xref: /openbmc/linux/drivers/md/raid1.c (revision bc5aa3a0)
1 /*
2  * raid1.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5  *
6  * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7  *
8  * RAID-1 management functions.
9  *
10  * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11  *
12  * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
13  * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14  *
15  * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16  * bitmapped intelligence in resync:
17  *
18  *      - bitmap marked during normal i/o
19  *      - bitmap used to skip nondirty blocks during sync
20  *
21  * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22  * - persistent bitmap code
23  *
24  * This program is free software; you can redistribute it and/or modify
25  * it under the terms of the GNU General Public License as published by
26  * the Free Software Foundation; either version 2, or (at your option)
27  * any later version.
28  *
29  * You should have received a copy of the GNU General Public License
30  * (for example /usr/src/linux/COPYING); if not, write to the Free
31  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32  */
33 
34 #include <linux/slab.h>
35 #include <linux/delay.h>
36 #include <linux/blkdev.h>
37 #include <linux/module.h>
38 #include <linux/seq_file.h>
39 #include <linux/ratelimit.h>
40 #include "md.h"
41 #include "raid1.h"
42 #include "bitmap.h"
43 
44 /*
45  * Number of guaranteed r1bios in case of extreme VM load:
46  */
47 #define	NR_RAID1_BIOS 256
48 
49 /* when we get a read error on a read-only array, we redirect to another
50  * device without failing the first device, or trying to over-write to
51  * correct the read error.  To keep track of bad blocks on a per-bio
52  * level, we store IO_BLOCKED in the appropriate 'bios' pointer
53  */
54 #define IO_BLOCKED ((struct bio *)1)
55 /* When we successfully write to a known bad-block, we need to remove the
56  * bad-block marking which must be done from process context.  So we record
57  * the success by setting devs[n].bio to IO_MADE_GOOD
58  */
59 #define IO_MADE_GOOD ((struct bio *)2)
60 
61 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
62 
63 /* When there are this many requests queue to be written by
64  * the raid1 thread, we become 'congested' to provide back-pressure
65  * for writeback.
66  */
67 static int max_queued_requests = 1024;
68 
69 static void allow_barrier(struct r1conf *conf, sector_t start_next_window,
70 			  sector_t bi_sector);
71 static void lower_barrier(struct r1conf *conf);
72 
73 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
74 {
75 	struct pool_info *pi = data;
76 	int size = offsetof(struct r1bio, bios[pi->raid_disks]);
77 
78 	/* allocate a r1bio with room for raid_disks entries in the bios array */
79 	return kzalloc(size, gfp_flags);
80 }
81 
82 static void r1bio_pool_free(void *r1_bio, void *data)
83 {
84 	kfree(r1_bio);
85 }
86 
87 #define RESYNC_BLOCK_SIZE (64*1024)
88 #define RESYNC_DEPTH 32
89 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
90 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
91 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
92 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
93 #define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
94 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
95 #define NEXT_NORMALIO_DISTANCE (3 * RESYNC_WINDOW_SECTORS)
96 
97 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
98 {
99 	struct pool_info *pi = data;
100 	struct r1bio *r1_bio;
101 	struct bio *bio;
102 	int need_pages;
103 	int i, j;
104 
105 	r1_bio = r1bio_pool_alloc(gfp_flags, pi);
106 	if (!r1_bio)
107 		return NULL;
108 
109 	/*
110 	 * Allocate bios : 1 for reading, n-1 for writing
111 	 */
112 	for (j = pi->raid_disks ; j-- ; ) {
113 		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
114 		if (!bio)
115 			goto out_free_bio;
116 		r1_bio->bios[j] = bio;
117 	}
118 	/*
119 	 * Allocate RESYNC_PAGES data pages and attach them to
120 	 * the first bio.
121 	 * If this is a user-requested check/repair, allocate
122 	 * RESYNC_PAGES for each bio.
123 	 */
124 	if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
125 		need_pages = pi->raid_disks;
126 	else
127 		need_pages = 1;
128 	for (j = 0; j < need_pages; j++) {
129 		bio = r1_bio->bios[j];
130 		bio->bi_vcnt = RESYNC_PAGES;
131 
132 		if (bio_alloc_pages(bio, gfp_flags))
133 			goto out_free_pages;
134 	}
135 	/* If not user-requests, copy the page pointers to all bios */
136 	if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
137 		for (i=0; i<RESYNC_PAGES ; i++)
138 			for (j=1; j<pi->raid_disks; j++)
139 				r1_bio->bios[j]->bi_io_vec[i].bv_page =
140 					r1_bio->bios[0]->bi_io_vec[i].bv_page;
141 	}
142 
143 	r1_bio->master_bio = NULL;
144 
145 	return r1_bio;
146 
147 out_free_pages:
148 	while (--j >= 0) {
149 		struct bio_vec *bv;
150 
151 		bio_for_each_segment_all(bv, r1_bio->bios[j], i)
152 			__free_page(bv->bv_page);
153 	}
154 
155 out_free_bio:
156 	while (++j < pi->raid_disks)
157 		bio_put(r1_bio->bios[j]);
158 	r1bio_pool_free(r1_bio, data);
159 	return NULL;
160 }
161 
162 static void r1buf_pool_free(void *__r1_bio, void *data)
163 {
164 	struct pool_info *pi = data;
165 	int i,j;
166 	struct r1bio *r1bio = __r1_bio;
167 
168 	for (i = 0; i < RESYNC_PAGES; i++)
169 		for (j = pi->raid_disks; j-- ;) {
170 			if (j == 0 ||
171 			    r1bio->bios[j]->bi_io_vec[i].bv_page !=
172 			    r1bio->bios[0]->bi_io_vec[i].bv_page)
173 				safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
174 		}
175 	for (i=0 ; i < pi->raid_disks; i++)
176 		bio_put(r1bio->bios[i]);
177 
178 	r1bio_pool_free(r1bio, data);
179 }
180 
181 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
182 {
183 	int i;
184 
185 	for (i = 0; i < conf->raid_disks * 2; i++) {
186 		struct bio **bio = r1_bio->bios + i;
187 		if (!BIO_SPECIAL(*bio))
188 			bio_put(*bio);
189 		*bio = NULL;
190 	}
191 }
192 
193 static void free_r1bio(struct r1bio *r1_bio)
194 {
195 	struct r1conf *conf = r1_bio->mddev->private;
196 
197 	put_all_bios(conf, r1_bio);
198 	mempool_free(r1_bio, conf->r1bio_pool);
199 }
200 
201 static void put_buf(struct r1bio *r1_bio)
202 {
203 	struct r1conf *conf = r1_bio->mddev->private;
204 	int i;
205 
206 	for (i = 0; i < conf->raid_disks * 2; i++) {
207 		struct bio *bio = r1_bio->bios[i];
208 		if (bio->bi_end_io)
209 			rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
210 	}
211 
212 	mempool_free(r1_bio, conf->r1buf_pool);
213 
214 	lower_barrier(conf);
215 }
216 
217 static void reschedule_retry(struct r1bio *r1_bio)
218 {
219 	unsigned long flags;
220 	struct mddev *mddev = r1_bio->mddev;
221 	struct r1conf *conf = mddev->private;
222 
223 	spin_lock_irqsave(&conf->device_lock, flags);
224 	list_add(&r1_bio->retry_list, &conf->retry_list);
225 	conf->nr_queued ++;
226 	spin_unlock_irqrestore(&conf->device_lock, flags);
227 
228 	wake_up(&conf->wait_barrier);
229 	md_wakeup_thread(mddev->thread);
230 }
231 
232 /*
233  * raid_end_bio_io() is called when we have finished servicing a mirrored
234  * operation and are ready to return a success/failure code to the buffer
235  * cache layer.
236  */
237 static void call_bio_endio(struct r1bio *r1_bio)
238 {
239 	struct bio *bio = r1_bio->master_bio;
240 	int done;
241 	struct r1conf *conf = r1_bio->mddev->private;
242 	sector_t start_next_window = r1_bio->start_next_window;
243 	sector_t bi_sector = bio->bi_iter.bi_sector;
244 
245 	if (bio->bi_phys_segments) {
246 		unsigned long flags;
247 		spin_lock_irqsave(&conf->device_lock, flags);
248 		bio->bi_phys_segments--;
249 		done = (bio->bi_phys_segments == 0);
250 		spin_unlock_irqrestore(&conf->device_lock, flags);
251 		/*
252 		 * make_request() might be waiting for
253 		 * bi_phys_segments to decrease
254 		 */
255 		wake_up(&conf->wait_barrier);
256 	} else
257 		done = 1;
258 
259 	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
260 		bio->bi_error = -EIO;
261 
262 	if (done) {
263 		bio_endio(bio);
264 		/*
265 		 * Wake up any possible resync thread that waits for the device
266 		 * to go idle.
267 		 */
268 		allow_barrier(conf, start_next_window, bi_sector);
269 	}
270 }
271 
272 static void raid_end_bio_io(struct r1bio *r1_bio)
273 {
274 	struct bio *bio = r1_bio->master_bio;
275 
276 	/* if nobody has done the final endio yet, do it now */
277 	if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
278 		pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
279 			 (bio_data_dir(bio) == WRITE) ? "write" : "read",
280 			 (unsigned long long) bio->bi_iter.bi_sector,
281 			 (unsigned long long) bio_end_sector(bio) - 1);
282 
283 		call_bio_endio(r1_bio);
284 	}
285 	free_r1bio(r1_bio);
286 }
287 
288 /*
289  * Update disk head position estimator based on IRQ completion info.
290  */
291 static inline void update_head_pos(int disk, struct r1bio *r1_bio)
292 {
293 	struct r1conf *conf = r1_bio->mddev->private;
294 
295 	conf->mirrors[disk].head_position =
296 		r1_bio->sector + (r1_bio->sectors);
297 }
298 
299 /*
300  * Find the disk number which triggered given bio
301  */
302 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
303 {
304 	int mirror;
305 	struct r1conf *conf = r1_bio->mddev->private;
306 	int raid_disks = conf->raid_disks;
307 
308 	for (mirror = 0; mirror < raid_disks * 2; mirror++)
309 		if (r1_bio->bios[mirror] == bio)
310 			break;
311 
312 	BUG_ON(mirror == raid_disks * 2);
313 	update_head_pos(mirror, r1_bio);
314 
315 	return mirror;
316 }
317 
318 static void raid1_end_read_request(struct bio *bio)
319 {
320 	int uptodate = !bio->bi_error;
321 	struct r1bio *r1_bio = bio->bi_private;
322 	struct r1conf *conf = r1_bio->mddev->private;
323 	struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev;
324 
325 	/*
326 	 * this branch is our 'one mirror IO has finished' event handler:
327 	 */
328 	update_head_pos(r1_bio->read_disk, r1_bio);
329 
330 	if (uptodate)
331 		set_bit(R1BIO_Uptodate, &r1_bio->state);
332 	else {
333 		/* If all other devices have failed, we want to return
334 		 * the error upwards rather than fail the last device.
335 		 * Here we redefine "uptodate" to mean "Don't want to retry"
336 		 */
337 		unsigned long flags;
338 		spin_lock_irqsave(&conf->device_lock, flags);
339 		if (r1_bio->mddev->degraded == conf->raid_disks ||
340 		    (r1_bio->mddev->degraded == conf->raid_disks-1 &&
341 		     test_bit(In_sync, &rdev->flags)))
342 			uptodate = 1;
343 		spin_unlock_irqrestore(&conf->device_lock, flags);
344 	}
345 
346 	if (uptodate) {
347 		raid_end_bio_io(r1_bio);
348 		rdev_dec_pending(rdev, conf->mddev);
349 	} else {
350 		/*
351 		 * oops, read error:
352 		 */
353 		char b[BDEVNAME_SIZE];
354 		printk_ratelimited(
355 			KERN_ERR "md/raid1:%s: %s: "
356 			"rescheduling sector %llu\n",
357 			mdname(conf->mddev),
358 			bdevname(rdev->bdev,
359 				 b),
360 			(unsigned long long)r1_bio->sector);
361 		set_bit(R1BIO_ReadError, &r1_bio->state);
362 		reschedule_retry(r1_bio);
363 		/* don't drop the reference on read_disk yet */
364 	}
365 }
366 
367 static void close_write(struct r1bio *r1_bio)
368 {
369 	/* it really is the end of this request */
370 	if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
371 		/* free extra copy of the data pages */
372 		int i = r1_bio->behind_page_count;
373 		while (i--)
374 			safe_put_page(r1_bio->behind_bvecs[i].bv_page);
375 		kfree(r1_bio->behind_bvecs);
376 		r1_bio->behind_bvecs = NULL;
377 	}
378 	/* clear the bitmap if all writes complete successfully */
379 	bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
380 			r1_bio->sectors,
381 			!test_bit(R1BIO_Degraded, &r1_bio->state),
382 			test_bit(R1BIO_BehindIO, &r1_bio->state));
383 	md_write_end(r1_bio->mddev);
384 }
385 
386 static void r1_bio_write_done(struct r1bio *r1_bio)
387 {
388 	if (!atomic_dec_and_test(&r1_bio->remaining))
389 		return;
390 
391 	if (test_bit(R1BIO_WriteError, &r1_bio->state))
392 		reschedule_retry(r1_bio);
393 	else {
394 		close_write(r1_bio);
395 		if (test_bit(R1BIO_MadeGood, &r1_bio->state))
396 			reschedule_retry(r1_bio);
397 		else
398 			raid_end_bio_io(r1_bio);
399 	}
400 }
401 
402 static void raid1_end_write_request(struct bio *bio)
403 {
404 	struct r1bio *r1_bio = bio->bi_private;
405 	int behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
406 	struct r1conf *conf = r1_bio->mddev->private;
407 	struct bio *to_put = NULL;
408 	int mirror = find_bio_disk(r1_bio, bio);
409 	struct md_rdev *rdev = conf->mirrors[mirror].rdev;
410 
411 	/*
412 	 * 'one mirror IO has finished' event handler:
413 	 */
414 	if (bio->bi_error) {
415 		set_bit(WriteErrorSeen,	&rdev->flags);
416 		if (!test_and_set_bit(WantReplacement, &rdev->flags))
417 			set_bit(MD_RECOVERY_NEEDED, &
418 				conf->mddev->recovery);
419 
420 		set_bit(R1BIO_WriteError, &r1_bio->state);
421 	} else {
422 		/*
423 		 * Set R1BIO_Uptodate in our master bio, so that we
424 		 * will return a good error code for to the higher
425 		 * levels even if IO on some other mirrored buffer
426 		 * fails.
427 		 *
428 		 * The 'master' represents the composite IO operation
429 		 * to user-side. So if something waits for IO, then it
430 		 * will wait for the 'master' bio.
431 		 */
432 		sector_t first_bad;
433 		int bad_sectors;
434 
435 		r1_bio->bios[mirror] = NULL;
436 		to_put = bio;
437 		/*
438 		 * Do not set R1BIO_Uptodate if the current device is
439 		 * rebuilding or Faulty. This is because we cannot use
440 		 * such device for properly reading the data back (we could
441 		 * potentially use it, if the current write would have felt
442 		 * before rdev->recovery_offset, but for simplicity we don't
443 		 * check this here.
444 		 */
445 		if (test_bit(In_sync, &rdev->flags) &&
446 		    !test_bit(Faulty, &rdev->flags))
447 			set_bit(R1BIO_Uptodate, &r1_bio->state);
448 
449 		/* Maybe we can clear some bad blocks. */
450 		if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
451 				&first_bad, &bad_sectors)) {
452 			r1_bio->bios[mirror] = IO_MADE_GOOD;
453 			set_bit(R1BIO_MadeGood, &r1_bio->state);
454 		}
455 	}
456 
457 	if (behind) {
458 		if (test_bit(WriteMostly, &rdev->flags))
459 			atomic_dec(&r1_bio->behind_remaining);
460 
461 		/*
462 		 * In behind mode, we ACK the master bio once the I/O
463 		 * has safely reached all non-writemostly
464 		 * disks. Setting the Returned bit ensures that this
465 		 * gets done only once -- we don't ever want to return
466 		 * -EIO here, instead we'll wait
467 		 */
468 		if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
469 		    test_bit(R1BIO_Uptodate, &r1_bio->state)) {
470 			/* Maybe we can return now */
471 			if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
472 				struct bio *mbio = r1_bio->master_bio;
473 				pr_debug("raid1: behind end write sectors"
474 					 " %llu-%llu\n",
475 					 (unsigned long long) mbio->bi_iter.bi_sector,
476 					 (unsigned long long) bio_end_sector(mbio) - 1);
477 				call_bio_endio(r1_bio);
478 			}
479 		}
480 	}
481 	if (r1_bio->bios[mirror] == NULL)
482 		rdev_dec_pending(rdev, conf->mddev);
483 
484 	/*
485 	 * Let's see if all mirrored write operations have finished
486 	 * already.
487 	 */
488 	r1_bio_write_done(r1_bio);
489 
490 	if (to_put)
491 		bio_put(to_put);
492 }
493 
494 /*
495  * This routine returns the disk from which the requested read should
496  * be done. There is a per-array 'next expected sequential IO' sector
497  * number - if this matches on the next IO then we use the last disk.
498  * There is also a per-disk 'last know head position' sector that is
499  * maintained from IRQ contexts, both the normal and the resync IO
500  * completion handlers update this position correctly. If there is no
501  * perfect sequential match then we pick the disk whose head is closest.
502  *
503  * If there are 2 mirrors in the same 2 devices, performance degrades
504  * because position is mirror, not device based.
505  *
506  * The rdev for the device selected will have nr_pending incremented.
507  */
508 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
509 {
510 	const sector_t this_sector = r1_bio->sector;
511 	int sectors;
512 	int best_good_sectors;
513 	int best_disk, best_dist_disk, best_pending_disk;
514 	int has_nonrot_disk;
515 	int disk;
516 	sector_t best_dist;
517 	unsigned int min_pending;
518 	struct md_rdev *rdev;
519 	int choose_first;
520 	int choose_next_idle;
521 
522 	rcu_read_lock();
523 	/*
524 	 * Check if we can balance. We can balance on the whole
525 	 * device if no resync is going on, or below the resync window.
526 	 * We take the first readable disk when above the resync window.
527 	 */
528  retry:
529 	sectors = r1_bio->sectors;
530 	best_disk = -1;
531 	best_dist_disk = -1;
532 	best_dist = MaxSector;
533 	best_pending_disk = -1;
534 	min_pending = UINT_MAX;
535 	best_good_sectors = 0;
536 	has_nonrot_disk = 0;
537 	choose_next_idle = 0;
538 
539 	if ((conf->mddev->recovery_cp < this_sector + sectors) ||
540 	    (mddev_is_clustered(conf->mddev) &&
541 	    md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
542 		    this_sector + sectors)))
543 		choose_first = 1;
544 	else
545 		choose_first = 0;
546 
547 	for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
548 		sector_t dist;
549 		sector_t first_bad;
550 		int bad_sectors;
551 		unsigned int pending;
552 		bool nonrot;
553 
554 		rdev = rcu_dereference(conf->mirrors[disk].rdev);
555 		if (r1_bio->bios[disk] == IO_BLOCKED
556 		    || rdev == NULL
557 		    || test_bit(Faulty, &rdev->flags))
558 			continue;
559 		if (!test_bit(In_sync, &rdev->flags) &&
560 		    rdev->recovery_offset < this_sector + sectors)
561 			continue;
562 		if (test_bit(WriteMostly, &rdev->flags)) {
563 			/* Don't balance among write-mostly, just
564 			 * use the first as a last resort */
565 			if (best_dist_disk < 0) {
566 				if (is_badblock(rdev, this_sector, sectors,
567 						&first_bad, &bad_sectors)) {
568 					if (first_bad <= this_sector)
569 						/* Cannot use this */
570 						continue;
571 					best_good_sectors = first_bad - this_sector;
572 				} else
573 					best_good_sectors = sectors;
574 				best_dist_disk = disk;
575 				best_pending_disk = disk;
576 			}
577 			continue;
578 		}
579 		/* This is a reasonable device to use.  It might
580 		 * even be best.
581 		 */
582 		if (is_badblock(rdev, this_sector, sectors,
583 				&first_bad, &bad_sectors)) {
584 			if (best_dist < MaxSector)
585 				/* already have a better device */
586 				continue;
587 			if (first_bad <= this_sector) {
588 				/* cannot read here. If this is the 'primary'
589 				 * device, then we must not read beyond
590 				 * bad_sectors from another device..
591 				 */
592 				bad_sectors -= (this_sector - first_bad);
593 				if (choose_first && sectors > bad_sectors)
594 					sectors = bad_sectors;
595 				if (best_good_sectors > sectors)
596 					best_good_sectors = sectors;
597 
598 			} else {
599 				sector_t good_sectors = first_bad - this_sector;
600 				if (good_sectors > best_good_sectors) {
601 					best_good_sectors = good_sectors;
602 					best_disk = disk;
603 				}
604 				if (choose_first)
605 					break;
606 			}
607 			continue;
608 		} else
609 			best_good_sectors = sectors;
610 
611 		nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
612 		has_nonrot_disk |= nonrot;
613 		pending = atomic_read(&rdev->nr_pending);
614 		dist = abs(this_sector - conf->mirrors[disk].head_position);
615 		if (choose_first) {
616 			best_disk = disk;
617 			break;
618 		}
619 		/* Don't change to another disk for sequential reads */
620 		if (conf->mirrors[disk].next_seq_sect == this_sector
621 		    || dist == 0) {
622 			int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
623 			struct raid1_info *mirror = &conf->mirrors[disk];
624 
625 			best_disk = disk;
626 			/*
627 			 * If buffered sequential IO size exceeds optimal
628 			 * iosize, check if there is idle disk. If yes, choose
629 			 * the idle disk. read_balance could already choose an
630 			 * idle disk before noticing it's a sequential IO in
631 			 * this disk. This doesn't matter because this disk
632 			 * will idle, next time it will be utilized after the
633 			 * first disk has IO size exceeds optimal iosize. In
634 			 * this way, iosize of the first disk will be optimal
635 			 * iosize at least. iosize of the second disk might be
636 			 * small, but not a big deal since when the second disk
637 			 * starts IO, the first disk is likely still busy.
638 			 */
639 			if (nonrot && opt_iosize > 0 &&
640 			    mirror->seq_start != MaxSector &&
641 			    mirror->next_seq_sect > opt_iosize &&
642 			    mirror->next_seq_sect - opt_iosize >=
643 			    mirror->seq_start) {
644 				choose_next_idle = 1;
645 				continue;
646 			}
647 			break;
648 		}
649 		/* If device is idle, use it */
650 		if (pending == 0) {
651 			best_disk = disk;
652 			break;
653 		}
654 
655 		if (choose_next_idle)
656 			continue;
657 
658 		if (min_pending > pending) {
659 			min_pending = pending;
660 			best_pending_disk = disk;
661 		}
662 
663 		if (dist < best_dist) {
664 			best_dist = dist;
665 			best_dist_disk = disk;
666 		}
667 	}
668 
669 	/*
670 	 * If all disks are rotational, choose the closest disk. If any disk is
671 	 * non-rotational, choose the disk with less pending request even the
672 	 * disk is rotational, which might/might not be optimal for raids with
673 	 * mixed ratation/non-rotational disks depending on workload.
674 	 */
675 	if (best_disk == -1) {
676 		if (has_nonrot_disk)
677 			best_disk = best_pending_disk;
678 		else
679 			best_disk = best_dist_disk;
680 	}
681 
682 	if (best_disk >= 0) {
683 		rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
684 		if (!rdev)
685 			goto retry;
686 		atomic_inc(&rdev->nr_pending);
687 		sectors = best_good_sectors;
688 
689 		if (conf->mirrors[best_disk].next_seq_sect != this_sector)
690 			conf->mirrors[best_disk].seq_start = this_sector;
691 
692 		conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
693 	}
694 	rcu_read_unlock();
695 	*max_sectors = sectors;
696 
697 	return best_disk;
698 }
699 
700 static int raid1_congested(struct mddev *mddev, int bits)
701 {
702 	struct r1conf *conf = mddev->private;
703 	int i, ret = 0;
704 
705 	if ((bits & (1 << WB_async_congested)) &&
706 	    conf->pending_count >= max_queued_requests)
707 		return 1;
708 
709 	rcu_read_lock();
710 	for (i = 0; i < conf->raid_disks * 2; i++) {
711 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
712 		if (rdev && !test_bit(Faulty, &rdev->flags)) {
713 			struct request_queue *q = bdev_get_queue(rdev->bdev);
714 
715 			BUG_ON(!q);
716 
717 			/* Note the '|| 1' - when read_balance prefers
718 			 * non-congested targets, it can be removed
719 			 */
720 			if ((bits & (1 << WB_async_congested)) || 1)
721 				ret |= bdi_congested(&q->backing_dev_info, bits);
722 			else
723 				ret &= bdi_congested(&q->backing_dev_info, bits);
724 		}
725 	}
726 	rcu_read_unlock();
727 	return ret;
728 }
729 
730 static void flush_pending_writes(struct r1conf *conf)
731 {
732 	/* Any writes that have been queued but are awaiting
733 	 * bitmap updates get flushed here.
734 	 */
735 	spin_lock_irq(&conf->device_lock);
736 
737 	if (conf->pending_bio_list.head) {
738 		struct bio *bio;
739 		bio = bio_list_get(&conf->pending_bio_list);
740 		conf->pending_count = 0;
741 		spin_unlock_irq(&conf->device_lock);
742 		/* flush any pending bitmap writes to
743 		 * disk before proceeding w/ I/O */
744 		bitmap_unplug(conf->mddev->bitmap);
745 		wake_up(&conf->wait_barrier);
746 
747 		while (bio) { /* submit pending writes */
748 			struct bio *next = bio->bi_next;
749 			bio->bi_next = NULL;
750 			if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
751 			    !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
752 				/* Just ignore it */
753 				bio_endio(bio);
754 			else
755 				generic_make_request(bio);
756 			bio = next;
757 		}
758 	} else
759 		spin_unlock_irq(&conf->device_lock);
760 }
761 
762 /* Barriers....
763  * Sometimes we need to suspend IO while we do something else,
764  * either some resync/recovery, or reconfigure the array.
765  * To do this we raise a 'barrier'.
766  * The 'barrier' is a counter that can be raised multiple times
767  * to count how many activities are happening which preclude
768  * normal IO.
769  * We can only raise the barrier if there is no pending IO.
770  * i.e. if nr_pending == 0.
771  * We choose only to raise the barrier if no-one is waiting for the
772  * barrier to go down.  This means that as soon as an IO request
773  * is ready, no other operations which require a barrier will start
774  * until the IO request has had a chance.
775  *
776  * So: regular IO calls 'wait_barrier'.  When that returns there
777  *    is no backgroup IO happening,  It must arrange to call
778  *    allow_barrier when it has finished its IO.
779  * backgroup IO calls must call raise_barrier.  Once that returns
780  *    there is no normal IO happeing.  It must arrange to call
781  *    lower_barrier when the particular background IO completes.
782  */
783 static void raise_barrier(struct r1conf *conf, sector_t sector_nr)
784 {
785 	spin_lock_irq(&conf->resync_lock);
786 
787 	/* Wait until no block IO is waiting */
788 	wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
789 			    conf->resync_lock);
790 
791 	/* block any new IO from starting */
792 	conf->barrier++;
793 	conf->next_resync = sector_nr;
794 
795 	/* For these conditions we must wait:
796 	 * A: while the array is in frozen state
797 	 * B: while barrier >= RESYNC_DEPTH, meaning resync reach
798 	 *    the max count which allowed.
799 	 * C: next_resync + RESYNC_SECTORS > start_next_window, meaning
800 	 *    next resync will reach to the window which normal bios are
801 	 *    handling.
802 	 * D: while there are any active requests in the current window.
803 	 */
804 	wait_event_lock_irq(conf->wait_barrier,
805 			    !conf->array_frozen &&
806 			    conf->barrier < RESYNC_DEPTH &&
807 			    conf->current_window_requests == 0 &&
808 			    (conf->start_next_window >=
809 			     conf->next_resync + RESYNC_SECTORS),
810 			    conf->resync_lock);
811 
812 	conf->nr_pending++;
813 	spin_unlock_irq(&conf->resync_lock);
814 }
815 
816 static void lower_barrier(struct r1conf *conf)
817 {
818 	unsigned long flags;
819 	BUG_ON(conf->barrier <= 0);
820 	spin_lock_irqsave(&conf->resync_lock, flags);
821 	conf->barrier--;
822 	conf->nr_pending--;
823 	spin_unlock_irqrestore(&conf->resync_lock, flags);
824 	wake_up(&conf->wait_barrier);
825 }
826 
827 static bool need_to_wait_for_sync(struct r1conf *conf, struct bio *bio)
828 {
829 	bool wait = false;
830 
831 	if (conf->array_frozen || !bio)
832 		wait = true;
833 	else if (conf->barrier && bio_data_dir(bio) == WRITE) {
834 		if ((conf->mddev->curr_resync_completed
835 		     >= bio_end_sector(bio)) ||
836 		    (conf->next_resync + NEXT_NORMALIO_DISTANCE
837 		     <= bio->bi_iter.bi_sector))
838 			wait = false;
839 		else
840 			wait = true;
841 	}
842 
843 	return wait;
844 }
845 
846 static sector_t wait_barrier(struct r1conf *conf, struct bio *bio)
847 {
848 	sector_t sector = 0;
849 
850 	spin_lock_irq(&conf->resync_lock);
851 	if (need_to_wait_for_sync(conf, bio)) {
852 		conf->nr_waiting++;
853 		/* Wait for the barrier to drop.
854 		 * However if there are already pending
855 		 * requests (preventing the barrier from
856 		 * rising completely), and the
857 		 * per-process bio queue isn't empty,
858 		 * then don't wait, as we need to empty
859 		 * that queue to allow conf->start_next_window
860 		 * to increase.
861 		 */
862 		wait_event_lock_irq(conf->wait_barrier,
863 				    !conf->array_frozen &&
864 				    (!conf->barrier ||
865 				     ((conf->start_next_window <
866 				       conf->next_resync + RESYNC_SECTORS) &&
867 				      current->bio_list &&
868 				      !bio_list_empty(current->bio_list))),
869 				    conf->resync_lock);
870 		conf->nr_waiting--;
871 	}
872 
873 	if (bio && bio_data_dir(bio) == WRITE) {
874 		if (bio->bi_iter.bi_sector >= conf->next_resync) {
875 			if (conf->start_next_window == MaxSector)
876 				conf->start_next_window =
877 					conf->next_resync +
878 					NEXT_NORMALIO_DISTANCE;
879 
880 			if ((conf->start_next_window + NEXT_NORMALIO_DISTANCE)
881 			    <= bio->bi_iter.bi_sector)
882 				conf->next_window_requests++;
883 			else
884 				conf->current_window_requests++;
885 			sector = conf->start_next_window;
886 		}
887 	}
888 
889 	conf->nr_pending++;
890 	spin_unlock_irq(&conf->resync_lock);
891 	return sector;
892 }
893 
894 static void allow_barrier(struct r1conf *conf, sector_t start_next_window,
895 			  sector_t bi_sector)
896 {
897 	unsigned long flags;
898 
899 	spin_lock_irqsave(&conf->resync_lock, flags);
900 	conf->nr_pending--;
901 	if (start_next_window) {
902 		if (start_next_window == conf->start_next_window) {
903 			if (conf->start_next_window + NEXT_NORMALIO_DISTANCE
904 			    <= bi_sector)
905 				conf->next_window_requests--;
906 			else
907 				conf->current_window_requests--;
908 		} else
909 			conf->current_window_requests--;
910 
911 		if (!conf->current_window_requests) {
912 			if (conf->next_window_requests) {
913 				conf->current_window_requests =
914 					conf->next_window_requests;
915 				conf->next_window_requests = 0;
916 				conf->start_next_window +=
917 					NEXT_NORMALIO_DISTANCE;
918 			} else
919 				conf->start_next_window = MaxSector;
920 		}
921 	}
922 	spin_unlock_irqrestore(&conf->resync_lock, flags);
923 	wake_up(&conf->wait_barrier);
924 }
925 
926 static void freeze_array(struct r1conf *conf, int extra)
927 {
928 	/* stop syncio and normal IO and wait for everything to
929 	 * go quite.
930 	 * We wait until nr_pending match nr_queued+extra
931 	 * This is called in the context of one normal IO request
932 	 * that has failed. Thus any sync request that might be pending
933 	 * will be blocked by nr_pending, and we need to wait for
934 	 * pending IO requests to complete or be queued for re-try.
935 	 * Thus the number queued (nr_queued) plus this request (extra)
936 	 * must match the number of pending IOs (nr_pending) before
937 	 * we continue.
938 	 */
939 	spin_lock_irq(&conf->resync_lock);
940 	conf->array_frozen = 1;
941 	wait_event_lock_irq_cmd(conf->wait_barrier,
942 				conf->nr_pending == conf->nr_queued+extra,
943 				conf->resync_lock,
944 				flush_pending_writes(conf));
945 	spin_unlock_irq(&conf->resync_lock);
946 }
947 static void unfreeze_array(struct r1conf *conf)
948 {
949 	/* reverse the effect of the freeze */
950 	spin_lock_irq(&conf->resync_lock);
951 	conf->array_frozen = 0;
952 	wake_up(&conf->wait_barrier);
953 	spin_unlock_irq(&conf->resync_lock);
954 }
955 
956 /* duplicate the data pages for behind I/O
957  */
958 static void alloc_behind_pages(struct bio *bio, struct r1bio *r1_bio)
959 {
960 	int i;
961 	struct bio_vec *bvec;
962 	struct bio_vec *bvecs = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec),
963 					GFP_NOIO);
964 	if (unlikely(!bvecs))
965 		return;
966 
967 	bio_for_each_segment_all(bvec, bio, i) {
968 		bvecs[i] = *bvec;
969 		bvecs[i].bv_page = alloc_page(GFP_NOIO);
970 		if (unlikely(!bvecs[i].bv_page))
971 			goto do_sync_io;
972 		memcpy(kmap(bvecs[i].bv_page) + bvec->bv_offset,
973 		       kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
974 		kunmap(bvecs[i].bv_page);
975 		kunmap(bvec->bv_page);
976 	}
977 	r1_bio->behind_bvecs = bvecs;
978 	r1_bio->behind_page_count = bio->bi_vcnt;
979 	set_bit(R1BIO_BehindIO, &r1_bio->state);
980 	return;
981 
982 do_sync_io:
983 	for (i = 0; i < bio->bi_vcnt; i++)
984 		if (bvecs[i].bv_page)
985 			put_page(bvecs[i].bv_page);
986 	kfree(bvecs);
987 	pr_debug("%dB behind alloc failed, doing sync I/O\n",
988 		 bio->bi_iter.bi_size);
989 }
990 
991 struct raid1_plug_cb {
992 	struct blk_plug_cb	cb;
993 	struct bio_list		pending;
994 	int			pending_cnt;
995 };
996 
997 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
998 {
999 	struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1000 						  cb);
1001 	struct mddev *mddev = plug->cb.data;
1002 	struct r1conf *conf = mddev->private;
1003 	struct bio *bio;
1004 
1005 	if (from_schedule || current->bio_list) {
1006 		spin_lock_irq(&conf->device_lock);
1007 		bio_list_merge(&conf->pending_bio_list, &plug->pending);
1008 		conf->pending_count += plug->pending_cnt;
1009 		spin_unlock_irq(&conf->device_lock);
1010 		wake_up(&conf->wait_barrier);
1011 		md_wakeup_thread(mddev->thread);
1012 		kfree(plug);
1013 		return;
1014 	}
1015 
1016 	/* we aren't scheduling, so we can do the write-out directly. */
1017 	bio = bio_list_get(&plug->pending);
1018 	bitmap_unplug(mddev->bitmap);
1019 	wake_up(&conf->wait_barrier);
1020 
1021 	while (bio) { /* submit pending writes */
1022 		struct bio *next = bio->bi_next;
1023 		bio->bi_next = NULL;
1024 		if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
1025 		    !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
1026 			/* Just ignore it */
1027 			bio_endio(bio);
1028 		else
1029 			generic_make_request(bio);
1030 		bio = next;
1031 	}
1032 	kfree(plug);
1033 }
1034 
1035 static void raid1_make_request(struct mddev *mddev, struct bio * bio)
1036 {
1037 	struct r1conf *conf = mddev->private;
1038 	struct raid1_info *mirror;
1039 	struct r1bio *r1_bio;
1040 	struct bio *read_bio;
1041 	int i, disks;
1042 	struct bitmap *bitmap;
1043 	unsigned long flags;
1044 	const int op = bio_op(bio);
1045 	const int rw = bio_data_dir(bio);
1046 	const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1047 	const unsigned long do_flush_fua = (bio->bi_opf &
1048 						(REQ_PREFLUSH | REQ_FUA));
1049 	struct md_rdev *blocked_rdev;
1050 	struct blk_plug_cb *cb;
1051 	struct raid1_plug_cb *plug = NULL;
1052 	int first_clone;
1053 	int sectors_handled;
1054 	int max_sectors;
1055 	sector_t start_next_window;
1056 
1057 	/*
1058 	 * Register the new request and wait if the reconstruction
1059 	 * thread has put up a bar for new requests.
1060 	 * Continue immediately if no resync is active currently.
1061 	 */
1062 
1063 	md_write_start(mddev, bio); /* wait on superblock update early */
1064 
1065 	if (bio_data_dir(bio) == WRITE &&
1066 	    ((bio_end_sector(bio) > mddev->suspend_lo &&
1067 	    bio->bi_iter.bi_sector < mddev->suspend_hi) ||
1068 	    (mddev_is_clustered(mddev) &&
1069 	     md_cluster_ops->area_resyncing(mddev, WRITE,
1070 		     bio->bi_iter.bi_sector, bio_end_sector(bio))))) {
1071 		/* As the suspend_* range is controlled by
1072 		 * userspace, we want an interruptible
1073 		 * wait.
1074 		 */
1075 		DEFINE_WAIT(w);
1076 		for (;;) {
1077 			flush_signals(current);
1078 			prepare_to_wait(&conf->wait_barrier,
1079 					&w, TASK_INTERRUPTIBLE);
1080 			if (bio_end_sector(bio) <= mddev->suspend_lo ||
1081 			    bio->bi_iter.bi_sector >= mddev->suspend_hi ||
1082 			    (mddev_is_clustered(mddev) &&
1083 			     !md_cluster_ops->area_resyncing(mddev, WRITE,
1084 				     bio->bi_iter.bi_sector, bio_end_sector(bio))))
1085 				break;
1086 			schedule();
1087 		}
1088 		finish_wait(&conf->wait_barrier, &w);
1089 	}
1090 
1091 	start_next_window = wait_barrier(conf, bio);
1092 
1093 	bitmap = mddev->bitmap;
1094 
1095 	/*
1096 	 * make_request() can abort the operation when read-ahead is being
1097 	 * used and no empty request is available.
1098 	 *
1099 	 */
1100 	r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1101 
1102 	r1_bio->master_bio = bio;
1103 	r1_bio->sectors = bio_sectors(bio);
1104 	r1_bio->state = 0;
1105 	r1_bio->mddev = mddev;
1106 	r1_bio->sector = bio->bi_iter.bi_sector;
1107 
1108 	/* We might need to issue multiple reads to different
1109 	 * devices if there are bad blocks around, so we keep
1110 	 * track of the number of reads in bio->bi_phys_segments.
1111 	 * If this is 0, there is only one r1_bio and no locking
1112 	 * will be needed when requests complete.  If it is
1113 	 * non-zero, then it is the number of not-completed requests.
1114 	 */
1115 	bio->bi_phys_segments = 0;
1116 	bio_clear_flag(bio, BIO_SEG_VALID);
1117 
1118 	if (rw == READ) {
1119 		/*
1120 		 * read balancing logic:
1121 		 */
1122 		int rdisk;
1123 
1124 read_again:
1125 		rdisk = read_balance(conf, r1_bio, &max_sectors);
1126 
1127 		if (rdisk < 0) {
1128 			/* couldn't find anywhere to read from */
1129 			raid_end_bio_io(r1_bio);
1130 			return;
1131 		}
1132 		mirror = conf->mirrors + rdisk;
1133 
1134 		if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1135 		    bitmap) {
1136 			/* Reading from a write-mostly device must
1137 			 * take care not to over-take any writes
1138 			 * that are 'behind'
1139 			 */
1140 			wait_event(bitmap->behind_wait,
1141 				   atomic_read(&bitmap->behind_writes) == 0);
1142 		}
1143 		r1_bio->read_disk = rdisk;
1144 		r1_bio->start_next_window = 0;
1145 
1146 		read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1147 		bio_trim(read_bio, r1_bio->sector - bio->bi_iter.bi_sector,
1148 			 max_sectors);
1149 
1150 		r1_bio->bios[rdisk] = read_bio;
1151 
1152 		read_bio->bi_iter.bi_sector = r1_bio->sector +
1153 			mirror->rdev->data_offset;
1154 		read_bio->bi_bdev = mirror->rdev->bdev;
1155 		read_bio->bi_end_io = raid1_end_read_request;
1156 		bio_set_op_attrs(read_bio, op, do_sync);
1157 		read_bio->bi_private = r1_bio;
1158 
1159 		if (max_sectors < r1_bio->sectors) {
1160 			/* could not read all from this device, so we will
1161 			 * need another r1_bio.
1162 			 */
1163 
1164 			sectors_handled = (r1_bio->sector + max_sectors
1165 					   - bio->bi_iter.bi_sector);
1166 			r1_bio->sectors = max_sectors;
1167 			spin_lock_irq(&conf->device_lock);
1168 			if (bio->bi_phys_segments == 0)
1169 				bio->bi_phys_segments = 2;
1170 			else
1171 				bio->bi_phys_segments++;
1172 			spin_unlock_irq(&conf->device_lock);
1173 			/* Cannot call generic_make_request directly
1174 			 * as that will be queued in __make_request
1175 			 * and subsequent mempool_alloc might block waiting
1176 			 * for it.  So hand bio over to raid1d.
1177 			 */
1178 			reschedule_retry(r1_bio);
1179 
1180 			r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1181 
1182 			r1_bio->master_bio = bio;
1183 			r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1184 			r1_bio->state = 0;
1185 			r1_bio->mddev = mddev;
1186 			r1_bio->sector = bio->bi_iter.bi_sector +
1187 				sectors_handled;
1188 			goto read_again;
1189 		} else
1190 			generic_make_request(read_bio);
1191 		return;
1192 	}
1193 
1194 	/*
1195 	 * WRITE:
1196 	 */
1197 	if (conf->pending_count >= max_queued_requests) {
1198 		md_wakeup_thread(mddev->thread);
1199 		wait_event(conf->wait_barrier,
1200 			   conf->pending_count < max_queued_requests);
1201 	}
1202 	/* first select target devices under rcu_lock and
1203 	 * inc refcount on their rdev.  Record them by setting
1204 	 * bios[x] to bio
1205 	 * If there are known/acknowledged bad blocks on any device on
1206 	 * which we have seen a write error, we want to avoid writing those
1207 	 * blocks.
1208 	 * This potentially requires several writes to write around
1209 	 * the bad blocks.  Each set of writes gets it's own r1bio
1210 	 * with a set of bios attached.
1211 	 */
1212 
1213 	disks = conf->raid_disks * 2;
1214  retry_write:
1215 	r1_bio->start_next_window = start_next_window;
1216 	blocked_rdev = NULL;
1217 	rcu_read_lock();
1218 	max_sectors = r1_bio->sectors;
1219 	for (i = 0;  i < disks; i++) {
1220 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1221 		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1222 			atomic_inc(&rdev->nr_pending);
1223 			blocked_rdev = rdev;
1224 			break;
1225 		}
1226 		r1_bio->bios[i] = NULL;
1227 		if (!rdev || test_bit(Faulty, &rdev->flags)) {
1228 			if (i < conf->raid_disks)
1229 				set_bit(R1BIO_Degraded, &r1_bio->state);
1230 			continue;
1231 		}
1232 
1233 		atomic_inc(&rdev->nr_pending);
1234 		if (test_bit(WriteErrorSeen, &rdev->flags)) {
1235 			sector_t first_bad;
1236 			int bad_sectors;
1237 			int is_bad;
1238 
1239 			is_bad = is_badblock(rdev, r1_bio->sector,
1240 					     max_sectors,
1241 					     &first_bad, &bad_sectors);
1242 			if (is_bad < 0) {
1243 				/* mustn't write here until the bad block is
1244 				 * acknowledged*/
1245 				set_bit(BlockedBadBlocks, &rdev->flags);
1246 				blocked_rdev = rdev;
1247 				break;
1248 			}
1249 			if (is_bad && first_bad <= r1_bio->sector) {
1250 				/* Cannot write here at all */
1251 				bad_sectors -= (r1_bio->sector - first_bad);
1252 				if (bad_sectors < max_sectors)
1253 					/* mustn't write more than bad_sectors
1254 					 * to other devices yet
1255 					 */
1256 					max_sectors = bad_sectors;
1257 				rdev_dec_pending(rdev, mddev);
1258 				/* We don't set R1BIO_Degraded as that
1259 				 * only applies if the disk is
1260 				 * missing, so it might be re-added,
1261 				 * and we want to know to recover this
1262 				 * chunk.
1263 				 * In this case the device is here,
1264 				 * and the fact that this chunk is not
1265 				 * in-sync is recorded in the bad
1266 				 * block log
1267 				 */
1268 				continue;
1269 			}
1270 			if (is_bad) {
1271 				int good_sectors = first_bad - r1_bio->sector;
1272 				if (good_sectors < max_sectors)
1273 					max_sectors = good_sectors;
1274 			}
1275 		}
1276 		r1_bio->bios[i] = bio;
1277 	}
1278 	rcu_read_unlock();
1279 
1280 	if (unlikely(blocked_rdev)) {
1281 		/* Wait for this device to become unblocked */
1282 		int j;
1283 		sector_t old = start_next_window;
1284 
1285 		for (j = 0; j < i; j++)
1286 			if (r1_bio->bios[j])
1287 				rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1288 		r1_bio->state = 0;
1289 		allow_barrier(conf, start_next_window, bio->bi_iter.bi_sector);
1290 		md_wait_for_blocked_rdev(blocked_rdev, mddev);
1291 		start_next_window = wait_barrier(conf, bio);
1292 		/*
1293 		 * We must make sure the multi r1bios of bio have
1294 		 * the same value of bi_phys_segments
1295 		 */
1296 		if (bio->bi_phys_segments && old &&
1297 		    old != start_next_window)
1298 			/* Wait for the former r1bio(s) to complete */
1299 			wait_event(conf->wait_barrier,
1300 				   bio->bi_phys_segments == 1);
1301 		goto retry_write;
1302 	}
1303 
1304 	if (max_sectors < r1_bio->sectors) {
1305 		/* We are splitting this write into multiple parts, so
1306 		 * we need to prepare for allocating another r1_bio.
1307 		 */
1308 		r1_bio->sectors = max_sectors;
1309 		spin_lock_irq(&conf->device_lock);
1310 		if (bio->bi_phys_segments == 0)
1311 			bio->bi_phys_segments = 2;
1312 		else
1313 			bio->bi_phys_segments++;
1314 		spin_unlock_irq(&conf->device_lock);
1315 	}
1316 	sectors_handled = r1_bio->sector + max_sectors - bio->bi_iter.bi_sector;
1317 
1318 	atomic_set(&r1_bio->remaining, 1);
1319 	atomic_set(&r1_bio->behind_remaining, 0);
1320 
1321 	first_clone = 1;
1322 	for (i = 0; i < disks; i++) {
1323 		struct bio *mbio;
1324 		if (!r1_bio->bios[i])
1325 			continue;
1326 
1327 		mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1328 		bio_trim(mbio, r1_bio->sector - bio->bi_iter.bi_sector, max_sectors);
1329 
1330 		if (first_clone) {
1331 			/* do behind I/O ?
1332 			 * Not if there are too many, or cannot
1333 			 * allocate memory, or a reader on WriteMostly
1334 			 * is waiting for behind writes to flush */
1335 			if (bitmap &&
1336 			    (atomic_read(&bitmap->behind_writes)
1337 			     < mddev->bitmap_info.max_write_behind) &&
1338 			    !waitqueue_active(&bitmap->behind_wait))
1339 				alloc_behind_pages(mbio, r1_bio);
1340 
1341 			bitmap_startwrite(bitmap, r1_bio->sector,
1342 					  r1_bio->sectors,
1343 					  test_bit(R1BIO_BehindIO,
1344 						   &r1_bio->state));
1345 			first_clone = 0;
1346 		}
1347 		if (r1_bio->behind_bvecs) {
1348 			struct bio_vec *bvec;
1349 			int j;
1350 
1351 			/*
1352 			 * We trimmed the bio, so _all is legit
1353 			 */
1354 			bio_for_each_segment_all(bvec, mbio, j)
1355 				bvec->bv_page = r1_bio->behind_bvecs[j].bv_page;
1356 			if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1357 				atomic_inc(&r1_bio->behind_remaining);
1358 		}
1359 
1360 		r1_bio->bios[i] = mbio;
1361 
1362 		mbio->bi_iter.bi_sector	= (r1_bio->sector +
1363 				   conf->mirrors[i].rdev->data_offset);
1364 		mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1365 		mbio->bi_end_io	= raid1_end_write_request;
1366 		bio_set_op_attrs(mbio, op, do_flush_fua | do_sync);
1367 		mbio->bi_private = r1_bio;
1368 
1369 		atomic_inc(&r1_bio->remaining);
1370 
1371 		cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1372 		if (cb)
1373 			plug = container_of(cb, struct raid1_plug_cb, cb);
1374 		else
1375 			plug = NULL;
1376 		spin_lock_irqsave(&conf->device_lock, flags);
1377 		if (plug) {
1378 			bio_list_add(&plug->pending, mbio);
1379 			plug->pending_cnt++;
1380 		} else {
1381 			bio_list_add(&conf->pending_bio_list, mbio);
1382 			conf->pending_count++;
1383 		}
1384 		spin_unlock_irqrestore(&conf->device_lock, flags);
1385 		if (!plug)
1386 			md_wakeup_thread(mddev->thread);
1387 	}
1388 	/* Mustn't call r1_bio_write_done before this next test,
1389 	 * as it could result in the bio being freed.
1390 	 */
1391 	if (sectors_handled < bio_sectors(bio)) {
1392 		r1_bio_write_done(r1_bio);
1393 		/* We need another r1_bio.  It has already been counted
1394 		 * in bio->bi_phys_segments
1395 		 */
1396 		r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1397 		r1_bio->master_bio = bio;
1398 		r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1399 		r1_bio->state = 0;
1400 		r1_bio->mddev = mddev;
1401 		r1_bio->sector = bio->bi_iter.bi_sector + sectors_handled;
1402 		goto retry_write;
1403 	}
1404 
1405 	r1_bio_write_done(r1_bio);
1406 
1407 	/* In case raid1d snuck in to freeze_array */
1408 	wake_up(&conf->wait_barrier);
1409 }
1410 
1411 static void raid1_status(struct seq_file *seq, struct mddev *mddev)
1412 {
1413 	struct r1conf *conf = mddev->private;
1414 	int i;
1415 
1416 	seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1417 		   conf->raid_disks - mddev->degraded);
1418 	rcu_read_lock();
1419 	for (i = 0; i < conf->raid_disks; i++) {
1420 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1421 		seq_printf(seq, "%s",
1422 			   rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1423 	}
1424 	rcu_read_unlock();
1425 	seq_printf(seq, "]");
1426 }
1427 
1428 static void raid1_error(struct mddev *mddev, struct md_rdev *rdev)
1429 {
1430 	char b[BDEVNAME_SIZE];
1431 	struct r1conf *conf = mddev->private;
1432 	unsigned long flags;
1433 
1434 	/*
1435 	 * If it is not operational, then we have already marked it as dead
1436 	 * else if it is the last working disks, ignore the error, let the
1437 	 * next level up know.
1438 	 * else mark the drive as failed
1439 	 */
1440 	if (test_bit(In_sync, &rdev->flags)
1441 	    && (conf->raid_disks - mddev->degraded) == 1) {
1442 		/*
1443 		 * Don't fail the drive, act as though we were just a
1444 		 * normal single drive.
1445 		 * However don't try a recovery from this drive as
1446 		 * it is very likely to fail.
1447 		 */
1448 		conf->recovery_disabled = mddev->recovery_disabled;
1449 		return;
1450 	}
1451 	set_bit(Blocked, &rdev->flags);
1452 	spin_lock_irqsave(&conf->device_lock, flags);
1453 	if (test_and_clear_bit(In_sync, &rdev->flags)) {
1454 		mddev->degraded++;
1455 		set_bit(Faulty, &rdev->flags);
1456 	} else
1457 		set_bit(Faulty, &rdev->flags);
1458 	spin_unlock_irqrestore(&conf->device_lock, flags);
1459 	/*
1460 	 * if recovery is running, make sure it aborts.
1461 	 */
1462 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1463 	set_mask_bits(&mddev->flags, 0,
1464 		      BIT(MD_CHANGE_DEVS) | BIT(MD_CHANGE_PENDING));
1465 	printk(KERN_ALERT
1466 	       "md/raid1:%s: Disk failure on %s, disabling device.\n"
1467 	       "md/raid1:%s: Operation continuing on %d devices.\n",
1468 	       mdname(mddev), bdevname(rdev->bdev, b),
1469 	       mdname(mddev), conf->raid_disks - mddev->degraded);
1470 }
1471 
1472 static void print_conf(struct r1conf *conf)
1473 {
1474 	int i;
1475 
1476 	printk(KERN_DEBUG "RAID1 conf printout:\n");
1477 	if (!conf) {
1478 		printk(KERN_DEBUG "(!conf)\n");
1479 		return;
1480 	}
1481 	printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1482 		conf->raid_disks);
1483 
1484 	rcu_read_lock();
1485 	for (i = 0; i < conf->raid_disks; i++) {
1486 		char b[BDEVNAME_SIZE];
1487 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1488 		if (rdev)
1489 			printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1490 			       i, !test_bit(In_sync, &rdev->flags),
1491 			       !test_bit(Faulty, &rdev->flags),
1492 			       bdevname(rdev->bdev,b));
1493 	}
1494 	rcu_read_unlock();
1495 }
1496 
1497 static void close_sync(struct r1conf *conf)
1498 {
1499 	wait_barrier(conf, NULL);
1500 	allow_barrier(conf, 0, 0);
1501 
1502 	mempool_destroy(conf->r1buf_pool);
1503 	conf->r1buf_pool = NULL;
1504 
1505 	spin_lock_irq(&conf->resync_lock);
1506 	conf->next_resync = MaxSector - 2 * NEXT_NORMALIO_DISTANCE;
1507 	conf->start_next_window = MaxSector;
1508 	conf->current_window_requests +=
1509 		conf->next_window_requests;
1510 	conf->next_window_requests = 0;
1511 	spin_unlock_irq(&conf->resync_lock);
1512 }
1513 
1514 static int raid1_spare_active(struct mddev *mddev)
1515 {
1516 	int i;
1517 	struct r1conf *conf = mddev->private;
1518 	int count = 0;
1519 	unsigned long flags;
1520 
1521 	/*
1522 	 * Find all failed disks within the RAID1 configuration
1523 	 * and mark them readable.
1524 	 * Called under mddev lock, so rcu protection not needed.
1525 	 * device_lock used to avoid races with raid1_end_read_request
1526 	 * which expects 'In_sync' flags and ->degraded to be consistent.
1527 	 */
1528 	spin_lock_irqsave(&conf->device_lock, flags);
1529 	for (i = 0; i < conf->raid_disks; i++) {
1530 		struct md_rdev *rdev = conf->mirrors[i].rdev;
1531 		struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1532 		if (repl
1533 		    && !test_bit(Candidate, &repl->flags)
1534 		    && repl->recovery_offset == MaxSector
1535 		    && !test_bit(Faulty, &repl->flags)
1536 		    && !test_and_set_bit(In_sync, &repl->flags)) {
1537 			/* replacement has just become active */
1538 			if (!rdev ||
1539 			    !test_and_clear_bit(In_sync, &rdev->flags))
1540 				count++;
1541 			if (rdev) {
1542 				/* Replaced device not technically
1543 				 * faulty, but we need to be sure
1544 				 * it gets removed and never re-added
1545 				 */
1546 				set_bit(Faulty, &rdev->flags);
1547 				sysfs_notify_dirent_safe(
1548 					rdev->sysfs_state);
1549 			}
1550 		}
1551 		if (rdev
1552 		    && rdev->recovery_offset == MaxSector
1553 		    && !test_bit(Faulty, &rdev->flags)
1554 		    && !test_and_set_bit(In_sync, &rdev->flags)) {
1555 			count++;
1556 			sysfs_notify_dirent_safe(rdev->sysfs_state);
1557 		}
1558 	}
1559 	mddev->degraded -= count;
1560 	spin_unlock_irqrestore(&conf->device_lock, flags);
1561 
1562 	print_conf(conf);
1563 	return count;
1564 }
1565 
1566 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1567 {
1568 	struct r1conf *conf = mddev->private;
1569 	int err = -EEXIST;
1570 	int mirror = 0;
1571 	struct raid1_info *p;
1572 	int first = 0;
1573 	int last = conf->raid_disks - 1;
1574 
1575 	if (mddev->recovery_disabled == conf->recovery_disabled)
1576 		return -EBUSY;
1577 
1578 	if (md_integrity_add_rdev(rdev, mddev))
1579 		return -ENXIO;
1580 
1581 	if (rdev->raid_disk >= 0)
1582 		first = last = rdev->raid_disk;
1583 
1584 	/*
1585 	 * find the disk ... but prefer rdev->saved_raid_disk
1586 	 * if possible.
1587 	 */
1588 	if (rdev->saved_raid_disk >= 0 &&
1589 	    rdev->saved_raid_disk >= first &&
1590 	    conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1591 		first = last = rdev->saved_raid_disk;
1592 
1593 	for (mirror = first; mirror <= last; mirror++) {
1594 		p = conf->mirrors+mirror;
1595 		if (!p->rdev) {
1596 
1597 			if (mddev->gendisk)
1598 				disk_stack_limits(mddev->gendisk, rdev->bdev,
1599 						  rdev->data_offset << 9);
1600 
1601 			p->head_position = 0;
1602 			rdev->raid_disk = mirror;
1603 			err = 0;
1604 			/* As all devices are equivalent, we don't need a full recovery
1605 			 * if this was recently any drive of the array
1606 			 */
1607 			if (rdev->saved_raid_disk < 0)
1608 				conf->fullsync = 1;
1609 			rcu_assign_pointer(p->rdev, rdev);
1610 			break;
1611 		}
1612 		if (test_bit(WantReplacement, &p->rdev->flags) &&
1613 		    p[conf->raid_disks].rdev == NULL) {
1614 			/* Add this device as a replacement */
1615 			clear_bit(In_sync, &rdev->flags);
1616 			set_bit(Replacement, &rdev->flags);
1617 			rdev->raid_disk = mirror;
1618 			err = 0;
1619 			conf->fullsync = 1;
1620 			rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1621 			break;
1622 		}
1623 	}
1624 	if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1625 		queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1626 	print_conf(conf);
1627 	return err;
1628 }
1629 
1630 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1631 {
1632 	struct r1conf *conf = mddev->private;
1633 	int err = 0;
1634 	int number = rdev->raid_disk;
1635 	struct raid1_info *p = conf->mirrors + number;
1636 
1637 	if (rdev != p->rdev)
1638 		p = conf->mirrors + conf->raid_disks + number;
1639 
1640 	print_conf(conf);
1641 	if (rdev == p->rdev) {
1642 		if (test_bit(In_sync, &rdev->flags) ||
1643 		    atomic_read(&rdev->nr_pending)) {
1644 			err = -EBUSY;
1645 			goto abort;
1646 		}
1647 		/* Only remove non-faulty devices if recovery
1648 		 * is not possible.
1649 		 */
1650 		if (!test_bit(Faulty, &rdev->flags) &&
1651 		    mddev->recovery_disabled != conf->recovery_disabled &&
1652 		    mddev->degraded < conf->raid_disks) {
1653 			err = -EBUSY;
1654 			goto abort;
1655 		}
1656 		p->rdev = NULL;
1657 		if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1658 			synchronize_rcu();
1659 			if (atomic_read(&rdev->nr_pending)) {
1660 				/* lost the race, try later */
1661 				err = -EBUSY;
1662 				p->rdev = rdev;
1663 				goto abort;
1664 			}
1665 		}
1666 		if (conf->mirrors[conf->raid_disks + number].rdev) {
1667 			/* We just removed a device that is being replaced.
1668 			 * Move down the replacement.  We drain all IO before
1669 			 * doing this to avoid confusion.
1670 			 */
1671 			struct md_rdev *repl =
1672 				conf->mirrors[conf->raid_disks + number].rdev;
1673 			freeze_array(conf, 0);
1674 			clear_bit(Replacement, &repl->flags);
1675 			p->rdev = repl;
1676 			conf->mirrors[conf->raid_disks + number].rdev = NULL;
1677 			unfreeze_array(conf);
1678 			clear_bit(WantReplacement, &rdev->flags);
1679 		} else
1680 			clear_bit(WantReplacement, &rdev->flags);
1681 		err = md_integrity_register(mddev);
1682 	}
1683 abort:
1684 
1685 	print_conf(conf);
1686 	return err;
1687 }
1688 
1689 static void end_sync_read(struct bio *bio)
1690 {
1691 	struct r1bio *r1_bio = bio->bi_private;
1692 
1693 	update_head_pos(r1_bio->read_disk, r1_bio);
1694 
1695 	/*
1696 	 * we have read a block, now it needs to be re-written,
1697 	 * or re-read if the read failed.
1698 	 * We don't do much here, just schedule handling by raid1d
1699 	 */
1700 	if (!bio->bi_error)
1701 		set_bit(R1BIO_Uptodate, &r1_bio->state);
1702 
1703 	if (atomic_dec_and_test(&r1_bio->remaining))
1704 		reschedule_retry(r1_bio);
1705 }
1706 
1707 static void end_sync_write(struct bio *bio)
1708 {
1709 	int uptodate = !bio->bi_error;
1710 	struct r1bio *r1_bio = bio->bi_private;
1711 	struct mddev *mddev = r1_bio->mddev;
1712 	struct r1conf *conf = mddev->private;
1713 	sector_t first_bad;
1714 	int bad_sectors;
1715 	struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev;
1716 
1717 	if (!uptodate) {
1718 		sector_t sync_blocks = 0;
1719 		sector_t s = r1_bio->sector;
1720 		long sectors_to_go = r1_bio->sectors;
1721 		/* make sure these bits doesn't get cleared. */
1722 		do {
1723 			bitmap_end_sync(mddev->bitmap, s,
1724 					&sync_blocks, 1);
1725 			s += sync_blocks;
1726 			sectors_to_go -= sync_blocks;
1727 		} while (sectors_to_go > 0);
1728 		set_bit(WriteErrorSeen, &rdev->flags);
1729 		if (!test_and_set_bit(WantReplacement, &rdev->flags))
1730 			set_bit(MD_RECOVERY_NEEDED, &
1731 				mddev->recovery);
1732 		set_bit(R1BIO_WriteError, &r1_bio->state);
1733 	} else if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
1734 			       &first_bad, &bad_sectors) &&
1735 		   !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1736 				r1_bio->sector,
1737 				r1_bio->sectors,
1738 				&first_bad, &bad_sectors)
1739 		)
1740 		set_bit(R1BIO_MadeGood, &r1_bio->state);
1741 
1742 	if (atomic_dec_and_test(&r1_bio->remaining)) {
1743 		int s = r1_bio->sectors;
1744 		if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1745 		    test_bit(R1BIO_WriteError, &r1_bio->state))
1746 			reschedule_retry(r1_bio);
1747 		else {
1748 			put_buf(r1_bio);
1749 			md_done_sync(mddev, s, uptodate);
1750 		}
1751 	}
1752 }
1753 
1754 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1755 			    int sectors, struct page *page, int rw)
1756 {
1757 	if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
1758 		/* success */
1759 		return 1;
1760 	if (rw == WRITE) {
1761 		set_bit(WriteErrorSeen, &rdev->flags);
1762 		if (!test_and_set_bit(WantReplacement,
1763 				      &rdev->flags))
1764 			set_bit(MD_RECOVERY_NEEDED, &
1765 				rdev->mddev->recovery);
1766 	}
1767 	/* need to record an error - either for the block or the device */
1768 	if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1769 		md_error(rdev->mddev, rdev);
1770 	return 0;
1771 }
1772 
1773 static int fix_sync_read_error(struct r1bio *r1_bio)
1774 {
1775 	/* Try some synchronous reads of other devices to get
1776 	 * good data, much like with normal read errors.  Only
1777 	 * read into the pages we already have so we don't
1778 	 * need to re-issue the read request.
1779 	 * We don't need to freeze the array, because being in an
1780 	 * active sync request, there is no normal IO, and
1781 	 * no overlapping syncs.
1782 	 * We don't need to check is_badblock() again as we
1783 	 * made sure that anything with a bad block in range
1784 	 * will have bi_end_io clear.
1785 	 */
1786 	struct mddev *mddev = r1_bio->mddev;
1787 	struct r1conf *conf = mddev->private;
1788 	struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1789 	sector_t sect = r1_bio->sector;
1790 	int sectors = r1_bio->sectors;
1791 	int idx = 0;
1792 
1793 	while(sectors) {
1794 		int s = sectors;
1795 		int d = r1_bio->read_disk;
1796 		int success = 0;
1797 		struct md_rdev *rdev;
1798 		int start;
1799 
1800 		if (s > (PAGE_SIZE>>9))
1801 			s = PAGE_SIZE >> 9;
1802 		do {
1803 			if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1804 				/* No rcu protection needed here devices
1805 				 * can only be removed when no resync is
1806 				 * active, and resync is currently active
1807 				 */
1808 				rdev = conf->mirrors[d].rdev;
1809 				if (sync_page_io(rdev, sect, s<<9,
1810 						 bio->bi_io_vec[idx].bv_page,
1811 						 REQ_OP_READ, 0, false)) {
1812 					success = 1;
1813 					break;
1814 				}
1815 			}
1816 			d++;
1817 			if (d == conf->raid_disks * 2)
1818 				d = 0;
1819 		} while (!success && d != r1_bio->read_disk);
1820 
1821 		if (!success) {
1822 			char b[BDEVNAME_SIZE];
1823 			int abort = 0;
1824 			/* Cannot read from anywhere, this block is lost.
1825 			 * Record a bad block on each device.  If that doesn't
1826 			 * work just disable and interrupt the recovery.
1827 			 * Don't fail devices as that won't really help.
1828 			 */
1829 			printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error"
1830 			       " for block %llu\n",
1831 			       mdname(mddev),
1832 			       bdevname(bio->bi_bdev, b),
1833 			       (unsigned long long)r1_bio->sector);
1834 			for (d = 0; d < conf->raid_disks * 2; d++) {
1835 				rdev = conf->mirrors[d].rdev;
1836 				if (!rdev || test_bit(Faulty, &rdev->flags))
1837 					continue;
1838 				if (!rdev_set_badblocks(rdev, sect, s, 0))
1839 					abort = 1;
1840 			}
1841 			if (abort) {
1842 				conf->recovery_disabled =
1843 					mddev->recovery_disabled;
1844 				set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1845 				md_done_sync(mddev, r1_bio->sectors, 0);
1846 				put_buf(r1_bio);
1847 				return 0;
1848 			}
1849 			/* Try next page */
1850 			sectors -= s;
1851 			sect += s;
1852 			idx++;
1853 			continue;
1854 		}
1855 
1856 		start = d;
1857 		/* write it back and re-read */
1858 		while (d != r1_bio->read_disk) {
1859 			if (d == 0)
1860 				d = conf->raid_disks * 2;
1861 			d--;
1862 			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1863 				continue;
1864 			rdev = conf->mirrors[d].rdev;
1865 			if (r1_sync_page_io(rdev, sect, s,
1866 					    bio->bi_io_vec[idx].bv_page,
1867 					    WRITE) == 0) {
1868 				r1_bio->bios[d]->bi_end_io = NULL;
1869 				rdev_dec_pending(rdev, mddev);
1870 			}
1871 		}
1872 		d = start;
1873 		while (d != r1_bio->read_disk) {
1874 			if (d == 0)
1875 				d = conf->raid_disks * 2;
1876 			d--;
1877 			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1878 				continue;
1879 			rdev = conf->mirrors[d].rdev;
1880 			if (r1_sync_page_io(rdev, sect, s,
1881 					    bio->bi_io_vec[idx].bv_page,
1882 					    READ) != 0)
1883 				atomic_add(s, &rdev->corrected_errors);
1884 		}
1885 		sectors -= s;
1886 		sect += s;
1887 		idx ++;
1888 	}
1889 	set_bit(R1BIO_Uptodate, &r1_bio->state);
1890 	bio->bi_error = 0;
1891 	return 1;
1892 }
1893 
1894 static void process_checks(struct r1bio *r1_bio)
1895 {
1896 	/* We have read all readable devices.  If we haven't
1897 	 * got the block, then there is no hope left.
1898 	 * If we have, then we want to do a comparison
1899 	 * and skip the write if everything is the same.
1900 	 * If any blocks failed to read, then we need to
1901 	 * attempt an over-write
1902 	 */
1903 	struct mddev *mddev = r1_bio->mddev;
1904 	struct r1conf *conf = mddev->private;
1905 	int primary;
1906 	int i;
1907 	int vcnt;
1908 
1909 	/* Fix variable parts of all bios */
1910 	vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
1911 	for (i = 0; i < conf->raid_disks * 2; i++) {
1912 		int j;
1913 		int size;
1914 		int error;
1915 		struct bio *b = r1_bio->bios[i];
1916 		if (b->bi_end_io != end_sync_read)
1917 			continue;
1918 		/* fixup the bio for reuse, but preserve errno */
1919 		error = b->bi_error;
1920 		bio_reset(b);
1921 		b->bi_error = error;
1922 		b->bi_vcnt = vcnt;
1923 		b->bi_iter.bi_size = r1_bio->sectors << 9;
1924 		b->bi_iter.bi_sector = r1_bio->sector +
1925 			conf->mirrors[i].rdev->data_offset;
1926 		b->bi_bdev = conf->mirrors[i].rdev->bdev;
1927 		b->bi_end_io = end_sync_read;
1928 		b->bi_private = r1_bio;
1929 
1930 		size = b->bi_iter.bi_size;
1931 		for (j = 0; j < vcnt ; j++) {
1932 			struct bio_vec *bi;
1933 			bi = &b->bi_io_vec[j];
1934 			bi->bv_offset = 0;
1935 			if (size > PAGE_SIZE)
1936 				bi->bv_len = PAGE_SIZE;
1937 			else
1938 				bi->bv_len = size;
1939 			size -= PAGE_SIZE;
1940 		}
1941 	}
1942 	for (primary = 0; primary < conf->raid_disks * 2; primary++)
1943 		if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
1944 		    !r1_bio->bios[primary]->bi_error) {
1945 			r1_bio->bios[primary]->bi_end_io = NULL;
1946 			rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
1947 			break;
1948 		}
1949 	r1_bio->read_disk = primary;
1950 	for (i = 0; i < conf->raid_disks * 2; i++) {
1951 		int j;
1952 		struct bio *pbio = r1_bio->bios[primary];
1953 		struct bio *sbio = r1_bio->bios[i];
1954 		int error = sbio->bi_error;
1955 
1956 		if (sbio->bi_end_io != end_sync_read)
1957 			continue;
1958 		/* Now we can 'fixup' the error value */
1959 		sbio->bi_error = 0;
1960 
1961 		if (!error) {
1962 			for (j = vcnt; j-- ; ) {
1963 				struct page *p, *s;
1964 				p = pbio->bi_io_vec[j].bv_page;
1965 				s = sbio->bi_io_vec[j].bv_page;
1966 				if (memcmp(page_address(p),
1967 					   page_address(s),
1968 					   sbio->bi_io_vec[j].bv_len))
1969 					break;
1970 			}
1971 		} else
1972 			j = 0;
1973 		if (j >= 0)
1974 			atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
1975 		if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
1976 			      && !error)) {
1977 			/* No need to write to this device. */
1978 			sbio->bi_end_io = NULL;
1979 			rdev_dec_pending(conf->mirrors[i].rdev, mddev);
1980 			continue;
1981 		}
1982 
1983 		bio_copy_data(sbio, pbio);
1984 	}
1985 }
1986 
1987 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
1988 {
1989 	struct r1conf *conf = mddev->private;
1990 	int i;
1991 	int disks = conf->raid_disks * 2;
1992 	struct bio *bio, *wbio;
1993 
1994 	bio = r1_bio->bios[r1_bio->read_disk];
1995 
1996 	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
1997 		/* ouch - failed to read all of that. */
1998 		if (!fix_sync_read_error(r1_bio))
1999 			return;
2000 
2001 	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2002 		process_checks(r1_bio);
2003 
2004 	/*
2005 	 * schedule writes
2006 	 */
2007 	atomic_set(&r1_bio->remaining, 1);
2008 	for (i = 0; i < disks ; i++) {
2009 		wbio = r1_bio->bios[i];
2010 		if (wbio->bi_end_io == NULL ||
2011 		    (wbio->bi_end_io == end_sync_read &&
2012 		     (i == r1_bio->read_disk ||
2013 		      !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2014 			continue;
2015 
2016 		bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2017 		wbio->bi_end_io = end_sync_write;
2018 		atomic_inc(&r1_bio->remaining);
2019 		md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
2020 
2021 		generic_make_request(wbio);
2022 	}
2023 
2024 	if (atomic_dec_and_test(&r1_bio->remaining)) {
2025 		/* if we're here, all write(s) have completed, so clean up */
2026 		int s = r1_bio->sectors;
2027 		if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2028 		    test_bit(R1BIO_WriteError, &r1_bio->state))
2029 			reschedule_retry(r1_bio);
2030 		else {
2031 			put_buf(r1_bio);
2032 			md_done_sync(mddev, s, 1);
2033 		}
2034 	}
2035 }
2036 
2037 /*
2038  * This is a kernel thread which:
2039  *
2040  *	1.	Retries failed read operations on working mirrors.
2041  *	2.	Updates the raid superblock when problems encounter.
2042  *	3.	Performs writes following reads for array synchronising.
2043  */
2044 
2045 static void fix_read_error(struct r1conf *conf, int read_disk,
2046 			   sector_t sect, int sectors)
2047 {
2048 	struct mddev *mddev = conf->mddev;
2049 	while(sectors) {
2050 		int s = sectors;
2051 		int d = read_disk;
2052 		int success = 0;
2053 		int start;
2054 		struct md_rdev *rdev;
2055 
2056 		if (s > (PAGE_SIZE>>9))
2057 			s = PAGE_SIZE >> 9;
2058 
2059 		do {
2060 			sector_t first_bad;
2061 			int bad_sectors;
2062 
2063 			rcu_read_lock();
2064 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2065 			if (rdev &&
2066 			    (test_bit(In_sync, &rdev->flags) ||
2067 			     (!test_bit(Faulty, &rdev->flags) &&
2068 			      rdev->recovery_offset >= sect + s)) &&
2069 			    is_badblock(rdev, sect, s,
2070 					&first_bad, &bad_sectors) == 0) {
2071 				atomic_inc(&rdev->nr_pending);
2072 				rcu_read_unlock();
2073 				if (sync_page_io(rdev, sect, s<<9,
2074 					 conf->tmppage, REQ_OP_READ, 0, false))
2075 					success = 1;
2076 				rdev_dec_pending(rdev, mddev);
2077 				if (success)
2078 					break;
2079 			} else
2080 				rcu_read_unlock();
2081 			d++;
2082 			if (d == conf->raid_disks * 2)
2083 				d = 0;
2084 		} while (!success && d != read_disk);
2085 
2086 		if (!success) {
2087 			/* Cannot read from anywhere - mark it bad */
2088 			struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2089 			if (!rdev_set_badblocks(rdev, sect, s, 0))
2090 				md_error(mddev, rdev);
2091 			break;
2092 		}
2093 		/* write it back and re-read */
2094 		start = d;
2095 		while (d != read_disk) {
2096 			if (d==0)
2097 				d = conf->raid_disks * 2;
2098 			d--;
2099 			rcu_read_lock();
2100 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2101 			if (rdev &&
2102 			    !test_bit(Faulty, &rdev->flags)) {
2103 				atomic_inc(&rdev->nr_pending);
2104 				rcu_read_unlock();
2105 				r1_sync_page_io(rdev, sect, s,
2106 						conf->tmppage, WRITE);
2107 				rdev_dec_pending(rdev, mddev);
2108 			} else
2109 				rcu_read_unlock();
2110 		}
2111 		d = start;
2112 		while (d != read_disk) {
2113 			char b[BDEVNAME_SIZE];
2114 			if (d==0)
2115 				d = conf->raid_disks * 2;
2116 			d--;
2117 			rcu_read_lock();
2118 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2119 			if (rdev &&
2120 			    !test_bit(Faulty, &rdev->flags)) {
2121 				atomic_inc(&rdev->nr_pending);
2122 				rcu_read_unlock();
2123 				if (r1_sync_page_io(rdev, sect, s,
2124 						    conf->tmppage, READ)) {
2125 					atomic_add(s, &rdev->corrected_errors);
2126 					printk(KERN_INFO
2127 					       "md/raid1:%s: read error corrected "
2128 					       "(%d sectors at %llu on %s)\n",
2129 					       mdname(mddev), s,
2130 					       (unsigned long long)(sect +
2131 								    rdev->data_offset),
2132 					       bdevname(rdev->bdev, b));
2133 				}
2134 				rdev_dec_pending(rdev, mddev);
2135 			} else
2136 				rcu_read_unlock();
2137 		}
2138 		sectors -= s;
2139 		sect += s;
2140 	}
2141 }
2142 
2143 static int narrow_write_error(struct r1bio *r1_bio, int i)
2144 {
2145 	struct mddev *mddev = r1_bio->mddev;
2146 	struct r1conf *conf = mddev->private;
2147 	struct md_rdev *rdev = conf->mirrors[i].rdev;
2148 
2149 	/* bio has the data to be written to device 'i' where
2150 	 * we just recently had a write error.
2151 	 * We repeatedly clone the bio and trim down to one block,
2152 	 * then try the write.  Where the write fails we record
2153 	 * a bad block.
2154 	 * It is conceivable that the bio doesn't exactly align with
2155 	 * blocks.  We must handle this somehow.
2156 	 *
2157 	 * We currently own a reference on the rdev.
2158 	 */
2159 
2160 	int block_sectors;
2161 	sector_t sector;
2162 	int sectors;
2163 	int sect_to_write = r1_bio->sectors;
2164 	int ok = 1;
2165 
2166 	if (rdev->badblocks.shift < 0)
2167 		return 0;
2168 
2169 	block_sectors = roundup(1 << rdev->badblocks.shift,
2170 				bdev_logical_block_size(rdev->bdev) >> 9);
2171 	sector = r1_bio->sector;
2172 	sectors = ((sector + block_sectors)
2173 		   & ~(sector_t)(block_sectors - 1))
2174 		- sector;
2175 
2176 	while (sect_to_write) {
2177 		struct bio *wbio;
2178 		if (sectors > sect_to_write)
2179 			sectors = sect_to_write;
2180 		/* Write at 'sector' for 'sectors'*/
2181 
2182 		if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2183 			unsigned vcnt = r1_bio->behind_page_count;
2184 			struct bio_vec *vec = r1_bio->behind_bvecs;
2185 
2186 			while (!vec->bv_page) {
2187 				vec++;
2188 				vcnt--;
2189 			}
2190 
2191 			wbio = bio_alloc_mddev(GFP_NOIO, vcnt, mddev);
2192 			memcpy(wbio->bi_io_vec, vec, vcnt * sizeof(struct bio_vec));
2193 
2194 			wbio->bi_vcnt = vcnt;
2195 		} else {
2196 			wbio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2197 		}
2198 
2199 		bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2200 		wbio->bi_iter.bi_sector = r1_bio->sector;
2201 		wbio->bi_iter.bi_size = r1_bio->sectors << 9;
2202 
2203 		bio_trim(wbio, sector - r1_bio->sector, sectors);
2204 		wbio->bi_iter.bi_sector += rdev->data_offset;
2205 		wbio->bi_bdev = rdev->bdev;
2206 
2207 		if (submit_bio_wait(wbio) < 0)
2208 			/* failure! */
2209 			ok = rdev_set_badblocks(rdev, sector,
2210 						sectors, 0)
2211 				&& ok;
2212 
2213 		bio_put(wbio);
2214 		sect_to_write -= sectors;
2215 		sector += sectors;
2216 		sectors = block_sectors;
2217 	}
2218 	return ok;
2219 }
2220 
2221 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2222 {
2223 	int m;
2224 	int s = r1_bio->sectors;
2225 	for (m = 0; m < conf->raid_disks * 2 ; m++) {
2226 		struct md_rdev *rdev = conf->mirrors[m].rdev;
2227 		struct bio *bio = r1_bio->bios[m];
2228 		if (bio->bi_end_io == NULL)
2229 			continue;
2230 		if (!bio->bi_error &&
2231 		    test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2232 			rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2233 		}
2234 		if (bio->bi_error &&
2235 		    test_bit(R1BIO_WriteError, &r1_bio->state)) {
2236 			if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2237 				md_error(conf->mddev, rdev);
2238 		}
2239 	}
2240 	put_buf(r1_bio);
2241 	md_done_sync(conf->mddev, s, 1);
2242 }
2243 
2244 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2245 {
2246 	int m;
2247 	bool fail = false;
2248 	for (m = 0; m < conf->raid_disks * 2 ; m++)
2249 		if (r1_bio->bios[m] == IO_MADE_GOOD) {
2250 			struct md_rdev *rdev = conf->mirrors[m].rdev;
2251 			rdev_clear_badblocks(rdev,
2252 					     r1_bio->sector,
2253 					     r1_bio->sectors, 0);
2254 			rdev_dec_pending(rdev, conf->mddev);
2255 		} else if (r1_bio->bios[m] != NULL) {
2256 			/* This drive got a write error.  We need to
2257 			 * narrow down and record precise write
2258 			 * errors.
2259 			 */
2260 			fail = true;
2261 			if (!narrow_write_error(r1_bio, m)) {
2262 				md_error(conf->mddev,
2263 					 conf->mirrors[m].rdev);
2264 				/* an I/O failed, we can't clear the bitmap */
2265 				set_bit(R1BIO_Degraded, &r1_bio->state);
2266 			}
2267 			rdev_dec_pending(conf->mirrors[m].rdev,
2268 					 conf->mddev);
2269 		}
2270 	if (fail) {
2271 		spin_lock_irq(&conf->device_lock);
2272 		list_add(&r1_bio->retry_list, &conf->bio_end_io_list);
2273 		conf->nr_queued++;
2274 		spin_unlock_irq(&conf->device_lock);
2275 		md_wakeup_thread(conf->mddev->thread);
2276 	} else {
2277 		if (test_bit(R1BIO_WriteError, &r1_bio->state))
2278 			close_write(r1_bio);
2279 		raid_end_bio_io(r1_bio);
2280 	}
2281 }
2282 
2283 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2284 {
2285 	int disk;
2286 	int max_sectors;
2287 	struct mddev *mddev = conf->mddev;
2288 	struct bio *bio;
2289 	char b[BDEVNAME_SIZE];
2290 	struct md_rdev *rdev;
2291 
2292 	clear_bit(R1BIO_ReadError, &r1_bio->state);
2293 	/* we got a read error. Maybe the drive is bad.  Maybe just
2294 	 * the block and we can fix it.
2295 	 * We freeze all other IO, and try reading the block from
2296 	 * other devices.  When we find one, we re-write
2297 	 * and check it that fixes the read error.
2298 	 * This is all done synchronously while the array is
2299 	 * frozen
2300 	 */
2301 	if (mddev->ro == 0) {
2302 		freeze_array(conf, 1);
2303 		fix_read_error(conf, r1_bio->read_disk,
2304 			       r1_bio->sector, r1_bio->sectors);
2305 		unfreeze_array(conf);
2306 	} else
2307 		md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
2308 	rdev_dec_pending(conf->mirrors[r1_bio->read_disk].rdev, conf->mddev);
2309 
2310 	bio = r1_bio->bios[r1_bio->read_disk];
2311 	bdevname(bio->bi_bdev, b);
2312 read_more:
2313 	disk = read_balance(conf, r1_bio, &max_sectors);
2314 	if (disk == -1) {
2315 		printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O"
2316 		       " read error for block %llu\n",
2317 		       mdname(mddev), b, (unsigned long long)r1_bio->sector);
2318 		raid_end_bio_io(r1_bio);
2319 	} else {
2320 		const unsigned long do_sync
2321 			= r1_bio->master_bio->bi_opf & REQ_SYNC;
2322 		if (bio) {
2323 			r1_bio->bios[r1_bio->read_disk] =
2324 				mddev->ro ? IO_BLOCKED : NULL;
2325 			bio_put(bio);
2326 		}
2327 		r1_bio->read_disk = disk;
2328 		bio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2329 		bio_trim(bio, r1_bio->sector - bio->bi_iter.bi_sector,
2330 			 max_sectors);
2331 		r1_bio->bios[r1_bio->read_disk] = bio;
2332 		rdev = conf->mirrors[disk].rdev;
2333 		printk_ratelimited(KERN_ERR
2334 				   "md/raid1:%s: redirecting sector %llu"
2335 				   " to other mirror: %s\n",
2336 				   mdname(mddev),
2337 				   (unsigned long long)r1_bio->sector,
2338 				   bdevname(rdev->bdev, b));
2339 		bio->bi_iter.bi_sector = r1_bio->sector + rdev->data_offset;
2340 		bio->bi_bdev = rdev->bdev;
2341 		bio->bi_end_io = raid1_end_read_request;
2342 		bio_set_op_attrs(bio, REQ_OP_READ, do_sync);
2343 		bio->bi_private = r1_bio;
2344 		if (max_sectors < r1_bio->sectors) {
2345 			/* Drat - have to split this up more */
2346 			struct bio *mbio = r1_bio->master_bio;
2347 			int sectors_handled = (r1_bio->sector + max_sectors
2348 					       - mbio->bi_iter.bi_sector);
2349 			r1_bio->sectors = max_sectors;
2350 			spin_lock_irq(&conf->device_lock);
2351 			if (mbio->bi_phys_segments == 0)
2352 				mbio->bi_phys_segments = 2;
2353 			else
2354 				mbio->bi_phys_segments++;
2355 			spin_unlock_irq(&conf->device_lock);
2356 			generic_make_request(bio);
2357 			bio = NULL;
2358 
2359 			r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
2360 
2361 			r1_bio->master_bio = mbio;
2362 			r1_bio->sectors = bio_sectors(mbio) - sectors_handled;
2363 			r1_bio->state = 0;
2364 			set_bit(R1BIO_ReadError, &r1_bio->state);
2365 			r1_bio->mddev = mddev;
2366 			r1_bio->sector = mbio->bi_iter.bi_sector +
2367 				sectors_handled;
2368 
2369 			goto read_more;
2370 		} else
2371 			generic_make_request(bio);
2372 	}
2373 }
2374 
2375 static void raid1d(struct md_thread *thread)
2376 {
2377 	struct mddev *mddev = thread->mddev;
2378 	struct r1bio *r1_bio;
2379 	unsigned long flags;
2380 	struct r1conf *conf = mddev->private;
2381 	struct list_head *head = &conf->retry_list;
2382 	struct blk_plug plug;
2383 
2384 	md_check_recovery(mddev);
2385 
2386 	if (!list_empty_careful(&conf->bio_end_io_list) &&
2387 	    !test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
2388 		LIST_HEAD(tmp);
2389 		spin_lock_irqsave(&conf->device_lock, flags);
2390 		if (!test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
2391 			while (!list_empty(&conf->bio_end_io_list)) {
2392 				list_move(conf->bio_end_io_list.prev, &tmp);
2393 				conf->nr_queued--;
2394 			}
2395 		}
2396 		spin_unlock_irqrestore(&conf->device_lock, flags);
2397 		while (!list_empty(&tmp)) {
2398 			r1_bio = list_first_entry(&tmp, struct r1bio,
2399 						  retry_list);
2400 			list_del(&r1_bio->retry_list);
2401 			if (mddev->degraded)
2402 				set_bit(R1BIO_Degraded, &r1_bio->state);
2403 			if (test_bit(R1BIO_WriteError, &r1_bio->state))
2404 				close_write(r1_bio);
2405 			raid_end_bio_io(r1_bio);
2406 		}
2407 	}
2408 
2409 	blk_start_plug(&plug);
2410 	for (;;) {
2411 
2412 		flush_pending_writes(conf);
2413 
2414 		spin_lock_irqsave(&conf->device_lock, flags);
2415 		if (list_empty(head)) {
2416 			spin_unlock_irqrestore(&conf->device_lock, flags);
2417 			break;
2418 		}
2419 		r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2420 		list_del(head->prev);
2421 		conf->nr_queued--;
2422 		spin_unlock_irqrestore(&conf->device_lock, flags);
2423 
2424 		mddev = r1_bio->mddev;
2425 		conf = mddev->private;
2426 		if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2427 			if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2428 			    test_bit(R1BIO_WriteError, &r1_bio->state))
2429 				handle_sync_write_finished(conf, r1_bio);
2430 			else
2431 				sync_request_write(mddev, r1_bio);
2432 		} else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2433 			   test_bit(R1BIO_WriteError, &r1_bio->state))
2434 			handle_write_finished(conf, r1_bio);
2435 		else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2436 			handle_read_error(conf, r1_bio);
2437 		else
2438 			/* just a partial read to be scheduled from separate
2439 			 * context
2440 			 */
2441 			generic_make_request(r1_bio->bios[r1_bio->read_disk]);
2442 
2443 		cond_resched();
2444 		if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2445 			md_check_recovery(mddev);
2446 	}
2447 	blk_finish_plug(&plug);
2448 }
2449 
2450 static int init_resync(struct r1conf *conf)
2451 {
2452 	int buffs;
2453 
2454 	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2455 	BUG_ON(conf->r1buf_pool);
2456 	conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2457 					  conf->poolinfo);
2458 	if (!conf->r1buf_pool)
2459 		return -ENOMEM;
2460 	conf->next_resync = 0;
2461 	return 0;
2462 }
2463 
2464 /*
2465  * perform a "sync" on one "block"
2466  *
2467  * We need to make sure that no normal I/O request - particularly write
2468  * requests - conflict with active sync requests.
2469  *
2470  * This is achieved by tracking pending requests and a 'barrier' concept
2471  * that can be installed to exclude normal IO requests.
2472  */
2473 
2474 static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr,
2475 				   int *skipped)
2476 {
2477 	struct r1conf *conf = mddev->private;
2478 	struct r1bio *r1_bio;
2479 	struct bio *bio;
2480 	sector_t max_sector, nr_sectors;
2481 	int disk = -1;
2482 	int i;
2483 	int wonly = -1;
2484 	int write_targets = 0, read_targets = 0;
2485 	sector_t sync_blocks;
2486 	int still_degraded = 0;
2487 	int good_sectors = RESYNC_SECTORS;
2488 	int min_bad = 0; /* number of sectors that are bad in all devices */
2489 
2490 	if (!conf->r1buf_pool)
2491 		if (init_resync(conf))
2492 			return 0;
2493 
2494 	max_sector = mddev->dev_sectors;
2495 	if (sector_nr >= max_sector) {
2496 		/* If we aborted, we need to abort the
2497 		 * sync on the 'current' bitmap chunk (there will
2498 		 * only be one in raid1 resync.
2499 		 * We can find the current addess in mddev->curr_resync
2500 		 */
2501 		if (mddev->curr_resync < max_sector) /* aborted */
2502 			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2503 						&sync_blocks, 1);
2504 		else /* completed sync */
2505 			conf->fullsync = 0;
2506 
2507 		bitmap_close_sync(mddev->bitmap);
2508 		close_sync(conf);
2509 
2510 		if (mddev_is_clustered(mddev)) {
2511 			conf->cluster_sync_low = 0;
2512 			conf->cluster_sync_high = 0;
2513 		}
2514 		return 0;
2515 	}
2516 
2517 	if (mddev->bitmap == NULL &&
2518 	    mddev->recovery_cp == MaxSector &&
2519 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2520 	    conf->fullsync == 0) {
2521 		*skipped = 1;
2522 		return max_sector - sector_nr;
2523 	}
2524 	/* before building a request, check if we can skip these blocks..
2525 	 * This call the bitmap_start_sync doesn't actually record anything
2526 	 */
2527 	if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2528 	    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2529 		/* We can skip this block, and probably several more */
2530 		*skipped = 1;
2531 		return sync_blocks;
2532 	}
2533 
2534 	/*
2535 	 * If there is non-resync activity waiting for a turn, then let it
2536 	 * though before starting on this new sync request.
2537 	 */
2538 	if (conf->nr_waiting)
2539 		schedule_timeout_uninterruptible(1);
2540 
2541 	/* we are incrementing sector_nr below. To be safe, we check against
2542 	 * sector_nr + two times RESYNC_SECTORS
2543 	 */
2544 
2545 	bitmap_cond_end_sync(mddev->bitmap, sector_nr,
2546 		mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
2547 	r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
2548 
2549 	raise_barrier(conf, sector_nr);
2550 
2551 	rcu_read_lock();
2552 	/*
2553 	 * If we get a correctably read error during resync or recovery,
2554 	 * we might want to read from a different device.  So we
2555 	 * flag all drives that could conceivably be read from for READ,
2556 	 * and any others (which will be non-In_sync devices) for WRITE.
2557 	 * If a read fails, we try reading from something else for which READ
2558 	 * is OK.
2559 	 */
2560 
2561 	r1_bio->mddev = mddev;
2562 	r1_bio->sector = sector_nr;
2563 	r1_bio->state = 0;
2564 	set_bit(R1BIO_IsSync, &r1_bio->state);
2565 
2566 	for (i = 0; i < conf->raid_disks * 2; i++) {
2567 		struct md_rdev *rdev;
2568 		bio = r1_bio->bios[i];
2569 		bio_reset(bio);
2570 
2571 		rdev = rcu_dereference(conf->mirrors[i].rdev);
2572 		if (rdev == NULL ||
2573 		    test_bit(Faulty, &rdev->flags)) {
2574 			if (i < conf->raid_disks)
2575 				still_degraded = 1;
2576 		} else if (!test_bit(In_sync, &rdev->flags)) {
2577 			bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2578 			bio->bi_end_io = end_sync_write;
2579 			write_targets ++;
2580 		} else {
2581 			/* may need to read from here */
2582 			sector_t first_bad = MaxSector;
2583 			int bad_sectors;
2584 
2585 			if (is_badblock(rdev, sector_nr, good_sectors,
2586 					&first_bad, &bad_sectors)) {
2587 				if (first_bad > sector_nr)
2588 					good_sectors = first_bad - sector_nr;
2589 				else {
2590 					bad_sectors -= (sector_nr - first_bad);
2591 					if (min_bad == 0 ||
2592 					    min_bad > bad_sectors)
2593 						min_bad = bad_sectors;
2594 				}
2595 			}
2596 			if (sector_nr < first_bad) {
2597 				if (test_bit(WriteMostly, &rdev->flags)) {
2598 					if (wonly < 0)
2599 						wonly = i;
2600 				} else {
2601 					if (disk < 0)
2602 						disk = i;
2603 				}
2604 				bio_set_op_attrs(bio, REQ_OP_READ, 0);
2605 				bio->bi_end_io = end_sync_read;
2606 				read_targets++;
2607 			} else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2608 				test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2609 				!test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2610 				/*
2611 				 * The device is suitable for reading (InSync),
2612 				 * but has bad block(s) here. Let's try to correct them,
2613 				 * if we are doing resync or repair. Otherwise, leave
2614 				 * this device alone for this sync request.
2615 				 */
2616 				bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2617 				bio->bi_end_io = end_sync_write;
2618 				write_targets++;
2619 			}
2620 		}
2621 		if (bio->bi_end_io) {
2622 			atomic_inc(&rdev->nr_pending);
2623 			bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
2624 			bio->bi_bdev = rdev->bdev;
2625 			bio->bi_private = r1_bio;
2626 		}
2627 	}
2628 	rcu_read_unlock();
2629 	if (disk < 0)
2630 		disk = wonly;
2631 	r1_bio->read_disk = disk;
2632 
2633 	if (read_targets == 0 && min_bad > 0) {
2634 		/* These sectors are bad on all InSync devices, so we
2635 		 * need to mark them bad on all write targets
2636 		 */
2637 		int ok = 1;
2638 		for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2639 			if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2640 				struct md_rdev *rdev = conf->mirrors[i].rdev;
2641 				ok = rdev_set_badblocks(rdev, sector_nr,
2642 							min_bad, 0
2643 					) && ok;
2644 			}
2645 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
2646 		*skipped = 1;
2647 		put_buf(r1_bio);
2648 
2649 		if (!ok) {
2650 			/* Cannot record the badblocks, so need to
2651 			 * abort the resync.
2652 			 * If there are multiple read targets, could just
2653 			 * fail the really bad ones ???
2654 			 */
2655 			conf->recovery_disabled = mddev->recovery_disabled;
2656 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2657 			return 0;
2658 		} else
2659 			return min_bad;
2660 
2661 	}
2662 	if (min_bad > 0 && min_bad < good_sectors) {
2663 		/* only resync enough to reach the next bad->good
2664 		 * transition */
2665 		good_sectors = min_bad;
2666 	}
2667 
2668 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2669 		/* extra read targets are also write targets */
2670 		write_targets += read_targets-1;
2671 
2672 	if (write_targets == 0 || read_targets == 0) {
2673 		/* There is nowhere to write, so all non-sync
2674 		 * drives must be failed - so we are finished
2675 		 */
2676 		sector_t rv;
2677 		if (min_bad > 0)
2678 			max_sector = sector_nr + min_bad;
2679 		rv = max_sector - sector_nr;
2680 		*skipped = 1;
2681 		put_buf(r1_bio);
2682 		return rv;
2683 	}
2684 
2685 	if (max_sector > mddev->resync_max)
2686 		max_sector = mddev->resync_max; /* Don't do IO beyond here */
2687 	if (max_sector > sector_nr + good_sectors)
2688 		max_sector = sector_nr + good_sectors;
2689 	nr_sectors = 0;
2690 	sync_blocks = 0;
2691 	do {
2692 		struct page *page;
2693 		int len = PAGE_SIZE;
2694 		if (sector_nr + (len>>9) > max_sector)
2695 			len = (max_sector - sector_nr) << 9;
2696 		if (len == 0)
2697 			break;
2698 		if (sync_blocks == 0) {
2699 			if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2700 					       &sync_blocks, still_degraded) &&
2701 			    !conf->fullsync &&
2702 			    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2703 				break;
2704 			if ((len >> 9) > sync_blocks)
2705 				len = sync_blocks<<9;
2706 		}
2707 
2708 		for (i = 0 ; i < conf->raid_disks * 2; i++) {
2709 			bio = r1_bio->bios[i];
2710 			if (bio->bi_end_io) {
2711 				page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
2712 				if (bio_add_page(bio, page, len, 0) == 0) {
2713 					/* stop here */
2714 					bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
2715 					while (i > 0) {
2716 						i--;
2717 						bio = r1_bio->bios[i];
2718 						if (bio->bi_end_io==NULL)
2719 							continue;
2720 						/* remove last page from this bio */
2721 						bio->bi_vcnt--;
2722 						bio->bi_iter.bi_size -= len;
2723 						bio_clear_flag(bio, BIO_SEG_VALID);
2724 					}
2725 					goto bio_full;
2726 				}
2727 			}
2728 		}
2729 		nr_sectors += len>>9;
2730 		sector_nr += len>>9;
2731 		sync_blocks -= (len>>9);
2732 	} while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
2733  bio_full:
2734 	r1_bio->sectors = nr_sectors;
2735 
2736 	if (mddev_is_clustered(mddev) &&
2737 			conf->cluster_sync_high < sector_nr + nr_sectors) {
2738 		conf->cluster_sync_low = mddev->curr_resync_completed;
2739 		conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS;
2740 		/* Send resync message */
2741 		md_cluster_ops->resync_info_update(mddev,
2742 				conf->cluster_sync_low,
2743 				conf->cluster_sync_high);
2744 	}
2745 
2746 	/* For a user-requested sync, we read all readable devices and do a
2747 	 * compare
2748 	 */
2749 	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2750 		atomic_set(&r1_bio->remaining, read_targets);
2751 		for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2752 			bio = r1_bio->bios[i];
2753 			if (bio->bi_end_io == end_sync_read) {
2754 				read_targets--;
2755 				md_sync_acct(bio->bi_bdev, nr_sectors);
2756 				generic_make_request(bio);
2757 			}
2758 		}
2759 	} else {
2760 		atomic_set(&r1_bio->remaining, 1);
2761 		bio = r1_bio->bios[r1_bio->read_disk];
2762 		md_sync_acct(bio->bi_bdev, nr_sectors);
2763 		generic_make_request(bio);
2764 
2765 	}
2766 	return nr_sectors;
2767 }
2768 
2769 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2770 {
2771 	if (sectors)
2772 		return sectors;
2773 
2774 	return mddev->dev_sectors;
2775 }
2776 
2777 static struct r1conf *setup_conf(struct mddev *mddev)
2778 {
2779 	struct r1conf *conf;
2780 	int i;
2781 	struct raid1_info *disk;
2782 	struct md_rdev *rdev;
2783 	int err = -ENOMEM;
2784 
2785 	conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2786 	if (!conf)
2787 		goto abort;
2788 
2789 	conf->mirrors = kzalloc(sizeof(struct raid1_info)
2790 				* mddev->raid_disks * 2,
2791 				 GFP_KERNEL);
2792 	if (!conf->mirrors)
2793 		goto abort;
2794 
2795 	conf->tmppage = alloc_page(GFP_KERNEL);
2796 	if (!conf->tmppage)
2797 		goto abort;
2798 
2799 	conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
2800 	if (!conf->poolinfo)
2801 		goto abort;
2802 	conf->poolinfo->raid_disks = mddev->raid_disks * 2;
2803 	conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2804 					  r1bio_pool_free,
2805 					  conf->poolinfo);
2806 	if (!conf->r1bio_pool)
2807 		goto abort;
2808 
2809 	conf->poolinfo->mddev = mddev;
2810 
2811 	err = -EINVAL;
2812 	spin_lock_init(&conf->device_lock);
2813 	rdev_for_each(rdev, mddev) {
2814 		struct request_queue *q;
2815 		int disk_idx = rdev->raid_disk;
2816 		if (disk_idx >= mddev->raid_disks
2817 		    || disk_idx < 0)
2818 			continue;
2819 		if (test_bit(Replacement, &rdev->flags))
2820 			disk = conf->mirrors + mddev->raid_disks + disk_idx;
2821 		else
2822 			disk = conf->mirrors + disk_idx;
2823 
2824 		if (disk->rdev)
2825 			goto abort;
2826 		disk->rdev = rdev;
2827 		q = bdev_get_queue(rdev->bdev);
2828 
2829 		disk->head_position = 0;
2830 		disk->seq_start = MaxSector;
2831 	}
2832 	conf->raid_disks = mddev->raid_disks;
2833 	conf->mddev = mddev;
2834 	INIT_LIST_HEAD(&conf->retry_list);
2835 	INIT_LIST_HEAD(&conf->bio_end_io_list);
2836 
2837 	spin_lock_init(&conf->resync_lock);
2838 	init_waitqueue_head(&conf->wait_barrier);
2839 
2840 	bio_list_init(&conf->pending_bio_list);
2841 	conf->pending_count = 0;
2842 	conf->recovery_disabled = mddev->recovery_disabled - 1;
2843 
2844 	conf->start_next_window = MaxSector;
2845 	conf->current_window_requests = conf->next_window_requests = 0;
2846 
2847 	err = -EIO;
2848 	for (i = 0; i < conf->raid_disks * 2; i++) {
2849 
2850 		disk = conf->mirrors + i;
2851 
2852 		if (i < conf->raid_disks &&
2853 		    disk[conf->raid_disks].rdev) {
2854 			/* This slot has a replacement. */
2855 			if (!disk->rdev) {
2856 				/* No original, just make the replacement
2857 				 * a recovering spare
2858 				 */
2859 				disk->rdev =
2860 					disk[conf->raid_disks].rdev;
2861 				disk[conf->raid_disks].rdev = NULL;
2862 			} else if (!test_bit(In_sync, &disk->rdev->flags))
2863 				/* Original is not in_sync - bad */
2864 				goto abort;
2865 		}
2866 
2867 		if (!disk->rdev ||
2868 		    !test_bit(In_sync, &disk->rdev->flags)) {
2869 			disk->head_position = 0;
2870 			if (disk->rdev &&
2871 			    (disk->rdev->saved_raid_disk < 0))
2872 				conf->fullsync = 1;
2873 		}
2874 	}
2875 
2876 	err = -ENOMEM;
2877 	conf->thread = md_register_thread(raid1d, mddev, "raid1");
2878 	if (!conf->thread) {
2879 		printk(KERN_ERR
2880 		       "md/raid1:%s: couldn't allocate thread\n",
2881 		       mdname(mddev));
2882 		goto abort;
2883 	}
2884 
2885 	return conf;
2886 
2887  abort:
2888 	if (conf) {
2889 		mempool_destroy(conf->r1bio_pool);
2890 		kfree(conf->mirrors);
2891 		safe_put_page(conf->tmppage);
2892 		kfree(conf->poolinfo);
2893 		kfree(conf);
2894 	}
2895 	return ERR_PTR(err);
2896 }
2897 
2898 static void raid1_free(struct mddev *mddev, void *priv);
2899 static int raid1_run(struct mddev *mddev)
2900 {
2901 	struct r1conf *conf;
2902 	int i;
2903 	struct md_rdev *rdev;
2904 	int ret;
2905 	bool discard_supported = false;
2906 
2907 	if (mddev->level != 1) {
2908 		printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n",
2909 		       mdname(mddev), mddev->level);
2910 		return -EIO;
2911 	}
2912 	if (mddev->reshape_position != MaxSector) {
2913 		printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n",
2914 		       mdname(mddev));
2915 		return -EIO;
2916 	}
2917 	/*
2918 	 * copy the already verified devices into our private RAID1
2919 	 * bookkeeping area. [whatever we allocate in run(),
2920 	 * should be freed in raid1_free()]
2921 	 */
2922 	if (mddev->private == NULL)
2923 		conf = setup_conf(mddev);
2924 	else
2925 		conf = mddev->private;
2926 
2927 	if (IS_ERR(conf))
2928 		return PTR_ERR(conf);
2929 
2930 	if (mddev->queue)
2931 		blk_queue_max_write_same_sectors(mddev->queue, 0);
2932 
2933 	rdev_for_each(rdev, mddev) {
2934 		if (!mddev->gendisk)
2935 			continue;
2936 		disk_stack_limits(mddev->gendisk, rdev->bdev,
2937 				  rdev->data_offset << 9);
2938 		if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
2939 			discard_supported = true;
2940 	}
2941 
2942 	mddev->degraded = 0;
2943 	for (i=0; i < conf->raid_disks; i++)
2944 		if (conf->mirrors[i].rdev == NULL ||
2945 		    !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
2946 		    test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2947 			mddev->degraded++;
2948 
2949 	if (conf->raid_disks - mddev->degraded == 1)
2950 		mddev->recovery_cp = MaxSector;
2951 
2952 	if (mddev->recovery_cp != MaxSector)
2953 		printk(KERN_NOTICE "md/raid1:%s: not clean"
2954 		       " -- starting background reconstruction\n",
2955 		       mdname(mddev));
2956 	printk(KERN_INFO
2957 		"md/raid1:%s: active with %d out of %d mirrors\n",
2958 		mdname(mddev), mddev->raid_disks - mddev->degraded,
2959 		mddev->raid_disks);
2960 
2961 	/*
2962 	 * Ok, everything is just fine now
2963 	 */
2964 	mddev->thread = conf->thread;
2965 	conf->thread = NULL;
2966 	mddev->private = conf;
2967 
2968 	md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
2969 
2970 	if (mddev->queue) {
2971 		if (discard_supported)
2972 			queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
2973 						mddev->queue);
2974 		else
2975 			queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
2976 						  mddev->queue);
2977 	}
2978 
2979 	ret =  md_integrity_register(mddev);
2980 	if (ret) {
2981 		md_unregister_thread(&mddev->thread);
2982 		raid1_free(mddev, conf);
2983 	}
2984 	return ret;
2985 }
2986 
2987 static void raid1_free(struct mddev *mddev, void *priv)
2988 {
2989 	struct r1conf *conf = priv;
2990 
2991 	mempool_destroy(conf->r1bio_pool);
2992 	kfree(conf->mirrors);
2993 	safe_put_page(conf->tmppage);
2994 	kfree(conf->poolinfo);
2995 	kfree(conf);
2996 }
2997 
2998 static int raid1_resize(struct mddev *mddev, sector_t sectors)
2999 {
3000 	/* no resync is happening, and there is enough space
3001 	 * on all devices, so we can resize.
3002 	 * We need to make sure resync covers any new space.
3003 	 * If the array is shrinking we should possibly wait until
3004 	 * any io in the removed space completes, but it hardly seems
3005 	 * worth it.
3006 	 */
3007 	sector_t newsize = raid1_size(mddev, sectors, 0);
3008 	if (mddev->external_size &&
3009 	    mddev->array_sectors > newsize)
3010 		return -EINVAL;
3011 	if (mddev->bitmap) {
3012 		int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0);
3013 		if (ret)
3014 			return ret;
3015 	}
3016 	md_set_array_sectors(mddev, newsize);
3017 	set_capacity(mddev->gendisk, mddev->array_sectors);
3018 	revalidate_disk(mddev->gendisk);
3019 	if (sectors > mddev->dev_sectors &&
3020 	    mddev->recovery_cp > mddev->dev_sectors) {
3021 		mddev->recovery_cp = mddev->dev_sectors;
3022 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3023 	}
3024 	mddev->dev_sectors = sectors;
3025 	mddev->resync_max_sectors = sectors;
3026 	return 0;
3027 }
3028 
3029 static int raid1_reshape(struct mddev *mddev)
3030 {
3031 	/* We need to:
3032 	 * 1/ resize the r1bio_pool
3033 	 * 2/ resize conf->mirrors
3034 	 *
3035 	 * We allocate a new r1bio_pool if we can.
3036 	 * Then raise a device barrier and wait until all IO stops.
3037 	 * Then resize conf->mirrors and swap in the new r1bio pool.
3038 	 *
3039 	 * At the same time, we "pack" the devices so that all the missing
3040 	 * devices have the higher raid_disk numbers.
3041 	 */
3042 	mempool_t *newpool, *oldpool;
3043 	struct pool_info *newpoolinfo;
3044 	struct raid1_info *newmirrors;
3045 	struct r1conf *conf = mddev->private;
3046 	int cnt, raid_disks;
3047 	unsigned long flags;
3048 	int d, d2, err;
3049 
3050 	/* Cannot change chunk_size, layout, or level */
3051 	if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3052 	    mddev->layout != mddev->new_layout ||
3053 	    mddev->level != mddev->new_level) {
3054 		mddev->new_chunk_sectors = mddev->chunk_sectors;
3055 		mddev->new_layout = mddev->layout;
3056 		mddev->new_level = mddev->level;
3057 		return -EINVAL;
3058 	}
3059 
3060 	if (!mddev_is_clustered(mddev)) {
3061 		err = md_allow_write(mddev);
3062 		if (err)
3063 			return err;
3064 	}
3065 
3066 	raid_disks = mddev->raid_disks + mddev->delta_disks;
3067 
3068 	if (raid_disks < conf->raid_disks) {
3069 		cnt=0;
3070 		for (d= 0; d < conf->raid_disks; d++)
3071 			if (conf->mirrors[d].rdev)
3072 				cnt++;
3073 		if (cnt > raid_disks)
3074 			return -EBUSY;
3075 	}
3076 
3077 	newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3078 	if (!newpoolinfo)
3079 		return -ENOMEM;
3080 	newpoolinfo->mddev = mddev;
3081 	newpoolinfo->raid_disks = raid_disks * 2;
3082 
3083 	newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
3084 				 r1bio_pool_free, newpoolinfo);
3085 	if (!newpool) {
3086 		kfree(newpoolinfo);
3087 		return -ENOMEM;
3088 	}
3089 	newmirrors = kzalloc(sizeof(struct raid1_info) * raid_disks * 2,
3090 			     GFP_KERNEL);
3091 	if (!newmirrors) {
3092 		kfree(newpoolinfo);
3093 		mempool_destroy(newpool);
3094 		return -ENOMEM;
3095 	}
3096 
3097 	freeze_array(conf, 0);
3098 
3099 	/* ok, everything is stopped */
3100 	oldpool = conf->r1bio_pool;
3101 	conf->r1bio_pool = newpool;
3102 
3103 	for (d = d2 = 0; d < conf->raid_disks; d++) {
3104 		struct md_rdev *rdev = conf->mirrors[d].rdev;
3105 		if (rdev && rdev->raid_disk != d2) {
3106 			sysfs_unlink_rdev(mddev, rdev);
3107 			rdev->raid_disk = d2;
3108 			sysfs_unlink_rdev(mddev, rdev);
3109 			if (sysfs_link_rdev(mddev, rdev))
3110 				printk(KERN_WARNING
3111 				       "md/raid1:%s: cannot register rd%d\n",
3112 				       mdname(mddev), rdev->raid_disk);
3113 		}
3114 		if (rdev)
3115 			newmirrors[d2++].rdev = rdev;
3116 	}
3117 	kfree(conf->mirrors);
3118 	conf->mirrors = newmirrors;
3119 	kfree(conf->poolinfo);
3120 	conf->poolinfo = newpoolinfo;
3121 
3122 	spin_lock_irqsave(&conf->device_lock, flags);
3123 	mddev->degraded += (raid_disks - conf->raid_disks);
3124 	spin_unlock_irqrestore(&conf->device_lock, flags);
3125 	conf->raid_disks = mddev->raid_disks = raid_disks;
3126 	mddev->delta_disks = 0;
3127 
3128 	unfreeze_array(conf);
3129 
3130 	set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3131 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3132 	md_wakeup_thread(mddev->thread);
3133 
3134 	mempool_destroy(oldpool);
3135 	return 0;
3136 }
3137 
3138 static void raid1_quiesce(struct mddev *mddev, int state)
3139 {
3140 	struct r1conf *conf = mddev->private;
3141 
3142 	switch(state) {
3143 	case 2: /* wake for suspend */
3144 		wake_up(&conf->wait_barrier);
3145 		break;
3146 	case 1:
3147 		freeze_array(conf, 0);
3148 		break;
3149 	case 0:
3150 		unfreeze_array(conf);
3151 		break;
3152 	}
3153 }
3154 
3155 static void *raid1_takeover(struct mddev *mddev)
3156 {
3157 	/* raid1 can take over:
3158 	 *  raid5 with 2 devices, any layout or chunk size
3159 	 */
3160 	if (mddev->level == 5 && mddev->raid_disks == 2) {
3161 		struct r1conf *conf;
3162 		mddev->new_level = 1;
3163 		mddev->new_layout = 0;
3164 		mddev->new_chunk_sectors = 0;
3165 		conf = setup_conf(mddev);
3166 		if (!IS_ERR(conf))
3167 			/* Array must appear to be quiesced */
3168 			conf->array_frozen = 1;
3169 		return conf;
3170 	}
3171 	return ERR_PTR(-EINVAL);
3172 }
3173 
3174 static struct md_personality raid1_personality =
3175 {
3176 	.name		= "raid1",
3177 	.level		= 1,
3178 	.owner		= THIS_MODULE,
3179 	.make_request	= raid1_make_request,
3180 	.run		= raid1_run,
3181 	.free		= raid1_free,
3182 	.status		= raid1_status,
3183 	.error_handler	= raid1_error,
3184 	.hot_add_disk	= raid1_add_disk,
3185 	.hot_remove_disk= raid1_remove_disk,
3186 	.spare_active	= raid1_spare_active,
3187 	.sync_request	= raid1_sync_request,
3188 	.resize		= raid1_resize,
3189 	.size		= raid1_size,
3190 	.check_reshape	= raid1_reshape,
3191 	.quiesce	= raid1_quiesce,
3192 	.takeover	= raid1_takeover,
3193 	.congested	= raid1_congested,
3194 };
3195 
3196 static int __init raid_init(void)
3197 {
3198 	return register_md_personality(&raid1_personality);
3199 }
3200 
3201 static void raid_exit(void)
3202 {
3203 	unregister_md_personality(&raid1_personality);
3204 }
3205 
3206 module_init(raid_init);
3207 module_exit(raid_exit);
3208 MODULE_LICENSE("GPL");
3209 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3210 MODULE_ALIAS("md-personality-3"); /* RAID1 */
3211 MODULE_ALIAS("md-raid1");
3212 MODULE_ALIAS("md-level-1");
3213 
3214 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
3215