1 /* 2 * raid1.c : Multiple Devices driver for Linux 3 * 4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat 5 * 6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman 7 * 8 * RAID-1 management functions. 9 * 10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000 11 * 12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk> 13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au> 14 * 15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support 16 * bitmapped intelligence in resync: 17 * 18 * - bitmap marked during normal i/o 19 * - bitmap used to skip nondirty blocks during sync 20 * 21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology: 22 * - persistent bitmap code 23 * 24 * This program is free software; you can redistribute it and/or modify 25 * it under the terms of the GNU General Public License as published by 26 * the Free Software Foundation; either version 2, or (at your option) 27 * any later version. 28 * 29 * You should have received a copy of the GNU General Public License 30 * (for example /usr/src/linux/COPYING); if not, write to the Free 31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 32 */ 33 34 #include <linux/delay.h> 35 #include <linux/blkdev.h> 36 #include <linux/seq_file.h> 37 #include "md.h" 38 #include "raid1.h" 39 #include "bitmap.h" 40 41 #define DEBUG 0 42 #if DEBUG 43 #define PRINTK(x...) printk(x) 44 #else 45 #define PRINTK(x...) 46 #endif 47 48 /* 49 * Number of guaranteed r1bios in case of extreme VM load: 50 */ 51 #define NR_RAID1_BIOS 256 52 53 54 static void unplug_slaves(mddev_t *mddev); 55 56 static void allow_barrier(conf_t *conf); 57 static void lower_barrier(conf_t *conf); 58 59 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data) 60 { 61 struct pool_info *pi = data; 62 r1bio_t *r1_bio; 63 int size = offsetof(r1bio_t, bios[pi->raid_disks]); 64 65 /* allocate a r1bio with room for raid_disks entries in the bios array */ 66 r1_bio = kzalloc(size, gfp_flags); 67 if (!r1_bio && pi->mddev) 68 unplug_slaves(pi->mddev); 69 70 return r1_bio; 71 } 72 73 static void r1bio_pool_free(void *r1_bio, void *data) 74 { 75 kfree(r1_bio); 76 } 77 78 #define RESYNC_BLOCK_SIZE (64*1024) 79 //#define RESYNC_BLOCK_SIZE PAGE_SIZE 80 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9) 81 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE) 82 #define RESYNC_WINDOW (2048*1024) 83 84 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data) 85 { 86 struct pool_info *pi = data; 87 struct page *page; 88 r1bio_t *r1_bio; 89 struct bio *bio; 90 int i, j; 91 92 r1_bio = r1bio_pool_alloc(gfp_flags, pi); 93 if (!r1_bio) { 94 unplug_slaves(pi->mddev); 95 return NULL; 96 } 97 98 /* 99 * Allocate bios : 1 for reading, n-1 for writing 100 */ 101 for (j = pi->raid_disks ; j-- ; ) { 102 bio = bio_alloc(gfp_flags, RESYNC_PAGES); 103 if (!bio) 104 goto out_free_bio; 105 r1_bio->bios[j] = bio; 106 } 107 /* 108 * Allocate RESYNC_PAGES data pages and attach them to 109 * the first bio. 110 * If this is a user-requested check/repair, allocate 111 * RESYNC_PAGES for each bio. 112 */ 113 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) 114 j = pi->raid_disks; 115 else 116 j = 1; 117 while(j--) { 118 bio = r1_bio->bios[j]; 119 for (i = 0; i < RESYNC_PAGES; i++) { 120 page = alloc_page(gfp_flags); 121 if (unlikely(!page)) 122 goto out_free_pages; 123 124 bio->bi_io_vec[i].bv_page = page; 125 bio->bi_vcnt = i+1; 126 } 127 } 128 /* If not user-requests, copy the page pointers to all bios */ 129 if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) { 130 for (i=0; i<RESYNC_PAGES ; i++) 131 for (j=1; j<pi->raid_disks; j++) 132 r1_bio->bios[j]->bi_io_vec[i].bv_page = 133 r1_bio->bios[0]->bi_io_vec[i].bv_page; 134 } 135 136 r1_bio->master_bio = NULL; 137 138 return r1_bio; 139 140 out_free_pages: 141 for (j=0 ; j < pi->raid_disks; j++) 142 for (i=0; i < r1_bio->bios[j]->bi_vcnt ; i++) 143 put_page(r1_bio->bios[j]->bi_io_vec[i].bv_page); 144 j = -1; 145 out_free_bio: 146 while ( ++j < pi->raid_disks ) 147 bio_put(r1_bio->bios[j]); 148 r1bio_pool_free(r1_bio, data); 149 return NULL; 150 } 151 152 static void r1buf_pool_free(void *__r1_bio, void *data) 153 { 154 struct pool_info *pi = data; 155 int i,j; 156 r1bio_t *r1bio = __r1_bio; 157 158 for (i = 0; i < RESYNC_PAGES; i++) 159 for (j = pi->raid_disks; j-- ;) { 160 if (j == 0 || 161 r1bio->bios[j]->bi_io_vec[i].bv_page != 162 r1bio->bios[0]->bi_io_vec[i].bv_page) 163 safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page); 164 } 165 for (i=0 ; i < pi->raid_disks; i++) 166 bio_put(r1bio->bios[i]); 167 168 r1bio_pool_free(r1bio, data); 169 } 170 171 static void put_all_bios(conf_t *conf, r1bio_t *r1_bio) 172 { 173 int i; 174 175 for (i = 0; i < conf->raid_disks; i++) { 176 struct bio **bio = r1_bio->bios + i; 177 if (*bio && *bio != IO_BLOCKED) 178 bio_put(*bio); 179 *bio = NULL; 180 } 181 } 182 183 static void free_r1bio(r1bio_t *r1_bio) 184 { 185 conf_t *conf = r1_bio->mddev->private; 186 187 /* 188 * Wake up any possible resync thread that waits for the device 189 * to go idle. 190 */ 191 allow_barrier(conf); 192 193 put_all_bios(conf, r1_bio); 194 mempool_free(r1_bio, conf->r1bio_pool); 195 } 196 197 static void put_buf(r1bio_t *r1_bio) 198 { 199 conf_t *conf = r1_bio->mddev->private; 200 int i; 201 202 for (i=0; i<conf->raid_disks; i++) { 203 struct bio *bio = r1_bio->bios[i]; 204 if (bio->bi_end_io) 205 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev); 206 } 207 208 mempool_free(r1_bio, conf->r1buf_pool); 209 210 lower_barrier(conf); 211 } 212 213 static void reschedule_retry(r1bio_t *r1_bio) 214 { 215 unsigned long flags; 216 mddev_t *mddev = r1_bio->mddev; 217 conf_t *conf = mddev->private; 218 219 spin_lock_irqsave(&conf->device_lock, flags); 220 list_add(&r1_bio->retry_list, &conf->retry_list); 221 conf->nr_queued ++; 222 spin_unlock_irqrestore(&conf->device_lock, flags); 223 224 wake_up(&conf->wait_barrier); 225 md_wakeup_thread(mddev->thread); 226 } 227 228 /* 229 * raid_end_bio_io() is called when we have finished servicing a mirrored 230 * operation and are ready to return a success/failure code to the buffer 231 * cache layer. 232 */ 233 static void raid_end_bio_io(r1bio_t *r1_bio) 234 { 235 struct bio *bio = r1_bio->master_bio; 236 237 /* if nobody has done the final endio yet, do it now */ 238 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) { 239 PRINTK(KERN_DEBUG "raid1: sync end %s on sectors %llu-%llu\n", 240 (bio_data_dir(bio) == WRITE) ? "write" : "read", 241 (unsigned long long) bio->bi_sector, 242 (unsigned long long) bio->bi_sector + 243 (bio->bi_size >> 9) - 1); 244 245 bio_endio(bio, 246 test_bit(R1BIO_Uptodate, &r1_bio->state) ? 0 : -EIO); 247 } 248 free_r1bio(r1_bio); 249 } 250 251 /* 252 * Update disk head position estimator based on IRQ completion info. 253 */ 254 static inline void update_head_pos(int disk, r1bio_t *r1_bio) 255 { 256 conf_t *conf = r1_bio->mddev->private; 257 258 conf->mirrors[disk].head_position = 259 r1_bio->sector + (r1_bio->sectors); 260 } 261 262 static void raid1_end_read_request(struct bio *bio, int error) 263 { 264 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 265 r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private); 266 int mirror; 267 conf_t *conf = r1_bio->mddev->private; 268 269 mirror = r1_bio->read_disk; 270 /* 271 * this branch is our 'one mirror IO has finished' event handler: 272 */ 273 update_head_pos(mirror, r1_bio); 274 275 if (uptodate) 276 set_bit(R1BIO_Uptodate, &r1_bio->state); 277 else { 278 /* If all other devices have failed, we want to return 279 * the error upwards rather than fail the last device. 280 * Here we redefine "uptodate" to mean "Don't want to retry" 281 */ 282 unsigned long flags; 283 spin_lock_irqsave(&conf->device_lock, flags); 284 if (r1_bio->mddev->degraded == conf->raid_disks || 285 (r1_bio->mddev->degraded == conf->raid_disks-1 && 286 !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags))) 287 uptodate = 1; 288 spin_unlock_irqrestore(&conf->device_lock, flags); 289 } 290 291 if (uptodate) 292 raid_end_bio_io(r1_bio); 293 else { 294 /* 295 * oops, read error: 296 */ 297 char b[BDEVNAME_SIZE]; 298 if (printk_ratelimit()) 299 printk(KERN_ERR "raid1: %s: rescheduling sector %llu\n", 300 bdevname(conf->mirrors[mirror].rdev->bdev,b), (unsigned long long)r1_bio->sector); 301 reschedule_retry(r1_bio); 302 } 303 304 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev); 305 } 306 307 static void raid1_end_write_request(struct bio *bio, int error) 308 { 309 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 310 r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private); 311 int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state); 312 conf_t *conf = r1_bio->mddev->private; 313 struct bio *to_put = NULL; 314 315 316 for (mirror = 0; mirror < conf->raid_disks; mirror++) 317 if (r1_bio->bios[mirror] == bio) 318 break; 319 320 if (error == -EOPNOTSUPP && test_bit(R1BIO_Barrier, &r1_bio->state)) { 321 set_bit(BarriersNotsupp, &conf->mirrors[mirror].rdev->flags); 322 set_bit(R1BIO_BarrierRetry, &r1_bio->state); 323 r1_bio->mddev->barriers_work = 0; 324 /* Don't rdev_dec_pending in this branch - keep it for the retry */ 325 } else { 326 /* 327 * this branch is our 'one mirror IO has finished' event handler: 328 */ 329 r1_bio->bios[mirror] = NULL; 330 to_put = bio; 331 if (!uptodate) { 332 md_error(r1_bio->mddev, conf->mirrors[mirror].rdev); 333 /* an I/O failed, we can't clear the bitmap */ 334 set_bit(R1BIO_Degraded, &r1_bio->state); 335 } else 336 /* 337 * Set R1BIO_Uptodate in our master bio, so that 338 * we will return a good error code for to the higher 339 * levels even if IO on some other mirrored buffer fails. 340 * 341 * The 'master' represents the composite IO operation to 342 * user-side. So if something waits for IO, then it will 343 * wait for the 'master' bio. 344 */ 345 set_bit(R1BIO_Uptodate, &r1_bio->state); 346 347 update_head_pos(mirror, r1_bio); 348 349 if (behind) { 350 if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags)) 351 atomic_dec(&r1_bio->behind_remaining); 352 353 /* In behind mode, we ACK the master bio once the I/O has safely 354 * reached all non-writemostly disks. Setting the Returned bit 355 * ensures that this gets done only once -- we don't ever want to 356 * return -EIO here, instead we'll wait */ 357 358 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) && 359 test_bit(R1BIO_Uptodate, &r1_bio->state)) { 360 /* Maybe we can return now */ 361 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) { 362 struct bio *mbio = r1_bio->master_bio; 363 PRINTK(KERN_DEBUG "raid1: behind end write sectors %llu-%llu\n", 364 (unsigned long long) mbio->bi_sector, 365 (unsigned long long) mbio->bi_sector + 366 (mbio->bi_size >> 9) - 1); 367 bio_endio(mbio, 0); 368 } 369 } 370 } 371 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev); 372 } 373 /* 374 * 375 * Let's see if all mirrored write operations have finished 376 * already. 377 */ 378 if (atomic_dec_and_test(&r1_bio->remaining)) { 379 if (test_bit(R1BIO_BarrierRetry, &r1_bio->state)) 380 reschedule_retry(r1_bio); 381 else { 382 /* it really is the end of this request */ 383 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) { 384 /* free extra copy of the data pages */ 385 int i = bio->bi_vcnt; 386 while (i--) 387 safe_put_page(bio->bi_io_vec[i].bv_page); 388 } 389 /* clear the bitmap if all writes complete successfully */ 390 bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector, 391 r1_bio->sectors, 392 !test_bit(R1BIO_Degraded, &r1_bio->state), 393 behind); 394 md_write_end(r1_bio->mddev); 395 raid_end_bio_io(r1_bio); 396 } 397 } 398 399 if (to_put) 400 bio_put(to_put); 401 } 402 403 404 /* 405 * This routine returns the disk from which the requested read should 406 * be done. There is a per-array 'next expected sequential IO' sector 407 * number - if this matches on the next IO then we use the last disk. 408 * There is also a per-disk 'last know head position' sector that is 409 * maintained from IRQ contexts, both the normal and the resync IO 410 * completion handlers update this position correctly. If there is no 411 * perfect sequential match then we pick the disk whose head is closest. 412 * 413 * If there are 2 mirrors in the same 2 devices, performance degrades 414 * because position is mirror, not device based. 415 * 416 * The rdev for the device selected will have nr_pending incremented. 417 */ 418 static int read_balance(conf_t *conf, r1bio_t *r1_bio) 419 { 420 const unsigned long this_sector = r1_bio->sector; 421 int new_disk = conf->last_used, disk = new_disk; 422 int wonly_disk = -1; 423 const int sectors = r1_bio->sectors; 424 sector_t new_distance, current_distance; 425 mdk_rdev_t *rdev; 426 427 rcu_read_lock(); 428 /* 429 * Check if we can balance. We can balance on the whole 430 * device if no resync is going on, or below the resync window. 431 * We take the first readable disk when above the resync window. 432 */ 433 retry: 434 if (conf->mddev->recovery_cp < MaxSector && 435 (this_sector + sectors >= conf->next_resync)) { 436 /* Choose the first operation device, for consistancy */ 437 new_disk = 0; 438 439 for (rdev = rcu_dereference(conf->mirrors[new_disk].rdev); 440 r1_bio->bios[new_disk] == IO_BLOCKED || 441 !rdev || !test_bit(In_sync, &rdev->flags) 442 || test_bit(WriteMostly, &rdev->flags); 443 rdev = rcu_dereference(conf->mirrors[++new_disk].rdev)) { 444 445 if (rdev && test_bit(In_sync, &rdev->flags) && 446 r1_bio->bios[new_disk] != IO_BLOCKED) 447 wonly_disk = new_disk; 448 449 if (new_disk == conf->raid_disks - 1) { 450 new_disk = wonly_disk; 451 break; 452 } 453 } 454 goto rb_out; 455 } 456 457 458 /* make sure the disk is operational */ 459 for (rdev = rcu_dereference(conf->mirrors[new_disk].rdev); 460 r1_bio->bios[new_disk] == IO_BLOCKED || 461 !rdev || !test_bit(In_sync, &rdev->flags) || 462 test_bit(WriteMostly, &rdev->flags); 463 rdev = rcu_dereference(conf->mirrors[new_disk].rdev)) { 464 465 if (rdev && test_bit(In_sync, &rdev->flags) && 466 r1_bio->bios[new_disk] != IO_BLOCKED) 467 wonly_disk = new_disk; 468 469 if (new_disk <= 0) 470 new_disk = conf->raid_disks; 471 new_disk--; 472 if (new_disk == disk) { 473 new_disk = wonly_disk; 474 break; 475 } 476 } 477 478 if (new_disk < 0) 479 goto rb_out; 480 481 disk = new_disk; 482 /* now disk == new_disk == starting point for search */ 483 484 /* 485 * Don't change to another disk for sequential reads: 486 */ 487 if (conf->next_seq_sect == this_sector) 488 goto rb_out; 489 if (this_sector == conf->mirrors[new_disk].head_position) 490 goto rb_out; 491 492 current_distance = abs(this_sector - conf->mirrors[disk].head_position); 493 494 /* Find the disk whose head is closest */ 495 496 do { 497 if (disk <= 0) 498 disk = conf->raid_disks; 499 disk--; 500 501 rdev = rcu_dereference(conf->mirrors[disk].rdev); 502 503 if (!rdev || r1_bio->bios[disk] == IO_BLOCKED || 504 !test_bit(In_sync, &rdev->flags) || 505 test_bit(WriteMostly, &rdev->flags)) 506 continue; 507 508 if (!atomic_read(&rdev->nr_pending)) { 509 new_disk = disk; 510 break; 511 } 512 new_distance = abs(this_sector - conf->mirrors[disk].head_position); 513 if (new_distance < current_distance) { 514 current_distance = new_distance; 515 new_disk = disk; 516 } 517 } while (disk != conf->last_used); 518 519 rb_out: 520 521 522 if (new_disk >= 0) { 523 rdev = rcu_dereference(conf->mirrors[new_disk].rdev); 524 if (!rdev) 525 goto retry; 526 atomic_inc(&rdev->nr_pending); 527 if (!test_bit(In_sync, &rdev->flags)) { 528 /* cannot risk returning a device that failed 529 * before we inc'ed nr_pending 530 */ 531 rdev_dec_pending(rdev, conf->mddev); 532 goto retry; 533 } 534 conf->next_seq_sect = this_sector + sectors; 535 conf->last_used = new_disk; 536 } 537 rcu_read_unlock(); 538 539 return new_disk; 540 } 541 542 static void unplug_slaves(mddev_t *mddev) 543 { 544 conf_t *conf = mddev->private; 545 int i; 546 547 rcu_read_lock(); 548 for (i=0; i<mddev->raid_disks; i++) { 549 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev); 550 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) { 551 struct request_queue *r_queue = bdev_get_queue(rdev->bdev); 552 553 atomic_inc(&rdev->nr_pending); 554 rcu_read_unlock(); 555 556 blk_unplug(r_queue); 557 558 rdev_dec_pending(rdev, mddev); 559 rcu_read_lock(); 560 } 561 } 562 rcu_read_unlock(); 563 } 564 565 static void raid1_unplug(struct request_queue *q) 566 { 567 mddev_t *mddev = q->queuedata; 568 569 unplug_slaves(mddev); 570 md_wakeup_thread(mddev->thread); 571 } 572 573 static int raid1_congested(void *data, int bits) 574 { 575 mddev_t *mddev = data; 576 conf_t *conf = mddev->private; 577 int i, ret = 0; 578 579 if (mddev_congested(mddev, bits)) 580 return 1; 581 582 rcu_read_lock(); 583 for (i = 0; i < mddev->raid_disks; i++) { 584 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev); 585 if (rdev && !test_bit(Faulty, &rdev->flags)) { 586 struct request_queue *q = bdev_get_queue(rdev->bdev); 587 588 /* Note the '|| 1' - when read_balance prefers 589 * non-congested targets, it can be removed 590 */ 591 if ((bits & (1<<BDI_async_congested)) || 1) 592 ret |= bdi_congested(&q->backing_dev_info, bits); 593 else 594 ret &= bdi_congested(&q->backing_dev_info, bits); 595 } 596 } 597 rcu_read_unlock(); 598 return ret; 599 } 600 601 602 static int flush_pending_writes(conf_t *conf) 603 { 604 /* Any writes that have been queued but are awaiting 605 * bitmap updates get flushed here. 606 * We return 1 if any requests were actually submitted. 607 */ 608 int rv = 0; 609 610 spin_lock_irq(&conf->device_lock); 611 612 if (conf->pending_bio_list.head) { 613 struct bio *bio; 614 bio = bio_list_get(&conf->pending_bio_list); 615 blk_remove_plug(conf->mddev->queue); 616 spin_unlock_irq(&conf->device_lock); 617 /* flush any pending bitmap writes to 618 * disk before proceeding w/ I/O */ 619 bitmap_unplug(conf->mddev->bitmap); 620 621 while (bio) { /* submit pending writes */ 622 struct bio *next = bio->bi_next; 623 bio->bi_next = NULL; 624 generic_make_request(bio); 625 bio = next; 626 } 627 rv = 1; 628 } else 629 spin_unlock_irq(&conf->device_lock); 630 return rv; 631 } 632 633 /* Barriers.... 634 * Sometimes we need to suspend IO while we do something else, 635 * either some resync/recovery, or reconfigure the array. 636 * To do this we raise a 'barrier'. 637 * The 'barrier' is a counter that can be raised multiple times 638 * to count how many activities are happening which preclude 639 * normal IO. 640 * We can only raise the barrier if there is no pending IO. 641 * i.e. if nr_pending == 0. 642 * We choose only to raise the barrier if no-one is waiting for the 643 * barrier to go down. This means that as soon as an IO request 644 * is ready, no other operations which require a barrier will start 645 * until the IO request has had a chance. 646 * 647 * So: regular IO calls 'wait_barrier'. When that returns there 648 * is no backgroup IO happening, It must arrange to call 649 * allow_barrier when it has finished its IO. 650 * backgroup IO calls must call raise_barrier. Once that returns 651 * there is no normal IO happeing. It must arrange to call 652 * lower_barrier when the particular background IO completes. 653 */ 654 #define RESYNC_DEPTH 32 655 656 static void raise_barrier(conf_t *conf) 657 { 658 spin_lock_irq(&conf->resync_lock); 659 660 /* Wait until no block IO is waiting */ 661 wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting, 662 conf->resync_lock, 663 raid1_unplug(conf->mddev->queue)); 664 665 /* block any new IO from starting */ 666 conf->barrier++; 667 668 /* No wait for all pending IO to complete */ 669 wait_event_lock_irq(conf->wait_barrier, 670 !conf->nr_pending && conf->barrier < RESYNC_DEPTH, 671 conf->resync_lock, 672 raid1_unplug(conf->mddev->queue)); 673 674 spin_unlock_irq(&conf->resync_lock); 675 } 676 677 static void lower_barrier(conf_t *conf) 678 { 679 unsigned long flags; 680 BUG_ON(conf->barrier <= 0); 681 spin_lock_irqsave(&conf->resync_lock, flags); 682 conf->barrier--; 683 spin_unlock_irqrestore(&conf->resync_lock, flags); 684 wake_up(&conf->wait_barrier); 685 } 686 687 static void wait_barrier(conf_t *conf) 688 { 689 spin_lock_irq(&conf->resync_lock); 690 if (conf->barrier) { 691 conf->nr_waiting++; 692 wait_event_lock_irq(conf->wait_barrier, !conf->barrier, 693 conf->resync_lock, 694 raid1_unplug(conf->mddev->queue)); 695 conf->nr_waiting--; 696 } 697 conf->nr_pending++; 698 spin_unlock_irq(&conf->resync_lock); 699 } 700 701 static void allow_barrier(conf_t *conf) 702 { 703 unsigned long flags; 704 spin_lock_irqsave(&conf->resync_lock, flags); 705 conf->nr_pending--; 706 spin_unlock_irqrestore(&conf->resync_lock, flags); 707 wake_up(&conf->wait_barrier); 708 } 709 710 static void freeze_array(conf_t *conf) 711 { 712 /* stop syncio and normal IO and wait for everything to 713 * go quite. 714 * We increment barrier and nr_waiting, and then 715 * wait until nr_pending match nr_queued+1 716 * This is called in the context of one normal IO request 717 * that has failed. Thus any sync request that might be pending 718 * will be blocked by nr_pending, and we need to wait for 719 * pending IO requests to complete or be queued for re-try. 720 * Thus the number queued (nr_queued) plus this request (1) 721 * must match the number of pending IOs (nr_pending) before 722 * we continue. 723 */ 724 spin_lock_irq(&conf->resync_lock); 725 conf->barrier++; 726 conf->nr_waiting++; 727 wait_event_lock_irq(conf->wait_barrier, 728 conf->nr_pending == conf->nr_queued+1, 729 conf->resync_lock, 730 ({ flush_pending_writes(conf); 731 raid1_unplug(conf->mddev->queue); })); 732 spin_unlock_irq(&conf->resync_lock); 733 } 734 static void unfreeze_array(conf_t *conf) 735 { 736 /* reverse the effect of the freeze */ 737 spin_lock_irq(&conf->resync_lock); 738 conf->barrier--; 739 conf->nr_waiting--; 740 wake_up(&conf->wait_barrier); 741 spin_unlock_irq(&conf->resync_lock); 742 } 743 744 745 /* duplicate the data pages for behind I/O */ 746 static struct page **alloc_behind_pages(struct bio *bio) 747 { 748 int i; 749 struct bio_vec *bvec; 750 struct page **pages = kzalloc(bio->bi_vcnt * sizeof(struct page *), 751 GFP_NOIO); 752 if (unlikely(!pages)) 753 goto do_sync_io; 754 755 bio_for_each_segment(bvec, bio, i) { 756 pages[i] = alloc_page(GFP_NOIO); 757 if (unlikely(!pages[i])) 758 goto do_sync_io; 759 memcpy(kmap(pages[i]) + bvec->bv_offset, 760 kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len); 761 kunmap(pages[i]); 762 kunmap(bvec->bv_page); 763 } 764 765 return pages; 766 767 do_sync_io: 768 if (pages) 769 for (i = 0; i < bio->bi_vcnt && pages[i]; i++) 770 put_page(pages[i]); 771 kfree(pages); 772 PRINTK("%dB behind alloc failed, doing sync I/O\n", bio->bi_size); 773 return NULL; 774 } 775 776 static int make_request(struct request_queue *q, struct bio * bio) 777 { 778 mddev_t *mddev = q->queuedata; 779 conf_t *conf = mddev->private; 780 mirror_info_t *mirror; 781 r1bio_t *r1_bio; 782 struct bio *read_bio; 783 int i, targets = 0, disks; 784 struct bitmap *bitmap; 785 unsigned long flags; 786 struct bio_list bl; 787 struct page **behind_pages = NULL; 788 const int rw = bio_data_dir(bio); 789 const bool do_sync = bio_rw_flagged(bio, BIO_RW_SYNCIO); 790 int cpu; 791 bool do_barriers; 792 mdk_rdev_t *blocked_rdev; 793 794 /* 795 * Register the new request and wait if the reconstruction 796 * thread has put up a bar for new requests. 797 * Continue immediately if no resync is active currently. 798 * We test barriers_work *after* md_write_start as md_write_start 799 * may cause the first superblock write, and that will check out 800 * if barriers work. 801 */ 802 803 md_write_start(mddev, bio); /* wait on superblock update early */ 804 805 if (bio_data_dir(bio) == WRITE && 806 bio->bi_sector + bio->bi_size/512 > mddev->suspend_lo && 807 bio->bi_sector < mddev->suspend_hi) { 808 /* As the suspend_* range is controlled by 809 * userspace, we want an interruptible 810 * wait. 811 */ 812 DEFINE_WAIT(w); 813 for (;;) { 814 flush_signals(current); 815 prepare_to_wait(&conf->wait_barrier, 816 &w, TASK_INTERRUPTIBLE); 817 if (bio->bi_sector + bio->bi_size/512 <= mddev->suspend_lo || 818 bio->bi_sector >= mddev->suspend_hi) 819 break; 820 schedule(); 821 } 822 finish_wait(&conf->wait_barrier, &w); 823 } 824 if (unlikely(!mddev->barriers_work && 825 bio_rw_flagged(bio, BIO_RW_BARRIER))) { 826 if (rw == WRITE) 827 md_write_end(mddev); 828 bio_endio(bio, -EOPNOTSUPP); 829 return 0; 830 } 831 832 wait_barrier(conf); 833 834 bitmap = mddev->bitmap; 835 836 cpu = part_stat_lock(); 837 part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]); 838 part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], 839 bio_sectors(bio)); 840 part_stat_unlock(); 841 842 /* 843 * make_request() can abort the operation when READA is being 844 * used and no empty request is available. 845 * 846 */ 847 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO); 848 849 r1_bio->master_bio = bio; 850 r1_bio->sectors = bio->bi_size >> 9; 851 r1_bio->state = 0; 852 r1_bio->mddev = mddev; 853 r1_bio->sector = bio->bi_sector; 854 855 if (rw == READ) { 856 /* 857 * read balancing logic: 858 */ 859 int rdisk = read_balance(conf, r1_bio); 860 861 if (rdisk < 0) { 862 /* couldn't find anywhere to read from */ 863 raid_end_bio_io(r1_bio); 864 return 0; 865 } 866 mirror = conf->mirrors + rdisk; 867 868 r1_bio->read_disk = rdisk; 869 870 read_bio = bio_clone(bio, GFP_NOIO); 871 872 r1_bio->bios[rdisk] = read_bio; 873 874 read_bio->bi_sector = r1_bio->sector + mirror->rdev->data_offset; 875 read_bio->bi_bdev = mirror->rdev->bdev; 876 read_bio->bi_end_io = raid1_end_read_request; 877 read_bio->bi_rw = READ | (do_sync << BIO_RW_SYNCIO); 878 read_bio->bi_private = r1_bio; 879 880 generic_make_request(read_bio); 881 return 0; 882 } 883 884 /* 885 * WRITE: 886 */ 887 /* first select target devices under spinlock and 888 * inc refcount on their rdev. Record them by setting 889 * bios[x] to bio 890 */ 891 disks = conf->raid_disks; 892 #if 0 893 { static int first=1; 894 if (first) printk("First Write sector %llu disks %d\n", 895 (unsigned long long)r1_bio->sector, disks); 896 first = 0; 897 } 898 #endif 899 retry_write: 900 blocked_rdev = NULL; 901 rcu_read_lock(); 902 for (i = 0; i < disks; i++) { 903 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev); 904 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) { 905 atomic_inc(&rdev->nr_pending); 906 blocked_rdev = rdev; 907 break; 908 } 909 if (rdev && !test_bit(Faulty, &rdev->flags)) { 910 atomic_inc(&rdev->nr_pending); 911 if (test_bit(Faulty, &rdev->flags)) { 912 rdev_dec_pending(rdev, mddev); 913 r1_bio->bios[i] = NULL; 914 } else 915 r1_bio->bios[i] = bio; 916 targets++; 917 } else 918 r1_bio->bios[i] = NULL; 919 } 920 rcu_read_unlock(); 921 922 if (unlikely(blocked_rdev)) { 923 /* Wait for this device to become unblocked */ 924 int j; 925 926 for (j = 0; j < i; j++) 927 if (r1_bio->bios[j]) 928 rdev_dec_pending(conf->mirrors[j].rdev, mddev); 929 930 allow_barrier(conf); 931 md_wait_for_blocked_rdev(blocked_rdev, mddev); 932 wait_barrier(conf); 933 goto retry_write; 934 } 935 936 BUG_ON(targets == 0); /* we never fail the last device */ 937 938 if (targets < conf->raid_disks) { 939 /* array is degraded, we will not clear the bitmap 940 * on I/O completion (see raid1_end_write_request) */ 941 set_bit(R1BIO_Degraded, &r1_bio->state); 942 } 943 944 /* do behind I/O ? */ 945 if (bitmap && 946 (atomic_read(&bitmap->behind_writes) 947 < mddev->bitmap_info.max_write_behind) && 948 (behind_pages = alloc_behind_pages(bio)) != NULL) 949 set_bit(R1BIO_BehindIO, &r1_bio->state); 950 951 atomic_set(&r1_bio->remaining, 0); 952 atomic_set(&r1_bio->behind_remaining, 0); 953 954 do_barriers = bio_rw_flagged(bio, BIO_RW_BARRIER); 955 if (do_barriers) 956 set_bit(R1BIO_Barrier, &r1_bio->state); 957 958 bio_list_init(&bl); 959 for (i = 0; i < disks; i++) { 960 struct bio *mbio; 961 if (!r1_bio->bios[i]) 962 continue; 963 964 mbio = bio_clone(bio, GFP_NOIO); 965 r1_bio->bios[i] = mbio; 966 967 mbio->bi_sector = r1_bio->sector + conf->mirrors[i].rdev->data_offset; 968 mbio->bi_bdev = conf->mirrors[i].rdev->bdev; 969 mbio->bi_end_io = raid1_end_write_request; 970 mbio->bi_rw = WRITE | (do_barriers << BIO_RW_BARRIER) | 971 (do_sync << BIO_RW_SYNCIO); 972 mbio->bi_private = r1_bio; 973 974 if (behind_pages) { 975 struct bio_vec *bvec; 976 int j; 977 978 /* Yes, I really want the '__' version so that 979 * we clear any unused pointer in the io_vec, rather 980 * than leave them unchanged. This is important 981 * because when we come to free the pages, we won't 982 * know the originial bi_idx, so we just free 983 * them all 984 */ 985 __bio_for_each_segment(bvec, mbio, j, 0) 986 bvec->bv_page = behind_pages[j]; 987 if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags)) 988 atomic_inc(&r1_bio->behind_remaining); 989 } 990 991 atomic_inc(&r1_bio->remaining); 992 993 bio_list_add(&bl, mbio); 994 } 995 kfree(behind_pages); /* the behind pages are attached to the bios now */ 996 997 bitmap_startwrite(bitmap, bio->bi_sector, r1_bio->sectors, 998 test_bit(R1BIO_BehindIO, &r1_bio->state)); 999 spin_lock_irqsave(&conf->device_lock, flags); 1000 bio_list_merge(&conf->pending_bio_list, &bl); 1001 bio_list_init(&bl); 1002 1003 blk_plug_device(mddev->queue); 1004 spin_unlock_irqrestore(&conf->device_lock, flags); 1005 1006 /* In case raid1d snuck into freeze_array */ 1007 wake_up(&conf->wait_barrier); 1008 1009 if (do_sync) 1010 md_wakeup_thread(mddev->thread); 1011 #if 0 1012 while ((bio = bio_list_pop(&bl)) != NULL) 1013 generic_make_request(bio); 1014 #endif 1015 1016 return 0; 1017 } 1018 1019 static void status(struct seq_file *seq, mddev_t *mddev) 1020 { 1021 conf_t *conf = mddev->private; 1022 int i; 1023 1024 seq_printf(seq, " [%d/%d] [", conf->raid_disks, 1025 conf->raid_disks - mddev->degraded); 1026 rcu_read_lock(); 1027 for (i = 0; i < conf->raid_disks; i++) { 1028 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev); 1029 seq_printf(seq, "%s", 1030 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_"); 1031 } 1032 rcu_read_unlock(); 1033 seq_printf(seq, "]"); 1034 } 1035 1036 1037 static void error(mddev_t *mddev, mdk_rdev_t *rdev) 1038 { 1039 char b[BDEVNAME_SIZE]; 1040 conf_t *conf = mddev->private; 1041 1042 /* 1043 * If it is not operational, then we have already marked it as dead 1044 * else if it is the last working disks, ignore the error, let the 1045 * next level up know. 1046 * else mark the drive as failed 1047 */ 1048 if (test_bit(In_sync, &rdev->flags) 1049 && (conf->raid_disks - mddev->degraded) == 1) { 1050 /* 1051 * Don't fail the drive, act as though we were just a 1052 * normal single drive. 1053 * However don't try a recovery from this drive as 1054 * it is very likely to fail. 1055 */ 1056 mddev->recovery_disabled = 1; 1057 return; 1058 } 1059 if (test_and_clear_bit(In_sync, &rdev->flags)) { 1060 unsigned long flags; 1061 spin_lock_irqsave(&conf->device_lock, flags); 1062 mddev->degraded++; 1063 set_bit(Faulty, &rdev->flags); 1064 spin_unlock_irqrestore(&conf->device_lock, flags); 1065 /* 1066 * if recovery is running, make sure it aborts. 1067 */ 1068 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 1069 } else 1070 set_bit(Faulty, &rdev->flags); 1071 set_bit(MD_CHANGE_DEVS, &mddev->flags); 1072 printk(KERN_ALERT "raid1: Disk failure on %s, disabling device.\n" 1073 "raid1: Operation continuing on %d devices.\n", 1074 bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded); 1075 } 1076 1077 static void print_conf(conf_t *conf) 1078 { 1079 int i; 1080 1081 printk("RAID1 conf printout:\n"); 1082 if (!conf) { 1083 printk("(!conf)\n"); 1084 return; 1085 } 1086 printk(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded, 1087 conf->raid_disks); 1088 1089 rcu_read_lock(); 1090 for (i = 0; i < conf->raid_disks; i++) { 1091 char b[BDEVNAME_SIZE]; 1092 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev); 1093 if (rdev) 1094 printk(" disk %d, wo:%d, o:%d, dev:%s\n", 1095 i, !test_bit(In_sync, &rdev->flags), 1096 !test_bit(Faulty, &rdev->flags), 1097 bdevname(rdev->bdev,b)); 1098 } 1099 rcu_read_unlock(); 1100 } 1101 1102 static void close_sync(conf_t *conf) 1103 { 1104 wait_barrier(conf); 1105 allow_barrier(conf); 1106 1107 mempool_destroy(conf->r1buf_pool); 1108 conf->r1buf_pool = NULL; 1109 } 1110 1111 static int raid1_spare_active(mddev_t *mddev) 1112 { 1113 int i; 1114 conf_t *conf = mddev->private; 1115 1116 /* 1117 * Find all failed disks within the RAID1 configuration 1118 * and mark them readable. 1119 * Called under mddev lock, so rcu protection not needed. 1120 */ 1121 for (i = 0; i < conf->raid_disks; i++) { 1122 mdk_rdev_t *rdev = conf->mirrors[i].rdev; 1123 if (rdev 1124 && !test_bit(Faulty, &rdev->flags) 1125 && !test_and_set_bit(In_sync, &rdev->flags)) { 1126 unsigned long flags; 1127 spin_lock_irqsave(&conf->device_lock, flags); 1128 mddev->degraded--; 1129 spin_unlock_irqrestore(&conf->device_lock, flags); 1130 } 1131 } 1132 1133 print_conf(conf); 1134 return 0; 1135 } 1136 1137 1138 static int raid1_add_disk(mddev_t *mddev, mdk_rdev_t *rdev) 1139 { 1140 conf_t *conf = mddev->private; 1141 int err = -EEXIST; 1142 int mirror = 0; 1143 mirror_info_t *p; 1144 int first = 0; 1145 int last = mddev->raid_disks - 1; 1146 1147 if (rdev->raid_disk >= 0) 1148 first = last = rdev->raid_disk; 1149 1150 for (mirror = first; mirror <= last; mirror++) 1151 if ( !(p=conf->mirrors+mirror)->rdev) { 1152 1153 disk_stack_limits(mddev->gendisk, rdev->bdev, 1154 rdev->data_offset << 9); 1155 /* as we don't honour merge_bvec_fn, we must never risk 1156 * violating it, so limit ->max_sector to one PAGE, as 1157 * a one page request is never in violation. 1158 */ 1159 if (rdev->bdev->bd_disk->queue->merge_bvec_fn && 1160 queue_max_sectors(mddev->queue) > (PAGE_SIZE>>9)) 1161 blk_queue_max_sectors(mddev->queue, PAGE_SIZE>>9); 1162 1163 p->head_position = 0; 1164 rdev->raid_disk = mirror; 1165 err = 0; 1166 /* As all devices are equivalent, we don't need a full recovery 1167 * if this was recently any drive of the array 1168 */ 1169 if (rdev->saved_raid_disk < 0) 1170 conf->fullsync = 1; 1171 rcu_assign_pointer(p->rdev, rdev); 1172 break; 1173 } 1174 md_integrity_add_rdev(rdev, mddev); 1175 print_conf(conf); 1176 return err; 1177 } 1178 1179 static int raid1_remove_disk(mddev_t *mddev, int number) 1180 { 1181 conf_t *conf = mddev->private; 1182 int err = 0; 1183 mdk_rdev_t *rdev; 1184 mirror_info_t *p = conf->mirrors+ number; 1185 1186 print_conf(conf); 1187 rdev = p->rdev; 1188 if (rdev) { 1189 if (test_bit(In_sync, &rdev->flags) || 1190 atomic_read(&rdev->nr_pending)) { 1191 err = -EBUSY; 1192 goto abort; 1193 } 1194 /* Only remove non-faulty devices is recovery 1195 * is not possible. 1196 */ 1197 if (!test_bit(Faulty, &rdev->flags) && 1198 mddev->degraded < conf->raid_disks) { 1199 err = -EBUSY; 1200 goto abort; 1201 } 1202 p->rdev = NULL; 1203 synchronize_rcu(); 1204 if (atomic_read(&rdev->nr_pending)) { 1205 /* lost the race, try later */ 1206 err = -EBUSY; 1207 p->rdev = rdev; 1208 goto abort; 1209 } 1210 md_integrity_register(mddev); 1211 } 1212 abort: 1213 1214 print_conf(conf); 1215 return err; 1216 } 1217 1218 1219 static void end_sync_read(struct bio *bio, int error) 1220 { 1221 r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private); 1222 int i; 1223 1224 for (i=r1_bio->mddev->raid_disks; i--; ) 1225 if (r1_bio->bios[i] == bio) 1226 break; 1227 BUG_ON(i < 0); 1228 update_head_pos(i, r1_bio); 1229 /* 1230 * we have read a block, now it needs to be re-written, 1231 * or re-read if the read failed. 1232 * We don't do much here, just schedule handling by raid1d 1233 */ 1234 if (test_bit(BIO_UPTODATE, &bio->bi_flags)) 1235 set_bit(R1BIO_Uptodate, &r1_bio->state); 1236 1237 if (atomic_dec_and_test(&r1_bio->remaining)) 1238 reschedule_retry(r1_bio); 1239 } 1240 1241 static void end_sync_write(struct bio *bio, int error) 1242 { 1243 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 1244 r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private); 1245 mddev_t *mddev = r1_bio->mddev; 1246 conf_t *conf = mddev->private; 1247 int i; 1248 int mirror=0; 1249 1250 for (i = 0; i < conf->raid_disks; i++) 1251 if (r1_bio->bios[i] == bio) { 1252 mirror = i; 1253 break; 1254 } 1255 if (!uptodate) { 1256 int sync_blocks = 0; 1257 sector_t s = r1_bio->sector; 1258 long sectors_to_go = r1_bio->sectors; 1259 /* make sure these bits doesn't get cleared. */ 1260 do { 1261 bitmap_end_sync(mddev->bitmap, s, 1262 &sync_blocks, 1); 1263 s += sync_blocks; 1264 sectors_to_go -= sync_blocks; 1265 } while (sectors_to_go > 0); 1266 md_error(mddev, conf->mirrors[mirror].rdev); 1267 } 1268 1269 update_head_pos(mirror, r1_bio); 1270 1271 if (atomic_dec_and_test(&r1_bio->remaining)) { 1272 sector_t s = r1_bio->sectors; 1273 put_buf(r1_bio); 1274 md_done_sync(mddev, s, uptodate); 1275 } 1276 } 1277 1278 static void sync_request_write(mddev_t *mddev, r1bio_t *r1_bio) 1279 { 1280 conf_t *conf = mddev->private; 1281 int i; 1282 int disks = conf->raid_disks; 1283 struct bio *bio, *wbio; 1284 1285 bio = r1_bio->bios[r1_bio->read_disk]; 1286 1287 1288 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 1289 /* We have read all readable devices. If we haven't 1290 * got the block, then there is no hope left. 1291 * If we have, then we want to do a comparison 1292 * and skip the write if everything is the same. 1293 * If any blocks failed to read, then we need to 1294 * attempt an over-write 1295 */ 1296 int primary; 1297 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) { 1298 for (i=0; i<mddev->raid_disks; i++) 1299 if (r1_bio->bios[i]->bi_end_io == end_sync_read) 1300 md_error(mddev, conf->mirrors[i].rdev); 1301 1302 md_done_sync(mddev, r1_bio->sectors, 1); 1303 put_buf(r1_bio); 1304 return; 1305 } 1306 for (primary=0; primary<mddev->raid_disks; primary++) 1307 if (r1_bio->bios[primary]->bi_end_io == end_sync_read && 1308 test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) { 1309 r1_bio->bios[primary]->bi_end_io = NULL; 1310 rdev_dec_pending(conf->mirrors[primary].rdev, mddev); 1311 break; 1312 } 1313 r1_bio->read_disk = primary; 1314 for (i=0; i<mddev->raid_disks; i++) 1315 if (r1_bio->bios[i]->bi_end_io == end_sync_read) { 1316 int j; 1317 int vcnt = r1_bio->sectors >> (PAGE_SHIFT- 9); 1318 struct bio *pbio = r1_bio->bios[primary]; 1319 struct bio *sbio = r1_bio->bios[i]; 1320 1321 if (test_bit(BIO_UPTODATE, &sbio->bi_flags)) { 1322 for (j = vcnt; j-- ; ) { 1323 struct page *p, *s; 1324 p = pbio->bi_io_vec[j].bv_page; 1325 s = sbio->bi_io_vec[j].bv_page; 1326 if (memcmp(page_address(p), 1327 page_address(s), 1328 PAGE_SIZE)) 1329 break; 1330 } 1331 } else 1332 j = 0; 1333 if (j >= 0) 1334 mddev->resync_mismatches += r1_bio->sectors; 1335 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery) 1336 && test_bit(BIO_UPTODATE, &sbio->bi_flags))) { 1337 sbio->bi_end_io = NULL; 1338 rdev_dec_pending(conf->mirrors[i].rdev, mddev); 1339 } else { 1340 /* fixup the bio for reuse */ 1341 int size; 1342 sbio->bi_vcnt = vcnt; 1343 sbio->bi_size = r1_bio->sectors << 9; 1344 sbio->bi_idx = 0; 1345 sbio->bi_phys_segments = 0; 1346 sbio->bi_flags &= ~(BIO_POOL_MASK - 1); 1347 sbio->bi_flags |= 1 << BIO_UPTODATE; 1348 sbio->bi_next = NULL; 1349 sbio->bi_sector = r1_bio->sector + 1350 conf->mirrors[i].rdev->data_offset; 1351 sbio->bi_bdev = conf->mirrors[i].rdev->bdev; 1352 size = sbio->bi_size; 1353 for (j = 0; j < vcnt ; j++) { 1354 struct bio_vec *bi; 1355 bi = &sbio->bi_io_vec[j]; 1356 bi->bv_offset = 0; 1357 if (size > PAGE_SIZE) 1358 bi->bv_len = PAGE_SIZE; 1359 else 1360 bi->bv_len = size; 1361 size -= PAGE_SIZE; 1362 memcpy(page_address(bi->bv_page), 1363 page_address(pbio->bi_io_vec[j].bv_page), 1364 PAGE_SIZE); 1365 } 1366 1367 } 1368 } 1369 } 1370 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) { 1371 /* ouch - failed to read all of that. 1372 * Try some synchronous reads of other devices to get 1373 * good data, much like with normal read errors. Only 1374 * read into the pages we already have so we don't 1375 * need to re-issue the read request. 1376 * We don't need to freeze the array, because being in an 1377 * active sync request, there is no normal IO, and 1378 * no overlapping syncs. 1379 */ 1380 sector_t sect = r1_bio->sector; 1381 int sectors = r1_bio->sectors; 1382 int idx = 0; 1383 1384 while(sectors) { 1385 int s = sectors; 1386 int d = r1_bio->read_disk; 1387 int success = 0; 1388 mdk_rdev_t *rdev; 1389 1390 if (s > (PAGE_SIZE>>9)) 1391 s = PAGE_SIZE >> 9; 1392 do { 1393 if (r1_bio->bios[d]->bi_end_io == end_sync_read) { 1394 /* No rcu protection needed here devices 1395 * can only be removed when no resync is 1396 * active, and resync is currently active 1397 */ 1398 rdev = conf->mirrors[d].rdev; 1399 if (sync_page_io(rdev->bdev, 1400 sect + rdev->data_offset, 1401 s<<9, 1402 bio->bi_io_vec[idx].bv_page, 1403 READ)) { 1404 success = 1; 1405 break; 1406 } 1407 } 1408 d++; 1409 if (d == conf->raid_disks) 1410 d = 0; 1411 } while (!success && d != r1_bio->read_disk); 1412 1413 if (success) { 1414 int start = d; 1415 /* write it back and re-read */ 1416 set_bit(R1BIO_Uptodate, &r1_bio->state); 1417 while (d != r1_bio->read_disk) { 1418 if (d == 0) 1419 d = conf->raid_disks; 1420 d--; 1421 if (r1_bio->bios[d]->bi_end_io != end_sync_read) 1422 continue; 1423 rdev = conf->mirrors[d].rdev; 1424 atomic_add(s, &rdev->corrected_errors); 1425 if (sync_page_io(rdev->bdev, 1426 sect + rdev->data_offset, 1427 s<<9, 1428 bio->bi_io_vec[idx].bv_page, 1429 WRITE) == 0) 1430 md_error(mddev, rdev); 1431 } 1432 d = start; 1433 while (d != r1_bio->read_disk) { 1434 if (d == 0) 1435 d = conf->raid_disks; 1436 d--; 1437 if (r1_bio->bios[d]->bi_end_io != end_sync_read) 1438 continue; 1439 rdev = conf->mirrors[d].rdev; 1440 if (sync_page_io(rdev->bdev, 1441 sect + rdev->data_offset, 1442 s<<9, 1443 bio->bi_io_vec[idx].bv_page, 1444 READ) == 0) 1445 md_error(mddev, rdev); 1446 } 1447 } else { 1448 char b[BDEVNAME_SIZE]; 1449 /* Cannot read from anywhere, array is toast */ 1450 md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev); 1451 printk(KERN_ALERT "raid1: %s: unrecoverable I/O read error" 1452 " for block %llu\n", 1453 bdevname(bio->bi_bdev,b), 1454 (unsigned long long)r1_bio->sector); 1455 md_done_sync(mddev, r1_bio->sectors, 0); 1456 put_buf(r1_bio); 1457 return; 1458 } 1459 sectors -= s; 1460 sect += s; 1461 idx ++; 1462 } 1463 } 1464 1465 /* 1466 * schedule writes 1467 */ 1468 atomic_set(&r1_bio->remaining, 1); 1469 for (i = 0; i < disks ; i++) { 1470 wbio = r1_bio->bios[i]; 1471 if (wbio->bi_end_io == NULL || 1472 (wbio->bi_end_io == end_sync_read && 1473 (i == r1_bio->read_disk || 1474 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery)))) 1475 continue; 1476 1477 wbio->bi_rw = WRITE; 1478 wbio->bi_end_io = end_sync_write; 1479 atomic_inc(&r1_bio->remaining); 1480 md_sync_acct(conf->mirrors[i].rdev->bdev, wbio->bi_size >> 9); 1481 1482 generic_make_request(wbio); 1483 } 1484 1485 if (atomic_dec_and_test(&r1_bio->remaining)) { 1486 /* if we're here, all write(s) have completed, so clean up */ 1487 md_done_sync(mddev, r1_bio->sectors, 1); 1488 put_buf(r1_bio); 1489 } 1490 } 1491 1492 /* 1493 * This is a kernel thread which: 1494 * 1495 * 1. Retries failed read operations on working mirrors. 1496 * 2. Updates the raid superblock when problems encounter. 1497 * 3. Performs writes following reads for array syncronising. 1498 */ 1499 1500 static void fix_read_error(conf_t *conf, int read_disk, 1501 sector_t sect, int sectors) 1502 { 1503 mddev_t *mddev = conf->mddev; 1504 while(sectors) { 1505 int s = sectors; 1506 int d = read_disk; 1507 int success = 0; 1508 int start; 1509 mdk_rdev_t *rdev; 1510 1511 if (s > (PAGE_SIZE>>9)) 1512 s = PAGE_SIZE >> 9; 1513 1514 do { 1515 /* Note: no rcu protection needed here 1516 * as this is synchronous in the raid1d thread 1517 * which is the thread that might remove 1518 * a device. If raid1d ever becomes multi-threaded.... 1519 */ 1520 rdev = conf->mirrors[d].rdev; 1521 if (rdev && 1522 test_bit(In_sync, &rdev->flags) && 1523 sync_page_io(rdev->bdev, 1524 sect + rdev->data_offset, 1525 s<<9, 1526 conf->tmppage, READ)) 1527 success = 1; 1528 else { 1529 d++; 1530 if (d == conf->raid_disks) 1531 d = 0; 1532 } 1533 } while (!success && d != read_disk); 1534 1535 if (!success) { 1536 /* Cannot read from anywhere -- bye bye array */ 1537 md_error(mddev, conf->mirrors[read_disk].rdev); 1538 break; 1539 } 1540 /* write it back and re-read */ 1541 start = d; 1542 while (d != read_disk) { 1543 if (d==0) 1544 d = conf->raid_disks; 1545 d--; 1546 rdev = conf->mirrors[d].rdev; 1547 if (rdev && 1548 test_bit(In_sync, &rdev->flags)) { 1549 if (sync_page_io(rdev->bdev, 1550 sect + rdev->data_offset, 1551 s<<9, conf->tmppage, WRITE) 1552 == 0) 1553 /* Well, this device is dead */ 1554 md_error(mddev, rdev); 1555 } 1556 } 1557 d = start; 1558 while (d != read_disk) { 1559 char b[BDEVNAME_SIZE]; 1560 if (d==0) 1561 d = conf->raid_disks; 1562 d--; 1563 rdev = conf->mirrors[d].rdev; 1564 if (rdev && 1565 test_bit(In_sync, &rdev->flags)) { 1566 if (sync_page_io(rdev->bdev, 1567 sect + rdev->data_offset, 1568 s<<9, conf->tmppage, READ) 1569 == 0) 1570 /* Well, this device is dead */ 1571 md_error(mddev, rdev); 1572 else { 1573 atomic_add(s, &rdev->corrected_errors); 1574 printk(KERN_INFO 1575 "raid1:%s: read error corrected " 1576 "(%d sectors at %llu on %s)\n", 1577 mdname(mddev), s, 1578 (unsigned long long)(sect + 1579 rdev->data_offset), 1580 bdevname(rdev->bdev, b)); 1581 } 1582 } 1583 } 1584 sectors -= s; 1585 sect += s; 1586 } 1587 } 1588 1589 static void raid1d(mddev_t *mddev) 1590 { 1591 r1bio_t *r1_bio; 1592 struct bio *bio; 1593 unsigned long flags; 1594 conf_t *conf = mddev->private; 1595 struct list_head *head = &conf->retry_list; 1596 int unplug=0; 1597 mdk_rdev_t *rdev; 1598 1599 md_check_recovery(mddev); 1600 1601 for (;;) { 1602 char b[BDEVNAME_SIZE]; 1603 1604 unplug += flush_pending_writes(conf); 1605 1606 spin_lock_irqsave(&conf->device_lock, flags); 1607 if (list_empty(head)) { 1608 spin_unlock_irqrestore(&conf->device_lock, flags); 1609 break; 1610 } 1611 r1_bio = list_entry(head->prev, r1bio_t, retry_list); 1612 list_del(head->prev); 1613 conf->nr_queued--; 1614 spin_unlock_irqrestore(&conf->device_lock, flags); 1615 1616 mddev = r1_bio->mddev; 1617 conf = mddev->private; 1618 if (test_bit(R1BIO_IsSync, &r1_bio->state)) { 1619 sync_request_write(mddev, r1_bio); 1620 unplug = 1; 1621 } else if (test_bit(R1BIO_BarrierRetry, &r1_bio->state)) { 1622 /* some requests in the r1bio were BIO_RW_BARRIER 1623 * requests which failed with -EOPNOTSUPP. Hohumm.. 1624 * Better resubmit without the barrier. 1625 * We know which devices to resubmit for, because 1626 * all others have had their bios[] entry cleared. 1627 * We already have a nr_pending reference on these rdevs. 1628 */ 1629 int i; 1630 const bool do_sync = bio_rw_flagged(r1_bio->master_bio, BIO_RW_SYNCIO); 1631 clear_bit(R1BIO_BarrierRetry, &r1_bio->state); 1632 clear_bit(R1BIO_Barrier, &r1_bio->state); 1633 for (i=0; i < conf->raid_disks; i++) 1634 if (r1_bio->bios[i]) 1635 atomic_inc(&r1_bio->remaining); 1636 for (i=0; i < conf->raid_disks; i++) 1637 if (r1_bio->bios[i]) { 1638 struct bio_vec *bvec; 1639 int j; 1640 1641 bio = bio_clone(r1_bio->master_bio, GFP_NOIO); 1642 /* copy pages from the failed bio, as 1643 * this might be a write-behind device */ 1644 __bio_for_each_segment(bvec, bio, j, 0) 1645 bvec->bv_page = bio_iovec_idx(r1_bio->bios[i], j)->bv_page; 1646 bio_put(r1_bio->bios[i]); 1647 bio->bi_sector = r1_bio->sector + 1648 conf->mirrors[i].rdev->data_offset; 1649 bio->bi_bdev = conf->mirrors[i].rdev->bdev; 1650 bio->bi_end_io = raid1_end_write_request; 1651 bio->bi_rw = WRITE | 1652 (do_sync << BIO_RW_SYNCIO); 1653 bio->bi_private = r1_bio; 1654 r1_bio->bios[i] = bio; 1655 generic_make_request(bio); 1656 } 1657 } else { 1658 int disk; 1659 1660 /* we got a read error. Maybe the drive is bad. Maybe just 1661 * the block and we can fix it. 1662 * We freeze all other IO, and try reading the block from 1663 * other devices. When we find one, we re-write 1664 * and check it that fixes the read error. 1665 * This is all done synchronously while the array is 1666 * frozen 1667 */ 1668 if (mddev->ro == 0) { 1669 freeze_array(conf); 1670 fix_read_error(conf, r1_bio->read_disk, 1671 r1_bio->sector, 1672 r1_bio->sectors); 1673 unfreeze_array(conf); 1674 } else 1675 md_error(mddev, 1676 conf->mirrors[r1_bio->read_disk].rdev); 1677 1678 bio = r1_bio->bios[r1_bio->read_disk]; 1679 if ((disk=read_balance(conf, r1_bio)) == -1) { 1680 printk(KERN_ALERT "raid1: %s: unrecoverable I/O" 1681 " read error for block %llu\n", 1682 bdevname(bio->bi_bdev,b), 1683 (unsigned long long)r1_bio->sector); 1684 raid_end_bio_io(r1_bio); 1685 } else { 1686 const bool do_sync = bio_rw_flagged(r1_bio->master_bio, BIO_RW_SYNCIO); 1687 r1_bio->bios[r1_bio->read_disk] = 1688 mddev->ro ? IO_BLOCKED : NULL; 1689 r1_bio->read_disk = disk; 1690 bio_put(bio); 1691 bio = bio_clone(r1_bio->master_bio, GFP_NOIO); 1692 r1_bio->bios[r1_bio->read_disk] = bio; 1693 rdev = conf->mirrors[disk].rdev; 1694 if (printk_ratelimit()) 1695 printk(KERN_ERR "raid1: %s: redirecting sector %llu to" 1696 " another mirror\n", 1697 bdevname(rdev->bdev,b), 1698 (unsigned long long)r1_bio->sector); 1699 bio->bi_sector = r1_bio->sector + rdev->data_offset; 1700 bio->bi_bdev = rdev->bdev; 1701 bio->bi_end_io = raid1_end_read_request; 1702 bio->bi_rw = READ | (do_sync << BIO_RW_SYNCIO); 1703 bio->bi_private = r1_bio; 1704 unplug = 1; 1705 generic_make_request(bio); 1706 } 1707 } 1708 cond_resched(); 1709 } 1710 if (unplug) 1711 unplug_slaves(mddev); 1712 } 1713 1714 1715 static int init_resync(conf_t *conf) 1716 { 1717 int buffs; 1718 1719 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE; 1720 BUG_ON(conf->r1buf_pool); 1721 conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free, 1722 conf->poolinfo); 1723 if (!conf->r1buf_pool) 1724 return -ENOMEM; 1725 conf->next_resync = 0; 1726 return 0; 1727 } 1728 1729 /* 1730 * perform a "sync" on one "block" 1731 * 1732 * We need to make sure that no normal I/O request - particularly write 1733 * requests - conflict with active sync requests. 1734 * 1735 * This is achieved by tracking pending requests and a 'barrier' concept 1736 * that can be installed to exclude normal IO requests. 1737 */ 1738 1739 static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster) 1740 { 1741 conf_t *conf = mddev->private; 1742 r1bio_t *r1_bio; 1743 struct bio *bio; 1744 sector_t max_sector, nr_sectors; 1745 int disk = -1; 1746 int i; 1747 int wonly = -1; 1748 int write_targets = 0, read_targets = 0; 1749 int sync_blocks; 1750 int still_degraded = 0; 1751 1752 if (!conf->r1buf_pool) 1753 { 1754 /* 1755 printk("sync start - bitmap %p\n", mddev->bitmap); 1756 */ 1757 if (init_resync(conf)) 1758 return 0; 1759 } 1760 1761 max_sector = mddev->dev_sectors; 1762 if (sector_nr >= max_sector) { 1763 /* If we aborted, we need to abort the 1764 * sync on the 'current' bitmap chunk (there will 1765 * only be one in raid1 resync. 1766 * We can find the current addess in mddev->curr_resync 1767 */ 1768 if (mddev->curr_resync < max_sector) /* aborted */ 1769 bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 1770 &sync_blocks, 1); 1771 else /* completed sync */ 1772 conf->fullsync = 0; 1773 1774 bitmap_close_sync(mddev->bitmap); 1775 close_sync(conf); 1776 return 0; 1777 } 1778 1779 if (mddev->bitmap == NULL && 1780 mddev->recovery_cp == MaxSector && 1781 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 1782 conf->fullsync == 0) { 1783 *skipped = 1; 1784 return max_sector - sector_nr; 1785 } 1786 /* before building a request, check if we can skip these blocks.. 1787 * This call the bitmap_start_sync doesn't actually record anything 1788 */ 1789 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) && 1790 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 1791 /* We can skip this block, and probably several more */ 1792 *skipped = 1; 1793 return sync_blocks; 1794 } 1795 /* 1796 * If there is non-resync activity waiting for a turn, 1797 * and resync is going fast enough, 1798 * then let it though before starting on this new sync request. 1799 */ 1800 if (!go_faster && conf->nr_waiting) 1801 msleep_interruptible(1000); 1802 1803 bitmap_cond_end_sync(mddev->bitmap, sector_nr); 1804 raise_barrier(conf); 1805 1806 conf->next_resync = sector_nr; 1807 1808 r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO); 1809 rcu_read_lock(); 1810 /* 1811 * If we get a correctably read error during resync or recovery, 1812 * we might want to read from a different device. So we 1813 * flag all drives that could conceivably be read from for READ, 1814 * and any others (which will be non-In_sync devices) for WRITE. 1815 * If a read fails, we try reading from something else for which READ 1816 * is OK. 1817 */ 1818 1819 r1_bio->mddev = mddev; 1820 r1_bio->sector = sector_nr; 1821 r1_bio->state = 0; 1822 set_bit(R1BIO_IsSync, &r1_bio->state); 1823 1824 for (i=0; i < conf->raid_disks; i++) { 1825 mdk_rdev_t *rdev; 1826 bio = r1_bio->bios[i]; 1827 1828 /* take from bio_init */ 1829 bio->bi_next = NULL; 1830 bio->bi_flags |= 1 << BIO_UPTODATE; 1831 bio->bi_rw = READ; 1832 bio->bi_vcnt = 0; 1833 bio->bi_idx = 0; 1834 bio->bi_phys_segments = 0; 1835 bio->bi_size = 0; 1836 bio->bi_end_io = NULL; 1837 bio->bi_private = NULL; 1838 1839 rdev = rcu_dereference(conf->mirrors[i].rdev); 1840 if (rdev == NULL || 1841 test_bit(Faulty, &rdev->flags)) { 1842 still_degraded = 1; 1843 continue; 1844 } else if (!test_bit(In_sync, &rdev->flags)) { 1845 bio->bi_rw = WRITE; 1846 bio->bi_end_io = end_sync_write; 1847 write_targets ++; 1848 } else { 1849 /* may need to read from here */ 1850 bio->bi_rw = READ; 1851 bio->bi_end_io = end_sync_read; 1852 if (test_bit(WriteMostly, &rdev->flags)) { 1853 if (wonly < 0) 1854 wonly = i; 1855 } else { 1856 if (disk < 0) 1857 disk = i; 1858 } 1859 read_targets++; 1860 } 1861 atomic_inc(&rdev->nr_pending); 1862 bio->bi_sector = sector_nr + rdev->data_offset; 1863 bio->bi_bdev = rdev->bdev; 1864 bio->bi_private = r1_bio; 1865 } 1866 rcu_read_unlock(); 1867 if (disk < 0) 1868 disk = wonly; 1869 r1_bio->read_disk = disk; 1870 1871 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0) 1872 /* extra read targets are also write targets */ 1873 write_targets += read_targets-1; 1874 1875 if (write_targets == 0 || read_targets == 0) { 1876 /* There is nowhere to write, so all non-sync 1877 * drives must be failed - so we are finished 1878 */ 1879 sector_t rv = max_sector - sector_nr; 1880 *skipped = 1; 1881 put_buf(r1_bio); 1882 return rv; 1883 } 1884 1885 if (max_sector > mddev->resync_max) 1886 max_sector = mddev->resync_max; /* Don't do IO beyond here */ 1887 nr_sectors = 0; 1888 sync_blocks = 0; 1889 do { 1890 struct page *page; 1891 int len = PAGE_SIZE; 1892 if (sector_nr + (len>>9) > max_sector) 1893 len = (max_sector - sector_nr) << 9; 1894 if (len == 0) 1895 break; 1896 if (sync_blocks == 0) { 1897 if (!bitmap_start_sync(mddev->bitmap, sector_nr, 1898 &sync_blocks, still_degraded) && 1899 !conf->fullsync && 1900 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 1901 break; 1902 BUG_ON(sync_blocks < (PAGE_SIZE>>9)); 1903 if (len > (sync_blocks<<9)) 1904 len = sync_blocks<<9; 1905 } 1906 1907 for (i=0 ; i < conf->raid_disks; i++) { 1908 bio = r1_bio->bios[i]; 1909 if (bio->bi_end_io) { 1910 page = bio->bi_io_vec[bio->bi_vcnt].bv_page; 1911 if (bio_add_page(bio, page, len, 0) == 0) { 1912 /* stop here */ 1913 bio->bi_io_vec[bio->bi_vcnt].bv_page = page; 1914 while (i > 0) { 1915 i--; 1916 bio = r1_bio->bios[i]; 1917 if (bio->bi_end_io==NULL) 1918 continue; 1919 /* remove last page from this bio */ 1920 bio->bi_vcnt--; 1921 bio->bi_size -= len; 1922 bio->bi_flags &= ~(1<< BIO_SEG_VALID); 1923 } 1924 goto bio_full; 1925 } 1926 } 1927 } 1928 nr_sectors += len>>9; 1929 sector_nr += len>>9; 1930 sync_blocks -= (len>>9); 1931 } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES); 1932 bio_full: 1933 r1_bio->sectors = nr_sectors; 1934 1935 /* For a user-requested sync, we read all readable devices and do a 1936 * compare 1937 */ 1938 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 1939 atomic_set(&r1_bio->remaining, read_targets); 1940 for (i=0; i<conf->raid_disks; i++) { 1941 bio = r1_bio->bios[i]; 1942 if (bio->bi_end_io == end_sync_read) { 1943 md_sync_acct(bio->bi_bdev, nr_sectors); 1944 generic_make_request(bio); 1945 } 1946 } 1947 } else { 1948 atomic_set(&r1_bio->remaining, 1); 1949 bio = r1_bio->bios[r1_bio->read_disk]; 1950 md_sync_acct(bio->bi_bdev, nr_sectors); 1951 generic_make_request(bio); 1952 1953 } 1954 return nr_sectors; 1955 } 1956 1957 static sector_t raid1_size(mddev_t *mddev, sector_t sectors, int raid_disks) 1958 { 1959 if (sectors) 1960 return sectors; 1961 1962 return mddev->dev_sectors; 1963 } 1964 1965 static conf_t *setup_conf(mddev_t *mddev) 1966 { 1967 conf_t *conf; 1968 int i; 1969 mirror_info_t *disk; 1970 mdk_rdev_t *rdev; 1971 int err = -ENOMEM; 1972 1973 conf = kzalloc(sizeof(conf_t), GFP_KERNEL); 1974 if (!conf) 1975 goto abort; 1976 1977 conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks, 1978 GFP_KERNEL); 1979 if (!conf->mirrors) 1980 goto abort; 1981 1982 conf->tmppage = alloc_page(GFP_KERNEL); 1983 if (!conf->tmppage) 1984 goto abort; 1985 1986 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL); 1987 if (!conf->poolinfo) 1988 goto abort; 1989 conf->poolinfo->raid_disks = mddev->raid_disks; 1990 conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc, 1991 r1bio_pool_free, 1992 conf->poolinfo); 1993 if (!conf->r1bio_pool) 1994 goto abort; 1995 1996 conf->poolinfo->mddev = mddev; 1997 1998 spin_lock_init(&conf->device_lock); 1999 list_for_each_entry(rdev, &mddev->disks, same_set) { 2000 int disk_idx = rdev->raid_disk; 2001 if (disk_idx >= mddev->raid_disks 2002 || disk_idx < 0) 2003 continue; 2004 disk = conf->mirrors + disk_idx; 2005 2006 disk->rdev = rdev; 2007 2008 disk->head_position = 0; 2009 } 2010 conf->raid_disks = mddev->raid_disks; 2011 conf->mddev = mddev; 2012 INIT_LIST_HEAD(&conf->retry_list); 2013 2014 spin_lock_init(&conf->resync_lock); 2015 init_waitqueue_head(&conf->wait_barrier); 2016 2017 bio_list_init(&conf->pending_bio_list); 2018 bio_list_init(&conf->flushing_bio_list); 2019 2020 conf->last_used = -1; 2021 for (i = 0; i < conf->raid_disks; i++) { 2022 2023 disk = conf->mirrors + i; 2024 2025 if (!disk->rdev || 2026 !test_bit(In_sync, &disk->rdev->flags)) { 2027 disk->head_position = 0; 2028 if (disk->rdev) 2029 conf->fullsync = 1; 2030 } else if (conf->last_used < 0) 2031 /* 2032 * The first working device is used as a 2033 * starting point to read balancing. 2034 */ 2035 conf->last_used = i; 2036 } 2037 2038 err = -EIO; 2039 if (conf->last_used < 0) { 2040 printk(KERN_ERR "raid1: no operational mirrors for %s\n", 2041 mdname(mddev)); 2042 goto abort; 2043 } 2044 err = -ENOMEM; 2045 conf->thread = md_register_thread(raid1d, mddev, NULL); 2046 if (!conf->thread) { 2047 printk(KERN_ERR 2048 "raid1: couldn't allocate thread for %s\n", 2049 mdname(mddev)); 2050 goto abort; 2051 } 2052 2053 return conf; 2054 2055 abort: 2056 if (conf) { 2057 if (conf->r1bio_pool) 2058 mempool_destroy(conf->r1bio_pool); 2059 kfree(conf->mirrors); 2060 safe_put_page(conf->tmppage); 2061 kfree(conf->poolinfo); 2062 kfree(conf); 2063 } 2064 return ERR_PTR(err); 2065 } 2066 2067 static int run(mddev_t *mddev) 2068 { 2069 conf_t *conf; 2070 int i; 2071 mdk_rdev_t *rdev; 2072 2073 if (mddev->level != 1) { 2074 printk("raid1: %s: raid level not set to mirroring (%d)\n", 2075 mdname(mddev), mddev->level); 2076 return -EIO; 2077 } 2078 if (mddev->reshape_position != MaxSector) { 2079 printk("raid1: %s: reshape_position set but not supported\n", 2080 mdname(mddev)); 2081 return -EIO; 2082 } 2083 /* 2084 * copy the already verified devices into our private RAID1 2085 * bookkeeping area. [whatever we allocate in run(), 2086 * should be freed in stop()] 2087 */ 2088 if (mddev->private == NULL) 2089 conf = setup_conf(mddev); 2090 else 2091 conf = mddev->private; 2092 2093 if (IS_ERR(conf)) 2094 return PTR_ERR(conf); 2095 2096 mddev->queue->queue_lock = &conf->device_lock; 2097 list_for_each_entry(rdev, &mddev->disks, same_set) { 2098 disk_stack_limits(mddev->gendisk, rdev->bdev, 2099 rdev->data_offset << 9); 2100 /* as we don't honour merge_bvec_fn, we must never risk 2101 * violating it, so limit ->max_sector to one PAGE, as 2102 * a one page request is never in violation. 2103 */ 2104 if (rdev->bdev->bd_disk->queue->merge_bvec_fn && 2105 queue_max_sectors(mddev->queue) > (PAGE_SIZE>>9)) 2106 blk_queue_max_sectors(mddev->queue, PAGE_SIZE>>9); 2107 } 2108 2109 mddev->degraded = 0; 2110 for (i=0; i < conf->raid_disks; i++) 2111 if (conf->mirrors[i].rdev == NULL || 2112 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) || 2113 test_bit(Faulty, &conf->mirrors[i].rdev->flags)) 2114 mddev->degraded++; 2115 2116 if (conf->raid_disks - mddev->degraded == 1) 2117 mddev->recovery_cp = MaxSector; 2118 2119 if (mddev->recovery_cp != MaxSector) 2120 printk(KERN_NOTICE "raid1: %s is not clean" 2121 " -- starting background reconstruction\n", 2122 mdname(mddev)); 2123 printk(KERN_INFO 2124 "raid1: raid set %s active with %d out of %d mirrors\n", 2125 mdname(mddev), mddev->raid_disks - mddev->degraded, 2126 mddev->raid_disks); 2127 2128 /* 2129 * Ok, everything is just fine now 2130 */ 2131 mddev->thread = conf->thread; 2132 conf->thread = NULL; 2133 mddev->private = conf; 2134 2135 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0)); 2136 2137 mddev->queue->unplug_fn = raid1_unplug; 2138 mddev->queue->backing_dev_info.congested_fn = raid1_congested; 2139 mddev->queue->backing_dev_info.congested_data = mddev; 2140 md_integrity_register(mddev); 2141 return 0; 2142 } 2143 2144 static int stop(mddev_t *mddev) 2145 { 2146 conf_t *conf = mddev->private; 2147 struct bitmap *bitmap = mddev->bitmap; 2148 int behind_wait = 0; 2149 2150 /* wait for behind writes to complete */ 2151 while (bitmap && atomic_read(&bitmap->behind_writes) > 0) { 2152 behind_wait++; 2153 printk(KERN_INFO "raid1: behind writes in progress on device %s, waiting to stop (%d)\n", mdname(mddev), behind_wait); 2154 set_current_state(TASK_UNINTERRUPTIBLE); 2155 schedule_timeout(HZ); /* wait a second */ 2156 /* need to kick something here to make sure I/O goes? */ 2157 } 2158 2159 raise_barrier(conf); 2160 lower_barrier(conf); 2161 2162 md_unregister_thread(mddev->thread); 2163 mddev->thread = NULL; 2164 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/ 2165 if (conf->r1bio_pool) 2166 mempool_destroy(conf->r1bio_pool); 2167 kfree(conf->mirrors); 2168 kfree(conf->poolinfo); 2169 kfree(conf); 2170 mddev->private = NULL; 2171 return 0; 2172 } 2173 2174 static int raid1_resize(mddev_t *mddev, sector_t sectors) 2175 { 2176 /* no resync is happening, and there is enough space 2177 * on all devices, so we can resize. 2178 * We need to make sure resync covers any new space. 2179 * If the array is shrinking we should possibly wait until 2180 * any io in the removed space completes, but it hardly seems 2181 * worth it. 2182 */ 2183 md_set_array_sectors(mddev, raid1_size(mddev, sectors, 0)); 2184 if (mddev->array_sectors > raid1_size(mddev, sectors, 0)) 2185 return -EINVAL; 2186 set_capacity(mddev->gendisk, mddev->array_sectors); 2187 mddev->changed = 1; 2188 revalidate_disk(mddev->gendisk); 2189 if (sectors > mddev->dev_sectors && 2190 mddev->recovery_cp == MaxSector) { 2191 mddev->recovery_cp = mddev->dev_sectors; 2192 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 2193 } 2194 mddev->dev_sectors = sectors; 2195 mddev->resync_max_sectors = sectors; 2196 return 0; 2197 } 2198 2199 static int raid1_reshape(mddev_t *mddev) 2200 { 2201 /* We need to: 2202 * 1/ resize the r1bio_pool 2203 * 2/ resize conf->mirrors 2204 * 2205 * We allocate a new r1bio_pool if we can. 2206 * Then raise a device barrier and wait until all IO stops. 2207 * Then resize conf->mirrors and swap in the new r1bio pool. 2208 * 2209 * At the same time, we "pack" the devices so that all the missing 2210 * devices have the higher raid_disk numbers. 2211 */ 2212 mempool_t *newpool, *oldpool; 2213 struct pool_info *newpoolinfo; 2214 mirror_info_t *newmirrors; 2215 conf_t *conf = mddev->private; 2216 int cnt, raid_disks; 2217 unsigned long flags; 2218 int d, d2, err; 2219 2220 /* Cannot change chunk_size, layout, or level */ 2221 if (mddev->chunk_sectors != mddev->new_chunk_sectors || 2222 mddev->layout != mddev->new_layout || 2223 mddev->level != mddev->new_level) { 2224 mddev->new_chunk_sectors = mddev->chunk_sectors; 2225 mddev->new_layout = mddev->layout; 2226 mddev->new_level = mddev->level; 2227 return -EINVAL; 2228 } 2229 2230 err = md_allow_write(mddev); 2231 if (err) 2232 return err; 2233 2234 raid_disks = mddev->raid_disks + mddev->delta_disks; 2235 2236 if (raid_disks < conf->raid_disks) { 2237 cnt=0; 2238 for (d= 0; d < conf->raid_disks; d++) 2239 if (conf->mirrors[d].rdev) 2240 cnt++; 2241 if (cnt > raid_disks) 2242 return -EBUSY; 2243 } 2244 2245 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL); 2246 if (!newpoolinfo) 2247 return -ENOMEM; 2248 newpoolinfo->mddev = mddev; 2249 newpoolinfo->raid_disks = raid_disks; 2250 2251 newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc, 2252 r1bio_pool_free, newpoolinfo); 2253 if (!newpool) { 2254 kfree(newpoolinfo); 2255 return -ENOMEM; 2256 } 2257 newmirrors = kzalloc(sizeof(struct mirror_info) * raid_disks, GFP_KERNEL); 2258 if (!newmirrors) { 2259 kfree(newpoolinfo); 2260 mempool_destroy(newpool); 2261 return -ENOMEM; 2262 } 2263 2264 raise_barrier(conf); 2265 2266 /* ok, everything is stopped */ 2267 oldpool = conf->r1bio_pool; 2268 conf->r1bio_pool = newpool; 2269 2270 for (d = d2 = 0; d < conf->raid_disks; d++) { 2271 mdk_rdev_t *rdev = conf->mirrors[d].rdev; 2272 if (rdev && rdev->raid_disk != d2) { 2273 char nm[20]; 2274 sprintf(nm, "rd%d", rdev->raid_disk); 2275 sysfs_remove_link(&mddev->kobj, nm); 2276 rdev->raid_disk = d2; 2277 sprintf(nm, "rd%d", rdev->raid_disk); 2278 sysfs_remove_link(&mddev->kobj, nm); 2279 if (sysfs_create_link(&mddev->kobj, 2280 &rdev->kobj, nm)) 2281 printk(KERN_WARNING 2282 "md/raid1: cannot register " 2283 "%s for %s\n", 2284 nm, mdname(mddev)); 2285 } 2286 if (rdev) 2287 newmirrors[d2++].rdev = rdev; 2288 } 2289 kfree(conf->mirrors); 2290 conf->mirrors = newmirrors; 2291 kfree(conf->poolinfo); 2292 conf->poolinfo = newpoolinfo; 2293 2294 spin_lock_irqsave(&conf->device_lock, flags); 2295 mddev->degraded += (raid_disks - conf->raid_disks); 2296 spin_unlock_irqrestore(&conf->device_lock, flags); 2297 conf->raid_disks = mddev->raid_disks = raid_disks; 2298 mddev->delta_disks = 0; 2299 2300 conf->last_used = 0; /* just make sure it is in-range */ 2301 lower_barrier(conf); 2302 2303 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 2304 md_wakeup_thread(mddev->thread); 2305 2306 mempool_destroy(oldpool); 2307 return 0; 2308 } 2309 2310 static void raid1_quiesce(mddev_t *mddev, int state) 2311 { 2312 conf_t *conf = mddev->private; 2313 2314 switch(state) { 2315 case 2: /* wake for suspend */ 2316 wake_up(&conf->wait_barrier); 2317 break; 2318 case 1: 2319 raise_barrier(conf); 2320 break; 2321 case 0: 2322 lower_barrier(conf); 2323 break; 2324 } 2325 } 2326 2327 static void *raid1_takeover(mddev_t *mddev) 2328 { 2329 /* raid1 can take over: 2330 * raid5 with 2 devices, any layout or chunk size 2331 */ 2332 if (mddev->level == 5 && mddev->raid_disks == 2) { 2333 conf_t *conf; 2334 mddev->new_level = 1; 2335 mddev->new_layout = 0; 2336 mddev->new_chunk_sectors = 0; 2337 conf = setup_conf(mddev); 2338 if (!IS_ERR(conf)) 2339 conf->barrier = 1; 2340 return conf; 2341 } 2342 return ERR_PTR(-EINVAL); 2343 } 2344 2345 static struct mdk_personality raid1_personality = 2346 { 2347 .name = "raid1", 2348 .level = 1, 2349 .owner = THIS_MODULE, 2350 .make_request = make_request, 2351 .run = run, 2352 .stop = stop, 2353 .status = status, 2354 .error_handler = error, 2355 .hot_add_disk = raid1_add_disk, 2356 .hot_remove_disk= raid1_remove_disk, 2357 .spare_active = raid1_spare_active, 2358 .sync_request = sync_request, 2359 .resize = raid1_resize, 2360 .size = raid1_size, 2361 .check_reshape = raid1_reshape, 2362 .quiesce = raid1_quiesce, 2363 .takeover = raid1_takeover, 2364 }; 2365 2366 static int __init raid_init(void) 2367 { 2368 return register_md_personality(&raid1_personality); 2369 } 2370 2371 static void raid_exit(void) 2372 { 2373 unregister_md_personality(&raid1_personality); 2374 } 2375 2376 module_init(raid_init); 2377 module_exit(raid_exit); 2378 MODULE_LICENSE("GPL"); 2379 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD"); 2380 MODULE_ALIAS("md-personality-3"); /* RAID1 */ 2381 MODULE_ALIAS("md-raid1"); 2382 MODULE_ALIAS("md-level-1"); 2383