xref: /openbmc/linux/drivers/md/raid1.c (revision b6dcefde)
1 /*
2  * raid1.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5  *
6  * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7  *
8  * RAID-1 management functions.
9  *
10  * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11  *
12  * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
13  * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14  *
15  * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16  * bitmapped intelligence in resync:
17  *
18  *      - bitmap marked during normal i/o
19  *      - bitmap used to skip nondirty blocks during sync
20  *
21  * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22  * - persistent bitmap code
23  *
24  * This program is free software; you can redistribute it and/or modify
25  * it under the terms of the GNU General Public License as published by
26  * the Free Software Foundation; either version 2, or (at your option)
27  * any later version.
28  *
29  * You should have received a copy of the GNU General Public License
30  * (for example /usr/src/linux/COPYING); if not, write to the Free
31  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32  */
33 
34 #include <linux/delay.h>
35 #include <linux/blkdev.h>
36 #include <linux/seq_file.h>
37 #include "md.h"
38 #include "raid1.h"
39 #include "bitmap.h"
40 
41 #define DEBUG 0
42 #if DEBUG
43 #define PRINTK(x...) printk(x)
44 #else
45 #define PRINTK(x...)
46 #endif
47 
48 /*
49  * Number of guaranteed r1bios in case of extreme VM load:
50  */
51 #define	NR_RAID1_BIOS 256
52 
53 
54 static void unplug_slaves(mddev_t *mddev);
55 
56 static void allow_barrier(conf_t *conf);
57 static void lower_barrier(conf_t *conf);
58 
59 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
60 {
61 	struct pool_info *pi = data;
62 	r1bio_t *r1_bio;
63 	int size = offsetof(r1bio_t, bios[pi->raid_disks]);
64 
65 	/* allocate a r1bio with room for raid_disks entries in the bios array */
66 	r1_bio = kzalloc(size, gfp_flags);
67 	if (!r1_bio && pi->mddev)
68 		unplug_slaves(pi->mddev);
69 
70 	return r1_bio;
71 }
72 
73 static void r1bio_pool_free(void *r1_bio, void *data)
74 {
75 	kfree(r1_bio);
76 }
77 
78 #define RESYNC_BLOCK_SIZE (64*1024)
79 //#define RESYNC_BLOCK_SIZE PAGE_SIZE
80 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
81 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
82 #define RESYNC_WINDOW (2048*1024)
83 
84 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
85 {
86 	struct pool_info *pi = data;
87 	struct page *page;
88 	r1bio_t *r1_bio;
89 	struct bio *bio;
90 	int i, j;
91 
92 	r1_bio = r1bio_pool_alloc(gfp_flags, pi);
93 	if (!r1_bio) {
94 		unplug_slaves(pi->mddev);
95 		return NULL;
96 	}
97 
98 	/*
99 	 * Allocate bios : 1 for reading, n-1 for writing
100 	 */
101 	for (j = pi->raid_disks ; j-- ; ) {
102 		bio = bio_alloc(gfp_flags, RESYNC_PAGES);
103 		if (!bio)
104 			goto out_free_bio;
105 		r1_bio->bios[j] = bio;
106 	}
107 	/*
108 	 * Allocate RESYNC_PAGES data pages and attach them to
109 	 * the first bio.
110 	 * If this is a user-requested check/repair, allocate
111 	 * RESYNC_PAGES for each bio.
112 	 */
113 	if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
114 		j = pi->raid_disks;
115 	else
116 		j = 1;
117 	while(j--) {
118 		bio = r1_bio->bios[j];
119 		for (i = 0; i < RESYNC_PAGES; i++) {
120 			page = alloc_page(gfp_flags);
121 			if (unlikely(!page))
122 				goto out_free_pages;
123 
124 			bio->bi_io_vec[i].bv_page = page;
125 			bio->bi_vcnt = i+1;
126 		}
127 	}
128 	/* If not user-requests, copy the page pointers to all bios */
129 	if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
130 		for (i=0; i<RESYNC_PAGES ; i++)
131 			for (j=1; j<pi->raid_disks; j++)
132 				r1_bio->bios[j]->bi_io_vec[i].bv_page =
133 					r1_bio->bios[0]->bi_io_vec[i].bv_page;
134 	}
135 
136 	r1_bio->master_bio = NULL;
137 
138 	return r1_bio;
139 
140 out_free_pages:
141 	for (j=0 ; j < pi->raid_disks; j++)
142 		for (i=0; i < r1_bio->bios[j]->bi_vcnt ; i++)
143 			put_page(r1_bio->bios[j]->bi_io_vec[i].bv_page);
144 	j = -1;
145 out_free_bio:
146 	while ( ++j < pi->raid_disks )
147 		bio_put(r1_bio->bios[j]);
148 	r1bio_pool_free(r1_bio, data);
149 	return NULL;
150 }
151 
152 static void r1buf_pool_free(void *__r1_bio, void *data)
153 {
154 	struct pool_info *pi = data;
155 	int i,j;
156 	r1bio_t *r1bio = __r1_bio;
157 
158 	for (i = 0; i < RESYNC_PAGES; i++)
159 		for (j = pi->raid_disks; j-- ;) {
160 			if (j == 0 ||
161 			    r1bio->bios[j]->bi_io_vec[i].bv_page !=
162 			    r1bio->bios[0]->bi_io_vec[i].bv_page)
163 				safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
164 		}
165 	for (i=0 ; i < pi->raid_disks; i++)
166 		bio_put(r1bio->bios[i]);
167 
168 	r1bio_pool_free(r1bio, data);
169 }
170 
171 static void put_all_bios(conf_t *conf, r1bio_t *r1_bio)
172 {
173 	int i;
174 
175 	for (i = 0; i < conf->raid_disks; i++) {
176 		struct bio **bio = r1_bio->bios + i;
177 		if (*bio && *bio != IO_BLOCKED)
178 			bio_put(*bio);
179 		*bio = NULL;
180 	}
181 }
182 
183 static void free_r1bio(r1bio_t *r1_bio)
184 {
185 	conf_t *conf = r1_bio->mddev->private;
186 
187 	/*
188 	 * Wake up any possible resync thread that waits for the device
189 	 * to go idle.
190 	 */
191 	allow_barrier(conf);
192 
193 	put_all_bios(conf, r1_bio);
194 	mempool_free(r1_bio, conf->r1bio_pool);
195 }
196 
197 static void put_buf(r1bio_t *r1_bio)
198 {
199 	conf_t *conf = r1_bio->mddev->private;
200 	int i;
201 
202 	for (i=0; i<conf->raid_disks; i++) {
203 		struct bio *bio = r1_bio->bios[i];
204 		if (bio->bi_end_io)
205 			rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
206 	}
207 
208 	mempool_free(r1_bio, conf->r1buf_pool);
209 
210 	lower_barrier(conf);
211 }
212 
213 static void reschedule_retry(r1bio_t *r1_bio)
214 {
215 	unsigned long flags;
216 	mddev_t *mddev = r1_bio->mddev;
217 	conf_t *conf = mddev->private;
218 
219 	spin_lock_irqsave(&conf->device_lock, flags);
220 	list_add(&r1_bio->retry_list, &conf->retry_list);
221 	conf->nr_queued ++;
222 	spin_unlock_irqrestore(&conf->device_lock, flags);
223 
224 	wake_up(&conf->wait_barrier);
225 	md_wakeup_thread(mddev->thread);
226 }
227 
228 /*
229  * raid_end_bio_io() is called when we have finished servicing a mirrored
230  * operation and are ready to return a success/failure code to the buffer
231  * cache layer.
232  */
233 static void raid_end_bio_io(r1bio_t *r1_bio)
234 {
235 	struct bio *bio = r1_bio->master_bio;
236 
237 	/* if nobody has done the final endio yet, do it now */
238 	if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
239 		PRINTK(KERN_DEBUG "raid1: sync end %s on sectors %llu-%llu\n",
240 			(bio_data_dir(bio) == WRITE) ? "write" : "read",
241 			(unsigned long long) bio->bi_sector,
242 			(unsigned long long) bio->bi_sector +
243 				(bio->bi_size >> 9) - 1);
244 
245 		bio_endio(bio,
246 			test_bit(R1BIO_Uptodate, &r1_bio->state) ? 0 : -EIO);
247 	}
248 	free_r1bio(r1_bio);
249 }
250 
251 /*
252  * Update disk head position estimator based on IRQ completion info.
253  */
254 static inline void update_head_pos(int disk, r1bio_t *r1_bio)
255 {
256 	conf_t *conf = r1_bio->mddev->private;
257 
258 	conf->mirrors[disk].head_position =
259 		r1_bio->sector + (r1_bio->sectors);
260 }
261 
262 static void raid1_end_read_request(struct bio *bio, int error)
263 {
264 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
265 	r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
266 	int mirror;
267 	conf_t *conf = r1_bio->mddev->private;
268 
269 	mirror = r1_bio->read_disk;
270 	/*
271 	 * this branch is our 'one mirror IO has finished' event handler:
272 	 */
273 	update_head_pos(mirror, r1_bio);
274 
275 	if (uptodate)
276 		set_bit(R1BIO_Uptodate, &r1_bio->state);
277 	else {
278 		/* If all other devices have failed, we want to return
279 		 * the error upwards rather than fail the last device.
280 		 * Here we redefine "uptodate" to mean "Don't want to retry"
281 		 */
282 		unsigned long flags;
283 		spin_lock_irqsave(&conf->device_lock, flags);
284 		if (r1_bio->mddev->degraded == conf->raid_disks ||
285 		    (r1_bio->mddev->degraded == conf->raid_disks-1 &&
286 		     !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags)))
287 			uptodate = 1;
288 		spin_unlock_irqrestore(&conf->device_lock, flags);
289 	}
290 
291 	if (uptodate)
292 		raid_end_bio_io(r1_bio);
293 	else {
294 		/*
295 		 * oops, read error:
296 		 */
297 		char b[BDEVNAME_SIZE];
298 		if (printk_ratelimit())
299 			printk(KERN_ERR "raid1: %s: rescheduling sector %llu\n",
300 			       bdevname(conf->mirrors[mirror].rdev->bdev,b), (unsigned long long)r1_bio->sector);
301 		reschedule_retry(r1_bio);
302 	}
303 
304 	rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
305 }
306 
307 static void raid1_end_write_request(struct bio *bio, int error)
308 {
309 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
310 	r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
311 	int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
312 	conf_t *conf = r1_bio->mddev->private;
313 	struct bio *to_put = NULL;
314 
315 
316 	for (mirror = 0; mirror < conf->raid_disks; mirror++)
317 		if (r1_bio->bios[mirror] == bio)
318 			break;
319 
320 	if (error == -EOPNOTSUPP && test_bit(R1BIO_Barrier, &r1_bio->state)) {
321 		set_bit(BarriersNotsupp, &conf->mirrors[mirror].rdev->flags);
322 		set_bit(R1BIO_BarrierRetry, &r1_bio->state);
323 		r1_bio->mddev->barriers_work = 0;
324 		/* Don't rdev_dec_pending in this branch - keep it for the retry */
325 	} else {
326 		/*
327 		 * this branch is our 'one mirror IO has finished' event handler:
328 		 */
329 		r1_bio->bios[mirror] = NULL;
330 		to_put = bio;
331 		if (!uptodate) {
332 			md_error(r1_bio->mddev, conf->mirrors[mirror].rdev);
333 			/* an I/O failed, we can't clear the bitmap */
334 			set_bit(R1BIO_Degraded, &r1_bio->state);
335 		} else
336 			/*
337 			 * Set R1BIO_Uptodate in our master bio, so that
338 			 * we will return a good error code for to the higher
339 			 * levels even if IO on some other mirrored buffer fails.
340 			 *
341 			 * The 'master' represents the composite IO operation to
342 			 * user-side. So if something waits for IO, then it will
343 			 * wait for the 'master' bio.
344 			 */
345 			set_bit(R1BIO_Uptodate, &r1_bio->state);
346 
347 		update_head_pos(mirror, r1_bio);
348 
349 		if (behind) {
350 			if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
351 				atomic_dec(&r1_bio->behind_remaining);
352 
353 			/* In behind mode, we ACK the master bio once the I/O has safely
354 			 * reached all non-writemostly disks. Setting the Returned bit
355 			 * ensures that this gets done only once -- we don't ever want to
356 			 * return -EIO here, instead we'll wait */
357 
358 			if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
359 			    test_bit(R1BIO_Uptodate, &r1_bio->state)) {
360 				/* Maybe we can return now */
361 				if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
362 					struct bio *mbio = r1_bio->master_bio;
363 					PRINTK(KERN_DEBUG "raid1: behind end write sectors %llu-%llu\n",
364 					       (unsigned long long) mbio->bi_sector,
365 					       (unsigned long long) mbio->bi_sector +
366 					       (mbio->bi_size >> 9) - 1);
367 					bio_endio(mbio, 0);
368 				}
369 			}
370 		}
371 		rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
372 	}
373 	/*
374 	 *
375 	 * Let's see if all mirrored write operations have finished
376 	 * already.
377 	 */
378 	if (atomic_dec_and_test(&r1_bio->remaining)) {
379 		if (test_bit(R1BIO_BarrierRetry, &r1_bio->state))
380 			reschedule_retry(r1_bio);
381 		else {
382 			/* it really is the end of this request */
383 			if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
384 				/* free extra copy of the data pages */
385 				int i = bio->bi_vcnt;
386 				while (i--)
387 					safe_put_page(bio->bi_io_vec[i].bv_page);
388 			}
389 			/* clear the bitmap if all writes complete successfully */
390 			bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
391 					r1_bio->sectors,
392 					!test_bit(R1BIO_Degraded, &r1_bio->state),
393 					behind);
394 			md_write_end(r1_bio->mddev);
395 			raid_end_bio_io(r1_bio);
396 		}
397 	}
398 
399 	if (to_put)
400 		bio_put(to_put);
401 }
402 
403 
404 /*
405  * This routine returns the disk from which the requested read should
406  * be done. There is a per-array 'next expected sequential IO' sector
407  * number - if this matches on the next IO then we use the last disk.
408  * There is also a per-disk 'last know head position' sector that is
409  * maintained from IRQ contexts, both the normal and the resync IO
410  * completion handlers update this position correctly. If there is no
411  * perfect sequential match then we pick the disk whose head is closest.
412  *
413  * If there are 2 mirrors in the same 2 devices, performance degrades
414  * because position is mirror, not device based.
415  *
416  * The rdev for the device selected will have nr_pending incremented.
417  */
418 static int read_balance(conf_t *conf, r1bio_t *r1_bio)
419 {
420 	const unsigned long this_sector = r1_bio->sector;
421 	int new_disk = conf->last_used, disk = new_disk;
422 	int wonly_disk = -1;
423 	const int sectors = r1_bio->sectors;
424 	sector_t new_distance, current_distance;
425 	mdk_rdev_t *rdev;
426 
427 	rcu_read_lock();
428 	/*
429 	 * Check if we can balance. We can balance on the whole
430 	 * device if no resync is going on, or below the resync window.
431 	 * We take the first readable disk when above the resync window.
432 	 */
433  retry:
434 	if (conf->mddev->recovery_cp < MaxSector &&
435 	    (this_sector + sectors >= conf->next_resync)) {
436 		/* Choose the first operation device, for consistancy */
437 		new_disk = 0;
438 
439 		for (rdev = rcu_dereference(conf->mirrors[new_disk].rdev);
440 		     r1_bio->bios[new_disk] == IO_BLOCKED ||
441 		     !rdev || !test_bit(In_sync, &rdev->flags)
442 			     || test_bit(WriteMostly, &rdev->flags);
443 		     rdev = rcu_dereference(conf->mirrors[++new_disk].rdev)) {
444 
445 			if (rdev && test_bit(In_sync, &rdev->flags) &&
446 				r1_bio->bios[new_disk] != IO_BLOCKED)
447 				wonly_disk = new_disk;
448 
449 			if (new_disk == conf->raid_disks - 1) {
450 				new_disk = wonly_disk;
451 				break;
452 			}
453 		}
454 		goto rb_out;
455 	}
456 
457 
458 	/* make sure the disk is operational */
459 	for (rdev = rcu_dereference(conf->mirrors[new_disk].rdev);
460 	     r1_bio->bios[new_disk] == IO_BLOCKED ||
461 	     !rdev || !test_bit(In_sync, &rdev->flags) ||
462 		     test_bit(WriteMostly, &rdev->flags);
463 	     rdev = rcu_dereference(conf->mirrors[new_disk].rdev)) {
464 
465 		if (rdev && test_bit(In_sync, &rdev->flags) &&
466 		    r1_bio->bios[new_disk] != IO_BLOCKED)
467 			wonly_disk = new_disk;
468 
469 		if (new_disk <= 0)
470 			new_disk = conf->raid_disks;
471 		new_disk--;
472 		if (new_disk == disk) {
473 			new_disk = wonly_disk;
474 			break;
475 		}
476 	}
477 
478 	if (new_disk < 0)
479 		goto rb_out;
480 
481 	disk = new_disk;
482 	/* now disk == new_disk == starting point for search */
483 
484 	/*
485 	 * Don't change to another disk for sequential reads:
486 	 */
487 	if (conf->next_seq_sect == this_sector)
488 		goto rb_out;
489 	if (this_sector == conf->mirrors[new_disk].head_position)
490 		goto rb_out;
491 
492 	current_distance = abs(this_sector - conf->mirrors[disk].head_position);
493 
494 	/* Find the disk whose head is closest */
495 
496 	do {
497 		if (disk <= 0)
498 			disk = conf->raid_disks;
499 		disk--;
500 
501 		rdev = rcu_dereference(conf->mirrors[disk].rdev);
502 
503 		if (!rdev || r1_bio->bios[disk] == IO_BLOCKED ||
504 		    !test_bit(In_sync, &rdev->flags) ||
505 		    test_bit(WriteMostly, &rdev->flags))
506 			continue;
507 
508 		if (!atomic_read(&rdev->nr_pending)) {
509 			new_disk = disk;
510 			break;
511 		}
512 		new_distance = abs(this_sector - conf->mirrors[disk].head_position);
513 		if (new_distance < current_distance) {
514 			current_distance = new_distance;
515 			new_disk = disk;
516 		}
517 	} while (disk != conf->last_used);
518 
519  rb_out:
520 
521 
522 	if (new_disk >= 0) {
523 		rdev = rcu_dereference(conf->mirrors[new_disk].rdev);
524 		if (!rdev)
525 			goto retry;
526 		atomic_inc(&rdev->nr_pending);
527 		if (!test_bit(In_sync, &rdev->flags)) {
528 			/* cannot risk returning a device that failed
529 			 * before we inc'ed nr_pending
530 			 */
531 			rdev_dec_pending(rdev, conf->mddev);
532 			goto retry;
533 		}
534 		conf->next_seq_sect = this_sector + sectors;
535 		conf->last_used = new_disk;
536 	}
537 	rcu_read_unlock();
538 
539 	return new_disk;
540 }
541 
542 static void unplug_slaves(mddev_t *mddev)
543 {
544 	conf_t *conf = mddev->private;
545 	int i;
546 
547 	rcu_read_lock();
548 	for (i=0; i<mddev->raid_disks; i++) {
549 		mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
550 		if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
551 			struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
552 
553 			atomic_inc(&rdev->nr_pending);
554 			rcu_read_unlock();
555 
556 			blk_unplug(r_queue);
557 
558 			rdev_dec_pending(rdev, mddev);
559 			rcu_read_lock();
560 		}
561 	}
562 	rcu_read_unlock();
563 }
564 
565 static void raid1_unplug(struct request_queue *q)
566 {
567 	mddev_t *mddev = q->queuedata;
568 
569 	unplug_slaves(mddev);
570 	md_wakeup_thread(mddev->thread);
571 }
572 
573 static int raid1_congested(void *data, int bits)
574 {
575 	mddev_t *mddev = data;
576 	conf_t *conf = mddev->private;
577 	int i, ret = 0;
578 
579 	if (mddev_congested(mddev, bits))
580 		return 1;
581 
582 	rcu_read_lock();
583 	for (i = 0; i < mddev->raid_disks; i++) {
584 		mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
585 		if (rdev && !test_bit(Faulty, &rdev->flags)) {
586 			struct request_queue *q = bdev_get_queue(rdev->bdev);
587 
588 			/* Note the '|| 1' - when read_balance prefers
589 			 * non-congested targets, it can be removed
590 			 */
591 			if ((bits & (1<<BDI_async_congested)) || 1)
592 				ret |= bdi_congested(&q->backing_dev_info, bits);
593 			else
594 				ret &= bdi_congested(&q->backing_dev_info, bits);
595 		}
596 	}
597 	rcu_read_unlock();
598 	return ret;
599 }
600 
601 
602 static int flush_pending_writes(conf_t *conf)
603 {
604 	/* Any writes that have been queued but are awaiting
605 	 * bitmap updates get flushed here.
606 	 * We return 1 if any requests were actually submitted.
607 	 */
608 	int rv = 0;
609 
610 	spin_lock_irq(&conf->device_lock);
611 
612 	if (conf->pending_bio_list.head) {
613 		struct bio *bio;
614 		bio = bio_list_get(&conf->pending_bio_list);
615 		blk_remove_plug(conf->mddev->queue);
616 		spin_unlock_irq(&conf->device_lock);
617 		/* flush any pending bitmap writes to
618 		 * disk before proceeding w/ I/O */
619 		bitmap_unplug(conf->mddev->bitmap);
620 
621 		while (bio) { /* submit pending writes */
622 			struct bio *next = bio->bi_next;
623 			bio->bi_next = NULL;
624 			generic_make_request(bio);
625 			bio = next;
626 		}
627 		rv = 1;
628 	} else
629 		spin_unlock_irq(&conf->device_lock);
630 	return rv;
631 }
632 
633 /* Barriers....
634  * Sometimes we need to suspend IO while we do something else,
635  * either some resync/recovery, or reconfigure the array.
636  * To do this we raise a 'barrier'.
637  * The 'barrier' is a counter that can be raised multiple times
638  * to count how many activities are happening which preclude
639  * normal IO.
640  * We can only raise the barrier if there is no pending IO.
641  * i.e. if nr_pending == 0.
642  * We choose only to raise the barrier if no-one is waiting for the
643  * barrier to go down.  This means that as soon as an IO request
644  * is ready, no other operations which require a barrier will start
645  * until the IO request has had a chance.
646  *
647  * So: regular IO calls 'wait_barrier'.  When that returns there
648  *    is no backgroup IO happening,  It must arrange to call
649  *    allow_barrier when it has finished its IO.
650  * backgroup IO calls must call raise_barrier.  Once that returns
651  *    there is no normal IO happeing.  It must arrange to call
652  *    lower_barrier when the particular background IO completes.
653  */
654 #define RESYNC_DEPTH 32
655 
656 static void raise_barrier(conf_t *conf)
657 {
658 	spin_lock_irq(&conf->resync_lock);
659 
660 	/* Wait until no block IO is waiting */
661 	wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
662 			    conf->resync_lock,
663 			    raid1_unplug(conf->mddev->queue));
664 
665 	/* block any new IO from starting */
666 	conf->barrier++;
667 
668 	/* No wait for all pending IO to complete */
669 	wait_event_lock_irq(conf->wait_barrier,
670 			    !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
671 			    conf->resync_lock,
672 			    raid1_unplug(conf->mddev->queue));
673 
674 	spin_unlock_irq(&conf->resync_lock);
675 }
676 
677 static void lower_barrier(conf_t *conf)
678 {
679 	unsigned long flags;
680 	BUG_ON(conf->barrier <= 0);
681 	spin_lock_irqsave(&conf->resync_lock, flags);
682 	conf->barrier--;
683 	spin_unlock_irqrestore(&conf->resync_lock, flags);
684 	wake_up(&conf->wait_barrier);
685 }
686 
687 static void wait_barrier(conf_t *conf)
688 {
689 	spin_lock_irq(&conf->resync_lock);
690 	if (conf->barrier) {
691 		conf->nr_waiting++;
692 		wait_event_lock_irq(conf->wait_barrier, !conf->barrier,
693 				    conf->resync_lock,
694 				    raid1_unplug(conf->mddev->queue));
695 		conf->nr_waiting--;
696 	}
697 	conf->nr_pending++;
698 	spin_unlock_irq(&conf->resync_lock);
699 }
700 
701 static void allow_barrier(conf_t *conf)
702 {
703 	unsigned long flags;
704 	spin_lock_irqsave(&conf->resync_lock, flags);
705 	conf->nr_pending--;
706 	spin_unlock_irqrestore(&conf->resync_lock, flags);
707 	wake_up(&conf->wait_barrier);
708 }
709 
710 static void freeze_array(conf_t *conf)
711 {
712 	/* stop syncio and normal IO and wait for everything to
713 	 * go quite.
714 	 * We increment barrier and nr_waiting, and then
715 	 * wait until nr_pending match nr_queued+1
716 	 * This is called in the context of one normal IO request
717 	 * that has failed. Thus any sync request that might be pending
718 	 * will be blocked by nr_pending, and we need to wait for
719 	 * pending IO requests to complete or be queued for re-try.
720 	 * Thus the number queued (nr_queued) plus this request (1)
721 	 * must match the number of pending IOs (nr_pending) before
722 	 * we continue.
723 	 */
724 	spin_lock_irq(&conf->resync_lock);
725 	conf->barrier++;
726 	conf->nr_waiting++;
727 	wait_event_lock_irq(conf->wait_barrier,
728 			    conf->nr_pending == conf->nr_queued+1,
729 			    conf->resync_lock,
730 			    ({ flush_pending_writes(conf);
731 			       raid1_unplug(conf->mddev->queue); }));
732 	spin_unlock_irq(&conf->resync_lock);
733 }
734 static void unfreeze_array(conf_t *conf)
735 {
736 	/* reverse the effect of the freeze */
737 	spin_lock_irq(&conf->resync_lock);
738 	conf->barrier--;
739 	conf->nr_waiting--;
740 	wake_up(&conf->wait_barrier);
741 	spin_unlock_irq(&conf->resync_lock);
742 }
743 
744 
745 /* duplicate the data pages for behind I/O */
746 static struct page **alloc_behind_pages(struct bio *bio)
747 {
748 	int i;
749 	struct bio_vec *bvec;
750 	struct page **pages = kzalloc(bio->bi_vcnt * sizeof(struct page *),
751 					GFP_NOIO);
752 	if (unlikely(!pages))
753 		goto do_sync_io;
754 
755 	bio_for_each_segment(bvec, bio, i) {
756 		pages[i] = alloc_page(GFP_NOIO);
757 		if (unlikely(!pages[i]))
758 			goto do_sync_io;
759 		memcpy(kmap(pages[i]) + bvec->bv_offset,
760 			kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
761 		kunmap(pages[i]);
762 		kunmap(bvec->bv_page);
763 	}
764 
765 	return pages;
766 
767 do_sync_io:
768 	if (pages)
769 		for (i = 0; i < bio->bi_vcnt && pages[i]; i++)
770 			put_page(pages[i]);
771 	kfree(pages);
772 	PRINTK("%dB behind alloc failed, doing sync I/O\n", bio->bi_size);
773 	return NULL;
774 }
775 
776 static int make_request(struct request_queue *q, struct bio * bio)
777 {
778 	mddev_t *mddev = q->queuedata;
779 	conf_t *conf = mddev->private;
780 	mirror_info_t *mirror;
781 	r1bio_t *r1_bio;
782 	struct bio *read_bio;
783 	int i, targets = 0, disks;
784 	struct bitmap *bitmap;
785 	unsigned long flags;
786 	struct bio_list bl;
787 	struct page **behind_pages = NULL;
788 	const int rw = bio_data_dir(bio);
789 	const bool do_sync = bio_rw_flagged(bio, BIO_RW_SYNCIO);
790 	int cpu;
791 	bool do_barriers;
792 	mdk_rdev_t *blocked_rdev;
793 
794 	/*
795 	 * Register the new request and wait if the reconstruction
796 	 * thread has put up a bar for new requests.
797 	 * Continue immediately if no resync is active currently.
798 	 * We test barriers_work *after* md_write_start as md_write_start
799 	 * may cause the first superblock write, and that will check out
800 	 * if barriers work.
801 	 */
802 
803 	md_write_start(mddev, bio); /* wait on superblock update early */
804 
805 	if (bio_data_dir(bio) == WRITE &&
806 	    bio->bi_sector + bio->bi_size/512 > mddev->suspend_lo &&
807 	    bio->bi_sector < mddev->suspend_hi) {
808 		/* As the suspend_* range is controlled by
809 		 * userspace, we want an interruptible
810 		 * wait.
811 		 */
812 		DEFINE_WAIT(w);
813 		for (;;) {
814 			flush_signals(current);
815 			prepare_to_wait(&conf->wait_barrier,
816 					&w, TASK_INTERRUPTIBLE);
817 			if (bio->bi_sector + bio->bi_size/512 <= mddev->suspend_lo ||
818 			    bio->bi_sector >= mddev->suspend_hi)
819 				break;
820 			schedule();
821 		}
822 		finish_wait(&conf->wait_barrier, &w);
823 	}
824 	if (unlikely(!mddev->barriers_work &&
825 		     bio_rw_flagged(bio, BIO_RW_BARRIER))) {
826 		if (rw == WRITE)
827 			md_write_end(mddev);
828 		bio_endio(bio, -EOPNOTSUPP);
829 		return 0;
830 	}
831 
832 	wait_barrier(conf);
833 
834 	bitmap = mddev->bitmap;
835 
836 	cpu = part_stat_lock();
837 	part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
838 	part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw],
839 		      bio_sectors(bio));
840 	part_stat_unlock();
841 
842 	/*
843 	 * make_request() can abort the operation when READA is being
844 	 * used and no empty request is available.
845 	 *
846 	 */
847 	r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
848 
849 	r1_bio->master_bio = bio;
850 	r1_bio->sectors = bio->bi_size >> 9;
851 	r1_bio->state = 0;
852 	r1_bio->mddev = mddev;
853 	r1_bio->sector = bio->bi_sector;
854 
855 	if (rw == READ) {
856 		/*
857 		 * read balancing logic:
858 		 */
859 		int rdisk = read_balance(conf, r1_bio);
860 
861 		if (rdisk < 0) {
862 			/* couldn't find anywhere to read from */
863 			raid_end_bio_io(r1_bio);
864 			return 0;
865 		}
866 		mirror = conf->mirrors + rdisk;
867 
868 		r1_bio->read_disk = rdisk;
869 
870 		read_bio = bio_clone(bio, GFP_NOIO);
871 
872 		r1_bio->bios[rdisk] = read_bio;
873 
874 		read_bio->bi_sector = r1_bio->sector + mirror->rdev->data_offset;
875 		read_bio->bi_bdev = mirror->rdev->bdev;
876 		read_bio->bi_end_io = raid1_end_read_request;
877 		read_bio->bi_rw = READ | (do_sync << BIO_RW_SYNCIO);
878 		read_bio->bi_private = r1_bio;
879 
880 		generic_make_request(read_bio);
881 		return 0;
882 	}
883 
884 	/*
885 	 * WRITE:
886 	 */
887 	/* first select target devices under spinlock and
888 	 * inc refcount on their rdev.  Record them by setting
889 	 * bios[x] to bio
890 	 */
891 	disks = conf->raid_disks;
892 #if 0
893 	{ static int first=1;
894 	if (first) printk("First Write sector %llu disks %d\n",
895 			  (unsigned long long)r1_bio->sector, disks);
896 	first = 0;
897 	}
898 #endif
899  retry_write:
900 	blocked_rdev = NULL;
901 	rcu_read_lock();
902 	for (i = 0;  i < disks; i++) {
903 		mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
904 		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
905 			atomic_inc(&rdev->nr_pending);
906 			blocked_rdev = rdev;
907 			break;
908 		}
909 		if (rdev && !test_bit(Faulty, &rdev->flags)) {
910 			atomic_inc(&rdev->nr_pending);
911 			if (test_bit(Faulty, &rdev->flags)) {
912 				rdev_dec_pending(rdev, mddev);
913 				r1_bio->bios[i] = NULL;
914 			} else
915 				r1_bio->bios[i] = bio;
916 			targets++;
917 		} else
918 			r1_bio->bios[i] = NULL;
919 	}
920 	rcu_read_unlock();
921 
922 	if (unlikely(blocked_rdev)) {
923 		/* Wait for this device to become unblocked */
924 		int j;
925 
926 		for (j = 0; j < i; j++)
927 			if (r1_bio->bios[j])
928 				rdev_dec_pending(conf->mirrors[j].rdev, mddev);
929 
930 		allow_barrier(conf);
931 		md_wait_for_blocked_rdev(blocked_rdev, mddev);
932 		wait_barrier(conf);
933 		goto retry_write;
934 	}
935 
936 	BUG_ON(targets == 0); /* we never fail the last device */
937 
938 	if (targets < conf->raid_disks) {
939 		/* array is degraded, we will not clear the bitmap
940 		 * on I/O completion (see raid1_end_write_request) */
941 		set_bit(R1BIO_Degraded, &r1_bio->state);
942 	}
943 
944 	/* do behind I/O ? */
945 	if (bitmap &&
946 	    (atomic_read(&bitmap->behind_writes)
947 	     < mddev->bitmap_info.max_write_behind) &&
948 	    (behind_pages = alloc_behind_pages(bio)) != NULL)
949 		set_bit(R1BIO_BehindIO, &r1_bio->state);
950 
951 	atomic_set(&r1_bio->remaining, 0);
952 	atomic_set(&r1_bio->behind_remaining, 0);
953 
954 	do_barriers = bio_rw_flagged(bio, BIO_RW_BARRIER);
955 	if (do_barriers)
956 		set_bit(R1BIO_Barrier, &r1_bio->state);
957 
958 	bio_list_init(&bl);
959 	for (i = 0; i < disks; i++) {
960 		struct bio *mbio;
961 		if (!r1_bio->bios[i])
962 			continue;
963 
964 		mbio = bio_clone(bio, GFP_NOIO);
965 		r1_bio->bios[i] = mbio;
966 
967 		mbio->bi_sector	= r1_bio->sector + conf->mirrors[i].rdev->data_offset;
968 		mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
969 		mbio->bi_end_io	= raid1_end_write_request;
970 		mbio->bi_rw = WRITE | (do_barriers << BIO_RW_BARRIER) |
971 			(do_sync << BIO_RW_SYNCIO);
972 		mbio->bi_private = r1_bio;
973 
974 		if (behind_pages) {
975 			struct bio_vec *bvec;
976 			int j;
977 
978 			/* Yes, I really want the '__' version so that
979 			 * we clear any unused pointer in the io_vec, rather
980 			 * than leave them unchanged.  This is important
981 			 * because when we come to free the pages, we won't
982 			 * know the originial bi_idx, so we just free
983 			 * them all
984 			 */
985 			__bio_for_each_segment(bvec, mbio, j, 0)
986 				bvec->bv_page = behind_pages[j];
987 			if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
988 				atomic_inc(&r1_bio->behind_remaining);
989 		}
990 
991 		atomic_inc(&r1_bio->remaining);
992 
993 		bio_list_add(&bl, mbio);
994 	}
995 	kfree(behind_pages); /* the behind pages are attached to the bios now */
996 
997 	bitmap_startwrite(bitmap, bio->bi_sector, r1_bio->sectors,
998 				test_bit(R1BIO_BehindIO, &r1_bio->state));
999 	spin_lock_irqsave(&conf->device_lock, flags);
1000 	bio_list_merge(&conf->pending_bio_list, &bl);
1001 	bio_list_init(&bl);
1002 
1003 	blk_plug_device(mddev->queue);
1004 	spin_unlock_irqrestore(&conf->device_lock, flags);
1005 
1006 	/* In case raid1d snuck into freeze_array */
1007 	wake_up(&conf->wait_barrier);
1008 
1009 	if (do_sync)
1010 		md_wakeup_thread(mddev->thread);
1011 #if 0
1012 	while ((bio = bio_list_pop(&bl)) != NULL)
1013 		generic_make_request(bio);
1014 #endif
1015 
1016 	return 0;
1017 }
1018 
1019 static void status(struct seq_file *seq, mddev_t *mddev)
1020 {
1021 	conf_t *conf = mddev->private;
1022 	int i;
1023 
1024 	seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1025 		   conf->raid_disks - mddev->degraded);
1026 	rcu_read_lock();
1027 	for (i = 0; i < conf->raid_disks; i++) {
1028 		mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
1029 		seq_printf(seq, "%s",
1030 			   rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1031 	}
1032 	rcu_read_unlock();
1033 	seq_printf(seq, "]");
1034 }
1035 
1036 
1037 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1038 {
1039 	char b[BDEVNAME_SIZE];
1040 	conf_t *conf = mddev->private;
1041 
1042 	/*
1043 	 * If it is not operational, then we have already marked it as dead
1044 	 * else if it is the last working disks, ignore the error, let the
1045 	 * next level up know.
1046 	 * else mark the drive as failed
1047 	 */
1048 	if (test_bit(In_sync, &rdev->flags)
1049 	    && (conf->raid_disks - mddev->degraded) == 1) {
1050 		/*
1051 		 * Don't fail the drive, act as though we were just a
1052 		 * normal single drive.
1053 		 * However don't try a recovery from this drive as
1054 		 * it is very likely to fail.
1055 		 */
1056 		mddev->recovery_disabled = 1;
1057 		return;
1058 	}
1059 	if (test_and_clear_bit(In_sync, &rdev->flags)) {
1060 		unsigned long flags;
1061 		spin_lock_irqsave(&conf->device_lock, flags);
1062 		mddev->degraded++;
1063 		set_bit(Faulty, &rdev->flags);
1064 		spin_unlock_irqrestore(&conf->device_lock, flags);
1065 		/*
1066 		 * if recovery is running, make sure it aborts.
1067 		 */
1068 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1069 	} else
1070 		set_bit(Faulty, &rdev->flags);
1071 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
1072 	printk(KERN_ALERT "raid1: Disk failure on %s, disabling device.\n"
1073 		"raid1: Operation continuing on %d devices.\n",
1074 		bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded);
1075 }
1076 
1077 static void print_conf(conf_t *conf)
1078 {
1079 	int i;
1080 
1081 	printk("RAID1 conf printout:\n");
1082 	if (!conf) {
1083 		printk("(!conf)\n");
1084 		return;
1085 	}
1086 	printk(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1087 		conf->raid_disks);
1088 
1089 	rcu_read_lock();
1090 	for (i = 0; i < conf->raid_disks; i++) {
1091 		char b[BDEVNAME_SIZE];
1092 		mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
1093 		if (rdev)
1094 			printk(" disk %d, wo:%d, o:%d, dev:%s\n",
1095 			       i, !test_bit(In_sync, &rdev->flags),
1096 			       !test_bit(Faulty, &rdev->flags),
1097 			       bdevname(rdev->bdev,b));
1098 	}
1099 	rcu_read_unlock();
1100 }
1101 
1102 static void close_sync(conf_t *conf)
1103 {
1104 	wait_barrier(conf);
1105 	allow_barrier(conf);
1106 
1107 	mempool_destroy(conf->r1buf_pool);
1108 	conf->r1buf_pool = NULL;
1109 }
1110 
1111 static int raid1_spare_active(mddev_t *mddev)
1112 {
1113 	int i;
1114 	conf_t *conf = mddev->private;
1115 
1116 	/*
1117 	 * Find all failed disks within the RAID1 configuration
1118 	 * and mark them readable.
1119 	 * Called under mddev lock, so rcu protection not needed.
1120 	 */
1121 	for (i = 0; i < conf->raid_disks; i++) {
1122 		mdk_rdev_t *rdev = conf->mirrors[i].rdev;
1123 		if (rdev
1124 		    && !test_bit(Faulty, &rdev->flags)
1125 		    && !test_and_set_bit(In_sync, &rdev->flags)) {
1126 			unsigned long flags;
1127 			spin_lock_irqsave(&conf->device_lock, flags);
1128 			mddev->degraded--;
1129 			spin_unlock_irqrestore(&conf->device_lock, flags);
1130 		}
1131 	}
1132 
1133 	print_conf(conf);
1134 	return 0;
1135 }
1136 
1137 
1138 static int raid1_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
1139 {
1140 	conf_t *conf = mddev->private;
1141 	int err = -EEXIST;
1142 	int mirror = 0;
1143 	mirror_info_t *p;
1144 	int first = 0;
1145 	int last = mddev->raid_disks - 1;
1146 
1147 	if (rdev->raid_disk >= 0)
1148 		first = last = rdev->raid_disk;
1149 
1150 	for (mirror = first; mirror <= last; mirror++)
1151 		if ( !(p=conf->mirrors+mirror)->rdev) {
1152 
1153 			disk_stack_limits(mddev->gendisk, rdev->bdev,
1154 					  rdev->data_offset << 9);
1155 			/* as we don't honour merge_bvec_fn, we must never risk
1156 			 * violating it, so limit ->max_sector to one PAGE, as
1157 			 * a one page request is never in violation.
1158 			 */
1159 			if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
1160 			    queue_max_sectors(mddev->queue) > (PAGE_SIZE>>9))
1161 				blk_queue_max_sectors(mddev->queue, PAGE_SIZE>>9);
1162 
1163 			p->head_position = 0;
1164 			rdev->raid_disk = mirror;
1165 			err = 0;
1166 			/* As all devices are equivalent, we don't need a full recovery
1167 			 * if this was recently any drive of the array
1168 			 */
1169 			if (rdev->saved_raid_disk < 0)
1170 				conf->fullsync = 1;
1171 			rcu_assign_pointer(p->rdev, rdev);
1172 			break;
1173 		}
1174 	md_integrity_add_rdev(rdev, mddev);
1175 	print_conf(conf);
1176 	return err;
1177 }
1178 
1179 static int raid1_remove_disk(mddev_t *mddev, int number)
1180 {
1181 	conf_t *conf = mddev->private;
1182 	int err = 0;
1183 	mdk_rdev_t *rdev;
1184 	mirror_info_t *p = conf->mirrors+ number;
1185 
1186 	print_conf(conf);
1187 	rdev = p->rdev;
1188 	if (rdev) {
1189 		if (test_bit(In_sync, &rdev->flags) ||
1190 		    atomic_read(&rdev->nr_pending)) {
1191 			err = -EBUSY;
1192 			goto abort;
1193 		}
1194 		/* Only remove non-faulty devices is recovery
1195 		 * is not possible.
1196 		 */
1197 		if (!test_bit(Faulty, &rdev->flags) &&
1198 		    mddev->degraded < conf->raid_disks) {
1199 			err = -EBUSY;
1200 			goto abort;
1201 		}
1202 		p->rdev = NULL;
1203 		synchronize_rcu();
1204 		if (atomic_read(&rdev->nr_pending)) {
1205 			/* lost the race, try later */
1206 			err = -EBUSY;
1207 			p->rdev = rdev;
1208 			goto abort;
1209 		}
1210 		md_integrity_register(mddev);
1211 	}
1212 abort:
1213 
1214 	print_conf(conf);
1215 	return err;
1216 }
1217 
1218 
1219 static void end_sync_read(struct bio *bio, int error)
1220 {
1221 	r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
1222 	int i;
1223 
1224 	for (i=r1_bio->mddev->raid_disks; i--; )
1225 		if (r1_bio->bios[i] == bio)
1226 			break;
1227 	BUG_ON(i < 0);
1228 	update_head_pos(i, r1_bio);
1229 	/*
1230 	 * we have read a block, now it needs to be re-written,
1231 	 * or re-read if the read failed.
1232 	 * We don't do much here, just schedule handling by raid1d
1233 	 */
1234 	if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1235 		set_bit(R1BIO_Uptodate, &r1_bio->state);
1236 
1237 	if (atomic_dec_and_test(&r1_bio->remaining))
1238 		reschedule_retry(r1_bio);
1239 }
1240 
1241 static void end_sync_write(struct bio *bio, int error)
1242 {
1243 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1244 	r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
1245 	mddev_t *mddev = r1_bio->mddev;
1246 	conf_t *conf = mddev->private;
1247 	int i;
1248 	int mirror=0;
1249 
1250 	for (i = 0; i < conf->raid_disks; i++)
1251 		if (r1_bio->bios[i] == bio) {
1252 			mirror = i;
1253 			break;
1254 		}
1255 	if (!uptodate) {
1256 		int sync_blocks = 0;
1257 		sector_t s = r1_bio->sector;
1258 		long sectors_to_go = r1_bio->sectors;
1259 		/* make sure these bits doesn't get cleared. */
1260 		do {
1261 			bitmap_end_sync(mddev->bitmap, s,
1262 					&sync_blocks, 1);
1263 			s += sync_blocks;
1264 			sectors_to_go -= sync_blocks;
1265 		} while (sectors_to_go > 0);
1266 		md_error(mddev, conf->mirrors[mirror].rdev);
1267 	}
1268 
1269 	update_head_pos(mirror, r1_bio);
1270 
1271 	if (atomic_dec_and_test(&r1_bio->remaining)) {
1272 		sector_t s = r1_bio->sectors;
1273 		put_buf(r1_bio);
1274 		md_done_sync(mddev, s, uptodate);
1275 	}
1276 }
1277 
1278 static void sync_request_write(mddev_t *mddev, r1bio_t *r1_bio)
1279 {
1280 	conf_t *conf = mddev->private;
1281 	int i;
1282 	int disks = conf->raid_disks;
1283 	struct bio *bio, *wbio;
1284 
1285 	bio = r1_bio->bios[r1_bio->read_disk];
1286 
1287 
1288 	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
1289 		/* We have read all readable devices.  If we haven't
1290 		 * got the block, then there is no hope left.
1291 		 * If we have, then we want to do a comparison
1292 		 * and skip the write if everything is the same.
1293 		 * If any blocks failed to read, then we need to
1294 		 * attempt an over-write
1295 		 */
1296 		int primary;
1297 		if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) {
1298 			for (i=0; i<mddev->raid_disks; i++)
1299 				if (r1_bio->bios[i]->bi_end_io == end_sync_read)
1300 					md_error(mddev, conf->mirrors[i].rdev);
1301 
1302 			md_done_sync(mddev, r1_bio->sectors, 1);
1303 			put_buf(r1_bio);
1304 			return;
1305 		}
1306 		for (primary=0; primary<mddev->raid_disks; primary++)
1307 			if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
1308 			    test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) {
1309 				r1_bio->bios[primary]->bi_end_io = NULL;
1310 				rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
1311 				break;
1312 			}
1313 		r1_bio->read_disk = primary;
1314 		for (i=0; i<mddev->raid_disks; i++)
1315 			if (r1_bio->bios[i]->bi_end_io == end_sync_read) {
1316 				int j;
1317 				int vcnt = r1_bio->sectors >> (PAGE_SHIFT- 9);
1318 				struct bio *pbio = r1_bio->bios[primary];
1319 				struct bio *sbio = r1_bio->bios[i];
1320 
1321 				if (test_bit(BIO_UPTODATE, &sbio->bi_flags)) {
1322 					for (j = vcnt; j-- ; ) {
1323 						struct page *p, *s;
1324 						p = pbio->bi_io_vec[j].bv_page;
1325 						s = sbio->bi_io_vec[j].bv_page;
1326 						if (memcmp(page_address(p),
1327 							   page_address(s),
1328 							   PAGE_SIZE))
1329 							break;
1330 					}
1331 				} else
1332 					j = 0;
1333 				if (j >= 0)
1334 					mddev->resync_mismatches += r1_bio->sectors;
1335 				if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
1336 					      && test_bit(BIO_UPTODATE, &sbio->bi_flags))) {
1337 					sbio->bi_end_io = NULL;
1338 					rdev_dec_pending(conf->mirrors[i].rdev, mddev);
1339 				} else {
1340 					/* fixup the bio for reuse */
1341 					int size;
1342 					sbio->bi_vcnt = vcnt;
1343 					sbio->bi_size = r1_bio->sectors << 9;
1344 					sbio->bi_idx = 0;
1345 					sbio->bi_phys_segments = 0;
1346 					sbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1347 					sbio->bi_flags |= 1 << BIO_UPTODATE;
1348 					sbio->bi_next = NULL;
1349 					sbio->bi_sector = r1_bio->sector +
1350 						conf->mirrors[i].rdev->data_offset;
1351 					sbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1352 					size = sbio->bi_size;
1353 					for (j = 0; j < vcnt ; j++) {
1354 						struct bio_vec *bi;
1355 						bi = &sbio->bi_io_vec[j];
1356 						bi->bv_offset = 0;
1357 						if (size > PAGE_SIZE)
1358 							bi->bv_len = PAGE_SIZE;
1359 						else
1360 							bi->bv_len = size;
1361 						size -= PAGE_SIZE;
1362 						memcpy(page_address(bi->bv_page),
1363 						       page_address(pbio->bi_io_vec[j].bv_page),
1364 						       PAGE_SIZE);
1365 					}
1366 
1367 				}
1368 			}
1369 	}
1370 	if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) {
1371 		/* ouch - failed to read all of that.
1372 		 * Try some synchronous reads of other devices to get
1373 		 * good data, much like with normal read errors.  Only
1374 		 * read into the pages we already have so we don't
1375 		 * need to re-issue the read request.
1376 		 * We don't need to freeze the array, because being in an
1377 		 * active sync request, there is no normal IO, and
1378 		 * no overlapping syncs.
1379 		 */
1380 		sector_t sect = r1_bio->sector;
1381 		int sectors = r1_bio->sectors;
1382 		int idx = 0;
1383 
1384 		while(sectors) {
1385 			int s = sectors;
1386 			int d = r1_bio->read_disk;
1387 			int success = 0;
1388 			mdk_rdev_t *rdev;
1389 
1390 			if (s > (PAGE_SIZE>>9))
1391 				s = PAGE_SIZE >> 9;
1392 			do {
1393 				if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1394 					/* No rcu protection needed here devices
1395 					 * can only be removed when no resync is
1396 					 * active, and resync is currently active
1397 					 */
1398 					rdev = conf->mirrors[d].rdev;
1399 					if (sync_page_io(rdev->bdev,
1400 							 sect + rdev->data_offset,
1401 							 s<<9,
1402 							 bio->bi_io_vec[idx].bv_page,
1403 							 READ)) {
1404 						success = 1;
1405 						break;
1406 					}
1407 				}
1408 				d++;
1409 				if (d == conf->raid_disks)
1410 					d = 0;
1411 			} while (!success && d != r1_bio->read_disk);
1412 
1413 			if (success) {
1414 				int start = d;
1415 				/* write it back and re-read */
1416 				set_bit(R1BIO_Uptodate, &r1_bio->state);
1417 				while (d != r1_bio->read_disk) {
1418 					if (d == 0)
1419 						d = conf->raid_disks;
1420 					d--;
1421 					if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1422 						continue;
1423 					rdev = conf->mirrors[d].rdev;
1424 					atomic_add(s, &rdev->corrected_errors);
1425 					if (sync_page_io(rdev->bdev,
1426 							 sect + rdev->data_offset,
1427 							 s<<9,
1428 							 bio->bi_io_vec[idx].bv_page,
1429 							 WRITE) == 0)
1430 						md_error(mddev, rdev);
1431 				}
1432 				d = start;
1433 				while (d != r1_bio->read_disk) {
1434 					if (d == 0)
1435 						d = conf->raid_disks;
1436 					d--;
1437 					if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1438 						continue;
1439 					rdev = conf->mirrors[d].rdev;
1440 					if (sync_page_io(rdev->bdev,
1441 							 sect + rdev->data_offset,
1442 							 s<<9,
1443 							 bio->bi_io_vec[idx].bv_page,
1444 							 READ) == 0)
1445 						md_error(mddev, rdev);
1446 				}
1447 			} else {
1448 				char b[BDEVNAME_SIZE];
1449 				/* Cannot read from anywhere, array is toast */
1450 				md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
1451 				printk(KERN_ALERT "raid1: %s: unrecoverable I/O read error"
1452 				       " for block %llu\n",
1453 				       bdevname(bio->bi_bdev,b),
1454 				       (unsigned long long)r1_bio->sector);
1455 				md_done_sync(mddev, r1_bio->sectors, 0);
1456 				put_buf(r1_bio);
1457 				return;
1458 			}
1459 			sectors -= s;
1460 			sect += s;
1461 			idx ++;
1462 		}
1463 	}
1464 
1465 	/*
1466 	 * schedule writes
1467 	 */
1468 	atomic_set(&r1_bio->remaining, 1);
1469 	for (i = 0; i < disks ; i++) {
1470 		wbio = r1_bio->bios[i];
1471 		if (wbio->bi_end_io == NULL ||
1472 		    (wbio->bi_end_io == end_sync_read &&
1473 		     (i == r1_bio->read_disk ||
1474 		      !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
1475 			continue;
1476 
1477 		wbio->bi_rw = WRITE;
1478 		wbio->bi_end_io = end_sync_write;
1479 		atomic_inc(&r1_bio->remaining);
1480 		md_sync_acct(conf->mirrors[i].rdev->bdev, wbio->bi_size >> 9);
1481 
1482 		generic_make_request(wbio);
1483 	}
1484 
1485 	if (atomic_dec_and_test(&r1_bio->remaining)) {
1486 		/* if we're here, all write(s) have completed, so clean up */
1487 		md_done_sync(mddev, r1_bio->sectors, 1);
1488 		put_buf(r1_bio);
1489 	}
1490 }
1491 
1492 /*
1493  * This is a kernel thread which:
1494  *
1495  *	1.	Retries failed read operations on working mirrors.
1496  *	2.	Updates the raid superblock when problems encounter.
1497  *	3.	Performs writes following reads for array syncronising.
1498  */
1499 
1500 static void fix_read_error(conf_t *conf, int read_disk,
1501 			   sector_t sect, int sectors)
1502 {
1503 	mddev_t *mddev = conf->mddev;
1504 	while(sectors) {
1505 		int s = sectors;
1506 		int d = read_disk;
1507 		int success = 0;
1508 		int start;
1509 		mdk_rdev_t *rdev;
1510 
1511 		if (s > (PAGE_SIZE>>9))
1512 			s = PAGE_SIZE >> 9;
1513 
1514 		do {
1515 			/* Note: no rcu protection needed here
1516 			 * as this is synchronous in the raid1d thread
1517 			 * which is the thread that might remove
1518 			 * a device.  If raid1d ever becomes multi-threaded....
1519 			 */
1520 			rdev = conf->mirrors[d].rdev;
1521 			if (rdev &&
1522 			    test_bit(In_sync, &rdev->flags) &&
1523 			    sync_page_io(rdev->bdev,
1524 					 sect + rdev->data_offset,
1525 					 s<<9,
1526 					 conf->tmppage, READ))
1527 				success = 1;
1528 			else {
1529 				d++;
1530 				if (d == conf->raid_disks)
1531 					d = 0;
1532 			}
1533 		} while (!success && d != read_disk);
1534 
1535 		if (!success) {
1536 			/* Cannot read from anywhere -- bye bye array */
1537 			md_error(mddev, conf->mirrors[read_disk].rdev);
1538 			break;
1539 		}
1540 		/* write it back and re-read */
1541 		start = d;
1542 		while (d != read_disk) {
1543 			if (d==0)
1544 				d = conf->raid_disks;
1545 			d--;
1546 			rdev = conf->mirrors[d].rdev;
1547 			if (rdev &&
1548 			    test_bit(In_sync, &rdev->flags)) {
1549 				if (sync_page_io(rdev->bdev,
1550 						 sect + rdev->data_offset,
1551 						 s<<9, conf->tmppage, WRITE)
1552 				    == 0)
1553 					/* Well, this device is dead */
1554 					md_error(mddev, rdev);
1555 			}
1556 		}
1557 		d = start;
1558 		while (d != read_disk) {
1559 			char b[BDEVNAME_SIZE];
1560 			if (d==0)
1561 				d = conf->raid_disks;
1562 			d--;
1563 			rdev = conf->mirrors[d].rdev;
1564 			if (rdev &&
1565 			    test_bit(In_sync, &rdev->flags)) {
1566 				if (sync_page_io(rdev->bdev,
1567 						 sect + rdev->data_offset,
1568 						 s<<9, conf->tmppage, READ)
1569 				    == 0)
1570 					/* Well, this device is dead */
1571 					md_error(mddev, rdev);
1572 				else {
1573 					atomic_add(s, &rdev->corrected_errors);
1574 					printk(KERN_INFO
1575 					       "raid1:%s: read error corrected "
1576 					       "(%d sectors at %llu on %s)\n",
1577 					       mdname(mddev), s,
1578 					       (unsigned long long)(sect +
1579 					           rdev->data_offset),
1580 					       bdevname(rdev->bdev, b));
1581 				}
1582 			}
1583 		}
1584 		sectors -= s;
1585 		sect += s;
1586 	}
1587 }
1588 
1589 static void raid1d(mddev_t *mddev)
1590 {
1591 	r1bio_t *r1_bio;
1592 	struct bio *bio;
1593 	unsigned long flags;
1594 	conf_t *conf = mddev->private;
1595 	struct list_head *head = &conf->retry_list;
1596 	int unplug=0;
1597 	mdk_rdev_t *rdev;
1598 
1599 	md_check_recovery(mddev);
1600 
1601 	for (;;) {
1602 		char b[BDEVNAME_SIZE];
1603 
1604 		unplug += flush_pending_writes(conf);
1605 
1606 		spin_lock_irqsave(&conf->device_lock, flags);
1607 		if (list_empty(head)) {
1608 			spin_unlock_irqrestore(&conf->device_lock, flags);
1609 			break;
1610 		}
1611 		r1_bio = list_entry(head->prev, r1bio_t, retry_list);
1612 		list_del(head->prev);
1613 		conf->nr_queued--;
1614 		spin_unlock_irqrestore(&conf->device_lock, flags);
1615 
1616 		mddev = r1_bio->mddev;
1617 		conf = mddev->private;
1618 		if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
1619 			sync_request_write(mddev, r1_bio);
1620 			unplug = 1;
1621 		} else if (test_bit(R1BIO_BarrierRetry, &r1_bio->state)) {
1622 			/* some requests in the r1bio were BIO_RW_BARRIER
1623 			 * requests which failed with -EOPNOTSUPP.  Hohumm..
1624 			 * Better resubmit without the barrier.
1625 			 * We know which devices to resubmit for, because
1626 			 * all others have had their bios[] entry cleared.
1627 			 * We already have a nr_pending reference on these rdevs.
1628 			 */
1629 			int i;
1630 			const bool do_sync = bio_rw_flagged(r1_bio->master_bio, BIO_RW_SYNCIO);
1631 			clear_bit(R1BIO_BarrierRetry, &r1_bio->state);
1632 			clear_bit(R1BIO_Barrier, &r1_bio->state);
1633 			for (i=0; i < conf->raid_disks; i++)
1634 				if (r1_bio->bios[i])
1635 					atomic_inc(&r1_bio->remaining);
1636 			for (i=0; i < conf->raid_disks; i++)
1637 				if (r1_bio->bios[i]) {
1638 					struct bio_vec *bvec;
1639 					int j;
1640 
1641 					bio = bio_clone(r1_bio->master_bio, GFP_NOIO);
1642 					/* copy pages from the failed bio, as
1643 					 * this might be a write-behind device */
1644 					__bio_for_each_segment(bvec, bio, j, 0)
1645 						bvec->bv_page = bio_iovec_idx(r1_bio->bios[i], j)->bv_page;
1646 					bio_put(r1_bio->bios[i]);
1647 					bio->bi_sector = r1_bio->sector +
1648 						conf->mirrors[i].rdev->data_offset;
1649 					bio->bi_bdev = conf->mirrors[i].rdev->bdev;
1650 					bio->bi_end_io = raid1_end_write_request;
1651 					bio->bi_rw = WRITE |
1652 						(do_sync << BIO_RW_SYNCIO);
1653 					bio->bi_private = r1_bio;
1654 					r1_bio->bios[i] = bio;
1655 					generic_make_request(bio);
1656 				}
1657 		} else {
1658 			int disk;
1659 
1660 			/* we got a read error. Maybe the drive is bad.  Maybe just
1661 			 * the block and we can fix it.
1662 			 * We freeze all other IO, and try reading the block from
1663 			 * other devices.  When we find one, we re-write
1664 			 * and check it that fixes the read error.
1665 			 * This is all done synchronously while the array is
1666 			 * frozen
1667 			 */
1668 			if (mddev->ro == 0) {
1669 				freeze_array(conf);
1670 				fix_read_error(conf, r1_bio->read_disk,
1671 					       r1_bio->sector,
1672 					       r1_bio->sectors);
1673 				unfreeze_array(conf);
1674 			} else
1675 				md_error(mddev,
1676 					 conf->mirrors[r1_bio->read_disk].rdev);
1677 
1678 			bio = r1_bio->bios[r1_bio->read_disk];
1679 			if ((disk=read_balance(conf, r1_bio)) == -1) {
1680 				printk(KERN_ALERT "raid1: %s: unrecoverable I/O"
1681 				       " read error for block %llu\n",
1682 				       bdevname(bio->bi_bdev,b),
1683 				       (unsigned long long)r1_bio->sector);
1684 				raid_end_bio_io(r1_bio);
1685 			} else {
1686 				const bool do_sync = bio_rw_flagged(r1_bio->master_bio, BIO_RW_SYNCIO);
1687 				r1_bio->bios[r1_bio->read_disk] =
1688 					mddev->ro ? IO_BLOCKED : NULL;
1689 				r1_bio->read_disk = disk;
1690 				bio_put(bio);
1691 				bio = bio_clone(r1_bio->master_bio, GFP_NOIO);
1692 				r1_bio->bios[r1_bio->read_disk] = bio;
1693 				rdev = conf->mirrors[disk].rdev;
1694 				if (printk_ratelimit())
1695 					printk(KERN_ERR "raid1: %s: redirecting sector %llu to"
1696 					       " another mirror\n",
1697 					       bdevname(rdev->bdev,b),
1698 					       (unsigned long long)r1_bio->sector);
1699 				bio->bi_sector = r1_bio->sector + rdev->data_offset;
1700 				bio->bi_bdev = rdev->bdev;
1701 				bio->bi_end_io = raid1_end_read_request;
1702 				bio->bi_rw = READ | (do_sync << BIO_RW_SYNCIO);
1703 				bio->bi_private = r1_bio;
1704 				unplug = 1;
1705 				generic_make_request(bio);
1706 			}
1707 		}
1708 		cond_resched();
1709 	}
1710 	if (unplug)
1711 		unplug_slaves(mddev);
1712 }
1713 
1714 
1715 static int init_resync(conf_t *conf)
1716 {
1717 	int buffs;
1718 
1719 	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
1720 	BUG_ON(conf->r1buf_pool);
1721 	conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
1722 					  conf->poolinfo);
1723 	if (!conf->r1buf_pool)
1724 		return -ENOMEM;
1725 	conf->next_resync = 0;
1726 	return 0;
1727 }
1728 
1729 /*
1730  * perform a "sync" on one "block"
1731  *
1732  * We need to make sure that no normal I/O request - particularly write
1733  * requests - conflict with active sync requests.
1734  *
1735  * This is achieved by tracking pending requests and a 'barrier' concept
1736  * that can be installed to exclude normal IO requests.
1737  */
1738 
1739 static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
1740 {
1741 	conf_t *conf = mddev->private;
1742 	r1bio_t *r1_bio;
1743 	struct bio *bio;
1744 	sector_t max_sector, nr_sectors;
1745 	int disk = -1;
1746 	int i;
1747 	int wonly = -1;
1748 	int write_targets = 0, read_targets = 0;
1749 	int sync_blocks;
1750 	int still_degraded = 0;
1751 
1752 	if (!conf->r1buf_pool)
1753 	{
1754 /*
1755 		printk("sync start - bitmap %p\n", mddev->bitmap);
1756 */
1757 		if (init_resync(conf))
1758 			return 0;
1759 	}
1760 
1761 	max_sector = mddev->dev_sectors;
1762 	if (sector_nr >= max_sector) {
1763 		/* If we aborted, we need to abort the
1764 		 * sync on the 'current' bitmap chunk (there will
1765 		 * only be one in raid1 resync.
1766 		 * We can find the current addess in mddev->curr_resync
1767 		 */
1768 		if (mddev->curr_resync < max_sector) /* aborted */
1769 			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
1770 						&sync_blocks, 1);
1771 		else /* completed sync */
1772 			conf->fullsync = 0;
1773 
1774 		bitmap_close_sync(mddev->bitmap);
1775 		close_sync(conf);
1776 		return 0;
1777 	}
1778 
1779 	if (mddev->bitmap == NULL &&
1780 	    mddev->recovery_cp == MaxSector &&
1781 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
1782 	    conf->fullsync == 0) {
1783 		*skipped = 1;
1784 		return max_sector - sector_nr;
1785 	}
1786 	/* before building a request, check if we can skip these blocks..
1787 	 * This call the bitmap_start_sync doesn't actually record anything
1788 	 */
1789 	if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
1790 	    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
1791 		/* We can skip this block, and probably several more */
1792 		*skipped = 1;
1793 		return sync_blocks;
1794 	}
1795 	/*
1796 	 * If there is non-resync activity waiting for a turn,
1797 	 * and resync is going fast enough,
1798 	 * then let it though before starting on this new sync request.
1799 	 */
1800 	if (!go_faster && conf->nr_waiting)
1801 		msleep_interruptible(1000);
1802 
1803 	bitmap_cond_end_sync(mddev->bitmap, sector_nr);
1804 	raise_barrier(conf);
1805 
1806 	conf->next_resync = sector_nr;
1807 
1808 	r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
1809 	rcu_read_lock();
1810 	/*
1811 	 * If we get a correctably read error during resync or recovery,
1812 	 * we might want to read from a different device.  So we
1813 	 * flag all drives that could conceivably be read from for READ,
1814 	 * and any others (which will be non-In_sync devices) for WRITE.
1815 	 * If a read fails, we try reading from something else for which READ
1816 	 * is OK.
1817 	 */
1818 
1819 	r1_bio->mddev = mddev;
1820 	r1_bio->sector = sector_nr;
1821 	r1_bio->state = 0;
1822 	set_bit(R1BIO_IsSync, &r1_bio->state);
1823 
1824 	for (i=0; i < conf->raid_disks; i++) {
1825 		mdk_rdev_t *rdev;
1826 		bio = r1_bio->bios[i];
1827 
1828 		/* take from bio_init */
1829 		bio->bi_next = NULL;
1830 		bio->bi_flags |= 1 << BIO_UPTODATE;
1831 		bio->bi_rw = READ;
1832 		bio->bi_vcnt = 0;
1833 		bio->bi_idx = 0;
1834 		bio->bi_phys_segments = 0;
1835 		bio->bi_size = 0;
1836 		bio->bi_end_io = NULL;
1837 		bio->bi_private = NULL;
1838 
1839 		rdev = rcu_dereference(conf->mirrors[i].rdev);
1840 		if (rdev == NULL ||
1841 			   test_bit(Faulty, &rdev->flags)) {
1842 			still_degraded = 1;
1843 			continue;
1844 		} else if (!test_bit(In_sync, &rdev->flags)) {
1845 			bio->bi_rw = WRITE;
1846 			bio->bi_end_io = end_sync_write;
1847 			write_targets ++;
1848 		} else {
1849 			/* may need to read from here */
1850 			bio->bi_rw = READ;
1851 			bio->bi_end_io = end_sync_read;
1852 			if (test_bit(WriteMostly, &rdev->flags)) {
1853 				if (wonly < 0)
1854 					wonly = i;
1855 			} else {
1856 				if (disk < 0)
1857 					disk = i;
1858 			}
1859 			read_targets++;
1860 		}
1861 		atomic_inc(&rdev->nr_pending);
1862 		bio->bi_sector = sector_nr + rdev->data_offset;
1863 		bio->bi_bdev = rdev->bdev;
1864 		bio->bi_private = r1_bio;
1865 	}
1866 	rcu_read_unlock();
1867 	if (disk < 0)
1868 		disk = wonly;
1869 	r1_bio->read_disk = disk;
1870 
1871 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
1872 		/* extra read targets are also write targets */
1873 		write_targets += read_targets-1;
1874 
1875 	if (write_targets == 0 || read_targets == 0) {
1876 		/* There is nowhere to write, so all non-sync
1877 		 * drives must be failed - so we are finished
1878 		 */
1879 		sector_t rv = max_sector - sector_nr;
1880 		*skipped = 1;
1881 		put_buf(r1_bio);
1882 		return rv;
1883 	}
1884 
1885 	if (max_sector > mddev->resync_max)
1886 		max_sector = mddev->resync_max; /* Don't do IO beyond here */
1887 	nr_sectors = 0;
1888 	sync_blocks = 0;
1889 	do {
1890 		struct page *page;
1891 		int len = PAGE_SIZE;
1892 		if (sector_nr + (len>>9) > max_sector)
1893 			len = (max_sector - sector_nr) << 9;
1894 		if (len == 0)
1895 			break;
1896 		if (sync_blocks == 0) {
1897 			if (!bitmap_start_sync(mddev->bitmap, sector_nr,
1898 					       &sync_blocks, still_degraded) &&
1899 			    !conf->fullsync &&
1900 			    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
1901 				break;
1902 			BUG_ON(sync_blocks < (PAGE_SIZE>>9));
1903 			if (len > (sync_blocks<<9))
1904 				len = sync_blocks<<9;
1905 		}
1906 
1907 		for (i=0 ; i < conf->raid_disks; i++) {
1908 			bio = r1_bio->bios[i];
1909 			if (bio->bi_end_io) {
1910 				page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
1911 				if (bio_add_page(bio, page, len, 0) == 0) {
1912 					/* stop here */
1913 					bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
1914 					while (i > 0) {
1915 						i--;
1916 						bio = r1_bio->bios[i];
1917 						if (bio->bi_end_io==NULL)
1918 							continue;
1919 						/* remove last page from this bio */
1920 						bio->bi_vcnt--;
1921 						bio->bi_size -= len;
1922 						bio->bi_flags &= ~(1<< BIO_SEG_VALID);
1923 					}
1924 					goto bio_full;
1925 				}
1926 			}
1927 		}
1928 		nr_sectors += len>>9;
1929 		sector_nr += len>>9;
1930 		sync_blocks -= (len>>9);
1931 	} while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
1932  bio_full:
1933 	r1_bio->sectors = nr_sectors;
1934 
1935 	/* For a user-requested sync, we read all readable devices and do a
1936 	 * compare
1937 	 */
1938 	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
1939 		atomic_set(&r1_bio->remaining, read_targets);
1940 		for (i=0; i<conf->raid_disks; i++) {
1941 			bio = r1_bio->bios[i];
1942 			if (bio->bi_end_io == end_sync_read) {
1943 				md_sync_acct(bio->bi_bdev, nr_sectors);
1944 				generic_make_request(bio);
1945 			}
1946 		}
1947 	} else {
1948 		atomic_set(&r1_bio->remaining, 1);
1949 		bio = r1_bio->bios[r1_bio->read_disk];
1950 		md_sync_acct(bio->bi_bdev, nr_sectors);
1951 		generic_make_request(bio);
1952 
1953 	}
1954 	return nr_sectors;
1955 }
1956 
1957 static sector_t raid1_size(mddev_t *mddev, sector_t sectors, int raid_disks)
1958 {
1959 	if (sectors)
1960 		return sectors;
1961 
1962 	return mddev->dev_sectors;
1963 }
1964 
1965 static conf_t *setup_conf(mddev_t *mddev)
1966 {
1967 	conf_t *conf;
1968 	int i;
1969 	mirror_info_t *disk;
1970 	mdk_rdev_t *rdev;
1971 	int err = -ENOMEM;
1972 
1973 	conf = kzalloc(sizeof(conf_t), GFP_KERNEL);
1974 	if (!conf)
1975 		goto abort;
1976 
1977 	conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks,
1978 				 GFP_KERNEL);
1979 	if (!conf->mirrors)
1980 		goto abort;
1981 
1982 	conf->tmppage = alloc_page(GFP_KERNEL);
1983 	if (!conf->tmppage)
1984 		goto abort;
1985 
1986 	conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
1987 	if (!conf->poolinfo)
1988 		goto abort;
1989 	conf->poolinfo->raid_disks = mddev->raid_disks;
1990 	conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
1991 					  r1bio_pool_free,
1992 					  conf->poolinfo);
1993 	if (!conf->r1bio_pool)
1994 		goto abort;
1995 
1996 	conf->poolinfo->mddev = mddev;
1997 
1998 	spin_lock_init(&conf->device_lock);
1999 	list_for_each_entry(rdev, &mddev->disks, same_set) {
2000 		int disk_idx = rdev->raid_disk;
2001 		if (disk_idx >= mddev->raid_disks
2002 		    || disk_idx < 0)
2003 			continue;
2004 		disk = conf->mirrors + disk_idx;
2005 
2006 		disk->rdev = rdev;
2007 
2008 		disk->head_position = 0;
2009 	}
2010 	conf->raid_disks = mddev->raid_disks;
2011 	conf->mddev = mddev;
2012 	INIT_LIST_HEAD(&conf->retry_list);
2013 
2014 	spin_lock_init(&conf->resync_lock);
2015 	init_waitqueue_head(&conf->wait_barrier);
2016 
2017 	bio_list_init(&conf->pending_bio_list);
2018 	bio_list_init(&conf->flushing_bio_list);
2019 
2020 	conf->last_used = -1;
2021 	for (i = 0; i < conf->raid_disks; i++) {
2022 
2023 		disk = conf->mirrors + i;
2024 
2025 		if (!disk->rdev ||
2026 		    !test_bit(In_sync, &disk->rdev->flags)) {
2027 			disk->head_position = 0;
2028 			if (disk->rdev)
2029 				conf->fullsync = 1;
2030 		} else if (conf->last_used < 0)
2031 			/*
2032 			 * The first working device is used as a
2033 			 * starting point to read balancing.
2034 			 */
2035 			conf->last_used = i;
2036 	}
2037 
2038 	err = -EIO;
2039 	if (conf->last_used < 0) {
2040 		printk(KERN_ERR "raid1: no operational mirrors for %s\n",
2041 		       mdname(mddev));
2042 		goto abort;
2043 	}
2044 	err = -ENOMEM;
2045 	conf->thread = md_register_thread(raid1d, mddev, NULL);
2046 	if (!conf->thread) {
2047 		printk(KERN_ERR
2048 		       "raid1: couldn't allocate thread for %s\n",
2049 		       mdname(mddev));
2050 		goto abort;
2051 	}
2052 
2053 	return conf;
2054 
2055  abort:
2056 	if (conf) {
2057 		if (conf->r1bio_pool)
2058 			mempool_destroy(conf->r1bio_pool);
2059 		kfree(conf->mirrors);
2060 		safe_put_page(conf->tmppage);
2061 		kfree(conf->poolinfo);
2062 		kfree(conf);
2063 	}
2064 	return ERR_PTR(err);
2065 }
2066 
2067 static int run(mddev_t *mddev)
2068 {
2069 	conf_t *conf;
2070 	int i;
2071 	mdk_rdev_t *rdev;
2072 
2073 	if (mddev->level != 1) {
2074 		printk("raid1: %s: raid level not set to mirroring (%d)\n",
2075 		       mdname(mddev), mddev->level);
2076 		return -EIO;
2077 	}
2078 	if (mddev->reshape_position != MaxSector) {
2079 		printk("raid1: %s: reshape_position set but not supported\n",
2080 		       mdname(mddev));
2081 		return -EIO;
2082 	}
2083 	/*
2084 	 * copy the already verified devices into our private RAID1
2085 	 * bookkeeping area. [whatever we allocate in run(),
2086 	 * should be freed in stop()]
2087 	 */
2088 	if (mddev->private == NULL)
2089 		conf = setup_conf(mddev);
2090 	else
2091 		conf = mddev->private;
2092 
2093 	if (IS_ERR(conf))
2094 		return PTR_ERR(conf);
2095 
2096 	mddev->queue->queue_lock = &conf->device_lock;
2097 	list_for_each_entry(rdev, &mddev->disks, same_set) {
2098 		disk_stack_limits(mddev->gendisk, rdev->bdev,
2099 				  rdev->data_offset << 9);
2100 		/* as we don't honour merge_bvec_fn, we must never risk
2101 		 * violating it, so limit ->max_sector to one PAGE, as
2102 		 * a one page request is never in violation.
2103 		 */
2104 		if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
2105 		    queue_max_sectors(mddev->queue) > (PAGE_SIZE>>9))
2106 			blk_queue_max_sectors(mddev->queue, PAGE_SIZE>>9);
2107 	}
2108 
2109 	mddev->degraded = 0;
2110 	for (i=0; i < conf->raid_disks; i++)
2111 		if (conf->mirrors[i].rdev == NULL ||
2112 		    !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
2113 		    test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2114 			mddev->degraded++;
2115 
2116 	if (conf->raid_disks - mddev->degraded == 1)
2117 		mddev->recovery_cp = MaxSector;
2118 
2119 	if (mddev->recovery_cp != MaxSector)
2120 		printk(KERN_NOTICE "raid1: %s is not clean"
2121 		       " -- starting background reconstruction\n",
2122 		       mdname(mddev));
2123 	printk(KERN_INFO
2124 		"raid1: raid set %s active with %d out of %d mirrors\n",
2125 		mdname(mddev), mddev->raid_disks - mddev->degraded,
2126 		mddev->raid_disks);
2127 
2128 	/*
2129 	 * Ok, everything is just fine now
2130 	 */
2131 	mddev->thread = conf->thread;
2132 	conf->thread = NULL;
2133 	mddev->private = conf;
2134 
2135 	md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
2136 
2137 	mddev->queue->unplug_fn = raid1_unplug;
2138 	mddev->queue->backing_dev_info.congested_fn = raid1_congested;
2139 	mddev->queue->backing_dev_info.congested_data = mddev;
2140 	md_integrity_register(mddev);
2141 	return 0;
2142 }
2143 
2144 static int stop(mddev_t *mddev)
2145 {
2146 	conf_t *conf = mddev->private;
2147 	struct bitmap *bitmap = mddev->bitmap;
2148 	int behind_wait = 0;
2149 
2150 	/* wait for behind writes to complete */
2151 	while (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
2152 		behind_wait++;
2153 		printk(KERN_INFO "raid1: behind writes in progress on device %s, waiting to stop (%d)\n", mdname(mddev), behind_wait);
2154 		set_current_state(TASK_UNINTERRUPTIBLE);
2155 		schedule_timeout(HZ); /* wait a second */
2156 		/* need to kick something here to make sure I/O goes? */
2157 	}
2158 
2159 	raise_barrier(conf);
2160 	lower_barrier(conf);
2161 
2162 	md_unregister_thread(mddev->thread);
2163 	mddev->thread = NULL;
2164 	blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
2165 	if (conf->r1bio_pool)
2166 		mempool_destroy(conf->r1bio_pool);
2167 	kfree(conf->mirrors);
2168 	kfree(conf->poolinfo);
2169 	kfree(conf);
2170 	mddev->private = NULL;
2171 	return 0;
2172 }
2173 
2174 static int raid1_resize(mddev_t *mddev, sector_t sectors)
2175 {
2176 	/* no resync is happening, and there is enough space
2177 	 * on all devices, so we can resize.
2178 	 * We need to make sure resync covers any new space.
2179 	 * If the array is shrinking we should possibly wait until
2180 	 * any io in the removed space completes, but it hardly seems
2181 	 * worth it.
2182 	 */
2183 	md_set_array_sectors(mddev, raid1_size(mddev, sectors, 0));
2184 	if (mddev->array_sectors > raid1_size(mddev, sectors, 0))
2185 		return -EINVAL;
2186 	set_capacity(mddev->gendisk, mddev->array_sectors);
2187 	mddev->changed = 1;
2188 	revalidate_disk(mddev->gendisk);
2189 	if (sectors > mddev->dev_sectors &&
2190 	    mddev->recovery_cp == MaxSector) {
2191 		mddev->recovery_cp = mddev->dev_sectors;
2192 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2193 	}
2194 	mddev->dev_sectors = sectors;
2195 	mddev->resync_max_sectors = sectors;
2196 	return 0;
2197 }
2198 
2199 static int raid1_reshape(mddev_t *mddev)
2200 {
2201 	/* We need to:
2202 	 * 1/ resize the r1bio_pool
2203 	 * 2/ resize conf->mirrors
2204 	 *
2205 	 * We allocate a new r1bio_pool if we can.
2206 	 * Then raise a device barrier and wait until all IO stops.
2207 	 * Then resize conf->mirrors and swap in the new r1bio pool.
2208 	 *
2209 	 * At the same time, we "pack" the devices so that all the missing
2210 	 * devices have the higher raid_disk numbers.
2211 	 */
2212 	mempool_t *newpool, *oldpool;
2213 	struct pool_info *newpoolinfo;
2214 	mirror_info_t *newmirrors;
2215 	conf_t *conf = mddev->private;
2216 	int cnt, raid_disks;
2217 	unsigned long flags;
2218 	int d, d2, err;
2219 
2220 	/* Cannot change chunk_size, layout, or level */
2221 	if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
2222 	    mddev->layout != mddev->new_layout ||
2223 	    mddev->level != mddev->new_level) {
2224 		mddev->new_chunk_sectors = mddev->chunk_sectors;
2225 		mddev->new_layout = mddev->layout;
2226 		mddev->new_level = mddev->level;
2227 		return -EINVAL;
2228 	}
2229 
2230 	err = md_allow_write(mddev);
2231 	if (err)
2232 		return err;
2233 
2234 	raid_disks = mddev->raid_disks + mddev->delta_disks;
2235 
2236 	if (raid_disks < conf->raid_disks) {
2237 		cnt=0;
2238 		for (d= 0; d < conf->raid_disks; d++)
2239 			if (conf->mirrors[d].rdev)
2240 				cnt++;
2241 		if (cnt > raid_disks)
2242 			return -EBUSY;
2243 	}
2244 
2245 	newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
2246 	if (!newpoolinfo)
2247 		return -ENOMEM;
2248 	newpoolinfo->mddev = mddev;
2249 	newpoolinfo->raid_disks = raid_disks;
2250 
2251 	newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2252 				 r1bio_pool_free, newpoolinfo);
2253 	if (!newpool) {
2254 		kfree(newpoolinfo);
2255 		return -ENOMEM;
2256 	}
2257 	newmirrors = kzalloc(sizeof(struct mirror_info) * raid_disks, GFP_KERNEL);
2258 	if (!newmirrors) {
2259 		kfree(newpoolinfo);
2260 		mempool_destroy(newpool);
2261 		return -ENOMEM;
2262 	}
2263 
2264 	raise_barrier(conf);
2265 
2266 	/* ok, everything is stopped */
2267 	oldpool = conf->r1bio_pool;
2268 	conf->r1bio_pool = newpool;
2269 
2270 	for (d = d2 = 0; d < conf->raid_disks; d++) {
2271 		mdk_rdev_t *rdev = conf->mirrors[d].rdev;
2272 		if (rdev && rdev->raid_disk != d2) {
2273 			char nm[20];
2274 			sprintf(nm, "rd%d", rdev->raid_disk);
2275 			sysfs_remove_link(&mddev->kobj, nm);
2276 			rdev->raid_disk = d2;
2277 			sprintf(nm, "rd%d", rdev->raid_disk);
2278 			sysfs_remove_link(&mddev->kobj, nm);
2279 			if (sysfs_create_link(&mddev->kobj,
2280 					      &rdev->kobj, nm))
2281 				printk(KERN_WARNING
2282 				       "md/raid1: cannot register "
2283 				       "%s for %s\n",
2284 				       nm, mdname(mddev));
2285 		}
2286 		if (rdev)
2287 			newmirrors[d2++].rdev = rdev;
2288 	}
2289 	kfree(conf->mirrors);
2290 	conf->mirrors = newmirrors;
2291 	kfree(conf->poolinfo);
2292 	conf->poolinfo = newpoolinfo;
2293 
2294 	spin_lock_irqsave(&conf->device_lock, flags);
2295 	mddev->degraded += (raid_disks - conf->raid_disks);
2296 	spin_unlock_irqrestore(&conf->device_lock, flags);
2297 	conf->raid_disks = mddev->raid_disks = raid_disks;
2298 	mddev->delta_disks = 0;
2299 
2300 	conf->last_used = 0; /* just make sure it is in-range */
2301 	lower_barrier(conf);
2302 
2303 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2304 	md_wakeup_thread(mddev->thread);
2305 
2306 	mempool_destroy(oldpool);
2307 	return 0;
2308 }
2309 
2310 static void raid1_quiesce(mddev_t *mddev, int state)
2311 {
2312 	conf_t *conf = mddev->private;
2313 
2314 	switch(state) {
2315 	case 2: /* wake for suspend */
2316 		wake_up(&conf->wait_barrier);
2317 		break;
2318 	case 1:
2319 		raise_barrier(conf);
2320 		break;
2321 	case 0:
2322 		lower_barrier(conf);
2323 		break;
2324 	}
2325 }
2326 
2327 static void *raid1_takeover(mddev_t *mddev)
2328 {
2329 	/* raid1 can take over:
2330 	 *  raid5 with 2 devices, any layout or chunk size
2331 	 */
2332 	if (mddev->level == 5 && mddev->raid_disks == 2) {
2333 		conf_t *conf;
2334 		mddev->new_level = 1;
2335 		mddev->new_layout = 0;
2336 		mddev->new_chunk_sectors = 0;
2337 		conf = setup_conf(mddev);
2338 		if (!IS_ERR(conf))
2339 			conf->barrier = 1;
2340 		return conf;
2341 	}
2342 	return ERR_PTR(-EINVAL);
2343 }
2344 
2345 static struct mdk_personality raid1_personality =
2346 {
2347 	.name		= "raid1",
2348 	.level		= 1,
2349 	.owner		= THIS_MODULE,
2350 	.make_request	= make_request,
2351 	.run		= run,
2352 	.stop		= stop,
2353 	.status		= status,
2354 	.error_handler	= error,
2355 	.hot_add_disk	= raid1_add_disk,
2356 	.hot_remove_disk= raid1_remove_disk,
2357 	.spare_active	= raid1_spare_active,
2358 	.sync_request	= sync_request,
2359 	.resize		= raid1_resize,
2360 	.size		= raid1_size,
2361 	.check_reshape	= raid1_reshape,
2362 	.quiesce	= raid1_quiesce,
2363 	.takeover	= raid1_takeover,
2364 };
2365 
2366 static int __init raid_init(void)
2367 {
2368 	return register_md_personality(&raid1_personality);
2369 }
2370 
2371 static void raid_exit(void)
2372 {
2373 	unregister_md_personality(&raid1_personality);
2374 }
2375 
2376 module_init(raid_init);
2377 module_exit(raid_exit);
2378 MODULE_LICENSE("GPL");
2379 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
2380 MODULE_ALIAS("md-personality-3"); /* RAID1 */
2381 MODULE_ALIAS("md-raid1");
2382 MODULE_ALIAS("md-level-1");
2383