xref: /openbmc/linux/drivers/md/raid1.c (revision bb2a9ace)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * raid1.c : Multiple Devices driver for Linux
4  *
5  * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
6  *
7  * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
8  *
9  * RAID-1 management functions.
10  *
11  * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
12  *
13  * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
14  * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
15  *
16  * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
17  * bitmapped intelligence in resync:
18  *
19  *      - bitmap marked during normal i/o
20  *      - bitmap used to skip nondirty blocks during sync
21  *
22  * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
23  * - persistent bitmap code
24  */
25 
26 #include <linux/slab.h>
27 #include <linux/delay.h>
28 #include <linux/blkdev.h>
29 #include <linux/module.h>
30 #include <linux/seq_file.h>
31 #include <linux/ratelimit.h>
32 #include <linux/interval_tree_generic.h>
33 
34 #include <trace/events/block.h>
35 
36 #include "md.h"
37 #include "raid1.h"
38 #include "md-bitmap.h"
39 
40 #define UNSUPPORTED_MDDEV_FLAGS		\
41 	((1L << MD_HAS_JOURNAL) |	\
42 	 (1L << MD_JOURNAL_CLEAN) |	\
43 	 (1L << MD_HAS_PPL) |		\
44 	 (1L << MD_HAS_MULTIPLE_PPLS))
45 
46 static void allow_barrier(struct r1conf *conf, sector_t sector_nr);
47 static void lower_barrier(struct r1conf *conf, sector_t sector_nr);
48 
49 #define raid1_log(md, fmt, args...)				\
50 	do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid1 " fmt, ##args); } while (0)
51 
52 #include "raid1-10.c"
53 
54 #define START(node) ((node)->start)
55 #define LAST(node) ((node)->last)
56 INTERVAL_TREE_DEFINE(struct serial_info, node, sector_t, _subtree_last,
57 		     START, LAST, static inline, raid1_rb);
58 
59 static int check_and_add_serial(struct md_rdev *rdev, struct r1bio *r1_bio,
60 				struct serial_info *si, int idx)
61 {
62 	unsigned long flags;
63 	int ret = 0;
64 	sector_t lo = r1_bio->sector;
65 	sector_t hi = lo + r1_bio->sectors;
66 	struct serial_in_rdev *serial = &rdev->serial[idx];
67 
68 	spin_lock_irqsave(&serial->serial_lock, flags);
69 	/* collision happened */
70 	if (raid1_rb_iter_first(&serial->serial_rb, lo, hi))
71 		ret = -EBUSY;
72 	else {
73 		si->start = lo;
74 		si->last = hi;
75 		raid1_rb_insert(si, &serial->serial_rb);
76 	}
77 	spin_unlock_irqrestore(&serial->serial_lock, flags);
78 
79 	return ret;
80 }
81 
82 static void wait_for_serialization(struct md_rdev *rdev, struct r1bio *r1_bio)
83 {
84 	struct mddev *mddev = rdev->mddev;
85 	struct serial_info *si;
86 	int idx = sector_to_idx(r1_bio->sector);
87 	struct serial_in_rdev *serial = &rdev->serial[idx];
88 
89 	if (WARN_ON(!mddev->serial_info_pool))
90 		return;
91 	si = mempool_alloc(mddev->serial_info_pool, GFP_NOIO);
92 	wait_event(serial->serial_io_wait,
93 		   check_and_add_serial(rdev, r1_bio, si, idx) == 0);
94 }
95 
96 static void remove_serial(struct md_rdev *rdev, sector_t lo, sector_t hi)
97 {
98 	struct serial_info *si;
99 	unsigned long flags;
100 	int found = 0;
101 	struct mddev *mddev = rdev->mddev;
102 	int idx = sector_to_idx(lo);
103 	struct serial_in_rdev *serial = &rdev->serial[idx];
104 
105 	spin_lock_irqsave(&serial->serial_lock, flags);
106 	for (si = raid1_rb_iter_first(&serial->serial_rb, lo, hi);
107 	     si; si = raid1_rb_iter_next(si, lo, hi)) {
108 		if (si->start == lo && si->last == hi) {
109 			raid1_rb_remove(si, &serial->serial_rb);
110 			mempool_free(si, mddev->serial_info_pool);
111 			found = 1;
112 			break;
113 		}
114 	}
115 	if (!found)
116 		WARN(1, "The write IO is not recorded for serialization\n");
117 	spin_unlock_irqrestore(&serial->serial_lock, flags);
118 	wake_up(&serial->serial_io_wait);
119 }
120 
121 /*
122  * for resync bio, r1bio pointer can be retrieved from the per-bio
123  * 'struct resync_pages'.
124  */
125 static inline struct r1bio *get_resync_r1bio(struct bio *bio)
126 {
127 	return get_resync_pages(bio)->raid_bio;
128 }
129 
130 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
131 {
132 	struct pool_info *pi = data;
133 	int size = offsetof(struct r1bio, bios[pi->raid_disks]);
134 
135 	/* allocate a r1bio with room for raid_disks entries in the bios array */
136 	return kzalloc(size, gfp_flags);
137 }
138 
139 #define RESYNC_DEPTH 32
140 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
141 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
142 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
143 #define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
144 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
145 
146 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
147 {
148 	struct pool_info *pi = data;
149 	struct r1bio *r1_bio;
150 	struct bio *bio;
151 	int need_pages;
152 	int j;
153 	struct resync_pages *rps;
154 
155 	r1_bio = r1bio_pool_alloc(gfp_flags, pi);
156 	if (!r1_bio)
157 		return NULL;
158 
159 	rps = kmalloc_array(pi->raid_disks, sizeof(struct resync_pages),
160 			    gfp_flags);
161 	if (!rps)
162 		goto out_free_r1bio;
163 
164 	/*
165 	 * Allocate bios : 1 for reading, n-1 for writing
166 	 */
167 	for (j = pi->raid_disks ; j-- ; ) {
168 		bio = bio_kmalloc(RESYNC_PAGES, gfp_flags);
169 		if (!bio)
170 			goto out_free_bio;
171 		bio_init(bio, NULL, bio->bi_inline_vecs, RESYNC_PAGES, 0);
172 		r1_bio->bios[j] = bio;
173 	}
174 	/*
175 	 * Allocate RESYNC_PAGES data pages and attach them to
176 	 * the first bio.
177 	 * If this is a user-requested check/repair, allocate
178 	 * RESYNC_PAGES for each bio.
179 	 */
180 	if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
181 		need_pages = pi->raid_disks;
182 	else
183 		need_pages = 1;
184 	for (j = 0; j < pi->raid_disks; j++) {
185 		struct resync_pages *rp = &rps[j];
186 
187 		bio = r1_bio->bios[j];
188 
189 		if (j < need_pages) {
190 			if (resync_alloc_pages(rp, gfp_flags))
191 				goto out_free_pages;
192 		} else {
193 			memcpy(rp, &rps[0], sizeof(*rp));
194 			resync_get_all_pages(rp);
195 		}
196 
197 		rp->raid_bio = r1_bio;
198 		bio->bi_private = rp;
199 	}
200 
201 	r1_bio->master_bio = NULL;
202 
203 	return r1_bio;
204 
205 out_free_pages:
206 	while (--j >= 0)
207 		resync_free_pages(&rps[j]);
208 
209 out_free_bio:
210 	while (++j < pi->raid_disks) {
211 		bio_uninit(r1_bio->bios[j]);
212 		kfree(r1_bio->bios[j]);
213 	}
214 	kfree(rps);
215 
216 out_free_r1bio:
217 	rbio_pool_free(r1_bio, data);
218 	return NULL;
219 }
220 
221 static void r1buf_pool_free(void *__r1_bio, void *data)
222 {
223 	struct pool_info *pi = data;
224 	int i;
225 	struct r1bio *r1bio = __r1_bio;
226 	struct resync_pages *rp = NULL;
227 
228 	for (i = pi->raid_disks; i--; ) {
229 		rp = get_resync_pages(r1bio->bios[i]);
230 		resync_free_pages(rp);
231 		bio_uninit(r1bio->bios[i]);
232 		kfree(r1bio->bios[i]);
233 	}
234 
235 	/* resync pages array stored in the 1st bio's .bi_private */
236 	kfree(rp);
237 
238 	rbio_pool_free(r1bio, data);
239 }
240 
241 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
242 {
243 	int i;
244 
245 	for (i = 0; i < conf->raid_disks * 2; i++) {
246 		struct bio **bio = r1_bio->bios + i;
247 		if (!BIO_SPECIAL(*bio))
248 			bio_put(*bio);
249 		*bio = NULL;
250 	}
251 }
252 
253 static void free_r1bio(struct r1bio *r1_bio)
254 {
255 	struct r1conf *conf = r1_bio->mddev->private;
256 
257 	put_all_bios(conf, r1_bio);
258 	mempool_free(r1_bio, &conf->r1bio_pool);
259 }
260 
261 static void put_buf(struct r1bio *r1_bio)
262 {
263 	struct r1conf *conf = r1_bio->mddev->private;
264 	sector_t sect = r1_bio->sector;
265 	int i;
266 
267 	for (i = 0; i < conf->raid_disks * 2; i++) {
268 		struct bio *bio = r1_bio->bios[i];
269 		if (bio->bi_end_io)
270 			rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
271 	}
272 
273 	mempool_free(r1_bio, &conf->r1buf_pool);
274 
275 	lower_barrier(conf, sect);
276 }
277 
278 static void reschedule_retry(struct r1bio *r1_bio)
279 {
280 	unsigned long flags;
281 	struct mddev *mddev = r1_bio->mddev;
282 	struct r1conf *conf = mddev->private;
283 	int idx;
284 
285 	idx = sector_to_idx(r1_bio->sector);
286 	spin_lock_irqsave(&conf->device_lock, flags);
287 	list_add(&r1_bio->retry_list, &conf->retry_list);
288 	atomic_inc(&conf->nr_queued[idx]);
289 	spin_unlock_irqrestore(&conf->device_lock, flags);
290 
291 	wake_up(&conf->wait_barrier);
292 	md_wakeup_thread(mddev->thread);
293 }
294 
295 /*
296  * raid_end_bio_io() is called when we have finished servicing a mirrored
297  * operation and are ready to return a success/failure code to the buffer
298  * cache layer.
299  */
300 static void call_bio_endio(struct r1bio *r1_bio)
301 {
302 	struct bio *bio = r1_bio->master_bio;
303 
304 	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
305 		bio->bi_status = BLK_STS_IOERR;
306 
307 	bio_endio(bio);
308 }
309 
310 static void raid_end_bio_io(struct r1bio *r1_bio)
311 {
312 	struct bio *bio = r1_bio->master_bio;
313 	struct r1conf *conf = r1_bio->mddev->private;
314 
315 	/* if nobody has done the final endio yet, do it now */
316 	if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
317 		pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
318 			 (bio_data_dir(bio) == WRITE) ? "write" : "read",
319 			 (unsigned long long) bio->bi_iter.bi_sector,
320 			 (unsigned long long) bio_end_sector(bio) - 1);
321 
322 		call_bio_endio(r1_bio);
323 	}
324 	/*
325 	 * Wake up any possible resync thread that waits for the device
326 	 * to go idle.  All I/Os, even write-behind writes, are done.
327 	 */
328 	allow_barrier(conf, r1_bio->sector);
329 
330 	free_r1bio(r1_bio);
331 }
332 
333 /*
334  * Update disk head position estimator based on IRQ completion info.
335  */
336 static inline void update_head_pos(int disk, struct r1bio *r1_bio)
337 {
338 	struct r1conf *conf = r1_bio->mddev->private;
339 
340 	conf->mirrors[disk].head_position =
341 		r1_bio->sector + (r1_bio->sectors);
342 }
343 
344 /*
345  * Find the disk number which triggered given bio
346  */
347 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
348 {
349 	int mirror;
350 	struct r1conf *conf = r1_bio->mddev->private;
351 	int raid_disks = conf->raid_disks;
352 
353 	for (mirror = 0; mirror < raid_disks * 2; mirror++)
354 		if (r1_bio->bios[mirror] == bio)
355 			break;
356 
357 	BUG_ON(mirror == raid_disks * 2);
358 	update_head_pos(mirror, r1_bio);
359 
360 	return mirror;
361 }
362 
363 static void raid1_end_read_request(struct bio *bio)
364 {
365 	int uptodate = !bio->bi_status;
366 	struct r1bio *r1_bio = bio->bi_private;
367 	struct r1conf *conf = r1_bio->mddev->private;
368 	struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev;
369 
370 	/*
371 	 * this branch is our 'one mirror IO has finished' event handler:
372 	 */
373 	update_head_pos(r1_bio->read_disk, r1_bio);
374 
375 	if (uptodate)
376 		set_bit(R1BIO_Uptodate, &r1_bio->state);
377 	else if (test_bit(FailFast, &rdev->flags) &&
378 		 test_bit(R1BIO_FailFast, &r1_bio->state))
379 		/* This was a fail-fast read so we definitely
380 		 * want to retry */
381 		;
382 	else {
383 		/* If all other devices have failed, we want to return
384 		 * the error upwards rather than fail the last device.
385 		 * Here we redefine "uptodate" to mean "Don't want to retry"
386 		 */
387 		unsigned long flags;
388 		spin_lock_irqsave(&conf->device_lock, flags);
389 		if (r1_bio->mddev->degraded == conf->raid_disks ||
390 		    (r1_bio->mddev->degraded == conf->raid_disks-1 &&
391 		     test_bit(In_sync, &rdev->flags)))
392 			uptodate = 1;
393 		spin_unlock_irqrestore(&conf->device_lock, flags);
394 	}
395 
396 	if (uptodate) {
397 		raid_end_bio_io(r1_bio);
398 		rdev_dec_pending(rdev, conf->mddev);
399 	} else {
400 		/*
401 		 * oops, read error:
402 		 */
403 		pr_err_ratelimited("md/raid1:%s: %pg: rescheduling sector %llu\n",
404 				   mdname(conf->mddev),
405 				   rdev->bdev,
406 				   (unsigned long long)r1_bio->sector);
407 		set_bit(R1BIO_ReadError, &r1_bio->state);
408 		reschedule_retry(r1_bio);
409 		/* don't drop the reference on read_disk yet */
410 	}
411 }
412 
413 static void close_write(struct r1bio *r1_bio)
414 {
415 	/* it really is the end of this request */
416 	if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
417 		bio_free_pages(r1_bio->behind_master_bio);
418 		bio_put(r1_bio->behind_master_bio);
419 		r1_bio->behind_master_bio = NULL;
420 	}
421 	/* clear the bitmap if all writes complete successfully */
422 	md_bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
423 			   r1_bio->sectors,
424 			   !test_bit(R1BIO_Degraded, &r1_bio->state),
425 			   test_bit(R1BIO_BehindIO, &r1_bio->state));
426 	md_write_end(r1_bio->mddev);
427 }
428 
429 static void r1_bio_write_done(struct r1bio *r1_bio)
430 {
431 	if (!atomic_dec_and_test(&r1_bio->remaining))
432 		return;
433 
434 	if (test_bit(R1BIO_WriteError, &r1_bio->state))
435 		reschedule_retry(r1_bio);
436 	else {
437 		close_write(r1_bio);
438 		if (test_bit(R1BIO_MadeGood, &r1_bio->state))
439 			reschedule_retry(r1_bio);
440 		else
441 			raid_end_bio_io(r1_bio);
442 	}
443 }
444 
445 static void raid1_end_write_request(struct bio *bio)
446 {
447 	struct r1bio *r1_bio = bio->bi_private;
448 	int behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
449 	struct r1conf *conf = r1_bio->mddev->private;
450 	struct bio *to_put = NULL;
451 	int mirror = find_bio_disk(r1_bio, bio);
452 	struct md_rdev *rdev = conf->mirrors[mirror].rdev;
453 	bool discard_error;
454 	sector_t lo = r1_bio->sector;
455 	sector_t hi = r1_bio->sector + r1_bio->sectors;
456 
457 	discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
458 
459 	/*
460 	 * 'one mirror IO has finished' event handler:
461 	 */
462 	if (bio->bi_status && !discard_error) {
463 		set_bit(WriteErrorSeen,	&rdev->flags);
464 		if (!test_and_set_bit(WantReplacement, &rdev->flags))
465 			set_bit(MD_RECOVERY_NEEDED, &
466 				conf->mddev->recovery);
467 
468 		if (test_bit(FailFast, &rdev->flags) &&
469 		    (bio->bi_opf & MD_FAILFAST) &&
470 		    /* We never try FailFast to WriteMostly devices */
471 		    !test_bit(WriteMostly, &rdev->flags)) {
472 			md_error(r1_bio->mddev, rdev);
473 		}
474 
475 		/*
476 		 * When the device is faulty, it is not necessary to
477 		 * handle write error.
478 		 */
479 		if (!test_bit(Faulty, &rdev->flags))
480 			set_bit(R1BIO_WriteError, &r1_bio->state);
481 		else {
482 			/* Fail the request */
483 			set_bit(R1BIO_Degraded, &r1_bio->state);
484 			/* Finished with this branch */
485 			r1_bio->bios[mirror] = NULL;
486 			to_put = bio;
487 		}
488 	} else {
489 		/*
490 		 * Set R1BIO_Uptodate in our master bio, so that we
491 		 * will return a good error code for to the higher
492 		 * levels even if IO on some other mirrored buffer
493 		 * fails.
494 		 *
495 		 * The 'master' represents the composite IO operation
496 		 * to user-side. So if something waits for IO, then it
497 		 * will wait for the 'master' bio.
498 		 */
499 		sector_t first_bad;
500 		int bad_sectors;
501 
502 		r1_bio->bios[mirror] = NULL;
503 		to_put = bio;
504 		/*
505 		 * Do not set R1BIO_Uptodate if the current device is
506 		 * rebuilding or Faulty. This is because we cannot use
507 		 * such device for properly reading the data back (we could
508 		 * potentially use it, if the current write would have felt
509 		 * before rdev->recovery_offset, but for simplicity we don't
510 		 * check this here.
511 		 */
512 		if (test_bit(In_sync, &rdev->flags) &&
513 		    !test_bit(Faulty, &rdev->flags))
514 			set_bit(R1BIO_Uptodate, &r1_bio->state);
515 
516 		/* Maybe we can clear some bad blocks. */
517 		if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
518 				&first_bad, &bad_sectors) && !discard_error) {
519 			r1_bio->bios[mirror] = IO_MADE_GOOD;
520 			set_bit(R1BIO_MadeGood, &r1_bio->state);
521 		}
522 	}
523 
524 	if (behind) {
525 		if (test_bit(CollisionCheck, &rdev->flags))
526 			remove_serial(rdev, lo, hi);
527 		if (test_bit(WriteMostly, &rdev->flags))
528 			atomic_dec(&r1_bio->behind_remaining);
529 
530 		/*
531 		 * In behind mode, we ACK the master bio once the I/O
532 		 * has safely reached all non-writemostly
533 		 * disks. Setting the Returned bit ensures that this
534 		 * gets done only once -- we don't ever want to return
535 		 * -EIO here, instead we'll wait
536 		 */
537 		if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
538 		    test_bit(R1BIO_Uptodate, &r1_bio->state)) {
539 			/* Maybe we can return now */
540 			if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
541 				struct bio *mbio = r1_bio->master_bio;
542 				pr_debug("raid1: behind end write sectors"
543 					 " %llu-%llu\n",
544 					 (unsigned long long) mbio->bi_iter.bi_sector,
545 					 (unsigned long long) bio_end_sector(mbio) - 1);
546 				call_bio_endio(r1_bio);
547 			}
548 		}
549 	} else if (rdev->mddev->serialize_policy)
550 		remove_serial(rdev, lo, hi);
551 	if (r1_bio->bios[mirror] == NULL)
552 		rdev_dec_pending(rdev, conf->mddev);
553 
554 	/*
555 	 * Let's see if all mirrored write operations have finished
556 	 * already.
557 	 */
558 	r1_bio_write_done(r1_bio);
559 
560 	if (to_put)
561 		bio_put(to_put);
562 }
563 
564 static sector_t align_to_barrier_unit_end(sector_t start_sector,
565 					  sector_t sectors)
566 {
567 	sector_t len;
568 
569 	WARN_ON(sectors == 0);
570 	/*
571 	 * len is the number of sectors from start_sector to end of the
572 	 * barrier unit which start_sector belongs to.
573 	 */
574 	len = round_up(start_sector + 1, BARRIER_UNIT_SECTOR_SIZE) -
575 	      start_sector;
576 
577 	if (len > sectors)
578 		len = sectors;
579 
580 	return len;
581 }
582 
583 /*
584  * This routine returns the disk from which the requested read should
585  * be done. There is a per-array 'next expected sequential IO' sector
586  * number - if this matches on the next IO then we use the last disk.
587  * There is also a per-disk 'last know head position' sector that is
588  * maintained from IRQ contexts, both the normal and the resync IO
589  * completion handlers update this position correctly. If there is no
590  * perfect sequential match then we pick the disk whose head is closest.
591  *
592  * If there are 2 mirrors in the same 2 devices, performance degrades
593  * because position is mirror, not device based.
594  *
595  * The rdev for the device selected will have nr_pending incremented.
596  */
597 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
598 {
599 	const sector_t this_sector = r1_bio->sector;
600 	int sectors;
601 	int best_good_sectors;
602 	int best_disk, best_dist_disk, best_pending_disk;
603 	int has_nonrot_disk;
604 	int disk;
605 	sector_t best_dist;
606 	unsigned int min_pending;
607 	struct md_rdev *rdev;
608 	int choose_first;
609 	int choose_next_idle;
610 
611 	rcu_read_lock();
612 	/*
613 	 * Check if we can balance. We can balance on the whole
614 	 * device if no resync is going on, or below the resync window.
615 	 * We take the first readable disk when above the resync window.
616 	 */
617  retry:
618 	sectors = r1_bio->sectors;
619 	best_disk = -1;
620 	best_dist_disk = -1;
621 	best_dist = MaxSector;
622 	best_pending_disk = -1;
623 	min_pending = UINT_MAX;
624 	best_good_sectors = 0;
625 	has_nonrot_disk = 0;
626 	choose_next_idle = 0;
627 	clear_bit(R1BIO_FailFast, &r1_bio->state);
628 
629 	if ((conf->mddev->recovery_cp < this_sector + sectors) ||
630 	    (mddev_is_clustered(conf->mddev) &&
631 	    md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
632 		    this_sector + sectors)))
633 		choose_first = 1;
634 	else
635 		choose_first = 0;
636 
637 	for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
638 		sector_t dist;
639 		sector_t first_bad;
640 		int bad_sectors;
641 		unsigned int pending;
642 		bool nonrot;
643 
644 		rdev = rcu_dereference(conf->mirrors[disk].rdev);
645 		if (r1_bio->bios[disk] == IO_BLOCKED
646 		    || rdev == NULL
647 		    || test_bit(Faulty, &rdev->flags))
648 			continue;
649 		if (!test_bit(In_sync, &rdev->flags) &&
650 		    rdev->recovery_offset < this_sector + sectors)
651 			continue;
652 		if (test_bit(WriteMostly, &rdev->flags)) {
653 			/* Don't balance among write-mostly, just
654 			 * use the first as a last resort */
655 			if (best_dist_disk < 0) {
656 				if (is_badblock(rdev, this_sector, sectors,
657 						&first_bad, &bad_sectors)) {
658 					if (first_bad <= this_sector)
659 						/* Cannot use this */
660 						continue;
661 					best_good_sectors = first_bad - this_sector;
662 				} else
663 					best_good_sectors = sectors;
664 				best_dist_disk = disk;
665 				best_pending_disk = disk;
666 			}
667 			continue;
668 		}
669 		/* This is a reasonable device to use.  It might
670 		 * even be best.
671 		 */
672 		if (is_badblock(rdev, this_sector, sectors,
673 				&first_bad, &bad_sectors)) {
674 			if (best_dist < MaxSector)
675 				/* already have a better device */
676 				continue;
677 			if (first_bad <= this_sector) {
678 				/* cannot read here. If this is the 'primary'
679 				 * device, then we must not read beyond
680 				 * bad_sectors from another device..
681 				 */
682 				bad_sectors -= (this_sector - first_bad);
683 				if (choose_first && sectors > bad_sectors)
684 					sectors = bad_sectors;
685 				if (best_good_sectors > sectors)
686 					best_good_sectors = sectors;
687 
688 			} else {
689 				sector_t good_sectors = first_bad - this_sector;
690 				if (good_sectors > best_good_sectors) {
691 					best_good_sectors = good_sectors;
692 					best_disk = disk;
693 				}
694 				if (choose_first)
695 					break;
696 			}
697 			continue;
698 		} else {
699 			if ((sectors > best_good_sectors) && (best_disk >= 0))
700 				best_disk = -1;
701 			best_good_sectors = sectors;
702 		}
703 
704 		if (best_disk >= 0)
705 			/* At least two disks to choose from so failfast is OK */
706 			set_bit(R1BIO_FailFast, &r1_bio->state);
707 
708 		nonrot = bdev_nonrot(rdev->bdev);
709 		has_nonrot_disk |= nonrot;
710 		pending = atomic_read(&rdev->nr_pending);
711 		dist = abs(this_sector - conf->mirrors[disk].head_position);
712 		if (choose_first) {
713 			best_disk = disk;
714 			break;
715 		}
716 		/* Don't change to another disk for sequential reads */
717 		if (conf->mirrors[disk].next_seq_sect == this_sector
718 		    || dist == 0) {
719 			int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
720 			struct raid1_info *mirror = &conf->mirrors[disk];
721 
722 			best_disk = disk;
723 			/*
724 			 * If buffered sequential IO size exceeds optimal
725 			 * iosize, check if there is idle disk. If yes, choose
726 			 * the idle disk. read_balance could already choose an
727 			 * idle disk before noticing it's a sequential IO in
728 			 * this disk. This doesn't matter because this disk
729 			 * will idle, next time it will be utilized after the
730 			 * first disk has IO size exceeds optimal iosize. In
731 			 * this way, iosize of the first disk will be optimal
732 			 * iosize at least. iosize of the second disk might be
733 			 * small, but not a big deal since when the second disk
734 			 * starts IO, the first disk is likely still busy.
735 			 */
736 			if (nonrot && opt_iosize > 0 &&
737 			    mirror->seq_start != MaxSector &&
738 			    mirror->next_seq_sect > opt_iosize &&
739 			    mirror->next_seq_sect - opt_iosize >=
740 			    mirror->seq_start) {
741 				choose_next_idle = 1;
742 				continue;
743 			}
744 			break;
745 		}
746 
747 		if (choose_next_idle)
748 			continue;
749 
750 		if (min_pending > pending) {
751 			min_pending = pending;
752 			best_pending_disk = disk;
753 		}
754 
755 		if (dist < best_dist) {
756 			best_dist = dist;
757 			best_dist_disk = disk;
758 		}
759 	}
760 
761 	/*
762 	 * If all disks are rotational, choose the closest disk. If any disk is
763 	 * non-rotational, choose the disk with less pending request even the
764 	 * disk is rotational, which might/might not be optimal for raids with
765 	 * mixed ratation/non-rotational disks depending on workload.
766 	 */
767 	if (best_disk == -1) {
768 		if (has_nonrot_disk || min_pending == 0)
769 			best_disk = best_pending_disk;
770 		else
771 			best_disk = best_dist_disk;
772 	}
773 
774 	if (best_disk >= 0) {
775 		rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
776 		if (!rdev)
777 			goto retry;
778 		atomic_inc(&rdev->nr_pending);
779 		sectors = best_good_sectors;
780 
781 		if (conf->mirrors[best_disk].next_seq_sect != this_sector)
782 			conf->mirrors[best_disk].seq_start = this_sector;
783 
784 		conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
785 	}
786 	rcu_read_unlock();
787 	*max_sectors = sectors;
788 
789 	return best_disk;
790 }
791 
792 static void flush_bio_list(struct r1conf *conf, struct bio *bio)
793 {
794 	/* flush any pending bitmap writes to disk before proceeding w/ I/O */
795 	raid1_prepare_flush_writes(conf->mddev->bitmap);
796 	wake_up(&conf->wait_barrier);
797 
798 	while (bio) { /* submit pending writes */
799 		struct bio *next = bio->bi_next;
800 
801 		raid1_submit_write(bio);
802 		bio = next;
803 		cond_resched();
804 	}
805 }
806 
807 static void flush_pending_writes(struct r1conf *conf)
808 {
809 	/* Any writes that have been queued but are awaiting
810 	 * bitmap updates get flushed here.
811 	 */
812 	spin_lock_irq(&conf->device_lock);
813 
814 	if (conf->pending_bio_list.head) {
815 		struct blk_plug plug;
816 		struct bio *bio;
817 
818 		bio = bio_list_get(&conf->pending_bio_list);
819 		spin_unlock_irq(&conf->device_lock);
820 
821 		/*
822 		 * As this is called in a wait_event() loop (see freeze_array),
823 		 * current->state might be TASK_UNINTERRUPTIBLE which will
824 		 * cause a warning when we prepare to wait again.  As it is
825 		 * rare that this path is taken, it is perfectly safe to force
826 		 * us to go around the wait_event() loop again, so the warning
827 		 * is a false-positive.  Silence the warning by resetting
828 		 * thread state
829 		 */
830 		__set_current_state(TASK_RUNNING);
831 		blk_start_plug(&plug);
832 		flush_bio_list(conf, bio);
833 		blk_finish_plug(&plug);
834 	} else
835 		spin_unlock_irq(&conf->device_lock);
836 }
837 
838 /* Barriers....
839  * Sometimes we need to suspend IO while we do something else,
840  * either some resync/recovery, or reconfigure the array.
841  * To do this we raise a 'barrier'.
842  * The 'barrier' is a counter that can be raised multiple times
843  * to count how many activities are happening which preclude
844  * normal IO.
845  * We can only raise the barrier if there is no pending IO.
846  * i.e. if nr_pending == 0.
847  * We choose only to raise the barrier if no-one is waiting for the
848  * barrier to go down.  This means that as soon as an IO request
849  * is ready, no other operations which require a barrier will start
850  * until the IO request has had a chance.
851  *
852  * So: regular IO calls 'wait_barrier'.  When that returns there
853  *    is no backgroup IO happening,  It must arrange to call
854  *    allow_barrier when it has finished its IO.
855  * backgroup IO calls must call raise_barrier.  Once that returns
856  *    there is no normal IO happeing.  It must arrange to call
857  *    lower_barrier when the particular background IO completes.
858  *
859  * If resync/recovery is interrupted, returns -EINTR;
860  * Otherwise, returns 0.
861  */
862 static int raise_barrier(struct r1conf *conf, sector_t sector_nr)
863 {
864 	int idx = sector_to_idx(sector_nr);
865 
866 	spin_lock_irq(&conf->resync_lock);
867 
868 	/* Wait until no block IO is waiting */
869 	wait_event_lock_irq(conf->wait_barrier,
870 			    !atomic_read(&conf->nr_waiting[idx]),
871 			    conf->resync_lock);
872 
873 	/* block any new IO from starting */
874 	atomic_inc(&conf->barrier[idx]);
875 	/*
876 	 * In raise_barrier() we firstly increase conf->barrier[idx] then
877 	 * check conf->nr_pending[idx]. In _wait_barrier() we firstly
878 	 * increase conf->nr_pending[idx] then check conf->barrier[idx].
879 	 * A memory barrier here to make sure conf->nr_pending[idx] won't
880 	 * be fetched before conf->barrier[idx] is increased. Otherwise
881 	 * there will be a race between raise_barrier() and _wait_barrier().
882 	 */
883 	smp_mb__after_atomic();
884 
885 	/* For these conditions we must wait:
886 	 * A: while the array is in frozen state
887 	 * B: while conf->nr_pending[idx] is not 0, meaning regular I/O
888 	 *    existing in corresponding I/O barrier bucket.
889 	 * C: while conf->barrier[idx] >= RESYNC_DEPTH, meaning reaches
890 	 *    max resync count which allowed on current I/O barrier bucket.
891 	 */
892 	wait_event_lock_irq(conf->wait_barrier,
893 			    (!conf->array_frozen &&
894 			     !atomic_read(&conf->nr_pending[idx]) &&
895 			     atomic_read(&conf->barrier[idx]) < RESYNC_DEPTH) ||
896 				test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery),
897 			    conf->resync_lock);
898 
899 	if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
900 		atomic_dec(&conf->barrier[idx]);
901 		spin_unlock_irq(&conf->resync_lock);
902 		wake_up(&conf->wait_barrier);
903 		return -EINTR;
904 	}
905 
906 	atomic_inc(&conf->nr_sync_pending);
907 	spin_unlock_irq(&conf->resync_lock);
908 
909 	return 0;
910 }
911 
912 static void lower_barrier(struct r1conf *conf, sector_t sector_nr)
913 {
914 	int idx = sector_to_idx(sector_nr);
915 
916 	BUG_ON(atomic_read(&conf->barrier[idx]) <= 0);
917 
918 	atomic_dec(&conf->barrier[idx]);
919 	atomic_dec(&conf->nr_sync_pending);
920 	wake_up(&conf->wait_barrier);
921 }
922 
923 static bool _wait_barrier(struct r1conf *conf, int idx, bool nowait)
924 {
925 	bool ret = true;
926 
927 	/*
928 	 * We need to increase conf->nr_pending[idx] very early here,
929 	 * then raise_barrier() can be blocked when it waits for
930 	 * conf->nr_pending[idx] to be 0. Then we can avoid holding
931 	 * conf->resync_lock when there is no barrier raised in same
932 	 * barrier unit bucket. Also if the array is frozen, I/O
933 	 * should be blocked until array is unfrozen.
934 	 */
935 	atomic_inc(&conf->nr_pending[idx]);
936 	/*
937 	 * In _wait_barrier() we firstly increase conf->nr_pending[idx], then
938 	 * check conf->barrier[idx]. In raise_barrier() we firstly increase
939 	 * conf->barrier[idx], then check conf->nr_pending[idx]. A memory
940 	 * barrier is necessary here to make sure conf->barrier[idx] won't be
941 	 * fetched before conf->nr_pending[idx] is increased. Otherwise there
942 	 * will be a race between _wait_barrier() and raise_barrier().
943 	 */
944 	smp_mb__after_atomic();
945 
946 	/*
947 	 * Don't worry about checking two atomic_t variables at same time
948 	 * here. If during we check conf->barrier[idx], the array is
949 	 * frozen (conf->array_frozen is 1), and chonf->barrier[idx] is
950 	 * 0, it is safe to return and make the I/O continue. Because the
951 	 * array is frozen, all I/O returned here will eventually complete
952 	 * or be queued, no race will happen. See code comment in
953 	 * frozen_array().
954 	 */
955 	if (!READ_ONCE(conf->array_frozen) &&
956 	    !atomic_read(&conf->barrier[idx]))
957 		return ret;
958 
959 	/*
960 	 * After holding conf->resync_lock, conf->nr_pending[idx]
961 	 * should be decreased before waiting for barrier to drop.
962 	 * Otherwise, we may encounter a race condition because
963 	 * raise_barrer() might be waiting for conf->nr_pending[idx]
964 	 * to be 0 at same time.
965 	 */
966 	spin_lock_irq(&conf->resync_lock);
967 	atomic_inc(&conf->nr_waiting[idx]);
968 	atomic_dec(&conf->nr_pending[idx]);
969 	/*
970 	 * In case freeze_array() is waiting for
971 	 * get_unqueued_pending() == extra
972 	 */
973 	wake_up(&conf->wait_barrier);
974 	/* Wait for the barrier in same barrier unit bucket to drop. */
975 
976 	/* Return false when nowait flag is set */
977 	if (nowait) {
978 		ret = false;
979 	} else {
980 		wait_event_lock_irq(conf->wait_barrier,
981 				!conf->array_frozen &&
982 				!atomic_read(&conf->barrier[idx]),
983 				conf->resync_lock);
984 		atomic_inc(&conf->nr_pending[idx]);
985 	}
986 
987 	atomic_dec(&conf->nr_waiting[idx]);
988 	spin_unlock_irq(&conf->resync_lock);
989 	return ret;
990 }
991 
992 static bool wait_read_barrier(struct r1conf *conf, sector_t sector_nr, bool nowait)
993 {
994 	int idx = sector_to_idx(sector_nr);
995 	bool ret = true;
996 
997 	/*
998 	 * Very similar to _wait_barrier(). The difference is, for read
999 	 * I/O we don't need wait for sync I/O, but if the whole array
1000 	 * is frozen, the read I/O still has to wait until the array is
1001 	 * unfrozen. Since there is no ordering requirement with
1002 	 * conf->barrier[idx] here, memory barrier is unnecessary as well.
1003 	 */
1004 	atomic_inc(&conf->nr_pending[idx]);
1005 
1006 	if (!READ_ONCE(conf->array_frozen))
1007 		return ret;
1008 
1009 	spin_lock_irq(&conf->resync_lock);
1010 	atomic_inc(&conf->nr_waiting[idx]);
1011 	atomic_dec(&conf->nr_pending[idx]);
1012 	/*
1013 	 * In case freeze_array() is waiting for
1014 	 * get_unqueued_pending() == extra
1015 	 */
1016 	wake_up(&conf->wait_barrier);
1017 	/* Wait for array to be unfrozen */
1018 
1019 	/* Return false when nowait flag is set */
1020 	if (nowait) {
1021 		/* Return false when nowait flag is set */
1022 		ret = false;
1023 	} else {
1024 		wait_event_lock_irq(conf->wait_barrier,
1025 				!conf->array_frozen,
1026 				conf->resync_lock);
1027 		atomic_inc(&conf->nr_pending[idx]);
1028 	}
1029 
1030 	atomic_dec(&conf->nr_waiting[idx]);
1031 	spin_unlock_irq(&conf->resync_lock);
1032 	return ret;
1033 }
1034 
1035 static bool wait_barrier(struct r1conf *conf, sector_t sector_nr, bool nowait)
1036 {
1037 	int idx = sector_to_idx(sector_nr);
1038 
1039 	return _wait_barrier(conf, idx, nowait);
1040 }
1041 
1042 static void _allow_barrier(struct r1conf *conf, int idx)
1043 {
1044 	atomic_dec(&conf->nr_pending[idx]);
1045 	wake_up(&conf->wait_barrier);
1046 }
1047 
1048 static void allow_barrier(struct r1conf *conf, sector_t sector_nr)
1049 {
1050 	int idx = sector_to_idx(sector_nr);
1051 
1052 	_allow_barrier(conf, idx);
1053 }
1054 
1055 /* conf->resync_lock should be held */
1056 static int get_unqueued_pending(struct r1conf *conf)
1057 {
1058 	int idx, ret;
1059 
1060 	ret = atomic_read(&conf->nr_sync_pending);
1061 	for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
1062 		ret += atomic_read(&conf->nr_pending[idx]) -
1063 			atomic_read(&conf->nr_queued[idx]);
1064 
1065 	return ret;
1066 }
1067 
1068 static void freeze_array(struct r1conf *conf, int extra)
1069 {
1070 	/* Stop sync I/O and normal I/O and wait for everything to
1071 	 * go quiet.
1072 	 * This is called in two situations:
1073 	 * 1) management command handlers (reshape, remove disk, quiesce).
1074 	 * 2) one normal I/O request failed.
1075 
1076 	 * After array_frozen is set to 1, new sync IO will be blocked at
1077 	 * raise_barrier(), and new normal I/O will blocked at _wait_barrier()
1078 	 * or wait_read_barrier(). The flying I/Os will either complete or be
1079 	 * queued. When everything goes quite, there are only queued I/Os left.
1080 
1081 	 * Every flying I/O contributes to a conf->nr_pending[idx], idx is the
1082 	 * barrier bucket index which this I/O request hits. When all sync and
1083 	 * normal I/O are queued, sum of all conf->nr_pending[] will match sum
1084 	 * of all conf->nr_queued[]. But normal I/O failure is an exception,
1085 	 * in handle_read_error(), we may call freeze_array() before trying to
1086 	 * fix the read error. In this case, the error read I/O is not queued,
1087 	 * so get_unqueued_pending() == 1.
1088 	 *
1089 	 * Therefore before this function returns, we need to wait until
1090 	 * get_unqueued_pendings(conf) gets equal to extra. For
1091 	 * normal I/O context, extra is 1, in rested situations extra is 0.
1092 	 */
1093 	spin_lock_irq(&conf->resync_lock);
1094 	conf->array_frozen = 1;
1095 	raid1_log(conf->mddev, "wait freeze");
1096 	wait_event_lock_irq_cmd(
1097 		conf->wait_barrier,
1098 		get_unqueued_pending(conf) == extra,
1099 		conf->resync_lock,
1100 		flush_pending_writes(conf));
1101 	spin_unlock_irq(&conf->resync_lock);
1102 }
1103 static void unfreeze_array(struct r1conf *conf)
1104 {
1105 	/* reverse the effect of the freeze */
1106 	spin_lock_irq(&conf->resync_lock);
1107 	conf->array_frozen = 0;
1108 	spin_unlock_irq(&conf->resync_lock);
1109 	wake_up(&conf->wait_barrier);
1110 }
1111 
1112 static void alloc_behind_master_bio(struct r1bio *r1_bio,
1113 					   struct bio *bio)
1114 {
1115 	int size = bio->bi_iter.bi_size;
1116 	unsigned vcnt = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1117 	int i = 0;
1118 	struct bio *behind_bio = NULL;
1119 
1120 	behind_bio = bio_alloc_bioset(NULL, vcnt, 0, GFP_NOIO,
1121 				      &r1_bio->mddev->bio_set);
1122 	if (!behind_bio)
1123 		return;
1124 
1125 	/* discard op, we don't support writezero/writesame yet */
1126 	if (!bio_has_data(bio)) {
1127 		behind_bio->bi_iter.bi_size = size;
1128 		goto skip_copy;
1129 	}
1130 
1131 	while (i < vcnt && size) {
1132 		struct page *page;
1133 		int len = min_t(int, PAGE_SIZE, size);
1134 
1135 		page = alloc_page(GFP_NOIO);
1136 		if (unlikely(!page))
1137 			goto free_pages;
1138 
1139 		if (!bio_add_page(behind_bio, page, len, 0)) {
1140 			put_page(page);
1141 			goto free_pages;
1142 		}
1143 
1144 		size -= len;
1145 		i++;
1146 	}
1147 
1148 	bio_copy_data(behind_bio, bio);
1149 skip_copy:
1150 	r1_bio->behind_master_bio = behind_bio;
1151 	set_bit(R1BIO_BehindIO, &r1_bio->state);
1152 
1153 	return;
1154 
1155 free_pages:
1156 	pr_debug("%dB behind alloc failed, doing sync I/O\n",
1157 		 bio->bi_iter.bi_size);
1158 	bio_free_pages(behind_bio);
1159 	bio_put(behind_bio);
1160 }
1161 
1162 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1163 {
1164 	struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1165 						  cb);
1166 	struct mddev *mddev = plug->cb.data;
1167 	struct r1conf *conf = mddev->private;
1168 	struct bio *bio;
1169 
1170 	if (from_schedule) {
1171 		spin_lock_irq(&conf->device_lock);
1172 		bio_list_merge(&conf->pending_bio_list, &plug->pending);
1173 		spin_unlock_irq(&conf->device_lock);
1174 		wake_up(&conf->wait_barrier);
1175 		md_wakeup_thread(mddev->thread);
1176 		kfree(plug);
1177 		return;
1178 	}
1179 
1180 	/* we aren't scheduling, so we can do the write-out directly. */
1181 	bio = bio_list_get(&plug->pending);
1182 	flush_bio_list(conf, bio);
1183 	kfree(plug);
1184 }
1185 
1186 static void init_r1bio(struct r1bio *r1_bio, struct mddev *mddev, struct bio *bio)
1187 {
1188 	r1_bio->master_bio = bio;
1189 	r1_bio->sectors = bio_sectors(bio);
1190 	r1_bio->state = 0;
1191 	r1_bio->mddev = mddev;
1192 	r1_bio->sector = bio->bi_iter.bi_sector;
1193 }
1194 
1195 static inline struct r1bio *
1196 alloc_r1bio(struct mddev *mddev, struct bio *bio)
1197 {
1198 	struct r1conf *conf = mddev->private;
1199 	struct r1bio *r1_bio;
1200 
1201 	r1_bio = mempool_alloc(&conf->r1bio_pool, GFP_NOIO);
1202 	/* Ensure no bio records IO_BLOCKED */
1203 	memset(r1_bio->bios, 0, conf->raid_disks * sizeof(r1_bio->bios[0]));
1204 	init_r1bio(r1_bio, mddev, bio);
1205 	return r1_bio;
1206 }
1207 
1208 static void raid1_read_request(struct mddev *mddev, struct bio *bio,
1209 			       int max_read_sectors, struct r1bio *r1_bio)
1210 {
1211 	struct r1conf *conf = mddev->private;
1212 	struct raid1_info *mirror;
1213 	struct bio *read_bio;
1214 	struct bitmap *bitmap = mddev->bitmap;
1215 	const enum req_op op = bio_op(bio);
1216 	const blk_opf_t do_sync = bio->bi_opf & REQ_SYNC;
1217 	int max_sectors;
1218 	int rdisk;
1219 	bool r1bio_existed = !!r1_bio;
1220 	char b[BDEVNAME_SIZE];
1221 
1222 	/*
1223 	 * If r1_bio is set, we are blocking the raid1d thread
1224 	 * so there is a tiny risk of deadlock.  So ask for
1225 	 * emergency memory if needed.
1226 	 */
1227 	gfp_t gfp = r1_bio ? (GFP_NOIO | __GFP_HIGH) : GFP_NOIO;
1228 
1229 	if (r1bio_existed) {
1230 		/* Need to get the block device name carefully */
1231 		struct md_rdev *rdev;
1232 		rcu_read_lock();
1233 		rdev = rcu_dereference(conf->mirrors[r1_bio->read_disk].rdev);
1234 		if (rdev)
1235 			snprintf(b, sizeof(b), "%pg", rdev->bdev);
1236 		else
1237 			strcpy(b, "???");
1238 		rcu_read_unlock();
1239 	}
1240 
1241 	/*
1242 	 * Still need barrier for READ in case that whole
1243 	 * array is frozen.
1244 	 */
1245 	if (!wait_read_barrier(conf, bio->bi_iter.bi_sector,
1246 				bio->bi_opf & REQ_NOWAIT)) {
1247 		bio_wouldblock_error(bio);
1248 		return;
1249 	}
1250 
1251 	if (!r1_bio)
1252 		r1_bio = alloc_r1bio(mddev, bio);
1253 	else
1254 		init_r1bio(r1_bio, mddev, bio);
1255 	r1_bio->sectors = max_read_sectors;
1256 
1257 	/*
1258 	 * make_request() can abort the operation when read-ahead is being
1259 	 * used and no empty request is available.
1260 	 */
1261 	rdisk = read_balance(conf, r1_bio, &max_sectors);
1262 
1263 	if (rdisk < 0) {
1264 		/* couldn't find anywhere to read from */
1265 		if (r1bio_existed) {
1266 			pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
1267 					    mdname(mddev),
1268 					    b,
1269 					    (unsigned long long)r1_bio->sector);
1270 		}
1271 		raid_end_bio_io(r1_bio);
1272 		return;
1273 	}
1274 	mirror = conf->mirrors + rdisk;
1275 
1276 	if (r1bio_existed)
1277 		pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %pg\n",
1278 				    mdname(mddev),
1279 				    (unsigned long long)r1_bio->sector,
1280 				    mirror->rdev->bdev);
1281 
1282 	if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1283 	    bitmap) {
1284 		/*
1285 		 * Reading from a write-mostly device must take care not to
1286 		 * over-take any writes that are 'behind'
1287 		 */
1288 		raid1_log(mddev, "wait behind writes");
1289 		wait_event(bitmap->behind_wait,
1290 			   atomic_read(&bitmap->behind_writes) == 0);
1291 	}
1292 
1293 	if (max_sectors < bio_sectors(bio)) {
1294 		struct bio *split = bio_split(bio, max_sectors,
1295 					      gfp, &conf->bio_split);
1296 		bio_chain(split, bio);
1297 		submit_bio_noacct(bio);
1298 		bio = split;
1299 		r1_bio->master_bio = bio;
1300 		r1_bio->sectors = max_sectors;
1301 	}
1302 
1303 	r1_bio->read_disk = rdisk;
1304 	if (!r1bio_existed) {
1305 		md_account_bio(mddev, &bio);
1306 		r1_bio->master_bio = bio;
1307 	}
1308 	read_bio = bio_alloc_clone(mirror->rdev->bdev, bio, gfp,
1309 				   &mddev->bio_set);
1310 
1311 	r1_bio->bios[rdisk] = read_bio;
1312 
1313 	read_bio->bi_iter.bi_sector = r1_bio->sector +
1314 		mirror->rdev->data_offset;
1315 	read_bio->bi_end_io = raid1_end_read_request;
1316 	read_bio->bi_opf = op | do_sync;
1317 	if (test_bit(FailFast, &mirror->rdev->flags) &&
1318 	    test_bit(R1BIO_FailFast, &r1_bio->state))
1319 	        read_bio->bi_opf |= MD_FAILFAST;
1320 	read_bio->bi_private = r1_bio;
1321 
1322 	if (mddev->gendisk)
1323 	        trace_block_bio_remap(read_bio, disk_devt(mddev->gendisk),
1324 				      r1_bio->sector);
1325 
1326 	submit_bio_noacct(read_bio);
1327 }
1328 
1329 static void raid1_write_request(struct mddev *mddev, struct bio *bio,
1330 				int max_write_sectors)
1331 {
1332 	struct r1conf *conf = mddev->private;
1333 	struct r1bio *r1_bio;
1334 	int i, disks;
1335 	struct bitmap *bitmap = mddev->bitmap;
1336 	unsigned long flags;
1337 	struct md_rdev *blocked_rdev;
1338 	int first_clone;
1339 	int max_sectors;
1340 	bool write_behind = false;
1341 
1342 	if (mddev_is_clustered(mddev) &&
1343 	     md_cluster_ops->area_resyncing(mddev, WRITE,
1344 		     bio->bi_iter.bi_sector, bio_end_sector(bio))) {
1345 
1346 		DEFINE_WAIT(w);
1347 		if (bio->bi_opf & REQ_NOWAIT) {
1348 			bio_wouldblock_error(bio);
1349 			return;
1350 		}
1351 		for (;;) {
1352 			prepare_to_wait(&conf->wait_barrier,
1353 					&w, TASK_IDLE);
1354 			if (!md_cluster_ops->area_resyncing(mddev, WRITE,
1355 							bio->bi_iter.bi_sector,
1356 							bio_end_sector(bio)))
1357 				break;
1358 			schedule();
1359 		}
1360 		finish_wait(&conf->wait_barrier, &w);
1361 	}
1362 
1363 	/*
1364 	 * Register the new request and wait if the reconstruction
1365 	 * thread has put up a bar for new requests.
1366 	 * Continue immediately if no resync is active currently.
1367 	 */
1368 	if (!wait_barrier(conf, bio->bi_iter.bi_sector,
1369 				bio->bi_opf & REQ_NOWAIT)) {
1370 		bio_wouldblock_error(bio);
1371 		return;
1372 	}
1373 
1374 	r1_bio = alloc_r1bio(mddev, bio);
1375 	r1_bio->sectors = max_write_sectors;
1376 
1377 	/* first select target devices under rcu_lock and
1378 	 * inc refcount on their rdev.  Record them by setting
1379 	 * bios[x] to bio
1380 	 * If there are known/acknowledged bad blocks on any device on
1381 	 * which we have seen a write error, we want to avoid writing those
1382 	 * blocks.
1383 	 * This potentially requires several writes to write around
1384 	 * the bad blocks.  Each set of writes gets it's own r1bio
1385 	 * with a set of bios attached.
1386 	 */
1387 
1388 	disks = conf->raid_disks * 2;
1389  retry_write:
1390 	blocked_rdev = NULL;
1391 	rcu_read_lock();
1392 	max_sectors = r1_bio->sectors;
1393 	for (i = 0;  i < disks; i++) {
1394 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1395 
1396 		/*
1397 		 * The write-behind io is only attempted on drives marked as
1398 		 * write-mostly, which means we could allocate write behind
1399 		 * bio later.
1400 		 */
1401 		if (rdev && test_bit(WriteMostly, &rdev->flags))
1402 			write_behind = true;
1403 
1404 		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1405 			atomic_inc(&rdev->nr_pending);
1406 			blocked_rdev = rdev;
1407 			break;
1408 		}
1409 		r1_bio->bios[i] = NULL;
1410 		if (!rdev || test_bit(Faulty, &rdev->flags)) {
1411 			if (i < conf->raid_disks)
1412 				set_bit(R1BIO_Degraded, &r1_bio->state);
1413 			continue;
1414 		}
1415 
1416 		atomic_inc(&rdev->nr_pending);
1417 		if (test_bit(WriteErrorSeen, &rdev->flags)) {
1418 			sector_t first_bad;
1419 			int bad_sectors;
1420 			int is_bad;
1421 
1422 			is_bad = is_badblock(rdev, r1_bio->sector, max_sectors,
1423 					     &first_bad, &bad_sectors);
1424 			if (is_bad < 0) {
1425 				/* mustn't write here until the bad block is
1426 				 * acknowledged*/
1427 				set_bit(BlockedBadBlocks, &rdev->flags);
1428 				blocked_rdev = rdev;
1429 				break;
1430 			}
1431 			if (is_bad && first_bad <= r1_bio->sector) {
1432 				/* Cannot write here at all */
1433 				bad_sectors -= (r1_bio->sector - first_bad);
1434 				if (bad_sectors < max_sectors)
1435 					/* mustn't write more than bad_sectors
1436 					 * to other devices yet
1437 					 */
1438 					max_sectors = bad_sectors;
1439 				rdev_dec_pending(rdev, mddev);
1440 				/* We don't set R1BIO_Degraded as that
1441 				 * only applies if the disk is
1442 				 * missing, so it might be re-added,
1443 				 * and we want to know to recover this
1444 				 * chunk.
1445 				 * In this case the device is here,
1446 				 * and the fact that this chunk is not
1447 				 * in-sync is recorded in the bad
1448 				 * block log
1449 				 */
1450 				continue;
1451 			}
1452 			if (is_bad) {
1453 				int good_sectors = first_bad - r1_bio->sector;
1454 				if (good_sectors < max_sectors)
1455 					max_sectors = good_sectors;
1456 			}
1457 		}
1458 		r1_bio->bios[i] = bio;
1459 	}
1460 	rcu_read_unlock();
1461 
1462 	if (unlikely(blocked_rdev)) {
1463 		/* Wait for this device to become unblocked */
1464 		int j;
1465 
1466 		for (j = 0; j < i; j++)
1467 			if (r1_bio->bios[j])
1468 				rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1469 		r1_bio->state = 0;
1470 		allow_barrier(conf, bio->bi_iter.bi_sector);
1471 
1472 		if (bio->bi_opf & REQ_NOWAIT) {
1473 			bio_wouldblock_error(bio);
1474 			return;
1475 		}
1476 		raid1_log(mddev, "wait rdev %d blocked", blocked_rdev->raid_disk);
1477 		md_wait_for_blocked_rdev(blocked_rdev, mddev);
1478 		wait_barrier(conf, bio->bi_iter.bi_sector, false);
1479 		goto retry_write;
1480 	}
1481 
1482 	/*
1483 	 * When using a bitmap, we may call alloc_behind_master_bio below.
1484 	 * alloc_behind_master_bio allocates a copy of the data payload a page
1485 	 * at a time and thus needs a new bio that can fit the whole payload
1486 	 * this bio in page sized chunks.
1487 	 */
1488 	if (write_behind && bitmap)
1489 		max_sectors = min_t(int, max_sectors,
1490 				    BIO_MAX_VECS * (PAGE_SIZE >> 9));
1491 	if (max_sectors < bio_sectors(bio)) {
1492 		struct bio *split = bio_split(bio, max_sectors,
1493 					      GFP_NOIO, &conf->bio_split);
1494 		bio_chain(split, bio);
1495 		submit_bio_noacct(bio);
1496 		bio = split;
1497 		r1_bio->master_bio = bio;
1498 		r1_bio->sectors = max_sectors;
1499 	}
1500 
1501 	md_account_bio(mddev, &bio);
1502 	r1_bio->master_bio = bio;
1503 	atomic_set(&r1_bio->remaining, 1);
1504 	atomic_set(&r1_bio->behind_remaining, 0);
1505 
1506 	first_clone = 1;
1507 
1508 	for (i = 0; i < disks; i++) {
1509 		struct bio *mbio = NULL;
1510 		struct md_rdev *rdev = conf->mirrors[i].rdev;
1511 		if (!r1_bio->bios[i])
1512 			continue;
1513 
1514 		if (first_clone) {
1515 			/* do behind I/O ?
1516 			 * Not if there are too many, or cannot
1517 			 * allocate memory, or a reader on WriteMostly
1518 			 * is waiting for behind writes to flush */
1519 			if (bitmap &&
1520 			    test_bit(WriteMostly, &rdev->flags) &&
1521 			    (atomic_read(&bitmap->behind_writes)
1522 			     < mddev->bitmap_info.max_write_behind) &&
1523 			    !waitqueue_active(&bitmap->behind_wait)) {
1524 				alloc_behind_master_bio(r1_bio, bio);
1525 			}
1526 
1527 			md_bitmap_startwrite(bitmap, r1_bio->sector, r1_bio->sectors,
1528 					     test_bit(R1BIO_BehindIO, &r1_bio->state));
1529 			first_clone = 0;
1530 		}
1531 
1532 		if (r1_bio->behind_master_bio) {
1533 			mbio = bio_alloc_clone(rdev->bdev,
1534 					       r1_bio->behind_master_bio,
1535 					       GFP_NOIO, &mddev->bio_set);
1536 			if (test_bit(CollisionCheck, &rdev->flags))
1537 				wait_for_serialization(rdev, r1_bio);
1538 			if (test_bit(WriteMostly, &rdev->flags))
1539 				atomic_inc(&r1_bio->behind_remaining);
1540 		} else {
1541 			mbio = bio_alloc_clone(rdev->bdev, bio, GFP_NOIO,
1542 					       &mddev->bio_set);
1543 
1544 			if (mddev->serialize_policy)
1545 				wait_for_serialization(rdev, r1_bio);
1546 		}
1547 
1548 		r1_bio->bios[i] = mbio;
1549 
1550 		mbio->bi_iter.bi_sector	= (r1_bio->sector + rdev->data_offset);
1551 		mbio->bi_end_io	= raid1_end_write_request;
1552 		mbio->bi_opf = bio_op(bio) | (bio->bi_opf & (REQ_SYNC | REQ_FUA));
1553 		if (test_bit(FailFast, &rdev->flags) &&
1554 		    !test_bit(WriteMostly, &rdev->flags) &&
1555 		    conf->raid_disks - mddev->degraded > 1)
1556 			mbio->bi_opf |= MD_FAILFAST;
1557 		mbio->bi_private = r1_bio;
1558 
1559 		atomic_inc(&r1_bio->remaining);
1560 
1561 		if (mddev->gendisk)
1562 			trace_block_bio_remap(mbio, disk_devt(mddev->gendisk),
1563 					      r1_bio->sector);
1564 		/* flush_pending_writes() needs access to the rdev so...*/
1565 		mbio->bi_bdev = (void *)rdev;
1566 		if (!raid1_add_bio_to_plug(mddev, mbio, raid1_unplug, disks)) {
1567 			spin_lock_irqsave(&conf->device_lock, flags);
1568 			bio_list_add(&conf->pending_bio_list, mbio);
1569 			spin_unlock_irqrestore(&conf->device_lock, flags);
1570 			md_wakeup_thread(mddev->thread);
1571 		}
1572 	}
1573 
1574 	r1_bio_write_done(r1_bio);
1575 
1576 	/* In case raid1d snuck in to freeze_array */
1577 	wake_up(&conf->wait_barrier);
1578 }
1579 
1580 static bool raid1_make_request(struct mddev *mddev, struct bio *bio)
1581 {
1582 	sector_t sectors;
1583 
1584 	if (unlikely(bio->bi_opf & REQ_PREFLUSH)
1585 	    && md_flush_request(mddev, bio))
1586 		return true;
1587 
1588 	/*
1589 	 * There is a limit to the maximum size, but
1590 	 * the read/write handler might find a lower limit
1591 	 * due to bad blocks.  To avoid multiple splits,
1592 	 * we pass the maximum number of sectors down
1593 	 * and let the lower level perform the split.
1594 	 */
1595 	sectors = align_to_barrier_unit_end(
1596 		bio->bi_iter.bi_sector, bio_sectors(bio));
1597 
1598 	if (bio_data_dir(bio) == READ)
1599 		raid1_read_request(mddev, bio, sectors, NULL);
1600 	else {
1601 		if (!md_write_start(mddev,bio))
1602 			return false;
1603 		raid1_write_request(mddev, bio, sectors);
1604 	}
1605 	return true;
1606 }
1607 
1608 static void raid1_status(struct seq_file *seq, struct mddev *mddev)
1609 {
1610 	struct r1conf *conf = mddev->private;
1611 	int i;
1612 
1613 	seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1614 		   conf->raid_disks - mddev->degraded);
1615 	rcu_read_lock();
1616 	for (i = 0; i < conf->raid_disks; i++) {
1617 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1618 		seq_printf(seq, "%s",
1619 			   rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1620 	}
1621 	rcu_read_unlock();
1622 	seq_printf(seq, "]");
1623 }
1624 
1625 /**
1626  * raid1_error() - RAID1 error handler.
1627  * @mddev: affected md device.
1628  * @rdev: member device to fail.
1629  *
1630  * The routine acknowledges &rdev failure and determines new @mddev state.
1631  * If it failed, then:
1632  *	- &MD_BROKEN flag is set in &mddev->flags.
1633  *	- recovery is disabled.
1634  * Otherwise, it must be degraded:
1635  *	- recovery is interrupted.
1636  *	- &mddev->degraded is bumped.
1637  *
1638  * @rdev is marked as &Faulty excluding case when array is failed and
1639  * &mddev->fail_last_dev is off.
1640  */
1641 static void raid1_error(struct mddev *mddev, struct md_rdev *rdev)
1642 {
1643 	struct r1conf *conf = mddev->private;
1644 	unsigned long flags;
1645 
1646 	spin_lock_irqsave(&conf->device_lock, flags);
1647 
1648 	if (test_bit(In_sync, &rdev->flags) &&
1649 	    (conf->raid_disks - mddev->degraded) == 1) {
1650 		set_bit(MD_BROKEN, &mddev->flags);
1651 
1652 		if (!mddev->fail_last_dev) {
1653 			conf->recovery_disabled = mddev->recovery_disabled;
1654 			spin_unlock_irqrestore(&conf->device_lock, flags);
1655 			return;
1656 		}
1657 	}
1658 	set_bit(Blocked, &rdev->flags);
1659 	if (test_and_clear_bit(In_sync, &rdev->flags))
1660 		mddev->degraded++;
1661 	set_bit(Faulty, &rdev->flags);
1662 	spin_unlock_irqrestore(&conf->device_lock, flags);
1663 	/*
1664 	 * if recovery is running, make sure it aborts.
1665 	 */
1666 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1667 	set_mask_bits(&mddev->sb_flags, 0,
1668 		      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1669 	pr_crit("md/raid1:%s: Disk failure on %pg, disabling device.\n"
1670 		"md/raid1:%s: Operation continuing on %d devices.\n",
1671 		mdname(mddev), rdev->bdev,
1672 		mdname(mddev), conf->raid_disks - mddev->degraded);
1673 }
1674 
1675 static void print_conf(struct r1conf *conf)
1676 {
1677 	int i;
1678 
1679 	pr_debug("RAID1 conf printout:\n");
1680 	if (!conf) {
1681 		pr_debug("(!conf)\n");
1682 		return;
1683 	}
1684 	pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1685 		 conf->raid_disks);
1686 
1687 	rcu_read_lock();
1688 	for (i = 0; i < conf->raid_disks; i++) {
1689 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1690 		if (rdev)
1691 			pr_debug(" disk %d, wo:%d, o:%d, dev:%pg\n",
1692 				 i, !test_bit(In_sync, &rdev->flags),
1693 				 !test_bit(Faulty, &rdev->flags),
1694 				 rdev->bdev);
1695 	}
1696 	rcu_read_unlock();
1697 }
1698 
1699 static void close_sync(struct r1conf *conf)
1700 {
1701 	int idx;
1702 
1703 	for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++) {
1704 		_wait_barrier(conf, idx, false);
1705 		_allow_barrier(conf, idx);
1706 	}
1707 
1708 	mempool_exit(&conf->r1buf_pool);
1709 }
1710 
1711 static int raid1_spare_active(struct mddev *mddev)
1712 {
1713 	int i;
1714 	struct r1conf *conf = mddev->private;
1715 	int count = 0;
1716 	unsigned long flags;
1717 
1718 	/*
1719 	 * Find all failed disks within the RAID1 configuration
1720 	 * and mark them readable.
1721 	 * Called under mddev lock, so rcu protection not needed.
1722 	 * device_lock used to avoid races with raid1_end_read_request
1723 	 * which expects 'In_sync' flags and ->degraded to be consistent.
1724 	 */
1725 	spin_lock_irqsave(&conf->device_lock, flags);
1726 	for (i = 0; i < conf->raid_disks; i++) {
1727 		struct md_rdev *rdev = conf->mirrors[i].rdev;
1728 		struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1729 		if (repl
1730 		    && !test_bit(Candidate, &repl->flags)
1731 		    && repl->recovery_offset == MaxSector
1732 		    && !test_bit(Faulty, &repl->flags)
1733 		    && !test_and_set_bit(In_sync, &repl->flags)) {
1734 			/* replacement has just become active */
1735 			if (!rdev ||
1736 			    !test_and_clear_bit(In_sync, &rdev->flags))
1737 				count++;
1738 			if (rdev) {
1739 				/* Replaced device not technically
1740 				 * faulty, but we need to be sure
1741 				 * it gets removed and never re-added
1742 				 */
1743 				set_bit(Faulty, &rdev->flags);
1744 				sysfs_notify_dirent_safe(
1745 					rdev->sysfs_state);
1746 			}
1747 		}
1748 		if (rdev
1749 		    && rdev->recovery_offset == MaxSector
1750 		    && !test_bit(Faulty, &rdev->flags)
1751 		    && !test_and_set_bit(In_sync, &rdev->flags)) {
1752 			count++;
1753 			sysfs_notify_dirent_safe(rdev->sysfs_state);
1754 		}
1755 	}
1756 	mddev->degraded -= count;
1757 	spin_unlock_irqrestore(&conf->device_lock, flags);
1758 
1759 	print_conf(conf);
1760 	return count;
1761 }
1762 
1763 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1764 {
1765 	struct r1conf *conf = mddev->private;
1766 	int err = -EEXIST;
1767 	int mirror = 0;
1768 	struct raid1_info *p;
1769 	int first = 0;
1770 	int last = conf->raid_disks - 1;
1771 
1772 	if (mddev->recovery_disabled == conf->recovery_disabled)
1773 		return -EBUSY;
1774 
1775 	if (md_integrity_add_rdev(rdev, mddev))
1776 		return -ENXIO;
1777 
1778 	if (rdev->raid_disk >= 0)
1779 		first = last = rdev->raid_disk;
1780 
1781 	/*
1782 	 * find the disk ... but prefer rdev->saved_raid_disk
1783 	 * if possible.
1784 	 */
1785 	if (rdev->saved_raid_disk >= 0 &&
1786 	    rdev->saved_raid_disk >= first &&
1787 	    rdev->saved_raid_disk < conf->raid_disks &&
1788 	    conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1789 		first = last = rdev->saved_raid_disk;
1790 
1791 	for (mirror = first; mirror <= last; mirror++) {
1792 		p = conf->mirrors + mirror;
1793 		if (!p->rdev) {
1794 			if (mddev->gendisk)
1795 				disk_stack_limits(mddev->gendisk, rdev->bdev,
1796 						  rdev->data_offset << 9);
1797 
1798 			p->head_position = 0;
1799 			rdev->raid_disk = mirror;
1800 			err = 0;
1801 			/* As all devices are equivalent, we don't need a full recovery
1802 			 * if this was recently any drive of the array
1803 			 */
1804 			if (rdev->saved_raid_disk < 0)
1805 				conf->fullsync = 1;
1806 			rcu_assign_pointer(p->rdev, rdev);
1807 			break;
1808 		}
1809 		if (test_bit(WantReplacement, &p->rdev->flags) &&
1810 		    p[conf->raid_disks].rdev == NULL) {
1811 			/* Add this device as a replacement */
1812 			clear_bit(In_sync, &rdev->flags);
1813 			set_bit(Replacement, &rdev->flags);
1814 			rdev->raid_disk = mirror;
1815 			err = 0;
1816 			conf->fullsync = 1;
1817 			rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1818 			break;
1819 		}
1820 	}
1821 	print_conf(conf);
1822 	return err;
1823 }
1824 
1825 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1826 {
1827 	struct r1conf *conf = mddev->private;
1828 	int err = 0;
1829 	int number = rdev->raid_disk;
1830 	struct raid1_info *p = conf->mirrors + number;
1831 
1832 	if (rdev != p->rdev)
1833 		p = conf->mirrors + conf->raid_disks + number;
1834 
1835 	print_conf(conf);
1836 	if (rdev == p->rdev) {
1837 		if (test_bit(In_sync, &rdev->flags) ||
1838 		    atomic_read(&rdev->nr_pending)) {
1839 			err = -EBUSY;
1840 			goto abort;
1841 		}
1842 		/* Only remove non-faulty devices if recovery
1843 		 * is not possible.
1844 		 */
1845 		if (!test_bit(Faulty, &rdev->flags) &&
1846 		    mddev->recovery_disabled != conf->recovery_disabled &&
1847 		    mddev->degraded < conf->raid_disks) {
1848 			err = -EBUSY;
1849 			goto abort;
1850 		}
1851 		p->rdev = NULL;
1852 		if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1853 			synchronize_rcu();
1854 			if (atomic_read(&rdev->nr_pending)) {
1855 				/* lost the race, try later */
1856 				err = -EBUSY;
1857 				p->rdev = rdev;
1858 				goto abort;
1859 			}
1860 		}
1861 		if (conf->mirrors[conf->raid_disks + number].rdev) {
1862 			/* We just removed a device that is being replaced.
1863 			 * Move down the replacement.  We drain all IO before
1864 			 * doing this to avoid confusion.
1865 			 */
1866 			struct md_rdev *repl =
1867 				conf->mirrors[conf->raid_disks + number].rdev;
1868 			freeze_array(conf, 0);
1869 			if (atomic_read(&repl->nr_pending)) {
1870 				/* It means that some queued IO of retry_list
1871 				 * hold repl. Thus, we cannot set replacement
1872 				 * as NULL, avoiding rdev NULL pointer
1873 				 * dereference in sync_request_write and
1874 				 * handle_write_finished.
1875 				 */
1876 				err = -EBUSY;
1877 				unfreeze_array(conf);
1878 				goto abort;
1879 			}
1880 			clear_bit(Replacement, &repl->flags);
1881 			p->rdev = repl;
1882 			conf->mirrors[conf->raid_disks + number].rdev = NULL;
1883 			unfreeze_array(conf);
1884 		}
1885 
1886 		clear_bit(WantReplacement, &rdev->flags);
1887 		err = md_integrity_register(mddev);
1888 	}
1889 abort:
1890 
1891 	print_conf(conf);
1892 	return err;
1893 }
1894 
1895 static void end_sync_read(struct bio *bio)
1896 {
1897 	struct r1bio *r1_bio = get_resync_r1bio(bio);
1898 
1899 	update_head_pos(r1_bio->read_disk, r1_bio);
1900 
1901 	/*
1902 	 * we have read a block, now it needs to be re-written,
1903 	 * or re-read if the read failed.
1904 	 * We don't do much here, just schedule handling by raid1d
1905 	 */
1906 	if (!bio->bi_status)
1907 		set_bit(R1BIO_Uptodate, &r1_bio->state);
1908 
1909 	if (atomic_dec_and_test(&r1_bio->remaining))
1910 		reschedule_retry(r1_bio);
1911 }
1912 
1913 static void abort_sync_write(struct mddev *mddev, struct r1bio *r1_bio)
1914 {
1915 	sector_t sync_blocks = 0;
1916 	sector_t s = r1_bio->sector;
1917 	long sectors_to_go = r1_bio->sectors;
1918 
1919 	/* make sure these bits don't get cleared. */
1920 	do {
1921 		md_bitmap_end_sync(mddev->bitmap, s, &sync_blocks, 1);
1922 		s += sync_blocks;
1923 		sectors_to_go -= sync_blocks;
1924 	} while (sectors_to_go > 0);
1925 }
1926 
1927 static void put_sync_write_buf(struct r1bio *r1_bio, int uptodate)
1928 {
1929 	if (atomic_dec_and_test(&r1_bio->remaining)) {
1930 		struct mddev *mddev = r1_bio->mddev;
1931 		int s = r1_bio->sectors;
1932 
1933 		if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1934 		    test_bit(R1BIO_WriteError, &r1_bio->state))
1935 			reschedule_retry(r1_bio);
1936 		else {
1937 			put_buf(r1_bio);
1938 			md_done_sync(mddev, s, uptodate);
1939 		}
1940 	}
1941 }
1942 
1943 static void end_sync_write(struct bio *bio)
1944 {
1945 	int uptodate = !bio->bi_status;
1946 	struct r1bio *r1_bio = get_resync_r1bio(bio);
1947 	struct mddev *mddev = r1_bio->mddev;
1948 	struct r1conf *conf = mddev->private;
1949 	sector_t first_bad;
1950 	int bad_sectors;
1951 	struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev;
1952 
1953 	if (!uptodate) {
1954 		abort_sync_write(mddev, r1_bio);
1955 		set_bit(WriteErrorSeen, &rdev->flags);
1956 		if (!test_and_set_bit(WantReplacement, &rdev->flags))
1957 			set_bit(MD_RECOVERY_NEEDED, &
1958 				mddev->recovery);
1959 		set_bit(R1BIO_WriteError, &r1_bio->state);
1960 	} else if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
1961 			       &first_bad, &bad_sectors) &&
1962 		   !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1963 				r1_bio->sector,
1964 				r1_bio->sectors,
1965 				&first_bad, &bad_sectors)
1966 		)
1967 		set_bit(R1BIO_MadeGood, &r1_bio->state);
1968 
1969 	put_sync_write_buf(r1_bio, uptodate);
1970 }
1971 
1972 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1973 			   int sectors, struct page *page, int rw)
1974 {
1975 	if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
1976 		/* success */
1977 		return 1;
1978 	if (rw == WRITE) {
1979 		set_bit(WriteErrorSeen, &rdev->flags);
1980 		if (!test_and_set_bit(WantReplacement,
1981 				      &rdev->flags))
1982 			set_bit(MD_RECOVERY_NEEDED, &
1983 				rdev->mddev->recovery);
1984 	}
1985 	/* need to record an error - either for the block or the device */
1986 	if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1987 		md_error(rdev->mddev, rdev);
1988 	return 0;
1989 }
1990 
1991 static int fix_sync_read_error(struct r1bio *r1_bio)
1992 {
1993 	/* Try some synchronous reads of other devices to get
1994 	 * good data, much like with normal read errors.  Only
1995 	 * read into the pages we already have so we don't
1996 	 * need to re-issue the read request.
1997 	 * We don't need to freeze the array, because being in an
1998 	 * active sync request, there is no normal IO, and
1999 	 * no overlapping syncs.
2000 	 * We don't need to check is_badblock() again as we
2001 	 * made sure that anything with a bad block in range
2002 	 * will have bi_end_io clear.
2003 	 */
2004 	struct mddev *mddev = r1_bio->mddev;
2005 	struct r1conf *conf = mddev->private;
2006 	struct bio *bio = r1_bio->bios[r1_bio->read_disk];
2007 	struct page **pages = get_resync_pages(bio)->pages;
2008 	sector_t sect = r1_bio->sector;
2009 	int sectors = r1_bio->sectors;
2010 	int idx = 0;
2011 	struct md_rdev *rdev;
2012 
2013 	rdev = conf->mirrors[r1_bio->read_disk].rdev;
2014 	if (test_bit(FailFast, &rdev->flags)) {
2015 		/* Don't try recovering from here - just fail it
2016 		 * ... unless it is the last working device of course */
2017 		md_error(mddev, rdev);
2018 		if (test_bit(Faulty, &rdev->flags))
2019 			/* Don't try to read from here, but make sure
2020 			 * put_buf does it's thing
2021 			 */
2022 			bio->bi_end_io = end_sync_write;
2023 	}
2024 
2025 	while(sectors) {
2026 		int s = sectors;
2027 		int d = r1_bio->read_disk;
2028 		int success = 0;
2029 		int start;
2030 
2031 		if (s > (PAGE_SIZE>>9))
2032 			s = PAGE_SIZE >> 9;
2033 		do {
2034 			if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
2035 				/* No rcu protection needed here devices
2036 				 * can only be removed when no resync is
2037 				 * active, and resync is currently active
2038 				 */
2039 				rdev = conf->mirrors[d].rdev;
2040 				if (sync_page_io(rdev, sect, s<<9,
2041 						 pages[idx],
2042 						 REQ_OP_READ, false)) {
2043 					success = 1;
2044 					break;
2045 				}
2046 			}
2047 			d++;
2048 			if (d == conf->raid_disks * 2)
2049 				d = 0;
2050 		} while (!success && d != r1_bio->read_disk);
2051 
2052 		if (!success) {
2053 			int abort = 0;
2054 			/* Cannot read from anywhere, this block is lost.
2055 			 * Record a bad block on each device.  If that doesn't
2056 			 * work just disable and interrupt the recovery.
2057 			 * Don't fail devices as that won't really help.
2058 			 */
2059 			pr_crit_ratelimited("md/raid1:%s: %pg: unrecoverable I/O read error for block %llu\n",
2060 					    mdname(mddev), bio->bi_bdev,
2061 					    (unsigned long long)r1_bio->sector);
2062 			for (d = 0; d < conf->raid_disks * 2; d++) {
2063 				rdev = conf->mirrors[d].rdev;
2064 				if (!rdev || test_bit(Faulty, &rdev->flags))
2065 					continue;
2066 				if (!rdev_set_badblocks(rdev, sect, s, 0))
2067 					abort = 1;
2068 			}
2069 			if (abort) {
2070 				conf->recovery_disabled =
2071 					mddev->recovery_disabled;
2072 				set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2073 				md_done_sync(mddev, r1_bio->sectors, 0);
2074 				put_buf(r1_bio);
2075 				return 0;
2076 			}
2077 			/* Try next page */
2078 			sectors -= s;
2079 			sect += s;
2080 			idx++;
2081 			continue;
2082 		}
2083 
2084 		start = d;
2085 		/* write it back and re-read */
2086 		while (d != r1_bio->read_disk) {
2087 			if (d == 0)
2088 				d = conf->raid_disks * 2;
2089 			d--;
2090 			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2091 				continue;
2092 			rdev = conf->mirrors[d].rdev;
2093 			if (r1_sync_page_io(rdev, sect, s,
2094 					    pages[idx],
2095 					    WRITE) == 0) {
2096 				r1_bio->bios[d]->bi_end_io = NULL;
2097 				rdev_dec_pending(rdev, mddev);
2098 			}
2099 		}
2100 		d = start;
2101 		while (d != r1_bio->read_disk) {
2102 			if (d == 0)
2103 				d = conf->raid_disks * 2;
2104 			d--;
2105 			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2106 				continue;
2107 			rdev = conf->mirrors[d].rdev;
2108 			if (r1_sync_page_io(rdev, sect, s,
2109 					    pages[idx],
2110 					    READ) != 0)
2111 				atomic_add(s, &rdev->corrected_errors);
2112 		}
2113 		sectors -= s;
2114 		sect += s;
2115 		idx ++;
2116 	}
2117 	set_bit(R1BIO_Uptodate, &r1_bio->state);
2118 	bio->bi_status = 0;
2119 	return 1;
2120 }
2121 
2122 static void process_checks(struct r1bio *r1_bio)
2123 {
2124 	/* We have read all readable devices.  If we haven't
2125 	 * got the block, then there is no hope left.
2126 	 * If we have, then we want to do a comparison
2127 	 * and skip the write if everything is the same.
2128 	 * If any blocks failed to read, then we need to
2129 	 * attempt an over-write
2130 	 */
2131 	struct mddev *mddev = r1_bio->mddev;
2132 	struct r1conf *conf = mddev->private;
2133 	int primary;
2134 	int i;
2135 	int vcnt;
2136 
2137 	/* Fix variable parts of all bios */
2138 	vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
2139 	for (i = 0; i < conf->raid_disks * 2; i++) {
2140 		blk_status_t status;
2141 		struct bio *b = r1_bio->bios[i];
2142 		struct resync_pages *rp = get_resync_pages(b);
2143 		if (b->bi_end_io != end_sync_read)
2144 			continue;
2145 		/* fixup the bio for reuse, but preserve errno */
2146 		status = b->bi_status;
2147 		bio_reset(b, conf->mirrors[i].rdev->bdev, REQ_OP_READ);
2148 		b->bi_status = status;
2149 		b->bi_iter.bi_sector = r1_bio->sector +
2150 			conf->mirrors[i].rdev->data_offset;
2151 		b->bi_end_io = end_sync_read;
2152 		rp->raid_bio = r1_bio;
2153 		b->bi_private = rp;
2154 
2155 		/* initialize bvec table again */
2156 		md_bio_reset_resync_pages(b, rp, r1_bio->sectors << 9);
2157 	}
2158 	for (primary = 0; primary < conf->raid_disks * 2; primary++)
2159 		if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
2160 		    !r1_bio->bios[primary]->bi_status) {
2161 			r1_bio->bios[primary]->bi_end_io = NULL;
2162 			rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
2163 			break;
2164 		}
2165 	r1_bio->read_disk = primary;
2166 	for (i = 0; i < conf->raid_disks * 2; i++) {
2167 		int j = 0;
2168 		struct bio *pbio = r1_bio->bios[primary];
2169 		struct bio *sbio = r1_bio->bios[i];
2170 		blk_status_t status = sbio->bi_status;
2171 		struct page **ppages = get_resync_pages(pbio)->pages;
2172 		struct page **spages = get_resync_pages(sbio)->pages;
2173 		struct bio_vec *bi;
2174 		int page_len[RESYNC_PAGES] = { 0 };
2175 		struct bvec_iter_all iter_all;
2176 
2177 		if (sbio->bi_end_io != end_sync_read)
2178 			continue;
2179 		/* Now we can 'fixup' the error value */
2180 		sbio->bi_status = 0;
2181 
2182 		bio_for_each_segment_all(bi, sbio, iter_all)
2183 			page_len[j++] = bi->bv_len;
2184 
2185 		if (!status) {
2186 			for (j = vcnt; j-- ; ) {
2187 				if (memcmp(page_address(ppages[j]),
2188 					   page_address(spages[j]),
2189 					   page_len[j]))
2190 					break;
2191 			}
2192 		} else
2193 			j = 0;
2194 		if (j >= 0)
2195 			atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
2196 		if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
2197 			      && !status)) {
2198 			/* No need to write to this device. */
2199 			sbio->bi_end_io = NULL;
2200 			rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2201 			continue;
2202 		}
2203 
2204 		bio_copy_data(sbio, pbio);
2205 	}
2206 }
2207 
2208 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
2209 {
2210 	struct r1conf *conf = mddev->private;
2211 	int i;
2212 	int disks = conf->raid_disks * 2;
2213 	struct bio *wbio;
2214 
2215 	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2216 		/* ouch - failed to read all of that. */
2217 		if (!fix_sync_read_error(r1_bio))
2218 			return;
2219 
2220 	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2221 		process_checks(r1_bio);
2222 
2223 	/*
2224 	 * schedule writes
2225 	 */
2226 	atomic_set(&r1_bio->remaining, 1);
2227 	for (i = 0; i < disks ; i++) {
2228 		wbio = r1_bio->bios[i];
2229 		if (wbio->bi_end_io == NULL ||
2230 		    (wbio->bi_end_io == end_sync_read &&
2231 		     (i == r1_bio->read_disk ||
2232 		      !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2233 			continue;
2234 		if (test_bit(Faulty, &conf->mirrors[i].rdev->flags)) {
2235 			abort_sync_write(mddev, r1_bio);
2236 			continue;
2237 		}
2238 
2239 		wbio->bi_opf = REQ_OP_WRITE;
2240 		if (test_bit(FailFast, &conf->mirrors[i].rdev->flags))
2241 			wbio->bi_opf |= MD_FAILFAST;
2242 
2243 		wbio->bi_end_io = end_sync_write;
2244 		atomic_inc(&r1_bio->remaining);
2245 		md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
2246 
2247 		submit_bio_noacct(wbio);
2248 	}
2249 
2250 	put_sync_write_buf(r1_bio, 1);
2251 }
2252 
2253 /*
2254  * This is a kernel thread which:
2255  *
2256  *	1.	Retries failed read operations on working mirrors.
2257  *	2.	Updates the raid superblock when problems encounter.
2258  *	3.	Performs writes following reads for array synchronising.
2259  */
2260 
2261 static void fix_read_error(struct r1conf *conf, int read_disk,
2262 			   sector_t sect, int sectors)
2263 {
2264 	struct mddev *mddev = conf->mddev;
2265 	while(sectors) {
2266 		int s = sectors;
2267 		int d = read_disk;
2268 		int success = 0;
2269 		int start;
2270 		struct md_rdev *rdev;
2271 
2272 		if (s > (PAGE_SIZE>>9))
2273 			s = PAGE_SIZE >> 9;
2274 
2275 		do {
2276 			sector_t first_bad;
2277 			int bad_sectors;
2278 
2279 			rcu_read_lock();
2280 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2281 			if (rdev &&
2282 			    (test_bit(In_sync, &rdev->flags) ||
2283 			     (!test_bit(Faulty, &rdev->flags) &&
2284 			      rdev->recovery_offset >= sect + s)) &&
2285 			    is_badblock(rdev, sect, s,
2286 					&first_bad, &bad_sectors) == 0) {
2287 				atomic_inc(&rdev->nr_pending);
2288 				rcu_read_unlock();
2289 				if (sync_page_io(rdev, sect, s<<9,
2290 					 conf->tmppage, REQ_OP_READ, false))
2291 					success = 1;
2292 				rdev_dec_pending(rdev, mddev);
2293 				if (success)
2294 					break;
2295 			} else
2296 				rcu_read_unlock();
2297 			d++;
2298 			if (d == conf->raid_disks * 2)
2299 				d = 0;
2300 		} while (!success && d != read_disk);
2301 
2302 		if (!success) {
2303 			/* Cannot read from anywhere - mark it bad */
2304 			struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2305 			if (!rdev_set_badblocks(rdev, sect, s, 0))
2306 				md_error(mddev, rdev);
2307 			break;
2308 		}
2309 		/* write it back and re-read */
2310 		start = d;
2311 		while (d != read_disk) {
2312 			if (d==0)
2313 				d = conf->raid_disks * 2;
2314 			d--;
2315 			rcu_read_lock();
2316 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2317 			if (rdev &&
2318 			    !test_bit(Faulty, &rdev->flags)) {
2319 				atomic_inc(&rdev->nr_pending);
2320 				rcu_read_unlock();
2321 				r1_sync_page_io(rdev, sect, s,
2322 						conf->tmppage, WRITE);
2323 				rdev_dec_pending(rdev, mddev);
2324 			} else
2325 				rcu_read_unlock();
2326 		}
2327 		d = start;
2328 		while (d != read_disk) {
2329 			if (d==0)
2330 				d = conf->raid_disks * 2;
2331 			d--;
2332 			rcu_read_lock();
2333 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2334 			if (rdev &&
2335 			    !test_bit(Faulty, &rdev->flags)) {
2336 				atomic_inc(&rdev->nr_pending);
2337 				rcu_read_unlock();
2338 				if (r1_sync_page_io(rdev, sect, s,
2339 						    conf->tmppage, READ)) {
2340 					atomic_add(s, &rdev->corrected_errors);
2341 					pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %pg)\n",
2342 						mdname(mddev), s,
2343 						(unsigned long long)(sect +
2344 								     rdev->data_offset),
2345 						rdev->bdev);
2346 				}
2347 				rdev_dec_pending(rdev, mddev);
2348 			} else
2349 				rcu_read_unlock();
2350 		}
2351 		sectors -= s;
2352 		sect += s;
2353 	}
2354 }
2355 
2356 static int narrow_write_error(struct r1bio *r1_bio, int i)
2357 {
2358 	struct mddev *mddev = r1_bio->mddev;
2359 	struct r1conf *conf = mddev->private;
2360 	struct md_rdev *rdev = conf->mirrors[i].rdev;
2361 
2362 	/* bio has the data to be written to device 'i' where
2363 	 * we just recently had a write error.
2364 	 * We repeatedly clone the bio and trim down to one block,
2365 	 * then try the write.  Where the write fails we record
2366 	 * a bad block.
2367 	 * It is conceivable that the bio doesn't exactly align with
2368 	 * blocks.  We must handle this somehow.
2369 	 *
2370 	 * We currently own a reference on the rdev.
2371 	 */
2372 
2373 	int block_sectors;
2374 	sector_t sector;
2375 	int sectors;
2376 	int sect_to_write = r1_bio->sectors;
2377 	int ok = 1;
2378 
2379 	if (rdev->badblocks.shift < 0)
2380 		return 0;
2381 
2382 	block_sectors = roundup(1 << rdev->badblocks.shift,
2383 				bdev_logical_block_size(rdev->bdev) >> 9);
2384 	sector = r1_bio->sector;
2385 	sectors = ((sector + block_sectors)
2386 		   & ~(sector_t)(block_sectors - 1))
2387 		- sector;
2388 
2389 	while (sect_to_write) {
2390 		struct bio *wbio;
2391 		if (sectors > sect_to_write)
2392 			sectors = sect_to_write;
2393 		/* Write at 'sector' for 'sectors'*/
2394 
2395 		if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2396 			wbio = bio_alloc_clone(rdev->bdev,
2397 					       r1_bio->behind_master_bio,
2398 					       GFP_NOIO, &mddev->bio_set);
2399 		} else {
2400 			wbio = bio_alloc_clone(rdev->bdev, r1_bio->master_bio,
2401 					       GFP_NOIO, &mddev->bio_set);
2402 		}
2403 
2404 		wbio->bi_opf = REQ_OP_WRITE;
2405 		wbio->bi_iter.bi_sector = r1_bio->sector;
2406 		wbio->bi_iter.bi_size = r1_bio->sectors << 9;
2407 
2408 		bio_trim(wbio, sector - r1_bio->sector, sectors);
2409 		wbio->bi_iter.bi_sector += rdev->data_offset;
2410 
2411 		if (submit_bio_wait(wbio) < 0)
2412 			/* failure! */
2413 			ok = rdev_set_badblocks(rdev, sector,
2414 						sectors, 0)
2415 				&& ok;
2416 
2417 		bio_put(wbio);
2418 		sect_to_write -= sectors;
2419 		sector += sectors;
2420 		sectors = block_sectors;
2421 	}
2422 	return ok;
2423 }
2424 
2425 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2426 {
2427 	int m;
2428 	int s = r1_bio->sectors;
2429 	for (m = 0; m < conf->raid_disks * 2 ; m++) {
2430 		struct md_rdev *rdev = conf->mirrors[m].rdev;
2431 		struct bio *bio = r1_bio->bios[m];
2432 		if (bio->bi_end_io == NULL)
2433 			continue;
2434 		if (!bio->bi_status &&
2435 		    test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2436 			rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2437 		}
2438 		if (bio->bi_status &&
2439 		    test_bit(R1BIO_WriteError, &r1_bio->state)) {
2440 			if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2441 				md_error(conf->mddev, rdev);
2442 		}
2443 	}
2444 	put_buf(r1_bio);
2445 	md_done_sync(conf->mddev, s, 1);
2446 }
2447 
2448 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2449 {
2450 	int m, idx;
2451 	bool fail = false;
2452 
2453 	for (m = 0; m < conf->raid_disks * 2 ; m++)
2454 		if (r1_bio->bios[m] == IO_MADE_GOOD) {
2455 			struct md_rdev *rdev = conf->mirrors[m].rdev;
2456 			rdev_clear_badblocks(rdev,
2457 					     r1_bio->sector,
2458 					     r1_bio->sectors, 0);
2459 			rdev_dec_pending(rdev, conf->mddev);
2460 		} else if (r1_bio->bios[m] != NULL) {
2461 			/* This drive got a write error.  We need to
2462 			 * narrow down and record precise write
2463 			 * errors.
2464 			 */
2465 			fail = true;
2466 			if (!narrow_write_error(r1_bio, m)) {
2467 				md_error(conf->mddev,
2468 					 conf->mirrors[m].rdev);
2469 				/* an I/O failed, we can't clear the bitmap */
2470 				set_bit(R1BIO_Degraded, &r1_bio->state);
2471 			}
2472 			rdev_dec_pending(conf->mirrors[m].rdev,
2473 					 conf->mddev);
2474 		}
2475 	if (fail) {
2476 		spin_lock_irq(&conf->device_lock);
2477 		list_add(&r1_bio->retry_list, &conf->bio_end_io_list);
2478 		idx = sector_to_idx(r1_bio->sector);
2479 		atomic_inc(&conf->nr_queued[idx]);
2480 		spin_unlock_irq(&conf->device_lock);
2481 		/*
2482 		 * In case freeze_array() is waiting for condition
2483 		 * get_unqueued_pending() == extra to be true.
2484 		 */
2485 		wake_up(&conf->wait_barrier);
2486 		md_wakeup_thread(conf->mddev->thread);
2487 	} else {
2488 		if (test_bit(R1BIO_WriteError, &r1_bio->state))
2489 			close_write(r1_bio);
2490 		raid_end_bio_io(r1_bio);
2491 	}
2492 }
2493 
2494 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2495 {
2496 	struct mddev *mddev = conf->mddev;
2497 	struct bio *bio;
2498 	struct md_rdev *rdev;
2499 
2500 	clear_bit(R1BIO_ReadError, &r1_bio->state);
2501 	/* we got a read error. Maybe the drive is bad.  Maybe just
2502 	 * the block and we can fix it.
2503 	 * We freeze all other IO, and try reading the block from
2504 	 * other devices.  When we find one, we re-write
2505 	 * and check it that fixes the read error.
2506 	 * This is all done synchronously while the array is
2507 	 * frozen
2508 	 */
2509 
2510 	bio = r1_bio->bios[r1_bio->read_disk];
2511 	bio_put(bio);
2512 	r1_bio->bios[r1_bio->read_disk] = NULL;
2513 
2514 	rdev = conf->mirrors[r1_bio->read_disk].rdev;
2515 	if (mddev->ro == 0
2516 	    && !test_bit(FailFast, &rdev->flags)) {
2517 		freeze_array(conf, 1);
2518 		fix_read_error(conf, r1_bio->read_disk,
2519 			       r1_bio->sector, r1_bio->sectors);
2520 		unfreeze_array(conf);
2521 	} else if (mddev->ro == 0 && test_bit(FailFast, &rdev->flags)) {
2522 		md_error(mddev, rdev);
2523 	} else {
2524 		r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED;
2525 	}
2526 
2527 	rdev_dec_pending(rdev, conf->mddev);
2528 	allow_barrier(conf, r1_bio->sector);
2529 	bio = r1_bio->master_bio;
2530 
2531 	/* Reuse the old r1_bio so that the IO_BLOCKED settings are preserved */
2532 	r1_bio->state = 0;
2533 	raid1_read_request(mddev, bio, r1_bio->sectors, r1_bio);
2534 }
2535 
2536 static void raid1d(struct md_thread *thread)
2537 {
2538 	struct mddev *mddev = thread->mddev;
2539 	struct r1bio *r1_bio;
2540 	unsigned long flags;
2541 	struct r1conf *conf = mddev->private;
2542 	struct list_head *head = &conf->retry_list;
2543 	struct blk_plug plug;
2544 	int idx;
2545 
2546 	md_check_recovery(mddev);
2547 
2548 	if (!list_empty_careful(&conf->bio_end_io_list) &&
2549 	    !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2550 		LIST_HEAD(tmp);
2551 		spin_lock_irqsave(&conf->device_lock, flags);
2552 		if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
2553 			list_splice_init(&conf->bio_end_io_list, &tmp);
2554 		spin_unlock_irqrestore(&conf->device_lock, flags);
2555 		while (!list_empty(&tmp)) {
2556 			r1_bio = list_first_entry(&tmp, struct r1bio,
2557 						  retry_list);
2558 			list_del(&r1_bio->retry_list);
2559 			idx = sector_to_idx(r1_bio->sector);
2560 			atomic_dec(&conf->nr_queued[idx]);
2561 			if (mddev->degraded)
2562 				set_bit(R1BIO_Degraded, &r1_bio->state);
2563 			if (test_bit(R1BIO_WriteError, &r1_bio->state))
2564 				close_write(r1_bio);
2565 			raid_end_bio_io(r1_bio);
2566 		}
2567 	}
2568 
2569 	blk_start_plug(&plug);
2570 	for (;;) {
2571 
2572 		flush_pending_writes(conf);
2573 
2574 		spin_lock_irqsave(&conf->device_lock, flags);
2575 		if (list_empty(head)) {
2576 			spin_unlock_irqrestore(&conf->device_lock, flags);
2577 			break;
2578 		}
2579 		r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2580 		list_del(head->prev);
2581 		idx = sector_to_idx(r1_bio->sector);
2582 		atomic_dec(&conf->nr_queued[idx]);
2583 		spin_unlock_irqrestore(&conf->device_lock, flags);
2584 
2585 		mddev = r1_bio->mddev;
2586 		conf = mddev->private;
2587 		if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2588 			if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2589 			    test_bit(R1BIO_WriteError, &r1_bio->state))
2590 				handle_sync_write_finished(conf, r1_bio);
2591 			else
2592 				sync_request_write(mddev, r1_bio);
2593 		} else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2594 			   test_bit(R1BIO_WriteError, &r1_bio->state))
2595 			handle_write_finished(conf, r1_bio);
2596 		else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2597 			handle_read_error(conf, r1_bio);
2598 		else
2599 			WARN_ON_ONCE(1);
2600 
2601 		cond_resched();
2602 		if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
2603 			md_check_recovery(mddev);
2604 	}
2605 	blk_finish_plug(&plug);
2606 }
2607 
2608 static int init_resync(struct r1conf *conf)
2609 {
2610 	int buffs;
2611 
2612 	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2613 	BUG_ON(mempool_initialized(&conf->r1buf_pool));
2614 
2615 	return mempool_init(&conf->r1buf_pool, buffs, r1buf_pool_alloc,
2616 			    r1buf_pool_free, conf->poolinfo);
2617 }
2618 
2619 static struct r1bio *raid1_alloc_init_r1buf(struct r1conf *conf)
2620 {
2621 	struct r1bio *r1bio = mempool_alloc(&conf->r1buf_pool, GFP_NOIO);
2622 	struct resync_pages *rps;
2623 	struct bio *bio;
2624 	int i;
2625 
2626 	for (i = conf->poolinfo->raid_disks; i--; ) {
2627 		bio = r1bio->bios[i];
2628 		rps = bio->bi_private;
2629 		bio_reset(bio, NULL, 0);
2630 		bio->bi_private = rps;
2631 	}
2632 	r1bio->master_bio = NULL;
2633 	return r1bio;
2634 }
2635 
2636 /*
2637  * perform a "sync" on one "block"
2638  *
2639  * We need to make sure that no normal I/O request - particularly write
2640  * requests - conflict with active sync requests.
2641  *
2642  * This is achieved by tracking pending requests and a 'barrier' concept
2643  * that can be installed to exclude normal IO requests.
2644  */
2645 
2646 static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr,
2647 				   int *skipped)
2648 {
2649 	struct r1conf *conf = mddev->private;
2650 	struct r1bio *r1_bio;
2651 	struct bio *bio;
2652 	sector_t max_sector, nr_sectors;
2653 	int disk = -1;
2654 	int i;
2655 	int wonly = -1;
2656 	int write_targets = 0, read_targets = 0;
2657 	sector_t sync_blocks;
2658 	int still_degraded = 0;
2659 	int good_sectors = RESYNC_SECTORS;
2660 	int min_bad = 0; /* number of sectors that are bad in all devices */
2661 	int idx = sector_to_idx(sector_nr);
2662 	int page_idx = 0;
2663 
2664 	if (!mempool_initialized(&conf->r1buf_pool))
2665 		if (init_resync(conf))
2666 			return 0;
2667 
2668 	max_sector = mddev->dev_sectors;
2669 	if (sector_nr >= max_sector) {
2670 		/* If we aborted, we need to abort the
2671 		 * sync on the 'current' bitmap chunk (there will
2672 		 * only be one in raid1 resync.
2673 		 * We can find the current addess in mddev->curr_resync
2674 		 */
2675 		if (mddev->curr_resync < max_sector) /* aborted */
2676 			md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2677 					   &sync_blocks, 1);
2678 		else /* completed sync */
2679 			conf->fullsync = 0;
2680 
2681 		md_bitmap_close_sync(mddev->bitmap);
2682 		close_sync(conf);
2683 
2684 		if (mddev_is_clustered(mddev)) {
2685 			conf->cluster_sync_low = 0;
2686 			conf->cluster_sync_high = 0;
2687 		}
2688 		return 0;
2689 	}
2690 
2691 	if (mddev->bitmap == NULL &&
2692 	    mddev->recovery_cp == MaxSector &&
2693 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2694 	    conf->fullsync == 0) {
2695 		*skipped = 1;
2696 		return max_sector - sector_nr;
2697 	}
2698 	/* before building a request, check if we can skip these blocks..
2699 	 * This call the bitmap_start_sync doesn't actually record anything
2700 	 */
2701 	if (!md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2702 	    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2703 		/* We can skip this block, and probably several more */
2704 		*skipped = 1;
2705 		return sync_blocks;
2706 	}
2707 
2708 	/*
2709 	 * If there is non-resync activity waiting for a turn, then let it
2710 	 * though before starting on this new sync request.
2711 	 */
2712 	if (atomic_read(&conf->nr_waiting[idx]))
2713 		schedule_timeout_uninterruptible(1);
2714 
2715 	/* we are incrementing sector_nr below. To be safe, we check against
2716 	 * sector_nr + two times RESYNC_SECTORS
2717 	 */
2718 
2719 	md_bitmap_cond_end_sync(mddev->bitmap, sector_nr,
2720 		mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
2721 
2722 
2723 	if (raise_barrier(conf, sector_nr))
2724 		return 0;
2725 
2726 	r1_bio = raid1_alloc_init_r1buf(conf);
2727 
2728 	rcu_read_lock();
2729 	/*
2730 	 * If we get a correctably read error during resync or recovery,
2731 	 * we might want to read from a different device.  So we
2732 	 * flag all drives that could conceivably be read from for READ,
2733 	 * and any others (which will be non-In_sync devices) for WRITE.
2734 	 * If a read fails, we try reading from something else for which READ
2735 	 * is OK.
2736 	 */
2737 
2738 	r1_bio->mddev = mddev;
2739 	r1_bio->sector = sector_nr;
2740 	r1_bio->state = 0;
2741 	set_bit(R1BIO_IsSync, &r1_bio->state);
2742 	/* make sure good_sectors won't go across barrier unit boundary */
2743 	good_sectors = align_to_barrier_unit_end(sector_nr, good_sectors);
2744 
2745 	for (i = 0; i < conf->raid_disks * 2; i++) {
2746 		struct md_rdev *rdev;
2747 		bio = r1_bio->bios[i];
2748 
2749 		rdev = rcu_dereference(conf->mirrors[i].rdev);
2750 		if (rdev == NULL ||
2751 		    test_bit(Faulty, &rdev->flags)) {
2752 			if (i < conf->raid_disks)
2753 				still_degraded = 1;
2754 		} else if (!test_bit(In_sync, &rdev->flags)) {
2755 			bio->bi_opf = REQ_OP_WRITE;
2756 			bio->bi_end_io = end_sync_write;
2757 			write_targets ++;
2758 		} else {
2759 			/* may need to read from here */
2760 			sector_t first_bad = MaxSector;
2761 			int bad_sectors;
2762 
2763 			if (is_badblock(rdev, sector_nr, good_sectors,
2764 					&first_bad, &bad_sectors)) {
2765 				if (first_bad > sector_nr)
2766 					good_sectors = first_bad - sector_nr;
2767 				else {
2768 					bad_sectors -= (sector_nr - first_bad);
2769 					if (min_bad == 0 ||
2770 					    min_bad > bad_sectors)
2771 						min_bad = bad_sectors;
2772 				}
2773 			}
2774 			if (sector_nr < first_bad) {
2775 				if (test_bit(WriteMostly, &rdev->flags)) {
2776 					if (wonly < 0)
2777 						wonly = i;
2778 				} else {
2779 					if (disk < 0)
2780 						disk = i;
2781 				}
2782 				bio->bi_opf = REQ_OP_READ;
2783 				bio->bi_end_io = end_sync_read;
2784 				read_targets++;
2785 			} else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2786 				test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2787 				!test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2788 				/*
2789 				 * The device is suitable for reading (InSync),
2790 				 * but has bad block(s) here. Let's try to correct them,
2791 				 * if we are doing resync or repair. Otherwise, leave
2792 				 * this device alone for this sync request.
2793 				 */
2794 				bio->bi_opf = REQ_OP_WRITE;
2795 				bio->bi_end_io = end_sync_write;
2796 				write_targets++;
2797 			}
2798 		}
2799 		if (rdev && bio->bi_end_io) {
2800 			atomic_inc(&rdev->nr_pending);
2801 			bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
2802 			bio_set_dev(bio, rdev->bdev);
2803 			if (test_bit(FailFast, &rdev->flags))
2804 				bio->bi_opf |= MD_FAILFAST;
2805 		}
2806 	}
2807 	rcu_read_unlock();
2808 	if (disk < 0)
2809 		disk = wonly;
2810 	r1_bio->read_disk = disk;
2811 
2812 	if (read_targets == 0 && min_bad > 0) {
2813 		/* These sectors are bad on all InSync devices, so we
2814 		 * need to mark them bad on all write targets
2815 		 */
2816 		int ok = 1;
2817 		for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2818 			if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2819 				struct md_rdev *rdev = conf->mirrors[i].rdev;
2820 				ok = rdev_set_badblocks(rdev, sector_nr,
2821 							min_bad, 0
2822 					) && ok;
2823 			}
2824 		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2825 		*skipped = 1;
2826 		put_buf(r1_bio);
2827 
2828 		if (!ok) {
2829 			/* Cannot record the badblocks, so need to
2830 			 * abort the resync.
2831 			 * If there are multiple read targets, could just
2832 			 * fail the really bad ones ???
2833 			 */
2834 			conf->recovery_disabled = mddev->recovery_disabled;
2835 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2836 			return 0;
2837 		} else
2838 			return min_bad;
2839 
2840 	}
2841 	if (min_bad > 0 && min_bad < good_sectors) {
2842 		/* only resync enough to reach the next bad->good
2843 		 * transition */
2844 		good_sectors = min_bad;
2845 	}
2846 
2847 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2848 		/* extra read targets are also write targets */
2849 		write_targets += read_targets-1;
2850 
2851 	if (write_targets == 0 || read_targets == 0) {
2852 		/* There is nowhere to write, so all non-sync
2853 		 * drives must be failed - so we are finished
2854 		 */
2855 		sector_t rv;
2856 		if (min_bad > 0)
2857 			max_sector = sector_nr + min_bad;
2858 		rv = max_sector - sector_nr;
2859 		*skipped = 1;
2860 		put_buf(r1_bio);
2861 		return rv;
2862 	}
2863 
2864 	if (max_sector > mddev->resync_max)
2865 		max_sector = mddev->resync_max; /* Don't do IO beyond here */
2866 	if (max_sector > sector_nr + good_sectors)
2867 		max_sector = sector_nr + good_sectors;
2868 	nr_sectors = 0;
2869 	sync_blocks = 0;
2870 	do {
2871 		struct page *page;
2872 		int len = PAGE_SIZE;
2873 		if (sector_nr + (len>>9) > max_sector)
2874 			len = (max_sector - sector_nr) << 9;
2875 		if (len == 0)
2876 			break;
2877 		if (sync_blocks == 0) {
2878 			if (!md_bitmap_start_sync(mddev->bitmap, sector_nr,
2879 						  &sync_blocks, still_degraded) &&
2880 			    !conf->fullsync &&
2881 			    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2882 				break;
2883 			if ((len >> 9) > sync_blocks)
2884 				len = sync_blocks<<9;
2885 		}
2886 
2887 		for (i = 0 ; i < conf->raid_disks * 2; i++) {
2888 			struct resync_pages *rp;
2889 
2890 			bio = r1_bio->bios[i];
2891 			rp = get_resync_pages(bio);
2892 			if (bio->bi_end_io) {
2893 				page = resync_fetch_page(rp, page_idx);
2894 
2895 				/*
2896 				 * won't fail because the vec table is big
2897 				 * enough to hold all these pages
2898 				 */
2899 				__bio_add_page(bio, page, len, 0);
2900 			}
2901 		}
2902 		nr_sectors += len>>9;
2903 		sector_nr += len>>9;
2904 		sync_blocks -= (len>>9);
2905 	} while (++page_idx < RESYNC_PAGES);
2906 
2907 	r1_bio->sectors = nr_sectors;
2908 
2909 	if (mddev_is_clustered(mddev) &&
2910 			conf->cluster_sync_high < sector_nr + nr_sectors) {
2911 		conf->cluster_sync_low = mddev->curr_resync_completed;
2912 		conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS;
2913 		/* Send resync message */
2914 		md_cluster_ops->resync_info_update(mddev,
2915 				conf->cluster_sync_low,
2916 				conf->cluster_sync_high);
2917 	}
2918 
2919 	/* For a user-requested sync, we read all readable devices and do a
2920 	 * compare
2921 	 */
2922 	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2923 		atomic_set(&r1_bio->remaining, read_targets);
2924 		for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2925 			bio = r1_bio->bios[i];
2926 			if (bio->bi_end_io == end_sync_read) {
2927 				read_targets--;
2928 				md_sync_acct_bio(bio, nr_sectors);
2929 				if (read_targets == 1)
2930 					bio->bi_opf &= ~MD_FAILFAST;
2931 				submit_bio_noacct(bio);
2932 			}
2933 		}
2934 	} else {
2935 		atomic_set(&r1_bio->remaining, 1);
2936 		bio = r1_bio->bios[r1_bio->read_disk];
2937 		md_sync_acct_bio(bio, nr_sectors);
2938 		if (read_targets == 1)
2939 			bio->bi_opf &= ~MD_FAILFAST;
2940 		submit_bio_noacct(bio);
2941 	}
2942 	return nr_sectors;
2943 }
2944 
2945 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2946 {
2947 	if (sectors)
2948 		return sectors;
2949 
2950 	return mddev->dev_sectors;
2951 }
2952 
2953 static struct r1conf *setup_conf(struct mddev *mddev)
2954 {
2955 	struct r1conf *conf;
2956 	int i;
2957 	struct raid1_info *disk;
2958 	struct md_rdev *rdev;
2959 	int err = -ENOMEM;
2960 
2961 	conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2962 	if (!conf)
2963 		goto abort;
2964 
2965 	conf->nr_pending = kcalloc(BARRIER_BUCKETS_NR,
2966 				   sizeof(atomic_t), GFP_KERNEL);
2967 	if (!conf->nr_pending)
2968 		goto abort;
2969 
2970 	conf->nr_waiting = kcalloc(BARRIER_BUCKETS_NR,
2971 				   sizeof(atomic_t), GFP_KERNEL);
2972 	if (!conf->nr_waiting)
2973 		goto abort;
2974 
2975 	conf->nr_queued = kcalloc(BARRIER_BUCKETS_NR,
2976 				  sizeof(atomic_t), GFP_KERNEL);
2977 	if (!conf->nr_queued)
2978 		goto abort;
2979 
2980 	conf->barrier = kcalloc(BARRIER_BUCKETS_NR,
2981 				sizeof(atomic_t), GFP_KERNEL);
2982 	if (!conf->barrier)
2983 		goto abort;
2984 
2985 	conf->mirrors = kzalloc(array3_size(sizeof(struct raid1_info),
2986 					    mddev->raid_disks, 2),
2987 				GFP_KERNEL);
2988 	if (!conf->mirrors)
2989 		goto abort;
2990 
2991 	conf->tmppage = alloc_page(GFP_KERNEL);
2992 	if (!conf->tmppage)
2993 		goto abort;
2994 
2995 	conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
2996 	if (!conf->poolinfo)
2997 		goto abort;
2998 	conf->poolinfo->raid_disks = mddev->raid_disks * 2;
2999 	err = mempool_init(&conf->r1bio_pool, NR_RAID_BIOS, r1bio_pool_alloc,
3000 			   rbio_pool_free, conf->poolinfo);
3001 	if (err)
3002 		goto abort;
3003 
3004 	err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
3005 	if (err)
3006 		goto abort;
3007 
3008 	conf->poolinfo->mddev = mddev;
3009 
3010 	err = -EINVAL;
3011 	spin_lock_init(&conf->device_lock);
3012 	rdev_for_each(rdev, mddev) {
3013 		int disk_idx = rdev->raid_disk;
3014 		if (disk_idx >= mddev->raid_disks
3015 		    || disk_idx < 0)
3016 			continue;
3017 		if (test_bit(Replacement, &rdev->flags))
3018 			disk = conf->mirrors + mddev->raid_disks + disk_idx;
3019 		else
3020 			disk = conf->mirrors + disk_idx;
3021 
3022 		if (disk->rdev)
3023 			goto abort;
3024 		disk->rdev = rdev;
3025 		disk->head_position = 0;
3026 		disk->seq_start = MaxSector;
3027 	}
3028 	conf->raid_disks = mddev->raid_disks;
3029 	conf->mddev = mddev;
3030 	INIT_LIST_HEAD(&conf->retry_list);
3031 	INIT_LIST_HEAD(&conf->bio_end_io_list);
3032 
3033 	spin_lock_init(&conf->resync_lock);
3034 	init_waitqueue_head(&conf->wait_barrier);
3035 
3036 	bio_list_init(&conf->pending_bio_list);
3037 	conf->recovery_disabled = mddev->recovery_disabled - 1;
3038 
3039 	err = -EIO;
3040 	for (i = 0; i < conf->raid_disks * 2; i++) {
3041 
3042 		disk = conf->mirrors + i;
3043 
3044 		if (i < conf->raid_disks &&
3045 		    disk[conf->raid_disks].rdev) {
3046 			/* This slot has a replacement. */
3047 			if (!disk->rdev) {
3048 				/* No original, just make the replacement
3049 				 * a recovering spare
3050 				 */
3051 				disk->rdev =
3052 					disk[conf->raid_disks].rdev;
3053 				disk[conf->raid_disks].rdev = NULL;
3054 			} else if (!test_bit(In_sync, &disk->rdev->flags))
3055 				/* Original is not in_sync - bad */
3056 				goto abort;
3057 		}
3058 
3059 		if (!disk->rdev ||
3060 		    !test_bit(In_sync, &disk->rdev->flags)) {
3061 			disk->head_position = 0;
3062 			if (disk->rdev &&
3063 			    (disk->rdev->saved_raid_disk < 0))
3064 				conf->fullsync = 1;
3065 		}
3066 	}
3067 
3068 	err = -ENOMEM;
3069 	rcu_assign_pointer(conf->thread,
3070 			   md_register_thread(raid1d, mddev, "raid1"));
3071 	if (!conf->thread)
3072 		goto abort;
3073 
3074 	return conf;
3075 
3076  abort:
3077 	if (conf) {
3078 		mempool_exit(&conf->r1bio_pool);
3079 		kfree(conf->mirrors);
3080 		safe_put_page(conf->tmppage);
3081 		kfree(conf->poolinfo);
3082 		kfree(conf->nr_pending);
3083 		kfree(conf->nr_waiting);
3084 		kfree(conf->nr_queued);
3085 		kfree(conf->barrier);
3086 		bioset_exit(&conf->bio_split);
3087 		kfree(conf);
3088 	}
3089 	return ERR_PTR(err);
3090 }
3091 
3092 static void raid1_free(struct mddev *mddev, void *priv);
3093 static int raid1_run(struct mddev *mddev)
3094 {
3095 	struct r1conf *conf;
3096 	int i;
3097 	struct md_rdev *rdev;
3098 	int ret;
3099 
3100 	if (mddev->level != 1) {
3101 		pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n",
3102 			mdname(mddev), mddev->level);
3103 		return -EIO;
3104 	}
3105 	if (mddev->reshape_position != MaxSector) {
3106 		pr_warn("md/raid1:%s: reshape_position set but not supported\n",
3107 			mdname(mddev));
3108 		return -EIO;
3109 	}
3110 	if (mddev_init_writes_pending(mddev) < 0)
3111 		return -ENOMEM;
3112 	/*
3113 	 * copy the already verified devices into our private RAID1
3114 	 * bookkeeping area. [whatever we allocate in run(),
3115 	 * should be freed in raid1_free()]
3116 	 */
3117 	if (mddev->private == NULL)
3118 		conf = setup_conf(mddev);
3119 	else
3120 		conf = mddev->private;
3121 
3122 	if (IS_ERR(conf))
3123 		return PTR_ERR(conf);
3124 
3125 	if (mddev->queue)
3126 		blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
3127 
3128 	rdev_for_each(rdev, mddev) {
3129 		if (!mddev->gendisk)
3130 			continue;
3131 		disk_stack_limits(mddev->gendisk, rdev->bdev,
3132 				  rdev->data_offset << 9);
3133 	}
3134 
3135 	mddev->degraded = 0;
3136 	for (i = 0; i < conf->raid_disks; i++)
3137 		if (conf->mirrors[i].rdev == NULL ||
3138 		    !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
3139 		    test_bit(Faulty, &conf->mirrors[i].rdev->flags))
3140 			mddev->degraded++;
3141 	/*
3142 	 * RAID1 needs at least one disk in active
3143 	 */
3144 	if (conf->raid_disks - mddev->degraded < 1) {
3145 		md_unregister_thread(&conf->thread);
3146 		ret = -EINVAL;
3147 		goto abort;
3148 	}
3149 
3150 	if (conf->raid_disks - mddev->degraded == 1)
3151 		mddev->recovery_cp = MaxSector;
3152 
3153 	if (mddev->recovery_cp != MaxSector)
3154 		pr_info("md/raid1:%s: not clean -- starting background reconstruction\n",
3155 			mdname(mddev));
3156 	pr_info("md/raid1:%s: active with %d out of %d mirrors\n",
3157 		mdname(mddev), mddev->raid_disks - mddev->degraded,
3158 		mddev->raid_disks);
3159 
3160 	/*
3161 	 * Ok, everything is just fine now
3162 	 */
3163 	rcu_assign_pointer(mddev->thread, conf->thread);
3164 	rcu_assign_pointer(conf->thread, NULL);
3165 	mddev->private = conf;
3166 	set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
3167 
3168 	md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
3169 
3170 	ret = md_integrity_register(mddev);
3171 	if (ret) {
3172 		md_unregister_thread(&mddev->thread);
3173 		goto abort;
3174 	}
3175 	return 0;
3176 
3177 abort:
3178 	raid1_free(mddev, conf);
3179 	return ret;
3180 }
3181 
3182 static void raid1_free(struct mddev *mddev, void *priv)
3183 {
3184 	struct r1conf *conf = priv;
3185 
3186 	mempool_exit(&conf->r1bio_pool);
3187 	kfree(conf->mirrors);
3188 	safe_put_page(conf->tmppage);
3189 	kfree(conf->poolinfo);
3190 	kfree(conf->nr_pending);
3191 	kfree(conf->nr_waiting);
3192 	kfree(conf->nr_queued);
3193 	kfree(conf->barrier);
3194 	bioset_exit(&conf->bio_split);
3195 	kfree(conf);
3196 }
3197 
3198 static int raid1_resize(struct mddev *mddev, sector_t sectors)
3199 {
3200 	/* no resync is happening, and there is enough space
3201 	 * on all devices, so we can resize.
3202 	 * We need to make sure resync covers any new space.
3203 	 * If the array is shrinking we should possibly wait until
3204 	 * any io in the removed space completes, but it hardly seems
3205 	 * worth it.
3206 	 */
3207 	sector_t newsize = raid1_size(mddev, sectors, 0);
3208 	if (mddev->external_size &&
3209 	    mddev->array_sectors > newsize)
3210 		return -EINVAL;
3211 	if (mddev->bitmap) {
3212 		int ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
3213 		if (ret)
3214 			return ret;
3215 	}
3216 	md_set_array_sectors(mddev, newsize);
3217 	if (sectors > mddev->dev_sectors &&
3218 	    mddev->recovery_cp > mddev->dev_sectors) {
3219 		mddev->recovery_cp = mddev->dev_sectors;
3220 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3221 	}
3222 	mddev->dev_sectors = sectors;
3223 	mddev->resync_max_sectors = sectors;
3224 	return 0;
3225 }
3226 
3227 static int raid1_reshape(struct mddev *mddev)
3228 {
3229 	/* We need to:
3230 	 * 1/ resize the r1bio_pool
3231 	 * 2/ resize conf->mirrors
3232 	 *
3233 	 * We allocate a new r1bio_pool if we can.
3234 	 * Then raise a device barrier and wait until all IO stops.
3235 	 * Then resize conf->mirrors and swap in the new r1bio pool.
3236 	 *
3237 	 * At the same time, we "pack" the devices so that all the missing
3238 	 * devices have the higher raid_disk numbers.
3239 	 */
3240 	mempool_t newpool, oldpool;
3241 	struct pool_info *newpoolinfo;
3242 	struct raid1_info *newmirrors;
3243 	struct r1conf *conf = mddev->private;
3244 	int cnt, raid_disks;
3245 	unsigned long flags;
3246 	int d, d2;
3247 	int ret;
3248 
3249 	memset(&newpool, 0, sizeof(newpool));
3250 	memset(&oldpool, 0, sizeof(oldpool));
3251 
3252 	/* Cannot change chunk_size, layout, or level */
3253 	if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3254 	    mddev->layout != mddev->new_layout ||
3255 	    mddev->level != mddev->new_level) {
3256 		mddev->new_chunk_sectors = mddev->chunk_sectors;
3257 		mddev->new_layout = mddev->layout;
3258 		mddev->new_level = mddev->level;
3259 		return -EINVAL;
3260 	}
3261 
3262 	if (!mddev_is_clustered(mddev))
3263 		md_allow_write(mddev);
3264 
3265 	raid_disks = mddev->raid_disks + mddev->delta_disks;
3266 
3267 	if (raid_disks < conf->raid_disks) {
3268 		cnt=0;
3269 		for (d= 0; d < conf->raid_disks; d++)
3270 			if (conf->mirrors[d].rdev)
3271 				cnt++;
3272 		if (cnt > raid_disks)
3273 			return -EBUSY;
3274 	}
3275 
3276 	newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3277 	if (!newpoolinfo)
3278 		return -ENOMEM;
3279 	newpoolinfo->mddev = mddev;
3280 	newpoolinfo->raid_disks = raid_disks * 2;
3281 
3282 	ret = mempool_init(&newpool, NR_RAID_BIOS, r1bio_pool_alloc,
3283 			   rbio_pool_free, newpoolinfo);
3284 	if (ret) {
3285 		kfree(newpoolinfo);
3286 		return ret;
3287 	}
3288 	newmirrors = kzalloc(array3_size(sizeof(struct raid1_info),
3289 					 raid_disks, 2),
3290 			     GFP_KERNEL);
3291 	if (!newmirrors) {
3292 		kfree(newpoolinfo);
3293 		mempool_exit(&newpool);
3294 		return -ENOMEM;
3295 	}
3296 
3297 	freeze_array(conf, 0);
3298 
3299 	/* ok, everything is stopped */
3300 	oldpool = conf->r1bio_pool;
3301 	conf->r1bio_pool = newpool;
3302 
3303 	for (d = d2 = 0; d < conf->raid_disks; d++) {
3304 		struct md_rdev *rdev = conf->mirrors[d].rdev;
3305 		if (rdev && rdev->raid_disk != d2) {
3306 			sysfs_unlink_rdev(mddev, rdev);
3307 			rdev->raid_disk = d2;
3308 			sysfs_unlink_rdev(mddev, rdev);
3309 			if (sysfs_link_rdev(mddev, rdev))
3310 				pr_warn("md/raid1:%s: cannot register rd%d\n",
3311 					mdname(mddev), rdev->raid_disk);
3312 		}
3313 		if (rdev)
3314 			newmirrors[d2++].rdev = rdev;
3315 	}
3316 	kfree(conf->mirrors);
3317 	conf->mirrors = newmirrors;
3318 	kfree(conf->poolinfo);
3319 	conf->poolinfo = newpoolinfo;
3320 
3321 	spin_lock_irqsave(&conf->device_lock, flags);
3322 	mddev->degraded += (raid_disks - conf->raid_disks);
3323 	spin_unlock_irqrestore(&conf->device_lock, flags);
3324 	conf->raid_disks = mddev->raid_disks = raid_disks;
3325 	mddev->delta_disks = 0;
3326 
3327 	unfreeze_array(conf);
3328 
3329 	set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3330 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3331 	md_wakeup_thread(mddev->thread);
3332 
3333 	mempool_exit(&oldpool);
3334 	return 0;
3335 }
3336 
3337 static void raid1_quiesce(struct mddev *mddev, int quiesce)
3338 {
3339 	struct r1conf *conf = mddev->private;
3340 
3341 	if (quiesce)
3342 		freeze_array(conf, 0);
3343 	else
3344 		unfreeze_array(conf);
3345 }
3346 
3347 static void *raid1_takeover(struct mddev *mddev)
3348 {
3349 	/* raid1 can take over:
3350 	 *  raid5 with 2 devices, any layout or chunk size
3351 	 */
3352 	if (mddev->level == 5 && mddev->raid_disks == 2) {
3353 		struct r1conf *conf;
3354 		mddev->new_level = 1;
3355 		mddev->new_layout = 0;
3356 		mddev->new_chunk_sectors = 0;
3357 		conf = setup_conf(mddev);
3358 		if (!IS_ERR(conf)) {
3359 			/* Array must appear to be quiesced */
3360 			conf->array_frozen = 1;
3361 			mddev_clear_unsupported_flags(mddev,
3362 				UNSUPPORTED_MDDEV_FLAGS);
3363 		}
3364 		return conf;
3365 	}
3366 	return ERR_PTR(-EINVAL);
3367 }
3368 
3369 static struct md_personality raid1_personality =
3370 {
3371 	.name		= "raid1",
3372 	.level		= 1,
3373 	.owner		= THIS_MODULE,
3374 	.make_request	= raid1_make_request,
3375 	.run		= raid1_run,
3376 	.free		= raid1_free,
3377 	.status		= raid1_status,
3378 	.error_handler	= raid1_error,
3379 	.hot_add_disk	= raid1_add_disk,
3380 	.hot_remove_disk= raid1_remove_disk,
3381 	.spare_active	= raid1_spare_active,
3382 	.sync_request	= raid1_sync_request,
3383 	.resize		= raid1_resize,
3384 	.size		= raid1_size,
3385 	.check_reshape	= raid1_reshape,
3386 	.quiesce	= raid1_quiesce,
3387 	.takeover	= raid1_takeover,
3388 };
3389 
3390 static int __init raid_init(void)
3391 {
3392 	return register_md_personality(&raid1_personality);
3393 }
3394 
3395 static void raid_exit(void)
3396 {
3397 	unregister_md_personality(&raid1_personality);
3398 }
3399 
3400 module_init(raid_init);
3401 module_exit(raid_exit);
3402 MODULE_LICENSE("GPL");
3403 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3404 MODULE_ALIAS("md-personality-3"); /* RAID1 */
3405 MODULE_ALIAS("md-raid1");
3406 MODULE_ALIAS("md-level-1");
3407