xref: /openbmc/linux/drivers/md/raid1.c (revision b3c95b42)
1 /*
2  * raid1.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5  *
6  * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7  *
8  * RAID-1 management functions.
9  *
10  * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11  *
12  * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
13  * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14  *
15  * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16  * bitmapped intelligence in resync:
17  *
18  *      - bitmap marked during normal i/o
19  *      - bitmap used to skip nondirty blocks during sync
20  *
21  * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22  * - persistent bitmap code
23  *
24  * This program is free software; you can redistribute it and/or modify
25  * it under the terms of the GNU General Public License as published by
26  * the Free Software Foundation; either version 2, or (at your option)
27  * any later version.
28  *
29  * You should have received a copy of the GNU General Public License
30  * (for example /usr/src/linux/COPYING); if not, write to the Free
31  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32  */
33 
34 #include <linux/slab.h>
35 #include <linux/delay.h>
36 #include <linux/blkdev.h>
37 #include <linux/module.h>
38 #include <linux/seq_file.h>
39 #include <linux/ratelimit.h>
40 #include "md.h"
41 #include "raid1.h"
42 #include "bitmap.h"
43 
44 /*
45  * Number of guaranteed r1bios in case of extreme VM load:
46  */
47 #define	NR_RAID1_BIOS 256
48 
49 /* when we get a read error on a read-only array, we redirect to another
50  * device without failing the first device, or trying to over-write to
51  * correct the read error.  To keep track of bad blocks on a per-bio
52  * level, we store IO_BLOCKED in the appropriate 'bios' pointer
53  */
54 #define IO_BLOCKED ((struct bio *)1)
55 /* When we successfully write to a known bad-block, we need to remove the
56  * bad-block marking which must be done from process context.  So we record
57  * the success by setting devs[n].bio to IO_MADE_GOOD
58  */
59 #define IO_MADE_GOOD ((struct bio *)2)
60 
61 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
62 
63 /* When there are this many requests queue to be written by
64  * the raid1 thread, we become 'congested' to provide back-pressure
65  * for writeback.
66  */
67 static int max_queued_requests = 1024;
68 
69 static void allow_barrier(struct r1conf *conf, sector_t start_next_window,
70 			  sector_t bi_sector);
71 static void lower_barrier(struct r1conf *conf);
72 
73 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
74 {
75 	struct pool_info *pi = data;
76 	int size = offsetof(struct r1bio, bios[pi->raid_disks]);
77 
78 	/* allocate a r1bio with room for raid_disks entries in the bios array */
79 	return kzalloc(size, gfp_flags);
80 }
81 
82 static void r1bio_pool_free(void *r1_bio, void *data)
83 {
84 	kfree(r1_bio);
85 }
86 
87 #define RESYNC_BLOCK_SIZE (64*1024)
88 #define RESYNC_DEPTH 32
89 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
90 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
91 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
92 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
93 #define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
94 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
95 #define NEXT_NORMALIO_DISTANCE (3 * RESYNC_WINDOW_SECTORS)
96 
97 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
98 {
99 	struct pool_info *pi = data;
100 	struct r1bio *r1_bio;
101 	struct bio *bio;
102 	int need_pages;
103 	int i, j;
104 
105 	r1_bio = r1bio_pool_alloc(gfp_flags, pi);
106 	if (!r1_bio)
107 		return NULL;
108 
109 	/*
110 	 * Allocate bios : 1 for reading, n-1 for writing
111 	 */
112 	for (j = pi->raid_disks ; j-- ; ) {
113 		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
114 		if (!bio)
115 			goto out_free_bio;
116 		r1_bio->bios[j] = bio;
117 	}
118 	/*
119 	 * Allocate RESYNC_PAGES data pages and attach them to
120 	 * the first bio.
121 	 * If this is a user-requested check/repair, allocate
122 	 * RESYNC_PAGES for each bio.
123 	 */
124 	if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
125 		need_pages = pi->raid_disks;
126 	else
127 		need_pages = 1;
128 	for (j = 0; j < need_pages; j++) {
129 		bio = r1_bio->bios[j];
130 		bio->bi_vcnt = RESYNC_PAGES;
131 
132 		if (bio_alloc_pages(bio, gfp_flags))
133 			goto out_free_pages;
134 	}
135 	/* If not user-requests, copy the page pointers to all bios */
136 	if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
137 		for (i=0; i<RESYNC_PAGES ; i++)
138 			for (j=1; j<pi->raid_disks; j++)
139 				r1_bio->bios[j]->bi_io_vec[i].bv_page =
140 					r1_bio->bios[0]->bi_io_vec[i].bv_page;
141 	}
142 
143 	r1_bio->master_bio = NULL;
144 
145 	return r1_bio;
146 
147 out_free_pages:
148 	while (--j >= 0) {
149 		struct bio_vec *bv;
150 
151 		bio_for_each_segment_all(bv, r1_bio->bios[j], i)
152 			__free_page(bv->bv_page);
153 	}
154 
155 out_free_bio:
156 	while (++j < pi->raid_disks)
157 		bio_put(r1_bio->bios[j]);
158 	r1bio_pool_free(r1_bio, data);
159 	return NULL;
160 }
161 
162 static void r1buf_pool_free(void *__r1_bio, void *data)
163 {
164 	struct pool_info *pi = data;
165 	int i,j;
166 	struct r1bio *r1bio = __r1_bio;
167 
168 	for (i = 0; i < RESYNC_PAGES; i++)
169 		for (j = pi->raid_disks; j-- ;) {
170 			if (j == 0 ||
171 			    r1bio->bios[j]->bi_io_vec[i].bv_page !=
172 			    r1bio->bios[0]->bi_io_vec[i].bv_page)
173 				safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
174 		}
175 	for (i=0 ; i < pi->raid_disks; i++)
176 		bio_put(r1bio->bios[i]);
177 
178 	r1bio_pool_free(r1bio, data);
179 }
180 
181 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
182 {
183 	int i;
184 
185 	for (i = 0; i < conf->raid_disks * 2; i++) {
186 		struct bio **bio = r1_bio->bios + i;
187 		if (!BIO_SPECIAL(*bio))
188 			bio_put(*bio);
189 		*bio = NULL;
190 	}
191 }
192 
193 static void free_r1bio(struct r1bio *r1_bio)
194 {
195 	struct r1conf *conf = r1_bio->mddev->private;
196 
197 	put_all_bios(conf, r1_bio);
198 	mempool_free(r1_bio, conf->r1bio_pool);
199 }
200 
201 static void put_buf(struct r1bio *r1_bio)
202 {
203 	struct r1conf *conf = r1_bio->mddev->private;
204 	int i;
205 
206 	for (i = 0; i < conf->raid_disks * 2; i++) {
207 		struct bio *bio = r1_bio->bios[i];
208 		if (bio->bi_end_io)
209 			rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
210 	}
211 
212 	mempool_free(r1_bio, conf->r1buf_pool);
213 
214 	lower_barrier(conf);
215 }
216 
217 static void reschedule_retry(struct r1bio *r1_bio)
218 {
219 	unsigned long flags;
220 	struct mddev *mddev = r1_bio->mddev;
221 	struct r1conf *conf = mddev->private;
222 
223 	spin_lock_irqsave(&conf->device_lock, flags);
224 	list_add(&r1_bio->retry_list, &conf->retry_list);
225 	conf->nr_queued ++;
226 	spin_unlock_irqrestore(&conf->device_lock, flags);
227 
228 	wake_up(&conf->wait_barrier);
229 	md_wakeup_thread(mddev->thread);
230 }
231 
232 /*
233  * raid_end_bio_io() is called when we have finished servicing a mirrored
234  * operation and are ready to return a success/failure code to the buffer
235  * cache layer.
236  */
237 static void call_bio_endio(struct r1bio *r1_bio)
238 {
239 	struct bio *bio = r1_bio->master_bio;
240 	int done;
241 	struct r1conf *conf = r1_bio->mddev->private;
242 	sector_t start_next_window = r1_bio->start_next_window;
243 	sector_t bi_sector = bio->bi_iter.bi_sector;
244 
245 	if (bio->bi_phys_segments) {
246 		unsigned long flags;
247 		spin_lock_irqsave(&conf->device_lock, flags);
248 		bio->bi_phys_segments--;
249 		done = (bio->bi_phys_segments == 0);
250 		spin_unlock_irqrestore(&conf->device_lock, flags);
251 		/*
252 		 * make_request() might be waiting for
253 		 * bi_phys_segments to decrease
254 		 */
255 		wake_up(&conf->wait_barrier);
256 	} else
257 		done = 1;
258 
259 	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
260 		bio->bi_error = -EIO;
261 
262 	if (done) {
263 		bio_endio(bio);
264 		/*
265 		 * Wake up any possible resync thread that waits for the device
266 		 * to go idle.
267 		 */
268 		allow_barrier(conf, start_next_window, bi_sector);
269 	}
270 }
271 
272 static void raid_end_bio_io(struct r1bio *r1_bio)
273 {
274 	struct bio *bio = r1_bio->master_bio;
275 
276 	/* if nobody has done the final endio yet, do it now */
277 	if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
278 		pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
279 			 (bio_data_dir(bio) == WRITE) ? "write" : "read",
280 			 (unsigned long long) bio->bi_iter.bi_sector,
281 			 (unsigned long long) bio_end_sector(bio) - 1);
282 
283 		call_bio_endio(r1_bio);
284 	}
285 	free_r1bio(r1_bio);
286 }
287 
288 /*
289  * Update disk head position estimator based on IRQ completion info.
290  */
291 static inline void update_head_pos(int disk, struct r1bio *r1_bio)
292 {
293 	struct r1conf *conf = r1_bio->mddev->private;
294 
295 	conf->mirrors[disk].head_position =
296 		r1_bio->sector + (r1_bio->sectors);
297 }
298 
299 /*
300  * Find the disk number which triggered given bio
301  */
302 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
303 {
304 	int mirror;
305 	struct r1conf *conf = r1_bio->mddev->private;
306 	int raid_disks = conf->raid_disks;
307 
308 	for (mirror = 0; mirror < raid_disks * 2; mirror++)
309 		if (r1_bio->bios[mirror] == bio)
310 			break;
311 
312 	BUG_ON(mirror == raid_disks * 2);
313 	update_head_pos(mirror, r1_bio);
314 
315 	return mirror;
316 }
317 
318 static void raid1_end_read_request(struct bio *bio)
319 {
320 	int uptodate = !bio->bi_error;
321 	struct r1bio *r1_bio = bio->bi_private;
322 	int mirror;
323 	struct r1conf *conf = r1_bio->mddev->private;
324 
325 	mirror = r1_bio->read_disk;
326 	/*
327 	 * this branch is our 'one mirror IO has finished' event handler:
328 	 */
329 	update_head_pos(mirror, r1_bio);
330 
331 	if (uptodate)
332 		set_bit(R1BIO_Uptodate, &r1_bio->state);
333 	else {
334 		/* If all other devices have failed, we want to return
335 		 * the error upwards rather than fail the last device.
336 		 * Here we redefine "uptodate" to mean "Don't want to retry"
337 		 */
338 		unsigned long flags;
339 		spin_lock_irqsave(&conf->device_lock, flags);
340 		if (r1_bio->mddev->degraded == conf->raid_disks ||
341 		    (r1_bio->mddev->degraded == conf->raid_disks-1 &&
342 		     test_bit(In_sync, &conf->mirrors[mirror].rdev->flags)))
343 			uptodate = 1;
344 		spin_unlock_irqrestore(&conf->device_lock, flags);
345 	}
346 
347 	if (uptodate) {
348 		raid_end_bio_io(r1_bio);
349 		rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
350 	} else {
351 		/*
352 		 * oops, read error:
353 		 */
354 		char b[BDEVNAME_SIZE];
355 		printk_ratelimited(
356 			KERN_ERR "md/raid1:%s: %s: "
357 			"rescheduling sector %llu\n",
358 			mdname(conf->mddev),
359 			bdevname(conf->mirrors[mirror].rdev->bdev,
360 				 b),
361 			(unsigned long long)r1_bio->sector);
362 		set_bit(R1BIO_ReadError, &r1_bio->state);
363 		reschedule_retry(r1_bio);
364 		/* don't drop the reference on read_disk yet */
365 	}
366 }
367 
368 static void close_write(struct r1bio *r1_bio)
369 {
370 	/* it really is the end of this request */
371 	if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
372 		/* free extra copy of the data pages */
373 		int i = r1_bio->behind_page_count;
374 		while (i--)
375 			safe_put_page(r1_bio->behind_bvecs[i].bv_page);
376 		kfree(r1_bio->behind_bvecs);
377 		r1_bio->behind_bvecs = NULL;
378 	}
379 	/* clear the bitmap if all writes complete successfully */
380 	bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
381 			r1_bio->sectors,
382 			!test_bit(R1BIO_Degraded, &r1_bio->state),
383 			test_bit(R1BIO_BehindIO, &r1_bio->state));
384 	md_write_end(r1_bio->mddev);
385 }
386 
387 static void r1_bio_write_done(struct r1bio *r1_bio)
388 {
389 	if (!atomic_dec_and_test(&r1_bio->remaining))
390 		return;
391 
392 	if (test_bit(R1BIO_WriteError, &r1_bio->state))
393 		reschedule_retry(r1_bio);
394 	else {
395 		close_write(r1_bio);
396 		if (test_bit(R1BIO_MadeGood, &r1_bio->state))
397 			reschedule_retry(r1_bio);
398 		else
399 			raid_end_bio_io(r1_bio);
400 	}
401 }
402 
403 static void raid1_end_write_request(struct bio *bio)
404 {
405 	struct r1bio *r1_bio = bio->bi_private;
406 	int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
407 	struct r1conf *conf = r1_bio->mddev->private;
408 	struct bio *to_put = NULL;
409 
410 	mirror = find_bio_disk(r1_bio, bio);
411 
412 	/*
413 	 * 'one mirror IO has finished' event handler:
414 	 */
415 	if (bio->bi_error) {
416 		set_bit(WriteErrorSeen,
417 			&conf->mirrors[mirror].rdev->flags);
418 		if (!test_and_set_bit(WantReplacement,
419 				      &conf->mirrors[mirror].rdev->flags))
420 			set_bit(MD_RECOVERY_NEEDED, &
421 				conf->mddev->recovery);
422 
423 		set_bit(R1BIO_WriteError, &r1_bio->state);
424 	} else {
425 		/*
426 		 * Set R1BIO_Uptodate in our master bio, so that we
427 		 * will return a good error code for to the higher
428 		 * levels even if IO on some other mirrored buffer
429 		 * fails.
430 		 *
431 		 * The 'master' represents the composite IO operation
432 		 * to user-side. So if something waits for IO, then it
433 		 * will wait for the 'master' bio.
434 		 */
435 		sector_t first_bad;
436 		int bad_sectors;
437 
438 		r1_bio->bios[mirror] = NULL;
439 		to_put = bio;
440 		/*
441 		 * Do not set R1BIO_Uptodate if the current device is
442 		 * rebuilding or Faulty. This is because we cannot use
443 		 * such device for properly reading the data back (we could
444 		 * potentially use it, if the current write would have felt
445 		 * before rdev->recovery_offset, but for simplicity we don't
446 		 * check this here.
447 		 */
448 		if (test_bit(In_sync, &conf->mirrors[mirror].rdev->flags) &&
449 		    !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags))
450 			set_bit(R1BIO_Uptodate, &r1_bio->state);
451 
452 		/* Maybe we can clear some bad blocks. */
453 		if (is_badblock(conf->mirrors[mirror].rdev,
454 				r1_bio->sector, r1_bio->sectors,
455 				&first_bad, &bad_sectors)) {
456 			r1_bio->bios[mirror] = IO_MADE_GOOD;
457 			set_bit(R1BIO_MadeGood, &r1_bio->state);
458 		}
459 	}
460 
461 	if (behind) {
462 		if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
463 			atomic_dec(&r1_bio->behind_remaining);
464 
465 		/*
466 		 * In behind mode, we ACK the master bio once the I/O
467 		 * has safely reached all non-writemostly
468 		 * disks. Setting the Returned bit ensures that this
469 		 * gets done only once -- we don't ever want to return
470 		 * -EIO here, instead we'll wait
471 		 */
472 		if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
473 		    test_bit(R1BIO_Uptodate, &r1_bio->state)) {
474 			/* Maybe we can return now */
475 			if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
476 				struct bio *mbio = r1_bio->master_bio;
477 				pr_debug("raid1: behind end write sectors"
478 					 " %llu-%llu\n",
479 					 (unsigned long long) mbio->bi_iter.bi_sector,
480 					 (unsigned long long) bio_end_sector(mbio) - 1);
481 				call_bio_endio(r1_bio);
482 			}
483 		}
484 	}
485 	if (r1_bio->bios[mirror] == NULL)
486 		rdev_dec_pending(conf->mirrors[mirror].rdev,
487 				 conf->mddev);
488 
489 	/*
490 	 * Let's see if all mirrored write operations have finished
491 	 * already.
492 	 */
493 	r1_bio_write_done(r1_bio);
494 
495 	if (to_put)
496 		bio_put(to_put);
497 }
498 
499 /*
500  * This routine returns the disk from which the requested read should
501  * be done. There is a per-array 'next expected sequential IO' sector
502  * number - if this matches on the next IO then we use the last disk.
503  * There is also a per-disk 'last know head position' sector that is
504  * maintained from IRQ contexts, both the normal and the resync IO
505  * completion handlers update this position correctly. If there is no
506  * perfect sequential match then we pick the disk whose head is closest.
507  *
508  * If there are 2 mirrors in the same 2 devices, performance degrades
509  * because position is mirror, not device based.
510  *
511  * The rdev for the device selected will have nr_pending incremented.
512  */
513 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
514 {
515 	const sector_t this_sector = r1_bio->sector;
516 	int sectors;
517 	int best_good_sectors;
518 	int best_disk, best_dist_disk, best_pending_disk;
519 	int has_nonrot_disk;
520 	int disk;
521 	sector_t best_dist;
522 	unsigned int min_pending;
523 	struct md_rdev *rdev;
524 	int choose_first;
525 	int choose_next_idle;
526 
527 	rcu_read_lock();
528 	/*
529 	 * Check if we can balance. We can balance on the whole
530 	 * device if no resync is going on, or below the resync window.
531 	 * We take the first readable disk when above the resync window.
532 	 */
533  retry:
534 	sectors = r1_bio->sectors;
535 	best_disk = -1;
536 	best_dist_disk = -1;
537 	best_dist = MaxSector;
538 	best_pending_disk = -1;
539 	min_pending = UINT_MAX;
540 	best_good_sectors = 0;
541 	has_nonrot_disk = 0;
542 	choose_next_idle = 0;
543 
544 	if ((conf->mddev->recovery_cp < this_sector + sectors) ||
545 	    (mddev_is_clustered(conf->mddev) &&
546 	    md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
547 		    this_sector + sectors)))
548 		choose_first = 1;
549 	else
550 		choose_first = 0;
551 
552 	for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
553 		sector_t dist;
554 		sector_t first_bad;
555 		int bad_sectors;
556 		unsigned int pending;
557 		bool nonrot;
558 
559 		rdev = rcu_dereference(conf->mirrors[disk].rdev);
560 		if (r1_bio->bios[disk] == IO_BLOCKED
561 		    || rdev == NULL
562 		    || test_bit(Faulty, &rdev->flags))
563 			continue;
564 		if (!test_bit(In_sync, &rdev->flags) &&
565 		    rdev->recovery_offset < this_sector + sectors)
566 			continue;
567 		if (test_bit(WriteMostly, &rdev->flags)) {
568 			/* Don't balance among write-mostly, just
569 			 * use the first as a last resort */
570 			if (best_dist_disk < 0) {
571 				if (is_badblock(rdev, this_sector, sectors,
572 						&first_bad, &bad_sectors)) {
573 					if (first_bad < this_sector)
574 						/* Cannot use this */
575 						continue;
576 					best_good_sectors = first_bad - this_sector;
577 				} else
578 					best_good_sectors = sectors;
579 				best_dist_disk = disk;
580 				best_pending_disk = disk;
581 			}
582 			continue;
583 		}
584 		/* This is a reasonable device to use.  It might
585 		 * even be best.
586 		 */
587 		if (is_badblock(rdev, this_sector, sectors,
588 				&first_bad, &bad_sectors)) {
589 			if (best_dist < MaxSector)
590 				/* already have a better device */
591 				continue;
592 			if (first_bad <= this_sector) {
593 				/* cannot read here. If this is the 'primary'
594 				 * device, then we must not read beyond
595 				 * bad_sectors from another device..
596 				 */
597 				bad_sectors -= (this_sector - first_bad);
598 				if (choose_first && sectors > bad_sectors)
599 					sectors = bad_sectors;
600 				if (best_good_sectors > sectors)
601 					best_good_sectors = sectors;
602 
603 			} else {
604 				sector_t good_sectors = first_bad - this_sector;
605 				if (good_sectors > best_good_sectors) {
606 					best_good_sectors = good_sectors;
607 					best_disk = disk;
608 				}
609 				if (choose_first)
610 					break;
611 			}
612 			continue;
613 		} else
614 			best_good_sectors = sectors;
615 
616 		nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
617 		has_nonrot_disk |= nonrot;
618 		pending = atomic_read(&rdev->nr_pending);
619 		dist = abs(this_sector - conf->mirrors[disk].head_position);
620 		if (choose_first) {
621 			best_disk = disk;
622 			break;
623 		}
624 		/* Don't change to another disk for sequential reads */
625 		if (conf->mirrors[disk].next_seq_sect == this_sector
626 		    || dist == 0) {
627 			int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
628 			struct raid1_info *mirror = &conf->mirrors[disk];
629 
630 			best_disk = disk;
631 			/*
632 			 * If buffered sequential IO size exceeds optimal
633 			 * iosize, check if there is idle disk. If yes, choose
634 			 * the idle disk. read_balance could already choose an
635 			 * idle disk before noticing it's a sequential IO in
636 			 * this disk. This doesn't matter because this disk
637 			 * will idle, next time it will be utilized after the
638 			 * first disk has IO size exceeds optimal iosize. In
639 			 * this way, iosize of the first disk will be optimal
640 			 * iosize at least. iosize of the second disk might be
641 			 * small, but not a big deal since when the second disk
642 			 * starts IO, the first disk is likely still busy.
643 			 */
644 			if (nonrot && opt_iosize > 0 &&
645 			    mirror->seq_start != MaxSector &&
646 			    mirror->next_seq_sect > opt_iosize &&
647 			    mirror->next_seq_sect - opt_iosize >=
648 			    mirror->seq_start) {
649 				choose_next_idle = 1;
650 				continue;
651 			}
652 			break;
653 		}
654 		/* If device is idle, use it */
655 		if (pending == 0) {
656 			best_disk = disk;
657 			break;
658 		}
659 
660 		if (choose_next_idle)
661 			continue;
662 
663 		if (min_pending > pending) {
664 			min_pending = pending;
665 			best_pending_disk = disk;
666 		}
667 
668 		if (dist < best_dist) {
669 			best_dist = dist;
670 			best_dist_disk = disk;
671 		}
672 	}
673 
674 	/*
675 	 * If all disks are rotational, choose the closest disk. If any disk is
676 	 * non-rotational, choose the disk with less pending request even the
677 	 * disk is rotational, which might/might not be optimal for raids with
678 	 * mixed ratation/non-rotational disks depending on workload.
679 	 */
680 	if (best_disk == -1) {
681 		if (has_nonrot_disk)
682 			best_disk = best_pending_disk;
683 		else
684 			best_disk = best_dist_disk;
685 	}
686 
687 	if (best_disk >= 0) {
688 		rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
689 		if (!rdev)
690 			goto retry;
691 		atomic_inc(&rdev->nr_pending);
692 		if (test_bit(Faulty, &rdev->flags)) {
693 			/* cannot risk returning a device that failed
694 			 * before we inc'ed nr_pending
695 			 */
696 			rdev_dec_pending(rdev, conf->mddev);
697 			goto retry;
698 		}
699 		sectors = best_good_sectors;
700 
701 		if (conf->mirrors[best_disk].next_seq_sect != this_sector)
702 			conf->mirrors[best_disk].seq_start = this_sector;
703 
704 		conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
705 	}
706 	rcu_read_unlock();
707 	*max_sectors = sectors;
708 
709 	return best_disk;
710 }
711 
712 static int raid1_congested(struct mddev *mddev, int bits)
713 {
714 	struct r1conf *conf = mddev->private;
715 	int i, ret = 0;
716 
717 	if ((bits & (1 << WB_async_congested)) &&
718 	    conf->pending_count >= max_queued_requests)
719 		return 1;
720 
721 	rcu_read_lock();
722 	for (i = 0; i < conf->raid_disks * 2; i++) {
723 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
724 		if (rdev && !test_bit(Faulty, &rdev->flags)) {
725 			struct request_queue *q = bdev_get_queue(rdev->bdev);
726 
727 			BUG_ON(!q);
728 
729 			/* Note the '|| 1' - when read_balance prefers
730 			 * non-congested targets, it can be removed
731 			 */
732 			if ((bits & (1 << WB_async_congested)) || 1)
733 				ret |= bdi_congested(&q->backing_dev_info, bits);
734 			else
735 				ret &= bdi_congested(&q->backing_dev_info, bits);
736 		}
737 	}
738 	rcu_read_unlock();
739 	return ret;
740 }
741 
742 static void flush_pending_writes(struct r1conf *conf)
743 {
744 	/* Any writes that have been queued but are awaiting
745 	 * bitmap updates get flushed here.
746 	 */
747 	spin_lock_irq(&conf->device_lock);
748 
749 	if (conf->pending_bio_list.head) {
750 		struct bio *bio;
751 		bio = bio_list_get(&conf->pending_bio_list);
752 		conf->pending_count = 0;
753 		spin_unlock_irq(&conf->device_lock);
754 		/* flush any pending bitmap writes to
755 		 * disk before proceeding w/ I/O */
756 		bitmap_unplug(conf->mddev->bitmap);
757 		wake_up(&conf->wait_barrier);
758 
759 		while (bio) { /* submit pending writes */
760 			struct bio *next = bio->bi_next;
761 			bio->bi_next = NULL;
762 			if (unlikely((bio->bi_rw & REQ_DISCARD) &&
763 			    !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
764 				/* Just ignore it */
765 				bio_endio(bio);
766 			else
767 				generic_make_request(bio);
768 			bio = next;
769 		}
770 	} else
771 		spin_unlock_irq(&conf->device_lock);
772 }
773 
774 /* Barriers....
775  * Sometimes we need to suspend IO while we do something else,
776  * either some resync/recovery, or reconfigure the array.
777  * To do this we raise a 'barrier'.
778  * The 'barrier' is a counter that can be raised multiple times
779  * to count how many activities are happening which preclude
780  * normal IO.
781  * We can only raise the barrier if there is no pending IO.
782  * i.e. if nr_pending == 0.
783  * We choose only to raise the barrier if no-one is waiting for the
784  * barrier to go down.  This means that as soon as an IO request
785  * is ready, no other operations which require a barrier will start
786  * until the IO request has had a chance.
787  *
788  * So: regular IO calls 'wait_barrier'.  When that returns there
789  *    is no backgroup IO happening,  It must arrange to call
790  *    allow_barrier when it has finished its IO.
791  * backgroup IO calls must call raise_barrier.  Once that returns
792  *    there is no normal IO happeing.  It must arrange to call
793  *    lower_barrier when the particular background IO completes.
794  */
795 static void raise_barrier(struct r1conf *conf, sector_t sector_nr)
796 {
797 	spin_lock_irq(&conf->resync_lock);
798 
799 	/* Wait until no block IO is waiting */
800 	wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
801 			    conf->resync_lock);
802 
803 	/* block any new IO from starting */
804 	conf->barrier++;
805 	conf->next_resync = sector_nr;
806 
807 	/* For these conditions we must wait:
808 	 * A: while the array is in frozen state
809 	 * B: while barrier >= RESYNC_DEPTH, meaning resync reach
810 	 *    the max count which allowed.
811 	 * C: next_resync + RESYNC_SECTORS > start_next_window, meaning
812 	 *    next resync will reach to the window which normal bios are
813 	 *    handling.
814 	 * D: while there are any active requests in the current window.
815 	 */
816 	wait_event_lock_irq(conf->wait_barrier,
817 			    !conf->array_frozen &&
818 			    conf->barrier < RESYNC_DEPTH &&
819 			    conf->current_window_requests == 0 &&
820 			    (conf->start_next_window >=
821 			     conf->next_resync + RESYNC_SECTORS),
822 			    conf->resync_lock);
823 
824 	conf->nr_pending++;
825 	spin_unlock_irq(&conf->resync_lock);
826 }
827 
828 static void lower_barrier(struct r1conf *conf)
829 {
830 	unsigned long flags;
831 	BUG_ON(conf->barrier <= 0);
832 	spin_lock_irqsave(&conf->resync_lock, flags);
833 	conf->barrier--;
834 	conf->nr_pending--;
835 	spin_unlock_irqrestore(&conf->resync_lock, flags);
836 	wake_up(&conf->wait_barrier);
837 }
838 
839 static bool need_to_wait_for_sync(struct r1conf *conf, struct bio *bio)
840 {
841 	bool wait = false;
842 
843 	if (conf->array_frozen || !bio)
844 		wait = true;
845 	else if (conf->barrier && bio_data_dir(bio) == WRITE) {
846 		if ((conf->mddev->curr_resync_completed
847 		     >= bio_end_sector(bio)) ||
848 		    (conf->next_resync + NEXT_NORMALIO_DISTANCE
849 		     <= bio->bi_iter.bi_sector))
850 			wait = false;
851 		else
852 			wait = true;
853 	}
854 
855 	return wait;
856 }
857 
858 static sector_t wait_barrier(struct r1conf *conf, struct bio *bio)
859 {
860 	sector_t sector = 0;
861 
862 	spin_lock_irq(&conf->resync_lock);
863 	if (need_to_wait_for_sync(conf, bio)) {
864 		conf->nr_waiting++;
865 		/* Wait for the barrier to drop.
866 		 * However if there are already pending
867 		 * requests (preventing the barrier from
868 		 * rising completely), and the
869 		 * per-process bio queue isn't empty,
870 		 * then don't wait, as we need to empty
871 		 * that queue to allow conf->start_next_window
872 		 * to increase.
873 		 */
874 		wait_event_lock_irq(conf->wait_barrier,
875 				    !conf->array_frozen &&
876 				    (!conf->barrier ||
877 				     ((conf->start_next_window <
878 				       conf->next_resync + RESYNC_SECTORS) &&
879 				      current->bio_list &&
880 				      !bio_list_empty(current->bio_list))),
881 				    conf->resync_lock);
882 		conf->nr_waiting--;
883 	}
884 
885 	if (bio && bio_data_dir(bio) == WRITE) {
886 		if (bio->bi_iter.bi_sector >= conf->next_resync) {
887 			if (conf->start_next_window == MaxSector)
888 				conf->start_next_window =
889 					conf->next_resync +
890 					NEXT_NORMALIO_DISTANCE;
891 
892 			if ((conf->start_next_window + NEXT_NORMALIO_DISTANCE)
893 			    <= bio->bi_iter.bi_sector)
894 				conf->next_window_requests++;
895 			else
896 				conf->current_window_requests++;
897 			sector = conf->start_next_window;
898 		}
899 	}
900 
901 	conf->nr_pending++;
902 	spin_unlock_irq(&conf->resync_lock);
903 	return sector;
904 }
905 
906 static void allow_barrier(struct r1conf *conf, sector_t start_next_window,
907 			  sector_t bi_sector)
908 {
909 	unsigned long flags;
910 
911 	spin_lock_irqsave(&conf->resync_lock, flags);
912 	conf->nr_pending--;
913 	if (start_next_window) {
914 		if (start_next_window == conf->start_next_window) {
915 			if (conf->start_next_window + NEXT_NORMALIO_DISTANCE
916 			    <= bi_sector)
917 				conf->next_window_requests--;
918 			else
919 				conf->current_window_requests--;
920 		} else
921 			conf->current_window_requests--;
922 
923 		if (!conf->current_window_requests) {
924 			if (conf->next_window_requests) {
925 				conf->current_window_requests =
926 					conf->next_window_requests;
927 				conf->next_window_requests = 0;
928 				conf->start_next_window +=
929 					NEXT_NORMALIO_DISTANCE;
930 			} else
931 				conf->start_next_window = MaxSector;
932 		}
933 	}
934 	spin_unlock_irqrestore(&conf->resync_lock, flags);
935 	wake_up(&conf->wait_barrier);
936 }
937 
938 static void freeze_array(struct r1conf *conf, int extra)
939 {
940 	/* stop syncio and normal IO and wait for everything to
941 	 * go quite.
942 	 * We wait until nr_pending match nr_queued+extra
943 	 * This is called in the context of one normal IO request
944 	 * that has failed. Thus any sync request that might be pending
945 	 * will be blocked by nr_pending, and we need to wait for
946 	 * pending IO requests to complete or be queued for re-try.
947 	 * Thus the number queued (nr_queued) plus this request (extra)
948 	 * must match the number of pending IOs (nr_pending) before
949 	 * we continue.
950 	 */
951 	spin_lock_irq(&conf->resync_lock);
952 	conf->array_frozen = 1;
953 	wait_event_lock_irq_cmd(conf->wait_barrier,
954 				conf->nr_pending == conf->nr_queued+extra,
955 				conf->resync_lock,
956 				flush_pending_writes(conf));
957 	spin_unlock_irq(&conf->resync_lock);
958 }
959 static void unfreeze_array(struct r1conf *conf)
960 {
961 	/* reverse the effect of the freeze */
962 	spin_lock_irq(&conf->resync_lock);
963 	conf->array_frozen = 0;
964 	wake_up(&conf->wait_barrier);
965 	spin_unlock_irq(&conf->resync_lock);
966 }
967 
968 /* duplicate the data pages for behind I/O
969  */
970 static void alloc_behind_pages(struct bio *bio, struct r1bio *r1_bio)
971 {
972 	int i;
973 	struct bio_vec *bvec;
974 	struct bio_vec *bvecs = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec),
975 					GFP_NOIO);
976 	if (unlikely(!bvecs))
977 		return;
978 
979 	bio_for_each_segment_all(bvec, bio, i) {
980 		bvecs[i] = *bvec;
981 		bvecs[i].bv_page = alloc_page(GFP_NOIO);
982 		if (unlikely(!bvecs[i].bv_page))
983 			goto do_sync_io;
984 		memcpy(kmap(bvecs[i].bv_page) + bvec->bv_offset,
985 		       kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
986 		kunmap(bvecs[i].bv_page);
987 		kunmap(bvec->bv_page);
988 	}
989 	r1_bio->behind_bvecs = bvecs;
990 	r1_bio->behind_page_count = bio->bi_vcnt;
991 	set_bit(R1BIO_BehindIO, &r1_bio->state);
992 	return;
993 
994 do_sync_io:
995 	for (i = 0; i < bio->bi_vcnt; i++)
996 		if (bvecs[i].bv_page)
997 			put_page(bvecs[i].bv_page);
998 	kfree(bvecs);
999 	pr_debug("%dB behind alloc failed, doing sync I/O\n",
1000 		 bio->bi_iter.bi_size);
1001 }
1002 
1003 struct raid1_plug_cb {
1004 	struct blk_plug_cb	cb;
1005 	struct bio_list		pending;
1006 	int			pending_cnt;
1007 };
1008 
1009 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1010 {
1011 	struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1012 						  cb);
1013 	struct mddev *mddev = plug->cb.data;
1014 	struct r1conf *conf = mddev->private;
1015 	struct bio *bio;
1016 
1017 	if (from_schedule || current->bio_list) {
1018 		spin_lock_irq(&conf->device_lock);
1019 		bio_list_merge(&conf->pending_bio_list, &plug->pending);
1020 		conf->pending_count += plug->pending_cnt;
1021 		spin_unlock_irq(&conf->device_lock);
1022 		wake_up(&conf->wait_barrier);
1023 		md_wakeup_thread(mddev->thread);
1024 		kfree(plug);
1025 		return;
1026 	}
1027 
1028 	/* we aren't scheduling, so we can do the write-out directly. */
1029 	bio = bio_list_get(&plug->pending);
1030 	bitmap_unplug(mddev->bitmap);
1031 	wake_up(&conf->wait_barrier);
1032 
1033 	while (bio) { /* submit pending writes */
1034 		struct bio *next = bio->bi_next;
1035 		bio->bi_next = NULL;
1036 		if (unlikely((bio->bi_rw & REQ_DISCARD) &&
1037 		    !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
1038 			/* Just ignore it */
1039 			bio_endio(bio);
1040 		else
1041 			generic_make_request(bio);
1042 		bio = next;
1043 	}
1044 	kfree(plug);
1045 }
1046 
1047 static void raid1_make_request(struct mddev *mddev, struct bio * bio)
1048 {
1049 	struct r1conf *conf = mddev->private;
1050 	struct raid1_info *mirror;
1051 	struct r1bio *r1_bio;
1052 	struct bio *read_bio;
1053 	int i, disks;
1054 	struct bitmap *bitmap;
1055 	unsigned long flags;
1056 	const int rw = bio_data_dir(bio);
1057 	const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
1058 	const unsigned long do_flush_fua = (bio->bi_rw & (REQ_FLUSH | REQ_FUA));
1059 	const unsigned long do_discard = (bio->bi_rw
1060 					  & (REQ_DISCARD | REQ_SECURE));
1061 	const unsigned long do_same = (bio->bi_rw & REQ_WRITE_SAME);
1062 	struct md_rdev *blocked_rdev;
1063 	struct blk_plug_cb *cb;
1064 	struct raid1_plug_cb *plug = NULL;
1065 	int first_clone;
1066 	int sectors_handled;
1067 	int max_sectors;
1068 	sector_t start_next_window;
1069 
1070 	/*
1071 	 * Register the new request and wait if the reconstruction
1072 	 * thread has put up a bar for new requests.
1073 	 * Continue immediately if no resync is active currently.
1074 	 */
1075 
1076 	md_write_start(mddev, bio); /* wait on superblock update early */
1077 
1078 	if (bio_data_dir(bio) == WRITE &&
1079 	    ((bio_end_sector(bio) > mddev->suspend_lo &&
1080 	    bio->bi_iter.bi_sector < mddev->suspend_hi) ||
1081 	    (mddev_is_clustered(mddev) &&
1082 	     md_cluster_ops->area_resyncing(mddev, WRITE,
1083 		     bio->bi_iter.bi_sector, bio_end_sector(bio))))) {
1084 		/* As the suspend_* range is controlled by
1085 		 * userspace, we want an interruptible
1086 		 * wait.
1087 		 */
1088 		DEFINE_WAIT(w);
1089 		for (;;) {
1090 			flush_signals(current);
1091 			prepare_to_wait(&conf->wait_barrier,
1092 					&w, TASK_INTERRUPTIBLE);
1093 			if (bio_end_sector(bio) <= mddev->suspend_lo ||
1094 			    bio->bi_iter.bi_sector >= mddev->suspend_hi ||
1095 			    (mddev_is_clustered(mddev) &&
1096 			     !md_cluster_ops->area_resyncing(mddev, WRITE,
1097 				     bio->bi_iter.bi_sector, bio_end_sector(bio))))
1098 				break;
1099 			schedule();
1100 		}
1101 		finish_wait(&conf->wait_barrier, &w);
1102 	}
1103 
1104 	start_next_window = wait_barrier(conf, bio);
1105 
1106 	bitmap = mddev->bitmap;
1107 
1108 	/*
1109 	 * make_request() can abort the operation when READA is being
1110 	 * used and no empty request is available.
1111 	 *
1112 	 */
1113 	r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1114 
1115 	r1_bio->master_bio = bio;
1116 	r1_bio->sectors = bio_sectors(bio);
1117 	r1_bio->state = 0;
1118 	r1_bio->mddev = mddev;
1119 	r1_bio->sector = bio->bi_iter.bi_sector;
1120 
1121 	/* We might need to issue multiple reads to different
1122 	 * devices if there are bad blocks around, so we keep
1123 	 * track of the number of reads in bio->bi_phys_segments.
1124 	 * If this is 0, there is only one r1_bio and no locking
1125 	 * will be needed when requests complete.  If it is
1126 	 * non-zero, then it is the number of not-completed requests.
1127 	 */
1128 	bio->bi_phys_segments = 0;
1129 	bio_clear_flag(bio, BIO_SEG_VALID);
1130 
1131 	if (rw == READ) {
1132 		/*
1133 		 * read balancing logic:
1134 		 */
1135 		int rdisk;
1136 
1137 read_again:
1138 		rdisk = read_balance(conf, r1_bio, &max_sectors);
1139 
1140 		if (rdisk < 0) {
1141 			/* couldn't find anywhere to read from */
1142 			raid_end_bio_io(r1_bio);
1143 			return;
1144 		}
1145 		mirror = conf->mirrors + rdisk;
1146 
1147 		if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1148 		    bitmap) {
1149 			/* Reading from a write-mostly device must
1150 			 * take care not to over-take any writes
1151 			 * that are 'behind'
1152 			 */
1153 			wait_event(bitmap->behind_wait,
1154 				   atomic_read(&bitmap->behind_writes) == 0);
1155 		}
1156 		r1_bio->read_disk = rdisk;
1157 		r1_bio->start_next_window = 0;
1158 
1159 		read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1160 		bio_trim(read_bio, r1_bio->sector - bio->bi_iter.bi_sector,
1161 			 max_sectors);
1162 
1163 		r1_bio->bios[rdisk] = read_bio;
1164 
1165 		read_bio->bi_iter.bi_sector = r1_bio->sector +
1166 			mirror->rdev->data_offset;
1167 		read_bio->bi_bdev = mirror->rdev->bdev;
1168 		read_bio->bi_end_io = raid1_end_read_request;
1169 		read_bio->bi_rw = READ | do_sync;
1170 		read_bio->bi_private = r1_bio;
1171 
1172 		if (max_sectors < r1_bio->sectors) {
1173 			/* could not read all from this device, so we will
1174 			 * need another r1_bio.
1175 			 */
1176 
1177 			sectors_handled = (r1_bio->sector + max_sectors
1178 					   - bio->bi_iter.bi_sector);
1179 			r1_bio->sectors = max_sectors;
1180 			spin_lock_irq(&conf->device_lock);
1181 			if (bio->bi_phys_segments == 0)
1182 				bio->bi_phys_segments = 2;
1183 			else
1184 				bio->bi_phys_segments++;
1185 			spin_unlock_irq(&conf->device_lock);
1186 			/* Cannot call generic_make_request directly
1187 			 * as that will be queued in __make_request
1188 			 * and subsequent mempool_alloc might block waiting
1189 			 * for it.  So hand bio over to raid1d.
1190 			 */
1191 			reschedule_retry(r1_bio);
1192 
1193 			r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1194 
1195 			r1_bio->master_bio = bio;
1196 			r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1197 			r1_bio->state = 0;
1198 			r1_bio->mddev = mddev;
1199 			r1_bio->sector = bio->bi_iter.bi_sector +
1200 				sectors_handled;
1201 			goto read_again;
1202 		} else
1203 			generic_make_request(read_bio);
1204 		return;
1205 	}
1206 
1207 	/*
1208 	 * WRITE:
1209 	 */
1210 	if (conf->pending_count >= max_queued_requests) {
1211 		md_wakeup_thread(mddev->thread);
1212 		wait_event(conf->wait_barrier,
1213 			   conf->pending_count < max_queued_requests);
1214 	}
1215 	/* first select target devices under rcu_lock and
1216 	 * inc refcount on their rdev.  Record them by setting
1217 	 * bios[x] to bio
1218 	 * If there are known/acknowledged bad blocks on any device on
1219 	 * which we have seen a write error, we want to avoid writing those
1220 	 * blocks.
1221 	 * This potentially requires several writes to write around
1222 	 * the bad blocks.  Each set of writes gets it's own r1bio
1223 	 * with a set of bios attached.
1224 	 */
1225 
1226 	disks = conf->raid_disks * 2;
1227  retry_write:
1228 	r1_bio->start_next_window = start_next_window;
1229 	blocked_rdev = NULL;
1230 	rcu_read_lock();
1231 	max_sectors = r1_bio->sectors;
1232 	for (i = 0;  i < disks; i++) {
1233 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1234 		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1235 			atomic_inc(&rdev->nr_pending);
1236 			blocked_rdev = rdev;
1237 			break;
1238 		}
1239 		r1_bio->bios[i] = NULL;
1240 		if (!rdev || test_bit(Faulty, &rdev->flags)) {
1241 			if (i < conf->raid_disks)
1242 				set_bit(R1BIO_Degraded, &r1_bio->state);
1243 			continue;
1244 		}
1245 
1246 		atomic_inc(&rdev->nr_pending);
1247 		if (test_bit(WriteErrorSeen, &rdev->flags)) {
1248 			sector_t first_bad;
1249 			int bad_sectors;
1250 			int is_bad;
1251 
1252 			is_bad = is_badblock(rdev, r1_bio->sector,
1253 					     max_sectors,
1254 					     &first_bad, &bad_sectors);
1255 			if (is_bad < 0) {
1256 				/* mustn't write here until the bad block is
1257 				 * acknowledged*/
1258 				set_bit(BlockedBadBlocks, &rdev->flags);
1259 				blocked_rdev = rdev;
1260 				break;
1261 			}
1262 			if (is_bad && first_bad <= r1_bio->sector) {
1263 				/* Cannot write here at all */
1264 				bad_sectors -= (r1_bio->sector - first_bad);
1265 				if (bad_sectors < max_sectors)
1266 					/* mustn't write more than bad_sectors
1267 					 * to other devices yet
1268 					 */
1269 					max_sectors = bad_sectors;
1270 				rdev_dec_pending(rdev, mddev);
1271 				/* We don't set R1BIO_Degraded as that
1272 				 * only applies if the disk is
1273 				 * missing, so it might be re-added,
1274 				 * and we want to know to recover this
1275 				 * chunk.
1276 				 * In this case the device is here,
1277 				 * and the fact that this chunk is not
1278 				 * in-sync is recorded in the bad
1279 				 * block log
1280 				 */
1281 				continue;
1282 			}
1283 			if (is_bad) {
1284 				int good_sectors = first_bad - r1_bio->sector;
1285 				if (good_sectors < max_sectors)
1286 					max_sectors = good_sectors;
1287 			}
1288 		}
1289 		r1_bio->bios[i] = bio;
1290 	}
1291 	rcu_read_unlock();
1292 
1293 	if (unlikely(blocked_rdev)) {
1294 		/* Wait for this device to become unblocked */
1295 		int j;
1296 		sector_t old = start_next_window;
1297 
1298 		for (j = 0; j < i; j++)
1299 			if (r1_bio->bios[j])
1300 				rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1301 		r1_bio->state = 0;
1302 		allow_barrier(conf, start_next_window, bio->bi_iter.bi_sector);
1303 		md_wait_for_blocked_rdev(blocked_rdev, mddev);
1304 		start_next_window = wait_barrier(conf, bio);
1305 		/*
1306 		 * We must make sure the multi r1bios of bio have
1307 		 * the same value of bi_phys_segments
1308 		 */
1309 		if (bio->bi_phys_segments && old &&
1310 		    old != start_next_window)
1311 			/* Wait for the former r1bio(s) to complete */
1312 			wait_event(conf->wait_barrier,
1313 				   bio->bi_phys_segments == 1);
1314 		goto retry_write;
1315 	}
1316 
1317 	if (max_sectors < r1_bio->sectors) {
1318 		/* We are splitting this write into multiple parts, so
1319 		 * we need to prepare for allocating another r1_bio.
1320 		 */
1321 		r1_bio->sectors = max_sectors;
1322 		spin_lock_irq(&conf->device_lock);
1323 		if (bio->bi_phys_segments == 0)
1324 			bio->bi_phys_segments = 2;
1325 		else
1326 			bio->bi_phys_segments++;
1327 		spin_unlock_irq(&conf->device_lock);
1328 	}
1329 	sectors_handled = r1_bio->sector + max_sectors - bio->bi_iter.bi_sector;
1330 
1331 	atomic_set(&r1_bio->remaining, 1);
1332 	atomic_set(&r1_bio->behind_remaining, 0);
1333 
1334 	first_clone = 1;
1335 	for (i = 0; i < disks; i++) {
1336 		struct bio *mbio;
1337 		if (!r1_bio->bios[i])
1338 			continue;
1339 
1340 		mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1341 		bio_trim(mbio, r1_bio->sector - bio->bi_iter.bi_sector, max_sectors);
1342 
1343 		if (first_clone) {
1344 			/* do behind I/O ?
1345 			 * Not if there are too many, or cannot
1346 			 * allocate memory, or a reader on WriteMostly
1347 			 * is waiting for behind writes to flush */
1348 			if (bitmap &&
1349 			    (atomic_read(&bitmap->behind_writes)
1350 			     < mddev->bitmap_info.max_write_behind) &&
1351 			    !waitqueue_active(&bitmap->behind_wait))
1352 				alloc_behind_pages(mbio, r1_bio);
1353 
1354 			bitmap_startwrite(bitmap, r1_bio->sector,
1355 					  r1_bio->sectors,
1356 					  test_bit(R1BIO_BehindIO,
1357 						   &r1_bio->state));
1358 			first_clone = 0;
1359 		}
1360 		if (r1_bio->behind_bvecs) {
1361 			struct bio_vec *bvec;
1362 			int j;
1363 
1364 			/*
1365 			 * We trimmed the bio, so _all is legit
1366 			 */
1367 			bio_for_each_segment_all(bvec, mbio, j)
1368 				bvec->bv_page = r1_bio->behind_bvecs[j].bv_page;
1369 			if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1370 				atomic_inc(&r1_bio->behind_remaining);
1371 		}
1372 
1373 		r1_bio->bios[i] = mbio;
1374 
1375 		mbio->bi_iter.bi_sector	= (r1_bio->sector +
1376 				   conf->mirrors[i].rdev->data_offset);
1377 		mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1378 		mbio->bi_end_io	= raid1_end_write_request;
1379 		mbio->bi_rw =
1380 			WRITE | do_flush_fua | do_sync | do_discard | do_same;
1381 		mbio->bi_private = r1_bio;
1382 
1383 		atomic_inc(&r1_bio->remaining);
1384 
1385 		cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1386 		if (cb)
1387 			plug = container_of(cb, struct raid1_plug_cb, cb);
1388 		else
1389 			plug = NULL;
1390 		spin_lock_irqsave(&conf->device_lock, flags);
1391 		if (plug) {
1392 			bio_list_add(&plug->pending, mbio);
1393 			plug->pending_cnt++;
1394 		} else {
1395 			bio_list_add(&conf->pending_bio_list, mbio);
1396 			conf->pending_count++;
1397 		}
1398 		spin_unlock_irqrestore(&conf->device_lock, flags);
1399 		if (!plug)
1400 			md_wakeup_thread(mddev->thread);
1401 	}
1402 	/* Mustn't call r1_bio_write_done before this next test,
1403 	 * as it could result in the bio being freed.
1404 	 */
1405 	if (sectors_handled < bio_sectors(bio)) {
1406 		r1_bio_write_done(r1_bio);
1407 		/* We need another r1_bio.  It has already been counted
1408 		 * in bio->bi_phys_segments
1409 		 */
1410 		r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1411 		r1_bio->master_bio = bio;
1412 		r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1413 		r1_bio->state = 0;
1414 		r1_bio->mddev = mddev;
1415 		r1_bio->sector = bio->bi_iter.bi_sector + sectors_handled;
1416 		goto retry_write;
1417 	}
1418 
1419 	r1_bio_write_done(r1_bio);
1420 
1421 	/* In case raid1d snuck in to freeze_array */
1422 	wake_up(&conf->wait_barrier);
1423 }
1424 
1425 static void raid1_status(struct seq_file *seq, struct mddev *mddev)
1426 {
1427 	struct r1conf *conf = mddev->private;
1428 	int i;
1429 
1430 	seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1431 		   conf->raid_disks - mddev->degraded);
1432 	rcu_read_lock();
1433 	for (i = 0; i < conf->raid_disks; i++) {
1434 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1435 		seq_printf(seq, "%s",
1436 			   rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1437 	}
1438 	rcu_read_unlock();
1439 	seq_printf(seq, "]");
1440 }
1441 
1442 static void raid1_error(struct mddev *mddev, struct md_rdev *rdev)
1443 {
1444 	char b[BDEVNAME_SIZE];
1445 	struct r1conf *conf = mddev->private;
1446 	unsigned long flags;
1447 
1448 	/*
1449 	 * If it is not operational, then we have already marked it as dead
1450 	 * else if it is the last working disks, ignore the error, let the
1451 	 * next level up know.
1452 	 * else mark the drive as failed
1453 	 */
1454 	if (test_bit(In_sync, &rdev->flags)
1455 	    && (conf->raid_disks - mddev->degraded) == 1) {
1456 		/*
1457 		 * Don't fail the drive, act as though we were just a
1458 		 * normal single drive.
1459 		 * However don't try a recovery from this drive as
1460 		 * it is very likely to fail.
1461 		 */
1462 		conf->recovery_disabled = mddev->recovery_disabled;
1463 		return;
1464 	}
1465 	set_bit(Blocked, &rdev->flags);
1466 	spin_lock_irqsave(&conf->device_lock, flags);
1467 	if (test_and_clear_bit(In_sync, &rdev->flags)) {
1468 		mddev->degraded++;
1469 		set_bit(Faulty, &rdev->flags);
1470 	} else
1471 		set_bit(Faulty, &rdev->flags);
1472 	spin_unlock_irqrestore(&conf->device_lock, flags);
1473 	/*
1474 	 * if recovery is running, make sure it aborts.
1475 	 */
1476 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1477 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
1478 	set_bit(MD_CHANGE_PENDING, &mddev->flags);
1479 	printk(KERN_ALERT
1480 	       "md/raid1:%s: Disk failure on %s, disabling device.\n"
1481 	       "md/raid1:%s: Operation continuing on %d devices.\n",
1482 	       mdname(mddev), bdevname(rdev->bdev, b),
1483 	       mdname(mddev), conf->raid_disks - mddev->degraded);
1484 }
1485 
1486 static void print_conf(struct r1conf *conf)
1487 {
1488 	int i;
1489 
1490 	printk(KERN_DEBUG "RAID1 conf printout:\n");
1491 	if (!conf) {
1492 		printk(KERN_DEBUG "(!conf)\n");
1493 		return;
1494 	}
1495 	printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1496 		conf->raid_disks);
1497 
1498 	rcu_read_lock();
1499 	for (i = 0; i < conf->raid_disks; i++) {
1500 		char b[BDEVNAME_SIZE];
1501 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1502 		if (rdev)
1503 			printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1504 			       i, !test_bit(In_sync, &rdev->flags),
1505 			       !test_bit(Faulty, &rdev->flags),
1506 			       bdevname(rdev->bdev,b));
1507 	}
1508 	rcu_read_unlock();
1509 }
1510 
1511 static void close_sync(struct r1conf *conf)
1512 {
1513 	wait_barrier(conf, NULL);
1514 	allow_barrier(conf, 0, 0);
1515 
1516 	mempool_destroy(conf->r1buf_pool);
1517 	conf->r1buf_pool = NULL;
1518 
1519 	spin_lock_irq(&conf->resync_lock);
1520 	conf->next_resync = MaxSector - 2 * NEXT_NORMALIO_DISTANCE;
1521 	conf->start_next_window = MaxSector;
1522 	conf->current_window_requests +=
1523 		conf->next_window_requests;
1524 	conf->next_window_requests = 0;
1525 	spin_unlock_irq(&conf->resync_lock);
1526 }
1527 
1528 static int raid1_spare_active(struct mddev *mddev)
1529 {
1530 	int i;
1531 	struct r1conf *conf = mddev->private;
1532 	int count = 0;
1533 	unsigned long flags;
1534 
1535 	/*
1536 	 * Find all failed disks within the RAID1 configuration
1537 	 * and mark them readable.
1538 	 * Called under mddev lock, so rcu protection not needed.
1539 	 * device_lock used to avoid races with raid1_end_read_request
1540 	 * which expects 'In_sync' flags and ->degraded to be consistent.
1541 	 */
1542 	spin_lock_irqsave(&conf->device_lock, flags);
1543 	for (i = 0; i < conf->raid_disks; i++) {
1544 		struct md_rdev *rdev = conf->mirrors[i].rdev;
1545 		struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1546 		if (repl
1547 		    && !test_bit(Candidate, &repl->flags)
1548 		    && repl->recovery_offset == MaxSector
1549 		    && !test_bit(Faulty, &repl->flags)
1550 		    && !test_and_set_bit(In_sync, &repl->flags)) {
1551 			/* replacement has just become active */
1552 			if (!rdev ||
1553 			    !test_and_clear_bit(In_sync, &rdev->flags))
1554 				count++;
1555 			if (rdev) {
1556 				/* Replaced device not technically
1557 				 * faulty, but we need to be sure
1558 				 * it gets removed and never re-added
1559 				 */
1560 				set_bit(Faulty, &rdev->flags);
1561 				sysfs_notify_dirent_safe(
1562 					rdev->sysfs_state);
1563 			}
1564 		}
1565 		if (rdev
1566 		    && rdev->recovery_offset == MaxSector
1567 		    && !test_bit(Faulty, &rdev->flags)
1568 		    && !test_and_set_bit(In_sync, &rdev->flags)) {
1569 			count++;
1570 			sysfs_notify_dirent_safe(rdev->sysfs_state);
1571 		}
1572 	}
1573 	mddev->degraded -= count;
1574 	spin_unlock_irqrestore(&conf->device_lock, flags);
1575 
1576 	print_conf(conf);
1577 	return count;
1578 }
1579 
1580 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1581 {
1582 	struct r1conf *conf = mddev->private;
1583 	int err = -EEXIST;
1584 	int mirror = 0;
1585 	struct raid1_info *p;
1586 	int first = 0;
1587 	int last = conf->raid_disks - 1;
1588 
1589 	if (mddev->recovery_disabled == conf->recovery_disabled)
1590 		return -EBUSY;
1591 
1592 	if (md_integrity_add_rdev(rdev, mddev))
1593 		return -ENXIO;
1594 
1595 	if (rdev->raid_disk >= 0)
1596 		first = last = rdev->raid_disk;
1597 
1598 	/*
1599 	 * find the disk ... but prefer rdev->saved_raid_disk
1600 	 * if possible.
1601 	 */
1602 	if (rdev->saved_raid_disk >= 0 &&
1603 	    rdev->saved_raid_disk >= first &&
1604 	    conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1605 		first = last = rdev->saved_raid_disk;
1606 
1607 	for (mirror = first; mirror <= last; mirror++) {
1608 		p = conf->mirrors+mirror;
1609 		if (!p->rdev) {
1610 
1611 			if (mddev->gendisk)
1612 				disk_stack_limits(mddev->gendisk, rdev->bdev,
1613 						  rdev->data_offset << 9);
1614 
1615 			p->head_position = 0;
1616 			rdev->raid_disk = mirror;
1617 			err = 0;
1618 			/* As all devices are equivalent, we don't need a full recovery
1619 			 * if this was recently any drive of the array
1620 			 */
1621 			if (rdev->saved_raid_disk < 0)
1622 				conf->fullsync = 1;
1623 			rcu_assign_pointer(p->rdev, rdev);
1624 			break;
1625 		}
1626 		if (test_bit(WantReplacement, &p->rdev->flags) &&
1627 		    p[conf->raid_disks].rdev == NULL) {
1628 			/* Add this device as a replacement */
1629 			clear_bit(In_sync, &rdev->flags);
1630 			set_bit(Replacement, &rdev->flags);
1631 			rdev->raid_disk = mirror;
1632 			err = 0;
1633 			conf->fullsync = 1;
1634 			rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1635 			break;
1636 		}
1637 	}
1638 	if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1639 		queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1640 	print_conf(conf);
1641 	return err;
1642 }
1643 
1644 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1645 {
1646 	struct r1conf *conf = mddev->private;
1647 	int err = 0;
1648 	int number = rdev->raid_disk;
1649 	struct raid1_info *p = conf->mirrors + number;
1650 
1651 	if (rdev != p->rdev)
1652 		p = conf->mirrors + conf->raid_disks + number;
1653 
1654 	print_conf(conf);
1655 	if (rdev == p->rdev) {
1656 		if (test_bit(In_sync, &rdev->flags) ||
1657 		    atomic_read(&rdev->nr_pending)) {
1658 			err = -EBUSY;
1659 			goto abort;
1660 		}
1661 		/* Only remove non-faulty devices if recovery
1662 		 * is not possible.
1663 		 */
1664 		if (!test_bit(Faulty, &rdev->flags) &&
1665 		    mddev->recovery_disabled != conf->recovery_disabled &&
1666 		    mddev->degraded < conf->raid_disks) {
1667 			err = -EBUSY;
1668 			goto abort;
1669 		}
1670 		p->rdev = NULL;
1671 		synchronize_rcu();
1672 		if (atomic_read(&rdev->nr_pending)) {
1673 			/* lost the race, try later */
1674 			err = -EBUSY;
1675 			p->rdev = rdev;
1676 			goto abort;
1677 		} else if (conf->mirrors[conf->raid_disks + number].rdev) {
1678 			/* We just removed a device that is being replaced.
1679 			 * Move down the replacement.  We drain all IO before
1680 			 * doing this to avoid confusion.
1681 			 */
1682 			struct md_rdev *repl =
1683 				conf->mirrors[conf->raid_disks + number].rdev;
1684 			freeze_array(conf, 0);
1685 			clear_bit(Replacement, &repl->flags);
1686 			p->rdev = repl;
1687 			conf->mirrors[conf->raid_disks + number].rdev = NULL;
1688 			unfreeze_array(conf);
1689 			clear_bit(WantReplacement, &rdev->flags);
1690 		} else
1691 			clear_bit(WantReplacement, &rdev->flags);
1692 		err = md_integrity_register(mddev);
1693 	}
1694 abort:
1695 
1696 	print_conf(conf);
1697 	return err;
1698 }
1699 
1700 static void end_sync_read(struct bio *bio)
1701 {
1702 	struct r1bio *r1_bio = bio->bi_private;
1703 
1704 	update_head_pos(r1_bio->read_disk, r1_bio);
1705 
1706 	/*
1707 	 * we have read a block, now it needs to be re-written,
1708 	 * or re-read if the read failed.
1709 	 * We don't do much here, just schedule handling by raid1d
1710 	 */
1711 	if (!bio->bi_error)
1712 		set_bit(R1BIO_Uptodate, &r1_bio->state);
1713 
1714 	if (atomic_dec_and_test(&r1_bio->remaining))
1715 		reschedule_retry(r1_bio);
1716 }
1717 
1718 static void end_sync_write(struct bio *bio)
1719 {
1720 	int uptodate = !bio->bi_error;
1721 	struct r1bio *r1_bio = bio->bi_private;
1722 	struct mddev *mddev = r1_bio->mddev;
1723 	struct r1conf *conf = mddev->private;
1724 	int mirror=0;
1725 	sector_t first_bad;
1726 	int bad_sectors;
1727 
1728 	mirror = find_bio_disk(r1_bio, bio);
1729 
1730 	if (!uptodate) {
1731 		sector_t sync_blocks = 0;
1732 		sector_t s = r1_bio->sector;
1733 		long sectors_to_go = r1_bio->sectors;
1734 		/* make sure these bits doesn't get cleared. */
1735 		do {
1736 			bitmap_end_sync(mddev->bitmap, s,
1737 					&sync_blocks, 1);
1738 			s += sync_blocks;
1739 			sectors_to_go -= sync_blocks;
1740 		} while (sectors_to_go > 0);
1741 		set_bit(WriteErrorSeen,
1742 			&conf->mirrors[mirror].rdev->flags);
1743 		if (!test_and_set_bit(WantReplacement,
1744 				      &conf->mirrors[mirror].rdev->flags))
1745 			set_bit(MD_RECOVERY_NEEDED, &
1746 				mddev->recovery);
1747 		set_bit(R1BIO_WriteError, &r1_bio->state);
1748 	} else if (is_badblock(conf->mirrors[mirror].rdev,
1749 			       r1_bio->sector,
1750 			       r1_bio->sectors,
1751 			       &first_bad, &bad_sectors) &&
1752 		   !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1753 				r1_bio->sector,
1754 				r1_bio->sectors,
1755 				&first_bad, &bad_sectors)
1756 		)
1757 		set_bit(R1BIO_MadeGood, &r1_bio->state);
1758 
1759 	if (atomic_dec_and_test(&r1_bio->remaining)) {
1760 		int s = r1_bio->sectors;
1761 		if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1762 		    test_bit(R1BIO_WriteError, &r1_bio->state))
1763 			reschedule_retry(r1_bio);
1764 		else {
1765 			put_buf(r1_bio);
1766 			md_done_sync(mddev, s, uptodate);
1767 		}
1768 	}
1769 }
1770 
1771 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1772 			    int sectors, struct page *page, int rw)
1773 {
1774 	if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
1775 		/* success */
1776 		return 1;
1777 	if (rw == WRITE) {
1778 		set_bit(WriteErrorSeen, &rdev->flags);
1779 		if (!test_and_set_bit(WantReplacement,
1780 				      &rdev->flags))
1781 			set_bit(MD_RECOVERY_NEEDED, &
1782 				rdev->mddev->recovery);
1783 	}
1784 	/* need to record an error - either for the block or the device */
1785 	if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1786 		md_error(rdev->mddev, rdev);
1787 	return 0;
1788 }
1789 
1790 static int fix_sync_read_error(struct r1bio *r1_bio)
1791 {
1792 	/* Try some synchronous reads of other devices to get
1793 	 * good data, much like with normal read errors.  Only
1794 	 * read into the pages we already have so we don't
1795 	 * need to re-issue the read request.
1796 	 * We don't need to freeze the array, because being in an
1797 	 * active sync request, there is no normal IO, and
1798 	 * no overlapping syncs.
1799 	 * We don't need to check is_badblock() again as we
1800 	 * made sure that anything with a bad block in range
1801 	 * will have bi_end_io clear.
1802 	 */
1803 	struct mddev *mddev = r1_bio->mddev;
1804 	struct r1conf *conf = mddev->private;
1805 	struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1806 	sector_t sect = r1_bio->sector;
1807 	int sectors = r1_bio->sectors;
1808 	int idx = 0;
1809 
1810 	while(sectors) {
1811 		int s = sectors;
1812 		int d = r1_bio->read_disk;
1813 		int success = 0;
1814 		struct md_rdev *rdev;
1815 		int start;
1816 
1817 		if (s > (PAGE_SIZE>>9))
1818 			s = PAGE_SIZE >> 9;
1819 		do {
1820 			if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1821 				/* No rcu protection needed here devices
1822 				 * can only be removed when no resync is
1823 				 * active, and resync is currently active
1824 				 */
1825 				rdev = conf->mirrors[d].rdev;
1826 				if (sync_page_io(rdev, sect, s<<9,
1827 						 bio->bi_io_vec[idx].bv_page,
1828 						 READ, false)) {
1829 					success = 1;
1830 					break;
1831 				}
1832 			}
1833 			d++;
1834 			if (d == conf->raid_disks * 2)
1835 				d = 0;
1836 		} while (!success && d != r1_bio->read_disk);
1837 
1838 		if (!success) {
1839 			char b[BDEVNAME_SIZE];
1840 			int abort = 0;
1841 			/* Cannot read from anywhere, this block is lost.
1842 			 * Record a bad block on each device.  If that doesn't
1843 			 * work just disable and interrupt the recovery.
1844 			 * Don't fail devices as that won't really help.
1845 			 */
1846 			printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error"
1847 			       " for block %llu\n",
1848 			       mdname(mddev),
1849 			       bdevname(bio->bi_bdev, b),
1850 			       (unsigned long long)r1_bio->sector);
1851 			for (d = 0; d < conf->raid_disks * 2; d++) {
1852 				rdev = conf->mirrors[d].rdev;
1853 				if (!rdev || test_bit(Faulty, &rdev->flags))
1854 					continue;
1855 				if (!rdev_set_badblocks(rdev, sect, s, 0))
1856 					abort = 1;
1857 			}
1858 			if (abort) {
1859 				conf->recovery_disabled =
1860 					mddev->recovery_disabled;
1861 				set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1862 				md_done_sync(mddev, r1_bio->sectors, 0);
1863 				put_buf(r1_bio);
1864 				return 0;
1865 			}
1866 			/* Try next page */
1867 			sectors -= s;
1868 			sect += s;
1869 			idx++;
1870 			continue;
1871 		}
1872 
1873 		start = d;
1874 		/* write it back and re-read */
1875 		while (d != r1_bio->read_disk) {
1876 			if (d == 0)
1877 				d = conf->raid_disks * 2;
1878 			d--;
1879 			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1880 				continue;
1881 			rdev = conf->mirrors[d].rdev;
1882 			if (r1_sync_page_io(rdev, sect, s,
1883 					    bio->bi_io_vec[idx].bv_page,
1884 					    WRITE) == 0) {
1885 				r1_bio->bios[d]->bi_end_io = NULL;
1886 				rdev_dec_pending(rdev, mddev);
1887 			}
1888 		}
1889 		d = start;
1890 		while (d != r1_bio->read_disk) {
1891 			if (d == 0)
1892 				d = conf->raid_disks * 2;
1893 			d--;
1894 			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1895 				continue;
1896 			rdev = conf->mirrors[d].rdev;
1897 			if (r1_sync_page_io(rdev, sect, s,
1898 					    bio->bi_io_vec[idx].bv_page,
1899 					    READ) != 0)
1900 				atomic_add(s, &rdev->corrected_errors);
1901 		}
1902 		sectors -= s;
1903 		sect += s;
1904 		idx ++;
1905 	}
1906 	set_bit(R1BIO_Uptodate, &r1_bio->state);
1907 	bio->bi_error = 0;
1908 	return 1;
1909 }
1910 
1911 static void process_checks(struct r1bio *r1_bio)
1912 {
1913 	/* We have read all readable devices.  If we haven't
1914 	 * got the block, then there is no hope left.
1915 	 * If we have, then we want to do a comparison
1916 	 * and skip the write if everything is the same.
1917 	 * If any blocks failed to read, then we need to
1918 	 * attempt an over-write
1919 	 */
1920 	struct mddev *mddev = r1_bio->mddev;
1921 	struct r1conf *conf = mddev->private;
1922 	int primary;
1923 	int i;
1924 	int vcnt;
1925 
1926 	/* Fix variable parts of all bios */
1927 	vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
1928 	for (i = 0; i < conf->raid_disks * 2; i++) {
1929 		int j;
1930 		int size;
1931 		int error;
1932 		struct bio *b = r1_bio->bios[i];
1933 		if (b->bi_end_io != end_sync_read)
1934 			continue;
1935 		/* fixup the bio for reuse, but preserve errno */
1936 		error = b->bi_error;
1937 		bio_reset(b);
1938 		b->bi_error = error;
1939 		b->bi_vcnt = vcnt;
1940 		b->bi_iter.bi_size = r1_bio->sectors << 9;
1941 		b->bi_iter.bi_sector = r1_bio->sector +
1942 			conf->mirrors[i].rdev->data_offset;
1943 		b->bi_bdev = conf->mirrors[i].rdev->bdev;
1944 		b->bi_end_io = end_sync_read;
1945 		b->bi_private = r1_bio;
1946 
1947 		size = b->bi_iter.bi_size;
1948 		for (j = 0; j < vcnt ; j++) {
1949 			struct bio_vec *bi;
1950 			bi = &b->bi_io_vec[j];
1951 			bi->bv_offset = 0;
1952 			if (size > PAGE_SIZE)
1953 				bi->bv_len = PAGE_SIZE;
1954 			else
1955 				bi->bv_len = size;
1956 			size -= PAGE_SIZE;
1957 		}
1958 	}
1959 	for (primary = 0; primary < conf->raid_disks * 2; primary++)
1960 		if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
1961 		    !r1_bio->bios[primary]->bi_error) {
1962 			r1_bio->bios[primary]->bi_end_io = NULL;
1963 			rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
1964 			break;
1965 		}
1966 	r1_bio->read_disk = primary;
1967 	for (i = 0; i < conf->raid_disks * 2; i++) {
1968 		int j;
1969 		struct bio *pbio = r1_bio->bios[primary];
1970 		struct bio *sbio = r1_bio->bios[i];
1971 		int error = sbio->bi_error;
1972 
1973 		if (sbio->bi_end_io != end_sync_read)
1974 			continue;
1975 		/* Now we can 'fixup' the error value */
1976 		sbio->bi_error = 0;
1977 
1978 		if (!error) {
1979 			for (j = vcnt; j-- ; ) {
1980 				struct page *p, *s;
1981 				p = pbio->bi_io_vec[j].bv_page;
1982 				s = sbio->bi_io_vec[j].bv_page;
1983 				if (memcmp(page_address(p),
1984 					   page_address(s),
1985 					   sbio->bi_io_vec[j].bv_len))
1986 					break;
1987 			}
1988 		} else
1989 			j = 0;
1990 		if (j >= 0)
1991 			atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
1992 		if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
1993 			      && !error)) {
1994 			/* No need to write to this device. */
1995 			sbio->bi_end_io = NULL;
1996 			rdev_dec_pending(conf->mirrors[i].rdev, mddev);
1997 			continue;
1998 		}
1999 
2000 		bio_copy_data(sbio, pbio);
2001 	}
2002 }
2003 
2004 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
2005 {
2006 	struct r1conf *conf = mddev->private;
2007 	int i;
2008 	int disks = conf->raid_disks * 2;
2009 	struct bio *bio, *wbio;
2010 
2011 	bio = r1_bio->bios[r1_bio->read_disk];
2012 
2013 	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2014 		/* ouch - failed to read all of that. */
2015 		if (!fix_sync_read_error(r1_bio))
2016 			return;
2017 
2018 	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2019 		process_checks(r1_bio);
2020 
2021 	/*
2022 	 * schedule writes
2023 	 */
2024 	atomic_set(&r1_bio->remaining, 1);
2025 	for (i = 0; i < disks ; i++) {
2026 		wbio = r1_bio->bios[i];
2027 		if (wbio->bi_end_io == NULL ||
2028 		    (wbio->bi_end_io == end_sync_read &&
2029 		     (i == r1_bio->read_disk ||
2030 		      !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2031 			continue;
2032 
2033 		wbio->bi_rw = WRITE;
2034 		wbio->bi_end_io = end_sync_write;
2035 		atomic_inc(&r1_bio->remaining);
2036 		md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
2037 
2038 		generic_make_request(wbio);
2039 	}
2040 
2041 	if (atomic_dec_and_test(&r1_bio->remaining)) {
2042 		/* if we're here, all write(s) have completed, so clean up */
2043 		int s = r1_bio->sectors;
2044 		if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2045 		    test_bit(R1BIO_WriteError, &r1_bio->state))
2046 			reschedule_retry(r1_bio);
2047 		else {
2048 			put_buf(r1_bio);
2049 			md_done_sync(mddev, s, 1);
2050 		}
2051 	}
2052 }
2053 
2054 /*
2055  * This is a kernel thread which:
2056  *
2057  *	1.	Retries failed read operations on working mirrors.
2058  *	2.	Updates the raid superblock when problems encounter.
2059  *	3.	Performs writes following reads for array synchronising.
2060  */
2061 
2062 static void fix_read_error(struct r1conf *conf, int read_disk,
2063 			   sector_t sect, int sectors)
2064 {
2065 	struct mddev *mddev = conf->mddev;
2066 	while(sectors) {
2067 		int s = sectors;
2068 		int d = read_disk;
2069 		int success = 0;
2070 		int start;
2071 		struct md_rdev *rdev;
2072 
2073 		if (s > (PAGE_SIZE>>9))
2074 			s = PAGE_SIZE >> 9;
2075 
2076 		do {
2077 			/* Note: no rcu protection needed here
2078 			 * as this is synchronous in the raid1d thread
2079 			 * which is the thread that might remove
2080 			 * a device.  If raid1d ever becomes multi-threaded....
2081 			 */
2082 			sector_t first_bad;
2083 			int bad_sectors;
2084 
2085 			rdev = conf->mirrors[d].rdev;
2086 			if (rdev &&
2087 			    (test_bit(In_sync, &rdev->flags) ||
2088 			     (!test_bit(Faulty, &rdev->flags) &&
2089 			      rdev->recovery_offset >= sect + s)) &&
2090 			    is_badblock(rdev, sect, s,
2091 					&first_bad, &bad_sectors) == 0 &&
2092 			    sync_page_io(rdev, sect, s<<9,
2093 					 conf->tmppage, READ, false))
2094 				success = 1;
2095 			else {
2096 				d++;
2097 				if (d == conf->raid_disks * 2)
2098 					d = 0;
2099 			}
2100 		} while (!success && d != read_disk);
2101 
2102 		if (!success) {
2103 			/* Cannot read from anywhere - mark it bad */
2104 			struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2105 			if (!rdev_set_badblocks(rdev, sect, s, 0))
2106 				md_error(mddev, rdev);
2107 			break;
2108 		}
2109 		/* write it back and re-read */
2110 		start = d;
2111 		while (d != read_disk) {
2112 			if (d==0)
2113 				d = conf->raid_disks * 2;
2114 			d--;
2115 			rdev = conf->mirrors[d].rdev;
2116 			if (rdev &&
2117 			    !test_bit(Faulty, &rdev->flags))
2118 				r1_sync_page_io(rdev, sect, s,
2119 						conf->tmppage, WRITE);
2120 		}
2121 		d = start;
2122 		while (d != read_disk) {
2123 			char b[BDEVNAME_SIZE];
2124 			if (d==0)
2125 				d = conf->raid_disks * 2;
2126 			d--;
2127 			rdev = conf->mirrors[d].rdev;
2128 			if (rdev &&
2129 			    !test_bit(Faulty, &rdev->flags)) {
2130 				if (r1_sync_page_io(rdev, sect, s,
2131 						    conf->tmppage, READ)) {
2132 					atomic_add(s, &rdev->corrected_errors);
2133 					printk(KERN_INFO
2134 					       "md/raid1:%s: read error corrected "
2135 					       "(%d sectors at %llu on %s)\n",
2136 					       mdname(mddev), s,
2137 					       (unsigned long long)(sect +
2138 					           rdev->data_offset),
2139 					       bdevname(rdev->bdev, b));
2140 				}
2141 			}
2142 		}
2143 		sectors -= s;
2144 		sect += s;
2145 	}
2146 }
2147 
2148 static int narrow_write_error(struct r1bio *r1_bio, int i)
2149 {
2150 	struct mddev *mddev = r1_bio->mddev;
2151 	struct r1conf *conf = mddev->private;
2152 	struct md_rdev *rdev = conf->mirrors[i].rdev;
2153 
2154 	/* bio has the data to be written to device 'i' where
2155 	 * we just recently had a write error.
2156 	 * We repeatedly clone the bio and trim down to one block,
2157 	 * then try the write.  Where the write fails we record
2158 	 * a bad block.
2159 	 * It is conceivable that the bio doesn't exactly align with
2160 	 * blocks.  We must handle this somehow.
2161 	 *
2162 	 * We currently own a reference on the rdev.
2163 	 */
2164 
2165 	int block_sectors;
2166 	sector_t sector;
2167 	int sectors;
2168 	int sect_to_write = r1_bio->sectors;
2169 	int ok = 1;
2170 
2171 	if (rdev->badblocks.shift < 0)
2172 		return 0;
2173 
2174 	block_sectors = roundup(1 << rdev->badblocks.shift,
2175 				bdev_logical_block_size(rdev->bdev) >> 9);
2176 	sector = r1_bio->sector;
2177 	sectors = ((sector + block_sectors)
2178 		   & ~(sector_t)(block_sectors - 1))
2179 		- sector;
2180 
2181 	while (sect_to_write) {
2182 		struct bio *wbio;
2183 		if (sectors > sect_to_write)
2184 			sectors = sect_to_write;
2185 		/* Write at 'sector' for 'sectors'*/
2186 
2187 		if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2188 			unsigned vcnt = r1_bio->behind_page_count;
2189 			struct bio_vec *vec = r1_bio->behind_bvecs;
2190 
2191 			while (!vec->bv_page) {
2192 				vec++;
2193 				vcnt--;
2194 			}
2195 
2196 			wbio = bio_alloc_mddev(GFP_NOIO, vcnt, mddev);
2197 			memcpy(wbio->bi_io_vec, vec, vcnt * sizeof(struct bio_vec));
2198 
2199 			wbio->bi_vcnt = vcnt;
2200 		} else {
2201 			wbio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2202 		}
2203 
2204 		wbio->bi_rw = WRITE;
2205 		wbio->bi_iter.bi_sector = r1_bio->sector;
2206 		wbio->bi_iter.bi_size = r1_bio->sectors << 9;
2207 
2208 		bio_trim(wbio, sector - r1_bio->sector, sectors);
2209 		wbio->bi_iter.bi_sector += rdev->data_offset;
2210 		wbio->bi_bdev = rdev->bdev;
2211 		if (submit_bio_wait(WRITE, wbio) < 0)
2212 			/* failure! */
2213 			ok = rdev_set_badblocks(rdev, sector,
2214 						sectors, 0)
2215 				&& ok;
2216 
2217 		bio_put(wbio);
2218 		sect_to_write -= sectors;
2219 		sector += sectors;
2220 		sectors = block_sectors;
2221 	}
2222 	return ok;
2223 }
2224 
2225 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2226 {
2227 	int m;
2228 	int s = r1_bio->sectors;
2229 	for (m = 0; m < conf->raid_disks * 2 ; m++) {
2230 		struct md_rdev *rdev = conf->mirrors[m].rdev;
2231 		struct bio *bio = r1_bio->bios[m];
2232 		if (bio->bi_end_io == NULL)
2233 			continue;
2234 		if (!bio->bi_error &&
2235 		    test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2236 			rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2237 		}
2238 		if (bio->bi_error &&
2239 		    test_bit(R1BIO_WriteError, &r1_bio->state)) {
2240 			if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2241 				md_error(conf->mddev, rdev);
2242 		}
2243 	}
2244 	put_buf(r1_bio);
2245 	md_done_sync(conf->mddev, s, 1);
2246 }
2247 
2248 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2249 {
2250 	int m;
2251 	bool fail = false;
2252 	for (m = 0; m < conf->raid_disks * 2 ; m++)
2253 		if (r1_bio->bios[m] == IO_MADE_GOOD) {
2254 			struct md_rdev *rdev = conf->mirrors[m].rdev;
2255 			rdev_clear_badblocks(rdev,
2256 					     r1_bio->sector,
2257 					     r1_bio->sectors, 0);
2258 			rdev_dec_pending(rdev, conf->mddev);
2259 		} else if (r1_bio->bios[m] != NULL) {
2260 			/* This drive got a write error.  We need to
2261 			 * narrow down and record precise write
2262 			 * errors.
2263 			 */
2264 			fail = true;
2265 			if (!narrow_write_error(r1_bio, m)) {
2266 				md_error(conf->mddev,
2267 					 conf->mirrors[m].rdev);
2268 				/* an I/O failed, we can't clear the bitmap */
2269 				set_bit(R1BIO_Degraded, &r1_bio->state);
2270 			}
2271 			rdev_dec_pending(conf->mirrors[m].rdev,
2272 					 conf->mddev);
2273 		}
2274 	if (fail) {
2275 		spin_lock_irq(&conf->device_lock);
2276 		list_add(&r1_bio->retry_list, &conf->bio_end_io_list);
2277 		spin_unlock_irq(&conf->device_lock);
2278 		md_wakeup_thread(conf->mddev->thread);
2279 	} else {
2280 		if (test_bit(R1BIO_WriteError, &r1_bio->state))
2281 			close_write(r1_bio);
2282 		raid_end_bio_io(r1_bio);
2283 	}
2284 }
2285 
2286 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2287 {
2288 	int disk;
2289 	int max_sectors;
2290 	struct mddev *mddev = conf->mddev;
2291 	struct bio *bio;
2292 	char b[BDEVNAME_SIZE];
2293 	struct md_rdev *rdev;
2294 
2295 	clear_bit(R1BIO_ReadError, &r1_bio->state);
2296 	/* we got a read error. Maybe the drive is bad.  Maybe just
2297 	 * the block and we can fix it.
2298 	 * We freeze all other IO, and try reading the block from
2299 	 * other devices.  When we find one, we re-write
2300 	 * and check it that fixes the read error.
2301 	 * This is all done synchronously while the array is
2302 	 * frozen
2303 	 */
2304 	if (mddev->ro == 0) {
2305 		freeze_array(conf, 1);
2306 		fix_read_error(conf, r1_bio->read_disk,
2307 			       r1_bio->sector, r1_bio->sectors);
2308 		unfreeze_array(conf);
2309 	} else
2310 		md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
2311 	rdev_dec_pending(conf->mirrors[r1_bio->read_disk].rdev, conf->mddev);
2312 
2313 	bio = r1_bio->bios[r1_bio->read_disk];
2314 	bdevname(bio->bi_bdev, b);
2315 read_more:
2316 	disk = read_balance(conf, r1_bio, &max_sectors);
2317 	if (disk == -1) {
2318 		printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O"
2319 		       " read error for block %llu\n",
2320 		       mdname(mddev), b, (unsigned long long)r1_bio->sector);
2321 		raid_end_bio_io(r1_bio);
2322 	} else {
2323 		const unsigned long do_sync
2324 			= r1_bio->master_bio->bi_rw & REQ_SYNC;
2325 		if (bio) {
2326 			r1_bio->bios[r1_bio->read_disk] =
2327 				mddev->ro ? IO_BLOCKED : NULL;
2328 			bio_put(bio);
2329 		}
2330 		r1_bio->read_disk = disk;
2331 		bio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2332 		bio_trim(bio, r1_bio->sector - bio->bi_iter.bi_sector,
2333 			 max_sectors);
2334 		r1_bio->bios[r1_bio->read_disk] = bio;
2335 		rdev = conf->mirrors[disk].rdev;
2336 		printk_ratelimited(KERN_ERR
2337 				   "md/raid1:%s: redirecting sector %llu"
2338 				   " to other mirror: %s\n",
2339 				   mdname(mddev),
2340 				   (unsigned long long)r1_bio->sector,
2341 				   bdevname(rdev->bdev, b));
2342 		bio->bi_iter.bi_sector = r1_bio->sector + rdev->data_offset;
2343 		bio->bi_bdev = rdev->bdev;
2344 		bio->bi_end_io = raid1_end_read_request;
2345 		bio->bi_rw = READ | do_sync;
2346 		bio->bi_private = r1_bio;
2347 		if (max_sectors < r1_bio->sectors) {
2348 			/* Drat - have to split this up more */
2349 			struct bio *mbio = r1_bio->master_bio;
2350 			int sectors_handled = (r1_bio->sector + max_sectors
2351 					       - mbio->bi_iter.bi_sector);
2352 			r1_bio->sectors = max_sectors;
2353 			spin_lock_irq(&conf->device_lock);
2354 			if (mbio->bi_phys_segments == 0)
2355 				mbio->bi_phys_segments = 2;
2356 			else
2357 				mbio->bi_phys_segments++;
2358 			spin_unlock_irq(&conf->device_lock);
2359 			generic_make_request(bio);
2360 			bio = NULL;
2361 
2362 			r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
2363 
2364 			r1_bio->master_bio = mbio;
2365 			r1_bio->sectors = bio_sectors(mbio) - sectors_handled;
2366 			r1_bio->state = 0;
2367 			set_bit(R1BIO_ReadError, &r1_bio->state);
2368 			r1_bio->mddev = mddev;
2369 			r1_bio->sector = mbio->bi_iter.bi_sector +
2370 				sectors_handled;
2371 
2372 			goto read_more;
2373 		} else
2374 			generic_make_request(bio);
2375 	}
2376 }
2377 
2378 static void raid1d(struct md_thread *thread)
2379 {
2380 	struct mddev *mddev = thread->mddev;
2381 	struct r1bio *r1_bio;
2382 	unsigned long flags;
2383 	struct r1conf *conf = mddev->private;
2384 	struct list_head *head = &conf->retry_list;
2385 	struct blk_plug plug;
2386 
2387 	md_check_recovery(mddev);
2388 
2389 	if (!list_empty_careful(&conf->bio_end_io_list) &&
2390 	    !test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
2391 		LIST_HEAD(tmp);
2392 		spin_lock_irqsave(&conf->device_lock, flags);
2393 		if (!test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
2394 			list_add(&tmp, &conf->bio_end_io_list);
2395 			list_del_init(&conf->bio_end_io_list);
2396 		}
2397 		spin_unlock_irqrestore(&conf->device_lock, flags);
2398 		while (!list_empty(&tmp)) {
2399 			r1_bio = list_first_entry(&tmp, struct r1bio,
2400 						  retry_list);
2401 			list_del(&r1_bio->retry_list);
2402 			if (mddev->degraded)
2403 				set_bit(R1BIO_Degraded, &r1_bio->state);
2404 			if (test_bit(R1BIO_WriteError, &r1_bio->state))
2405 				close_write(r1_bio);
2406 			raid_end_bio_io(r1_bio);
2407 		}
2408 	}
2409 
2410 	blk_start_plug(&plug);
2411 	for (;;) {
2412 
2413 		flush_pending_writes(conf);
2414 
2415 		spin_lock_irqsave(&conf->device_lock, flags);
2416 		if (list_empty(head)) {
2417 			spin_unlock_irqrestore(&conf->device_lock, flags);
2418 			break;
2419 		}
2420 		r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2421 		list_del(head->prev);
2422 		conf->nr_queued--;
2423 		spin_unlock_irqrestore(&conf->device_lock, flags);
2424 
2425 		mddev = r1_bio->mddev;
2426 		conf = mddev->private;
2427 		if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2428 			if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2429 			    test_bit(R1BIO_WriteError, &r1_bio->state))
2430 				handle_sync_write_finished(conf, r1_bio);
2431 			else
2432 				sync_request_write(mddev, r1_bio);
2433 		} else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2434 			   test_bit(R1BIO_WriteError, &r1_bio->state))
2435 			handle_write_finished(conf, r1_bio);
2436 		else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2437 			handle_read_error(conf, r1_bio);
2438 		else
2439 			/* just a partial read to be scheduled from separate
2440 			 * context
2441 			 */
2442 			generic_make_request(r1_bio->bios[r1_bio->read_disk]);
2443 
2444 		cond_resched();
2445 		if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2446 			md_check_recovery(mddev);
2447 	}
2448 	blk_finish_plug(&plug);
2449 }
2450 
2451 static int init_resync(struct r1conf *conf)
2452 {
2453 	int buffs;
2454 
2455 	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2456 	BUG_ON(conf->r1buf_pool);
2457 	conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2458 					  conf->poolinfo);
2459 	if (!conf->r1buf_pool)
2460 		return -ENOMEM;
2461 	conf->next_resync = 0;
2462 	return 0;
2463 }
2464 
2465 /*
2466  * perform a "sync" on one "block"
2467  *
2468  * We need to make sure that no normal I/O request - particularly write
2469  * requests - conflict with active sync requests.
2470  *
2471  * This is achieved by tracking pending requests and a 'barrier' concept
2472  * that can be installed to exclude normal IO requests.
2473  */
2474 
2475 static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr,
2476 				   int *skipped)
2477 {
2478 	struct r1conf *conf = mddev->private;
2479 	struct r1bio *r1_bio;
2480 	struct bio *bio;
2481 	sector_t max_sector, nr_sectors;
2482 	int disk = -1;
2483 	int i;
2484 	int wonly = -1;
2485 	int write_targets = 0, read_targets = 0;
2486 	sector_t sync_blocks;
2487 	int still_degraded = 0;
2488 	int good_sectors = RESYNC_SECTORS;
2489 	int min_bad = 0; /* number of sectors that are bad in all devices */
2490 
2491 	if (!conf->r1buf_pool)
2492 		if (init_resync(conf))
2493 			return 0;
2494 
2495 	max_sector = mddev->dev_sectors;
2496 	if (sector_nr >= max_sector) {
2497 		/* If we aborted, we need to abort the
2498 		 * sync on the 'current' bitmap chunk (there will
2499 		 * only be one in raid1 resync.
2500 		 * We can find the current addess in mddev->curr_resync
2501 		 */
2502 		if (mddev->curr_resync < max_sector) /* aborted */
2503 			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2504 						&sync_blocks, 1);
2505 		else /* completed sync */
2506 			conf->fullsync = 0;
2507 
2508 		bitmap_close_sync(mddev->bitmap);
2509 		close_sync(conf);
2510 
2511 		if (mddev_is_clustered(mddev)) {
2512 			conf->cluster_sync_low = 0;
2513 			conf->cluster_sync_high = 0;
2514 		}
2515 		return 0;
2516 	}
2517 
2518 	if (mddev->bitmap == NULL &&
2519 	    mddev->recovery_cp == MaxSector &&
2520 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2521 	    conf->fullsync == 0) {
2522 		*skipped = 1;
2523 		return max_sector - sector_nr;
2524 	}
2525 	/* before building a request, check if we can skip these blocks..
2526 	 * This call the bitmap_start_sync doesn't actually record anything
2527 	 */
2528 	if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2529 	    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2530 		/* We can skip this block, and probably several more */
2531 		*skipped = 1;
2532 		return sync_blocks;
2533 	}
2534 
2535 	/* we are incrementing sector_nr below. To be safe, we check against
2536 	 * sector_nr + two times RESYNC_SECTORS
2537 	 */
2538 
2539 	bitmap_cond_end_sync(mddev->bitmap, sector_nr,
2540 		mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
2541 	r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
2542 
2543 	raise_barrier(conf, sector_nr);
2544 
2545 	rcu_read_lock();
2546 	/*
2547 	 * If we get a correctably read error during resync or recovery,
2548 	 * we might want to read from a different device.  So we
2549 	 * flag all drives that could conceivably be read from for READ,
2550 	 * and any others (which will be non-In_sync devices) for WRITE.
2551 	 * If a read fails, we try reading from something else for which READ
2552 	 * is OK.
2553 	 */
2554 
2555 	r1_bio->mddev = mddev;
2556 	r1_bio->sector = sector_nr;
2557 	r1_bio->state = 0;
2558 	set_bit(R1BIO_IsSync, &r1_bio->state);
2559 
2560 	for (i = 0; i < conf->raid_disks * 2; i++) {
2561 		struct md_rdev *rdev;
2562 		bio = r1_bio->bios[i];
2563 		bio_reset(bio);
2564 
2565 		rdev = rcu_dereference(conf->mirrors[i].rdev);
2566 		if (rdev == NULL ||
2567 		    test_bit(Faulty, &rdev->flags)) {
2568 			if (i < conf->raid_disks)
2569 				still_degraded = 1;
2570 		} else if (!test_bit(In_sync, &rdev->flags)) {
2571 			bio->bi_rw = WRITE;
2572 			bio->bi_end_io = end_sync_write;
2573 			write_targets ++;
2574 		} else {
2575 			/* may need to read from here */
2576 			sector_t first_bad = MaxSector;
2577 			int bad_sectors;
2578 
2579 			if (is_badblock(rdev, sector_nr, good_sectors,
2580 					&first_bad, &bad_sectors)) {
2581 				if (first_bad > sector_nr)
2582 					good_sectors = first_bad - sector_nr;
2583 				else {
2584 					bad_sectors -= (sector_nr - first_bad);
2585 					if (min_bad == 0 ||
2586 					    min_bad > bad_sectors)
2587 						min_bad = bad_sectors;
2588 				}
2589 			}
2590 			if (sector_nr < first_bad) {
2591 				if (test_bit(WriteMostly, &rdev->flags)) {
2592 					if (wonly < 0)
2593 						wonly = i;
2594 				} else {
2595 					if (disk < 0)
2596 						disk = i;
2597 				}
2598 				bio->bi_rw = READ;
2599 				bio->bi_end_io = end_sync_read;
2600 				read_targets++;
2601 			} else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2602 				test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2603 				!test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2604 				/*
2605 				 * The device is suitable for reading (InSync),
2606 				 * but has bad block(s) here. Let's try to correct them,
2607 				 * if we are doing resync or repair. Otherwise, leave
2608 				 * this device alone for this sync request.
2609 				 */
2610 				bio->bi_rw = WRITE;
2611 				bio->bi_end_io = end_sync_write;
2612 				write_targets++;
2613 			}
2614 		}
2615 		if (bio->bi_end_io) {
2616 			atomic_inc(&rdev->nr_pending);
2617 			bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
2618 			bio->bi_bdev = rdev->bdev;
2619 			bio->bi_private = r1_bio;
2620 		}
2621 	}
2622 	rcu_read_unlock();
2623 	if (disk < 0)
2624 		disk = wonly;
2625 	r1_bio->read_disk = disk;
2626 
2627 	if (read_targets == 0 && min_bad > 0) {
2628 		/* These sectors are bad on all InSync devices, so we
2629 		 * need to mark them bad on all write targets
2630 		 */
2631 		int ok = 1;
2632 		for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2633 			if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2634 				struct md_rdev *rdev = conf->mirrors[i].rdev;
2635 				ok = rdev_set_badblocks(rdev, sector_nr,
2636 							min_bad, 0
2637 					) && ok;
2638 			}
2639 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
2640 		*skipped = 1;
2641 		put_buf(r1_bio);
2642 
2643 		if (!ok) {
2644 			/* Cannot record the badblocks, so need to
2645 			 * abort the resync.
2646 			 * If there are multiple read targets, could just
2647 			 * fail the really bad ones ???
2648 			 */
2649 			conf->recovery_disabled = mddev->recovery_disabled;
2650 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2651 			return 0;
2652 		} else
2653 			return min_bad;
2654 
2655 	}
2656 	if (min_bad > 0 && min_bad < good_sectors) {
2657 		/* only resync enough to reach the next bad->good
2658 		 * transition */
2659 		good_sectors = min_bad;
2660 	}
2661 
2662 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2663 		/* extra read targets are also write targets */
2664 		write_targets += read_targets-1;
2665 
2666 	if (write_targets == 0 || read_targets == 0) {
2667 		/* There is nowhere to write, so all non-sync
2668 		 * drives must be failed - so we are finished
2669 		 */
2670 		sector_t rv;
2671 		if (min_bad > 0)
2672 			max_sector = sector_nr + min_bad;
2673 		rv = max_sector - sector_nr;
2674 		*skipped = 1;
2675 		put_buf(r1_bio);
2676 		return rv;
2677 	}
2678 
2679 	if (max_sector > mddev->resync_max)
2680 		max_sector = mddev->resync_max; /* Don't do IO beyond here */
2681 	if (max_sector > sector_nr + good_sectors)
2682 		max_sector = sector_nr + good_sectors;
2683 	nr_sectors = 0;
2684 	sync_blocks = 0;
2685 	do {
2686 		struct page *page;
2687 		int len = PAGE_SIZE;
2688 		if (sector_nr + (len>>9) > max_sector)
2689 			len = (max_sector - sector_nr) << 9;
2690 		if (len == 0)
2691 			break;
2692 		if (sync_blocks == 0) {
2693 			if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2694 					       &sync_blocks, still_degraded) &&
2695 			    !conf->fullsync &&
2696 			    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2697 				break;
2698 			if ((len >> 9) > sync_blocks)
2699 				len = sync_blocks<<9;
2700 		}
2701 
2702 		for (i = 0 ; i < conf->raid_disks * 2; i++) {
2703 			bio = r1_bio->bios[i];
2704 			if (bio->bi_end_io) {
2705 				page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
2706 				if (bio_add_page(bio, page, len, 0) == 0) {
2707 					/* stop here */
2708 					bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
2709 					while (i > 0) {
2710 						i--;
2711 						bio = r1_bio->bios[i];
2712 						if (bio->bi_end_io==NULL)
2713 							continue;
2714 						/* remove last page from this bio */
2715 						bio->bi_vcnt--;
2716 						bio->bi_iter.bi_size -= len;
2717 						bio_clear_flag(bio, BIO_SEG_VALID);
2718 					}
2719 					goto bio_full;
2720 				}
2721 			}
2722 		}
2723 		nr_sectors += len>>9;
2724 		sector_nr += len>>9;
2725 		sync_blocks -= (len>>9);
2726 	} while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
2727  bio_full:
2728 	r1_bio->sectors = nr_sectors;
2729 
2730 	if (mddev_is_clustered(mddev) &&
2731 			conf->cluster_sync_high < sector_nr + nr_sectors) {
2732 		conf->cluster_sync_low = mddev->curr_resync_completed;
2733 		conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS;
2734 		/* Send resync message */
2735 		md_cluster_ops->resync_info_update(mddev,
2736 				conf->cluster_sync_low,
2737 				conf->cluster_sync_high);
2738 	}
2739 
2740 	/* For a user-requested sync, we read all readable devices and do a
2741 	 * compare
2742 	 */
2743 	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2744 		atomic_set(&r1_bio->remaining, read_targets);
2745 		for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2746 			bio = r1_bio->bios[i];
2747 			if (bio->bi_end_io == end_sync_read) {
2748 				read_targets--;
2749 				md_sync_acct(bio->bi_bdev, nr_sectors);
2750 				generic_make_request(bio);
2751 			}
2752 		}
2753 	} else {
2754 		atomic_set(&r1_bio->remaining, 1);
2755 		bio = r1_bio->bios[r1_bio->read_disk];
2756 		md_sync_acct(bio->bi_bdev, nr_sectors);
2757 		generic_make_request(bio);
2758 
2759 	}
2760 	return nr_sectors;
2761 }
2762 
2763 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2764 {
2765 	if (sectors)
2766 		return sectors;
2767 
2768 	return mddev->dev_sectors;
2769 }
2770 
2771 static struct r1conf *setup_conf(struct mddev *mddev)
2772 {
2773 	struct r1conf *conf;
2774 	int i;
2775 	struct raid1_info *disk;
2776 	struct md_rdev *rdev;
2777 	int err = -ENOMEM;
2778 
2779 	conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2780 	if (!conf)
2781 		goto abort;
2782 
2783 	conf->mirrors = kzalloc(sizeof(struct raid1_info)
2784 				* mddev->raid_disks * 2,
2785 				 GFP_KERNEL);
2786 	if (!conf->mirrors)
2787 		goto abort;
2788 
2789 	conf->tmppage = alloc_page(GFP_KERNEL);
2790 	if (!conf->tmppage)
2791 		goto abort;
2792 
2793 	conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
2794 	if (!conf->poolinfo)
2795 		goto abort;
2796 	conf->poolinfo->raid_disks = mddev->raid_disks * 2;
2797 	conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2798 					  r1bio_pool_free,
2799 					  conf->poolinfo);
2800 	if (!conf->r1bio_pool)
2801 		goto abort;
2802 
2803 	conf->poolinfo->mddev = mddev;
2804 
2805 	err = -EINVAL;
2806 	spin_lock_init(&conf->device_lock);
2807 	rdev_for_each(rdev, mddev) {
2808 		struct request_queue *q;
2809 		int disk_idx = rdev->raid_disk;
2810 		if (disk_idx >= mddev->raid_disks
2811 		    || disk_idx < 0)
2812 			continue;
2813 		if (test_bit(Replacement, &rdev->flags))
2814 			disk = conf->mirrors + mddev->raid_disks + disk_idx;
2815 		else
2816 			disk = conf->mirrors + disk_idx;
2817 
2818 		if (disk->rdev)
2819 			goto abort;
2820 		disk->rdev = rdev;
2821 		q = bdev_get_queue(rdev->bdev);
2822 
2823 		disk->head_position = 0;
2824 		disk->seq_start = MaxSector;
2825 	}
2826 	conf->raid_disks = mddev->raid_disks;
2827 	conf->mddev = mddev;
2828 	INIT_LIST_HEAD(&conf->retry_list);
2829 	INIT_LIST_HEAD(&conf->bio_end_io_list);
2830 
2831 	spin_lock_init(&conf->resync_lock);
2832 	init_waitqueue_head(&conf->wait_barrier);
2833 
2834 	bio_list_init(&conf->pending_bio_list);
2835 	conf->pending_count = 0;
2836 	conf->recovery_disabled = mddev->recovery_disabled - 1;
2837 
2838 	conf->start_next_window = MaxSector;
2839 	conf->current_window_requests = conf->next_window_requests = 0;
2840 
2841 	err = -EIO;
2842 	for (i = 0; i < conf->raid_disks * 2; i++) {
2843 
2844 		disk = conf->mirrors + i;
2845 
2846 		if (i < conf->raid_disks &&
2847 		    disk[conf->raid_disks].rdev) {
2848 			/* This slot has a replacement. */
2849 			if (!disk->rdev) {
2850 				/* No original, just make the replacement
2851 				 * a recovering spare
2852 				 */
2853 				disk->rdev =
2854 					disk[conf->raid_disks].rdev;
2855 				disk[conf->raid_disks].rdev = NULL;
2856 			} else if (!test_bit(In_sync, &disk->rdev->flags))
2857 				/* Original is not in_sync - bad */
2858 				goto abort;
2859 		}
2860 
2861 		if (!disk->rdev ||
2862 		    !test_bit(In_sync, &disk->rdev->flags)) {
2863 			disk->head_position = 0;
2864 			if (disk->rdev &&
2865 			    (disk->rdev->saved_raid_disk < 0))
2866 				conf->fullsync = 1;
2867 		}
2868 	}
2869 
2870 	err = -ENOMEM;
2871 	conf->thread = md_register_thread(raid1d, mddev, "raid1");
2872 	if (!conf->thread) {
2873 		printk(KERN_ERR
2874 		       "md/raid1:%s: couldn't allocate thread\n",
2875 		       mdname(mddev));
2876 		goto abort;
2877 	}
2878 
2879 	return conf;
2880 
2881  abort:
2882 	if (conf) {
2883 		mempool_destroy(conf->r1bio_pool);
2884 		kfree(conf->mirrors);
2885 		safe_put_page(conf->tmppage);
2886 		kfree(conf->poolinfo);
2887 		kfree(conf);
2888 	}
2889 	return ERR_PTR(err);
2890 }
2891 
2892 static void raid1_free(struct mddev *mddev, void *priv);
2893 static int raid1_run(struct mddev *mddev)
2894 {
2895 	struct r1conf *conf;
2896 	int i;
2897 	struct md_rdev *rdev;
2898 	int ret;
2899 	bool discard_supported = false;
2900 
2901 	if (mddev->level != 1) {
2902 		printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n",
2903 		       mdname(mddev), mddev->level);
2904 		return -EIO;
2905 	}
2906 	if (mddev->reshape_position != MaxSector) {
2907 		printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n",
2908 		       mdname(mddev));
2909 		return -EIO;
2910 	}
2911 	/*
2912 	 * copy the already verified devices into our private RAID1
2913 	 * bookkeeping area. [whatever we allocate in run(),
2914 	 * should be freed in raid1_free()]
2915 	 */
2916 	if (mddev->private == NULL)
2917 		conf = setup_conf(mddev);
2918 	else
2919 		conf = mddev->private;
2920 
2921 	if (IS_ERR(conf))
2922 		return PTR_ERR(conf);
2923 
2924 	if (mddev->queue)
2925 		blk_queue_max_write_same_sectors(mddev->queue, 0);
2926 
2927 	rdev_for_each(rdev, mddev) {
2928 		if (!mddev->gendisk)
2929 			continue;
2930 		disk_stack_limits(mddev->gendisk, rdev->bdev,
2931 				  rdev->data_offset << 9);
2932 		if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
2933 			discard_supported = true;
2934 	}
2935 
2936 	mddev->degraded = 0;
2937 	for (i=0; i < conf->raid_disks; i++)
2938 		if (conf->mirrors[i].rdev == NULL ||
2939 		    !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
2940 		    test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2941 			mddev->degraded++;
2942 
2943 	if (conf->raid_disks - mddev->degraded == 1)
2944 		mddev->recovery_cp = MaxSector;
2945 
2946 	if (mddev->recovery_cp != MaxSector)
2947 		printk(KERN_NOTICE "md/raid1:%s: not clean"
2948 		       " -- starting background reconstruction\n",
2949 		       mdname(mddev));
2950 	printk(KERN_INFO
2951 		"md/raid1:%s: active with %d out of %d mirrors\n",
2952 		mdname(mddev), mddev->raid_disks - mddev->degraded,
2953 		mddev->raid_disks);
2954 
2955 	/*
2956 	 * Ok, everything is just fine now
2957 	 */
2958 	mddev->thread = conf->thread;
2959 	conf->thread = NULL;
2960 	mddev->private = conf;
2961 
2962 	md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
2963 
2964 	if (mddev->queue) {
2965 		if (discard_supported)
2966 			queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
2967 						mddev->queue);
2968 		else
2969 			queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
2970 						  mddev->queue);
2971 	}
2972 
2973 	ret =  md_integrity_register(mddev);
2974 	if (ret) {
2975 		md_unregister_thread(&mddev->thread);
2976 		raid1_free(mddev, conf);
2977 	}
2978 	return ret;
2979 }
2980 
2981 static void raid1_free(struct mddev *mddev, void *priv)
2982 {
2983 	struct r1conf *conf = priv;
2984 
2985 	mempool_destroy(conf->r1bio_pool);
2986 	kfree(conf->mirrors);
2987 	safe_put_page(conf->tmppage);
2988 	kfree(conf->poolinfo);
2989 	kfree(conf);
2990 }
2991 
2992 static int raid1_resize(struct mddev *mddev, sector_t sectors)
2993 {
2994 	/* no resync is happening, and there is enough space
2995 	 * on all devices, so we can resize.
2996 	 * We need to make sure resync covers any new space.
2997 	 * If the array is shrinking we should possibly wait until
2998 	 * any io in the removed space completes, but it hardly seems
2999 	 * worth it.
3000 	 */
3001 	sector_t newsize = raid1_size(mddev, sectors, 0);
3002 	if (mddev->external_size &&
3003 	    mddev->array_sectors > newsize)
3004 		return -EINVAL;
3005 	if (mddev->bitmap) {
3006 		int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0);
3007 		if (ret)
3008 			return ret;
3009 	}
3010 	md_set_array_sectors(mddev, newsize);
3011 	set_capacity(mddev->gendisk, mddev->array_sectors);
3012 	revalidate_disk(mddev->gendisk);
3013 	if (sectors > mddev->dev_sectors &&
3014 	    mddev->recovery_cp > mddev->dev_sectors) {
3015 		mddev->recovery_cp = mddev->dev_sectors;
3016 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3017 	}
3018 	mddev->dev_sectors = sectors;
3019 	mddev->resync_max_sectors = sectors;
3020 	return 0;
3021 }
3022 
3023 static int raid1_reshape(struct mddev *mddev)
3024 {
3025 	/* We need to:
3026 	 * 1/ resize the r1bio_pool
3027 	 * 2/ resize conf->mirrors
3028 	 *
3029 	 * We allocate a new r1bio_pool if we can.
3030 	 * Then raise a device barrier and wait until all IO stops.
3031 	 * Then resize conf->mirrors and swap in the new r1bio pool.
3032 	 *
3033 	 * At the same time, we "pack" the devices so that all the missing
3034 	 * devices have the higher raid_disk numbers.
3035 	 */
3036 	mempool_t *newpool, *oldpool;
3037 	struct pool_info *newpoolinfo;
3038 	struct raid1_info *newmirrors;
3039 	struct r1conf *conf = mddev->private;
3040 	int cnt, raid_disks;
3041 	unsigned long flags;
3042 	int d, d2, err;
3043 
3044 	/* Cannot change chunk_size, layout, or level */
3045 	if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3046 	    mddev->layout != mddev->new_layout ||
3047 	    mddev->level != mddev->new_level) {
3048 		mddev->new_chunk_sectors = mddev->chunk_sectors;
3049 		mddev->new_layout = mddev->layout;
3050 		mddev->new_level = mddev->level;
3051 		return -EINVAL;
3052 	}
3053 
3054 	if (!mddev_is_clustered(mddev)) {
3055 		err = md_allow_write(mddev);
3056 		if (err)
3057 			return err;
3058 	}
3059 
3060 	raid_disks = mddev->raid_disks + mddev->delta_disks;
3061 
3062 	if (raid_disks < conf->raid_disks) {
3063 		cnt=0;
3064 		for (d= 0; d < conf->raid_disks; d++)
3065 			if (conf->mirrors[d].rdev)
3066 				cnt++;
3067 		if (cnt > raid_disks)
3068 			return -EBUSY;
3069 	}
3070 
3071 	newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3072 	if (!newpoolinfo)
3073 		return -ENOMEM;
3074 	newpoolinfo->mddev = mddev;
3075 	newpoolinfo->raid_disks = raid_disks * 2;
3076 
3077 	newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
3078 				 r1bio_pool_free, newpoolinfo);
3079 	if (!newpool) {
3080 		kfree(newpoolinfo);
3081 		return -ENOMEM;
3082 	}
3083 	newmirrors = kzalloc(sizeof(struct raid1_info) * raid_disks * 2,
3084 			     GFP_KERNEL);
3085 	if (!newmirrors) {
3086 		kfree(newpoolinfo);
3087 		mempool_destroy(newpool);
3088 		return -ENOMEM;
3089 	}
3090 
3091 	freeze_array(conf, 0);
3092 
3093 	/* ok, everything is stopped */
3094 	oldpool = conf->r1bio_pool;
3095 	conf->r1bio_pool = newpool;
3096 
3097 	for (d = d2 = 0; d < conf->raid_disks; d++) {
3098 		struct md_rdev *rdev = conf->mirrors[d].rdev;
3099 		if (rdev && rdev->raid_disk != d2) {
3100 			sysfs_unlink_rdev(mddev, rdev);
3101 			rdev->raid_disk = d2;
3102 			sysfs_unlink_rdev(mddev, rdev);
3103 			if (sysfs_link_rdev(mddev, rdev))
3104 				printk(KERN_WARNING
3105 				       "md/raid1:%s: cannot register rd%d\n",
3106 				       mdname(mddev), rdev->raid_disk);
3107 		}
3108 		if (rdev)
3109 			newmirrors[d2++].rdev = rdev;
3110 	}
3111 	kfree(conf->mirrors);
3112 	conf->mirrors = newmirrors;
3113 	kfree(conf->poolinfo);
3114 	conf->poolinfo = newpoolinfo;
3115 
3116 	spin_lock_irqsave(&conf->device_lock, flags);
3117 	mddev->degraded += (raid_disks - conf->raid_disks);
3118 	spin_unlock_irqrestore(&conf->device_lock, flags);
3119 	conf->raid_disks = mddev->raid_disks = raid_disks;
3120 	mddev->delta_disks = 0;
3121 
3122 	unfreeze_array(conf);
3123 
3124 	set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3125 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3126 	md_wakeup_thread(mddev->thread);
3127 
3128 	mempool_destroy(oldpool);
3129 	return 0;
3130 }
3131 
3132 static void raid1_quiesce(struct mddev *mddev, int state)
3133 {
3134 	struct r1conf *conf = mddev->private;
3135 
3136 	switch(state) {
3137 	case 2: /* wake for suspend */
3138 		wake_up(&conf->wait_barrier);
3139 		break;
3140 	case 1:
3141 		freeze_array(conf, 0);
3142 		break;
3143 	case 0:
3144 		unfreeze_array(conf);
3145 		break;
3146 	}
3147 }
3148 
3149 static void *raid1_takeover(struct mddev *mddev)
3150 {
3151 	/* raid1 can take over:
3152 	 *  raid5 with 2 devices, any layout or chunk size
3153 	 */
3154 	if (mddev->level == 5 && mddev->raid_disks == 2) {
3155 		struct r1conf *conf;
3156 		mddev->new_level = 1;
3157 		mddev->new_layout = 0;
3158 		mddev->new_chunk_sectors = 0;
3159 		conf = setup_conf(mddev);
3160 		if (!IS_ERR(conf))
3161 			/* Array must appear to be quiesced */
3162 			conf->array_frozen = 1;
3163 		return conf;
3164 	}
3165 	return ERR_PTR(-EINVAL);
3166 }
3167 
3168 static struct md_personality raid1_personality =
3169 {
3170 	.name		= "raid1",
3171 	.level		= 1,
3172 	.owner		= THIS_MODULE,
3173 	.make_request	= raid1_make_request,
3174 	.run		= raid1_run,
3175 	.free		= raid1_free,
3176 	.status		= raid1_status,
3177 	.error_handler	= raid1_error,
3178 	.hot_add_disk	= raid1_add_disk,
3179 	.hot_remove_disk= raid1_remove_disk,
3180 	.spare_active	= raid1_spare_active,
3181 	.sync_request	= raid1_sync_request,
3182 	.resize		= raid1_resize,
3183 	.size		= raid1_size,
3184 	.check_reshape	= raid1_reshape,
3185 	.quiesce	= raid1_quiesce,
3186 	.takeover	= raid1_takeover,
3187 	.congested	= raid1_congested,
3188 };
3189 
3190 static int __init raid_init(void)
3191 {
3192 	return register_md_personality(&raid1_personality);
3193 }
3194 
3195 static void raid_exit(void)
3196 {
3197 	unregister_md_personality(&raid1_personality);
3198 }
3199 
3200 module_init(raid_init);
3201 module_exit(raid_exit);
3202 MODULE_LICENSE("GPL");
3203 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3204 MODULE_ALIAS("md-personality-3"); /* RAID1 */
3205 MODULE_ALIAS("md-raid1");
3206 MODULE_ALIAS("md-level-1");
3207 
3208 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
3209