1 /* 2 * raid1.c : Multiple Devices driver for Linux 3 * 4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat 5 * 6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman 7 * 8 * RAID-1 management functions. 9 * 10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000 11 * 12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk> 13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au> 14 * 15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support 16 * bitmapped intelligence in resync: 17 * 18 * - bitmap marked during normal i/o 19 * - bitmap used to skip nondirty blocks during sync 20 * 21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology: 22 * - persistent bitmap code 23 * 24 * This program is free software; you can redistribute it and/or modify 25 * it under the terms of the GNU General Public License as published by 26 * the Free Software Foundation; either version 2, or (at your option) 27 * any later version. 28 * 29 * You should have received a copy of the GNU General Public License 30 * (for example /usr/src/linux/COPYING); if not, write to the Free 31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 32 */ 33 34 #include "dm-bio-list.h" 35 #include <linux/delay.h> 36 #include <linux/raid/raid1.h> 37 #include <linux/raid/bitmap.h> 38 39 #define DEBUG 0 40 #if DEBUG 41 #define PRINTK(x...) printk(x) 42 #else 43 #define PRINTK(x...) 44 #endif 45 46 /* 47 * Number of guaranteed r1bios in case of extreme VM load: 48 */ 49 #define NR_RAID1_BIOS 256 50 51 52 static void unplug_slaves(mddev_t *mddev); 53 54 static void allow_barrier(conf_t *conf); 55 static void lower_barrier(conf_t *conf); 56 57 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data) 58 { 59 struct pool_info *pi = data; 60 r1bio_t *r1_bio; 61 int size = offsetof(r1bio_t, bios[pi->raid_disks]); 62 63 /* allocate a r1bio with room for raid_disks entries in the bios array */ 64 r1_bio = kzalloc(size, gfp_flags); 65 if (!r1_bio) 66 unplug_slaves(pi->mddev); 67 68 return r1_bio; 69 } 70 71 static void r1bio_pool_free(void *r1_bio, void *data) 72 { 73 kfree(r1_bio); 74 } 75 76 #define RESYNC_BLOCK_SIZE (64*1024) 77 //#define RESYNC_BLOCK_SIZE PAGE_SIZE 78 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9) 79 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE) 80 #define RESYNC_WINDOW (2048*1024) 81 82 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data) 83 { 84 struct pool_info *pi = data; 85 struct page *page; 86 r1bio_t *r1_bio; 87 struct bio *bio; 88 int i, j; 89 90 r1_bio = r1bio_pool_alloc(gfp_flags, pi); 91 if (!r1_bio) { 92 unplug_slaves(pi->mddev); 93 return NULL; 94 } 95 96 /* 97 * Allocate bios : 1 for reading, n-1 for writing 98 */ 99 for (j = pi->raid_disks ; j-- ; ) { 100 bio = bio_alloc(gfp_flags, RESYNC_PAGES); 101 if (!bio) 102 goto out_free_bio; 103 r1_bio->bios[j] = bio; 104 } 105 /* 106 * Allocate RESYNC_PAGES data pages and attach them to 107 * the first bio. 108 * If this is a user-requested check/repair, allocate 109 * RESYNC_PAGES for each bio. 110 */ 111 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) 112 j = pi->raid_disks; 113 else 114 j = 1; 115 while(j--) { 116 bio = r1_bio->bios[j]; 117 for (i = 0; i < RESYNC_PAGES; i++) { 118 page = alloc_page(gfp_flags); 119 if (unlikely(!page)) 120 goto out_free_pages; 121 122 bio->bi_io_vec[i].bv_page = page; 123 } 124 } 125 /* If not user-requests, copy the page pointers to all bios */ 126 if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) { 127 for (i=0; i<RESYNC_PAGES ; i++) 128 for (j=1; j<pi->raid_disks; j++) 129 r1_bio->bios[j]->bi_io_vec[i].bv_page = 130 r1_bio->bios[0]->bi_io_vec[i].bv_page; 131 } 132 133 r1_bio->master_bio = NULL; 134 135 return r1_bio; 136 137 out_free_pages: 138 for (i=0; i < RESYNC_PAGES ; i++) 139 for (j=0 ; j < pi->raid_disks; j++) 140 safe_put_page(r1_bio->bios[j]->bi_io_vec[i].bv_page); 141 j = -1; 142 out_free_bio: 143 while ( ++j < pi->raid_disks ) 144 bio_put(r1_bio->bios[j]); 145 r1bio_pool_free(r1_bio, data); 146 return NULL; 147 } 148 149 static void r1buf_pool_free(void *__r1_bio, void *data) 150 { 151 struct pool_info *pi = data; 152 int i,j; 153 r1bio_t *r1bio = __r1_bio; 154 155 for (i = 0; i < RESYNC_PAGES; i++) 156 for (j = pi->raid_disks; j-- ;) { 157 if (j == 0 || 158 r1bio->bios[j]->bi_io_vec[i].bv_page != 159 r1bio->bios[0]->bi_io_vec[i].bv_page) 160 safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page); 161 } 162 for (i=0 ; i < pi->raid_disks; i++) 163 bio_put(r1bio->bios[i]); 164 165 r1bio_pool_free(r1bio, data); 166 } 167 168 static void put_all_bios(conf_t *conf, r1bio_t *r1_bio) 169 { 170 int i; 171 172 for (i = 0; i < conf->raid_disks; i++) { 173 struct bio **bio = r1_bio->bios + i; 174 if (*bio && *bio != IO_BLOCKED) 175 bio_put(*bio); 176 *bio = NULL; 177 } 178 } 179 180 static void free_r1bio(r1bio_t *r1_bio) 181 { 182 conf_t *conf = mddev_to_conf(r1_bio->mddev); 183 184 /* 185 * Wake up any possible resync thread that waits for the device 186 * to go idle. 187 */ 188 allow_barrier(conf); 189 190 put_all_bios(conf, r1_bio); 191 mempool_free(r1_bio, conf->r1bio_pool); 192 } 193 194 static void put_buf(r1bio_t *r1_bio) 195 { 196 conf_t *conf = mddev_to_conf(r1_bio->mddev); 197 int i; 198 199 for (i=0; i<conf->raid_disks; i++) { 200 struct bio *bio = r1_bio->bios[i]; 201 if (bio->bi_end_io) 202 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev); 203 } 204 205 mempool_free(r1_bio, conf->r1buf_pool); 206 207 lower_barrier(conf); 208 } 209 210 static void reschedule_retry(r1bio_t *r1_bio) 211 { 212 unsigned long flags; 213 mddev_t *mddev = r1_bio->mddev; 214 conf_t *conf = mddev_to_conf(mddev); 215 216 spin_lock_irqsave(&conf->device_lock, flags); 217 list_add(&r1_bio->retry_list, &conf->retry_list); 218 conf->nr_queued ++; 219 spin_unlock_irqrestore(&conf->device_lock, flags); 220 221 wake_up(&conf->wait_barrier); 222 md_wakeup_thread(mddev->thread); 223 } 224 225 /* 226 * raid_end_bio_io() is called when we have finished servicing a mirrored 227 * operation and are ready to return a success/failure code to the buffer 228 * cache layer. 229 */ 230 static void raid_end_bio_io(r1bio_t *r1_bio) 231 { 232 struct bio *bio = r1_bio->master_bio; 233 234 /* if nobody has done the final endio yet, do it now */ 235 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) { 236 PRINTK(KERN_DEBUG "raid1: sync end %s on sectors %llu-%llu\n", 237 (bio_data_dir(bio) == WRITE) ? "write" : "read", 238 (unsigned long long) bio->bi_sector, 239 (unsigned long long) bio->bi_sector + 240 (bio->bi_size >> 9) - 1); 241 242 bio_endio(bio, 243 test_bit(R1BIO_Uptodate, &r1_bio->state) ? 0 : -EIO); 244 } 245 free_r1bio(r1_bio); 246 } 247 248 /* 249 * Update disk head position estimator based on IRQ completion info. 250 */ 251 static inline void update_head_pos(int disk, r1bio_t *r1_bio) 252 { 253 conf_t *conf = mddev_to_conf(r1_bio->mddev); 254 255 conf->mirrors[disk].head_position = 256 r1_bio->sector + (r1_bio->sectors); 257 } 258 259 static void raid1_end_read_request(struct bio *bio, int error) 260 { 261 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 262 r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private); 263 int mirror; 264 conf_t *conf = mddev_to_conf(r1_bio->mddev); 265 266 mirror = r1_bio->read_disk; 267 /* 268 * this branch is our 'one mirror IO has finished' event handler: 269 */ 270 update_head_pos(mirror, r1_bio); 271 272 if (uptodate) 273 set_bit(R1BIO_Uptodate, &r1_bio->state); 274 else { 275 /* If all other devices have failed, we want to return 276 * the error upwards rather than fail the last device. 277 * Here we redefine "uptodate" to mean "Don't want to retry" 278 */ 279 unsigned long flags; 280 spin_lock_irqsave(&conf->device_lock, flags); 281 if (r1_bio->mddev->degraded == conf->raid_disks || 282 (r1_bio->mddev->degraded == conf->raid_disks-1 && 283 !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags))) 284 uptodate = 1; 285 spin_unlock_irqrestore(&conf->device_lock, flags); 286 } 287 288 if (uptodate) 289 raid_end_bio_io(r1_bio); 290 else { 291 /* 292 * oops, read error: 293 */ 294 char b[BDEVNAME_SIZE]; 295 if (printk_ratelimit()) 296 printk(KERN_ERR "raid1: %s: rescheduling sector %llu\n", 297 bdevname(conf->mirrors[mirror].rdev->bdev,b), (unsigned long long)r1_bio->sector); 298 reschedule_retry(r1_bio); 299 } 300 301 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev); 302 } 303 304 static void raid1_end_write_request(struct bio *bio, int error) 305 { 306 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 307 r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private); 308 int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state); 309 conf_t *conf = mddev_to_conf(r1_bio->mddev); 310 struct bio *to_put = NULL; 311 312 313 for (mirror = 0; mirror < conf->raid_disks; mirror++) 314 if (r1_bio->bios[mirror] == bio) 315 break; 316 317 if (error == -EOPNOTSUPP && test_bit(R1BIO_Barrier, &r1_bio->state)) { 318 set_bit(BarriersNotsupp, &conf->mirrors[mirror].rdev->flags); 319 set_bit(R1BIO_BarrierRetry, &r1_bio->state); 320 r1_bio->mddev->barriers_work = 0; 321 /* Don't rdev_dec_pending in this branch - keep it for the retry */ 322 } else { 323 /* 324 * this branch is our 'one mirror IO has finished' event handler: 325 */ 326 r1_bio->bios[mirror] = NULL; 327 to_put = bio; 328 if (!uptodate) { 329 md_error(r1_bio->mddev, conf->mirrors[mirror].rdev); 330 /* an I/O failed, we can't clear the bitmap */ 331 set_bit(R1BIO_Degraded, &r1_bio->state); 332 } else 333 /* 334 * Set R1BIO_Uptodate in our master bio, so that 335 * we will return a good error code for to the higher 336 * levels even if IO on some other mirrored buffer fails. 337 * 338 * The 'master' represents the composite IO operation to 339 * user-side. So if something waits for IO, then it will 340 * wait for the 'master' bio. 341 */ 342 set_bit(R1BIO_Uptodate, &r1_bio->state); 343 344 update_head_pos(mirror, r1_bio); 345 346 if (behind) { 347 if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags)) 348 atomic_dec(&r1_bio->behind_remaining); 349 350 /* In behind mode, we ACK the master bio once the I/O has safely 351 * reached all non-writemostly disks. Setting the Returned bit 352 * ensures that this gets done only once -- we don't ever want to 353 * return -EIO here, instead we'll wait */ 354 355 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) && 356 test_bit(R1BIO_Uptodate, &r1_bio->state)) { 357 /* Maybe we can return now */ 358 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) { 359 struct bio *mbio = r1_bio->master_bio; 360 PRINTK(KERN_DEBUG "raid1: behind end write sectors %llu-%llu\n", 361 (unsigned long long) mbio->bi_sector, 362 (unsigned long long) mbio->bi_sector + 363 (mbio->bi_size >> 9) - 1); 364 bio_endio(mbio, 0); 365 } 366 } 367 } 368 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev); 369 } 370 /* 371 * 372 * Let's see if all mirrored write operations have finished 373 * already. 374 */ 375 if (atomic_dec_and_test(&r1_bio->remaining)) { 376 if (test_bit(R1BIO_BarrierRetry, &r1_bio->state)) 377 reschedule_retry(r1_bio); 378 else { 379 /* it really is the end of this request */ 380 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) { 381 /* free extra copy of the data pages */ 382 int i = bio->bi_vcnt; 383 while (i--) 384 safe_put_page(bio->bi_io_vec[i].bv_page); 385 } 386 /* clear the bitmap if all writes complete successfully */ 387 bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector, 388 r1_bio->sectors, 389 !test_bit(R1BIO_Degraded, &r1_bio->state), 390 behind); 391 md_write_end(r1_bio->mddev); 392 raid_end_bio_io(r1_bio); 393 } 394 } 395 396 if (to_put) 397 bio_put(to_put); 398 } 399 400 401 /* 402 * This routine returns the disk from which the requested read should 403 * be done. There is a per-array 'next expected sequential IO' sector 404 * number - if this matches on the next IO then we use the last disk. 405 * There is also a per-disk 'last know head position' sector that is 406 * maintained from IRQ contexts, both the normal and the resync IO 407 * completion handlers update this position correctly. If there is no 408 * perfect sequential match then we pick the disk whose head is closest. 409 * 410 * If there are 2 mirrors in the same 2 devices, performance degrades 411 * because position is mirror, not device based. 412 * 413 * The rdev for the device selected will have nr_pending incremented. 414 */ 415 static int read_balance(conf_t *conf, r1bio_t *r1_bio) 416 { 417 const unsigned long this_sector = r1_bio->sector; 418 int new_disk = conf->last_used, disk = new_disk; 419 int wonly_disk = -1; 420 const int sectors = r1_bio->sectors; 421 sector_t new_distance, current_distance; 422 mdk_rdev_t *rdev; 423 424 rcu_read_lock(); 425 /* 426 * Check if we can balance. We can balance on the whole 427 * device if no resync is going on, or below the resync window. 428 * We take the first readable disk when above the resync window. 429 */ 430 retry: 431 if (conf->mddev->recovery_cp < MaxSector && 432 (this_sector + sectors >= conf->next_resync)) { 433 /* Choose the first operation device, for consistancy */ 434 new_disk = 0; 435 436 for (rdev = rcu_dereference(conf->mirrors[new_disk].rdev); 437 r1_bio->bios[new_disk] == IO_BLOCKED || 438 !rdev || !test_bit(In_sync, &rdev->flags) 439 || test_bit(WriteMostly, &rdev->flags); 440 rdev = rcu_dereference(conf->mirrors[++new_disk].rdev)) { 441 442 if (rdev && test_bit(In_sync, &rdev->flags) && 443 r1_bio->bios[new_disk] != IO_BLOCKED) 444 wonly_disk = new_disk; 445 446 if (new_disk == conf->raid_disks - 1) { 447 new_disk = wonly_disk; 448 break; 449 } 450 } 451 goto rb_out; 452 } 453 454 455 /* make sure the disk is operational */ 456 for (rdev = rcu_dereference(conf->mirrors[new_disk].rdev); 457 r1_bio->bios[new_disk] == IO_BLOCKED || 458 !rdev || !test_bit(In_sync, &rdev->flags) || 459 test_bit(WriteMostly, &rdev->flags); 460 rdev = rcu_dereference(conf->mirrors[new_disk].rdev)) { 461 462 if (rdev && test_bit(In_sync, &rdev->flags) && 463 r1_bio->bios[new_disk] != IO_BLOCKED) 464 wonly_disk = new_disk; 465 466 if (new_disk <= 0) 467 new_disk = conf->raid_disks; 468 new_disk--; 469 if (new_disk == disk) { 470 new_disk = wonly_disk; 471 break; 472 } 473 } 474 475 if (new_disk < 0) 476 goto rb_out; 477 478 disk = new_disk; 479 /* now disk == new_disk == starting point for search */ 480 481 /* 482 * Don't change to another disk for sequential reads: 483 */ 484 if (conf->next_seq_sect == this_sector) 485 goto rb_out; 486 if (this_sector == conf->mirrors[new_disk].head_position) 487 goto rb_out; 488 489 current_distance = abs(this_sector - conf->mirrors[disk].head_position); 490 491 /* Find the disk whose head is closest */ 492 493 do { 494 if (disk <= 0) 495 disk = conf->raid_disks; 496 disk--; 497 498 rdev = rcu_dereference(conf->mirrors[disk].rdev); 499 500 if (!rdev || r1_bio->bios[disk] == IO_BLOCKED || 501 !test_bit(In_sync, &rdev->flags) || 502 test_bit(WriteMostly, &rdev->flags)) 503 continue; 504 505 if (!atomic_read(&rdev->nr_pending)) { 506 new_disk = disk; 507 break; 508 } 509 new_distance = abs(this_sector - conf->mirrors[disk].head_position); 510 if (new_distance < current_distance) { 511 current_distance = new_distance; 512 new_disk = disk; 513 } 514 } while (disk != conf->last_used); 515 516 rb_out: 517 518 519 if (new_disk >= 0) { 520 rdev = rcu_dereference(conf->mirrors[new_disk].rdev); 521 if (!rdev) 522 goto retry; 523 atomic_inc(&rdev->nr_pending); 524 if (!test_bit(In_sync, &rdev->flags)) { 525 /* cannot risk returning a device that failed 526 * before we inc'ed nr_pending 527 */ 528 rdev_dec_pending(rdev, conf->mddev); 529 goto retry; 530 } 531 conf->next_seq_sect = this_sector + sectors; 532 conf->last_used = new_disk; 533 } 534 rcu_read_unlock(); 535 536 return new_disk; 537 } 538 539 static void unplug_slaves(mddev_t *mddev) 540 { 541 conf_t *conf = mddev_to_conf(mddev); 542 int i; 543 544 rcu_read_lock(); 545 for (i=0; i<mddev->raid_disks; i++) { 546 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev); 547 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) { 548 struct request_queue *r_queue = bdev_get_queue(rdev->bdev); 549 550 atomic_inc(&rdev->nr_pending); 551 rcu_read_unlock(); 552 553 blk_unplug(r_queue); 554 555 rdev_dec_pending(rdev, mddev); 556 rcu_read_lock(); 557 } 558 } 559 rcu_read_unlock(); 560 } 561 562 static void raid1_unplug(struct request_queue *q) 563 { 564 mddev_t *mddev = q->queuedata; 565 566 unplug_slaves(mddev); 567 md_wakeup_thread(mddev->thread); 568 } 569 570 static int raid1_congested(void *data, int bits) 571 { 572 mddev_t *mddev = data; 573 conf_t *conf = mddev_to_conf(mddev); 574 int i, ret = 0; 575 576 rcu_read_lock(); 577 for (i = 0; i < mddev->raid_disks; i++) { 578 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev); 579 if (rdev && !test_bit(Faulty, &rdev->flags)) { 580 struct request_queue *q = bdev_get_queue(rdev->bdev); 581 582 /* Note the '|| 1' - when read_balance prefers 583 * non-congested targets, it can be removed 584 */ 585 if ((bits & (1<<BDI_write_congested)) || 1) 586 ret |= bdi_congested(&q->backing_dev_info, bits); 587 else 588 ret &= bdi_congested(&q->backing_dev_info, bits); 589 } 590 } 591 rcu_read_unlock(); 592 return ret; 593 } 594 595 596 static int flush_pending_writes(conf_t *conf) 597 { 598 /* Any writes that have been queued but are awaiting 599 * bitmap updates get flushed here. 600 * We return 1 if any requests were actually submitted. 601 */ 602 int rv = 0; 603 604 spin_lock_irq(&conf->device_lock); 605 606 if (conf->pending_bio_list.head) { 607 struct bio *bio; 608 bio = bio_list_get(&conf->pending_bio_list); 609 blk_remove_plug(conf->mddev->queue); 610 spin_unlock_irq(&conf->device_lock); 611 /* flush any pending bitmap writes to 612 * disk before proceeding w/ I/O */ 613 bitmap_unplug(conf->mddev->bitmap); 614 615 while (bio) { /* submit pending writes */ 616 struct bio *next = bio->bi_next; 617 bio->bi_next = NULL; 618 generic_make_request(bio); 619 bio = next; 620 } 621 rv = 1; 622 } else 623 spin_unlock_irq(&conf->device_lock); 624 return rv; 625 } 626 627 /* Barriers.... 628 * Sometimes we need to suspend IO while we do something else, 629 * either some resync/recovery, or reconfigure the array. 630 * To do this we raise a 'barrier'. 631 * The 'barrier' is a counter that can be raised multiple times 632 * to count how many activities are happening which preclude 633 * normal IO. 634 * We can only raise the barrier if there is no pending IO. 635 * i.e. if nr_pending == 0. 636 * We choose only to raise the barrier if no-one is waiting for the 637 * barrier to go down. This means that as soon as an IO request 638 * is ready, no other operations which require a barrier will start 639 * until the IO request has had a chance. 640 * 641 * So: regular IO calls 'wait_barrier'. When that returns there 642 * is no backgroup IO happening, It must arrange to call 643 * allow_barrier when it has finished its IO. 644 * backgroup IO calls must call raise_barrier. Once that returns 645 * there is no normal IO happeing. It must arrange to call 646 * lower_barrier when the particular background IO completes. 647 */ 648 #define RESYNC_DEPTH 32 649 650 static void raise_barrier(conf_t *conf) 651 { 652 spin_lock_irq(&conf->resync_lock); 653 654 /* Wait until no block IO is waiting */ 655 wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting, 656 conf->resync_lock, 657 raid1_unplug(conf->mddev->queue)); 658 659 /* block any new IO from starting */ 660 conf->barrier++; 661 662 /* No wait for all pending IO to complete */ 663 wait_event_lock_irq(conf->wait_barrier, 664 !conf->nr_pending && conf->barrier < RESYNC_DEPTH, 665 conf->resync_lock, 666 raid1_unplug(conf->mddev->queue)); 667 668 spin_unlock_irq(&conf->resync_lock); 669 } 670 671 static void lower_barrier(conf_t *conf) 672 { 673 unsigned long flags; 674 spin_lock_irqsave(&conf->resync_lock, flags); 675 conf->barrier--; 676 spin_unlock_irqrestore(&conf->resync_lock, flags); 677 wake_up(&conf->wait_barrier); 678 } 679 680 static void wait_barrier(conf_t *conf) 681 { 682 spin_lock_irq(&conf->resync_lock); 683 if (conf->barrier) { 684 conf->nr_waiting++; 685 wait_event_lock_irq(conf->wait_barrier, !conf->barrier, 686 conf->resync_lock, 687 raid1_unplug(conf->mddev->queue)); 688 conf->nr_waiting--; 689 } 690 conf->nr_pending++; 691 spin_unlock_irq(&conf->resync_lock); 692 } 693 694 static void allow_barrier(conf_t *conf) 695 { 696 unsigned long flags; 697 spin_lock_irqsave(&conf->resync_lock, flags); 698 conf->nr_pending--; 699 spin_unlock_irqrestore(&conf->resync_lock, flags); 700 wake_up(&conf->wait_barrier); 701 } 702 703 static void freeze_array(conf_t *conf) 704 { 705 /* stop syncio and normal IO and wait for everything to 706 * go quite. 707 * We increment barrier and nr_waiting, and then 708 * wait until nr_pending match nr_queued+1 709 * This is called in the context of one normal IO request 710 * that has failed. Thus any sync request that might be pending 711 * will be blocked by nr_pending, and we need to wait for 712 * pending IO requests to complete or be queued for re-try. 713 * Thus the number queued (nr_queued) plus this request (1) 714 * must match the number of pending IOs (nr_pending) before 715 * we continue. 716 */ 717 spin_lock_irq(&conf->resync_lock); 718 conf->barrier++; 719 conf->nr_waiting++; 720 wait_event_lock_irq(conf->wait_barrier, 721 conf->nr_pending == conf->nr_queued+1, 722 conf->resync_lock, 723 ({ flush_pending_writes(conf); 724 raid1_unplug(conf->mddev->queue); })); 725 spin_unlock_irq(&conf->resync_lock); 726 } 727 static void unfreeze_array(conf_t *conf) 728 { 729 /* reverse the effect of the freeze */ 730 spin_lock_irq(&conf->resync_lock); 731 conf->barrier--; 732 conf->nr_waiting--; 733 wake_up(&conf->wait_barrier); 734 spin_unlock_irq(&conf->resync_lock); 735 } 736 737 738 /* duplicate the data pages for behind I/O */ 739 static struct page **alloc_behind_pages(struct bio *bio) 740 { 741 int i; 742 struct bio_vec *bvec; 743 struct page **pages = kzalloc(bio->bi_vcnt * sizeof(struct page *), 744 GFP_NOIO); 745 if (unlikely(!pages)) 746 goto do_sync_io; 747 748 bio_for_each_segment(bvec, bio, i) { 749 pages[i] = alloc_page(GFP_NOIO); 750 if (unlikely(!pages[i])) 751 goto do_sync_io; 752 memcpy(kmap(pages[i]) + bvec->bv_offset, 753 kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len); 754 kunmap(pages[i]); 755 kunmap(bvec->bv_page); 756 } 757 758 return pages; 759 760 do_sync_io: 761 if (pages) 762 for (i = 0; i < bio->bi_vcnt && pages[i]; i++) 763 put_page(pages[i]); 764 kfree(pages); 765 PRINTK("%dB behind alloc failed, doing sync I/O\n", bio->bi_size); 766 return NULL; 767 } 768 769 static int make_request(struct request_queue *q, struct bio * bio) 770 { 771 mddev_t *mddev = q->queuedata; 772 conf_t *conf = mddev_to_conf(mddev); 773 mirror_info_t *mirror; 774 r1bio_t *r1_bio; 775 struct bio *read_bio; 776 int i, targets = 0, disks; 777 struct bitmap *bitmap; 778 unsigned long flags; 779 struct bio_list bl; 780 struct page **behind_pages = NULL; 781 const int rw = bio_data_dir(bio); 782 const int do_sync = bio_sync(bio); 783 int cpu, do_barriers; 784 mdk_rdev_t *blocked_rdev; 785 786 /* 787 * Register the new request and wait if the reconstruction 788 * thread has put up a bar for new requests. 789 * Continue immediately if no resync is active currently. 790 * We test barriers_work *after* md_write_start as md_write_start 791 * may cause the first superblock write, and that will check out 792 * if barriers work. 793 */ 794 795 md_write_start(mddev, bio); /* wait on superblock update early */ 796 797 if (unlikely(!mddev->barriers_work && bio_barrier(bio))) { 798 if (rw == WRITE) 799 md_write_end(mddev); 800 bio_endio(bio, -EOPNOTSUPP); 801 return 0; 802 } 803 804 wait_barrier(conf); 805 806 bitmap = mddev->bitmap; 807 808 cpu = part_stat_lock(); 809 part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]); 810 part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], 811 bio_sectors(bio)); 812 part_stat_unlock(); 813 814 /* 815 * make_request() can abort the operation when READA is being 816 * used and no empty request is available. 817 * 818 */ 819 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO); 820 821 r1_bio->master_bio = bio; 822 r1_bio->sectors = bio->bi_size >> 9; 823 r1_bio->state = 0; 824 r1_bio->mddev = mddev; 825 r1_bio->sector = bio->bi_sector; 826 827 if (rw == READ) { 828 /* 829 * read balancing logic: 830 */ 831 int rdisk = read_balance(conf, r1_bio); 832 833 if (rdisk < 0) { 834 /* couldn't find anywhere to read from */ 835 raid_end_bio_io(r1_bio); 836 return 0; 837 } 838 mirror = conf->mirrors + rdisk; 839 840 r1_bio->read_disk = rdisk; 841 842 read_bio = bio_clone(bio, GFP_NOIO); 843 844 r1_bio->bios[rdisk] = read_bio; 845 846 read_bio->bi_sector = r1_bio->sector + mirror->rdev->data_offset; 847 read_bio->bi_bdev = mirror->rdev->bdev; 848 read_bio->bi_end_io = raid1_end_read_request; 849 read_bio->bi_rw = READ | do_sync; 850 read_bio->bi_private = r1_bio; 851 852 generic_make_request(read_bio); 853 return 0; 854 } 855 856 /* 857 * WRITE: 858 */ 859 /* first select target devices under spinlock and 860 * inc refcount on their rdev. Record them by setting 861 * bios[x] to bio 862 */ 863 disks = conf->raid_disks; 864 #if 0 865 { static int first=1; 866 if (first) printk("First Write sector %llu disks %d\n", 867 (unsigned long long)r1_bio->sector, disks); 868 first = 0; 869 } 870 #endif 871 retry_write: 872 blocked_rdev = NULL; 873 rcu_read_lock(); 874 for (i = 0; i < disks; i++) { 875 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev); 876 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) { 877 atomic_inc(&rdev->nr_pending); 878 blocked_rdev = rdev; 879 break; 880 } 881 if (rdev && !test_bit(Faulty, &rdev->flags)) { 882 atomic_inc(&rdev->nr_pending); 883 if (test_bit(Faulty, &rdev->flags)) { 884 rdev_dec_pending(rdev, mddev); 885 r1_bio->bios[i] = NULL; 886 } else 887 r1_bio->bios[i] = bio; 888 targets++; 889 } else 890 r1_bio->bios[i] = NULL; 891 } 892 rcu_read_unlock(); 893 894 if (unlikely(blocked_rdev)) { 895 /* Wait for this device to become unblocked */ 896 int j; 897 898 for (j = 0; j < i; j++) 899 if (r1_bio->bios[j]) 900 rdev_dec_pending(conf->mirrors[j].rdev, mddev); 901 902 allow_barrier(conf); 903 md_wait_for_blocked_rdev(blocked_rdev, mddev); 904 wait_barrier(conf); 905 goto retry_write; 906 } 907 908 BUG_ON(targets == 0); /* we never fail the last device */ 909 910 if (targets < conf->raid_disks) { 911 /* array is degraded, we will not clear the bitmap 912 * on I/O completion (see raid1_end_write_request) */ 913 set_bit(R1BIO_Degraded, &r1_bio->state); 914 } 915 916 /* do behind I/O ? */ 917 if (bitmap && 918 atomic_read(&bitmap->behind_writes) < bitmap->max_write_behind && 919 (behind_pages = alloc_behind_pages(bio)) != NULL) 920 set_bit(R1BIO_BehindIO, &r1_bio->state); 921 922 atomic_set(&r1_bio->remaining, 0); 923 atomic_set(&r1_bio->behind_remaining, 0); 924 925 do_barriers = bio_barrier(bio); 926 if (do_barriers) 927 set_bit(R1BIO_Barrier, &r1_bio->state); 928 929 bio_list_init(&bl); 930 for (i = 0; i < disks; i++) { 931 struct bio *mbio; 932 if (!r1_bio->bios[i]) 933 continue; 934 935 mbio = bio_clone(bio, GFP_NOIO); 936 r1_bio->bios[i] = mbio; 937 938 mbio->bi_sector = r1_bio->sector + conf->mirrors[i].rdev->data_offset; 939 mbio->bi_bdev = conf->mirrors[i].rdev->bdev; 940 mbio->bi_end_io = raid1_end_write_request; 941 mbio->bi_rw = WRITE | do_barriers | do_sync; 942 mbio->bi_private = r1_bio; 943 944 if (behind_pages) { 945 struct bio_vec *bvec; 946 int j; 947 948 /* Yes, I really want the '__' version so that 949 * we clear any unused pointer in the io_vec, rather 950 * than leave them unchanged. This is important 951 * because when we come to free the pages, we won't 952 * know the originial bi_idx, so we just free 953 * them all 954 */ 955 __bio_for_each_segment(bvec, mbio, j, 0) 956 bvec->bv_page = behind_pages[j]; 957 if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags)) 958 atomic_inc(&r1_bio->behind_remaining); 959 } 960 961 atomic_inc(&r1_bio->remaining); 962 963 bio_list_add(&bl, mbio); 964 } 965 kfree(behind_pages); /* the behind pages are attached to the bios now */ 966 967 bitmap_startwrite(bitmap, bio->bi_sector, r1_bio->sectors, 968 test_bit(R1BIO_BehindIO, &r1_bio->state)); 969 spin_lock_irqsave(&conf->device_lock, flags); 970 bio_list_merge(&conf->pending_bio_list, &bl); 971 bio_list_init(&bl); 972 973 blk_plug_device(mddev->queue); 974 spin_unlock_irqrestore(&conf->device_lock, flags); 975 976 /* In case raid1d snuck into freeze_array */ 977 wake_up(&conf->wait_barrier); 978 979 if (do_sync) 980 md_wakeup_thread(mddev->thread); 981 #if 0 982 while ((bio = bio_list_pop(&bl)) != NULL) 983 generic_make_request(bio); 984 #endif 985 986 return 0; 987 } 988 989 static void status(struct seq_file *seq, mddev_t *mddev) 990 { 991 conf_t *conf = mddev_to_conf(mddev); 992 int i; 993 994 seq_printf(seq, " [%d/%d] [", conf->raid_disks, 995 conf->raid_disks - mddev->degraded); 996 rcu_read_lock(); 997 for (i = 0; i < conf->raid_disks; i++) { 998 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev); 999 seq_printf(seq, "%s", 1000 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_"); 1001 } 1002 rcu_read_unlock(); 1003 seq_printf(seq, "]"); 1004 } 1005 1006 1007 static void error(mddev_t *mddev, mdk_rdev_t *rdev) 1008 { 1009 char b[BDEVNAME_SIZE]; 1010 conf_t *conf = mddev_to_conf(mddev); 1011 1012 /* 1013 * If it is not operational, then we have already marked it as dead 1014 * else if it is the last working disks, ignore the error, let the 1015 * next level up know. 1016 * else mark the drive as failed 1017 */ 1018 if (test_bit(In_sync, &rdev->flags) 1019 && (conf->raid_disks - mddev->degraded) == 1) { 1020 /* 1021 * Don't fail the drive, act as though we were just a 1022 * normal single drive. 1023 * However don't try a recovery from this drive as 1024 * it is very likely to fail. 1025 */ 1026 mddev->recovery_disabled = 1; 1027 return; 1028 } 1029 if (test_and_clear_bit(In_sync, &rdev->flags)) { 1030 unsigned long flags; 1031 spin_lock_irqsave(&conf->device_lock, flags); 1032 mddev->degraded++; 1033 set_bit(Faulty, &rdev->flags); 1034 spin_unlock_irqrestore(&conf->device_lock, flags); 1035 /* 1036 * if recovery is running, make sure it aborts. 1037 */ 1038 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 1039 } else 1040 set_bit(Faulty, &rdev->flags); 1041 set_bit(MD_CHANGE_DEVS, &mddev->flags); 1042 printk(KERN_ALERT "raid1: Disk failure on %s, disabling device.\n" 1043 "raid1: Operation continuing on %d devices.\n", 1044 bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded); 1045 } 1046 1047 static void print_conf(conf_t *conf) 1048 { 1049 int i; 1050 1051 printk("RAID1 conf printout:\n"); 1052 if (!conf) { 1053 printk("(!conf)\n"); 1054 return; 1055 } 1056 printk(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded, 1057 conf->raid_disks); 1058 1059 rcu_read_lock(); 1060 for (i = 0; i < conf->raid_disks; i++) { 1061 char b[BDEVNAME_SIZE]; 1062 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev); 1063 if (rdev) 1064 printk(" disk %d, wo:%d, o:%d, dev:%s\n", 1065 i, !test_bit(In_sync, &rdev->flags), 1066 !test_bit(Faulty, &rdev->flags), 1067 bdevname(rdev->bdev,b)); 1068 } 1069 rcu_read_unlock(); 1070 } 1071 1072 static void close_sync(conf_t *conf) 1073 { 1074 wait_barrier(conf); 1075 allow_barrier(conf); 1076 1077 mempool_destroy(conf->r1buf_pool); 1078 conf->r1buf_pool = NULL; 1079 } 1080 1081 static int raid1_spare_active(mddev_t *mddev) 1082 { 1083 int i; 1084 conf_t *conf = mddev->private; 1085 1086 /* 1087 * Find all failed disks within the RAID1 configuration 1088 * and mark them readable. 1089 * Called under mddev lock, so rcu protection not needed. 1090 */ 1091 for (i = 0; i < conf->raid_disks; i++) { 1092 mdk_rdev_t *rdev = conf->mirrors[i].rdev; 1093 if (rdev 1094 && !test_bit(Faulty, &rdev->flags) 1095 && !test_and_set_bit(In_sync, &rdev->flags)) { 1096 unsigned long flags; 1097 spin_lock_irqsave(&conf->device_lock, flags); 1098 mddev->degraded--; 1099 spin_unlock_irqrestore(&conf->device_lock, flags); 1100 } 1101 } 1102 1103 print_conf(conf); 1104 return 0; 1105 } 1106 1107 1108 static int raid1_add_disk(mddev_t *mddev, mdk_rdev_t *rdev) 1109 { 1110 conf_t *conf = mddev->private; 1111 int err = -EEXIST; 1112 int mirror = 0; 1113 mirror_info_t *p; 1114 int first = 0; 1115 int last = mddev->raid_disks - 1; 1116 1117 if (rdev->raid_disk >= 0) 1118 first = last = rdev->raid_disk; 1119 1120 for (mirror = first; mirror <= last; mirror++) 1121 if ( !(p=conf->mirrors+mirror)->rdev) { 1122 1123 blk_queue_stack_limits(mddev->queue, 1124 rdev->bdev->bd_disk->queue); 1125 /* as we don't honour merge_bvec_fn, we must never risk 1126 * violating it, so limit ->max_sector to one PAGE, as 1127 * a one page request is never in violation. 1128 */ 1129 if (rdev->bdev->bd_disk->queue->merge_bvec_fn && 1130 mddev->queue->max_sectors > (PAGE_SIZE>>9)) 1131 blk_queue_max_sectors(mddev->queue, PAGE_SIZE>>9); 1132 1133 p->head_position = 0; 1134 rdev->raid_disk = mirror; 1135 err = 0; 1136 /* As all devices are equivalent, we don't need a full recovery 1137 * if this was recently any drive of the array 1138 */ 1139 if (rdev->saved_raid_disk < 0) 1140 conf->fullsync = 1; 1141 rcu_assign_pointer(p->rdev, rdev); 1142 break; 1143 } 1144 1145 print_conf(conf); 1146 return err; 1147 } 1148 1149 static int raid1_remove_disk(mddev_t *mddev, int number) 1150 { 1151 conf_t *conf = mddev->private; 1152 int err = 0; 1153 mdk_rdev_t *rdev; 1154 mirror_info_t *p = conf->mirrors+ number; 1155 1156 print_conf(conf); 1157 rdev = p->rdev; 1158 if (rdev) { 1159 if (test_bit(In_sync, &rdev->flags) || 1160 atomic_read(&rdev->nr_pending)) { 1161 err = -EBUSY; 1162 goto abort; 1163 } 1164 /* Only remove non-faulty devices is recovery 1165 * is not possible. 1166 */ 1167 if (!test_bit(Faulty, &rdev->flags) && 1168 mddev->degraded < conf->raid_disks) { 1169 err = -EBUSY; 1170 goto abort; 1171 } 1172 p->rdev = NULL; 1173 synchronize_rcu(); 1174 if (atomic_read(&rdev->nr_pending)) { 1175 /* lost the race, try later */ 1176 err = -EBUSY; 1177 p->rdev = rdev; 1178 } 1179 } 1180 abort: 1181 1182 print_conf(conf); 1183 return err; 1184 } 1185 1186 1187 static void end_sync_read(struct bio *bio, int error) 1188 { 1189 r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private); 1190 int i; 1191 1192 for (i=r1_bio->mddev->raid_disks; i--; ) 1193 if (r1_bio->bios[i] == bio) 1194 break; 1195 BUG_ON(i < 0); 1196 update_head_pos(i, r1_bio); 1197 /* 1198 * we have read a block, now it needs to be re-written, 1199 * or re-read if the read failed. 1200 * We don't do much here, just schedule handling by raid1d 1201 */ 1202 if (test_bit(BIO_UPTODATE, &bio->bi_flags)) 1203 set_bit(R1BIO_Uptodate, &r1_bio->state); 1204 1205 if (atomic_dec_and_test(&r1_bio->remaining)) 1206 reschedule_retry(r1_bio); 1207 } 1208 1209 static void end_sync_write(struct bio *bio, int error) 1210 { 1211 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 1212 r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private); 1213 mddev_t *mddev = r1_bio->mddev; 1214 conf_t *conf = mddev_to_conf(mddev); 1215 int i; 1216 int mirror=0; 1217 1218 for (i = 0; i < conf->raid_disks; i++) 1219 if (r1_bio->bios[i] == bio) { 1220 mirror = i; 1221 break; 1222 } 1223 if (!uptodate) { 1224 int sync_blocks = 0; 1225 sector_t s = r1_bio->sector; 1226 long sectors_to_go = r1_bio->sectors; 1227 /* make sure these bits doesn't get cleared. */ 1228 do { 1229 bitmap_end_sync(mddev->bitmap, s, 1230 &sync_blocks, 1); 1231 s += sync_blocks; 1232 sectors_to_go -= sync_blocks; 1233 } while (sectors_to_go > 0); 1234 md_error(mddev, conf->mirrors[mirror].rdev); 1235 } 1236 1237 update_head_pos(mirror, r1_bio); 1238 1239 if (atomic_dec_and_test(&r1_bio->remaining)) { 1240 sector_t s = r1_bio->sectors; 1241 put_buf(r1_bio); 1242 md_done_sync(mddev, s, uptodate); 1243 } 1244 } 1245 1246 static void sync_request_write(mddev_t *mddev, r1bio_t *r1_bio) 1247 { 1248 conf_t *conf = mddev_to_conf(mddev); 1249 int i; 1250 int disks = conf->raid_disks; 1251 struct bio *bio, *wbio; 1252 1253 bio = r1_bio->bios[r1_bio->read_disk]; 1254 1255 1256 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 1257 /* We have read all readable devices. If we haven't 1258 * got the block, then there is no hope left. 1259 * If we have, then we want to do a comparison 1260 * and skip the write if everything is the same. 1261 * If any blocks failed to read, then we need to 1262 * attempt an over-write 1263 */ 1264 int primary; 1265 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) { 1266 for (i=0; i<mddev->raid_disks; i++) 1267 if (r1_bio->bios[i]->bi_end_io == end_sync_read) 1268 md_error(mddev, conf->mirrors[i].rdev); 1269 1270 md_done_sync(mddev, r1_bio->sectors, 1); 1271 put_buf(r1_bio); 1272 return; 1273 } 1274 for (primary=0; primary<mddev->raid_disks; primary++) 1275 if (r1_bio->bios[primary]->bi_end_io == end_sync_read && 1276 test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) { 1277 r1_bio->bios[primary]->bi_end_io = NULL; 1278 rdev_dec_pending(conf->mirrors[primary].rdev, mddev); 1279 break; 1280 } 1281 r1_bio->read_disk = primary; 1282 for (i=0; i<mddev->raid_disks; i++) 1283 if (r1_bio->bios[i]->bi_end_io == end_sync_read) { 1284 int j; 1285 int vcnt = r1_bio->sectors >> (PAGE_SHIFT- 9); 1286 struct bio *pbio = r1_bio->bios[primary]; 1287 struct bio *sbio = r1_bio->bios[i]; 1288 1289 if (test_bit(BIO_UPTODATE, &sbio->bi_flags)) { 1290 for (j = vcnt; j-- ; ) { 1291 struct page *p, *s; 1292 p = pbio->bi_io_vec[j].bv_page; 1293 s = sbio->bi_io_vec[j].bv_page; 1294 if (memcmp(page_address(p), 1295 page_address(s), 1296 PAGE_SIZE)) 1297 break; 1298 } 1299 } else 1300 j = 0; 1301 if (j >= 0) 1302 mddev->resync_mismatches += r1_bio->sectors; 1303 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery) 1304 && test_bit(BIO_UPTODATE, &sbio->bi_flags))) { 1305 sbio->bi_end_io = NULL; 1306 rdev_dec_pending(conf->mirrors[i].rdev, mddev); 1307 } else { 1308 /* fixup the bio for reuse */ 1309 int size; 1310 sbio->bi_vcnt = vcnt; 1311 sbio->bi_size = r1_bio->sectors << 9; 1312 sbio->bi_idx = 0; 1313 sbio->bi_phys_segments = 0; 1314 sbio->bi_flags &= ~(BIO_POOL_MASK - 1); 1315 sbio->bi_flags |= 1 << BIO_UPTODATE; 1316 sbio->bi_next = NULL; 1317 sbio->bi_sector = r1_bio->sector + 1318 conf->mirrors[i].rdev->data_offset; 1319 sbio->bi_bdev = conf->mirrors[i].rdev->bdev; 1320 size = sbio->bi_size; 1321 for (j = 0; j < vcnt ; j++) { 1322 struct bio_vec *bi; 1323 bi = &sbio->bi_io_vec[j]; 1324 bi->bv_offset = 0; 1325 if (size > PAGE_SIZE) 1326 bi->bv_len = PAGE_SIZE; 1327 else 1328 bi->bv_len = size; 1329 size -= PAGE_SIZE; 1330 memcpy(page_address(bi->bv_page), 1331 page_address(pbio->bi_io_vec[j].bv_page), 1332 PAGE_SIZE); 1333 } 1334 1335 } 1336 } 1337 } 1338 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) { 1339 /* ouch - failed to read all of that. 1340 * Try some synchronous reads of other devices to get 1341 * good data, much like with normal read errors. Only 1342 * read into the pages we already have so we don't 1343 * need to re-issue the read request. 1344 * We don't need to freeze the array, because being in an 1345 * active sync request, there is no normal IO, and 1346 * no overlapping syncs. 1347 */ 1348 sector_t sect = r1_bio->sector; 1349 int sectors = r1_bio->sectors; 1350 int idx = 0; 1351 1352 while(sectors) { 1353 int s = sectors; 1354 int d = r1_bio->read_disk; 1355 int success = 0; 1356 mdk_rdev_t *rdev; 1357 1358 if (s > (PAGE_SIZE>>9)) 1359 s = PAGE_SIZE >> 9; 1360 do { 1361 if (r1_bio->bios[d]->bi_end_io == end_sync_read) { 1362 /* No rcu protection needed here devices 1363 * can only be removed when no resync is 1364 * active, and resync is currently active 1365 */ 1366 rdev = conf->mirrors[d].rdev; 1367 if (sync_page_io(rdev->bdev, 1368 sect + rdev->data_offset, 1369 s<<9, 1370 bio->bi_io_vec[idx].bv_page, 1371 READ)) { 1372 success = 1; 1373 break; 1374 } 1375 } 1376 d++; 1377 if (d == conf->raid_disks) 1378 d = 0; 1379 } while (!success && d != r1_bio->read_disk); 1380 1381 if (success) { 1382 int start = d; 1383 /* write it back and re-read */ 1384 set_bit(R1BIO_Uptodate, &r1_bio->state); 1385 while (d != r1_bio->read_disk) { 1386 if (d == 0) 1387 d = conf->raid_disks; 1388 d--; 1389 if (r1_bio->bios[d]->bi_end_io != end_sync_read) 1390 continue; 1391 rdev = conf->mirrors[d].rdev; 1392 atomic_add(s, &rdev->corrected_errors); 1393 if (sync_page_io(rdev->bdev, 1394 sect + rdev->data_offset, 1395 s<<9, 1396 bio->bi_io_vec[idx].bv_page, 1397 WRITE) == 0) 1398 md_error(mddev, rdev); 1399 } 1400 d = start; 1401 while (d != r1_bio->read_disk) { 1402 if (d == 0) 1403 d = conf->raid_disks; 1404 d--; 1405 if (r1_bio->bios[d]->bi_end_io != end_sync_read) 1406 continue; 1407 rdev = conf->mirrors[d].rdev; 1408 if (sync_page_io(rdev->bdev, 1409 sect + rdev->data_offset, 1410 s<<9, 1411 bio->bi_io_vec[idx].bv_page, 1412 READ) == 0) 1413 md_error(mddev, rdev); 1414 } 1415 } else { 1416 char b[BDEVNAME_SIZE]; 1417 /* Cannot read from anywhere, array is toast */ 1418 md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev); 1419 printk(KERN_ALERT "raid1: %s: unrecoverable I/O read error" 1420 " for block %llu\n", 1421 bdevname(bio->bi_bdev,b), 1422 (unsigned long long)r1_bio->sector); 1423 md_done_sync(mddev, r1_bio->sectors, 0); 1424 put_buf(r1_bio); 1425 return; 1426 } 1427 sectors -= s; 1428 sect += s; 1429 idx ++; 1430 } 1431 } 1432 1433 /* 1434 * schedule writes 1435 */ 1436 atomic_set(&r1_bio->remaining, 1); 1437 for (i = 0; i < disks ; i++) { 1438 wbio = r1_bio->bios[i]; 1439 if (wbio->bi_end_io == NULL || 1440 (wbio->bi_end_io == end_sync_read && 1441 (i == r1_bio->read_disk || 1442 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery)))) 1443 continue; 1444 1445 wbio->bi_rw = WRITE; 1446 wbio->bi_end_io = end_sync_write; 1447 atomic_inc(&r1_bio->remaining); 1448 md_sync_acct(conf->mirrors[i].rdev->bdev, wbio->bi_size >> 9); 1449 1450 generic_make_request(wbio); 1451 } 1452 1453 if (atomic_dec_and_test(&r1_bio->remaining)) { 1454 /* if we're here, all write(s) have completed, so clean up */ 1455 md_done_sync(mddev, r1_bio->sectors, 1); 1456 put_buf(r1_bio); 1457 } 1458 } 1459 1460 /* 1461 * This is a kernel thread which: 1462 * 1463 * 1. Retries failed read operations on working mirrors. 1464 * 2. Updates the raid superblock when problems encounter. 1465 * 3. Performs writes following reads for array syncronising. 1466 */ 1467 1468 static void fix_read_error(conf_t *conf, int read_disk, 1469 sector_t sect, int sectors) 1470 { 1471 mddev_t *mddev = conf->mddev; 1472 while(sectors) { 1473 int s = sectors; 1474 int d = read_disk; 1475 int success = 0; 1476 int start; 1477 mdk_rdev_t *rdev; 1478 1479 if (s > (PAGE_SIZE>>9)) 1480 s = PAGE_SIZE >> 9; 1481 1482 do { 1483 /* Note: no rcu protection needed here 1484 * as this is synchronous in the raid1d thread 1485 * which is the thread that might remove 1486 * a device. If raid1d ever becomes multi-threaded.... 1487 */ 1488 rdev = conf->mirrors[d].rdev; 1489 if (rdev && 1490 test_bit(In_sync, &rdev->flags) && 1491 sync_page_io(rdev->bdev, 1492 sect + rdev->data_offset, 1493 s<<9, 1494 conf->tmppage, READ)) 1495 success = 1; 1496 else { 1497 d++; 1498 if (d == conf->raid_disks) 1499 d = 0; 1500 } 1501 } while (!success && d != read_disk); 1502 1503 if (!success) { 1504 /* Cannot read from anywhere -- bye bye array */ 1505 md_error(mddev, conf->mirrors[read_disk].rdev); 1506 break; 1507 } 1508 /* write it back and re-read */ 1509 start = d; 1510 while (d != read_disk) { 1511 if (d==0) 1512 d = conf->raid_disks; 1513 d--; 1514 rdev = conf->mirrors[d].rdev; 1515 if (rdev && 1516 test_bit(In_sync, &rdev->flags)) { 1517 if (sync_page_io(rdev->bdev, 1518 sect + rdev->data_offset, 1519 s<<9, conf->tmppage, WRITE) 1520 == 0) 1521 /* Well, this device is dead */ 1522 md_error(mddev, rdev); 1523 } 1524 } 1525 d = start; 1526 while (d != read_disk) { 1527 char b[BDEVNAME_SIZE]; 1528 if (d==0) 1529 d = conf->raid_disks; 1530 d--; 1531 rdev = conf->mirrors[d].rdev; 1532 if (rdev && 1533 test_bit(In_sync, &rdev->flags)) { 1534 if (sync_page_io(rdev->bdev, 1535 sect + rdev->data_offset, 1536 s<<9, conf->tmppage, READ) 1537 == 0) 1538 /* Well, this device is dead */ 1539 md_error(mddev, rdev); 1540 else { 1541 atomic_add(s, &rdev->corrected_errors); 1542 printk(KERN_INFO 1543 "raid1:%s: read error corrected " 1544 "(%d sectors at %llu on %s)\n", 1545 mdname(mddev), s, 1546 (unsigned long long)(sect + 1547 rdev->data_offset), 1548 bdevname(rdev->bdev, b)); 1549 } 1550 } 1551 } 1552 sectors -= s; 1553 sect += s; 1554 } 1555 } 1556 1557 static void raid1d(mddev_t *mddev) 1558 { 1559 r1bio_t *r1_bio; 1560 struct bio *bio; 1561 unsigned long flags; 1562 conf_t *conf = mddev_to_conf(mddev); 1563 struct list_head *head = &conf->retry_list; 1564 int unplug=0; 1565 mdk_rdev_t *rdev; 1566 1567 md_check_recovery(mddev); 1568 1569 for (;;) { 1570 char b[BDEVNAME_SIZE]; 1571 1572 unplug += flush_pending_writes(conf); 1573 1574 spin_lock_irqsave(&conf->device_lock, flags); 1575 if (list_empty(head)) { 1576 spin_unlock_irqrestore(&conf->device_lock, flags); 1577 break; 1578 } 1579 r1_bio = list_entry(head->prev, r1bio_t, retry_list); 1580 list_del(head->prev); 1581 conf->nr_queued--; 1582 spin_unlock_irqrestore(&conf->device_lock, flags); 1583 1584 mddev = r1_bio->mddev; 1585 conf = mddev_to_conf(mddev); 1586 if (test_bit(R1BIO_IsSync, &r1_bio->state)) { 1587 sync_request_write(mddev, r1_bio); 1588 unplug = 1; 1589 } else if (test_bit(R1BIO_BarrierRetry, &r1_bio->state)) { 1590 /* some requests in the r1bio were BIO_RW_BARRIER 1591 * requests which failed with -EOPNOTSUPP. Hohumm.. 1592 * Better resubmit without the barrier. 1593 * We know which devices to resubmit for, because 1594 * all others have had their bios[] entry cleared. 1595 * We already have a nr_pending reference on these rdevs. 1596 */ 1597 int i; 1598 const int do_sync = bio_sync(r1_bio->master_bio); 1599 clear_bit(R1BIO_BarrierRetry, &r1_bio->state); 1600 clear_bit(R1BIO_Barrier, &r1_bio->state); 1601 for (i=0; i < conf->raid_disks; i++) 1602 if (r1_bio->bios[i]) 1603 atomic_inc(&r1_bio->remaining); 1604 for (i=0; i < conf->raid_disks; i++) 1605 if (r1_bio->bios[i]) { 1606 struct bio_vec *bvec; 1607 int j; 1608 1609 bio = bio_clone(r1_bio->master_bio, GFP_NOIO); 1610 /* copy pages from the failed bio, as 1611 * this might be a write-behind device */ 1612 __bio_for_each_segment(bvec, bio, j, 0) 1613 bvec->bv_page = bio_iovec_idx(r1_bio->bios[i], j)->bv_page; 1614 bio_put(r1_bio->bios[i]); 1615 bio->bi_sector = r1_bio->sector + 1616 conf->mirrors[i].rdev->data_offset; 1617 bio->bi_bdev = conf->mirrors[i].rdev->bdev; 1618 bio->bi_end_io = raid1_end_write_request; 1619 bio->bi_rw = WRITE | do_sync; 1620 bio->bi_private = r1_bio; 1621 r1_bio->bios[i] = bio; 1622 generic_make_request(bio); 1623 } 1624 } else { 1625 int disk; 1626 1627 /* we got a read error. Maybe the drive is bad. Maybe just 1628 * the block and we can fix it. 1629 * We freeze all other IO, and try reading the block from 1630 * other devices. When we find one, we re-write 1631 * and check it that fixes the read error. 1632 * This is all done synchronously while the array is 1633 * frozen 1634 */ 1635 if (mddev->ro == 0) { 1636 freeze_array(conf); 1637 fix_read_error(conf, r1_bio->read_disk, 1638 r1_bio->sector, 1639 r1_bio->sectors); 1640 unfreeze_array(conf); 1641 } 1642 1643 bio = r1_bio->bios[r1_bio->read_disk]; 1644 if ((disk=read_balance(conf, r1_bio)) == -1 || 1645 disk == r1_bio->read_disk) { 1646 printk(KERN_ALERT "raid1: %s: unrecoverable I/O" 1647 " read error for block %llu\n", 1648 bdevname(bio->bi_bdev,b), 1649 (unsigned long long)r1_bio->sector); 1650 raid_end_bio_io(r1_bio); 1651 } else { 1652 const int do_sync = bio_sync(r1_bio->master_bio); 1653 r1_bio->bios[r1_bio->read_disk] = 1654 mddev->ro ? IO_BLOCKED : NULL; 1655 r1_bio->read_disk = disk; 1656 bio_put(bio); 1657 bio = bio_clone(r1_bio->master_bio, GFP_NOIO); 1658 r1_bio->bios[r1_bio->read_disk] = bio; 1659 rdev = conf->mirrors[disk].rdev; 1660 if (printk_ratelimit()) 1661 printk(KERN_ERR "raid1: %s: redirecting sector %llu to" 1662 " another mirror\n", 1663 bdevname(rdev->bdev,b), 1664 (unsigned long long)r1_bio->sector); 1665 bio->bi_sector = r1_bio->sector + rdev->data_offset; 1666 bio->bi_bdev = rdev->bdev; 1667 bio->bi_end_io = raid1_end_read_request; 1668 bio->bi_rw = READ | do_sync; 1669 bio->bi_private = r1_bio; 1670 unplug = 1; 1671 generic_make_request(bio); 1672 } 1673 } 1674 } 1675 if (unplug) 1676 unplug_slaves(mddev); 1677 } 1678 1679 1680 static int init_resync(conf_t *conf) 1681 { 1682 int buffs; 1683 1684 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE; 1685 BUG_ON(conf->r1buf_pool); 1686 conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free, 1687 conf->poolinfo); 1688 if (!conf->r1buf_pool) 1689 return -ENOMEM; 1690 conf->next_resync = 0; 1691 return 0; 1692 } 1693 1694 /* 1695 * perform a "sync" on one "block" 1696 * 1697 * We need to make sure that no normal I/O request - particularly write 1698 * requests - conflict with active sync requests. 1699 * 1700 * This is achieved by tracking pending requests and a 'barrier' concept 1701 * that can be installed to exclude normal IO requests. 1702 */ 1703 1704 static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster) 1705 { 1706 conf_t *conf = mddev_to_conf(mddev); 1707 r1bio_t *r1_bio; 1708 struct bio *bio; 1709 sector_t max_sector, nr_sectors; 1710 int disk = -1; 1711 int i; 1712 int wonly = -1; 1713 int write_targets = 0, read_targets = 0; 1714 int sync_blocks; 1715 int still_degraded = 0; 1716 1717 if (!conf->r1buf_pool) 1718 { 1719 /* 1720 printk("sync start - bitmap %p\n", mddev->bitmap); 1721 */ 1722 if (init_resync(conf)) 1723 return 0; 1724 } 1725 1726 max_sector = mddev->size << 1; 1727 if (sector_nr >= max_sector) { 1728 /* If we aborted, we need to abort the 1729 * sync on the 'current' bitmap chunk (there will 1730 * only be one in raid1 resync. 1731 * We can find the current addess in mddev->curr_resync 1732 */ 1733 if (mddev->curr_resync < max_sector) /* aborted */ 1734 bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 1735 &sync_blocks, 1); 1736 else /* completed sync */ 1737 conf->fullsync = 0; 1738 1739 bitmap_close_sync(mddev->bitmap); 1740 close_sync(conf); 1741 return 0; 1742 } 1743 1744 if (mddev->bitmap == NULL && 1745 mddev->recovery_cp == MaxSector && 1746 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 1747 conf->fullsync == 0) { 1748 *skipped = 1; 1749 return max_sector - sector_nr; 1750 } 1751 /* before building a request, check if we can skip these blocks.. 1752 * This call the bitmap_start_sync doesn't actually record anything 1753 */ 1754 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) && 1755 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 1756 /* We can skip this block, and probably several more */ 1757 *skipped = 1; 1758 return sync_blocks; 1759 } 1760 /* 1761 * If there is non-resync activity waiting for a turn, 1762 * and resync is going fast enough, 1763 * then let it though before starting on this new sync request. 1764 */ 1765 if (!go_faster && conf->nr_waiting) 1766 msleep_interruptible(1000); 1767 1768 bitmap_cond_end_sync(mddev->bitmap, sector_nr); 1769 raise_barrier(conf); 1770 1771 conf->next_resync = sector_nr; 1772 1773 r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO); 1774 rcu_read_lock(); 1775 /* 1776 * If we get a correctably read error during resync or recovery, 1777 * we might want to read from a different device. So we 1778 * flag all drives that could conceivably be read from for READ, 1779 * and any others (which will be non-In_sync devices) for WRITE. 1780 * If a read fails, we try reading from something else for which READ 1781 * is OK. 1782 */ 1783 1784 r1_bio->mddev = mddev; 1785 r1_bio->sector = sector_nr; 1786 r1_bio->state = 0; 1787 set_bit(R1BIO_IsSync, &r1_bio->state); 1788 1789 for (i=0; i < conf->raid_disks; i++) { 1790 mdk_rdev_t *rdev; 1791 bio = r1_bio->bios[i]; 1792 1793 /* take from bio_init */ 1794 bio->bi_next = NULL; 1795 bio->bi_flags |= 1 << BIO_UPTODATE; 1796 bio->bi_rw = READ; 1797 bio->bi_vcnt = 0; 1798 bio->bi_idx = 0; 1799 bio->bi_phys_segments = 0; 1800 bio->bi_size = 0; 1801 bio->bi_end_io = NULL; 1802 bio->bi_private = NULL; 1803 1804 rdev = rcu_dereference(conf->mirrors[i].rdev); 1805 if (rdev == NULL || 1806 test_bit(Faulty, &rdev->flags)) { 1807 still_degraded = 1; 1808 continue; 1809 } else if (!test_bit(In_sync, &rdev->flags)) { 1810 bio->bi_rw = WRITE; 1811 bio->bi_end_io = end_sync_write; 1812 write_targets ++; 1813 } else { 1814 /* may need to read from here */ 1815 bio->bi_rw = READ; 1816 bio->bi_end_io = end_sync_read; 1817 if (test_bit(WriteMostly, &rdev->flags)) { 1818 if (wonly < 0) 1819 wonly = i; 1820 } else { 1821 if (disk < 0) 1822 disk = i; 1823 } 1824 read_targets++; 1825 } 1826 atomic_inc(&rdev->nr_pending); 1827 bio->bi_sector = sector_nr + rdev->data_offset; 1828 bio->bi_bdev = rdev->bdev; 1829 bio->bi_private = r1_bio; 1830 } 1831 rcu_read_unlock(); 1832 if (disk < 0) 1833 disk = wonly; 1834 r1_bio->read_disk = disk; 1835 1836 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0) 1837 /* extra read targets are also write targets */ 1838 write_targets += read_targets-1; 1839 1840 if (write_targets == 0 || read_targets == 0) { 1841 /* There is nowhere to write, so all non-sync 1842 * drives must be failed - so we are finished 1843 */ 1844 sector_t rv = max_sector - sector_nr; 1845 *skipped = 1; 1846 put_buf(r1_bio); 1847 return rv; 1848 } 1849 1850 if (max_sector > mddev->resync_max) 1851 max_sector = mddev->resync_max; /* Don't do IO beyond here */ 1852 nr_sectors = 0; 1853 sync_blocks = 0; 1854 do { 1855 struct page *page; 1856 int len = PAGE_SIZE; 1857 if (sector_nr + (len>>9) > max_sector) 1858 len = (max_sector - sector_nr) << 9; 1859 if (len == 0) 1860 break; 1861 if (sync_blocks == 0) { 1862 if (!bitmap_start_sync(mddev->bitmap, sector_nr, 1863 &sync_blocks, still_degraded) && 1864 !conf->fullsync && 1865 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 1866 break; 1867 BUG_ON(sync_blocks < (PAGE_SIZE>>9)); 1868 if (len > (sync_blocks<<9)) 1869 len = sync_blocks<<9; 1870 } 1871 1872 for (i=0 ; i < conf->raid_disks; i++) { 1873 bio = r1_bio->bios[i]; 1874 if (bio->bi_end_io) { 1875 page = bio->bi_io_vec[bio->bi_vcnt].bv_page; 1876 if (bio_add_page(bio, page, len, 0) == 0) { 1877 /* stop here */ 1878 bio->bi_io_vec[bio->bi_vcnt].bv_page = page; 1879 while (i > 0) { 1880 i--; 1881 bio = r1_bio->bios[i]; 1882 if (bio->bi_end_io==NULL) 1883 continue; 1884 /* remove last page from this bio */ 1885 bio->bi_vcnt--; 1886 bio->bi_size -= len; 1887 bio->bi_flags &= ~(1<< BIO_SEG_VALID); 1888 } 1889 goto bio_full; 1890 } 1891 } 1892 } 1893 nr_sectors += len>>9; 1894 sector_nr += len>>9; 1895 sync_blocks -= (len>>9); 1896 } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES); 1897 bio_full: 1898 r1_bio->sectors = nr_sectors; 1899 1900 /* For a user-requested sync, we read all readable devices and do a 1901 * compare 1902 */ 1903 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 1904 atomic_set(&r1_bio->remaining, read_targets); 1905 for (i=0; i<conf->raid_disks; i++) { 1906 bio = r1_bio->bios[i]; 1907 if (bio->bi_end_io == end_sync_read) { 1908 md_sync_acct(bio->bi_bdev, nr_sectors); 1909 generic_make_request(bio); 1910 } 1911 } 1912 } else { 1913 atomic_set(&r1_bio->remaining, 1); 1914 bio = r1_bio->bios[r1_bio->read_disk]; 1915 md_sync_acct(bio->bi_bdev, nr_sectors); 1916 generic_make_request(bio); 1917 1918 } 1919 return nr_sectors; 1920 } 1921 1922 static int run(mddev_t *mddev) 1923 { 1924 conf_t *conf; 1925 int i, j, disk_idx; 1926 mirror_info_t *disk; 1927 mdk_rdev_t *rdev; 1928 1929 if (mddev->level != 1) { 1930 printk("raid1: %s: raid level not set to mirroring (%d)\n", 1931 mdname(mddev), mddev->level); 1932 goto out; 1933 } 1934 if (mddev->reshape_position != MaxSector) { 1935 printk("raid1: %s: reshape_position set but not supported\n", 1936 mdname(mddev)); 1937 goto out; 1938 } 1939 /* 1940 * copy the already verified devices into our private RAID1 1941 * bookkeeping area. [whatever we allocate in run(), 1942 * should be freed in stop()] 1943 */ 1944 conf = kzalloc(sizeof(conf_t), GFP_KERNEL); 1945 mddev->private = conf; 1946 if (!conf) 1947 goto out_no_mem; 1948 1949 conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks, 1950 GFP_KERNEL); 1951 if (!conf->mirrors) 1952 goto out_no_mem; 1953 1954 conf->tmppage = alloc_page(GFP_KERNEL); 1955 if (!conf->tmppage) 1956 goto out_no_mem; 1957 1958 conf->poolinfo = kmalloc(sizeof(*conf->poolinfo), GFP_KERNEL); 1959 if (!conf->poolinfo) 1960 goto out_no_mem; 1961 conf->poolinfo->mddev = mddev; 1962 conf->poolinfo->raid_disks = mddev->raid_disks; 1963 conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc, 1964 r1bio_pool_free, 1965 conf->poolinfo); 1966 if (!conf->r1bio_pool) 1967 goto out_no_mem; 1968 1969 spin_lock_init(&conf->device_lock); 1970 mddev->queue->queue_lock = &conf->device_lock; 1971 1972 list_for_each_entry(rdev, &mddev->disks, same_set) { 1973 disk_idx = rdev->raid_disk; 1974 if (disk_idx >= mddev->raid_disks 1975 || disk_idx < 0) 1976 continue; 1977 disk = conf->mirrors + disk_idx; 1978 1979 disk->rdev = rdev; 1980 1981 blk_queue_stack_limits(mddev->queue, 1982 rdev->bdev->bd_disk->queue); 1983 /* as we don't honour merge_bvec_fn, we must never risk 1984 * violating it, so limit ->max_sector to one PAGE, as 1985 * a one page request is never in violation. 1986 */ 1987 if (rdev->bdev->bd_disk->queue->merge_bvec_fn && 1988 mddev->queue->max_sectors > (PAGE_SIZE>>9)) 1989 blk_queue_max_sectors(mddev->queue, PAGE_SIZE>>9); 1990 1991 disk->head_position = 0; 1992 } 1993 conf->raid_disks = mddev->raid_disks; 1994 conf->mddev = mddev; 1995 INIT_LIST_HEAD(&conf->retry_list); 1996 1997 spin_lock_init(&conf->resync_lock); 1998 init_waitqueue_head(&conf->wait_barrier); 1999 2000 bio_list_init(&conf->pending_bio_list); 2001 bio_list_init(&conf->flushing_bio_list); 2002 2003 2004 mddev->degraded = 0; 2005 for (i = 0; i < conf->raid_disks; i++) { 2006 2007 disk = conf->mirrors + i; 2008 2009 if (!disk->rdev || 2010 !test_bit(In_sync, &disk->rdev->flags)) { 2011 disk->head_position = 0; 2012 mddev->degraded++; 2013 if (disk->rdev) 2014 conf->fullsync = 1; 2015 } 2016 } 2017 if (mddev->degraded == conf->raid_disks) { 2018 printk(KERN_ERR "raid1: no operational mirrors for %s\n", 2019 mdname(mddev)); 2020 goto out_free_conf; 2021 } 2022 if (conf->raid_disks - mddev->degraded == 1) 2023 mddev->recovery_cp = MaxSector; 2024 2025 /* 2026 * find the first working one and use it as a starting point 2027 * to read balancing. 2028 */ 2029 for (j = 0; j < conf->raid_disks && 2030 (!conf->mirrors[j].rdev || 2031 !test_bit(In_sync, &conf->mirrors[j].rdev->flags)) ; j++) 2032 /* nothing */; 2033 conf->last_used = j; 2034 2035 2036 mddev->thread = md_register_thread(raid1d, mddev, "%s_raid1"); 2037 if (!mddev->thread) { 2038 printk(KERN_ERR 2039 "raid1: couldn't allocate thread for %s\n", 2040 mdname(mddev)); 2041 goto out_free_conf; 2042 } 2043 2044 printk(KERN_INFO 2045 "raid1: raid set %s active with %d out of %d mirrors\n", 2046 mdname(mddev), mddev->raid_disks - mddev->degraded, 2047 mddev->raid_disks); 2048 /* 2049 * Ok, everything is just fine now 2050 */ 2051 mddev->array_sectors = mddev->size * 2; 2052 2053 mddev->queue->unplug_fn = raid1_unplug; 2054 mddev->queue->backing_dev_info.congested_fn = raid1_congested; 2055 mddev->queue->backing_dev_info.congested_data = mddev; 2056 2057 return 0; 2058 2059 out_no_mem: 2060 printk(KERN_ERR "raid1: couldn't allocate memory for %s\n", 2061 mdname(mddev)); 2062 2063 out_free_conf: 2064 if (conf) { 2065 if (conf->r1bio_pool) 2066 mempool_destroy(conf->r1bio_pool); 2067 kfree(conf->mirrors); 2068 safe_put_page(conf->tmppage); 2069 kfree(conf->poolinfo); 2070 kfree(conf); 2071 mddev->private = NULL; 2072 } 2073 out: 2074 return -EIO; 2075 } 2076 2077 static int stop(mddev_t *mddev) 2078 { 2079 conf_t *conf = mddev_to_conf(mddev); 2080 struct bitmap *bitmap = mddev->bitmap; 2081 int behind_wait = 0; 2082 2083 /* wait for behind writes to complete */ 2084 while (bitmap && atomic_read(&bitmap->behind_writes) > 0) { 2085 behind_wait++; 2086 printk(KERN_INFO "raid1: behind writes in progress on device %s, waiting to stop (%d)\n", mdname(mddev), behind_wait); 2087 set_current_state(TASK_UNINTERRUPTIBLE); 2088 schedule_timeout(HZ); /* wait a second */ 2089 /* need to kick something here to make sure I/O goes? */ 2090 } 2091 2092 md_unregister_thread(mddev->thread); 2093 mddev->thread = NULL; 2094 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/ 2095 if (conf->r1bio_pool) 2096 mempool_destroy(conf->r1bio_pool); 2097 kfree(conf->mirrors); 2098 kfree(conf->poolinfo); 2099 kfree(conf); 2100 mddev->private = NULL; 2101 return 0; 2102 } 2103 2104 static int raid1_resize(mddev_t *mddev, sector_t sectors) 2105 { 2106 /* no resync is happening, and there is enough space 2107 * on all devices, so we can resize. 2108 * We need to make sure resync covers any new space. 2109 * If the array is shrinking we should possibly wait until 2110 * any io in the removed space completes, but it hardly seems 2111 * worth it. 2112 */ 2113 mddev->array_sectors = sectors; 2114 set_capacity(mddev->gendisk, mddev->array_sectors); 2115 mddev->changed = 1; 2116 if (mddev->array_sectors / 2 > mddev->size && 2117 mddev->recovery_cp == MaxSector) { 2118 mddev->recovery_cp = mddev->size << 1; 2119 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 2120 } 2121 mddev->size = mddev->array_sectors / 2; 2122 mddev->resync_max_sectors = sectors; 2123 return 0; 2124 } 2125 2126 static int raid1_reshape(mddev_t *mddev) 2127 { 2128 /* We need to: 2129 * 1/ resize the r1bio_pool 2130 * 2/ resize conf->mirrors 2131 * 2132 * We allocate a new r1bio_pool if we can. 2133 * Then raise a device barrier and wait until all IO stops. 2134 * Then resize conf->mirrors and swap in the new r1bio pool. 2135 * 2136 * At the same time, we "pack" the devices so that all the missing 2137 * devices have the higher raid_disk numbers. 2138 */ 2139 mempool_t *newpool, *oldpool; 2140 struct pool_info *newpoolinfo; 2141 mirror_info_t *newmirrors; 2142 conf_t *conf = mddev_to_conf(mddev); 2143 int cnt, raid_disks; 2144 unsigned long flags; 2145 int d, d2, err; 2146 2147 /* Cannot change chunk_size, layout, or level */ 2148 if (mddev->chunk_size != mddev->new_chunk || 2149 mddev->layout != mddev->new_layout || 2150 mddev->level != mddev->new_level) { 2151 mddev->new_chunk = mddev->chunk_size; 2152 mddev->new_layout = mddev->layout; 2153 mddev->new_level = mddev->level; 2154 return -EINVAL; 2155 } 2156 2157 err = md_allow_write(mddev); 2158 if (err) 2159 return err; 2160 2161 raid_disks = mddev->raid_disks + mddev->delta_disks; 2162 2163 if (raid_disks < conf->raid_disks) { 2164 cnt=0; 2165 for (d= 0; d < conf->raid_disks; d++) 2166 if (conf->mirrors[d].rdev) 2167 cnt++; 2168 if (cnt > raid_disks) 2169 return -EBUSY; 2170 } 2171 2172 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL); 2173 if (!newpoolinfo) 2174 return -ENOMEM; 2175 newpoolinfo->mddev = mddev; 2176 newpoolinfo->raid_disks = raid_disks; 2177 2178 newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc, 2179 r1bio_pool_free, newpoolinfo); 2180 if (!newpool) { 2181 kfree(newpoolinfo); 2182 return -ENOMEM; 2183 } 2184 newmirrors = kzalloc(sizeof(struct mirror_info) * raid_disks, GFP_KERNEL); 2185 if (!newmirrors) { 2186 kfree(newpoolinfo); 2187 mempool_destroy(newpool); 2188 return -ENOMEM; 2189 } 2190 2191 raise_barrier(conf); 2192 2193 /* ok, everything is stopped */ 2194 oldpool = conf->r1bio_pool; 2195 conf->r1bio_pool = newpool; 2196 2197 for (d = d2 = 0; d < conf->raid_disks; d++) { 2198 mdk_rdev_t *rdev = conf->mirrors[d].rdev; 2199 if (rdev && rdev->raid_disk != d2) { 2200 char nm[20]; 2201 sprintf(nm, "rd%d", rdev->raid_disk); 2202 sysfs_remove_link(&mddev->kobj, nm); 2203 rdev->raid_disk = d2; 2204 sprintf(nm, "rd%d", rdev->raid_disk); 2205 sysfs_remove_link(&mddev->kobj, nm); 2206 if (sysfs_create_link(&mddev->kobj, 2207 &rdev->kobj, nm)) 2208 printk(KERN_WARNING 2209 "md/raid1: cannot register " 2210 "%s for %s\n", 2211 nm, mdname(mddev)); 2212 } 2213 if (rdev) 2214 newmirrors[d2++].rdev = rdev; 2215 } 2216 kfree(conf->mirrors); 2217 conf->mirrors = newmirrors; 2218 kfree(conf->poolinfo); 2219 conf->poolinfo = newpoolinfo; 2220 2221 spin_lock_irqsave(&conf->device_lock, flags); 2222 mddev->degraded += (raid_disks - conf->raid_disks); 2223 spin_unlock_irqrestore(&conf->device_lock, flags); 2224 conf->raid_disks = mddev->raid_disks = raid_disks; 2225 mddev->delta_disks = 0; 2226 2227 conf->last_used = 0; /* just make sure it is in-range */ 2228 lower_barrier(conf); 2229 2230 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 2231 md_wakeup_thread(mddev->thread); 2232 2233 mempool_destroy(oldpool); 2234 return 0; 2235 } 2236 2237 static void raid1_quiesce(mddev_t *mddev, int state) 2238 { 2239 conf_t *conf = mddev_to_conf(mddev); 2240 2241 switch(state) { 2242 case 1: 2243 raise_barrier(conf); 2244 break; 2245 case 0: 2246 lower_barrier(conf); 2247 break; 2248 } 2249 } 2250 2251 2252 static struct mdk_personality raid1_personality = 2253 { 2254 .name = "raid1", 2255 .level = 1, 2256 .owner = THIS_MODULE, 2257 .make_request = make_request, 2258 .run = run, 2259 .stop = stop, 2260 .status = status, 2261 .error_handler = error, 2262 .hot_add_disk = raid1_add_disk, 2263 .hot_remove_disk= raid1_remove_disk, 2264 .spare_active = raid1_spare_active, 2265 .sync_request = sync_request, 2266 .resize = raid1_resize, 2267 .check_reshape = raid1_reshape, 2268 .quiesce = raid1_quiesce, 2269 }; 2270 2271 static int __init raid_init(void) 2272 { 2273 return register_md_personality(&raid1_personality); 2274 } 2275 2276 static void raid_exit(void) 2277 { 2278 unregister_md_personality(&raid1_personality); 2279 } 2280 2281 module_init(raid_init); 2282 module_exit(raid_exit); 2283 MODULE_LICENSE("GPL"); 2284 MODULE_ALIAS("md-personality-3"); /* RAID1 */ 2285 MODULE_ALIAS("md-raid1"); 2286 MODULE_ALIAS("md-level-1"); 2287