xref: /openbmc/linux/drivers/md/raid1.c (revision aff8da09)
1 /*
2  * raid1.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5  *
6  * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7  *
8  * RAID-1 management functions.
9  *
10  * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11  *
12  * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
13  * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14  *
15  * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16  * bitmapped intelligence in resync:
17  *
18  *      - bitmap marked during normal i/o
19  *      - bitmap used to skip nondirty blocks during sync
20  *
21  * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22  * - persistent bitmap code
23  *
24  * This program is free software; you can redistribute it and/or modify
25  * it under the terms of the GNU General Public License as published by
26  * the Free Software Foundation; either version 2, or (at your option)
27  * any later version.
28  *
29  * You should have received a copy of the GNU General Public License
30  * (for example /usr/src/linux/COPYING); if not, write to the Free
31  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32  */
33 
34 #include <linux/slab.h>
35 #include <linux/delay.h>
36 #include <linux/blkdev.h>
37 #include <linux/module.h>
38 #include <linux/seq_file.h>
39 #include <linux/ratelimit.h>
40 #include <trace/events/block.h>
41 #include "md.h"
42 #include "raid1.h"
43 #include "bitmap.h"
44 
45 #define UNSUPPORTED_MDDEV_FLAGS		\
46 	((1L << MD_HAS_JOURNAL) |	\
47 	 (1L << MD_JOURNAL_CLEAN))
48 
49 /*
50  * Number of guaranteed r1bios in case of extreme VM load:
51  */
52 #define	NR_RAID1_BIOS 256
53 
54 /* when we get a read error on a read-only array, we redirect to another
55  * device without failing the first device, or trying to over-write to
56  * correct the read error.  To keep track of bad blocks on a per-bio
57  * level, we store IO_BLOCKED in the appropriate 'bios' pointer
58  */
59 #define IO_BLOCKED ((struct bio *)1)
60 /* When we successfully write to a known bad-block, we need to remove the
61  * bad-block marking which must be done from process context.  So we record
62  * the success by setting devs[n].bio to IO_MADE_GOOD
63  */
64 #define IO_MADE_GOOD ((struct bio *)2)
65 
66 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
67 
68 /* When there are this many requests queue to be written by
69  * the raid1 thread, we become 'congested' to provide back-pressure
70  * for writeback.
71  */
72 static int max_queued_requests = 1024;
73 
74 static void allow_barrier(struct r1conf *conf, sector_t sector_nr);
75 static void lower_barrier(struct r1conf *conf, sector_t sector_nr);
76 
77 #define raid1_log(md, fmt, args...)				\
78 	do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid1 " fmt, ##args); } while (0)
79 
80 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
81 {
82 	struct pool_info *pi = data;
83 	int size = offsetof(struct r1bio, bios[pi->raid_disks]);
84 
85 	/* allocate a r1bio with room for raid_disks entries in the bios array */
86 	return kzalloc(size, gfp_flags);
87 }
88 
89 static void r1bio_pool_free(void *r1_bio, void *data)
90 {
91 	kfree(r1_bio);
92 }
93 
94 #define RESYNC_BLOCK_SIZE (64*1024)
95 #define RESYNC_DEPTH 32
96 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
97 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
98 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
99 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
100 #define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
101 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
102 
103 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
104 {
105 	struct pool_info *pi = data;
106 	struct r1bio *r1_bio;
107 	struct bio *bio;
108 	int need_pages;
109 	int i, j;
110 
111 	r1_bio = r1bio_pool_alloc(gfp_flags, pi);
112 	if (!r1_bio)
113 		return NULL;
114 
115 	/*
116 	 * Allocate bios : 1 for reading, n-1 for writing
117 	 */
118 	for (j = pi->raid_disks ; j-- ; ) {
119 		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
120 		if (!bio)
121 			goto out_free_bio;
122 		r1_bio->bios[j] = bio;
123 	}
124 	/*
125 	 * Allocate RESYNC_PAGES data pages and attach them to
126 	 * the first bio.
127 	 * If this is a user-requested check/repair, allocate
128 	 * RESYNC_PAGES for each bio.
129 	 */
130 	if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
131 		need_pages = pi->raid_disks;
132 	else
133 		need_pages = 1;
134 	for (j = 0; j < need_pages; j++) {
135 		bio = r1_bio->bios[j];
136 		bio->bi_vcnt = RESYNC_PAGES;
137 
138 		if (bio_alloc_pages(bio, gfp_flags))
139 			goto out_free_pages;
140 	}
141 	/* If not user-requests, copy the page pointers to all bios */
142 	if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
143 		for (i=0; i<RESYNC_PAGES ; i++)
144 			for (j=1; j<pi->raid_disks; j++)
145 				r1_bio->bios[j]->bi_io_vec[i].bv_page =
146 					r1_bio->bios[0]->bi_io_vec[i].bv_page;
147 	}
148 
149 	r1_bio->master_bio = NULL;
150 
151 	return r1_bio;
152 
153 out_free_pages:
154 	while (--j >= 0)
155 		bio_free_pages(r1_bio->bios[j]);
156 
157 out_free_bio:
158 	while (++j < pi->raid_disks)
159 		bio_put(r1_bio->bios[j]);
160 	r1bio_pool_free(r1_bio, data);
161 	return NULL;
162 }
163 
164 static void r1buf_pool_free(void *__r1_bio, void *data)
165 {
166 	struct pool_info *pi = data;
167 	int i,j;
168 	struct r1bio *r1bio = __r1_bio;
169 
170 	for (i = 0; i < RESYNC_PAGES; i++)
171 		for (j = pi->raid_disks; j-- ;) {
172 			if (j == 0 ||
173 			    r1bio->bios[j]->bi_io_vec[i].bv_page !=
174 			    r1bio->bios[0]->bi_io_vec[i].bv_page)
175 				safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
176 		}
177 	for (i=0 ; i < pi->raid_disks; i++)
178 		bio_put(r1bio->bios[i]);
179 
180 	r1bio_pool_free(r1bio, data);
181 }
182 
183 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
184 {
185 	int i;
186 
187 	for (i = 0; i < conf->raid_disks * 2; i++) {
188 		struct bio **bio = r1_bio->bios + i;
189 		if (!BIO_SPECIAL(*bio))
190 			bio_put(*bio);
191 		*bio = NULL;
192 	}
193 }
194 
195 static void free_r1bio(struct r1bio *r1_bio)
196 {
197 	struct r1conf *conf = r1_bio->mddev->private;
198 
199 	put_all_bios(conf, r1_bio);
200 	mempool_free(r1_bio, conf->r1bio_pool);
201 }
202 
203 static void put_buf(struct r1bio *r1_bio)
204 {
205 	struct r1conf *conf = r1_bio->mddev->private;
206 	sector_t sect = r1_bio->sector;
207 	int i;
208 
209 	for (i = 0; i < conf->raid_disks * 2; i++) {
210 		struct bio *bio = r1_bio->bios[i];
211 		if (bio->bi_end_io)
212 			rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
213 	}
214 
215 	mempool_free(r1_bio, conf->r1buf_pool);
216 
217 	lower_barrier(conf, sect);
218 }
219 
220 static void reschedule_retry(struct r1bio *r1_bio)
221 {
222 	unsigned long flags;
223 	struct mddev *mddev = r1_bio->mddev;
224 	struct r1conf *conf = mddev->private;
225 	int idx;
226 
227 	idx = sector_to_idx(r1_bio->sector);
228 	spin_lock_irqsave(&conf->device_lock, flags);
229 	list_add(&r1_bio->retry_list, &conf->retry_list);
230 	atomic_inc(&conf->nr_queued[idx]);
231 	spin_unlock_irqrestore(&conf->device_lock, flags);
232 
233 	wake_up(&conf->wait_barrier);
234 	md_wakeup_thread(mddev->thread);
235 }
236 
237 /*
238  * raid_end_bio_io() is called when we have finished servicing a mirrored
239  * operation and are ready to return a success/failure code to the buffer
240  * cache layer.
241  */
242 static void call_bio_endio(struct r1bio *r1_bio)
243 {
244 	struct bio *bio = r1_bio->master_bio;
245 	int done;
246 	struct r1conf *conf = r1_bio->mddev->private;
247 	sector_t bi_sector = bio->bi_iter.bi_sector;
248 
249 	if (bio->bi_phys_segments) {
250 		unsigned long flags;
251 		spin_lock_irqsave(&conf->device_lock, flags);
252 		bio->bi_phys_segments--;
253 		done = (bio->bi_phys_segments == 0);
254 		spin_unlock_irqrestore(&conf->device_lock, flags);
255 		/*
256 		 * make_request() might be waiting for
257 		 * bi_phys_segments to decrease
258 		 */
259 		wake_up(&conf->wait_barrier);
260 	} else
261 		done = 1;
262 
263 	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
264 		bio->bi_error = -EIO;
265 
266 	if (done) {
267 		bio_endio(bio);
268 		/*
269 		 * Wake up any possible resync thread that waits for the device
270 		 * to go idle.
271 		 */
272 		allow_barrier(conf, bi_sector);
273 	}
274 }
275 
276 static void raid_end_bio_io(struct r1bio *r1_bio)
277 {
278 	struct bio *bio = r1_bio->master_bio;
279 
280 	/* if nobody has done the final endio yet, do it now */
281 	if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
282 		pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
283 			 (bio_data_dir(bio) == WRITE) ? "write" : "read",
284 			 (unsigned long long) bio->bi_iter.bi_sector,
285 			 (unsigned long long) bio_end_sector(bio) - 1);
286 
287 		call_bio_endio(r1_bio);
288 	}
289 	free_r1bio(r1_bio);
290 }
291 
292 /*
293  * Update disk head position estimator based on IRQ completion info.
294  */
295 static inline void update_head_pos(int disk, struct r1bio *r1_bio)
296 {
297 	struct r1conf *conf = r1_bio->mddev->private;
298 
299 	conf->mirrors[disk].head_position =
300 		r1_bio->sector + (r1_bio->sectors);
301 }
302 
303 /*
304  * Find the disk number which triggered given bio
305  */
306 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
307 {
308 	int mirror;
309 	struct r1conf *conf = r1_bio->mddev->private;
310 	int raid_disks = conf->raid_disks;
311 
312 	for (mirror = 0; mirror < raid_disks * 2; mirror++)
313 		if (r1_bio->bios[mirror] == bio)
314 			break;
315 
316 	BUG_ON(mirror == raid_disks * 2);
317 	update_head_pos(mirror, r1_bio);
318 
319 	return mirror;
320 }
321 
322 static void raid1_end_read_request(struct bio *bio)
323 {
324 	int uptodate = !bio->bi_error;
325 	struct r1bio *r1_bio = bio->bi_private;
326 	struct r1conf *conf = r1_bio->mddev->private;
327 	struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev;
328 
329 	/*
330 	 * this branch is our 'one mirror IO has finished' event handler:
331 	 */
332 	update_head_pos(r1_bio->read_disk, r1_bio);
333 
334 	if (uptodate)
335 		set_bit(R1BIO_Uptodate, &r1_bio->state);
336 	else if (test_bit(FailFast, &rdev->flags) &&
337 		 test_bit(R1BIO_FailFast, &r1_bio->state))
338 		/* This was a fail-fast read so we definitely
339 		 * want to retry */
340 		;
341 	else {
342 		/* If all other devices have failed, we want to return
343 		 * the error upwards rather than fail the last device.
344 		 * Here we redefine "uptodate" to mean "Don't want to retry"
345 		 */
346 		unsigned long flags;
347 		spin_lock_irqsave(&conf->device_lock, flags);
348 		if (r1_bio->mddev->degraded == conf->raid_disks ||
349 		    (r1_bio->mddev->degraded == conf->raid_disks-1 &&
350 		     test_bit(In_sync, &rdev->flags)))
351 			uptodate = 1;
352 		spin_unlock_irqrestore(&conf->device_lock, flags);
353 	}
354 
355 	if (uptodate) {
356 		raid_end_bio_io(r1_bio);
357 		rdev_dec_pending(rdev, conf->mddev);
358 	} else {
359 		/*
360 		 * oops, read error:
361 		 */
362 		char b[BDEVNAME_SIZE];
363 		pr_err_ratelimited("md/raid1:%s: %s: rescheduling sector %llu\n",
364 				   mdname(conf->mddev),
365 				   bdevname(rdev->bdev, b),
366 				   (unsigned long long)r1_bio->sector);
367 		set_bit(R1BIO_ReadError, &r1_bio->state);
368 		reschedule_retry(r1_bio);
369 		/* don't drop the reference on read_disk yet */
370 	}
371 }
372 
373 static void close_write(struct r1bio *r1_bio)
374 {
375 	/* it really is the end of this request */
376 	if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
377 		/* free extra copy of the data pages */
378 		int i = r1_bio->behind_page_count;
379 		while (i--)
380 			safe_put_page(r1_bio->behind_bvecs[i].bv_page);
381 		kfree(r1_bio->behind_bvecs);
382 		r1_bio->behind_bvecs = NULL;
383 	}
384 	/* clear the bitmap if all writes complete successfully */
385 	bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
386 			r1_bio->sectors,
387 			!test_bit(R1BIO_Degraded, &r1_bio->state),
388 			test_bit(R1BIO_BehindIO, &r1_bio->state));
389 	md_write_end(r1_bio->mddev);
390 }
391 
392 static void r1_bio_write_done(struct r1bio *r1_bio)
393 {
394 	if (!atomic_dec_and_test(&r1_bio->remaining))
395 		return;
396 
397 	if (test_bit(R1BIO_WriteError, &r1_bio->state))
398 		reschedule_retry(r1_bio);
399 	else {
400 		close_write(r1_bio);
401 		if (test_bit(R1BIO_MadeGood, &r1_bio->state))
402 			reschedule_retry(r1_bio);
403 		else
404 			raid_end_bio_io(r1_bio);
405 	}
406 }
407 
408 static void raid1_end_write_request(struct bio *bio)
409 {
410 	struct r1bio *r1_bio = bio->bi_private;
411 	int behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
412 	struct r1conf *conf = r1_bio->mddev->private;
413 	struct bio *to_put = NULL;
414 	int mirror = find_bio_disk(r1_bio, bio);
415 	struct md_rdev *rdev = conf->mirrors[mirror].rdev;
416 	bool discard_error;
417 
418 	discard_error = bio->bi_error && bio_op(bio) == REQ_OP_DISCARD;
419 
420 	/*
421 	 * 'one mirror IO has finished' event handler:
422 	 */
423 	if (bio->bi_error && !discard_error) {
424 		set_bit(WriteErrorSeen,	&rdev->flags);
425 		if (!test_and_set_bit(WantReplacement, &rdev->flags))
426 			set_bit(MD_RECOVERY_NEEDED, &
427 				conf->mddev->recovery);
428 
429 		if (test_bit(FailFast, &rdev->flags) &&
430 		    (bio->bi_opf & MD_FAILFAST) &&
431 		    /* We never try FailFast to WriteMostly devices */
432 		    !test_bit(WriteMostly, &rdev->flags)) {
433 			md_error(r1_bio->mddev, rdev);
434 			if (!test_bit(Faulty, &rdev->flags))
435 				/* This is the only remaining device,
436 				 * We need to retry the write without
437 				 * FailFast
438 				 */
439 				set_bit(R1BIO_WriteError, &r1_bio->state);
440 			else {
441 				/* Finished with this branch */
442 				r1_bio->bios[mirror] = NULL;
443 				to_put = bio;
444 			}
445 		} else
446 			set_bit(R1BIO_WriteError, &r1_bio->state);
447 	} else {
448 		/*
449 		 * Set R1BIO_Uptodate in our master bio, so that we
450 		 * will return a good error code for to the higher
451 		 * levels even if IO on some other mirrored buffer
452 		 * fails.
453 		 *
454 		 * The 'master' represents the composite IO operation
455 		 * to user-side. So if something waits for IO, then it
456 		 * will wait for the 'master' bio.
457 		 */
458 		sector_t first_bad;
459 		int bad_sectors;
460 
461 		r1_bio->bios[mirror] = NULL;
462 		to_put = bio;
463 		/*
464 		 * Do not set R1BIO_Uptodate if the current device is
465 		 * rebuilding or Faulty. This is because we cannot use
466 		 * such device for properly reading the data back (we could
467 		 * potentially use it, if the current write would have felt
468 		 * before rdev->recovery_offset, but for simplicity we don't
469 		 * check this here.
470 		 */
471 		if (test_bit(In_sync, &rdev->flags) &&
472 		    !test_bit(Faulty, &rdev->flags))
473 			set_bit(R1BIO_Uptodate, &r1_bio->state);
474 
475 		/* Maybe we can clear some bad blocks. */
476 		if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
477 				&first_bad, &bad_sectors) && !discard_error) {
478 			r1_bio->bios[mirror] = IO_MADE_GOOD;
479 			set_bit(R1BIO_MadeGood, &r1_bio->state);
480 		}
481 	}
482 
483 	if (behind) {
484 		if (test_bit(WriteMostly, &rdev->flags))
485 			atomic_dec(&r1_bio->behind_remaining);
486 
487 		/*
488 		 * In behind mode, we ACK the master bio once the I/O
489 		 * has safely reached all non-writemostly
490 		 * disks. Setting the Returned bit ensures that this
491 		 * gets done only once -- we don't ever want to return
492 		 * -EIO here, instead we'll wait
493 		 */
494 		if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
495 		    test_bit(R1BIO_Uptodate, &r1_bio->state)) {
496 			/* Maybe we can return now */
497 			if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
498 				struct bio *mbio = r1_bio->master_bio;
499 				pr_debug("raid1: behind end write sectors"
500 					 " %llu-%llu\n",
501 					 (unsigned long long) mbio->bi_iter.bi_sector,
502 					 (unsigned long long) bio_end_sector(mbio) - 1);
503 				call_bio_endio(r1_bio);
504 			}
505 		}
506 	}
507 	if (r1_bio->bios[mirror] == NULL)
508 		rdev_dec_pending(rdev, conf->mddev);
509 
510 	/*
511 	 * Let's see if all mirrored write operations have finished
512 	 * already.
513 	 */
514 	r1_bio_write_done(r1_bio);
515 
516 	if (to_put)
517 		bio_put(to_put);
518 }
519 
520 static sector_t align_to_barrier_unit_end(sector_t start_sector,
521 					  sector_t sectors)
522 {
523 	sector_t len;
524 
525 	WARN_ON(sectors == 0);
526 	/*
527 	 * len is the number of sectors from start_sector to end of the
528 	 * barrier unit which start_sector belongs to.
529 	 */
530 	len = round_up(start_sector + 1, BARRIER_UNIT_SECTOR_SIZE) -
531 	      start_sector;
532 
533 	if (len > sectors)
534 		len = sectors;
535 
536 	return len;
537 }
538 
539 /*
540  * This routine returns the disk from which the requested read should
541  * be done. There is a per-array 'next expected sequential IO' sector
542  * number - if this matches on the next IO then we use the last disk.
543  * There is also a per-disk 'last know head position' sector that is
544  * maintained from IRQ contexts, both the normal and the resync IO
545  * completion handlers update this position correctly. If there is no
546  * perfect sequential match then we pick the disk whose head is closest.
547  *
548  * If there are 2 mirrors in the same 2 devices, performance degrades
549  * because position is mirror, not device based.
550  *
551  * The rdev for the device selected will have nr_pending incremented.
552  */
553 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
554 {
555 	const sector_t this_sector = r1_bio->sector;
556 	int sectors;
557 	int best_good_sectors;
558 	int best_disk, best_dist_disk, best_pending_disk;
559 	int has_nonrot_disk;
560 	int disk;
561 	sector_t best_dist;
562 	unsigned int min_pending;
563 	struct md_rdev *rdev;
564 	int choose_first;
565 	int choose_next_idle;
566 
567 	rcu_read_lock();
568 	/*
569 	 * Check if we can balance. We can balance on the whole
570 	 * device if no resync is going on, or below the resync window.
571 	 * We take the first readable disk when above the resync window.
572 	 */
573  retry:
574 	sectors = r1_bio->sectors;
575 	best_disk = -1;
576 	best_dist_disk = -1;
577 	best_dist = MaxSector;
578 	best_pending_disk = -1;
579 	min_pending = UINT_MAX;
580 	best_good_sectors = 0;
581 	has_nonrot_disk = 0;
582 	choose_next_idle = 0;
583 	clear_bit(R1BIO_FailFast, &r1_bio->state);
584 
585 	if ((conf->mddev->recovery_cp < this_sector + sectors) ||
586 	    (mddev_is_clustered(conf->mddev) &&
587 	    md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
588 		    this_sector + sectors)))
589 		choose_first = 1;
590 	else
591 		choose_first = 0;
592 
593 	for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
594 		sector_t dist;
595 		sector_t first_bad;
596 		int bad_sectors;
597 		unsigned int pending;
598 		bool nonrot;
599 
600 		rdev = rcu_dereference(conf->mirrors[disk].rdev);
601 		if (r1_bio->bios[disk] == IO_BLOCKED
602 		    || rdev == NULL
603 		    || test_bit(Faulty, &rdev->flags))
604 			continue;
605 		if (!test_bit(In_sync, &rdev->flags) &&
606 		    rdev->recovery_offset < this_sector + sectors)
607 			continue;
608 		if (test_bit(WriteMostly, &rdev->flags)) {
609 			/* Don't balance among write-mostly, just
610 			 * use the first as a last resort */
611 			if (best_dist_disk < 0) {
612 				if (is_badblock(rdev, this_sector, sectors,
613 						&first_bad, &bad_sectors)) {
614 					if (first_bad <= this_sector)
615 						/* Cannot use this */
616 						continue;
617 					best_good_sectors = first_bad - this_sector;
618 				} else
619 					best_good_sectors = sectors;
620 				best_dist_disk = disk;
621 				best_pending_disk = disk;
622 			}
623 			continue;
624 		}
625 		/* This is a reasonable device to use.  It might
626 		 * even be best.
627 		 */
628 		if (is_badblock(rdev, this_sector, sectors,
629 				&first_bad, &bad_sectors)) {
630 			if (best_dist < MaxSector)
631 				/* already have a better device */
632 				continue;
633 			if (first_bad <= this_sector) {
634 				/* cannot read here. If this is the 'primary'
635 				 * device, then we must not read beyond
636 				 * bad_sectors from another device..
637 				 */
638 				bad_sectors -= (this_sector - first_bad);
639 				if (choose_first && sectors > bad_sectors)
640 					sectors = bad_sectors;
641 				if (best_good_sectors > sectors)
642 					best_good_sectors = sectors;
643 
644 			} else {
645 				sector_t good_sectors = first_bad - this_sector;
646 				if (good_sectors > best_good_sectors) {
647 					best_good_sectors = good_sectors;
648 					best_disk = disk;
649 				}
650 				if (choose_first)
651 					break;
652 			}
653 			continue;
654 		} else
655 			best_good_sectors = sectors;
656 
657 		if (best_disk >= 0)
658 			/* At least two disks to choose from so failfast is OK */
659 			set_bit(R1BIO_FailFast, &r1_bio->state);
660 
661 		nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
662 		has_nonrot_disk |= nonrot;
663 		pending = atomic_read(&rdev->nr_pending);
664 		dist = abs(this_sector - conf->mirrors[disk].head_position);
665 		if (choose_first) {
666 			best_disk = disk;
667 			break;
668 		}
669 		/* Don't change to another disk for sequential reads */
670 		if (conf->mirrors[disk].next_seq_sect == this_sector
671 		    || dist == 0) {
672 			int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
673 			struct raid1_info *mirror = &conf->mirrors[disk];
674 
675 			best_disk = disk;
676 			/*
677 			 * If buffered sequential IO size exceeds optimal
678 			 * iosize, check if there is idle disk. If yes, choose
679 			 * the idle disk. read_balance could already choose an
680 			 * idle disk before noticing it's a sequential IO in
681 			 * this disk. This doesn't matter because this disk
682 			 * will idle, next time it will be utilized after the
683 			 * first disk has IO size exceeds optimal iosize. In
684 			 * this way, iosize of the first disk will be optimal
685 			 * iosize at least. iosize of the second disk might be
686 			 * small, but not a big deal since when the second disk
687 			 * starts IO, the first disk is likely still busy.
688 			 */
689 			if (nonrot && opt_iosize > 0 &&
690 			    mirror->seq_start != MaxSector &&
691 			    mirror->next_seq_sect > opt_iosize &&
692 			    mirror->next_seq_sect - opt_iosize >=
693 			    mirror->seq_start) {
694 				choose_next_idle = 1;
695 				continue;
696 			}
697 			break;
698 		}
699 
700 		if (choose_next_idle)
701 			continue;
702 
703 		if (min_pending > pending) {
704 			min_pending = pending;
705 			best_pending_disk = disk;
706 		}
707 
708 		if (dist < best_dist) {
709 			best_dist = dist;
710 			best_dist_disk = disk;
711 		}
712 	}
713 
714 	/*
715 	 * If all disks are rotational, choose the closest disk. If any disk is
716 	 * non-rotational, choose the disk with less pending request even the
717 	 * disk is rotational, which might/might not be optimal for raids with
718 	 * mixed ratation/non-rotational disks depending on workload.
719 	 */
720 	if (best_disk == -1) {
721 		if (has_nonrot_disk || min_pending == 0)
722 			best_disk = best_pending_disk;
723 		else
724 			best_disk = best_dist_disk;
725 	}
726 
727 	if (best_disk >= 0) {
728 		rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
729 		if (!rdev)
730 			goto retry;
731 		atomic_inc(&rdev->nr_pending);
732 		sectors = best_good_sectors;
733 
734 		if (conf->mirrors[best_disk].next_seq_sect != this_sector)
735 			conf->mirrors[best_disk].seq_start = this_sector;
736 
737 		conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
738 	}
739 	rcu_read_unlock();
740 	*max_sectors = sectors;
741 
742 	return best_disk;
743 }
744 
745 static int raid1_congested(struct mddev *mddev, int bits)
746 {
747 	struct r1conf *conf = mddev->private;
748 	int i, ret = 0;
749 
750 	if ((bits & (1 << WB_async_congested)) &&
751 	    conf->pending_count >= max_queued_requests)
752 		return 1;
753 
754 	rcu_read_lock();
755 	for (i = 0; i < conf->raid_disks * 2; i++) {
756 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
757 		if (rdev && !test_bit(Faulty, &rdev->flags)) {
758 			struct request_queue *q = bdev_get_queue(rdev->bdev);
759 
760 			BUG_ON(!q);
761 
762 			/* Note the '|| 1' - when read_balance prefers
763 			 * non-congested targets, it can be removed
764 			 */
765 			if ((bits & (1 << WB_async_congested)) || 1)
766 				ret |= bdi_congested(&q->backing_dev_info, bits);
767 			else
768 				ret &= bdi_congested(&q->backing_dev_info, bits);
769 		}
770 	}
771 	rcu_read_unlock();
772 	return ret;
773 }
774 
775 static void flush_pending_writes(struct r1conf *conf)
776 {
777 	/* Any writes that have been queued but are awaiting
778 	 * bitmap updates get flushed here.
779 	 */
780 	spin_lock_irq(&conf->device_lock);
781 
782 	if (conf->pending_bio_list.head) {
783 		struct bio *bio;
784 		bio = bio_list_get(&conf->pending_bio_list);
785 		conf->pending_count = 0;
786 		spin_unlock_irq(&conf->device_lock);
787 		/* flush any pending bitmap writes to
788 		 * disk before proceeding w/ I/O */
789 		bitmap_unplug(conf->mddev->bitmap);
790 		wake_up(&conf->wait_barrier);
791 
792 		while (bio) { /* submit pending writes */
793 			struct bio *next = bio->bi_next;
794 			struct md_rdev *rdev = (void*)bio->bi_bdev;
795 			bio->bi_next = NULL;
796 			bio->bi_bdev = rdev->bdev;
797 			if (test_bit(Faulty, &rdev->flags)) {
798 				bio->bi_error = -EIO;
799 				bio_endio(bio);
800 			} else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
801 					    !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
802 				/* Just ignore it */
803 				bio_endio(bio);
804 			else
805 				generic_make_request(bio);
806 			bio = next;
807 		}
808 	} else
809 		spin_unlock_irq(&conf->device_lock);
810 }
811 
812 /* Barriers....
813  * Sometimes we need to suspend IO while we do something else,
814  * either some resync/recovery, or reconfigure the array.
815  * To do this we raise a 'barrier'.
816  * The 'barrier' is a counter that can be raised multiple times
817  * to count how many activities are happening which preclude
818  * normal IO.
819  * We can only raise the barrier if there is no pending IO.
820  * i.e. if nr_pending == 0.
821  * We choose only to raise the barrier if no-one is waiting for the
822  * barrier to go down.  This means that as soon as an IO request
823  * is ready, no other operations which require a barrier will start
824  * until the IO request has had a chance.
825  *
826  * So: regular IO calls 'wait_barrier'.  When that returns there
827  *    is no backgroup IO happening,  It must arrange to call
828  *    allow_barrier when it has finished its IO.
829  * backgroup IO calls must call raise_barrier.  Once that returns
830  *    there is no normal IO happeing.  It must arrange to call
831  *    lower_barrier when the particular background IO completes.
832  */
833 static void raise_barrier(struct r1conf *conf, sector_t sector_nr)
834 {
835 	int idx = sector_to_idx(sector_nr);
836 
837 	spin_lock_irq(&conf->resync_lock);
838 
839 	/* Wait until no block IO is waiting */
840 	wait_event_lock_irq(conf->wait_barrier,
841 			    !atomic_read(&conf->nr_waiting[idx]),
842 			    conf->resync_lock);
843 
844 	/* block any new IO from starting */
845 	atomic_inc(&conf->barrier[idx]);
846 	/*
847 	 * In raise_barrier() we firstly increase conf->barrier[idx] then
848 	 * check conf->nr_pending[idx]. In _wait_barrier() we firstly
849 	 * increase conf->nr_pending[idx] then check conf->barrier[idx].
850 	 * A memory barrier here to make sure conf->nr_pending[idx] won't
851 	 * be fetched before conf->barrier[idx] is increased. Otherwise
852 	 * there will be a race between raise_barrier() and _wait_barrier().
853 	 */
854 	smp_mb__after_atomic();
855 
856 	/* For these conditions we must wait:
857 	 * A: while the array is in frozen state
858 	 * B: while conf->nr_pending[idx] is not 0, meaning regular I/O
859 	 *    existing in corresponding I/O barrier bucket.
860 	 * C: while conf->barrier[idx] >= RESYNC_DEPTH, meaning reaches
861 	 *    max resync count which allowed on current I/O barrier bucket.
862 	 */
863 	wait_event_lock_irq(conf->wait_barrier,
864 			    !conf->array_frozen &&
865 			     !atomic_read(&conf->nr_pending[idx]) &&
866 			     atomic_read(&conf->barrier[idx]) < RESYNC_DEPTH,
867 			    conf->resync_lock);
868 
869 	atomic_inc(&conf->nr_pending[idx]);
870 	spin_unlock_irq(&conf->resync_lock);
871 }
872 
873 static void lower_barrier(struct r1conf *conf, sector_t sector_nr)
874 {
875 	int idx = sector_to_idx(sector_nr);
876 
877 	BUG_ON(atomic_read(&conf->barrier[idx]) <= 0);
878 
879 	atomic_dec(&conf->barrier[idx]);
880 	atomic_dec(&conf->nr_pending[idx]);
881 	wake_up(&conf->wait_barrier);
882 }
883 
884 static void _wait_barrier(struct r1conf *conf, int idx)
885 {
886 	/*
887 	 * We need to increase conf->nr_pending[idx] very early here,
888 	 * then raise_barrier() can be blocked when it waits for
889 	 * conf->nr_pending[idx] to be 0. Then we can avoid holding
890 	 * conf->resync_lock when there is no barrier raised in same
891 	 * barrier unit bucket. Also if the array is frozen, I/O
892 	 * should be blocked until array is unfrozen.
893 	 */
894 	atomic_inc(&conf->nr_pending[idx]);
895 	/*
896 	 * In _wait_barrier() we firstly increase conf->nr_pending[idx], then
897 	 * check conf->barrier[idx]. In raise_barrier() we firstly increase
898 	 * conf->barrier[idx], then check conf->nr_pending[idx]. A memory
899 	 * barrier is necessary here to make sure conf->barrier[idx] won't be
900 	 * fetched before conf->nr_pending[idx] is increased. Otherwise there
901 	 * will be a race between _wait_barrier() and raise_barrier().
902 	 */
903 	smp_mb__after_atomic();
904 
905 	/*
906 	 * Don't worry about checking two atomic_t variables at same time
907 	 * here. If during we check conf->barrier[idx], the array is
908 	 * frozen (conf->array_frozen is 1), and chonf->barrier[idx] is
909 	 * 0, it is safe to return and make the I/O continue. Because the
910 	 * array is frozen, all I/O returned here will eventually complete
911 	 * or be queued, no race will happen. See code comment in
912 	 * frozen_array().
913 	 */
914 	if (!READ_ONCE(conf->array_frozen) &&
915 	    !atomic_read(&conf->barrier[idx]))
916 		return;
917 
918 	/*
919 	 * After holding conf->resync_lock, conf->nr_pending[idx]
920 	 * should be decreased before waiting for barrier to drop.
921 	 * Otherwise, we may encounter a race condition because
922 	 * raise_barrer() might be waiting for conf->nr_pending[idx]
923 	 * to be 0 at same time.
924 	 */
925 	spin_lock_irq(&conf->resync_lock);
926 	atomic_inc(&conf->nr_waiting[idx]);
927 	atomic_dec(&conf->nr_pending[idx]);
928 	/*
929 	 * In case freeze_array() is waiting for
930 	 * get_unqueued_pending() == extra
931 	 */
932 	wake_up(&conf->wait_barrier);
933 	/* Wait for the barrier in same barrier unit bucket to drop. */
934 	wait_event_lock_irq(conf->wait_barrier,
935 			    !conf->array_frozen &&
936 			     !atomic_read(&conf->barrier[idx]),
937 			    conf->resync_lock);
938 	atomic_inc(&conf->nr_pending[idx]);
939 	atomic_dec(&conf->nr_waiting[idx]);
940 	spin_unlock_irq(&conf->resync_lock);
941 }
942 
943 static void wait_read_barrier(struct r1conf *conf, sector_t sector_nr)
944 {
945 	int idx = sector_to_idx(sector_nr);
946 
947 	/*
948 	 * Very similar to _wait_barrier(). The difference is, for read
949 	 * I/O we don't need wait for sync I/O, but if the whole array
950 	 * is frozen, the read I/O still has to wait until the array is
951 	 * unfrozen. Since there is no ordering requirement with
952 	 * conf->barrier[idx] here, memory barrier is unnecessary as well.
953 	 */
954 	atomic_inc(&conf->nr_pending[idx]);
955 
956 	if (!READ_ONCE(conf->array_frozen))
957 		return;
958 
959 	spin_lock_irq(&conf->resync_lock);
960 	atomic_inc(&conf->nr_waiting[idx]);
961 	atomic_dec(&conf->nr_pending[idx]);
962 	/*
963 	 * In case freeze_array() is waiting for
964 	 * get_unqueued_pending() == extra
965 	 */
966 	wake_up(&conf->wait_barrier);
967 	/* Wait for array to be unfrozen */
968 	wait_event_lock_irq(conf->wait_barrier,
969 			    !conf->array_frozen,
970 			    conf->resync_lock);
971 	atomic_inc(&conf->nr_pending[idx]);
972 	atomic_dec(&conf->nr_waiting[idx]);
973 	spin_unlock_irq(&conf->resync_lock);
974 }
975 
976 static void wait_barrier(struct r1conf *conf, sector_t sector_nr)
977 {
978 	int idx = sector_to_idx(sector_nr);
979 
980 	_wait_barrier(conf, idx);
981 }
982 
983 static void wait_all_barriers(struct r1conf *conf)
984 {
985 	int idx;
986 
987 	for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
988 		_wait_barrier(conf, idx);
989 }
990 
991 static void _allow_barrier(struct r1conf *conf, int idx)
992 {
993 	atomic_dec(&conf->nr_pending[idx]);
994 	wake_up(&conf->wait_barrier);
995 }
996 
997 static void allow_barrier(struct r1conf *conf, sector_t sector_nr)
998 {
999 	int idx = sector_to_idx(sector_nr);
1000 
1001 	_allow_barrier(conf, idx);
1002 }
1003 
1004 static void allow_all_barriers(struct r1conf *conf)
1005 {
1006 	int idx;
1007 
1008 	for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
1009 		_allow_barrier(conf, idx);
1010 }
1011 
1012 /* conf->resync_lock should be held */
1013 static int get_unqueued_pending(struct r1conf *conf)
1014 {
1015 	int idx, ret;
1016 
1017 	for (ret = 0, idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
1018 		ret += atomic_read(&conf->nr_pending[idx]) -
1019 			atomic_read(&conf->nr_queued[idx]);
1020 
1021 	return ret;
1022 }
1023 
1024 static void freeze_array(struct r1conf *conf, int extra)
1025 {
1026 	/* Stop sync I/O and normal I/O and wait for everything to
1027 	 * go quite.
1028 	 * This is called in two situations:
1029 	 * 1) management command handlers (reshape, remove disk, quiesce).
1030 	 * 2) one normal I/O request failed.
1031 
1032 	 * After array_frozen is set to 1, new sync IO will be blocked at
1033 	 * raise_barrier(), and new normal I/O will blocked at _wait_barrier()
1034 	 * or wait_read_barrier(). The flying I/Os will either complete or be
1035 	 * queued. When everything goes quite, there are only queued I/Os left.
1036 
1037 	 * Every flying I/O contributes to a conf->nr_pending[idx], idx is the
1038 	 * barrier bucket index which this I/O request hits. When all sync and
1039 	 * normal I/O are queued, sum of all conf->nr_pending[] will match sum
1040 	 * of all conf->nr_queued[]. But normal I/O failure is an exception,
1041 	 * in handle_read_error(), we may call freeze_array() before trying to
1042 	 * fix the read error. In this case, the error read I/O is not queued,
1043 	 * so get_unqueued_pending() == 1.
1044 	 *
1045 	 * Therefore before this function returns, we need to wait until
1046 	 * get_unqueued_pendings(conf) gets equal to extra. For
1047 	 * normal I/O context, extra is 1, in rested situations extra is 0.
1048 	 */
1049 	spin_lock_irq(&conf->resync_lock);
1050 	conf->array_frozen = 1;
1051 	raid1_log(conf->mddev, "wait freeze");
1052 	wait_event_lock_irq_cmd(
1053 		conf->wait_barrier,
1054 		get_unqueued_pending(conf) == extra,
1055 		conf->resync_lock,
1056 		flush_pending_writes(conf));
1057 	spin_unlock_irq(&conf->resync_lock);
1058 }
1059 static void unfreeze_array(struct r1conf *conf)
1060 {
1061 	/* reverse the effect of the freeze */
1062 	spin_lock_irq(&conf->resync_lock);
1063 	conf->array_frozen = 0;
1064 	spin_unlock_irq(&conf->resync_lock);
1065 	wake_up(&conf->wait_barrier);
1066 }
1067 
1068 /* duplicate the data pages for behind I/O
1069  */
1070 static void alloc_behind_pages(struct bio *bio, struct r1bio *r1_bio)
1071 {
1072 	int i;
1073 	struct bio_vec *bvec;
1074 	struct bio_vec *bvecs = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec),
1075 					GFP_NOIO);
1076 	if (unlikely(!bvecs))
1077 		return;
1078 
1079 	bio_for_each_segment_all(bvec, bio, i) {
1080 		bvecs[i] = *bvec;
1081 		bvecs[i].bv_page = alloc_page(GFP_NOIO);
1082 		if (unlikely(!bvecs[i].bv_page))
1083 			goto do_sync_io;
1084 		memcpy(kmap(bvecs[i].bv_page) + bvec->bv_offset,
1085 		       kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
1086 		kunmap(bvecs[i].bv_page);
1087 		kunmap(bvec->bv_page);
1088 	}
1089 	r1_bio->behind_bvecs = bvecs;
1090 	r1_bio->behind_page_count = bio->bi_vcnt;
1091 	set_bit(R1BIO_BehindIO, &r1_bio->state);
1092 	return;
1093 
1094 do_sync_io:
1095 	for (i = 0; i < bio->bi_vcnt; i++)
1096 		if (bvecs[i].bv_page)
1097 			put_page(bvecs[i].bv_page);
1098 	kfree(bvecs);
1099 	pr_debug("%dB behind alloc failed, doing sync I/O\n",
1100 		 bio->bi_iter.bi_size);
1101 }
1102 
1103 struct raid1_plug_cb {
1104 	struct blk_plug_cb	cb;
1105 	struct bio_list		pending;
1106 	int			pending_cnt;
1107 };
1108 
1109 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1110 {
1111 	struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1112 						  cb);
1113 	struct mddev *mddev = plug->cb.data;
1114 	struct r1conf *conf = mddev->private;
1115 	struct bio *bio;
1116 
1117 	if (from_schedule || current->bio_list) {
1118 		spin_lock_irq(&conf->device_lock);
1119 		bio_list_merge(&conf->pending_bio_list, &plug->pending);
1120 		conf->pending_count += plug->pending_cnt;
1121 		spin_unlock_irq(&conf->device_lock);
1122 		wake_up(&conf->wait_barrier);
1123 		md_wakeup_thread(mddev->thread);
1124 		kfree(plug);
1125 		return;
1126 	}
1127 
1128 	/* we aren't scheduling, so we can do the write-out directly. */
1129 	bio = bio_list_get(&plug->pending);
1130 	bitmap_unplug(mddev->bitmap);
1131 	wake_up(&conf->wait_barrier);
1132 
1133 	while (bio) { /* submit pending writes */
1134 		struct bio *next = bio->bi_next;
1135 		struct md_rdev *rdev = (void*)bio->bi_bdev;
1136 		bio->bi_next = NULL;
1137 		bio->bi_bdev = rdev->bdev;
1138 		if (test_bit(Faulty, &rdev->flags)) {
1139 			bio->bi_error = -EIO;
1140 			bio_endio(bio);
1141 		} else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
1142 				    !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
1143 			/* Just ignore it */
1144 			bio_endio(bio);
1145 		else
1146 			generic_make_request(bio);
1147 		bio = next;
1148 	}
1149 	kfree(plug);
1150 }
1151 
1152 static inline struct r1bio *
1153 alloc_r1bio(struct mddev *mddev, struct bio *bio, sector_t sectors_handled)
1154 {
1155 	struct r1conf *conf = mddev->private;
1156 	struct r1bio *r1_bio;
1157 
1158 	r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1159 
1160 	r1_bio->master_bio = bio;
1161 	r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1162 	r1_bio->state = 0;
1163 	r1_bio->mddev = mddev;
1164 	r1_bio->sector = bio->bi_iter.bi_sector + sectors_handled;
1165 
1166 	return r1_bio;
1167 }
1168 
1169 static void raid1_read_request(struct mddev *mddev, struct bio *bio)
1170 {
1171 	struct r1conf *conf = mddev->private;
1172 	struct raid1_info *mirror;
1173 	struct r1bio *r1_bio;
1174 	struct bio *read_bio;
1175 	struct bitmap *bitmap = mddev->bitmap;
1176 	const int op = bio_op(bio);
1177 	const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1178 	int sectors_handled;
1179 	int max_sectors;
1180 	int rdisk;
1181 
1182 	/*
1183 	 * Still need barrier for READ in case that whole
1184 	 * array is frozen.
1185 	 */
1186 	wait_read_barrier(conf, bio->bi_iter.bi_sector);
1187 
1188 	r1_bio = alloc_r1bio(mddev, bio, 0);
1189 
1190 	/*
1191 	 * We might need to issue multiple reads to different
1192 	 * devices if there are bad blocks around, so we keep
1193 	 * track of the number of reads in bio->bi_phys_segments.
1194 	 * If this is 0, there is only one r1_bio and no locking
1195 	 * will be needed when requests complete.  If it is
1196 	 * non-zero, then it is the number of not-completed requests.
1197 	 */
1198 	bio->bi_phys_segments = 0;
1199 	bio_clear_flag(bio, BIO_SEG_VALID);
1200 
1201 	/*
1202 	 * make_request() can abort the operation when read-ahead is being
1203 	 * used and no empty request is available.
1204 	 */
1205 read_again:
1206 	rdisk = read_balance(conf, r1_bio, &max_sectors);
1207 
1208 	if (rdisk < 0) {
1209 		/* couldn't find anywhere to read from */
1210 		raid_end_bio_io(r1_bio);
1211 		return;
1212 	}
1213 	mirror = conf->mirrors + rdisk;
1214 
1215 	if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1216 	    bitmap) {
1217 		/*
1218 		 * Reading from a write-mostly device must take care not to
1219 		 * over-take any writes that are 'behind'
1220 		 */
1221 		raid1_log(mddev, "wait behind writes");
1222 		wait_event(bitmap->behind_wait,
1223 			   atomic_read(&bitmap->behind_writes) == 0);
1224 	}
1225 	r1_bio->read_disk = rdisk;
1226 
1227 	read_bio = bio_clone_fast(bio, GFP_NOIO, mddev->bio_set);
1228 	bio_trim(read_bio, r1_bio->sector - bio->bi_iter.bi_sector,
1229 		 max_sectors);
1230 
1231 	r1_bio->bios[rdisk] = read_bio;
1232 
1233 	read_bio->bi_iter.bi_sector = r1_bio->sector +
1234 		mirror->rdev->data_offset;
1235 	read_bio->bi_bdev = mirror->rdev->bdev;
1236 	read_bio->bi_end_io = raid1_end_read_request;
1237 	bio_set_op_attrs(read_bio, op, do_sync);
1238 	if (test_bit(FailFast, &mirror->rdev->flags) &&
1239 	    test_bit(R1BIO_FailFast, &r1_bio->state))
1240 	        read_bio->bi_opf |= MD_FAILFAST;
1241 	read_bio->bi_private = r1_bio;
1242 
1243 	if (mddev->gendisk)
1244 	        trace_block_bio_remap(bdev_get_queue(read_bio->bi_bdev),
1245 	                              read_bio, disk_devt(mddev->gendisk),
1246 	                              r1_bio->sector);
1247 
1248 	if (max_sectors < r1_bio->sectors) {
1249 		/*
1250 		 * could not read all from this device, so we will need another
1251 		 * r1_bio.
1252 		 */
1253 		sectors_handled = (r1_bio->sector + max_sectors
1254 				   - bio->bi_iter.bi_sector);
1255 		r1_bio->sectors = max_sectors;
1256 		spin_lock_irq(&conf->device_lock);
1257 		if (bio->bi_phys_segments == 0)
1258 			bio->bi_phys_segments = 2;
1259 		else
1260 			bio->bi_phys_segments++;
1261 		spin_unlock_irq(&conf->device_lock);
1262 
1263 		/*
1264 		 * Cannot call generic_make_request directly as that will be
1265 		 * queued in __make_request and subsequent mempool_alloc might
1266 		 * block waiting for it.  So hand bio over to raid1d.
1267 		 */
1268 		reschedule_retry(r1_bio);
1269 
1270 		r1_bio = alloc_r1bio(mddev, bio, sectors_handled);
1271 		goto read_again;
1272 	} else
1273 		generic_make_request(read_bio);
1274 }
1275 
1276 static void raid1_write_request(struct mddev *mddev, struct bio *bio)
1277 {
1278 	struct r1conf *conf = mddev->private;
1279 	struct r1bio *r1_bio;
1280 	int i, disks;
1281 	struct bitmap *bitmap = mddev->bitmap;
1282 	unsigned long flags;
1283 	const int op = bio_op(bio);
1284 	const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1285 	const unsigned long do_fua = (bio->bi_opf & REQ_FUA);
1286 	struct md_rdev *blocked_rdev;
1287 	struct blk_plug_cb *cb;
1288 	struct raid1_plug_cb *plug = NULL;
1289 	int first_clone;
1290 	int sectors_handled;
1291 	int max_sectors;
1292 
1293 	/*
1294 	 * Register the new request and wait if the reconstruction
1295 	 * thread has put up a bar for new requests.
1296 	 * Continue immediately if no resync is active currently.
1297 	 */
1298 
1299 	md_write_start(mddev, bio); /* wait on superblock update early */
1300 
1301 	if ((bio_end_sector(bio) > mddev->suspend_lo &&
1302 	    bio->bi_iter.bi_sector < mddev->suspend_hi) ||
1303 	    (mddev_is_clustered(mddev) &&
1304 	     md_cluster_ops->area_resyncing(mddev, WRITE,
1305 		     bio->bi_iter.bi_sector, bio_end_sector(bio)))) {
1306 
1307 		/*
1308 		 * As the suspend_* range is controlled by userspace, we want
1309 		 * an interruptible wait.
1310 		 */
1311 		DEFINE_WAIT(w);
1312 		for (;;) {
1313 			flush_signals(current);
1314 			prepare_to_wait(&conf->wait_barrier,
1315 					&w, TASK_INTERRUPTIBLE);
1316 			if (bio_end_sector(bio) <= mddev->suspend_lo ||
1317 			    bio->bi_iter.bi_sector >= mddev->suspend_hi ||
1318 			    (mddev_is_clustered(mddev) &&
1319 			     !md_cluster_ops->area_resyncing(mddev, WRITE,
1320 				     bio->bi_iter.bi_sector,
1321 				     bio_end_sector(bio))))
1322 				break;
1323 			schedule();
1324 		}
1325 		finish_wait(&conf->wait_barrier, &w);
1326 	}
1327 	wait_barrier(conf, bio->bi_iter.bi_sector);
1328 
1329 	r1_bio = alloc_r1bio(mddev, bio, 0);
1330 
1331 	/* We might need to issue multiple writes to different
1332 	 * devices if there are bad blocks around, so we keep
1333 	 * track of the number of writes in bio->bi_phys_segments.
1334 	 * If this is 0, there is only one r1_bio and no locking
1335 	 * will be needed when requests complete.  If it is
1336 	 * non-zero, then it is the number of not-completed requests.
1337 	 */
1338 	bio->bi_phys_segments = 0;
1339 	bio_clear_flag(bio, BIO_SEG_VALID);
1340 
1341 	if (conf->pending_count >= max_queued_requests) {
1342 		md_wakeup_thread(mddev->thread);
1343 		raid1_log(mddev, "wait queued");
1344 		wait_event(conf->wait_barrier,
1345 			   conf->pending_count < max_queued_requests);
1346 	}
1347 	/* first select target devices under rcu_lock and
1348 	 * inc refcount on their rdev.  Record them by setting
1349 	 * bios[x] to bio
1350 	 * If there are known/acknowledged bad blocks on any device on
1351 	 * which we have seen a write error, we want to avoid writing those
1352 	 * blocks.
1353 	 * This potentially requires several writes to write around
1354 	 * the bad blocks.  Each set of writes gets it's own r1bio
1355 	 * with a set of bios attached.
1356 	 */
1357 
1358 	disks = conf->raid_disks * 2;
1359  retry_write:
1360 	blocked_rdev = NULL;
1361 	rcu_read_lock();
1362 	max_sectors = r1_bio->sectors;
1363 	for (i = 0;  i < disks; i++) {
1364 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1365 		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1366 			atomic_inc(&rdev->nr_pending);
1367 			blocked_rdev = rdev;
1368 			break;
1369 		}
1370 		r1_bio->bios[i] = NULL;
1371 		if (!rdev || test_bit(Faulty, &rdev->flags)) {
1372 			if (i < conf->raid_disks)
1373 				set_bit(R1BIO_Degraded, &r1_bio->state);
1374 			continue;
1375 		}
1376 
1377 		atomic_inc(&rdev->nr_pending);
1378 		if (test_bit(WriteErrorSeen, &rdev->flags)) {
1379 			sector_t first_bad;
1380 			int bad_sectors;
1381 			int is_bad;
1382 
1383 			is_bad = is_badblock(rdev, r1_bio->sector, max_sectors,
1384 					     &first_bad, &bad_sectors);
1385 			if (is_bad < 0) {
1386 				/* mustn't write here until the bad block is
1387 				 * acknowledged*/
1388 				set_bit(BlockedBadBlocks, &rdev->flags);
1389 				blocked_rdev = rdev;
1390 				break;
1391 			}
1392 			if (is_bad && first_bad <= r1_bio->sector) {
1393 				/* Cannot write here at all */
1394 				bad_sectors -= (r1_bio->sector - first_bad);
1395 				if (bad_sectors < max_sectors)
1396 					/* mustn't write more than bad_sectors
1397 					 * to other devices yet
1398 					 */
1399 					max_sectors = bad_sectors;
1400 				rdev_dec_pending(rdev, mddev);
1401 				/* We don't set R1BIO_Degraded as that
1402 				 * only applies if the disk is
1403 				 * missing, so it might be re-added,
1404 				 * and we want to know to recover this
1405 				 * chunk.
1406 				 * In this case the device is here,
1407 				 * and the fact that this chunk is not
1408 				 * in-sync is recorded in the bad
1409 				 * block log
1410 				 */
1411 				continue;
1412 			}
1413 			if (is_bad) {
1414 				int good_sectors = first_bad - r1_bio->sector;
1415 				if (good_sectors < max_sectors)
1416 					max_sectors = good_sectors;
1417 			}
1418 		}
1419 		r1_bio->bios[i] = bio;
1420 	}
1421 	rcu_read_unlock();
1422 
1423 	if (unlikely(blocked_rdev)) {
1424 		/* Wait for this device to become unblocked */
1425 		int j;
1426 
1427 		for (j = 0; j < i; j++)
1428 			if (r1_bio->bios[j])
1429 				rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1430 		r1_bio->state = 0;
1431 		allow_barrier(conf, bio->bi_iter.bi_sector);
1432 		raid1_log(mddev, "wait rdev %d blocked", blocked_rdev->raid_disk);
1433 		md_wait_for_blocked_rdev(blocked_rdev, mddev);
1434 		wait_barrier(conf, bio->bi_iter.bi_sector);
1435 		goto retry_write;
1436 	}
1437 
1438 	if (max_sectors < r1_bio->sectors) {
1439 		/* We are splitting this write into multiple parts, so
1440 		 * we need to prepare for allocating another r1_bio.
1441 		 */
1442 		r1_bio->sectors = max_sectors;
1443 		spin_lock_irq(&conf->device_lock);
1444 		if (bio->bi_phys_segments == 0)
1445 			bio->bi_phys_segments = 2;
1446 		else
1447 			bio->bi_phys_segments++;
1448 		spin_unlock_irq(&conf->device_lock);
1449 	}
1450 	sectors_handled = r1_bio->sector + max_sectors - bio->bi_iter.bi_sector;
1451 
1452 	atomic_set(&r1_bio->remaining, 1);
1453 	atomic_set(&r1_bio->behind_remaining, 0);
1454 
1455 	first_clone = 1;
1456 	for (i = 0; i < disks; i++) {
1457 		struct bio *mbio = NULL;
1458 		sector_t offset;
1459 		if (!r1_bio->bios[i])
1460 			continue;
1461 
1462 		offset = r1_bio->sector - bio->bi_iter.bi_sector;
1463 
1464 		if (first_clone) {
1465 			/* do behind I/O ?
1466 			 * Not if there are too many, or cannot
1467 			 * allocate memory, or a reader on WriteMostly
1468 			 * is waiting for behind writes to flush */
1469 			if (bitmap &&
1470 			    (atomic_read(&bitmap->behind_writes)
1471 			     < mddev->bitmap_info.max_write_behind) &&
1472 			    !waitqueue_active(&bitmap->behind_wait)) {
1473 				mbio = bio_clone_bioset_partial(bio, GFP_NOIO,
1474 								mddev->bio_set,
1475 								offset,
1476 								max_sectors);
1477 				alloc_behind_pages(mbio, r1_bio);
1478 			}
1479 
1480 			bitmap_startwrite(bitmap, r1_bio->sector,
1481 					  r1_bio->sectors,
1482 					  test_bit(R1BIO_BehindIO,
1483 						   &r1_bio->state));
1484 			first_clone = 0;
1485 		}
1486 
1487 		if (!mbio) {
1488 			mbio = bio_clone_fast(bio, GFP_NOIO, mddev->bio_set);
1489 			bio_trim(mbio, offset, max_sectors);
1490 		}
1491 
1492 		if (r1_bio->behind_bvecs) {
1493 			struct bio_vec *bvec;
1494 			int j;
1495 
1496 			/*
1497 			 * We trimmed the bio, so _all is legit
1498 			 */
1499 			bio_for_each_segment_all(bvec, mbio, j)
1500 				bvec->bv_page = r1_bio->behind_bvecs[j].bv_page;
1501 			if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1502 				atomic_inc(&r1_bio->behind_remaining);
1503 		}
1504 
1505 		r1_bio->bios[i] = mbio;
1506 
1507 		mbio->bi_iter.bi_sector	= (r1_bio->sector +
1508 				   conf->mirrors[i].rdev->data_offset);
1509 		mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1510 		mbio->bi_end_io	= raid1_end_write_request;
1511 		bio_set_op_attrs(mbio, op, do_fua | do_sync);
1512 		if (test_bit(FailFast, &conf->mirrors[i].rdev->flags) &&
1513 		    !test_bit(WriteMostly, &conf->mirrors[i].rdev->flags) &&
1514 		    conf->raid_disks - mddev->degraded > 1)
1515 			mbio->bi_opf |= MD_FAILFAST;
1516 		mbio->bi_private = r1_bio;
1517 
1518 		atomic_inc(&r1_bio->remaining);
1519 
1520 		if (mddev->gendisk)
1521 			trace_block_bio_remap(bdev_get_queue(mbio->bi_bdev),
1522 					      mbio, disk_devt(mddev->gendisk),
1523 					      r1_bio->sector);
1524 		/* flush_pending_writes() needs access to the rdev so...*/
1525 		mbio->bi_bdev = (void*)conf->mirrors[i].rdev;
1526 
1527 		cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1528 		if (cb)
1529 			plug = container_of(cb, struct raid1_plug_cb, cb);
1530 		else
1531 			plug = NULL;
1532 		spin_lock_irqsave(&conf->device_lock, flags);
1533 		if (plug) {
1534 			bio_list_add(&plug->pending, mbio);
1535 			plug->pending_cnt++;
1536 		} else {
1537 			bio_list_add(&conf->pending_bio_list, mbio);
1538 			conf->pending_count++;
1539 		}
1540 		spin_unlock_irqrestore(&conf->device_lock, flags);
1541 		if (!plug)
1542 			md_wakeup_thread(mddev->thread);
1543 	}
1544 	/* Mustn't call r1_bio_write_done before this next test,
1545 	 * as it could result in the bio being freed.
1546 	 */
1547 	if (sectors_handled < bio_sectors(bio)) {
1548 		r1_bio_write_done(r1_bio);
1549 		/* We need another r1_bio.  It has already been counted
1550 		 * in bio->bi_phys_segments
1551 		 */
1552 		r1_bio = alloc_r1bio(mddev, bio, sectors_handled);
1553 		goto retry_write;
1554 	}
1555 
1556 	r1_bio_write_done(r1_bio);
1557 
1558 	/* In case raid1d snuck in to freeze_array */
1559 	wake_up(&conf->wait_barrier);
1560 }
1561 
1562 static void raid1_make_request(struct mddev *mddev, struct bio *bio)
1563 {
1564 	struct bio *split;
1565 	sector_t sectors;
1566 
1567 	if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1568 		md_flush_request(mddev, bio);
1569 		return;
1570 	}
1571 
1572 	/* if bio exceeds barrier unit boundary, split it */
1573 	do {
1574 		sectors = align_to_barrier_unit_end(
1575 				bio->bi_iter.bi_sector, bio_sectors(bio));
1576 		if (sectors < bio_sectors(bio)) {
1577 			split = bio_split(bio, sectors, GFP_NOIO, fs_bio_set);
1578 			bio_chain(split, bio);
1579 		} else {
1580 			split = bio;
1581 		}
1582 
1583 		if (bio_data_dir(split) == READ)
1584 			raid1_read_request(mddev, split);
1585 		else
1586 			raid1_write_request(mddev, split);
1587 	} while (split != bio);
1588 }
1589 
1590 static void raid1_status(struct seq_file *seq, struct mddev *mddev)
1591 {
1592 	struct r1conf *conf = mddev->private;
1593 	int i;
1594 
1595 	seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1596 		   conf->raid_disks - mddev->degraded);
1597 	rcu_read_lock();
1598 	for (i = 0; i < conf->raid_disks; i++) {
1599 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1600 		seq_printf(seq, "%s",
1601 			   rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1602 	}
1603 	rcu_read_unlock();
1604 	seq_printf(seq, "]");
1605 }
1606 
1607 static void raid1_error(struct mddev *mddev, struct md_rdev *rdev)
1608 {
1609 	char b[BDEVNAME_SIZE];
1610 	struct r1conf *conf = mddev->private;
1611 	unsigned long flags;
1612 
1613 	/*
1614 	 * If it is not operational, then we have already marked it as dead
1615 	 * else if it is the last working disks, ignore the error, let the
1616 	 * next level up know.
1617 	 * else mark the drive as failed
1618 	 */
1619 	spin_lock_irqsave(&conf->device_lock, flags);
1620 	if (test_bit(In_sync, &rdev->flags)
1621 	    && (conf->raid_disks - mddev->degraded) == 1) {
1622 		/*
1623 		 * Don't fail the drive, act as though we were just a
1624 		 * normal single drive.
1625 		 * However don't try a recovery from this drive as
1626 		 * it is very likely to fail.
1627 		 */
1628 		conf->recovery_disabled = mddev->recovery_disabled;
1629 		spin_unlock_irqrestore(&conf->device_lock, flags);
1630 		return;
1631 	}
1632 	set_bit(Blocked, &rdev->flags);
1633 	if (test_and_clear_bit(In_sync, &rdev->flags)) {
1634 		mddev->degraded++;
1635 		set_bit(Faulty, &rdev->flags);
1636 	} else
1637 		set_bit(Faulty, &rdev->flags);
1638 	spin_unlock_irqrestore(&conf->device_lock, flags);
1639 	/*
1640 	 * if recovery is running, make sure it aborts.
1641 	 */
1642 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1643 	set_mask_bits(&mddev->sb_flags, 0,
1644 		      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1645 	pr_crit("md/raid1:%s: Disk failure on %s, disabling device.\n"
1646 		"md/raid1:%s: Operation continuing on %d devices.\n",
1647 		mdname(mddev), bdevname(rdev->bdev, b),
1648 		mdname(mddev), conf->raid_disks - mddev->degraded);
1649 }
1650 
1651 static void print_conf(struct r1conf *conf)
1652 {
1653 	int i;
1654 
1655 	pr_debug("RAID1 conf printout:\n");
1656 	if (!conf) {
1657 		pr_debug("(!conf)\n");
1658 		return;
1659 	}
1660 	pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1661 		 conf->raid_disks);
1662 
1663 	rcu_read_lock();
1664 	for (i = 0; i < conf->raid_disks; i++) {
1665 		char b[BDEVNAME_SIZE];
1666 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1667 		if (rdev)
1668 			pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
1669 				 i, !test_bit(In_sync, &rdev->flags),
1670 				 !test_bit(Faulty, &rdev->flags),
1671 				 bdevname(rdev->bdev,b));
1672 	}
1673 	rcu_read_unlock();
1674 }
1675 
1676 static void close_sync(struct r1conf *conf)
1677 {
1678 	wait_all_barriers(conf);
1679 	allow_all_barriers(conf);
1680 
1681 	mempool_destroy(conf->r1buf_pool);
1682 	conf->r1buf_pool = NULL;
1683 }
1684 
1685 static int raid1_spare_active(struct mddev *mddev)
1686 {
1687 	int i;
1688 	struct r1conf *conf = mddev->private;
1689 	int count = 0;
1690 	unsigned long flags;
1691 
1692 	/*
1693 	 * Find all failed disks within the RAID1 configuration
1694 	 * and mark them readable.
1695 	 * Called under mddev lock, so rcu protection not needed.
1696 	 * device_lock used to avoid races with raid1_end_read_request
1697 	 * which expects 'In_sync' flags and ->degraded to be consistent.
1698 	 */
1699 	spin_lock_irqsave(&conf->device_lock, flags);
1700 	for (i = 0; i < conf->raid_disks; i++) {
1701 		struct md_rdev *rdev = conf->mirrors[i].rdev;
1702 		struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1703 		if (repl
1704 		    && !test_bit(Candidate, &repl->flags)
1705 		    && repl->recovery_offset == MaxSector
1706 		    && !test_bit(Faulty, &repl->flags)
1707 		    && !test_and_set_bit(In_sync, &repl->flags)) {
1708 			/* replacement has just become active */
1709 			if (!rdev ||
1710 			    !test_and_clear_bit(In_sync, &rdev->flags))
1711 				count++;
1712 			if (rdev) {
1713 				/* Replaced device not technically
1714 				 * faulty, but we need to be sure
1715 				 * it gets removed and never re-added
1716 				 */
1717 				set_bit(Faulty, &rdev->flags);
1718 				sysfs_notify_dirent_safe(
1719 					rdev->sysfs_state);
1720 			}
1721 		}
1722 		if (rdev
1723 		    && rdev->recovery_offset == MaxSector
1724 		    && !test_bit(Faulty, &rdev->flags)
1725 		    && !test_and_set_bit(In_sync, &rdev->flags)) {
1726 			count++;
1727 			sysfs_notify_dirent_safe(rdev->sysfs_state);
1728 		}
1729 	}
1730 	mddev->degraded -= count;
1731 	spin_unlock_irqrestore(&conf->device_lock, flags);
1732 
1733 	print_conf(conf);
1734 	return count;
1735 }
1736 
1737 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1738 {
1739 	struct r1conf *conf = mddev->private;
1740 	int err = -EEXIST;
1741 	int mirror = 0;
1742 	struct raid1_info *p;
1743 	int first = 0;
1744 	int last = conf->raid_disks - 1;
1745 
1746 	if (mddev->recovery_disabled == conf->recovery_disabled)
1747 		return -EBUSY;
1748 
1749 	if (md_integrity_add_rdev(rdev, mddev))
1750 		return -ENXIO;
1751 
1752 	if (rdev->raid_disk >= 0)
1753 		first = last = rdev->raid_disk;
1754 
1755 	/*
1756 	 * find the disk ... but prefer rdev->saved_raid_disk
1757 	 * if possible.
1758 	 */
1759 	if (rdev->saved_raid_disk >= 0 &&
1760 	    rdev->saved_raid_disk >= first &&
1761 	    conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1762 		first = last = rdev->saved_raid_disk;
1763 
1764 	for (mirror = first; mirror <= last; mirror++) {
1765 		p = conf->mirrors+mirror;
1766 		if (!p->rdev) {
1767 
1768 			if (mddev->gendisk)
1769 				disk_stack_limits(mddev->gendisk, rdev->bdev,
1770 						  rdev->data_offset << 9);
1771 
1772 			p->head_position = 0;
1773 			rdev->raid_disk = mirror;
1774 			err = 0;
1775 			/* As all devices are equivalent, we don't need a full recovery
1776 			 * if this was recently any drive of the array
1777 			 */
1778 			if (rdev->saved_raid_disk < 0)
1779 				conf->fullsync = 1;
1780 			rcu_assign_pointer(p->rdev, rdev);
1781 			break;
1782 		}
1783 		if (test_bit(WantReplacement, &p->rdev->flags) &&
1784 		    p[conf->raid_disks].rdev == NULL) {
1785 			/* Add this device as a replacement */
1786 			clear_bit(In_sync, &rdev->flags);
1787 			set_bit(Replacement, &rdev->flags);
1788 			rdev->raid_disk = mirror;
1789 			err = 0;
1790 			conf->fullsync = 1;
1791 			rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1792 			break;
1793 		}
1794 	}
1795 	if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1796 		queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1797 	print_conf(conf);
1798 	return err;
1799 }
1800 
1801 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1802 {
1803 	struct r1conf *conf = mddev->private;
1804 	int err = 0;
1805 	int number = rdev->raid_disk;
1806 	struct raid1_info *p = conf->mirrors + number;
1807 
1808 	if (rdev != p->rdev)
1809 		p = conf->mirrors + conf->raid_disks + number;
1810 
1811 	print_conf(conf);
1812 	if (rdev == p->rdev) {
1813 		if (test_bit(In_sync, &rdev->flags) ||
1814 		    atomic_read(&rdev->nr_pending)) {
1815 			err = -EBUSY;
1816 			goto abort;
1817 		}
1818 		/* Only remove non-faulty devices if recovery
1819 		 * is not possible.
1820 		 */
1821 		if (!test_bit(Faulty, &rdev->flags) &&
1822 		    mddev->recovery_disabled != conf->recovery_disabled &&
1823 		    mddev->degraded < conf->raid_disks) {
1824 			err = -EBUSY;
1825 			goto abort;
1826 		}
1827 		p->rdev = NULL;
1828 		if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1829 			synchronize_rcu();
1830 			if (atomic_read(&rdev->nr_pending)) {
1831 				/* lost the race, try later */
1832 				err = -EBUSY;
1833 				p->rdev = rdev;
1834 				goto abort;
1835 			}
1836 		}
1837 		if (conf->mirrors[conf->raid_disks + number].rdev) {
1838 			/* We just removed a device that is being replaced.
1839 			 * Move down the replacement.  We drain all IO before
1840 			 * doing this to avoid confusion.
1841 			 */
1842 			struct md_rdev *repl =
1843 				conf->mirrors[conf->raid_disks + number].rdev;
1844 			freeze_array(conf, 0);
1845 			clear_bit(Replacement, &repl->flags);
1846 			p->rdev = repl;
1847 			conf->mirrors[conf->raid_disks + number].rdev = NULL;
1848 			unfreeze_array(conf);
1849 			clear_bit(WantReplacement, &rdev->flags);
1850 		} else
1851 			clear_bit(WantReplacement, &rdev->flags);
1852 		err = md_integrity_register(mddev);
1853 	}
1854 abort:
1855 
1856 	print_conf(conf);
1857 	return err;
1858 }
1859 
1860 static void end_sync_read(struct bio *bio)
1861 {
1862 	struct r1bio *r1_bio = bio->bi_private;
1863 
1864 	update_head_pos(r1_bio->read_disk, r1_bio);
1865 
1866 	/*
1867 	 * we have read a block, now it needs to be re-written,
1868 	 * or re-read if the read failed.
1869 	 * We don't do much here, just schedule handling by raid1d
1870 	 */
1871 	if (!bio->bi_error)
1872 		set_bit(R1BIO_Uptodate, &r1_bio->state);
1873 
1874 	if (atomic_dec_and_test(&r1_bio->remaining))
1875 		reschedule_retry(r1_bio);
1876 }
1877 
1878 static void end_sync_write(struct bio *bio)
1879 {
1880 	int uptodate = !bio->bi_error;
1881 	struct r1bio *r1_bio = bio->bi_private;
1882 	struct mddev *mddev = r1_bio->mddev;
1883 	struct r1conf *conf = mddev->private;
1884 	sector_t first_bad;
1885 	int bad_sectors;
1886 	struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev;
1887 
1888 	if (!uptodate) {
1889 		sector_t sync_blocks = 0;
1890 		sector_t s = r1_bio->sector;
1891 		long sectors_to_go = r1_bio->sectors;
1892 		/* make sure these bits doesn't get cleared. */
1893 		do {
1894 			bitmap_end_sync(mddev->bitmap, s,
1895 					&sync_blocks, 1);
1896 			s += sync_blocks;
1897 			sectors_to_go -= sync_blocks;
1898 		} while (sectors_to_go > 0);
1899 		set_bit(WriteErrorSeen, &rdev->flags);
1900 		if (!test_and_set_bit(WantReplacement, &rdev->flags))
1901 			set_bit(MD_RECOVERY_NEEDED, &
1902 				mddev->recovery);
1903 		set_bit(R1BIO_WriteError, &r1_bio->state);
1904 	} else if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
1905 			       &first_bad, &bad_sectors) &&
1906 		   !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1907 				r1_bio->sector,
1908 				r1_bio->sectors,
1909 				&first_bad, &bad_sectors)
1910 		)
1911 		set_bit(R1BIO_MadeGood, &r1_bio->state);
1912 
1913 	if (atomic_dec_and_test(&r1_bio->remaining)) {
1914 		int s = r1_bio->sectors;
1915 		if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1916 		    test_bit(R1BIO_WriteError, &r1_bio->state))
1917 			reschedule_retry(r1_bio);
1918 		else {
1919 			put_buf(r1_bio);
1920 			md_done_sync(mddev, s, uptodate);
1921 		}
1922 	}
1923 }
1924 
1925 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1926 			    int sectors, struct page *page, int rw)
1927 {
1928 	if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
1929 		/* success */
1930 		return 1;
1931 	if (rw == WRITE) {
1932 		set_bit(WriteErrorSeen, &rdev->flags);
1933 		if (!test_and_set_bit(WantReplacement,
1934 				      &rdev->flags))
1935 			set_bit(MD_RECOVERY_NEEDED, &
1936 				rdev->mddev->recovery);
1937 	}
1938 	/* need to record an error - either for the block or the device */
1939 	if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1940 		md_error(rdev->mddev, rdev);
1941 	return 0;
1942 }
1943 
1944 static int fix_sync_read_error(struct r1bio *r1_bio)
1945 {
1946 	/* Try some synchronous reads of other devices to get
1947 	 * good data, much like with normal read errors.  Only
1948 	 * read into the pages we already have so we don't
1949 	 * need to re-issue the read request.
1950 	 * We don't need to freeze the array, because being in an
1951 	 * active sync request, there is no normal IO, and
1952 	 * no overlapping syncs.
1953 	 * We don't need to check is_badblock() again as we
1954 	 * made sure that anything with a bad block in range
1955 	 * will have bi_end_io clear.
1956 	 */
1957 	struct mddev *mddev = r1_bio->mddev;
1958 	struct r1conf *conf = mddev->private;
1959 	struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1960 	sector_t sect = r1_bio->sector;
1961 	int sectors = r1_bio->sectors;
1962 	int idx = 0;
1963 	struct md_rdev *rdev;
1964 
1965 	rdev = conf->mirrors[r1_bio->read_disk].rdev;
1966 	if (test_bit(FailFast, &rdev->flags)) {
1967 		/* Don't try recovering from here - just fail it
1968 		 * ... unless it is the last working device of course */
1969 		md_error(mddev, rdev);
1970 		if (test_bit(Faulty, &rdev->flags))
1971 			/* Don't try to read from here, but make sure
1972 			 * put_buf does it's thing
1973 			 */
1974 			bio->bi_end_io = end_sync_write;
1975 	}
1976 
1977 	while(sectors) {
1978 		int s = sectors;
1979 		int d = r1_bio->read_disk;
1980 		int success = 0;
1981 		int start;
1982 
1983 		if (s > (PAGE_SIZE>>9))
1984 			s = PAGE_SIZE >> 9;
1985 		do {
1986 			if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1987 				/* No rcu protection needed here devices
1988 				 * can only be removed when no resync is
1989 				 * active, and resync is currently active
1990 				 */
1991 				rdev = conf->mirrors[d].rdev;
1992 				if (sync_page_io(rdev, sect, s<<9,
1993 						 bio->bi_io_vec[idx].bv_page,
1994 						 REQ_OP_READ, 0, false)) {
1995 					success = 1;
1996 					break;
1997 				}
1998 			}
1999 			d++;
2000 			if (d == conf->raid_disks * 2)
2001 				d = 0;
2002 		} while (!success && d != r1_bio->read_disk);
2003 
2004 		if (!success) {
2005 			char b[BDEVNAME_SIZE];
2006 			int abort = 0;
2007 			/* Cannot read from anywhere, this block is lost.
2008 			 * Record a bad block on each device.  If that doesn't
2009 			 * work just disable and interrupt the recovery.
2010 			 * Don't fail devices as that won't really help.
2011 			 */
2012 			pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
2013 					    mdname(mddev),
2014 					    bdevname(bio->bi_bdev, b),
2015 					    (unsigned long long)r1_bio->sector);
2016 			for (d = 0; d < conf->raid_disks * 2; d++) {
2017 				rdev = conf->mirrors[d].rdev;
2018 				if (!rdev || test_bit(Faulty, &rdev->flags))
2019 					continue;
2020 				if (!rdev_set_badblocks(rdev, sect, s, 0))
2021 					abort = 1;
2022 			}
2023 			if (abort) {
2024 				conf->recovery_disabled =
2025 					mddev->recovery_disabled;
2026 				set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2027 				md_done_sync(mddev, r1_bio->sectors, 0);
2028 				put_buf(r1_bio);
2029 				return 0;
2030 			}
2031 			/* Try next page */
2032 			sectors -= s;
2033 			sect += s;
2034 			idx++;
2035 			continue;
2036 		}
2037 
2038 		start = d;
2039 		/* write it back and re-read */
2040 		while (d != r1_bio->read_disk) {
2041 			if (d == 0)
2042 				d = conf->raid_disks * 2;
2043 			d--;
2044 			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2045 				continue;
2046 			rdev = conf->mirrors[d].rdev;
2047 			if (r1_sync_page_io(rdev, sect, s,
2048 					    bio->bi_io_vec[idx].bv_page,
2049 					    WRITE) == 0) {
2050 				r1_bio->bios[d]->bi_end_io = NULL;
2051 				rdev_dec_pending(rdev, mddev);
2052 			}
2053 		}
2054 		d = start;
2055 		while (d != r1_bio->read_disk) {
2056 			if (d == 0)
2057 				d = conf->raid_disks * 2;
2058 			d--;
2059 			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2060 				continue;
2061 			rdev = conf->mirrors[d].rdev;
2062 			if (r1_sync_page_io(rdev, sect, s,
2063 					    bio->bi_io_vec[idx].bv_page,
2064 					    READ) != 0)
2065 				atomic_add(s, &rdev->corrected_errors);
2066 		}
2067 		sectors -= s;
2068 		sect += s;
2069 		idx ++;
2070 	}
2071 	set_bit(R1BIO_Uptodate, &r1_bio->state);
2072 	bio->bi_error = 0;
2073 	return 1;
2074 }
2075 
2076 static void process_checks(struct r1bio *r1_bio)
2077 {
2078 	/* We have read all readable devices.  If we haven't
2079 	 * got the block, then there is no hope left.
2080 	 * If we have, then we want to do a comparison
2081 	 * and skip the write if everything is the same.
2082 	 * If any blocks failed to read, then we need to
2083 	 * attempt an over-write
2084 	 */
2085 	struct mddev *mddev = r1_bio->mddev;
2086 	struct r1conf *conf = mddev->private;
2087 	int primary;
2088 	int i;
2089 	int vcnt;
2090 
2091 	/* Fix variable parts of all bios */
2092 	vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
2093 	for (i = 0; i < conf->raid_disks * 2; i++) {
2094 		int j;
2095 		int size;
2096 		int error;
2097 		struct bio *b = r1_bio->bios[i];
2098 		if (b->bi_end_io != end_sync_read)
2099 			continue;
2100 		/* fixup the bio for reuse, but preserve errno */
2101 		error = b->bi_error;
2102 		bio_reset(b);
2103 		b->bi_error = error;
2104 		b->bi_vcnt = vcnt;
2105 		b->bi_iter.bi_size = r1_bio->sectors << 9;
2106 		b->bi_iter.bi_sector = r1_bio->sector +
2107 			conf->mirrors[i].rdev->data_offset;
2108 		b->bi_bdev = conf->mirrors[i].rdev->bdev;
2109 		b->bi_end_io = end_sync_read;
2110 		b->bi_private = r1_bio;
2111 
2112 		size = b->bi_iter.bi_size;
2113 		for (j = 0; j < vcnt ; j++) {
2114 			struct bio_vec *bi;
2115 			bi = &b->bi_io_vec[j];
2116 			bi->bv_offset = 0;
2117 			if (size > PAGE_SIZE)
2118 				bi->bv_len = PAGE_SIZE;
2119 			else
2120 				bi->bv_len = size;
2121 			size -= PAGE_SIZE;
2122 		}
2123 	}
2124 	for (primary = 0; primary < conf->raid_disks * 2; primary++)
2125 		if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
2126 		    !r1_bio->bios[primary]->bi_error) {
2127 			r1_bio->bios[primary]->bi_end_io = NULL;
2128 			rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
2129 			break;
2130 		}
2131 	r1_bio->read_disk = primary;
2132 	for (i = 0; i < conf->raid_disks * 2; i++) {
2133 		int j;
2134 		struct bio *pbio = r1_bio->bios[primary];
2135 		struct bio *sbio = r1_bio->bios[i];
2136 		int error = sbio->bi_error;
2137 
2138 		if (sbio->bi_end_io != end_sync_read)
2139 			continue;
2140 		/* Now we can 'fixup' the error value */
2141 		sbio->bi_error = 0;
2142 
2143 		if (!error) {
2144 			for (j = vcnt; j-- ; ) {
2145 				struct page *p, *s;
2146 				p = pbio->bi_io_vec[j].bv_page;
2147 				s = sbio->bi_io_vec[j].bv_page;
2148 				if (memcmp(page_address(p),
2149 					   page_address(s),
2150 					   sbio->bi_io_vec[j].bv_len))
2151 					break;
2152 			}
2153 		} else
2154 			j = 0;
2155 		if (j >= 0)
2156 			atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
2157 		if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
2158 			      && !error)) {
2159 			/* No need to write to this device. */
2160 			sbio->bi_end_io = NULL;
2161 			rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2162 			continue;
2163 		}
2164 
2165 		bio_copy_data(sbio, pbio);
2166 	}
2167 }
2168 
2169 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
2170 {
2171 	struct r1conf *conf = mddev->private;
2172 	int i;
2173 	int disks = conf->raid_disks * 2;
2174 	struct bio *bio, *wbio;
2175 
2176 	bio = r1_bio->bios[r1_bio->read_disk];
2177 
2178 	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2179 		/* ouch - failed to read all of that. */
2180 		if (!fix_sync_read_error(r1_bio))
2181 			return;
2182 
2183 	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2184 		process_checks(r1_bio);
2185 
2186 	/*
2187 	 * schedule writes
2188 	 */
2189 	atomic_set(&r1_bio->remaining, 1);
2190 	for (i = 0; i < disks ; i++) {
2191 		wbio = r1_bio->bios[i];
2192 		if (wbio->bi_end_io == NULL ||
2193 		    (wbio->bi_end_io == end_sync_read &&
2194 		     (i == r1_bio->read_disk ||
2195 		      !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2196 			continue;
2197 
2198 		bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2199 		if (test_bit(FailFast, &conf->mirrors[i].rdev->flags))
2200 			wbio->bi_opf |= MD_FAILFAST;
2201 
2202 		wbio->bi_end_io = end_sync_write;
2203 		atomic_inc(&r1_bio->remaining);
2204 		md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
2205 
2206 		generic_make_request(wbio);
2207 	}
2208 
2209 	if (atomic_dec_and_test(&r1_bio->remaining)) {
2210 		/* if we're here, all write(s) have completed, so clean up */
2211 		int s = r1_bio->sectors;
2212 		if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2213 		    test_bit(R1BIO_WriteError, &r1_bio->state))
2214 			reschedule_retry(r1_bio);
2215 		else {
2216 			put_buf(r1_bio);
2217 			md_done_sync(mddev, s, 1);
2218 		}
2219 	}
2220 }
2221 
2222 /*
2223  * This is a kernel thread which:
2224  *
2225  *	1.	Retries failed read operations on working mirrors.
2226  *	2.	Updates the raid superblock when problems encounter.
2227  *	3.	Performs writes following reads for array synchronising.
2228  */
2229 
2230 static void fix_read_error(struct r1conf *conf, int read_disk,
2231 			   sector_t sect, int sectors)
2232 {
2233 	struct mddev *mddev = conf->mddev;
2234 	while(sectors) {
2235 		int s = sectors;
2236 		int d = read_disk;
2237 		int success = 0;
2238 		int start;
2239 		struct md_rdev *rdev;
2240 
2241 		if (s > (PAGE_SIZE>>9))
2242 			s = PAGE_SIZE >> 9;
2243 
2244 		do {
2245 			sector_t first_bad;
2246 			int bad_sectors;
2247 
2248 			rcu_read_lock();
2249 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2250 			if (rdev &&
2251 			    (test_bit(In_sync, &rdev->flags) ||
2252 			     (!test_bit(Faulty, &rdev->flags) &&
2253 			      rdev->recovery_offset >= sect + s)) &&
2254 			    is_badblock(rdev, sect, s,
2255 					&first_bad, &bad_sectors) == 0) {
2256 				atomic_inc(&rdev->nr_pending);
2257 				rcu_read_unlock();
2258 				if (sync_page_io(rdev, sect, s<<9,
2259 					 conf->tmppage, REQ_OP_READ, 0, false))
2260 					success = 1;
2261 				rdev_dec_pending(rdev, mddev);
2262 				if (success)
2263 					break;
2264 			} else
2265 				rcu_read_unlock();
2266 			d++;
2267 			if (d == conf->raid_disks * 2)
2268 				d = 0;
2269 		} while (!success && d != read_disk);
2270 
2271 		if (!success) {
2272 			/* Cannot read from anywhere - mark it bad */
2273 			struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2274 			if (!rdev_set_badblocks(rdev, sect, s, 0))
2275 				md_error(mddev, rdev);
2276 			break;
2277 		}
2278 		/* write it back and re-read */
2279 		start = d;
2280 		while (d != read_disk) {
2281 			if (d==0)
2282 				d = conf->raid_disks * 2;
2283 			d--;
2284 			rcu_read_lock();
2285 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2286 			if (rdev &&
2287 			    !test_bit(Faulty, &rdev->flags)) {
2288 				atomic_inc(&rdev->nr_pending);
2289 				rcu_read_unlock();
2290 				r1_sync_page_io(rdev, sect, s,
2291 						conf->tmppage, WRITE);
2292 				rdev_dec_pending(rdev, mddev);
2293 			} else
2294 				rcu_read_unlock();
2295 		}
2296 		d = start;
2297 		while (d != read_disk) {
2298 			char b[BDEVNAME_SIZE];
2299 			if (d==0)
2300 				d = conf->raid_disks * 2;
2301 			d--;
2302 			rcu_read_lock();
2303 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2304 			if (rdev &&
2305 			    !test_bit(Faulty, &rdev->flags)) {
2306 				atomic_inc(&rdev->nr_pending);
2307 				rcu_read_unlock();
2308 				if (r1_sync_page_io(rdev, sect, s,
2309 						    conf->tmppage, READ)) {
2310 					atomic_add(s, &rdev->corrected_errors);
2311 					pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %s)\n",
2312 						mdname(mddev), s,
2313 						(unsigned long long)(sect +
2314 								     rdev->data_offset),
2315 						bdevname(rdev->bdev, b));
2316 				}
2317 				rdev_dec_pending(rdev, mddev);
2318 			} else
2319 				rcu_read_unlock();
2320 		}
2321 		sectors -= s;
2322 		sect += s;
2323 	}
2324 }
2325 
2326 static int narrow_write_error(struct r1bio *r1_bio, int i)
2327 {
2328 	struct mddev *mddev = r1_bio->mddev;
2329 	struct r1conf *conf = mddev->private;
2330 	struct md_rdev *rdev = conf->mirrors[i].rdev;
2331 
2332 	/* bio has the data to be written to device 'i' where
2333 	 * we just recently had a write error.
2334 	 * We repeatedly clone the bio and trim down to one block,
2335 	 * then try the write.  Where the write fails we record
2336 	 * a bad block.
2337 	 * It is conceivable that the bio doesn't exactly align with
2338 	 * blocks.  We must handle this somehow.
2339 	 *
2340 	 * We currently own a reference on the rdev.
2341 	 */
2342 
2343 	int block_sectors;
2344 	sector_t sector;
2345 	int sectors;
2346 	int sect_to_write = r1_bio->sectors;
2347 	int ok = 1;
2348 
2349 	if (rdev->badblocks.shift < 0)
2350 		return 0;
2351 
2352 	block_sectors = roundup(1 << rdev->badblocks.shift,
2353 				bdev_logical_block_size(rdev->bdev) >> 9);
2354 	sector = r1_bio->sector;
2355 	sectors = ((sector + block_sectors)
2356 		   & ~(sector_t)(block_sectors - 1))
2357 		- sector;
2358 
2359 	while (sect_to_write) {
2360 		struct bio *wbio;
2361 		if (sectors > sect_to_write)
2362 			sectors = sect_to_write;
2363 		/* Write at 'sector' for 'sectors'*/
2364 
2365 		if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2366 			unsigned vcnt = r1_bio->behind_page_count;
2367 			struct bio_vec *vec = r1_bio->behind_bvecs;
2368 
2369 			while (!vec->bv_page) {
2370 				vec++;
2371 				vcnt--;
2372 			}
2373 
2374 			wbio = bio_alloc_mddev(GFP_NOIO, vcnt, mddev);
2375 			memcpy(wbio->bi_io_vec, vec, vcnt * sizeof(struct bio_vec));
2376 
2377 			wbio->bi_vcnt = vcnt;
2378 		} else {
2379 			wbio = bio_clone_fast(r1_bio->master_bio, GFP_NOIO,
2380 					      mddev->bio_set);
2381 		}
2382 
2383 		bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2384 		wbio->bi_iter.bi_sector = r1_bio->sector;
2385 		wbio->bi_iter.bi_size = r1_bio->sectors << 9;
2386 
2387 		bio_trim(wbio, sector - r1_bio->sector, sectors);
2388 		wbio->bi_iter.bi_sector += rdev->data_offset;
2389 		wbio->bi_bdev = rdev->bdev;
2390 
2391 		if (submit_bio_wait(wbio) < 0)
2392 			/* failure! */
2393 			ok = rdev_set_badblocks(rdev, sector,
2394 						sectors, 0)
2395 				&& ok;
2396 
2397 		bio_put(wbio);
2398 		sect_to_write -= sectors;
2399 		sector += sectors;
2400 		sectors = block_sectors;
2401 	}
2402 	return ok;
2403 }
2404 
2405 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2406 {
2407 	int m;
2408 	int s = r1_bio->sectors;
2409 	for (m = 0; m < conf->raid_disks * 2 ; m++) {
2410 		struct md_rdev *rdev = conf->mirrors[m].rdev;
2411 		struct bio *bio = r1_bio->bios[m];
2412 		if (bio->bi_end_io == NULL)
2413 			continue;
2414 		if (!bio->bi_error &&
2415 		    test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2416 			rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2417 		}
2418 		if (bio->bi_error &&
2419 		    test_bit(R1BIO_WriteError, &r1_bio->state)) {
2420 			if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2421 				md_error(conf->mddev, rdev);
2422 		}
2423 	}
2424 	put_buf(r1_bio);
2425 	md_done_sync(conf->mddev, s, 1);
2426 }
2427 
2428 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2429 {
2430 	int m, idx;
2431 	bool fail = false;
2432 
2433 	for (m = 0; m < conf->raid_disks * 2 ; m++)
2434 		if (r1_bio->bios[m] == IO_MADE_GOOD) {
2435 			struct md_rdev *rdev = conf->mirrors[m].rdev;
2436 			rdev_clear_badblocks(rdev,
2437 					     r1_bio->sector,
2438 					     r1_bio->sectors, 0);
2439 			rdev_dec_pending(rdev, conf->mddev);
2440 		} else if (r1_bio->bios[m] != NULL) {
2441 			/* This drive got a write error.  We need to
2442 			 * narrow down and record precise write
2443 			 * errors.
2444 			 */
2445 			fail = true;
2446 			if (!narrow_write_error(r1_bio, m)) {
2447 				md_error(conf->mddev,
2448 					 conf->mirrors[m].rdev);
2449 				/* an I/O failed, we can't clear the bitmap */
2450 				set_bit(R1BIO_Degraded, &r1_bio->state);
2451 			}
2452 			rdev_dec_pending(conf->mirrors[m].rdev,
2453 					 conf->mddev);
2454 		}
2455 	if (fail) {
2456 		spin_lock_irq(&conf->device_lock);
2457 		list_add(&r1_bio->retry_list, &conf->bio_end_io_list);
2458 		idx = sector_to_idx(r1_bio->sector);
2459 		atomic_inc(&conf->nr_queued[idx]);
2460 		spin_unlock_irq(&conf->device_lock);
2461 		/*
2462 		 * In case freeze_array() is waiting for condition
2463 		 * get_unqueued_pending() == extra to be true.
2464 		 */
2465 		wake_up(&conf->wait_barrier);
2466 		md_wakeup_thread(conf->mddev->thread);
2467 	} else {
2468 		if (test_bit(R1BIO_WriteError, &r1_bio->state))
2469 			close_write(r1_bio);
2470 		raid_end_bio_io(r1_bio);
2471 	}
2472 }
2473 
2474 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2475 {
2476 	int disk;
2477 	int max_sectors;
2478 	struct mddev *mddev = conf->mddev;
2479 	struct bio *bio;
2480 	char b[BDEVNAME_SIZE];
2481 	struct md_rdev *rdev;
2482 	dev_t bio_dev;
2483 	sector_t bio_sector;
2484 
2485 	clear_bit(R1BIO_ReadError, &r1_bio->state);
2486 	/* we got a read error. Maybe the drive is bad.  Maybe just
2487 	 * the block and we can fix it.
2488 	 * We freeze all other IO, and try reading the block from
2489 	 * other devices.  When we find one, we re-write
2490 	 * and check it that fixes the read error.
2491 	 * This is all done synchronously while the array is
2492 	 * frozen
2493 	 */
2494 
2495 	bio = r1_bio->bios[r1_bio->read_disk];
2496 	bdevname(bio->bi_bdev, b);
2497 	bio_dev = bio->bi_bdev->bd_dev;
2498 	bio_sector = conf->mirrors[r1_bio->read_disk].rdev->data_offset + r1_bio->sector;
2499 	bio_put(bio);
2500 	r1_bio->bios[r1_bio->read_disk] = NULL;
2501 
2502 	rdev = conf->mirrors[r1_bio->read_disk].rdev;
2503 	if (mddev->ro == 0
2504 	    && !test_bit(FailFast, &rdev->flags)) {
2505 		freeze_array(conf, 1);
2506 		fix_read_error(conf, r1_bio->read_disk,
2507 			       r1_bio->sector, r1_bio->sectors);
2508 		unfreeze_array(conf);
2509 	} else {
2510 		r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED;
2511 	}
2512 
2513 	rdev_dec_pending(rdev, conf->mddev);
2514 
2515 read_more:
2516 	disk = read_balance(conf, r1_bio, &max_sectors);
2517 	if (disk == -1) {
2518 		pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
2519 				    mdname(mddev), b, (unsigned long long)r1_bio->sector);
2520 		raid_end_bio_io(r1_bio);
2521 	} else {
2522 		const unsigned long do_sync
2523 			= r1_bio->master_bio->bi_opf & REQ_SYNC;
2524 		r1_bio->read_disk = disk;
2525 		bio = bio_clone_fast(r1_bio->master_bio, GFP_NOIO,
2526 				     mddev->bio_set);
2527 		bio_trim(bio, r1_bio->sector - bio->bi_iter.bi_sector,
2528 			 max_sectors);
2529 		r1_bio->bios[r1_bio->read_disk] = bio;
2530 		rdev = conf->mirrors[disk].rdev;
2531 		pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %s\n",
2532 				    mdname(mddev),
2533 				    (unsigned long long)r1_bio->sector,
2534 				    bdevname(rdev->bdev, b));
2535 		bio->bi_iter.bi_sector = r1_bio->sector + rdev->data_offset;
2536 		bio->bi_bdev = rdev->bdev;
2537 		bio->bi_end_io = raid1_end_read_request;
2538 		bio_set_op_attrs(bio, REQ_OP_READ, do_sync);
2539 		if (test_bit(FailFast, &rdev->flags) &&
2540 		    test_bit(R1BIO_FailFast, &r1_bio->state))
2541 			bio->bi_opf |= MD_FAILFAST;
2542 		bio->bi_private = r1_bio;
2543 		if (max_sectors < r1_bio->sectors) {
2544 			/* Drat - have to split this up more */
2545 			struct bio *mbio = r1_bio->master_bio;
2546 			int sectors_handled = (r1_bio->sector + max_sectors
2547 					       - mbio->bi_iter.bi_sector);
2548 			r1_bio->sectors = max_sectors;
2549 			spin_lock_irq(&conf->device_lock);
2550 			if (mbio->bi_phys_segments == 0)
2551 				mbio->bi_phys_segments = 2;
2552 			else
2553 				mbio->bi_phys_segments++;
2554 			spin_unlock_irq(&conf->device_lock);
2555 			trace_block_bio_remap(bdev_get_queue(bio->bi_bdev),
2556 					      bio, bio_dev, bio_sector);
2557 			generic_make_request(bio);
2558 			bio = NULL;
2559 
2560 			r1_bio = alloc_r1bio(mddev, mbio, sectors_handled);
2561 			set_bit(R1BIO_ReadError, &r1_bio->state);
2562 
2563 			goto read_more;
2564 		} else {
2565 			trace_block_bio_remap(bdev_get_queue(bio->bi_bdev),
2566 					      bio, bio_dev, bio_sector);
2567 			generic_make_request(bio);
2568 		}
2569 	}
2570 }
2571 
2572 static void raid1d(struct md_thread *thread)
2573 {
2574 	struct mddev *mddev = thread->mddev;
2575 	struct r1bio *r1_bio;
2576 	unsigned long flags;
2577 	struct r1conf *conf = mddev->private;
2578 	struct list_head *head = &conf->retry_list;
2579 	struct blk_plug plug;
2580 	int idx;
2581 
2582 	md_check_recovery(mddev);
2583 
2584 	if (!list_empty_careful(&conf->bio_end_io_list) &&
2585 	    !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2586 		LIST_HEAD(tmp);
2587 		spin_lock_irqsave(&conf->device_lock, flags);
2588 		if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
2589 			list_splice_init(&conf->bio_end_io_list, &tmp);
2590 		spin_unlock_irqrestore(&conf->device_lock, flags);
2591 		while (!list_empty(&tmp)) {
2592 			r1_bio = list_first_entry(&tmp, struct r1bio,
2593 						  retry_list);
2594 			list_del(&r1_bio->retry_list);
2595 			idx = sector_to_idx(r1_bio->sector);
2596 			atomic_dec(&conf->nr_queued[idx]);
2597 			if (mddev->degraded)
2598 				set_bit(R1BIO_Degraded, &r1_bio->state);
2599 			if (test_bit(R1BIO_WriteError, &r1_bio->state))
2600 				close_write(r1_bio);
2601 			raid_end_bio_io(r1_bio);
2602 		}
2603 	}
2604 
2605 	blk_start_plug(&plug);
2606 	for (;;) {
2607 
2608 		flush_pending_writes(conf);
2609 
2610 		spin_lock_irqsave(&conf->device_lock, flags);
2611 		if (list_empty(head)) {
2612 			spin_unlock_irqrestore(&conf->device_lock, flags);
2613 			break;
2614 		}
2615 		r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2616 		list_del(head->prev);
2617 		idx = sector_to_idx(r1_bio->sector);
2618 		atomic_dec(&conf->nr_queued[idx]);
2619 		spin_unlock_irqrestore(&conf->device_lock, flags);
2620 
2621 		mddev = r1_bio->mddev;
2622 		conf = mddev->private;
2623 		if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2624 			if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2625 			    test_bit(R1BIO_WriteError, &r1_bio->state))
2626 				handle_sync_write_finished(conf, r1_bio);
2627 			else
2628 				sync_request_write(mddev, r1_bio);
2629 		} else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2630 			   test_bit(R1BIO_WriteError, &r1_bio->state))
2631 			handle_write_finished(conf, r1_bio);
2632 		else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2633 			handle_read_error(conf, r1_bio);
2634 		else
2635 			/* just a partial read to be scheduled from separate
2636 			 * context
2637 			 */
2638 			generic_make_request(r1_bio->bios[r1_bio->read_disk]);
2639 
2640 		cond_resched();
2641 		if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
2642 			md_check_recovery(mddev);
2643 	}
2644 	blk_finish_plug(&plug);
2645 }
2646 
2647 static int init_resync(struct r1conf *conf)
2648 {
2649 	int buffs;
2650 
2651 	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2652 	BUG_ON(conf->r1buf_pool);
2653 	conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2654 					  conf->poolinfo);
2655 	if (!conf->r1buf_pool)
2656 		return -ENOMEM;
2657 	return 0;
2658 }
2659 
2660 /*
2661  * perform a "sync" on one "block"
2662  *
2663  * We need to make sure that no normal I/O request - particularly write
2664  * requests - conflict with active sync requests.
2665  *
2666  * This is achieved by tracking pending requests and a 'barrier' concept
2667  * that can be installed to exclude normal IO requests.
2668  */
2669 
2670 static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr,
2671 				   int *skipped)
2672 {
2673 	struct r1conf *conf = mddev->private;
2674 	struct r1bio *r1_bio;
2675 	struct bio *bio;
2676 	sector_t max_sector, nr_sectors;
2677 	int disk = -1;
2678 	int i;
2679 	int wonly = -1;
2680 	int write_targets = 0, read_targets = 0;
2681 	sector_t sync_blocks;
2682 	int still_degraded = 0;
2683 	int good_sectors = RESYNC_SECTORS;
2684 	int min_bad = 0; /* number of sectors that are bad in all devices */
2685 	int idx = sector_to_idx(sector_nr);
2686 
2687 	if (!conf->r1buf_pool)
2688 		if (init_resync(conf))
2689 			return 0;
2690 
2691 	max_sector = mddev->dev_sectors;
2692 	if (sector_nr >= max_sector) {
2693 		/* If we aborted, we need to abort the
2694 		 * sync on the 'current' bitmap chunk (there will
2695 		 * only be one in raid1 resync.
2696 		 * We can find the current addess in mddev->curr_resync
2697 		 */
2698 		if (mddev->curr_resync < max_sector) /* aborted */
2699 			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2700 						&sync_blocks, 1);
2701 		else /* completed sync */
2702 			conf->fullsync = 0;
2703 
2704 		bitmap_close_sync(mddev->bitmap);
2705 		close_sync(conf);
2706 
2707 		if (mddev_is_clustered(mddev)) {
2708 			conf->cluster_sync_low = 0;
2709 			conf->cluster_sync_high = 0;
2710 		}
2711 		return 0;
2712 	}
2713 
2714 	if (mddev->bitmap == NULL &&
2715 	    mddev->recovery_cp == MaxSector &&
2716 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2717 	    conf->fullsync == 0) {
2718 		*skipped = 1;
2719 		return max_sector - sector_nr;
2720 	}
2721 	/* before building a request, check if we can skip these blocks..
2722 	 * This call the bitmap_start_sync doesn't actually record anything
2723 	 */
2724 	if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2725 	    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2726 		/* We can skip this block, and probably several more */
2727 		*skipped = 1;
2728 		return sync_blocks;
2729 	}
2730 
2731 	/*
2732 	 * If there is non-resync activity waiting for a turn, then let it
2733 	 * though before starting on this new sync request.
2734 	 */
2735 	if (atomic_read(&conf->nr_waiting[idx]))
2736 		schedule_timeout_uninterruptible(1);
2737 
2738 	/* we are incrementing sector_nr below. To be safe, we check against
2739 	 * sector_nr + two times RESYNC_SECTORS
2740 	 */
2741 
2742 	bitmap_cond_end_sync(mddev->bitmap, sector_nr,
2743 		mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
2744 	r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
2745 
2746 	raise_barrier(conf, sector_nr);
2747 
2748 	rcu_read_lock();
2749 	/*
2750 	 * If we get a correctably read error during resync or recovery,
2751 	 * we might want to read from a different device.  So we
2752 	 * flag all drives that could conceivably be read from for READ,
2753 	 * and any others (which will be non-In_sync devices) for WRITE.
2754 	 * If a read fails, we try reading from something else for which READ
2755 	 * is OK.
2756 	 */
2757 
2758 	r1_bio->mddev = mddev;
2759 	r1_bio->sector = sector_nr;
2760 	r1_bio->state = 0;
2761 	set_bit(R1BIO_IsSync, &r1_bio->state);
2762 	/* make sure good_sectors won't go across barrier unit boundary */
2763 	good_sectors = align_to_barrier_unit_end(sector_nr, good_sectors);
2764 
2765 	for (i = 0; i < conf->raid_disks * 2; i++) {
2766 		struct md_rdev *rdev;
2767 		bio = r1_bio->bios[i];
2768 		bio_reset(bio);
2769 
2770 		rdev = rcu_dereference(conf->mirrors[i].rdev);
2771 		if (rdev == NULL ||
2772 		    test_bit(Faulty, &rdev->flags)) {
2773 			if (i < conf->raid_disks)
2774 				still_degraded = 1;
2775 		} else if (!test_bit(In_sync, &rdev->flags)) {
2776 			bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2777 			bio->bi_end_io = end_sync_write;
2778 			write_targets ++;
2779 		} else {
2780 			/* may need to read from here */
2781 			sector_t first_bad = MaxSector;
2782 			int bad_sectors;
2783 
2784 			if (is_badblock(rdev, sector_nr, good_sectors,
2785 					&first_bad, &bad_sectors)) {
2786 				if (first_bad > sector_nr)
2787 					good_sectors = first_bad - sector_nr;
2788 				else {
2789 					bad_sectors -= (sector_nr - first_bad);
2790 					if (min_bad == 0 ||
2791 					    min_bad > bad_sectors)
2792 						min_bad = bad_sectors;
2793 				}
2794 			}
2795 			if (sector_nr < first_bad) {
2796 				if (test_bit(WriteMostly, &rdev->flags)) {
2797 					if (wonly < 0)
2798 						wonly = i;
2799 				} else {
2800 					if (disk < 0)
2801 						disk = i;
2802 				}
2803 				bio_set_op_attrs(bio, REQ_OP_READ, 0);
2804 				bio->bi_end_io = end_sync_read;
2805 				read_targets++;
2806 			} else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2807 				test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2808 				!test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2809 				/*
2810 				 * The device is suitable for reading (InSync),
2811 				 * but has bad block(s) here. Let's try to correct them,
2812 				 * if we are doing resync or repair. Otherwise, leave
2813 				 * this device alone for this sync request.
2814 				 */
2815 				bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2816 				bio->bi_end_io = end_sync_write;
2817 				write_targets++;
2818 			}
2819 		}
2820 		if (bio->bi_end_io) {
2821 			atomic_inc(&rdev->nr_pending);
2822 			bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
2823 			bio->bi_bdev = rdev->bdev;
2824 			bio->bi_private = r1_bio;
2825 			if (test_bit(FailFast, &rdev->flags))
2826 				bio->bi_opf |= MD_FAILFAST;
2827 		}
2828 	}
2829 	rcu_read_unlock();
2830 	if (disk < 0)
2831 		disk = wonly;
2832 	r1_bio->read_disk = disk;
2833 
2834 	if (read_targets == 0 && min_bad > 0) {
2835 		/* These sectors are bad on all InSync devices, so we
2836 		 * need to mark them bad on all write targets
2837 		 */
2838 		int ok = 1;
2839 		for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2840 			if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2841 				struct md_rdev *rdev = conf->mirrors[i].rdev;
2842 				ok = rdev_set_badblocks(rdev, sector_nr,
2843 							min_bad, 0
2844 					) && ok;
2845 			}
2846 		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2847 		*skipped = 1;
2848 		put_buf(r1_bio);
2849 
2850 		if (!ok) {
2851 			/* Cannot record the badblocks, so need to
2852 			 * abort the resync.
2853 			 * If there are multiple read targets, could just
2854 			 * fail the really bad ones ???
2855 			 */
2856 			conf->recovery_disabled = mddev->recovery_disabled;
2857 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2858 			return 0;
2859 		} else
2860 			return min_bad;
2861 
2862 	}
2863 	if (min_bad > 0 && min_bad < good_sectors) {
2864 		/* only resync enough to reach the next bad->good
2865 		 * transition */
2866 		good_sectors = min_bad;
2867 	}
2868 
2869 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2870 		/* extra read targets are also write targets */
2871 		write_targets += read_targets-1;
2872 
2873 	if (write_targets == 0 || read_targets == 0) {
2874 		/* There is nowhere to write, so all non-sync
2875 		 * drives must be failed - so we are finished
2876 		 */
2877 		sector_t rv;
2878 		if (min_bad > 0)
2879 			max_sector = sector_nr + min_bad;
2880 		rv = max_sector - sector_nr;
2881 		*skipped = 1;
2882 		put_buf(r1_bio);
2883 		return rv;
2884 	}
2885 
2886 	if (max_sector > mddev->resync_max)
2887 		max_sector = mddev->resync_max; /* Don't do IO beyond here */
2888 	if (max_sector > sector_nr + good_sectors)
2889 		max_sector = sector_nr + good_sectors;
2890 	nr_sectors = 0;
2891 	sync_blocks = 0;
2892 	do {
2893 		struct page *page;
2894 		int len = PAGE_SIZE;
2895 		if (sector_nr + (len>>9) > max_sector)
2896 			len = (max_sector - sector_nr) << 9;
2897 		if (len == 0)
2898 			break;
2899 		if (sync_blocks == 0) {
2900 			if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2901 					       &sync_blocks, still_degraded) &&
2902 			    !conf->fullsync &&
2903 			    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2904 				break;
2905 			if ((len >> 9) > sync_blocks)
2906 				len = sync_blocks<<9;
2907 		}
2908 
2909 		for (i = 0 ; i < conf->raid_disks * 2; i++) {
2910 			bio = r1_bio->bios[i];
2911 			if (bio->bi_end_io) {
2912 				page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
2913 				if (bio_add_page(bio, page, len, 0) == 0) {
2914 					/* stop here */
2915 					bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
2916 					while (i > 0) {
2917 						i--;
2918 						bio = r1_bio->bios[i];
2919 						if (bio->bi_end_io==NULL)
2920 							continue;
2921 						/* remove last page from this bio */
2922 						bio->bi_vcnt--;
2923 						bio->bi_iter.bi_size -= len;
2924 						bio_clear_flag(bio, BIO_SEG_VALID);
2925 					}
2926 					goto bio_full;
2927 				}
2928 			}
2929 		}
2930 		nr_sectors += len>>9;
2931 		sector_nr += len>>9;
2932 		sync_blocks -= (len>>9);
2933 	} while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
2934  bio_full:
2935 	r1_bio->sectors = nr_sectors;
2936 
2937 	if (mddev_is_clustered(mddev) &&
2938 			conf->cluster_sync_high < sector_nr + nr_sectors) {
2939 		conf->cluster_sync_low = mddev->curr_resync_completed;
2940 		conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS;
2941 		/* Send resync message */
2942 		md_cluster_ops->resync_info_update(mddev,
2943 				conf->cluster_sync_low,
2944 				conf->cluster_sync_high);
2945 	}
2946 
2947 	/* For a user-requested sync, we read all readable devices and do a
2948 	 * compare
2949 	 */
2950 	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2951 		atomic_set(&r1_bio->remaining, read_targets);
2952 		for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2953 			bio = r1_bio->bios[i];
2954 			if (bio->bi_end_io == end_sync_read) {
2955 				read_targets--;
2956 				md_sync_acct(bio->bi_bdev, nr_sectors);
2957 				if (read_targets == 1)
2958 					bio->bi_opf &= ~MD_FAILFAST;
2959 				generic_make_request(bio);
2960 			}
2961 		}
2962 	} else {
2963 		atomic_set(&r1_bio->remaining, 1);
2964 		bio = r1_bio->bios[r1_bio->read_disk];
2965 		md_sync_acct(bio->bi_bdev, nr_sectors);
2966 		if (read_targets == 1)
2967 			bio->bi_opf &= ~MD_FAILFAST;
2968 		generic_make_request(bio);
2969 
2970 	}
2971 	return nr_sectors;
2972 }
2973 
2974 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2975 {
2976 	if (sectors)
2977 		return sectors;
2978 
2979 	return mddev->dev_sectors;
2980 }
2981 
2982 static struct r1conf *setup_conf(struct mddev *mddev)
2983 {
2984 	struct r1conf *conf;
2985 	int i;
2986 	struct raid1_info *disk;
2987 	struct md_rdev *rdev;
2988 	int err = -ENOMEM;
2989 
2990 	conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2991 	if (!conf)
2992 		goto abort;
2993 
2994 	conf->nr_pending = kcalloc(BARRIER_BUCKETS_NR,
2995 				   sizeof(atomic_t), GFP_KERNEL);
2996 	if (!conf->nr_pending)
2997 		goto abort;
2998 
2999 	conf->nr_waiting = kcalloc(BARRIER_BUCKETS_NR,
3000 				   sizeof(atomic_t), GFP_KERNEL);
3001 	if (!conf->nr_waiting)
3002 		goto abort;
3003 
3004 	conf->nr_queued = kcalloc(BARRIER_BUCKETS_NR,
3005 				  sizeof(atomic_t), GFP_KERNEL);
3006 	if (!conf->nr_queued)
3007 		goto abort;
3008 
3009 	conf->barrier = kcalloc(BARRIER_BUCKETS_NR,
3010 				sizeof(atomic_t), GFP_KERNEL);
3011 	if (!conf->barrier)
3012 		goto abort;
3013 
3014 	conf->mirrors = kzalloc(sizeof(struct raid1_info)
3015 				* mddev->raid_disks * 2,
3016 				 GFP_KERNEL);
3017 	if (!conf->mirrors)
3018 		goto abort;
3019 
3020 	conf->tmppage = alloc_page(GFP_KERNEL);
3021 	if (!conf->tmppage)
3022 		goto abort;
3023 
3024 	conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
3025 	if (!conf->poolinfo)
3026 		goto abort;
3027 	conf->poolinfo->raid_disks = mddev->raid_disks * 2;
3028 	conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
3029 					  r1bio_pool_free,
3030 					  conf->poolinfo);
3031 	if (!conf->r1bio_pool)
3032 		goto abort;
3033 
3034 	conf->poolinfo->mddev = mddev;
3035 
3036 	err = -EINVAL;
3037 	spin_lock_init(&conf->device_lock);
3038 	rdev_for_each(rdev, mddev) {
3039 		struct request_queue *q;
3040 		int disk_idx = rdev->raid_disk;
3041 		if (disk_idx >= mddev->raid_disks
3042 		    || disk_idx < 0)
3043 			continue;
3044 		if (test_bit(Replacement, &rdev->flags))
3045 			disk = conf->mirrors + mddev->raid_disks + disk_idx;
3046 		else
3047 			disk = conf->mirrors + disk_idx;
3048 
3049 		if (disk->rdev)
3050 			goto abort;
3051 		disk->rdev = rdev;
3052 		q = bdev_get_queue(rdev->bdev);
3053 
3054 		disk->head_position = 0;
3055 		disk->seq_start = MaxSector;
3056 	}
3057 	conf->raid_disks = mddev->raid_disks;
3058 	conf->mddev = mddev;
3059 	INIT_LIST_HEAD(&conf->retry_list);
3060 	INIT_LIST_HEAD(&conf->bio_end_io_list);
3061 
3062 	spin_lock_init(&conf->resync_lock);
3063 	init_waitqueue_head(&conf->wait_barrier);
3064 
3065 	bio_list_init(&conf->pending_bio_list);
3066 	conf->pending_count = 0;
3067 	conf->recovery_disabled = mddev->recovery_disabled - 1;
3068 
3069 	err = -EIO;
3070 	for (i = 0; i < conf->raid_disks * 2; i++) {
3071 
3072 		disk = conf->mirrors + i;
3073 
3074 		if (i < conf->raid_disks &&
3075 		    disk[conf->raid_disks].rdev) {
3076 			/* This slot has a replacement. */
3077 			if (!disk->rdev) {
3078 				/* No original, just make the replacement
3079 				 * a recovering spare
3080 				 */
3081 				disk->rdev =
3082 					disk[conf->raid_disks].rdev;
3083 				disk[conf->raid_disks].rdev = NULL;
3084 			} else if (!test_bit(In_sync, &disk->rdev->flags))
3085 				/* Original is not in_sync - bad */
3086 				goto abort;
3087 		}
3088 
3089 		if (!disk->rdev ||
3090 		    !test_bit(In_sync, &disk->rdev->flags)) {
3091 			disk->head_position = 0;
3092 			if (disk->rdev &&
3093 			    (disk->rdev->saved_raid_disk < 0))
3094 				conf->fullsync = 1;
3095 		}
3096 	}
3097 
3098 	err = -ENOMEM;
3099 	conf->thread = md_register_thread(raid1d, mddev, "raid1");
3100 	if (!conf->thread)
3101 		goto abort;
3102 
3103 	return conf;
3104 
3105  abort:
3106 	if (conf) {
3107 		mempool_destroy(conf->r1bio_pool);
3108 		kfree(conf->mirrors);
3109 		safe_put_page(conf->tmppage);
3110 		kfree(conf->poolinfo);
3111 		kfree(conf->nr_pending);
3112 		kfree(conf->nr_waiting);
3113 		kfree(conf->nr_queued);
3114 		kfree(conf->barrier);
3115 		kfree(conf);
3116 	}
3117 	return ERR_PTR(err);
3118 }
3119 
3120 static void raid1_free(struct mddev *mddev, void *priv);
3121 static int raid1_run(struct mddev *mddev)
3122 {
3123 	struct r1conf *conf;
3124 	int i;
3125 	struct md_rdev *rdev;
3126 	int ret;
3127 	bool discard_supported = false;
3128 
3129 	if (mddev->level != 1) {
3130 		pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n",
3131 			mdname(mddev), mddev->level);
3132 		return -EIO;
3133 	}
3134 	if (mddev->reshape_position != MaxSector) {
3135 		pr_warn("md/raid1:%s: reshape_position set but not supported\n",
3136 			mdname(mddev));
3137 		return -EIO;
3138 	}
3139 	/*
3140 	 * copy the already verified devices into our private RAID1
3141 	 * bookkeeping area. [whatever we allocate in run(),
3142 	 * should be freed in raid1_free()]
3143 	 */
3144 	if (mddev->private == NULL)
3145 		conf = setup_conf(mddev);
3146 	else
3147 		conf = mddev->private;
3148 
3149 	if (IS_ERR(conf))
3150 		return PTR_ERR(conf);
3151 
3152 	if (mddev->queue)
3153 		blk_queue_max_write_same_sectors(mddev->queue, 0);
3154 
3155 	rdev_for_each(rdev, mddev) {
3156 		if (!mddev->gendisk)
3157 			continue;
3158 		disk_stack_limits(mddev->gendisk, rdev->bdev,
3159 				  rdev->data_offset << 9);
3160 		if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3161 			discard_supported = true;
3162 	}
3163 
3164 	mddev->degraded = 0;
3165 	for (i=0; i < conf->raid_disks; i++)
3166 		if (conf->mirrors[i].rdev == NULL ||
3167 		    !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
3168 		    test_bit(Faulty, &conf->mirrors[i].rdev->flags))
3169 			mddev->degraded++;
3170 
3171 	if (conf->raid_disks - mddev->degraded == 1)
3172 		mddev->recovery_cp = MaxSector;
3173 
3174 	if (mddev->recovery_cp != MaxSector)
3175 		pr_info("md/raid1:%s: not clean -- starting background reconstruction\n",
3176 			mdname(mddev));
3177 	pr_info("md/raid1:%s: active with %d out of %d mirrors\n",
3178 		mdname(mddev), mddev->raid_disks - mddev->degraded,
3179 		mddev->raid_disks);
3180 
3181 	/*
3182 	 * Ok, everything is just fine now
3183 	 */
3184 	mddev->thread = conf->thread;
3185 	conf->thread = NULL;
3186 	mddev->private = conf;
3187 	set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
3188 
3189 	md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
3190 
3191 	if (mddev->queue) {
3192 		if (discard_supported)
3193 			queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
3194 						mddev->queue);
3195 		else
3196 			queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
3197 						  mddev->queue);
3198 	}
3199 
3200 	ret =  md_integrity_register(mddev);
3201 	if (ret) {
3202 		md_unregister_thread(&mddev->thread);
3203 		raid1_free(mddev, conf);
3204 	}
3205 	return ret;
3206 }
3207 
3208 static void raid1_free(struct mddev *mddev, void *priv)
3209 {
3210 	struct r1conf *conf = priv;
3211 
3212 	mempool_destroy(conf->r1bio_pool);
3213 	kfree(conf->mirrors);
3214 	safe_put_page(conf->tmppage);
3215 	kfree(conf->poolinfo);
3216 	kfree(conf->nr_pending);
3217 	kfree(conf->nr_waiting);
3218 	kfree(conf->nr_queued);
3219 	kfree(conf->barrier);
3220 	kfree(conf);
3221 }
3222 
3223 static int raid1_resize(struct mddev *mddev, sector_t sectors)
3224 {
3225 	/* no resync is happening, and there is enough space
3226 	 * on all devices, so we can resize.
3227 	 * We need to make sure resync covers any new space.
3228 	 * If the array is shrinking we should possibly wait until
3229 	 * any io in the removed space completes, but it hardly seems
3230 	 * worth it.
3231 	 */
3232 	sector_t newsize = raid1_size(mddev, sectors, 0);
3233 	if (mddev->external_size &&
3234 	    mddev->array_sectors > newsize)
3235 		return -EINVAL;
3236 	if (mddev->bitmap) {
3237 		int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0);
3238 		if (ret)
3239 			return ret;
3240 	}
3241 	md_set_array_sectors(mddev, newsize);
3242 	set_capacity(mddev->gendisk, mddev->array_sectors);
3243 	revalidate_disk(mddev->gendisk);
3244 	if (sectors > mddev->dev_sectors &&
3245 	    mddev->recovery_cp > mddev->dev_sectors) {
3246 		mddev->recovery_cp = mddev->dev_sectors;
3247 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3248 	}
3249 	mddev->dev_sectors = sectors;
3250 	mddev->resync_max_sectors = sectors;
3251 	return 0;
3252 }
3253 
3254 static int raid1_reshape(struct mddev *mddev)
3255 {
3256 	/* We need to:
3257 	 * 1/ resize the r1bio_pool
3258 	 * 2/ resize conf->mirrors
3259 	 *
3260 	 * We allocate a new r1bio_pool if we can.
3261 	 * Then raise a device barrier and wait until all IO stops.
3262 	 * Then resize conf->mirrors and swap in the new r1bio pool.
3263 	 *
3264 	 * At the same time, we "pack" the devices so that all the missing
3265 	 * devices have the higher raid_disk numbers.
3266 	 */
3267 	mempool_t *newpool, *oldpool;
3268 	struct pool_info *newpoolinfo;
3269 	struct raid1_info *newmirrors;
3270 	struct r1conf *conf = mddev->private;
3271 	int cnt, raid_disks;
3272 	unsigned long flags;
3273 	int d, d2, err;
3274 
3275 	/* Cannot change chunk_size, layout, or level */
3276 	if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3277 	    mddev->layout != mddev->new_layout ||
3278 	    mddev->level != mddev->new_level) {
3279 		mddev->new_chunk_sectors = mddev->chunk_sectors;
3280 		mddev->new_layout = mddev->layout;
3281 		mddev->new_level = mddev->level;
3282 		return -EINVAL;
3283 	}
3284 
3285 	if (!mddev_is_clustered(mddev)) {
3286 		err = md_allow_write(mddev);
3287 		if (err)
3288 			return err;
3289 	}
3290 
3291 	raid_disks = mddev->raid_disks + mddev->delta_disks;
3292 
3293 	if (raid_disks < conf->raid_disks) {
3294 		cnt=0;
3295 		for (d= 0; d < conf->raid_disks; d++)
3296 			if (conf->mirrors[d].rdev)
3297 				cnt++;
3298 		if (cnt > raid_disks)
3299 			return -EBUSY;
3300 	}
3301 
3302 	newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3303 	if (!newpoolinfo)
3304 		return -ENOMEM;
3305 	newpoolinfo->mddev = mddev;
3306 	newpoolinfo->raid_disks = raid_disks * 2;
3307 
3308 	newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
3309 				 r1bio_pool_free, newpoolinfo);
3310 	if (!newpool) {
3311 		kfree(newpoolinfo);
3312 		return -ENOMEM;
3313 	}
3314 	newmirrors = kzalloc(sizeof(struct raid1_info) * raid_disks * 2,
3315 			     GFP_KERNEL);
3316 	if (!newmirrors) {
3317 		kfree(newpoolinfo);
3318 		mempool_destroy(newpool);
3319 		return -ENOMEM;
3320 	}
3321 
3322 	freeze_array(conf, 0);
3323 
3324 	/* ok, everything is stopped */
3325 	oldpool = conf->r1bio_pool;
3326 	conf->r1bio_pool = newpool;
3327 
3328 	for (d = d2 = 0; d < conf->raid_disks; d++) {
3329 		struct md_rdev *rdev = conf->mirrors[d].rdev;
3330 		if (rdev && rdev->raid_disk != d2) {
3331 			sysfs_unlink_rdev(mddev, rdev);
3332 			rdev->raid_disk = d2;
3333 			sysfs_unlink_rdev(mddev, rdev);
3334 			if (sysfs_link_rdev(mddev, rdev))
3335 				pr_warn("md/raid1:%s: cannot register rd%d\n",
3336 					mdname(mddev), rdev->raid_disk);
3337 		}
3338 		if (rdev)
3339 			newmirrors[d2++].rdev = rdev;
3340 	}
3341 	kfree(conf->mirrors);
3342 	conf->mirrors = newmirrors;
3343 	kfree(conf->poolinfo);
3344 	conf->poolinfo = newpoolinfo;
3345 
3346 	spin_lock_irqsave(&conf->device_lock, flags);
3347 	mddev->degraded += (raid_disks - conf->raid_disks);
3348 	spin_unlock_irqrestore(&conf->device_lock, flags);
3349 	conf->raid_disks = mddev->raid_disks = raid_disks;
3350 	mddev->delta_disks = 0;
3351 
3352 	unfreeze_array(conf);
3353 
3354 	set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3355 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3356 	md_wakeup_thread(mddev->thread);
3357 
3358 	mempool_destroy(oldpool);
3359 	return 0;
3360 }
3361 
3362 static void raid1_quiesce(struct mddev *mddev, int state)
3363 {
3364 	struct r1conf *conf = mddev->private;
3365 
3366 	switch(state) {
3367 	case 2: /* wake for suspend */
3368 		wake_up(&conf->wait_barrier);
3369 		break;
3370 	case 1:
3371 		freeze_array(conf, 0);
3372 		break;
3373 	case 0:
3374 		unfreeze_array(conf);
3375 		break;
3376 	}
3377 }
3378 
3379 static void *raid1_takeover(struct mddev *mddev)
3380 {
3381 	/* raid1 can take over:
3382 	 *  raid5 with 2 devices, any layout or chunk size
3383 	 */
3384 	if (mddev->level == 5 && mddev->raid_disks == 2) {
3385 		struct r1conf *conf;
3386 		mddev->new_level = 1;
3387 		mddev->new_layout = 0;
3388 		mddev->new_chunk_sectors = 0;
3389 		conf = setup_conf(mddev);
3390 		if (!IS_ERR(conf)) {
3391 			/* Array must appear to be quiesced */
3392 			conf->array_frozen = 1;
3393 			mddev_clear_unsupported_flags(mddev,
3394 				UNSUPPORTED_MDDEV_FLAGS);
3395 		}
3396 		return conf;
3397 	}
3398 	return ERR_PTR(-EINVAL);
3399 }
3400 
3401 static struct md_personality raid1_personality =
3402 {
3403 	.name		= "raid1",
3404 	.level		= 1,
3405 	.owner		= THIS_MODULE,
3406 	.make_request	= raid1_make_request,
3407 	.run		= raid1_run,
3408 	.free		= raid1_free,
3409 	.status		= raid1_status,
3410 	.error_handler	= raid1_error,
3411 	.hot_add_disk	= raid1_add_disk,
3412 	.hot_remove_disk= raid1_remove_disk,
3413 	.spare_active	= raid1_spare_active,
3414 	.sync_request	= raid1_sync_request,
3415 	.resize		= raid1_resize,
3416 	.size		= raid1_size,
3417 	.check_reshape	= raid1_reshape,
3418 	.quiesce	= raid1_quiesce,
3419 	.takeover	= raid1_takeover,
3420 	.congested	= raid1_congested,
3421 };
3422 
3423 static int __init raid_init(void)
3424 {
3425 	return register_md_personality(&raid1_personality);
3426 }
3427 
3428 static void raid_exit(void)
3429 {
3430 	unregister_md_personality(&raid1_personality);
3431 }
3432 
3433 module_init(raid_init);
3434 module_exit(raid_exit);
3435 MODULE_LICENSE("GPL");
3436 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3437 MODULE_ALIAS("md-personality-3"); /* RAID1 */
3438 MODULE_ALIAS("md-raid1");
3439 MODULE_ALIAS("md-level-1");
3440 
3441 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
3442