mirrors[d].rdev) 3072 cnt++; 3073 if (cnt > raid_disks) 3074 return -EBUSY; 3075 } 3076 3077 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL); 3078 if (!newpoolinfo) 3079 return -ENOMEM; 3080 newpoolinfo->mddev = mddev; 3081 newpoolinfo->raid_disks = raid_disks * 2; 3082 3083 newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc, 3084 r1bio_pool_free, newpoolinfo); 3085 if (!newpool) { 3086 kfree(newpoolinfo); 3087 return -ENOMEM; 3088 } 3089 newmirrors = kzalloc(sizeof(struct raid1_info) * raid_disks * 2, 3090 GFP_KERNEL); 3091 if (!newmirrors) { 3092 kfree(newpoolinfo); 3093 mempool_destroy(newpool); 3094 return -ENOMEM; 3095 } 3096 3097 freeze_array(conf, 0); 3098 3099 /* ok, everything is stopped */ 3100 oldpool = conf->r1bio_pool; 3101 conf->r1bio_pool = newpool; 3102 3103 for (d = d2 = 0; d < conf->raid_disks; d++) { 3104 struct md_rdev *rdev = conf->mirrors[d].rdev; 3105 if (rdev && rdev->raid_disk != d2) { 3106 sysfs_unlink_rdev(mddev, rdev); 3107 rdev->raid_disk = d2; 3108 sysfs_unlink_rdev(mddev, rdev); 3109 if (sysfs_link_rdev(mddev, rdev)) 3110 printk(KERN_WARNING 3111 "md/raid1:%s: cannot register rd%d\n", 3112 mdname(mddev), rdev->raid_disk); 3113 } 3114 if (rdev) 3115 newmirrors[d2++].rdev = rdev; 3116 } 3117 kfree(conf->mirrors); 3118 conf->mirrors = newmirrors; 3119 kfree(conf->poolinfo); 3120 conf->poolinfo = newpoolinfo; 3121 3122 spin_lock_irqsave(&conf->device_lock, flags); 3123 mddev->degraded += (raid_disks - conf->raid_disks); 3124 spin_unlock_irqrestore(&conf->device_lock, flags); 3125 conf->raid_disks = mddev->raid_disks = raid_disks; 3126 mddev->delta_disks = 0; 3127 3128 unfreeze_array(conf); 3129 3130 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 3131 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3132 md_wakeup_thread(mddev->thread); 3133 3134 mempool_destroy(oldpool); 3135 return 0; 3136 } 3137 3138 static void raid1_quiesce(struct mddev *mddev, int state) 3139 { 3140 struct r1conf *conf = mddev->private; 3141 3142 switch(state) { 3143 case 2: /* wake for suspend */ 3144 wake_up(&conf->wait_barrier); 3145 break; 3146 case 1: 3147 freeze_array(conf, 0); 3148 break; 3149 case 0: 3150 unfreeze_array(conf); 3151 break; 3152 } 3153 } 3154 3155 static void *raid1_takeover(struct mddev *mddev) 3156 { 3157 /* raid1 can take over: 3158 * raid5 with 2 devices, any layout or chunk size 3159 */ 3160 if (mddev->level == 5 && mddev->raid_disks == 2) { 3161 struct r1conf *conf; 3162 mddev->new_level = 1; 3163 mddev->new_layout = 0; 3164 mddev->new_chunk_sectors = 0; 3165 conf = setup_conf(mddev); 3166 if (!IS_ERR(conf)) 3167 /* Array must appear to be quiesced */ 3168 conf->array_frozen = 1; 3169 return conf; 3170 } 3171 return ERR_PTR(-EINVAL); 3172 } 3173 3174 static struct md_personality raid1_personality = 3175 { 3176 .name = "raid1", 3177 .level = 1, 3178 .owner = THIS_MODULE, 3179 .make_request = raid1_make_request, 3180 .run = raid1_run, 3181 .free = raid1_free, 3182 .status = raid1_status, 3183 .error_handler = raid1_error, 3184 .hot_add_disk = raid1_add_disk, 3185 .hot_remove_disk= raid1_remove_disk, 3186 .spare_active = raid1_spare_active, 3187 .sync_request = raid1_sync_request, 3188 .resize = raid1_resize, 3189 .size = raid1_size, 3190 .check_reshape = raid1_reshape, 3191 .quiesce = raid1_quiesce, 3192 .takeover = raid1_takeover, 3193 .congested = raid1_congested, 3194 }; 3195 3196 static int __init raid_init(void) 3197 { 3198 return register_md_personality(&raid1_personality); 3199 } 3200 3201 static void raid_exit(void) 3202 { 3203 unregister_md_personality(&raid1_personality); 3204 } 3205 3206 module_init(raid_init); 3207 module_exit(raid_exit); 3208 MODULE_LICENSE("GPL"); 3209 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD"); 3210 MODULE_ALIAS("md-personality-3"); /* RAID1 */ 3211 MODULE_ALIAS("md-raid1"); 3212 MODULE_ALIAS("md-level-1"); 3213 3214 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR); 3215