xref: /openbmc/linux/drivers/md/raid1.c (revision a1e58bbd)
1 /*
2  * raid1.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5  *
6  * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7  *
8  * RAID-1 management functions.
9  *
10  * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11  *
12  * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
13  * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14  *
15  * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16  * bitmapped intelligence in resync:
17  *
18  *      - bitmap marked during normal i/o
19  *      - bitmap used to skip nondirty blocks during sync
20  *
21  * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22  * - persistent bitmap code
23  *
24  * This program is free software; you can redistribute it and/or modify
25  * it under the terms of the GNU General Public License as published by
26  * the Free Software Foundation; either version 2, or (at your option)
27  * any later version.
28  *
29  * You should have received a copy of the GNU General Public License
30  * (for example /usr/src/linux/COPYING); if not, write to the Free
31  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32  */
33 
34 #include "dm-bio-list.h"
35 #include <linux/raid/raid1.h>
36 #include <linux/raid/bitmap.h>
37 
38 #define DEBUG 0
39 #if DEBUG
40 #define PRINTK(x...) printk(x)
41 #else
42 #define PRINTK(x...)
43 #endif
44 
45 /*
46  * Number of guaranteed r1bios in case of extreme VM load:
47  */
48 #define	NR_RAID1_BIOS 256
49 
50 
51 static void unplug_slaves(mddev_t *mddev);
52 
53 static void allow_barrier(conf_t *conf);
54 static void lower_barrier(conf_t *conf);
55 
56 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
57 {
58 	struct pool_info *pi = data;
59 	r1bio_t *r1_bio;
60 	int size = offsetof(r1bio_t, bios[pi->raid_disks]);
61 
62 	/* allocate a r1bio with room for raid_disks entries in the bios array */
63 	r1_bio = kzalloc(size, gfp_flags);
64 	if (!r1_bio)
65 		unplug_slaves(pi->mddev);
66 
67 	return r1_bio;
68 }
69 
70 static void r1bio_pool_free(void *r1_bio, void *data)
71 {
72 	kfree(r1_bio);
73 }
74 
75 #define RESYNC_BLOCK_SIZE (64*1024)
76 //#define RESYNC_BLOCK_SIZE PAGE_SIZE
77 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
78 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
79 #define RESYNC_WINDOW (2048*1024)
80 
81 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
82 {
83 	struct pool_info *pi = data;
84 	struct page *page;
85 	r1bio_t *r1_bio;
86 	struct bio *bio;
87 	int i, j;
88 
89 	r1_bio = r1bio_pool_alloc(gfp_flags, pi);
90 	if (!r1_bio) {
91 		unplug_slaves(pi->mddev);
92 		return NULL;
93 	}
94 
95 	/*
96 	 * Allocate bios : 1 for reading, n-1 for writing
97 	 */
98 	for (j = pi->raid_disks ; j-- ; ) {
99 		bio = bio_alloc(gfp_flags, RESYNC_PAGES);
100 		if (!bio)
101 			goto out_free_bio;
102 		r1_bio->bios[j] = bio;
103 	}
104 	/*
105 	 * Allocate RESYNC_PAGES data pages and attach them to
106 	 * the first bio.
107 	 * If this is a user-requested check/repair, allocate
108 	 * RESYNC_PAGES for each bio.
109 	 */
110 	if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
111 		j = pi->raid_disks;
112 	else
113 		j = 1;
114 	while(j--) {
115 		bio = r1_bio->bios[j];
116 		for (i = 0; i < RESYNC_PAGES; i++) {
117 			page = alloc_page(gfp_flags);
118 			if (unlikely(!page))
119 				goto out_free_pages;
120 
121 			bio->bi_io_vec[i].bv_page = page;
122 		}
123 	}
124 	/* If not user-requests, copy the page pointers to all bios */
125 	if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
126 		for (i=0; i<RESYNC_PAGES ; i++)
127 			for (j=1; j<pi->raid_disks; j++)
128 				r1_bio->bios[j]->bi_io_vec[i].bv_page =
129 					r1_bio->bios[0]->bi_io_vec[i].bv_page;
130 	}
131 
132 	r1_bio->master_bio = NULL;
133 
134 	return r1_bio;
135 
136 out_free_pages:
137 	for (i=0; i < RESYNC_PAGES ; i++)
138 		for (j=0 ; j < pi->raid_disks; j++)
139 			safe_put_page(r1_bio->bios[j]->bi_io_vec[i].bv_page);
140 	j = -1;
141 out_free_bio:
142 	while ( ++j < pi->raid_disks )
143 		bio_put(r1_bio->bios[j]);
144 	r1bio_pool_free(r1_bio, data);
145 	return NULL;
146 }
147 
148 static void r1buf_pool_free(void *__r1_bio, void *data)
149 {
150 	struct pool_info *pi = data;
151 	int i,j;
152 	r1bio_t *r1bio = __r1_bio;
153 
154 	for (i = 0; i < RESYNC_PAGES; i++)
155 		for (j = pi->raid_disks; j-- ;) {
156 			if (j == 0 ||
157 			    r1bio->bios[j]->bi_io_vec[i].bv_page !=
158 			    r1bio->bios[0]->bi_io_vec[i].bv_page)
159 				safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
160 		}
161 	for (i=0 ; i < pi->raid_disks; i++)
162 		bio_put(r1bio->bios[i]);
163 
164 	r1bio_pool_free(r1bio, data);
165 }
166 
167 static void put_all_bios(conf_t *conf, r1bio_t *r1_bio)
168 {
169 	int i;
170 
171 	for (i = 0; i < conf->raid_disks; i++) {
172 		struct bio **bio = r1_bio->bios + i;
173 		if (*bio && *bio != IO_BLOCKED)
174 			bio_put(*bio);
175 		*bio = NULL;
176 	}
177 }
178 
179 static void free_r1bio(r1bio_t *r1_bio)
180 {
181 	conf_t *conf = mddev_to_conf(r1_bio->mddev);
182 
183 	/*
184 	 * Wake up any possible resync thread that waits for the device
185 	 * to go idle.
186 	 */
187 	allow_barrier(conf);
188 
189 	put_all_bios(conf, r1_bio);
190 	mempool_free(r1_bio, conf->r1bio_pool);
191 }
192 
193 static void put_buf(r1bio_t *r1_bio)
194 {
195 	conf_t *conf = mddev_to_conf(r1_bio->mddev);
196 	int i;
197 
198 	for (i=0; i<conf->raid_disks; i++) {
199 		struct bio *bio = r1_bio->bios[i];
200 		if (bio->bi_end_io)
201 			rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
202 	}
203 
204 	mempool_free(r1_bio, conf->r1buf_pool);
205 
206 	lower_barrier(conf);
207 }
208 
209 static void reschedule_retry(r1bio_t *r1_bio)
210 {
211 	unsigned long flags;
212 	mddev_t *mddev = r1_bio->mddev;
213 	conf_t *conf = mddev_to_conf(mddev);
214 
215 	spin_lock_irqsave(&conf->device_lock, flags);
216 	list_add(&r1_bio->retry_list, &conf->retry_list);
217 	conf->nr_queued ++;
218 	spin_unlock_irqrestore(&conf->device_lock, flags);
219 
220 	wake_up(&conf->wait_barrier);
221 	md_wakeup_thread(mddev->thread);
222 }
223 
224 /*
225  * raid_end_bio_io() is called when we have finished servicing a mirrored
226  * operation and are ready to return a success/failure code to the buffer
227  * cache layer.
228  */
229 static void raid_end_bio_io(r1bio_t *r1_bio)
230 {
231 	struct bio *bio = r1_bio->master_bio;
232 
233 	/* if nobody has done the final endio yet, do it now */
234 	if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
235 		PRINTK(KERN_DEBUG "raid1: sync end %s on sectors %llu-%llu\n",
236 			(bio_data_dir(bio) == WRITE) ? "write" : "read",
237 			(unsigned long long) bio->bi_sector,
238 			(unsigned long long) bio->bi_sector +
239 				(bio->bi_size >> 9) - 1);
240 
241 		bio_endio(bio,
242 			test_bit(R1BIO_Uptodate, &r1_bio->state) ? 0 : -EIO);
243 	}
244 	free_r1bio(r1_bio);
245 }
246 
247 /*
248  * Update disk head position estimator based on IRQ completion info.
249  */
250 static inline void update_head_pos(int disk, r1bio_t *r1_bio)
251 {
252 	conf_t *conf = mddev_to_conf(r1_bio->mddev);
253 
254 	conf->mirrors[disk].head_position =
255 		r1_bio->sector + (r1_bio->sectors);
256 }
257 
258 static void raid1_end_read_request(struct bio *bio, int error)
259 {
260 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
261 	r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
262 	int mirror;
263 	conf_t *conf = mddev_to_conf(r1_bio->mddev);
264 
265 	mirror = r1_bio->read_disk;
266 	/*
267 	 * this branch is our 'one mirror IO has finished' event handler:
268 	 */
269 	update_head_pos(mirror, r1_bio);
270 
271 	if (uptodate)
272 		set_bit(R1BIO_Uptodate, &r1_bio->state);
273 	else {
274 		/* If all other devices have failed, we want to return
275 		 * the error upwards rather than fail the last device.
276 		 * Here we redefine "uptodate" to mean "Don't want to retry"
277 		 */
278 		unsigned long flags;
279 		spin_lock_irqsave(&conf->device_lock, flags);
280 		if (r1_bio->mddev->degraded == conf->raid_disks ||
281 		    (r1_bio->mddev->degraded == conf->raid_disks-1 &&
282 		     !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags)))
283 			uptodate = 1;
284 		spin_unlock_irqrestore(&conf->device_lock, flags);
285 	}
286 
287 	if (uptodate)
288 		raid_end_bio_io(r1_bio);
289 	else {
290 		/*
291 		 * oops, read error:
292 		 */
293 		char b[BDEVNAME_SIZE];
294 		if (printk_ratelimit())
295 			printk(KERN_ERR "raid1: %s: rescheduling sector %llu\n",
296 			       bdevname(conf->mirrors[mirror].rdev->bdev,b), (unsigned long long)r1_bio->sector);
297 		reschedule_retry(r1_bio);
298 	}
299 
300 	rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
301 }
302 
303 static void raid1_end_write_request(struct bio *bio, int error)
304 {
305 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
306 	r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
307 	int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
308 	conf_t *conf = mddev_to_conf(r1_bio->mddev);
309 	struct bio *to_put = NULL;
310 
311 
312 	for (mirror = 0; mirror < conf->raid_disks; mirror++)
313 		if (r1_bio->bios[mirror] == bio)
314 			break;
315 
316 	if (error == -EOPNOTSUPP && test_bit(R1BIO_Barrier, &r1_bio->state)) {
317 		set_bit(BarriersNotsupp, &conf->mirrors[mirror].rdev->flags);
318 		set_bit(R1BIO_BarrierRetry, &r1_bio->state);
319 		r1_bio->mddev->barriers_work = 0;
320 		/* Don't rdev_dec_pending in this branch - keep it for the retry */
321 	} else {
322 		/*
323 		 * this branch is our 'one mirror IO has finished' event handler:
324 		 */
325 		r1_bio->bios[mirror] = NULL;
326 		to_put = bio;
327 		if (!uptodate) {
328 			md_error(r1_bio->mddev, conf->mirrors[mirror].rdev);
329 			/* an I/O failed, we can't clear the bitmap */
330 			set_bit(R1BIO_Degraded, &r1_bio->state);
331 		} else
332 			/*
333 			 * Set R1BIO_Uptodate in our master bio, so that
334 			 * we will return a good error code for to the higher
335 			 * levels even if IO on some other mirrored buffer fails.
336 			 *
337 			 * The 'master' represents the composite IO operation to
338 			 * user-side. So if something waits for IO, then it will
339 			 * wait for the 'master' bio.
340 			 */
341 			set_bit(R1BIO_Uptodate, &r1_bio->state);
342 
343 		update_head_pos(mirror, r1_bio);
344 
345 		if (behind) {
346 			if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
347 				atomic_dec(&r1_bio->behind_remaining);
348 
349 			/* In behind mode, we ACK the master bio once the I/O has safely
350 			 * reached all non-writemostly disks. Setting the Returned bit
351 			 * ensures that this gets done only once -- we don't ever want to
352 			 * return -EIO here, instead we'll wait */
353 
354 			if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
355 			    test_bit(R1BIO_Uptodate, &r1_bio->state)) {
356 				/* Maybe we can return now */
357 				if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
358 					struct bio *mbio = r1_bio->master_bio;
359 					PRINTK(KERN_DEBUG "raid1: behind end write sectors %llu-%llu\n",
360 					       (unsigned long long) mbio->bi_sector,
361 					       (unsigned long long) mbio->bi_sector +
362 					       (mbio->bi_size >> 9) - 1);
363 					bio_endio(mbio, 0);
364 				}
365 			}
366 		}
367 		rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
368 	}
369 	/*
370 	 *
371 	 * Let's see if all mirrored write operations have finished
372 	 * already.
373 	 */
374 	if (atomic_dec_and_test(&r1_bio->remaining)) {
375 		if (test_bit(R1BIO_BarrierRetry, &r1_bio->state))
376 			reschedule_retry(r1_bio);
377 		else {
378 			/* it really is the end of this request */
379 			if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
380 				/* free extra copy of the data pages */
381 				int i = bio->bi_vcnt;
382 				while (i--)
383 					safe_put_page(bio->bi_io_vec[i].bv_page);
384 			}
385 			/* clear the bitmap if all writes complete successfully */
386 			bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
387 					r1_bio->sectors,
388 					!test_bit(R1BIO_Degraded, &r1_bio->state),
389 					behind);
390 			md_write_end(r1_bio->mddev);
391 			raid_end_bio_io(r1_bio);
392 		}
393 	}
394 
395 	if (to_put)
396 		bio_put(to_put);
397 }
398 
399 
400 /*
401  * This routine returns the disk from which the requested read should
402  * be done. There is a per-array 'next expected sequential IO' sector
403  * number - if this matches on the next IO then we use the last disk.
404  * There is also a per-disk 'last know head position' sector that is
405  * maintained from IRQ contexts, both the normal and the resync IO
406  * completion handlers update this position correctly. If there is no
407  * perfect sequential match then we pick the disk whose head is closest.
408  *
409  * If there are 2 mirrors in the same 2 devices, performance degrades
410  * because position is mirror, not device based.
411  *
412  * The rdev for the device selected will have nr_pending incremented.
413  */
414 static int read_balance(conf_t *conf, r1bio_t *r1_bio)
415 {
416 	const unsigned long this_sector = r1_bio->sector;
417 	int new_disk = conf->last_used, disk = new_disk;
418 	int wonly_disk = -1;
419 	const int sectors = r1_bio->sectors;
420 	sector_t new_distance, current_distance;
421 	mdk_rdev_t *rdev;
422 
423 	rcu_read_lock();
424 	/*
425 	 * Check if we can balance. We can balance on the whole
426 	 * device if no resync is going on, or below the resync window.
427 	 * We take the first readable disk when above the resync window.
428 	 */
429  retry:
430 	if (conf->mddev->recovery_cp < MaxSector &&
431 	    (this_sector + sectors >= conf->next_resync)) {
432 		/* Choose the first operation device, for consistancy */
433 		new_disk = 0;
434 
435 		for (rdev = rcu_dereference(conf->mirrors[new_disk].rdev);
436 		     r1_bio->bios[new_disk] == IO_BLOCKED ||
437 		     !rdev || !test_bit(In_sync, &rdev->flags)
438 			     || test_bit(WriteMostly, &rdev->flags);
439 		     rdev = rcu_dereference(conf->mirrors[++new_disk].rdev)) {
440 
441 			if (rdev && test_bit(In_sync, &rdev->flags) &&
442 				r1_bio->bios[new_disk] != IO_BLOCKED)
443 				wonly_disk = new_disk;
444 
445 			if (new_disk == conf->raid_disks - 1) {
446 				new_disk = wonly_disk;
447 				break;
448 			}
449 		}
450 		goto rb_out;
451 	}
452 
453 
454 	/* make sure the disk is operational */
455 	for (rdev = rcu_dereference(conf->mirrors[new_disk].rdev);
456 	     r1_bio->bios[new_disk] == IO_BLOCKED ||
457 	     !rdev || !test_bit(In_sync, &rdev->flags) ||
458 		     test_bit(WriteMostly, &rdev->flags);
459 	     rdev = rcu_dereference(conf->mirrors[new_disk].rdev)) {
460 
461 		if (rdev && test_bit(In_sync, &rdev->flags) &&
462 		    r1_bio->bios[new_disk] != IO_BLOCKED)
463 			wonly_disk = new_disk;
464 
465 		if (new_disk <= 0)
466 			new_disk = conf->raid_disks;
467 		new_disk--;
468 		if (new_disk == disk) {
469 			new_disk = wonly_disk;
470 			break;
471 		}
472 	}
473 
474 	if (new_disk < 0)
475 		goto rb_out;
476 
477 	disk = new_disk;
478 	/* now disk == new_disk == starting point for search */
479 
480 	/*
481 	 * Don't change to another disk for sequential reads:
482 	 */
483 	if (conf->next_seq_sect == this_sector)
484 		goto rb_out;
485 	if (this_sector == conf->mirrors[new_disk].head_position)
486 		goto rb_out;
487 
488 	current_distance = abs(this_sector - conf->mirrors[disk].head_position);
489 
490 	/* Find the disk whose head is closest */
491 
492 	do {
493 		if (disk <= 0)
494 			disk = conf->raid_disks;
495 		disk--;
496 
497 		rdev = rcu_dereference(conf->mirrors[disk].rdev);
498 
499 		if (!rdev || r1_bio->bios[disk] == IO_BLOCKED ||
500 		    !test_bit(In_sync, &rdev->flags) ||
501 		    test_bit(WriteMostly, &rdev->flags))
502 			continue;
503 
504 		if (!atomic_read(&rdev->nr_pending)) {
505 			new_disk = disk;
506 			break;
507 		}
508 		new_distance = abs(this_sector - conf->mirrors[disk].head_position);
509 		if (new_distance < current_distance) {
510 			current_distance = new_distance;
511 			new_disk = disk;
512 		}
513 	} while (disk != conf->last_used);
514 
515  rb_out:
516 
517 
518 	if (new_disk >= 0) {
519 		rdev = rcu_dereference(conf->mirrors[new_disk].rdev);
520 		if (!rdev)
521 			goto retry;
522 		atomic_inc(&rdev->nr_pending);
523 		if (!test_bit(In_sync, &rdev->flags)) {
524 			/* cannot risk returning a device that failed
525 			 * before we inc'ed nr_pending
526 			 */
527 			rdev_dec_pending(rdev, conf->mddev);
528 			goto retry;
529 		}
530 		conf->next_seq_sect = this_sector + sectors;
531 		conf->last_used = new_disk;
532 	}
533 	rcu_read_unlock();
534 
535 	return new_disk;
536 }
537 
538 static void unplug_slaves(mddev_t *mddev)
539 {
540 	conf_t *conf = mddev_to_conf(mddev);
541 	int i;
542 
543 	rcu_read_lock();
544 	for (i=0; i<mddev->raid_disks; i++) {
545 		mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
546 		if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
547 			struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
548 
549 			atomic_inc(&rdev->nr_pending);
550 			rcu_read_unlock();
551 
552 			blk_unplug(r_queue);
553 
554 			rdev_dec_pending(rdev, mddev);
555 			rcu_read_lock();
556 		}
557 	}
558 	rcu_read_unlock();
559 }
560 
561 static void raid1_unplug(struct request_queue *q)
562 {
563 	mddev_t *mddev = q->queuedata;
564 
565 	unplug_slaves(mddev);
566 	md_wakeup_thread(mddev->thread);
567 }
568 
569 static int raid1_congested(void *data, int bits)
570 {
571 	mddev_t *mddev = data;
572 	conf_t *conf = mddev_to_conf(mddev);
573 	int i, ret = 0;
574 
575 	rcu_read_lock();
576 	for (i = 0; i < mddev->raid_disks; i++) {
577 		mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
578 		if (rdev && !test_bit(Faulty, &rdev->flags)) {
579 			struct request_queue *q = bdev_get_queue(rdev->bdev);
580 
581 			/* Note the '|| 1' - when read_balance prefers
582 			 * non-congested targets, it can be removed
583 			 */
584 			if ((bits & (1<<BDI_write_congested)) || 1)
585 				ret |= bdi_congested(&q->backing_dev_info, bits);
586 			else
587 				ret &= bdi_congested(&q->backing_dev_info, bits);
588 		}
589 	}
590 	rcu_read_unlock();
591 	return ret;
592 }
593 
594 
595 static int flush_pending_writes(conf_t *conf)
596 {
597 	/* Any writes that have been queued but are awaiting
598 	 * bitmap updates get flushed here.
599 	 * We return 1 if any requests were actually submitted.
600 	 */
601 	int rv = 0;
602 
603 	spin_lock_irq(&conf->device_lock);
604 
605 	if (conf->pending_bio_list.head) {
606 		struct bio *bio;
607 		bio = bio_list_get(&conf->pending_bio_list);
608 		blk_remove_plug(conf->mddev->queue);
609 		spin_unlock_irq(&conf->device_lock);
610 		/* flush any pending bitmap writes to
611 		 * disk before proceeding w/ I/O */
612 		bitmap_unplug(conf->mddev->bitmap);
613 
614 		while (bio) { /* submit pending writes */
615 			struct bio *next = bio->bi_next;
616 			bio->bi_next = NULL;
617 			generic_make_request(bio);
618 			bio = next;
619 		}
620 		rv = 1;
621 	} else
622 		spin_unlock_irq(&conf->device_lock);
623 	return rv;
624 }
625 
626 /* Barriers....
627  * Sometimes we need to suspend IO while we do something else,
628  * either some resync/recovery, or reconfigure the array.
629  * To do this we raise a 'barrier'.
630  * The 'barrier' is a counter that can be raised multiple times
631  * to count how many activities are happening which preclude
632  * normal IO.
633  * We can only raise the barrier if there is no pending IO.
634  * i.e. if nr_pending == 0.
635  * We choose only to raise the barrier if no-one is waiting for the
636  * barrier to go down.  This means that as soon as an IO request
637  * is ready, no other operations which require a barrier will start
638  * until the IO request has had a chance.
639  *
640  * So: regular IO calls 'wait_barrier'.  When that returns there
641  *    is no backgroup IO happening,  It must arrange to call
642  *    allow_barrier when it has finished its IO.
643  * backgroup IO calls must call raise_barrier.  Once that returns
644  *    there is no normal IO happeing.  It must arrange to call
645  *    lower_barrier when the particular background IO completes.
646  */
647 #define RESYNC_DEPTH 32
648 
649 static void raise_barrier(conf_t *conf)
650 {
651 	spin_lock_irq(&conf->resync_lock);
652 
653 	/* Wait until no block IO is waiting */
654 	wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
655 			    conf->resync_lock,
656 			    raid1_unplug(conf->mddev->queue));
657 
658 	/* block any new IO from starting */
659 	conf->barrier++;
660 
661 	/* No wait for all pending IO to complete */
662 	wait_event_lock_irq(conf->wait_barrier,
663 			    !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
664 			    conf->resync_lock,
665 			    raid1_unplug(conf->mddev->queue));
666 
667 	spin_unlock_irq(&conf->resync_lock);
668 }
669 
670 static void lower_barrier(conf_t *conf)
671 {
672 	unsigned long flags;
673 	spin_lock_irqsave(&conf->resync_lock, flags);
674 	conf->barrier--;
675 	spin_unlock_irqrestore(&conf->resync_lock, flags);
676 	wake_up(&conf->wait_barrier);
677 }
678 
679 static void wait_barrier(conf_t *conf)
680 {
681 	spin_lock_irq(&conf->resync_lock);
682 	if (conf->barrier) {
683 		conf->nr_waiting++;
684 		wait_event_lock_irq(conf->wait_barrier, !conf->barrier,
685 				    conf->resync_lock,
686 				    raid1_unplug(conf->mddev->queue));
687 		conf->nr_waiting--;
688 	}
689 	conf->nr_pending++;
690 	spin_unlock_irq(&conf->resync_lock);
691 }
692 
693 static void allow_barrier(conf_t *conf)
694 {
695 	unsigned long flags;
696 	spin_lock_irqsave(&conf->resync_lock, flags);
697 	conf->nr_pending--;
698 	spin_unlock_irqrestore(&conf->resync_lock, flags);
699 	wake_up(&conf->wait_barrier);
700 }
701 
702 static void freeze_array(conf_t *conf)
703 {
704 	/* stop syncio and normal IO and wait for everything to
705 	 * go quite.
706 	 * We increment barrier and nr_waiting, and then
707 	 * wait until nr_pending match nr_queued+1
708 	 * This is called in the context of one normal IO request
709 	 * that has failed. Thus any sync request that might be pending
710 	 * will be blocked by nr_pending, and we need to wait for
711 	 * pending IO requests to complete or be queued for re-try.
712 	 * Thus the number queued (nr_queued) plus this request (1)
713 	 * must match the number of pending IOs (nr_pending) before
714 	 * we continue.
715 	 */
716 	spin_lock_irq(&conf->resync_lock);
717 	conf->barrier++;
718 	conf->nr_waiting++;
719 	wait_event_lock_irq(conf->wait_barrier,
720 			    conf->nr_pending == conf->nr_queued+1,
721 			    conf->resync_lock,
722 			    ({ flush_pending_writes(conf);
723 			       raid1_unplug(conf->mddev->queue); }));
724 	spin_unlock_irq(&conf->resync_lock);
725 }
726 static void unfreeze_array(conf_t *conf)
727 {
728 	/* reverse the effect of the freeze */
729 	spin_lock_irq(&conf->resync_lock);
730 	conf->barrier--;
731 	conf->nr_waiting--;
732 	wake_up(&conf->wait_barrier);
733 	spin_unlock_irq(&conf->resync_lock);
734 }
735 
736 
737 /* duplicate the data pages for behind I/O */
738 static struct page **alloc_behind_pages(struct bio *bio)
739 {
740 	int i;
741 	struct bio_vec *bvec;
742 	struct page **pages = kzalloc(bio->bi_vcnt * sizeof(struct page *),
743 					GFP_NOIO);
744 	if (unlikely(!pages))
745 		goto do_sync_io;
746 
747 	bio_for_each_segment(bvec, bio, i) {
748 		pages[i] = alloc_page(GFP_NOIO);
749 		if (unlikely(!pages[i]))
750 			goto do_sync_io;
751 		memcpy(kmap(pages[i]) + bvec->bv_offset,
752 			kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
753 		kunmap(pages[i]);
754 		kunmap(bvec->bv_page);
755 	}
756 
757 	return pages;
758 
759 do_sync_io:
760 	if (pages)
761 		for (i = 0; i < bio->bi_vcnt && pages[i]; i++)
762 			put_page(pages[i]);
763 	kfree(pages);
764 	PRINTK("%dB behind alloc failed, doing sync I/O\n", bio->bi_size);
765 	return NULL;
766 }
767 
768 static int make_request(struct request_queue *q, struct bio * bio)
769 {
770 	mddev_t *mddev = q->queuedata;
771 	conf_t *conf = mddev_to_conf(mddev);
772 	mirror_info_t *mirror;
773 	r1bio_t *r1_bio;
774 	struct bio *read_bio;
775 	int i, targets = 0, disks;
776 	mdk_rdev_t *rdev;
777 	struct bitmap *bitmap = mddev->bitmap;
778 	unsigned long flags;
779 	struct bio_list bl;
780 	struct page **behind_pages = NULL;
781 	const int rw = bio_data_dir(bio);
782 	const int do_sync = bio_sync(bio);
783 	int do_barriers;
784 
785 	/*
786 	 * Register the new request and wait if the reconstruction
787 	 * thread has put up a bar for new requests.
788 	 * Continue immediately if no resync is active currently.
789 	 * We test barriers_work *after* md_write_start as md_write_start
790 	 * may cause the first superblock write, and that will check out
791 	 * if barriers work.
792 	 */
793 
794 	md_write_start(mddev, bio); /* wait on superblock update early */
795 
796 	if (unlikely(!mddev->barriers_work && bio_barrier(bio))) {
797 		if (rw == WRITE)
798 			md_write_end(mddev);
799 		bio_endio(bio, -EOPNOTSUPP);
800 		return 0;
801 	}
802 
803 	wait_barrier(conf);
804 
805 	disk_stat_inc(mddev->gendisk, ios[rw]);
806 	disk_stat_add(mddev->gendisk, sectors[rw], bio_sectors(bio));
807 
808 	/*
809 	 * make_request() can abort the operation when READA is being
810 	 * used and no empty request is available.
811 	 *
812 	 */
813 	r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
814 
815 	r1_bio->master_bio = bio;
816 	r1_bio->sectors = bio->bi_size >> 9;
817 	r1_bio->state = 0;
818 	r1_bio->mddev = mddev;
819 	r1_bio->sector = bio->bi_sector;
820 
821 	if (rw == READ) {
822 		/*
823 		 * read balancing logic:
824 		 */
825 		int rdisk = read_balance(conf, r1_bio);
826 
827 		if (rdisk < 0) {
828 			/* couldn't find anywhere to read from */
829 			raid_end_bio_io(r1_bio);
830 			return 0;
831 		}
832 		mirror = conf->mirrors + rdisk;
833 
834 		r1_bio->read_disk = rdisk;
835 
836 		read_bio = bio_clone(bio, GFP_NOIO);
837 
838 		r1_bio->bios[rdisk] = read_bio;
839 
840 		read_bio->bi_sector = r1_bio->sector + mirror->rdev->data_offset;
841 		read_bio->bi_bdev = mirror->rdev->bdev;
842 		read_bio->bi_end_io = raid1_end_read_request;
843 		read_bio->bi_rw = READ | do_sync;
844 		read_bio->bi_private = r1_bio;
845 
846 		generic_make_request(read_bio);
847 		return 0;
848 	}
849 
850 	/*
851 	 * WRITE:
852 	 */
853 	/* first select target devices under spinlock and
854 	 * inc refcount on their rdev.  Record them by setting
855 	 * bios[x] to bio
856 	 */
857 	disks = conf->raid_disks;
858 #if 0
859 	{ static int first=1;
860 	if (first) printk("First Write sector %llu disks %d\n",
861 			  (unsigned long long)r1_bio->sector, disks);
862 	first = 0;
863 	}
864 #endif
865 	rcu_read_lock();
866 	for (i = 0;  i < disks; i++) {
867 		if ((rdev=rcu_dereference(conf->mirrors[i].rdev)) != NULL &&
868 		    !test_bit(Faulty, &rdev->flags)) {
869 			atomic_inc(&rdev->nr_pending);
870 			if (test_bit(Faulty, &rdev->flags)) {
871 				rdev_dec_pending(rdev, mddev);
872 				r1_bio->bios[i] = NULL;
873 			} else
874 				r1_bio->bios[i] = bio;
875 			targets++;
876 		} else
877 			r1_bio->bios[i] = NULL;
878 	}
879 	rcu_read_unlock();
880 
881 	BUG_ON(targets == 0); /* we never fail the last device */
882 
883 	if (targets < conf->raid_disks) {
884 		/* array is degraded, we will not clear the bitmap
885 		 * on I/O completion (see raid1_end_write_request) */
886 		set_bit(R1BIO_Degraded, &r1_bio->state);
887 	}
888 
889 	/* do behind I/O ? */
890 	if (bitmap &&
891 	    atomic_read(&bitmap->behind_writes) < bitmap->max_write_behind &&
892 	    (behind_pages = alloc_behind_pages(bio)) != NULL)
893 		set_bit(R1BIO_BehindIO, &r1_bio->state);
894 
895 	atomic_set(&r1_bio->remaining, 0);
896 	atomic_set(&r1_bio->behind_remaining, 0);
897 
898 	do_barriers = bio_barrier(bio);
899 	if (do_barriers)
900 		set_bit(R1BIO_Barrier, &r1_bio->state);
901 
902 	bio_list_init(&bl);
903 	for (i = 0; i < disks; i++) {
904 		struct bio *mbio;
905 		if (!r1_bio->bios[i])
906 			continue;
907 
908 		mbio = bio_clone(bio, GFP_NOIO);
909 		r1_bio->bios[i] = mbio;
910 
911 		mbio->bi_sector	= r1_bio->sector + conf->mirrors[i].rdev->data_offset;
912 		mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
913 		mbio->bi_end_io	= raid1_end_write_request;
914 		mbio->bi_rw = WRITE | do_barriers | do_sync;
915 		mbio->bi_private = r1_bio;
916 
917 		if (behind_pages) {
918 			struct bio_vec *bvec;
919 			int j;
920 
921 			/* Yes, I really want the '__' version so that
922 			 * we clear any unused pointer in the io_vec, rather
923 			 * than leave them unchanged.  This is important
924 			 * because when we come to free the pages, we won't
925 			 * know the originial bi_idx, so we just free
926 			 * them all
927 			 */
928 			__bio_for_each_segment(bvec, mbio, j, 0)
929 				bvec->bv_page = behind_pages[j];
930 			if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
931 				atomic_inc(&r1_bio->behind_remaining);
932 		}
933 
934 		atomic_inc(&r1_bio->remaining);
935 
936 		bio_list_add(&bl, mbio);
937 	}
938 	kfree(behind_pages); /* the behind pages are attached to the bios now */
939 
940 	bitmap_startwrite(bitmap, bio->bi_sector, r1_bio->sectors,
941 				test_bit(R1BIO_BehindIO, &r1_bio->state));
942 	spin_lock_irqsave(&conf->device_lock, flags);
943 	bio_list_merge(&conf->pending_bio_list, &bl);
944 	bio_list_init(&bl);
945 
946 	blk_plug_device(mddev->queue);
947 	spin_unlock_irqrestore(&conf->device_lock, flags);
948 
949 	/* In case raid1d snuck into freeze_array */
950 	wake_up(&conf->wait_barrier);
951 
952 	if (do_sync)
953 		md_wakeup_thread(mddev->thread);
954 #if 0
955 	while ((bio = bio_list_pop(&bl)) != NULL)
956 		generic_make_request(bio);
957 #endif
958 
959 	return 0;
960 }
961 
962 static void status(struct seq_file *seq, mddev_t *mddev)
963 {
964 	conf_t *conf = mddev_to_conf(mddev);
965 	int i;
966 
967 	seq_printf(seq, " [%d/%d] [", conf->raid_disks,
968 		   conf->raid_disks - mddev->degraded);
969 	rcu_read_lock();
970 	for (i = 0; i < conf->raid_disks; i++) {
971 		mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
972 		seq_printf(seq, "%s",
973 			   rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
974 	}
975 	rcu_read_unlock();
976 	seq_printf(seq, "]");
977 }
978 
979 
980 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
981 {
982 	char b[BDEVNAME_SIZE];
983 	conf_t *conf = mddev_to_conf(mddev);
984 
985 	/*
986 	 * If it is not operational, then we have already marked it as dead
987 	 * else if it is the last working disks, ignore the error, let the
988 	 * next level up know.
989 	 * else mark the drive as failed
990 	 */
991 	if (test_bit(In_sync, &rdev->flags)
992 	    && (conf->raid_disks - mddev->degraded) == 1)
993 		/*
994 		 * Don't fail the drive, act as though we were just a
995 		 * normal single drive
996 		 */
997 		return;
998 	if (test_and_clear_bit(In_sync, &rdev->flags)) {
999 		unsigned long flags;
1000 		spin_lock_irqsave(&conf->device_lock, flags);
1001 		mddev->degraded++;
1002 		set_bit(Faulty, &rdev->flags);
1003 		spin_unlock_irqrestore(&conf->device_lock, flags);
1004 		/*
1005 		 * if recovery is running, make sure it aborts.
1006 		 */
1007 		set_bit(MD_RECOVERY_ERR, &mddev->recovery);
1008 	} else
1009 		set_bit(Faulty, &rdev->flags);
1010 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
1011 	printk(KERN_ALERT "raid1: Disk failure on %s, disabling device. \n"
1012 		"	Operation continuing on %d devices\n",
1013 		bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded);
1014 }
1015 
1016 static void print_conf(conf_t *conf)
1017 {
1018 	int i;
1019 
1020 	printk("RAID1 conf printout:\n");
1021 	if (!conf) {
1022 		printk("(!conf)\n");
1023 		return;
1024 	}
1025 	printk(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1026 		conf->raid_disks);
1027 
1028 	rcu_read_lock();
1029 	for (i = 0; i < conf->raid_disks; i++) {
1030 		char b[BDEVNAME_SIZE];
1031 		mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
1032 		if (rdev)
1033 			printk(" disk %d, wo:%d, o:%d, dev:%s\n",
1034 			       i, !test_bit(In_sync, &rdev->flags),
1035 			       !test_bit(Faulty, &rdev->flags),
1036 			       bdevname(rdev->bdev,b));
1037 	}
1038 	rcu_read_unlock();
1039 }
1040 
1041 static void close_sync(conf_t *conf)
1042 {
1043 	wait_barrier(conf);
1044 	allow_barrier(conf);
1045 
1046 	mempool_destroy(conf->r1buf_pool);
1047 	conf->r1buf_pool = NULL;
1048 }
1049 
1050 static int raid1_spare_active(mddev_t *mddev)
1051 {
1052 	int i;
1053 	conf_t *conf = mddev->private;
1054 
1055 	/*
1056 	 * Find all failed disks within the RAID1 configuration
1057 	 * and mark them readable.
1058 	 * Called under mddev lock, so rcu protection not needed.
1059 	 */
1060 	for (i = 0; i < conf->raid_disks; i++) {
1061 		mdk_rdev_t *rdev = conf->mirrors[i].rdev;
1062 		if (rdev
1063 		    && !test_bit(Faulty, &rdev->flags)
1064 		    && !test_and_set_bit(In_sync, &rdev->flags)) {
1065 			unsigned long flags;
1066 			spin_lock_irqsave(&conf->device_lock, flags);
1067 			mddev->degraded--;
1068 			spin_unlock_irqrestore(&conf->device_lock, flags);
1069 		}
1070 	}
1071 
1072 	print_conf(conf);
1073 	return 0;
1074 }
1075 
1076 
1077 static int raid1_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
1078 {
1079 	conf_t *conf = mddev->private;
1080 	int found = 0;
1081 	int mirror = 0;
1082 	mirror_info_t *p;
1083 
1084 	for (mirror=0; mirror < mddev->raid_disks; mirror++)
1085 		if ( !(p=conf->mirrors+mirror)->rdev) {
1086 
1087 			blk_queue_stack_limits(mddev->queue,
1088 					       rdev->bdev->bd_disk->queue);
1089 			/* as we don't honour merge_bvec_fn, we must never risk
1090 			 * violating it, so limit ->max_sector to one PAGE, as
1091 			 * a one page request is never in violation.
1092 			 */
1093 			if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
1094 			    mddev->queue->max_sectors > (PAGE_SIZE>>9))
1095 				blk_queue_max_sectors(mddev->queue, PAGE_SIZE>>9);
1096 
1097 			p->head_position = 0;
1098 			rdev->raid_disk = mirror;
1099 			found = 1;
1100 			/* As all devices are equivalent, we don't need a full recovery
1101 			 * if this was recently any drive of the array
1102 			 */
1103 			if (rdev->saved_raid_disk < 0)
1104 				conf->fullsync = 1;
1105 			rcu_assign_pointer(p->rdev, rdev);
1106 			break;
1107 		}
1108 
1109 	print_conf(conf);
1110 	return found;
1111 }
1112 
1113 static int raid1_remove_disk(mddev_t *mddev, int number)
1114 {
1115 	conf_t *conf = mddev->private;
1116 	int err = 0;
1117 	mdk_rdev_t *rdev;
1118 	mirror_info_t *p = conf->mirrors+ number;
1119 
1120 	print_conf(conf);
1121 	rdev = p->rdev;
1122 	if (rdev) {
1123 		if (test_bit(In_sync, &rdev->flags) ||
1124 		    atomic_read(&rdev->nr_pending)) {
1125 			err = -EBUSY;
1126 			goto abort;
1127 		}
1128 		p->rdev = NULL;
1129 		synchronize_rcu();
1130 		if (atomic_read(&rdev->nr_pending)) {
1131 			/* lost the race, try later */
1132 			err = -EBUSY;
1133 			p->rdev = rdev;
1134 		}
1135 	}
1136 abort:
1137 
1138 	print_conf(conf);
1139 	return err;
1140 }
1141 
1142 
1143 static void end_sync_read(struct bio *bio, int error)
1144 {
1145 	r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
1146 	int i;
1147 
1148 	for (i=r1_bio->mddev->raid_disks; i--; )
1149 		if (r1_bio->bios[i] == bio)
1150 			break;
1151 	BUG_ON(i < 0);
1152 	update_head_pos(i, r1_bio);
1153 	/*
1154 	 * we have read a block, now it needs to be re-written,
1155 	 * or re-read if the read failed.
1156 	 * We don't do much here, just schedule handling by raid1d
1157 	 */
1158 	if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1159 		set_bit(R1BIO_Uptodate, &r1_bio->state);
1160 
1161 	if (atomic_dec_and_test(&r1_bio->remaining))
1162 		reschedule_retry(r1_bio);
1163 }
1164 
1165 static void end_sync_write(struct bio *bio, int error)
1166 {
1167 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1168 	r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
1169 	mddev_t *mddev = r1_bio->mddev;
1170 	conf_t *conf = mddev_to_conf(mddev);
1171 	int i;
1172 	int mirror=0;
1173 
1174 	for (i = 0; i < conf->raid_disks; i++)
1175 		if (r1_bio->bios[i] == bio) {
1176 			mirror = i;
1177 			break;
1178 		}
1179 	if (!uptodate) {
1180 		int sync_blocks = 0;
1181 		sector_t s = r1_bio->sector;
1182 		long sectors_to_go = r1_bio->sectors;
1183 		/* make sure these bits doesn't get cleared. */
1184 		do {
1185 			bitmap_end_sync(mddev->bitmap, s,
1186 					&sync_blocks, 1);
1187 			s += sync_blocks;
1188 			sectors_to_go -= sync_blocks;
1189 		} while (sectors_to_go > 0);
1190 		md_error(mddev, conf->mirrors[mirror].rdev);
1191 	}
1192 
1193 	update_head_pos(mirror, r1_bio);
1194 
1195 	if (atomic_dec_and_test(&r1_bio->remaining)) {
1196 		md_done_sync(mddev, r1_bio->sectors, uptodate);
1197 		put_buf(r1_bio);
1198 	}
1199 }
1200 
1201 static void sync_request_write(mddev_t *mddev, r1bio_t *r1_bio)
1202 {
1203 	conf_t *conf = mddev_to_conf(mddev);
1204 	int i;
1205 	int disks = conf->raid_disks;
1206 	struct bio *bio, *wbio;
1207 
1208 	bio = r1_bio->bios[r1_bio->read_disk];
1209 
1210 
1211 	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
1212 		/* We have read all readable devices.  If we haven't
1213 		 * got the block, then there is no hope left.
1214 		 * If we have, then we want to do a comparison
1215 		 * and skip the write if everything is the same.
1216 		 * If any blocks failed to read, then we need to
1217 		 * attempt an over-write
1218 		 */
1219 		int primary;
1220 		if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) {
1221 			for (i=0; i<mddev->raid_disks; i++)
1222 				if (r1_bio->bios[i]->bi_end_io == end_sync_read)
1223 					md_error(mddev, conf->mirrors[i].rdev);
1224 
1225 			md_done_sync(mddev, r1_bio->sectors, 1);
1226 			put_buf(r1_bio);
1227 			return;
1228 		}
1229 		for (primary=0; primary<mddev->raid_disks; primary++)
1230 			if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
1231 			    test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) {
1232 				r1_bio->bios[primary]->bi_end_io = NULL;
1233 				rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
1234 				break;
1235 			}
1236 		r1_bio->read_disk = primary;
1237 		for (i=0; i<mddev->raid_disks; i++)
1238 			if (r1_bio->bios[i]->bi_end_io == end_sync_read) {
1239 				int j;
1240 				int vcnt = r1_bio->sectors >> (PAGE_SHIFT- 9);
1241 				struct bio *pbio = r1_bio->bios[primary];
1242 				struct bio *sbio = r1_bio->bios[i];
1243 
1244 				if (test_bit(BIO_UPTODATE, &sbio->bi_flags)) {
1245 					for (j = vcnt; j-- ; ) {
1246 						struct page *p, *s;
1247 						p = pbio->bi_io_vec[j].bv_page;
1248 						s = sbio->bi_io_vec[j].bv_page;
1249 						if (memcmp(page_address(p),
1250 							   page_address(s),
1251 							   PAGE_SIZE))
1252 							break;
1253 					}
1254 				} else
1255 					j = 0;
1256 				if (j >= 0)
1257 					mddev->resync_mismatches += r1_bio->sectors;
1258 				if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
1259 					      && test_bit(BIO_UPTODATE, &sbio->bi_flags))) {
1260 					sbio->bi_end_io = NULL;
1261 					rdev_dec_pending(conf->mirrors[i].rdev, mddev);
1262 				} else {
1263 					/* fixup the bio for reuse */
1264 					sbio->bi_vcnt = vcnt;
1265 					sbio->bi_size = r1_bio->sectors << 9;
1266 					sbio->bi_idx = 0;
1267 					sbio->bi_phys_segments = 0;
1268 					sbio->bi_hw_segments = 0;
1269 					sbio->bi_hw_front_size = 0;
1270 					sbio->bi_hw_back_size = 0;
1271 					sbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1272 					sbio->bi_flags |= 1 << BIO_UPTODATE;
1273 					sbio->bi_next = NULL;
1274 					sbio->bi_sector = r1_bio->sector +
1275 						conf->mirrors[i].rdev->data_offset;
1276 					sbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1277 					for (j = 0; j < vcnt ; j++)
1278 						memcpy(page_address(sbio->bi_io_vec[j].bv_page),
1279 						       page_address(pbio->bi_io_vec[j].bv_page),
1280 						       PAGE_SIZE);
1281 
1282 				}
1283 			}
1284 	}
1285 	if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) {
1286 		/* ouch - failed to read all of that.
1287 		 * Try some synchronous reads of other devices to get
1288 		 * good data, much like with normal read errors.  Only
1289 		 * read into the pages we already have so we don't
1290 		 * need to re-issue the read request.
1291 		 * We don't need to freeze the array, because being in an
1292 		 * active sync request, there is no normal IO, and
1293 		 * no overlapping syncs.
1294 		 */
1295 		sector_t sect = r1_bio->sector;
1296 		int sectors = r1_bio->sectors;
1297 		int idx = 0;
1298 
1299 		while(sectors) {
1300 			int s = sectors;
1301 			int d = r1_bio->read_disk;
1302 			int success = 0;
1303 			mdk_rdev_t *rdev;
1304 
1305 			if (s > (PAGE_SIZE>>9))
1306 				s = PAGE_SIZE >> 9;
1307 			do {
1308 				if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1309 					/* No rcu protection needed here devices
1310 					 * can only be removed when no resync is
1311 					 * active, and resync is currently active
1312 					 */
1313 					rdev = conf->mirrors[d].rdev;
1314 					if (sync_page_io(rdev->bdev,
1315 							 sect + rdev->data_offset,
1316 							 s<<9,
1317 							 bio->bi_io_vec[idx].bv_page,
1318 							 READ)) {
1319 						success = 1;
1320 						break;
1321 					}
1322 				}
1323 				d++;
1324 				if (d == conf->raid_disks)
1325 					d = 0;
1326 			} while (!success && d != r1_bio->read_disk);
1327 
1328 			if (success) {
1329 				int start = d;
1330 				/* write it back and re-read */
1331 				set_bit(R1BIO_Uptodate, &r1_bio->state);
1332 				while (d != r1_bio->read_disk) {
1333 					if (d == 0)
1334 						d = conf->raid_disks;
1335 					d--;
1336 					if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1337 						continue;
1338 					rdev = conf->mirrors[d].rdev;
1339 					atomic_add(s, &rdev->corrected_errors);
1340 					if (sync_page_io(rdev->bdev,
1341 							 sect + rdev->data_offset,
1342 							 s<<9,
1343 							 bio->bi_io_vec[idx].bv_page,
1344 							 WRITE) == 0)
1345 						md_error(mddev, rdev);
1346 				}
1347 				d = start;
1348 				while (d != r1_bio->read_disk) {
1349 					if (d == 0)
1350 						d = conf->raid_disks;
1351 					d--;
1352 					if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1353 						continue;
1354 					rdev = conf->mirrors[d].rdev;
1355 					if (sync_page_io(rdev->bdev,
1356 							 sect + rdev->data_offset,
1357 							 s<<9,
1358 							 bio->bi_io_vec[idx].bv_page,
1359 							 READ) == 0)
1360 						md_error(mddev, rdev);
1361 				}
1362 			} else {
1363 				char b[BDEVNAME_SIZE];
1364 				/* Cannot read from anywhere, array is toast */
1365 				md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
1366 				printk(KERN_ALERT "raid1: %s: unrecoverable I/O read error"
1367 				       " for block %llu\n",
1368 				       bdevname(bio->bi_bdev,b),
1369 				       (unsigned long long)r1_bio->sector);
1370 				md_done_sync(mddev, r1_bio->sectors, 0);
1371 				put_buf(r1_bio);
1372 				return;
1373 			}
1374 			sectors -= s;
1375 			sect += s;
1376 			idx ++;
1377 		}
1378 	}
1379 
1380 	/*
1381 	 * schedule writes
1382 	 */
1383 	atomic_set(&r1_bio->remaining, 1);
1384 	for (i = 0; i < disks ; i++) {
1385 		wbio = r1_bio->bios[i];
1386 		if (wbio->bi_end_io == NULL ||
1387 		    (wbio->bi_end_io == end_sync_read &&
1388 		     (i == r1_bio->read_disk ||
1389 		      !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
1390 			continue;
1391 
1392 		wbio->bi_rw = WRITE;
1393 		wbio->bi_end_io = end_sync_write;
1394 		atomic_inc(&r1_bio->remaining);
1395 		md_sync_acct(conf->mirrors[i].rdev->bdev, wbio->bi_size >> 9);
1396 
1397 		generic_make_request(wbio);
1398 	}
1399 
1400 	if (atomic_dec_and_test(&r1_bio->remaining)) {
1401 		/* if we're here, all write(s) have completed, so clean up */
1402 		md_done_sync(mddev, r1_bio->sectors, 1);
1403 		put_buf(r1_bio);
1404 	}
1405 }
1406 
1407 /*
1408  * This is a kernel thread which:
1409  *
1410  *	1.	Retries failed read operations on working mirrors.
1411  *	2.	Updates the raid superblock when problems encounter.
1412  *	3.	Performs writes following reads for array syncronising.
1413  */
1414 
1415 static void fix_read_error(conf_t *conf, int read_disk,
1416 			   sector_t sect, int sectors)
1417 {
1418 	mddev_t *mddev = conf->mddev;
1419 	while(sectors) {
1420 		int s = sectors;
1421 		int d = read_disk;
1422 		int success = 0;
1423 		int start;
1424 		mdk_rdev_t *rdev;
1425 
1426 		if (s > (PAGE_SIZE>>9))
1427 			s = PAGE_SIZE >> 9;
1428 
1429 		do {
1430 			/* Note: no rcu protection needed here
1431 			 * as this is synchronous in the raid1d thread
1432 			 * which is the thread that might remove
1433 			 * a device.  If raid1d ever becomes multi-threaded....
1434 			 */
1435 			rdev = conf->mirrors[d].rdev;
1436 			if (rdev &&
1437 			    test_bit(In_sync, &rdev->flags) &&
1438 			    sync_page_io(rdev->bdev,
1439 					 sect + rdev->data_offset,
1440 					 s<<9,
1441 					 conf->tmppage, READ))
1442 				success = 1;
1443 			else {
1444 				d++;
1445 				if (d == conf->raid_disks)
1446 					d = 0;
1447 			}
1448 		} while (!success && d != read_disk);
1449 
1450 		if (!success) {
1451 			/* Cannot read from anywhere -- bye bye array */
1452 			md_error(mddev, conf->mirrors[read_disk].rdev);
1453 			break;
1454 		}
1455 		/* write it back and re-read */
1456 		start = d;
1457 		while (d != read_disk) {
1458 			if (d==0)
1459 				d = conf->raid_disks;
1460 			d--;
1461 			rdev = conf->mirrors[d].rdev;
1462 			if (rdev &&
1463 			    test_bit(In_sync, &rdev->flags)) {
1464 				if (sync_page_io(rdev->bdev,
1465 						 sect + rdev->data_offset,
1466 						 s<<9, conf->tmppage, WRITE)
1467 				    == 0)
1468 					/* Well, this device is dead */
1469 					md_error(mddev, rdev);
1470 			}
1471 		}
1472 		d = start;
1473 		while (d != read_disk) {
1474 			char b[BDEVNAME_SIZE];
1475 			if (d==0)
1476 				d = conf->raid_disks;
1477 			d--;
1478 			rdev = conf->mirrors[d].rdev;
1479 			if (rdev &&
1480 			    test_bit(In_sync, &rdev->flags)) {
1481 				if (sync_page_io(rdev->bdev,
1482 						 sect + rdev->data_offset,
1483 						 s<<9, conf->tmppage, READ)
1484 				    == 0)
1485 					/* Well, this device is dead */
1486 					md_error(mddev, rdev);
1487 				else {
1488 					atomic_add(s, &rdev->corrected_errors);
1489 					printk(KERN_INFO
1490 					       "raid1:%s: read error corrected "
1491 					       "(%d sectors at %llu on %s)\n",
1492 					       mdname(mddev), s,
1493 					       (unsigned long long)(sect +
1494 					           rdev->data_offset),
1495 					       bdevname(rdev->bdev, b));
1496 				}
1497 			}
1498 		}
1499 		sectors -= s;
1500 		sect += s;
1501 	}
1502 }
1503 
1504 static void raid1d(mddev_t *mddev)
1505 {
1506 	r1bio_t *r1_bio;
1507 	struct bio *bio;
1508 	unsigned long flags;
1509 	conf_t *conf = mddev_to_conf(mddev);
1510 	struct list_head *head = &conf->retry_list;
1511 	int unplug=0;
1512 	mdk_rdev_t *rdev;
1513 
1514 	md_check_recovery(mddev);
1515 
1516 	for (;;) {
1517 		char b[BDEVNAME_SIZE];
1518 
1519 		unplug += flush_pending_writes(conf);
1520 
1521 		spin_lock_irqsave(&conf->device_lock, flags);
1522 		if (list_empty(head)) {
1523 			spin_unlock_irqrestore(&conf->device_lock, flags);
1524 			break;
1525 		}
1526 		r1_bio = list_entry(head->prev, r1bio_t, retry_list);
1527 		list_del(head->prev);
1528 		conf->nr_queued--;
1529 		spin_unlock_irqrestore(&conf->device_lock, flags);
1530 
1531 		mddev = r1_bio->mddev;
1532 		conf = mddev_to_conf(mddev);
1533 		if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
1534 			sync_request_write(mddev, r1_bio);
1535 			unplug = 1;
1536 		} else if (test_bit(R1BIO_BarrierRetry, &r1_bio->state)) {
1537 			/* some requests in the r1bio were BIO_RW_BARRIER
1538 			 * requests which failed with -EOPNOTSUPP.  Hohumm..
1539 			 * Better resubmit without the barrier.
1540 			 * We know which devices to resubmit for, because
1541 			 * all others have had their bios[] entry cleared.
1542 			 * We already have a nr_pending reference on these rdevs.
1543 			 */
1544 			int i;
1545 			const int do_sync = bio_sync(r1_bio->master_bio);
1546 			clear_bit(R1BIO_BarrierRetry, &r1_bio->state);
1547 			clear_bit(R1BIO_Barrier, &r1_bio->state);
1548 			for (i=0; i < conf->raid_disks; i++)
1549 				if (r1_bio->bios[i])
1550 					atomic_inc(&r1_bio->remaining);
1551 			for (i=0; i < conf->raid_disks; i++)
1552 				if (r1_bio->bios[i]) {
1553 					struct bio_vec *bvec;
1554 					int j;
1555 
1556 					bio = bio_clone(r1_bio->master_bio, GFP_NOIO);
1557 					/* copy pages from the failed bio, as
1558 					 * this might be a write-behind device */
1559 					__bio_for_each_segment(bvec, bio, j, 0)
1560 						bvec->bv_page = bio_iovec_idx(r1_bio->bios[i], j)->bv_page;
1561 					bio_put(r1_bio->bios[i]);
1562 					bio->bi_sector = r1_bio->sector +
1563 						conf->mirrors[i].rdev->data_offset;
1564 					bio->bi_bdev = conf->mirrors[i].rdev->bdev;
1565 					bio->bi_end_io = raid1_end_write_request;
1566 					bio->bi_rw = WRITE | do_sync;
1567 					bio->bi_private = r1_bio;
1568 					r1_bio->bios[i] = bio;
1569 					generic_make_request(bio);
1570 				}
1571 		} else {
1572 			int disk;
1573 
1574 			/* we got a read error. Maybe the drive is bad.  Maybe just
1575 			 * the block and we can fix it.
1576 			 * We freeze all other IO, and try reading the block from
1577 			 * other devices.  When we find one, we re-write
1578 			 * and check it that fixes the read error.
1579 			 * This is all done synchronously while the array is
1580 			 * frozen
1581 			 */
1582 			if (mddev->ro == 0) {
1583 				freeze_array(conf);
1584 				fix_read_error(conf, r1_bio->read_disk,
1585 					       r1_bio->sector,
1586 					       r1_bio->sectors);
1587 				unfreeze_array(conf);
1588 			}
1589 
1590 			bio = r1_bio->bios[r1_bio->read_disk];
1591 			if ((disk=read_balance(conf, r1_bio)) == -1) {
1592 				printk(KERN_ALERT "raid1: %s: unrecoverable I/O"
1593 				       " read error for block %llu\n",
1594 				       bdevname(bio->bi_bdev,b),
1595 				       (unsigned long long)r1_bio->sector);
1596 				raid_end_bio_io(r1_bio);
1597 			} else {
1598 				const int do_sync = bio_sync(r1_bio->master_bio);
1599 				r1_bio->bios[r1_bio->read_disk] =
1600 					mddev->ro ? IO_BLOCKED : NULL;
1601 				r1_bio->read_disk = disk;
1602 				bio_put(bio);
1603 				bio = bio_clone(r1_bio->master_bio, GFP_NOIO);
1604 				r1_bio->bios[r1_bio->read_disk] = bio;
1605 				rdev = conf->mirrors[disk].rdev;
1606 				if (printk_ratelimit())
1607 					printk(KERN_ERR "raid1: %s: redirecting sector %llu to"
1608 					       " another mirror\n",
1609 					       bdevname(rdev->bdev,b),
1610 					       (unsigned long long)r1_bio->sector);
1611 				bio->bi_sector = r1_bio->sector + rdev->data_offset;
1612 				bio->bi_bdev = rdev->bdev;
1613 				bio->bi_end_io = raid1_end_read_request;
1614 				bio->bi_rw = READ | do_sync;
1615 				bio->bi_private = r1_bio;
1616 				unplug = 1;
1617 				generic_make_request(bio);
1618 			}
1619 		}
1620 	}
1621 	if (unplug)
1622 		unplug_slaves(mddev);
1623 }
1624 
1625 
1626 static int init_resync(conf_t *conf)
1627 {
1628 	int buffs;
1629 
1630 	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
1631 	BUG_ON(conf->r1buf_pool);
1632 	conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
1633 					  conf->poolinfo);
1634 	if (!conf->r1buf_pool)
1635 		return -ENOMEM;
1636 	conf->next_resync = 0;
1637 	return 0;
1638 }
1639 
1640 /*
1641  * perform a "sync" on one "block"
1642  *
1643  * We need to make sure that no normal I/O request - particularly write
1644  * requests - conflict with active sync requests.
1645  *
1646  * This is achieved by tracking pending requests and a 'barrier' concept
1647  * that can be installed to exclude normal IO requests.
1648  */
1649 
1650 static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
1651 {
1652 	conf_t *conf = mddev_to_conf(mddev);
1653 	r1bio_t *r1_bio;
1654 	struct bio *bio;
1655 	sector_t max_sector, nr_sectors;
1656 	int disk = -1;
1657 	int i;
1658 	int wonly = -1;
1659 	int write_targets = 0, read_targets = 0;
1660 	int sync_blocks;
1661 	int still_degraded = 0;
1662 
1663 	if (!conf->r1buf_pool)
1664 	{
1665 /*
1666 		printk("sync start - bitmap %p\n", mddev->bitmap);
1667 */
1668 		if (init_resync(conf))
1669 			return 0;
1670 	}
1671 
1672 	max_sector = mddev->size << 1;
1673 	if (sector_nr >= max_sector) {
1674 		/* If we aborted, we need to abort the
1675 		 * sync on the 'current' bitmap chunk (there will
1676 		 * only be one in raid1 resync.
1677 		 * We can find the current addess in mddev->curr_resync
1678 		 */
1679 		if (mddev->curr_resync < max_sector) /* aborted */
1680 			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
1681 						&sync_blocks, 1);
1682 		else /* completed sync */
1683 			conf->fullsync = 0;
1684 
1685 		bitmap_close_sync(mddev->bitmap);
1686 		close_sync(conf);
1687 		return 0;
1688 	}
1689 
1690 	if (mddev->bitmap == NULL &&
1691 	    mddev->recovery_cp == MaxSector &&
1692 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
1693 	    conf->fullsync == 0) {
1694 		*skipped = 1;
1695 		return max_sector - sector_nr;
1696 	}
1697 	/* before building a request, check if we can skip these blocks..
1698 	 * This call the bitmap_start_sync doesn't actually record anything
1699 	 */
1700 	if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
1701 	    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
1702 		/* We can skip this block, and probably several more */
1703 		*skipped = 1;
1704 		return sync_blocks;
1705 	}
1706 	/*
1707 	 * If there is non-resync activity waiting for a turn,
1708 	 * and resync is going fast enough,
1709 	 * then let it though before starting on this new sync request.
1710 	 */
1711 	if (!go_faster && conf->nr_waiting)
1712 		msleep_interruptible(1000);
1713 
1714 	bitmap_cond_end_sync(mddev->bitmap, sector_nr);
1715 	raise_barrier(conf);
1716 
1717 	conf->next_resync = sector_nr;
1718 
1719 	r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
1720 	rcu_read_lock();
1721 	/*
1722 	 * If we get a correctably read error during resync or recovery,
1723 	 * we might want to read from a different device.  So we
1724 	 * flag all drives that could conceivably be read from for READ,
1725 	 * and any others (which will be non-In_sync devices) for WRITE.
1726 	 * If a read fails, we try reading from something else for which READ
1727 	 * is OK.
1728 	 */
1729 
1730 	r1_bio->mddev = mddev;
1731 	r1_bio->sector = sector_nr;
1732 	r1_bio->state = 0;
1733 	set_bit(R1BIO_IsSync, &r1_bio->state);
1734 
1735 	for (i=0; i < conf->raid_disks; i++) {
1736 		mdk_rdev_t *rdev;
1737 		bio = r1_bio->bios[i];
1738 
1739 		/* take from bio_init */
1740 		bio->bi_next = NULL;
1741 		bio->bi_flags |= 1 << BIO_UPTODATE;
1742 		bio->bi_rw = READ;
1743 		bio->bi_vcnt = 0;
1744 		bio->bi_idx = 0;
1745 		bio->bi_phys_segments = 0;
1746 		bio->bi_hw_segments = 0;
1747 		bio->bi_size = 0;
1748 		bio->bi_end_io = NULL;
1749 		bio->bi_private = NULL;
1750 
1751 		rdev = rcu_dereference(conf->mirrors[i].rdev);
1752 		if (rdev == NULL ||
1753 			   test_bit(Faulty, &rdev->flags)) {
1754 			still_degraded = 1;
1755 			continue;
1756 		} else if (!test_bit(In_sync, &rdev->flags)) {
1757 			bio->bi_rw = WRITE;
1758 			bio->bi_end_io = end_sync_write;
1759 			write_targets ++;
1760 		} else {
1761 			/* may need to read from here */
1762 			bio->bi_rw = READ;
1763 			bio->bi_end_io = end_sync_read;
1764 			if (test_bit(WriteMostly, &rdev->flags)) {
1765 				if (wonly < 0)
1766 					wonly = i;
1767 			} else {
1768 				if (disk < 0)
1769 					disk = i;
1770 			}
1771 			read_targets++;
1772 		}
1773 		atomic_inc(&rdev->nr_pending);
1774 		bio->bi_sector = sector_nr + rdev->data_offset;
1775 		bio->bi_bdev = rdev->bdev;
1776 		bio->bi_private = r1_bio;
1777 	}
1778 	rcu_read_unlock();
1779 	if (disk < 0)
1780 		disk = wonly;
1781 	r1_bio->read_disk = disk;
1782 
1783 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
1784 		/* extra read targets are also write targets */
1785 		write_targets += read_targets-1;
1786 
1787 	if (write_targets == 0 || read_targets == 0) {
1788 		/* There is nowhere to write, so all non-sync
1789 		 * drives must be failed - so we are finished
1790 		 */
1791 		sector_t rv = max_sector - sector_nr;
1792 		*skipped = 1;
1793 		put_buf(r1_bio);
1794 		return rv;
1795 	}
1796 
1797 	if (max_sector > mddev->resync_max)
1798 		max_sector = mddev->resync_max; /* Don't do IO beyond here */
1799 	nr_sectors = 0;
1800 	sync_blocks = 0;
1801 	do {
1802 		struct page *page;
1803 		int len = PAGE_SIZE;
1804 		if (sector_nr + (len>>9) > max_sector)
1805 			len = (max_sector - sector_nr) << 9;
1806 		if (len == 0)
1807 			break;
1808 		if (sync_blocks == 0) {
1809 			if (!bitmap_start_sync(mddev->bitmap, sector_nr,
1810 					       &sync_blocks, still_degraded) &&
1811 			    !conf->fullsync &&
1812 			    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
1813 				break;
1814 			BUG_ON(sync_blocks < (PAGE_SIZE>>9));
1815 			if (len > (sync_blocks<<9))
1816 				len = sync_blocks<<9;
1817 		}
1818 
1819 		for (i=0 ; i < conf->raid_disks; i++) {
1820 			bio = r1_bio->bios[i];
1821 			if (bio->bi_end_io) {
1822 				page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
1823 				if (bio_add_page(bio, page, len, 0) == 0) {
1824 					/* stop here */
1825 					bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
1826 					while (i > 0) {
1827 						i--;
1828 						bio = r1_bio->bios[i];
1829 						if (bio->bi_end_io==NULL)
1830 							continue;
1831 						/* remove last page from this bio */
1832 						bio->bi_vcnt--;
1833 						bio->bi_size -= len;
1834 						bio->bi_flags &= ~(1<< BIO_SEG_VALID);
1835 					}
1836 					goto bio_full;
1837 				}
1838 			}
1839 		}
1840 		nr_sectors += len>>9;
1841 		sector_nr += len>>9;
1842 		sync_blocks -= (len>>9);
1843 	} while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
1844  bio_full:
1845 	r1_bio->sectors = nr_sectors;
1846 
1847 	/* For a user-requested sync, we read all readable devices and do a
1848 	 * compare
1849 	 */
1850 	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
1851 		atomic_set(&r1_bio->remaining, read_targets);
1852 		for (i=0; i<conf->raid_disks; i++) {
1853 			bio = r1_bio->bios[i];
1854 			if (bio->bi_end_io == end_sync_read) {
1855 				md_sync_acct(bio->bi_bdev, nr_sectors);
1856 				generic_make_request(bio);
1857 			}
1858 		}
1859 	} else {
1860 		atomic_set(&r1_bio->remaining, 1);
1861 		bio = r1_bio->bios[r1_bio->read_disk];
1862 		md_sync_acct(bio->bi_bdev, nr_sectors);
1863 		generic_make_request(bio);
1864 
1865 	}
1866 	return nr_sectors;
1867 }
1868 
1869 static int run(mddev_t *mddev)
1870 {
1871 	conf_t *conf;
1872 	int i, j, disk_idx;
1873 	mirror_info_t *disk;
1874 	mdk_rdev_t *rdev;
1875 	struct list_head *tmp;
1876 
1877 	if (mddev->level != 1) {
1878 		printk("raid1: %s: raid level not set to mirroring (%d)\n",
1879 		       mdname(mddev), mddev->level);
1880 		goto out;
1881 	}
1882 	if (mddev->reshape_position != MaxSector) {
1883 		printk("raid1: %s: reshape_position set but not supported\n",
1884 		       mdname(mddev));
1885 		goto out;
1886 	}
1887 	/*
1888 	 * copy the already verified devices into our private RAID1
1889 	 * bookkeeping area. [whatever we allocate in run(),
1890 	 * should be freed in stop()]
1891 	 */
1892 	conf = kzalloc(sizeof(conf_t), GFP_KERNEL);
1893 	mddev->private = conf;
1894 	if (!conf)
1895 		goto out_no_mem;
1896 
1897 	conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks,
1898 				 GFP_KERNEL);
1899 	if (!conf->mirrors)
1900 		goto out_no_mem;
1901 
1902 	conf->tmppage = alloc_page(GFP_KERNEL);
1903 	if (!conf->tmppage)
1904 		goto out_no_mem;
1905 
1906 	conf->poolinfo = kmalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
1907 	if (!conf->poolinfo)
1908 		goto out_no_mem;
1909 	conf->poolinfo->mddev = mddev;
1910 	conf->poolinfo->raid_disks = mddev->raid_disks;
1911 	conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
1912 					  r1bio_pool_free,
1913 					  conf->poolinfo);
1914 	if (!conf->r1bio_pool)
1915 		goto out_no_mem;
1916 
1917 	rdev_for_each(rdev, tmp, mddev) {
1918 		disk_idx = rdev->raid_disk;
1919 		if (disk_idx >= mddev->raid_disks
1920 		    || disk_idx < 0)
1921 			continue;
1922 		disk = conf->mirrors + disk_idx;
1923 
1924 		disk->rdev = rdev;
1925 
1926 		blk_queue_stack_limits(mddev->queue,
1927 				       rdev->bdev->bd_disk->queue);
1928 		/* as we don't honour merge_bvec_fn, we must never risk
1929 		 * violating it, so limit ->max_sector to one PAGE, as
1930 		 * a one page request is never in violation.
1931 		 */
1932 		if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
1933 		    mddev->queue->max_sectors > (PAGE_SIZE>>9))
1934 			blk_queue_max_sectors(mddev->queue, PAGE_SIZE>>9);
1935 
1936 		disk->head_position = 0;
1937 	}
1938 	conf->raid_disks = mddev->raid_disks;
1939 	conf->mddev = mddev;
1940 	spin_lock_init(&conf->device_lock);
1941 	INIT_LIST_HEAD(&conf->retry_list);
1942 
1943 	spin_lock_init(&conf->resync_lock);
1944 	init_waitqueue_head(&conf->wait_barrier);
1945 
1946 	bio_list_init(&conf->pending_bio_list);
1947 	bio_list_init(&conf->flushing_bio_list);
1948 
1949 
1950 	mddev->degraded = 0;
1951 	for (i = 0; i < conf->raid_disks; i++) {
1952 
1953 		disk = conf->mirrors + i;
1954 
1955 		if (!disk->rdev ||
1956 		    !test_bit(In_sync, &disk->rdev->flags)) {
1957 			disk->head_position = 0;
1958 			mddev->degraded++;
1959 			if (disk->rdev)
1960 				conf->fullsync = 1;
1961 		}
1962 	}
1963 	if (mddev->degraded == conf->raid_disks) {
1964 		printk(KERN_ERR "raid1: no operational mirrors for %s\n",
1965 			mdname(mddev));
1966 		goto out_free_conf;
1967 	}
1968 	if (conf->raid_disks - mddev->degraded == 1)
1969 		mddev->recovery_cp = MaxSector;
1970 
1971 	/*
1972 	 * find the first working one and use it as a starting point
1973 	 * to read balancing.
1974 	 */
1975 	for (j = 0; j < conf->raid_disks &&
1976 		     (!conf->mirrors[j].rdev ||
1977 		      !test_bit(In_sync, &conf->mirrors[j].rdev->flags)) ; j++)
1978 		/* nothing */;
1979 	conf->last_used = j;
1980 
1981 
1982 	mddev->thread = md_register_thread(raid1d, mddev, "%s_raid1");
1983 	if (!mddev->thread) {
1984 		printk(KERN_ERR
1985 		       "raid1: couldn't allocate thread for %s\n",
1986 		       mdname(mddev));
1987 		goto out_free_conf;
1988 	}
1989 
1990 	printk(KERN_INFO
1991 		"raid1: raid set %s active with %d out of %d mirrors\n",
1992 		mdname(mddev), mddev->raid_disks - mddev->degraded,
1993 		mddev->raid_disks);
1994 	/*
1995 	 * Ok, everything is just fine now
1996 	 */
1997 	mddev->array_size = mddev->size;
1998 
1999 	mddev->queue->unplug_fn = raid1_unplug;
2000 	mddev->queue->backing_dev_info.congested_fn = raid1_congested;
2001 	mddev->queue->backing_dev_info.congested_data = mddev;
2002 
2003 	return 0;
2004 
2005 out_no_mem:
2006 	printk(KERN_ERR "raid1: couldn't allocate memory for %s\n",
2007 	       mdname(mddev));
2008 
2009 out_free_conf:
2010 	if (conf) {
2011 		if (conf->r1bio_pool)
2012 			mempool_destroy(conf->r1bio_pool);
2013 		kfree(conf->mirrors);
2014 		safe_put_page(conf->tmppage);
2015 		kfree(conf->poolinfo);
2016 		kfree(conf);
2017 		mddev->private = NULL;
2018 	}
2019 out:
2020 	return -EIO;
2021 }
2022 
2023 static int stop(mddev_t *mddev)
2024 {
2025 	conf_t *conf = mddev_to_conf(mddev);
2026 	struct bitmap *bitmap = mddev->bitmap;
2027 	int behind_wait = 0;
2028 
2029 	/* wait for behind writes to complete */
2030 	while (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
2031 		behind_wait++;
2032 		printk(KERN_INFO "raid1: behind writes in progress on device %s, waiting to stop (%d)\n", mdname(mddev), behind_wait);
2033 		set_current_state(TASK_UNINTERRUPTIBLE);
2034 		schedule_timeout(HZ); /* wait a second */
2035 		/* need to kick something here to make sure I/O goes? */
2036 	}
2037 
2038 	md_unregister_thread(mddev->thread);
2039 	mddev->thread = NULL;
2040 	blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
2041 	if (conf->r1bio_pool)
2042 		mempool_destroy(conf->r1bio_pool);
2043 	kfree(conf->mirrors);
2044 	kfree(conf->poolinfo);
2045 	kfree(conf);
2046 	mddev->private = NULL;
2047 	return 0;
2048 }
2049 
2050 static int raid1_resize(mddev_t *mddev, sector_t sectors)
2051 {
2052 	/* no resync is happening, and there is enough space
2053 	 * on all devices, so we can resize.
2054 	 * We need to make sure resync covers any new space.
2055 	 * If the array is shrinking we should possibly wait until
2056 	 * any io in the removed space completes, but it hardly seems
2057 	 * worth it.
2058 	 */
2059 	mddev->array_size = sectors>>1;
2060 	set_capacity(mddev->gendisk, mddev->array_size << 1);
2061 	mddev->changed = 1;
2062 	if (mddev->array_size > mddev->size && mddev->recovery_cp == MaxSector) {
2063 		mddev->recovery_cp = mddev->size << 1;
2064 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2065 	}
2066 	mddev->size = mddev->array_size;
2067 	mddev->resync_max_sectors = sectors;
2068 	return 0;
2069 }
2070 
2071 static int raid1_reshape(mddev_t *mddev)
2072 {
2073 	/* We need to:
2074 	 * 1/ resize the r1bio_pool
2075 	 * 2/ resize conf->mirrors
2076 	 *
2077 	 * We allocate a new r1bio_pool if we can.
2078 	 * Then raise a device barrier and wait until all IO stops.
2079 	 * Then resize conf->mirrors and swap in the new r1bio pool.
2080 	 *
2081 	 * At the same time, we "pack" the devices so that all the missing
2082 	 * devices have the higher raid_disk numbers.
2083 	 */
2084 	mempool_t *newpool, *oldpool;
2085 	struct pool_info *newpoolinfo;
2086 	mirror_info_t *newmirrors;
2087 	conf_t *conf = mddev_to_conf(mddev);
2088 	int cnt, raid_disks;
2089 	unsigned long flags;
2090 	int d, d2;
2091 
2092 	/* Cannot change chunk_size, layout, or level */
2093 	if (mddev->chunk_size != mddev->new_chunk ||
2094 	    mddev->layout != mddev->new_layout ||
2095 	    mddev->level != mddev->new_level) {
2096 		mddev->new_chunk = mddev->chunk_size;
2097 		mddev->new_layout = mddev->layout;
2098 		mddev->new_level = mddev->level;
2099 		return -EINVAL;
2100 	}
2101 
2102 	md_allow_write(mddev);
2103 
2104 	raid_disks = mddev->raid_disks + mddev->delta_disks;
2105 
2106 	if (raid_disks < conf->raid_disks) {
2107 		cnt=0;
2108 		for (d= 0; d < conf->raid_disks; d++)
2109 			if (conf->mirrors[d].rdev)
2110 				cnt++;
2111 		if (cnt > raid_disks)
2112 			return -EBUSY;
2113 	}
2114 
2115 	newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
2116 	if (!newpoolinfo)
2117 		return -ENOMEM;
2118 	newpoolinfo->mddev = mddev;
2119 	newpoolinfo->raid_disks = raid_disks;
2120 
2121 	newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2122 				 r1bio_pool_free, newpoolinfo);
2123 	if (!newpool) {
2124 		kfree(newpoolinfo);
2125 		return -ENOMEM;
2126 	}
2127 	newmirrors = kzalloc(sizeof(struct mirror_info) * raid_disks, GFP_KERNEL);
2128 	if (!newmirrors) {
2129 		kfree(newpoolinfo);
2130 		mempool_destroy(newpool);
2131 		return -ENOMEM;
2132 	}
2133 
2134 	raise_barrier(conf);
2135 
2136 	/* ok, everything is stopped */
2137 	oldpool = conf->r1bio_pool;
2138 	conf->r1bio_pool = newpool;
2139 
2140 	for (d = d2 = 0; d < conf->raid_disks; d++) {
2141 		mdk_rdev_t *rdev = conf->mirrors[d].rdev;
2142 		if (rdev && rdev->raid_disk != d2) {
2143 			char nm[20];
2144 			sprintf(nm, "rd%d", rdev->raid_disk);
2145 			sysfs_remove_link(&mddev->kobj, nm);
2146 			rdev->raid_disk = d2;
2147 			sprintf(nm, "rd%d", rdev->raid_disk);
2148 			sysfs_remove_link(&mddev->kobj, nm);
2149 			if (sysfs_create_link(&mddev->kobj,
2150 					      &rdev->kobj, nm))
2151 				printk(KERN_WARNING
2152 				       "md/raid1: cannot register "
2153 				       "%s for %s\n",
2154 				       nm, mdname(mddev));
2155 		}
2156 		if (rdev)
2157 			newmirrors[d2++].rdev = rdev;
2158 	}
2159 	kfree(conf->mirrors);
2160 	conf->mirrors = newmirrors;
2161 	kfree(conf->poolinfo);
2162 	conf->poolinfo = newpoolinfo;
2163 
2164 	spin_lock_irqsave(&conf->device_lock, flags);
2165 	mddev->degraded += (raid_disks - conf->raid_disks);
2166 	spin_unlock_irqrestore(&conf->device_lock, flags);
2167 	conf->raid_disks = mddev->raid_disks = raid_disks;
2168 	mddev->delta_disks = 0;
2169 
2170 	conf->last_used = 0; /* just make sure it is in-range */
2171 	lower_barrier(conf);
2172 
2173 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2174 	md_wakeup_thread(mddev->thread);
2175 
2176 	mempool_destroy(oldpool);
2177 	return 0;
2178 }
2179 
2180 static void raid1_quiesce(mddev_t *mddev, int state)
2181 {
2182 	conf_t *conf = mddev_to_conf(mddev);
2183 
2184 	switch(state) {
2185 	case 1:
2186 		raise_barrier(conf);
2187 		break;
2188 	case 0:
2189 		lower_barrier(conf);
2190 		break;
2191 	}
2192 }
2193 
2194 
2195 static struct mdk_personality raid1_personality =
2196 {
2197 	.name		= "raid1",
2198 	.level		= 1,
2199 	.owner		= THIS_MODULE,
2200 	.make_request	= make_request,
2201 	.run		= run,
2202 	.stop		= stop,
2203 	.status		= status,
2204 	.error_handler	= error,
2205 	.hot_add_disk	= raid1_add_disk,
2206 	.hot_remove_disk= raid1_remove_disk,
2207 	.spare_active	= raid1_spare_active,
2208 	.sync_request	= sync_request,
2209 	.resize		= raid1_resize,
2210 	.check_reshape	= raid1_reshape,
2211 	.quiesce	= raid1_quiesce,
2212 };
2213 
2214 static int __init raid_init(void)
2215 {
2216 	return register_md_personality(&raid1_personality);
2217 }
2218 
2219 static void raid_exit(void)
2220 {
2221 	unregister_md_personality(&raid1_personality);
2222 }
2223 
2224 module_init(raid_init);
2225 module_exit(raid_exit);
2226 MODULE_LICENSE("GPL");
2227 MODULE_ALIAS("md-personality-3"); /* RAID1 */
2228 MODULE_ALIAS("md-raid1");
2229 MODULE_ALIAS("md-level-1");
2230