1 /* 2 * raid1.c : Multiple Devices driver for Linux 3 * 4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat 5 * 6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman 7 * 8 * RAID-1 management functions. 9 * 10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000 11 * 12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk> 13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au> 14 * 15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support 16 * bitmapped intelligence in resync: 17 * 18 * - bitmap marked during normal i/o 19 * - bitmap used to skip nondirty blocks during sync 20 * 21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology: 22 * - persistent bitmap code 23 * 24 * This program is free software; you can redistribute it and/or modify 25 * it under the terms of the GNU General Public License as published by 26 * the Free Software Foundation; either version 2, or (at your option) 27 * any later version. 28 * 29 * You should have received a copy of the GNU General Public License 30 * (for example /usr/src/linux/COPYING); if not, write to the Free 31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 32 */ 33 34 #include "dm-bio-list.h" 35 #include <linux/raid/raid1.h> 36 #include <linux/raid/bitmap.h> 37 38 #define DEBUG 0 39 #if DEBUG 40 #define PRINTK(x...) printk(x) 41 #else 42 #define PRINTK(x...) 43 #endif 44 45 /* 46 * Number of guaranteed r1bios in case of extreme VM load: 47 */ 48 #define NR_RAID1_BIOS 256 49 50 51 static void unplug_slaves(mddev_t *mddev); 52 53 static void allow_barrier(conf_t *conf); 54 static void lower_barrier(conf_t *conf); 55 56 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data) 57 { 58 struct pool_info *pi = data; 59 r1bio_t *r1_bio; 60 int size = offsetof(r1bio_t, bios[pi->raid_disks]); 61 62 /* allocate a r1bio with room for raid_disks entries in the bios array */ 63 r1_bio = kzalloc(size, gfp_flags); 64 if (!r1_bio) 65 unplug_slaves(pi->mddev); 66 67 return r1_bio; 68 } 69 70 static void r1bio_pool_free(void *r1_bio, void *data) 71 { 72 kfree(r1_bio); 73 } 74 75 #define RESYNC_BLOCK_SIZE (64*1024) 76 //#define RESYNC_BLOCK_SIZE PAGE_SIZE 77 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9) 78 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE) 79 #define RESYNC_WINDOW (2048*1024) 80 81 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data) 82 { 83 struct pool_info *pi = data; 84 struct page *page; 85 r1bio_t *r1_bio; 86 struct bio *bio; 87 int i, j; 88 89 r1_bio = r1bio_pool_alloc(gfp_flags, pi); 90 if (!r1_bio) { 91 unplug_slaves(pi->mddev); 92 return NULL; 93 } 94 95 /* 96 * Allocate bios : 1 for reading, n-1 for writing 97 */ 98 for (j = pi->raid_disks ; j-- ; ) { 99 bio = bio_alloc(gfp_flags, RESYNC_PAGES); 100 if (!bio) 101 goto out_free_bio; 102 r1_bio->bios[j] = bio; 103 } 104 /* 105 * Allocate RESYNC_PAGES data pages and attach them to 106 * the first bio. 107 * If this is a user-requested check/repair, allocate 108 * RESYNC_PAGES for each bio. 109 */ 110 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) 111 j = pi->raid_disks; 112 else 113 j = 1; 114 while(j--) { 115 bio = r1_bio->bios[j]; 116 for (i = 0; i < RESYNC_PAGES; i++) { 117 page = alloc_page(gfp_flags); 118 if (unlikely(!page)) 119 goto out_free_pages; 120 121 bio->bi_io_vec[i].bv_page = page; 122 } 123 } 124 /* If not user-requests, copy the page pointers to all bios */ 125 if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) { 126 for (i=0; i<RESYNC_PAGES ; i++) 127 for (j=1; j<pi->raid_disks; j++) 128 r1_bio->bios[j]->bi_io_vec[i].bv_page = 129 r1_bio->bios[0]->bi_io_vec[i].bv_page; 130 } 131 132 r1_bio->master_bio = NULL; 133 134 return r1_bio; 135 136 out_free_pages: 137 for (i=0; i < RESYNC_PAGES ; i++) 138 for (j=0 ; j < pi->raid_disks; j++) 139 safe_put_page(r1_bio->bios[j]->bi_io_vec[i].bv_page); 140 j = -1; 141 out_free_bio: 142 while ( ++j < pi->raid_disks ) 143 bio_put(r1_bio->bios[j]); 144 r1bio_pool_free(r1_bio, data); 145 return NULL; 146 } 147 148 static void r1buf_pool_free(void *__r1_bio, void *data) 149 { 150 struct pool_info *pi = data; 151 int i,j; 152 r1bio_t *r1bio = __r1_bio; 153 154 for (i = 0; i < RESYNC_PAGES; i++) 155 for (j = pi->raid_disks; j-- ;) { 156 if (j == 0 || 157 r1bio->bios[j]->bi_io_vec[i].bv_page != 158 r1bio->bios[0]->bi_io_vec[i].bv_page) 159 safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page); 160 } 161 for (i=0 ; i < pi->raid_disks; i++) 162 bio_put(r1bio->bios[i]); 163 164 r1bio_pool_free(r1bio, data); 165 } 166 167 static void put_all_bios(conf_t *conf, r1bio_t *r1_bio) 168 { 169 int i; 170 171 for (i = 0; i < conf->raid_disks; i++) { 172 struct bio **bio = r1_bio->bios + i; 173 if (*bio && *bio != IO_BLOCKED) 174 bio_put(*bio); 175 *bio = NULL; 176 } 177 } 178 179 static void free_r1bio(r1bio_t *r1_bio) 180 { 181 conf_t *conf = mddev_to_conf(r1_bio->mddev); 182 183 /* 184 * Wake up any possible resync thread that waits for the device 185 * to go idle. 186 */ 187 allow_barrier(conf); 188 189 put_all_bios(conf, r1_bio); 190 mempool_free(r1_bio, conf->r1bio_pool); 191 } 192 193 static void put_buf(r1bio_t *r1_bio) 194 { 195 conf_t *conf = mddev_to_conf(r1_bio->mddev); 196 int i; 197 198 for (i=0; i<conf->raid_disks; i++) { 199 struct bio *bio = r1_bio->bios[i]; 200 if (bio->bi_end_io) 201 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev); 202 } 203 204 mempool_free(r1_bio, conf->r1buf_pool); 205 206 lower_barrier(conf); 207 } 208 209 static void reschedule_retry(r1bio_t *r1_bio) 210 { 211 unsigned long flags; 212 mddev_t *mddev = r1_bio->mddev; 213 conf_t *conf = mddev_to_conf(mddev); 214 215 spin_lock_irqsave(&conf->device_lock, flags); 216 list_add(&r1_bio->retry_list, &conf->retry_list); 217 conf->nr_queued ++; 218 spin_unlock_irqrestore(&conf->device_lock, flags); 219 220 wake_up(&conf->wait_barrier); 221 md_wakeup_thread(mddev->thread); 222 } 223 224 /* 225 * raid_end_bio_io() is called when we have finished servicing a mirrored 226 * operation and are ready to return a success/failure code to the buffer 227 * cache layer. 228 */ 229 static void raid_end_bio_io(r1bio_t *r1_bio) 230 { 231 struct bio *bio = r1_bio->master_bio; 232 233 /* if nobody has done the final endio yet, do it now */ 234 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) { 235 PRINTK(KERN_DEBUG "raid1: sync end %s on sectors %llu-%llu\n", 236 (bio_data_dir(bio) == WRITE) ? "write" : "read", 237 (unsigned long long) bio->bi_sector, 238 (unsigned long long) bio->bi_sector + 239 (bio->bi_size >> 9) - 1); 240 241 bio_endio(bio, 242 test_bit(R1BIO_Uptodate, &r1_bio->state) ? 0 : -EIO); 243 } 244 free_r1bio(r1_bio); 245 } 246 247 /* 248 * Update disk head position estimator based on IRQ completion info. 249 */ 250 static inline void update_head_pos(int disk, r1bio_t *r1_bio) 251 { 252 conf_t *conf = mddev_to_conf(r1_bio->mddev); 253 254 conf->mirrors[disk].head_position = 255 r1_bio->sector + (r1_bio->sectors); 256 } 257 258 static void raid1_end_read_request(struct bio *bio, int error) 259 { 260 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 261 r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private); 262 int mirror; 263 conf_t *conf = mddev_to_conf(r1_bio->mddev); 264 265 mirror = r1_bio->read_disk; 266 /* 267 * this branch is our 'one mirror IO has finished' event handler: 268 */ 269 update_head_pos(mirror, r1_bio); 270 271 if (uptodate) 272 set_bit(R1BIO_Uptodate, &r1_bio->state); 273 else { 274 /* If all other devices have failed, we want to return 275 * the error upwards rather than fail the last device. 276 * Here we redefine "uptodate" to mean "Don't want to retry" 277 */ 278 unsigned long flags; 279 spin_lock_irqsave(&conf->device_lock, flags); 280 if (r1_bio->mddev->degraded == conf->raid_disks || 281 (r1_bio->mddev->degraded == conf->raid_disks-1 && 282 !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags))) 283 uptodate = 1; 284 spin_unlock_irqrestore(&conf->device_lock, flags); 285 } 286 287 if (uptodate) 288 raid_end_bio_io(r1_bio); 289 else { 290 /* 291 * oops, read error: 292 */ 293 char b[BDEVNAME_SIZE]; 294 if (printk_ratelimit()) 295 printk(KERN_ERR "raid1: %s: rescheduling sector %llu\n", 296 bdevname(conf->mirrors[mirror].rdev->bdev,b), (unsigned long long)r1_bio->sector); 297 reschedule_retry(r1_bio); 298 } 299 300 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev); 301 } 302 303 static void raid1_end_write_request(struct bio *bio, int error) 304 { 305 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 306 r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private); 307 int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state); 308 conf_t *conf = mddev_to_conf(r1_bio->mddev); 309 struct bio *to_put = NULL; 310 311 312 for (mirror = 0; mirror < conf->raid_disks; mirror++) 313 if (r1_bio->bios[mirror] == bio) 314 break; 315 316 if (error == -EOPNOTSUPP && test_bit(R1BIO_Barrier, &r1_bio->state)) { 317 set_bit(BarriersNotsupp, &conf->mirrors[mirror].rdev->flags); 318 set_bit(R1BIO_BarrierRetry, &r1_bio->state); 319 r1_bio->mddev->barriers_work = 0; 320 /* Don't rdev_dec_pending in this branch - keep it for the retry */ 321 } else { 322 /* 323 * this branch is our 'one mirror IO has finished' event handler: 324 */ 325 r1_bio->bios[mirror] = NULL; 326 to_put = bio; 327 if (!uptodate) { 328 md_error(r1_bio->mddev, conf->mirrors[mirror].rdev); 329 /* an I/O failed, we can't clear the bitmap */ 330 set_bit(R1BIO_Degraded, &r1_bio->state); 331 } else 332 /* 333 * Set R1BIO_Uptodate in our master bio, so that 334 * we will return a good error code for to the higher 335 * levels even if IO on some other mirrored buffer fails. 336 * 337 * The 'master' represents the composite IO operation to 338 * user-side. So if something waits for IO, then it will 339 * wait for the 'master' bio. 340 */ 341 set_bit(R1BIO_Uptodate, &r1_bio->state); 342 343 update_head_pos(mirror, r1_bio); 344 345 if (behind) { 346 if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags)) 347 atomic_dec(&r1_bio->behind_remaining); 348 349 /* In behind mode, we ACK the master bio once the I/O has safely 350 * reached all non-writemostly disks. Setting the Returned bit 351 * ensures that this gets done only once -- we don't ever want to 352 * return -EIO here, instead we'll wait */ 353 354 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) && 355 test_bit(R1BIO_Uptodate, &r1_bio->state)) { 356 /* Maybe we can return now */ 357 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) { 358 struct bio *mbio = r1_bio->master_bio; 359 PRINTK(KERN_DEBUG "raid1: behind end write sectors %llu-%llu\n", 360 (unsigned long long) mbio->bi_sector, 361 (unsigned long long) mbio->bi_sector + 362 (mbio->bi_size >> 9) - 1); 363 bio_endio(mbio, 0); 364 } 365 } 366 } 367 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev); 368 } 369 /* 370 * 371 * Let's see if all mirrored write operations have finished 372 * already. 373 */ 374 if (atomic_dec_and_test(&r1_bio->remaining)) { 375 if (test_bit(R1BIO_BarrierRetry, &r1_bio->state)) 376 reschedule_retry(r1_bio); 377 else { 378 /* it really is the end of this request */ 379 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) { 380 /* free extra copy of the data pages */ 381 int i = bio->bi_vcnt; 382 while (i--) 383 safe_put_page(bio->bi_io_vec[i].bv_page); 384 } 385 /* clear the bitmap if all writes complete successfully */ 386 bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector, 387 r1_bio->sectors, 388 !test_bit(R1BIO_Degraded, &r1_bio->state), 389 behind); 390 md_write_end(r1_bio->mddev); 391 raid_end_bio_io(r1_bio); 392 } 393 } 394 395 if (to_put) 396 bio_put(to_put); 397 } 398 399 400 /* 401 * This routine returns the disk from which the requested read should 402 * be done. There is a per-array 'next expected sequential IO' sector 403 * number - if this matches on the next IO then we use the last disk. 404 * There is also a per-disk 'last know head position' sector that is 405 * maintained from IRQ contexts, both the normal and the resync IO 406 * completion handlers update this position correctly. If there is no 407 * perfect sequential match then we pick the disk whose head is closest. 408 * 409 * If there are 2 mirrors in the same 2 devices, performance degrades 410 * because position is mirror, not device based. 411 * 412 * The rdev for the device selected will have nr_pending incremented. 413 */ 414 static int read_balance(conf_t *conf, r1bio_t *r1_bio) 415 { 416 const unsigned long this_sector = r1_bio->sector; 417 int new_disk = conf->last_used, disk = new_disk; 418 int wonly_disk = -1; 419 const int sectors = r1_bio->sectors; 420 sector_t new_distance, current_distance; 421 mdk_rdev_t *rdev; 422 423 rcu_read_lock(); 424 /* 425 * Check if we can balance. We can balance on the whole 426 * device if no resync is going on, or below the resync window. 427 * We take the first readable disk when above the resync window. 428 */ 429 retry: 430 if (conf->mddev->recovery_cp < MaxSector && 431 (this_sector + sectors >= conf->next_resync)) { 432 /* Choose the first operation device, for consistancy */ 433 new_disk = 0; 434 435 for (rdev = rcu_dereference(conf->mirrors[new_disk].rdev); 436 r1_bio->bios[new_disk] == IO_BLOCKED || 437 !rdev || !test_bit(In_sync, &rdev->flags) 438 || test_bit(WriteMostly, &rdev->flags); 439 rdev = rcu_dereference(conf->mirrors[++new_disk].rdev)) { 440 441 if (rdev && test_bit(In_sync, &rdev->flags) && 442 r1_bio->bios[new_disk] != IO_BLOCKED) 443 wonly_disk = new_disk; 444 445 if (new_disk == conf->raid_disks - 1) { 446 new_disk = wonly_disk; 447 break; 448 } 449 } 450 goto rb_out; 451 } 452 453 454 /* make sure the disk is operational */ 455 for (rdev = rcu_dereference(conf->mirrors[new_disk].rdev); 456 r1_bio->bios[new_disk] == IO_BLOCKED || 457 !rdev || !test_bit(In_sync, &rdev->flags) || 458 test_bit(WriteMostly, &rdev->flags); 459 rdev = rcu_dereference(conf->mirrors[new_disk].rdev)) { 460 461 if (rdev && test_bit(In_sync, &rdev->flags) && 462 r1_bio->bios[new_disk] != IO_BLOCKED) 463 wonly_disk = new_disk; 464 465 if (new_disk <= 0) 466 new_disk = conf->raid_disks; 467 new_disk--; 468 if (new_disk == disk) { 469 new_disk = wonly_disk; 470 break; 471 } 472 } 473 474 if (new_disk < 0) 475 goto rb_out; 476 477 disk = new_disk; 478 /* now disk == new_disk == starting point for search */ 479 480 /* 481 * Don't change to another disk for sequential reads: 482 */ 483 if (conf->next_seq_sect == this_sector) 484 goto rb_out; 485 if (this_sector == conf->mirrors[new_disk].head_position) 486 goto rb_out; 487 488 current_distance = abs(this_sector - conf->mirrors[disk].head_position); 489 490 /* Find the disk whose head is closest */ 491 492 do { 493 if (disk <= 0) 494 disk = conf->raid_disks; 495 disk--; 496 497 rdev = rcu_dereference(conf->mirrors[disk].rdev); 498 499 if (!rdev || r1_bio->bios[disk] == IO_BLOCKED || 500 !test_bit(In_sync, &rdev->flags) || 501 test_bit(WriteMostly, &rdev->flags)) 502 continue; 503 504 if (!atomic_read(&rdev->nr_pending)) { 505 new_disk = disk; 506 break; 507 } 508 new_distance = abs(this_sector - conf->mirrors[disk].head_position); 509 if (new_distance < current_distance) { 510 current_distance = new_distance; 511 new_disk = disk; 512 } 513 } while (disk != conf->last_used); 514 515 rb_out: 516 517 518 if (new_disk >= 0) { 519 rdev = rcu_dereference(conf->mirrors[new_disk].rdev); 520 if (!rdev) 521 goto retry; 522 atomic_inc(&rdev->nr_pending); 523 if (!test_bit(In_sync, &rdev->flags)) { 524 /* cannot risk returning a device that failed 525 * before we inc'ed nr_pending 526 */ 527 rdev_dec_pending(rdev, conf->mddev); 528 goto retry; 529 } 530 conf->next_seq_sect = this_sector + sectors; 531 conf->last_used = new_disk; 532 } 533 rcu_read_unlock(); 534 535 return new_disk; 536 } 537 538 static void unplug_slaves(mddev_t *mddev) 539 { 540 conf_t *conf = mddev_to_conf(mddev); 541 int i; 542 543 rcu_read_lock(); 544 for (i=0; i<mddev->raid_disks; i++) { 545 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev); 546 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) { 547 struct request_queue *r_queue = bdev_get_queue(rdev->bdev); 548 549 atomic_inc(&rdev->nr_pending); 550 rcu_read_unlock(); 551 552 blk_unplug(r_queue); 553 554 rdev_dec_pending(rdev, mddev); 555 rcu_read_lock(); 556 } 557 } 558 rcu_read_unlock(); 559 } 560 561 static void raid1_unplug(struct request_queue *q) 562 { 563 mddev_t *mddev = q->queuedata; 564 565 unplug_slaves(mddev); 566 md_wakeup_thread(mddev->thread); 567 } 568 569 static int raid1_congested(void *data, int bits) 570 { 571 mddev_t *mddev = data; 572 conf_t *conf = mddev_to_conf(mddev); 573 int i, ret = 0; 574 575 rcu_read_lock(); 576 for (i = 0; i < mddev->raid_disks; i++) { 577 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev); 578 if (rdev && !test_bit(Faulty, &rdev->flags)) { 579 struct request_queue *q = bdev_get_queue(rdev->bdev); 580 581 /* Note the '|| 1' - when read_balance prefers 582 * non-congested targets, it can be removed 583 */ 584 if ((bits & (1<<BDI_write_congested)) || 1) 585 ret |= bdi_congested(&q->backing_dev_info, bits); 586 else 587 ret &= bdi_congested(&q->backing_dev_info, bits); 588 } 589 } 590 rcu_read_unlock(); 591 return ret; 592 } 593 594 595 static int flush_pending_writes(conf_t *conf) 596 { 597 /* Any writes that have been queued but are awaiting 598 * bitmap updates get flushed here. 599 * We return 1 if any requests were actually submitted. 600 */ 601 int rv = 0; 602 603 spin_lock_irq(&conf->device_lock); 604 605 if (conf->pending_bio_list.head) { 606 struct bio *bio; 607 bio = bio_list_get(&conf->pending_bio_list); 608 blk_remove_plug(conf->mddev->queue); 609 spin_unlock_irq(&conf->device_lock); 610 /* flush any pending bitmap writes to 611 * disk before proceeding w/ I/O */ 612 bitmap_unplug(conf->mddev->bitmap); 613 614 while (bio) { /* submit pending writes */ 615 struct bio *next = bio->bi_next; 616 bio->bi_next = NULL; 617 generic_make_request(bio); 618 bio = next; 619 } 620 rv = 1; 621 } else 622 spin_unlock_irq(&conf->device_lock); 623 return rv; 624 } 625 626 /* Barriers.... 627 * Sometimes we need to suspend IO while we do something else, 628 * either some resync/recovery, or reconfigure the array. 629 * To do this we raise a 'barrier'. 630 * The 'barrier' is a counter that can be raised multiple times 631 * to count how many activities are happening which preclude 632 * normal IO. 633 * We can only raise the barrier if there is no pending IO. 634 * i.e. if nr_pending == 0. 635 * We choose only to raise the barrier if no-one is waiting for the 636 * barrier to go down. This means that as soon as an IO request 637 * is ready, no other operations which require a barrier will start 638 * until the IO request has had a chance. 639 * 640 * So: regular IO calls 'wait_barrier'. When that returns there 641 * is no backgroup IO happening, It must arrange to call 642 * allow_barrier when it has finished its IO. 643 * backgroup IO calls must call raise_barrier. Once that returns 644 * there is no normal IO happeing. It must arrange to call 645 * lower_barrier when the particular background IO completes. 646 */ 647 #define RESYNC_DEPTH 32 648 649 static void raise_barrier(conf_t *conf) 650 { 651 spin_lock_irq(&conf->resync_lock); 652 653 /* Wait until no block IO is waiting */ 654 wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting, 655 conf->resync_lock, 656 raid1_unplug(conf->mddev->queue)); 657 658 /* block any new IO from starting */ 659 conf->barrier++; 660 661 /* No wait for all pending IO to complete */ 662 wait_event_lock_irq(conf->wait_barrier, 663 !conf->nr_pending && conf->barrier < RESYNC_DEPTH, 664 conf->resync_lock, 665 raid1_unplug(conf->mddev->queue)); 666 667 spin_unlock_irq(&conf->resync_lock); 668 } 669 670 static void lower_barrier(conf_t *conf) 671 { 672 unsigned long flags; 673 spin_lock_irqsave(&conf->resync_lock, flags); 674 conf->barrier--; 675 spin_unlock_irqrestore(&conf->resync_lock, flags); 676 wake_up(&conf->wait_barrier); 677 } 678 679 static void wait_barrier(conf_t *conf) 680 { 681 spin_lock_irq(&conf->resync_lock); 682 if (conf->barrier) { 683 conf->nr_waiting++; 684 wait_event_lock_irq(conf->wait_barrier, !conf->barrier, 685 conf->resync_lock, 686 raid1_unplug(conf->mddev->queue)); 687 conf->nr_waiting--; 688 } 689 conf->nr_pending++; 690 spin_unlock_irq(&conf->resync_lock); 691 } 692 693 static void allow_barrier(conf_t *conf) 694 { 695 unsigned long flags; 696 spin_lock_irqsave(&conf->resync_lock, flags); 697 conf->nr_pending--; 698 spin_unlock_irqrestore(&conf->resync_lock, flags); 699 wake_up(&conf->wait_barrier); 700 } 701 702 static void freeze_array(conf_t *conf) 703 { 704 /* stop syncio and normal IO and wait for everything to 705 * go quite. 706 * We increment barrier and nr_waiting, and then 707 * wait until nr_pending match nr_queued+1 708 * This is called in the context of one normal IO request 709 * that has failed. Thus any sync request that might be pending 710 * will be blocked by nr_pending, and we need to wait for 711 * pending IO requests to complete or be queued for re-try. 712 * Thus the number queued (nr_queued) plus this request (1) 713 * must match the number of pending IOs (nr_pending) before 714 * we continue. 715 */ 716 spin_lock_irq(&conf->resync_lock); 717 conf->barrier++; 718 conf->nr_waiting++; 719 wait_event_lock_irq(conf->wait_barrier, 720 conf->nr_pending == conf->nr_queued+1, 721 conf->resync_lock, 722 ({ flush_pending_writes(conf); 723 raid1_unplug(conf->mddev->queue); })); 724 spin_unlock_irq(&conf->resync_lock); 725 } 726 static void unfreeze_array(conf_t *conf) 727 { 728 /* reverse the effect of the freeze */ 729 spin_lock_irq(&conf->resync_lock); 730 conf->barrier--; 731 conf->nr_waiting--; 732 wake_up(&conf->wait_barrier); 733 spin_unlock_irq(&conf->resync_lock); 734 } 735 736 737 /* duplicate the data pages for behind I/O */ 738 static struct page **alloc_behind_pages(struct bio *bio) 739 { 740 int i; 741 struct bio_vec *bvec; 742 struct page **pages = kzalloc(bio->bi_vcnt * sizeof(struct page *), 743 GFP_NOIO); 744 if (unlikely(!pages)) 745 goto do_sync_io; 746 747 bio_for_each_segment(bvec, bio, i) { 748 pages[i] = alloc_page(GFP_NOIO); 749 if (unlikely(!pages[i])) 750 goto do_sync_io; 751 memcpy(kmap(pages[i]) + bvec->bv_offset, 752 kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len); 753 kunmap(pages[i]); 754 kunmap(bvec->bv_page); 755 } 756 757 return pages; 758 759 do_sync_io: 760 if (pages) 761 for (i = 0; i < bio->bi_vcnt && pages[i]; i++) 762 put_page(pages[i]); 763 kfree(pages); 764 PRINTK("%dB behind alloc failed, doing sync I/O\n", bio->bi_size); 765 return NULL; 766 } 767 768 static int make_request(struct request_queue *q, struct bio * bio) 769 { 770 mddev_t *mddev = q->queuedata; 771 conf_t *conf = mddev_to_conf(mddev); 772 mirror_info_t *mirror; 773 r1bio_t *r1_bio; 774 struct bio *read_bio; 775 int i, targets = 0, disks; 776 mdk_rdev_t *rdev; 777 struct bitmap *bitmap = mddev->bitmap; 778 unsigned long flags; 779 struct bio_list bl; 780 struct page **behind_pages = NULL; 781 const int rw = bio_data_dir(bio); 782 const int do_sync = bio_sync(bio); 783 int do_barriers; 784 785 /* 786 * Register the new request and wait if the reconstruction 787 * thread has put up a bar for new requests. 788 * Continue immediately if no resync is active currently. 789 * We test barriers_work *after* md_write_start as md_write_start 790 * may cause the first superblock write, and that will check out 791 * if barriers work. 792 */ 793 794 md_write_start(mddev, bio); /* wait on superblock update early */ 795 796 if (unlikely(!mddev->barriers_work && bio_barrier(bio))) { 797 if (rw == WRITE) 798 md_write_end(mddev); 799 bio_endio(bio, -EOPNOTSUPP); 800 return 0; 801 } 802 803 wait_barrier(conf); 804 805 disk_stat_inc(mddev->gendisk, ios[rw]); 806 disk_stat_add(mddev->gendisk, sectors[rw], bio_sectors(bio)); 807 808 /* 809 * make_request() can abort the operation when READA is being 810 * used and no empty request is available. 811 * 812 */ 813 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO); 814 815 r1_bio->master_bio = bio; 816 r1_bio->sectors = bio->bi_size >> 9; 817 r1_bio->state = 0; 818 r1_bio->mddev = mddev; 819 r1_bio->sector = bio->bi_sector; 820 821 if (rw == READ) { 822 /* 823 * read balancing logic: 824 */ 825 int rdisk = read_balance(conf, r1_bio); 826 827 if (rdisk < 0) { 828 /* couldn't find anywhere to read from */ 829 raid_end_bio_io(r1_bio); 830 return 0; 831 } 832 mirror = conf->mirrors + rdisk; 833 834 r1_bio->read_disk = rdisk; 835 836 read_bio = bio_clone(bio, GFP_NOIO); 837 838 r1_bio->bios[rdisk] = read_bio; 839 840 read_bio->bi_sector = r1_bio->sector + mirror->rdev->data_offset; 841 read_bio->bi_bdev = mirror->rdev->bdev; 842 read_bio->bi_end_io = raid1_end_read_request; 843 read_bio->bi_rw = READ | do_sync; 844 read_bio->bi_private = r1_bio; 845 846 generic_make_request(read_bio); 847 return 0; 848 } 849 850 /* 851 * WRITE: 852 */ 853 /* first select target devices under spinlock and 854 * inc refcount on their rdev. Record them by setting 855 * bios[x] to bio 856 */ 857 disks = conf->raid_disks; 858 #if 0 859 { static int first=1; 860 if (first) printk("First Write sector %llu disks %d\n", 861 (unsigned long long)r1_bio->sector, disks); 862 first = 0; 863 } 864 #endif 865 rcu_read_lock(); 866 for (i = 0; i < disks; i++) { 867 if ((rdev=rcu_dereference(conf->mirrors[i].rdev)) != NULL && 868 !test_bit(Faulty, &rdev->flags)) { 869 atomic_inc(&rdev->nr_pending); 870 if (test_bit(Faulty, &rdev->flags)) { 871 rdev_dec_pending(rdev, mddev); 872 r1_bio->bios[i] = NULL; 873 } else 874 r1_bio->bios[i] = bio; 875 targets++; 876 } else 877 r1_bio->bios[i] = NULL; 878 } 879 rcu_read_unlock(); 880 881 BUG_ON(targets == 0); /* we never fail the last device */ 882 883 if (targets < conf->raid_disks) { 884 /* array is degraded, we will not clear the bitmap 885 * on I/O completion (see raid1_end_write_request) */ 886 set_bit(R1BIO_Degraded, &r1_bio->state); 887 } 888 889 /* do behind I/O ? */ 890 if (bitmap && 891 atomic_read(&bitmap->behind_writes) < bitmap->max_write_behind && 892 (behind_pages = alloc_behind_pages(bio)) != NULL) 893 set_bit(R1BIO_BehindIO, &r1_bio->state); 894 895 atomic_set(&r1_bio->remaining, 0); 896 atomic_set(&r1_bio->behind_remaining, 0); 897 898 do_barriers = bio_barrier(bio); 899 if (do_barriers) 900 set_bit(R1BIO_Barrier, &r1_bio->state); 901 902 bio_list_init(&bl); 903 for (i = 0; i < disks; i++) { 904 struct bio *mbio; 905 if (!r1_bio->bios[i]) 906 continue; 907 908 mbio = bio_clone(bio, GFP_NOIO); 909 r1_bio->bios[i] = mbio; 910 911 mbio->bi_sector = r1_bio->sector + conf->mirrors[i].rdev->data_offset; 912 mbio->bi_bdev = conf->mirrors[i].rdev->bdev; 913 mbio->bi_end_io = raid1_end_write_request; 914 mbio->bi_rw = WRITE | do_barriers | do_sync; 915 mbio->bi_private = r1_bio; 916 917 if (behind_pages) { 918 struct bio_vec *bvec; 919 int j; 920 921 /* Yes, I really want the '__' version so that 922 * we clear any unused pointer in the io_vec, rather 923 * than leave them unchanged. This is important 924 * because when we come to free the pages, we won't 925 * know the originial bi_idx, so we just free 926 * them all 927 */ 928 __bio_for_each_segment(bvec, mbio, j, 0) 929 bvec->bv_page = behind_pages[j]; 930 if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags)) 931 atomic_inc(&r1_bio->behind_remaining); 932 } 933 934 atomic_inc(&r1_bio->remaining); 935 936 bio_list_add(&bl, mbio); 937 } 938 kfree(behind_pages); /* the behind pages are attached to the bios now */ 939 940 bitmap_startwrite(bitmap, bio->bi_sector, r1_bio->sectors, 941 test_bit(R1BIO_BehindIO, &r1_bio->state)); 942 spin_lock_irqsave(&conf->device_lock, flags); 943 bio_list_merge(&conf->pending_bio_list, &bl); 944 bio_list_init(&bl); 945 946 blk_plug_device(mddev->queue); 947 spin_unlock_irqrestore(&conf->device_lock, flags); 948 949 /* In case raid1d snuck into freeze_array */ 950 wake_up(&conf->wait_barrier); 951 952 if (do_sync) 953 md_wakeup_thread(mddev->thread); 954 #if 0 955 while ((bio = bio_list_pop(&bl)) != NULL) 956 generic_make_request(bio); 957 #endif 958 959 return 0; 960 } 961 962 static void status(struct seq_file *seq, mddev_t *mddev) 963 { 964 conf_t *conf = mddev_to_conf(mddev); 965 int i; 966 967 seq_printf(seq, " [%d/%d] [", conf->raid_disks, 968 conf->raid_disks - mddev->degraded); 969 rcu_read_lock(); 970 for (i = 0; i < conf->raid_disks; i++) { 971 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev); 972 seq_printf(seq, "%s", 973 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_"); 974 } 975 rcu_read_unlock(); 976 seq_printf(seq, "]"); 977 } 978 979 980 static void error(mddev_t *mddev, mdk_rdev_t *rdev) 981 { 982 char b[BDEVNAME_SIZE]; 983 conf_t *conf = mddev_to_conf(mddev); 984 985 /* 986 * If it is not operational, then we have already marked it as dead 987 * else if it is the last working disks, ignore the error, let the 988 * next level up know. 989 * else mark the drive as failed 990 */ 991 if (test_bit(In_sync, &rdev->flags) 992 && (conf->raid_disks - mddev->degraded) == 1) 993 /* 994 * Don't fail the drive, act as though we were just a 995 * normal single drive 996 */ 997 return; 998 if (test_and_clear_bit(In_sync, &rdev->flags)) { 999 unsigned long flags; 1000 spin_lock_irqsave(&conf->device_lock, flags); 1001 mddev->degraded++; 1002 set_bit(Faulty, &rdev->flags); 1003 spin_unlock_irqrestore(&conf->device_lock, flags); 1004 /* 1005 * if recovery is running, make sure it aborts. 1006 */ 1007 set_bit(MD_RECOVERY_ERR, &mddev->recovery); 1008 } else 1009 set_bit(Faulty, &rdev->flags); 1010 set_bit(MD_CHANGE_DEVS, &mddev->flags); 1011 printk(KERN_ALERT "raid1: Disk failure on %s, disabling device. \n" 1012 " Operation continuing on %d devices\n", 1013 bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded); 1014 } 1015 1016 static void print_conf(conf_t *conf) 1017 { 1018 int i; 1019 1020 printk("RAID1 conf printout:\n"); 1021 if (!conf) { 1022 printk("(!conf)\n"); 1023 return; 1024 } 1025 printk(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded, 1026 conf->raid_disks); 1027 1028 rcu_read_lock(); 1029 for (i = 0; i < conf->raid_disks; i++) { 1030 char b[BDEVNAME_SIZE]; 1031 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev); 1032 if (rdev) 1033 printk(" disk %d, wo:%d, o:%d, dev:%s\n", 1034 i, !test_bit(In_sync, &rdev->flags), 1035 !test_bit(Faulty, &rdev->flags), 1036 bdevname(rdev->bdev,b)); 1037 } 1038 rcu_read_unlock(); 1039 } 1040 1041 static void close_sync(conf_t *conf) 1042 { 1043 wait_barrier(conf); 1044 allow_barrier(conf); 1045 1046 mempool_destroy(conf->r1buf_pool); 1047 conf->r1buf_pool = NULL; 1048 } 1049 1050 static int raid1_spare_active(mddev_t *mddev) 1051 { 1052 int i; 1053 conf_t *conf = mddev->private; 1054 1055 /* 1056 * Find all failed disks within the RAID1 configuration 1057 * and mark them readable. 1058 * Called under mddev lock, so rcu protection not needed. 1059 */ 1060 for (i = 0; i < conf->raid_disks; i++) { 1061 mdk_rdev_t *rdev = conf->mirrors[i].rdev; 1062 if (rdev 1063 && !test_bit(Faulty, &rdev->flags) 1064 && !test_and_set_bit(In_sync, &rdev->flags)) { 1065 unsigned long flags; 1066 spin_lock_irqsave(&conf->device_lock, flags); 1067 mddev->degraded--; 1068 spin_unlock_irqrestore(&conf->device_lock, flags); 1069 } 1070 } 1071 1072 print_conf(conf); 1073 return 0; 1074 } 1075 1076 1077 static int raid1_add_disk(mddev_t *mddev, mdk_rdev_t *rdev) 1078 { 1079 conf_t *conf = mddev->private; 1080 int found = 0; 1081 int mirror = 0; 1082 mirror_info_t *p; 1083 1084 for (mirror=0; mirror < mddev->raid_disks; mirror++) 1085 if ( !(p=conf->mirrors+mirror)->rdev) { 1086 1087 blk_queue_stack_limits(mddev->queue, 1088 rdev->bdev->bd_disk->queue); 1089 /* as we don't honour merge_bvec_fn, we must never risk 1090 * violating it, so limit ->max_sector to one PAGE, as 1091 * a one page request is never in violation. 1092 */ 1093 if (rdev->bdev->bd_disk->queue->merge_bvec_fn && 1094 mddev->queue->max_sectors > (PAGE_SIZE>>9)) 1095 blk_queue_max_sectors(mddev->queue, PAGE_SIZE>>9); 1096 1097 p->head_position = 0; 1098 rdev->raid_disk = mirror; 1099 found = 1; 1100 /* As all devices are equivalent, we don't need a full recovery 1101 * if this was recently any drive of the array 1102 */ 1103 if (rdev->saved_raid_disk < 0) 1104 conf->fullsync = 1; 1105 rcu_assign_pointer(p->rdev, rdev); 1106 break; 1107 } 1108 1109 print_conf(conf); 1110 return found; 1111 } 1112 1113 static int raid1_remove_disk(mddev_t *mddev, int number) 1114 { 1115 conf_t *conf = mddev->private; 1116 int err = 0; 1117 mdk_rdev_t *rdev; 1118 mirror_info_t *p = conf->mirrors+ number; 1119 1120 print_conf(conf); 1121 rdev = p->rdev; 1122 if (rdev) { 1123 if (test_bit(In_sync, &rdev->flags) || 1124 atomic_read(&rdev->nr_pending)) { 1125 err = -EBUSY; 1126 goto abort; 1127 } 1128 p->rdev = NULL; 1129 synchronize_rcu(); 1130 if (atomic_read(&rdev->nr_pending)) { 1131 /* lost the race, try later */ 1132 err = -EBUSY; 1133 p->rdev = rdev; 1134 } 1135 } 1136 abort: 1137 1138 print_conf(conf); 1139 return err; 1140 } 1141 1142 1143 static void end_sync_read(struct bio *bio, int error) 1144 { 1145 r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private); 1146 int i; 1147 1148 for (i=r1_bio->mddev->raid_disks; i--; ) 1149 if (r1_bio->bios[i] == bio) 1150 break; 1151 BUG_ON(i < 0); 1152 update_head_pos(i, r1_bio); 1153 /* 1154 * we have read a block, now it needs to be re-written, 1155 * or re-read if the read failed. 1156 * We don't do much here, just schedule handling by raid1d 1157 */ 1158 if (test_bit(BIO_UPTODATE, &bio->bi_flags)) 1159 set_bit(R1BIO_Uptodate, &r1_bio->state); 1160 1161 if (atomic_dec_and_test(&r1_bio->remaining)) 1162 reschedule_retry(r1_bio); 1163 } 1164 1165 static void end_sync_write(struct bio *bio, int error) 1166 { 1167 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 1168 r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private); 1169 mddev_t *mddev = r1_bio->mddev; 1170 conf_t *conf = mddev_to_conf(mddev); 1171 int i; 1172 int mirror=0; 1173 1174 for (i = 0; i < conf->raid_disks; i++) 1175 if (r1_bio->bios[i] == bio) { 1176 mirror = i; 1177 break; 1178 } 1179 if (!uptodate) { 1180 int sync_blocks = 0; 1181 sector_t s = r1_bio->sector; 1182 long sectors_to_go = r1_bio->sectors; 1183 /* make sure these bits doesn't get cleared. */ 1184 do { 1185 bitmap_end_sync(mddev->bitmap, s, 1186 &sync_blocks, 1); 1187 s += sync_blocks; 1188 sectors_to_go -= sync_blocks; 1189 } while (sectors_to_go > 0); 1190 md_error(mddev, conf->mirrors[mirror].rdev); 1191 } 1192 1193 update_head_pos(mirror, r1_bio); 1194 1195 if (atomic_dec_and_test(&r1_bio->remaining)) { 1196 md_done_sync(mddev, r1_bio->sectors, uptodate); 1197 put_buf(r1_bio); 1198 } 1199 } 1200 1201 static void sync_request_write(mddev_t *mddev, r1bio_t *r1_bio) 1202 { 1203 conf_t *conf = mddev_to_conf(mddev); 1204 int i; 1205 int disks = conf->raid_disks; 1206 struct bio *bio, *wbio; 1207 1208 bio = r1_bio->bios[r1_bio->read_disk]; 1209 1210 1211 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 1212 /* We have read all readable devices. If we haven't 1213 * got the block, then there is no hope left. 1214 * If we have, then we want to do a comparison 1215 * and skip the write if everything is the same. 1216 * If any blocks failed to read, then we need to 1217 * attempt an over-write 1218 */ 1219 int primary; 1220 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) { 1221 for (i=0; i<mddev->raid_disks; i++) 1222 if (r1_bio->bios[i]->bi_end_io == end_sync_read) 1223 md_error(mddev, conf->mirrors[i].rdev); 1224 1225 md_done_sync(mddev, r1_bio->sectors, 1); 1226 put_buf(r1_bio); 1227 return; 1228 } 1229 for (primary=0; primary<mddev->raid_disks; primary++) 1230 if (r1_bio->bios[primary]->bi_end_io == end_sync_read && 1231 test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) { 1232 r1_bio->bios[primary]->bi_end_io = NULL; 1233 rdev_dec_pending(conf->mirrors[primary].rdev, mddev); 1234 break; 1235 } 1236 r1_bio->read_disk = primary; 1237 for (i=0; i<mddev->raid_disks; i++) 1238 if (r1_bio->bios[i]->bi_end_io == end_sync_read) { 1239 int j; 1240 int vcnt = r1_bio->sectors >> (PAGE_SHIFT- 9); 1241 struct bio *pbio = r1_bio->bios[primary]; 1242 struct bio *sbio = r1_bio->bios[i]; 1243 1244 if (test_bit(BIO_UPTODATE, &sbio->bi_flags)) { 1245 for (j = vcnt; j-- ; ) { 1246 struct page *p, *s; 1247 p = pbio->bi_io_vec[j].bv_page; 1248 s = sbio->bi_io_vec[j].bv_page; 1249 if (memcmp(page_address(p), 1250 page_address(s), 1251 PAGE_SIZE)) 1252 break; 1253 } 1254 } else 1255 j = 0; 1256 if (j >= 0) 1257 mddev->resync_mismatches += r1_bio->sectors; 1258 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery) 1259 && test_bit(BIO_UPTODATE, &sbio->bi_flags))) { 1260 sbio->bi_end_io = NULL; 1261 rdev_dec_pending(conf->mirrors[i].rdev, mddev); 1262 } else { 1263 /* fixup the bio for reuse */ 1264 sbio->bi_vcnt = vcnt; 1265 sbio->bi_size = r1_bio->sectors << 9; 1266 sbio->bi_idx = 0; 1267 sbio->bi_phys_segments = 0; 1268 sbio->bi_hw_segments = 0; 1269 sbio->bi_hw_front_size = 0; 1270 sbio->bi_hw_back_size = 0; 1271 sbio->bi_flags &= ~(BIO_POOL_MASK - 1); 1272 sbio->bi_flags |= 1 << BIO_UPTODATE; 1273 sbio->bi_next = NULL; 1274 sbio->bi_sector = r1_bio->sector + 1275 conf->mirrors[i].rdev->data_offset; 1276 sbio->bi_bdev = conf->mirrors[i].rdev->bdev; 1277 for (j = 0; j < vcnt ; j++) 1278 memcpy(page_address(sbio->bi_io_vec[j].bv_page), 1279 page_address(pbio->bi_io_vec[j].bv_page), 1280 PAGE_SIZE); 1281 1282 } 1283 } 1284 } 1285 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) { 1286 /* ouch - failed to read all of that. 1287 * Try some synchronous reads of other devices to get 1288 * good data, much like with normal read errors. Only 1289 * read into the pages we already have so we don't 1290 * need to re-issue the read request. 1291 * We don't need to freeze the array, because being in an 1292 * active sync request, there is no normal IO, and 1293 * no overlapping syncs. 1294 */ 1295 sector_t sect = r1_bio->sector; 1296 int sectors = r1_bio->sectors; 1297 int idx = 0; 1298 1299 while(sectors) { 1300 int s = sectors; 1301 int d = r1_bio->read_disk; 1302 int success = 0; 1303 mdk_rdev_t *rdev; 1304 1305 if (s > (PAGE_SIZE>>9)) 1306 s = PAGE_SIZE >> 9; 1307 do { 1308 if (r1_bio->bios[d]->bi_end_io == end_sync_read) { 1309 /* No rcu protection needed here devices 1310 * can only be removed when no resync is 1311 * active, and resync is currently active 1312 */ 1313 rdev = conf->mirrors[d].rdev; 1314 if (sync_page_io(rdev->bdev, 1315 sect + rdev->data_offset, 1316 s<<9, 1317 bio->bi_io_vec[idx].bv_page, 1318 READ)) { 1319 success = 1; 1320 break; 1321 } 1322 } 1323 d++; 1324 if (d == conf->raid_disks) 1325 d = 0; 1326 } while (!success && d != r1_bio->read_disk); 1327 1328 if (success) { 1329 int start = d; 1330 /* write it back and re-read */ 1331 set_bit(R1BIO_Uptodate, &r1_bio->state); 1332 while (d != r1_bio->read_disk) { 1333 if (d == 0) 1334 d = conf->raid_disks; 1335 d--; 1336 if (r1_bio->bios[d]->bi_end_io != end_sync_read) 1337 continue; 1338 rdev = conf->mirrors[d].rdev; 1339 atomic_add(s, &rdev->corrected_errors); 1340 if (sync_page_io(rdev->bdev, 1341 sect + rdev->data_offset, 1342 s<<9, 1343 bio->bi_io_vec[idx].bv_page, 1344 WRITE) == 0) 1345 md_error(mddev, rdev); 1346 } 1347 d = start; 1348 while (d != r1_bio->read_disk) { 1349 if (d == 0) 1350 d = conf->raid_disks; 1351 d--; 1352 if (r1_bio->bios[d]->bi_end_io != end_sync_read) 1353 continue; 1354 rdev = conf->mirrors[d].rdev; 1355 if (sync_page_io(rdev->bdev, 1356 sect + rdev->data_offset, 1357 s<<9, 1358 bio->bi_io_vec[idx].bv_page, 1359 READ) == 0) 1360 md_error(mddev, rdev); 1361 } 1362 } else { 1363 char b[BDEVNAME_SIZE]; 1364 /* Cannot read from anywhere, array is toast */ 1365 md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev); 1366 printk(KERN_ALERT "raid1: %s: unrecoverable I/O read error" 1367 " for block %llu\n", 1368 bdevname(bio->bi_bdev,b), 1369 (unsigned long long)r1_bio->sector); 1370 md_done_sync(mddev, r1_bio->sectors, 0); 1371 put_buf(r1_bio); 1372 return; 1373 } 1374 sectors -= s; 1375 sect += s; 1376 idx ++; 1377 } 1378 } 1379 1380 /* 1381 * schedule writes 1382 */ 1383 atomic_set(&r1_bio->remaining, 1); 1384 for (i = 0; i < disks ; i++) { 1385 wbio = r1_bio->bios[i]; 1386 if (wbio->bi_end_io == NULL || 1387 (wbio->bi_end_io == end_sync_read && 1388 (i == r1_bio->read_disk || 1389 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery)))) 1390 continue; 1391 1392 wbio->bi_rw = WRITE; 1393 wbio->bi_end_io = end_sync_write; 1394 atomic_inc(&r1_bio->remaining); 1395 md_sync_acct(conf->mirrors[i].rdev->bdev, wbio->bi_size >> 9); 1396 1397 generic_make_request(wbio); 1398 } 1399 1400 if (atomic_dec_and_test(&r1_bio->remaining)) { 1401 /* if we're here, all write(s) have completed, so clean up */ 1402 md_done_sync(mddev, r1_bio->sectors, 1); 1403 put_buf(r1_bio); 1404 } 1405 } 1406 1407 /* 1408 * This is a kernel thread which: 1409 * 1410 * 1. Retries failed read operations on working mirrors. 1411 * 2. Updates the raid superblock when problems encounter. 1412 * 3. Performs writes following reads for array syncronising. 1413 */ 1414 1415 static void fix_read_error(conf_t *conf, int read_disk, 1416 sector_t sect, int sectors) 1417 { 1418 mddev_t *mddev = conf->mddev; 1419 while(sectors) { 1420 int s = sectors; 1421 int d = read_disk; 1422 int success = 0; 1423 int start; 1424 mdk_rdev_t *rdev; 1425 1426 if (s > (PAGE_SIZE>>9)) 1427 s = PAGE_SIZE >> 9; 1428 1429 do { 1430 /* Note: no rcu protection needed here 1431 * as this is synchronous in the raid1d thread 1432 * which is the thread that might remove 1433 * a device. If raid1d ever becomes multi-threaded.... 1434 */ 1435 rdev = conf->mirrors[d].rdev; 1436 if (rdev && 1437 test_bit(In_sync, &rdev->flags) && 1438 sync_page_io(rdev->bdev, 1439 sect + rdev->data_offset, 1440 s<<9, 1441 conf->tmppage, READ)) 1442 success = 1; 1443 else { 1444 d++; 1445 if (d == conf->raid_disks) 1446 d = 0; 1447 } 1448 } while (!success && d != read_disk); 1449 1450 if (!success) { 1451 /* Cannot read from anywhere -- bye bye array */ 1452 md_error(mddev, conf->mirrors[read_disk].rdev); 1453 break; 1454 } 1455 /* write it back and re-read */ 1456 start = d; 1457 while (d != read_disk) { 1458 if (d==0) 1459 d = conf->raid_disks; 1460 d--; 1461 rdev = conf->mirrors[d].rdev; 1462 if (rdev && 1463 test_bit(In_sync, &rdev->flags)) { 1464 if (sync_page_io(rdev->bdev, 1465 sect + rdev->data_offset, 1466 s<<9, conf->tmppage, WRITE) 1467 == 0) 1468 /* Well, this device is dead */ 1469 md_error(mddev, rdev); 1470 } 1471 } 1472 d = start; 1473 while (d != read_disk) { 1474 char b[BDEVNAME_SIZE]; 1475 if (d==0) 1476 d = conf->raid_disks; 1477 d--; 1478 rdev = conf->mirrors[d].rdev; 1479 if (rdev && 1480 test_bit(In_sync, &rdev->flags)) { 1481 if (sync_page_io(rdev->bdev, 1482 sect + rdev->data_offset, 1483 s<<9, conf->tmppage, READ) 1484 == 0) 1485 /* Well, this device is dead */ 1486 md_error(mddev, rdev); 1487 else { 1488 atomic_add(s, &rdev->corrected_errors); 1489 printk(KERN_INFO 1490 "raid1:%s: read error corrected " 1491 "(%d sectors at %llu on %s)\n", 1492 mdname(mddev), s, 1493 (unsigned long long)(sect + 1494 rdev->data_offset), 1495 bdevname(rdev->bdev, b)); 1496 } 1497 } 1498 } 1499 sectors -= s; 1500 sect += s; 1501 } 1502 } 1503 1504 static void raid1d(mddev_t *mddev) 1505 { 1506 r1bio_t *r1_bio; 1507 struct bio *bio; 1508 unsigned long flags; 1509 conf_t *conf = mddev_to_conf(mddev); 1510 struct list_head *head = &conf->retry_list; 1511 int unplug=0; 1512 mdk_rdev_t *rdev; 1513 1514 md_check_recovery(mddev); 1515 1516 for (;;) { 1517 char b[BDEVNAME_SIZE]; 1518 1519 unplug += flush_pending_writes(conf); 1520 1521 spin_lock_irqsave(&conf->device_lock, flags); 1522 if (list_empty(head)) { 1523 spin_unlock_irqrestore(&conf->device_lock, flags); 1524 break; 1525 } 1526 r1_bio = list_entry(head->prev, r1bio_t, retry_list); 1527 list_del(head->prev); 1528 conf->nr_queued--; 1529 spin_unlock_irqrestore(&conf->device_lock, flags); 1530 1531 mddev = r1_bio->mddev; 1532 conf = mddev_to_conf(mddev); 1533 if (test_bit(R1BIO_IsSync, &r1_bio->state)) { 1534 sync_request_write(mddev, r1_bio); 1535 unplug = 1; 1536 } else if (test_bit(R1BIO_BarrierRetry, &r1_bio->state)) { 1537 /* some requests in the r1bio were BIO_RW_BARRIER 1538 * requests which failed with -EOPNOTSUPP. Hohumm.. 1539 * Better resubmit without the barrier. 1540 * We know which devices to resubmit for, because 1541 * all others have had their bios[] entry cleared. 1542 * We already have a nr_pending reference on these rdevs. 1543 */ 1544 int i; 1545 const int do_sync = bio_sync(r1_bio->master_bio); 1546 clear_bit(R1BIO_BarrierRetry, &r1_bio->state); 1547 clear_bit(R1BIO_Barrier, &r1_bio->state); 1548 for (i=0; i < conf->raid_disks; i++) 1549 if (r1_bio->bios[i]) 1550 atomic_inc(&r1_bio->remaining); 1551 for (i=0; i < conf->raid_disks; i++) 1552 if (r1_bio->bios[i]) { 1553 struct bio_vec *bvec; 1554 int j; 1555 1556 bio = bio_clone(r1_bio->master_bio, GFP_NOIO); 1557 /* copy pages from the failed bio, as 1558 * this might be a write-behind device */ 1559 __bio_for_each_segment(bvec, bio, j, 0) 1560 bvec->bv_page = bio_iovec_idx(r1_bio->bios[i], j)->bv_page; 1561 bio_put(r1_bio->bios[i]); 1562 bio->bi_sector = r1_bio->sector + 1563 conf->mirrors[i].rdev->data_offset; 1564 bio->bi_bdev = conf->mirrors[i].rdev->bdev; 1565 bio->bi_end_io = raid1_end_write_request; 1566 bio->bi_rw = WRITE | do_sync; 1567 bio->bi_private = r1_bio; 1568 r1_bio->bios[i] = bio; 1569 generic_make_request(bio); 1570 } 1571 } else { 1572 int disk; 1573 1574 /* we got a read error. Maybe the drive is bad. Maybe just 1575 * the block and we can fix it. 1576 * We freeze all other IO, and try reading the block from 1577 * other devices. When we find one, we re-write 1578 * and check it that fixes the read error. 1579 * This is all done synchronously while the array is 1580 * frozen 1581 */ 1582 if (mddev->ro == 0) { 1583 freeze_array(conf); 1584 fix_read_error(conf, r1_bio->read_disk, 1585 r1_bio->sector, 1586 r1_bio->sectors); 1587 unfreeze_array(conf); 1588 } 1589 1590 bio = r1_bio->bios[r1_bio->read_disk]; 1591 if ((disk=read_balance(conf, r1_bio)) == -1) { 1592 printk(KERN_ALERT "raid1: %s: unrecoverable I/O" 1593 " read error for block %llu\n", 1594 bdevname(bio->bi_bdev,b), 1595 (unsigned long long)r1_bio->sector); 1596 raid_end_bio_io(r1_bio); 1597 } else { 1598 const int do_sync = bio_sync(r1_bio->master_bio); 1599 r1_bio->bios[r1_bio->read_disk] = 1600 mddev->ro ? IO_BLOCKED : NULL; 1601 r1_bio->read_disk = disk; 1602 bio_put(bio); 1603 bio = bio_clone(r1_bio->master_bio, GFP_NOIO); 1604 r1_bio->bios[r1_bio->read_disk] = bio; 1605 rdev = conf->mirrors[disk].rdev; 1606 if (printk_ratelimit()) 1607 printk(KERN_ERR "raid1: %s: redirecting sector %llu to" 1608 " another mirror\n", 1609 bdevname(rdev->bdev,b), 1610 (unsigned long long)r1_bio->sector); 1611 bio->bi_sector = r1_bio->sector + rdev->data_offset; 1612 bio->bi_bdev = rdev->bdev; 1613 bio->bi_end_io = raid1_end_read_request; 1614 bio->bi_rw = READ | do_sync; 1615 bio->bi_private = r1_bio; 1616 unplug = 1; 1617 generic_make_request(bio); 1618 } 1619 } 1620 } 1621 if (unplug) 1622 unplug_slaves(mddev); 1623 } 1624 1625 1626 static int init_resync(conf_t *conf) 1627 { 1628 int buffs; 1629 1630 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE; 1631 BUG_ON(conf->r1buf_pool); 1632 conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free, 1633 conf->poolinfo); 1634 if (!conf->r1buf_pool) 1635 return -ENOMEM; 1636 conf->next_resync = 0; 1637 return 0; 1638 } 1639 1640 /* 1641 * perform a "sync" on one "block" 1642 * 1643 * We need to make sure that no normal I/O request - particularly write 1644 * requests - conflict with active sync requests. 1645 * 1646 * This is achieved by tracking pending requests and a 'barrier' concept 1647 * that can be installed to exclude normal IO requests. 1648 */ 1649 1650 static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster) 1651 { 1652 conf_t *conf = mddev_to_conf(mddev); 1653 r1bio_t *r1_bio; 1654 struct bio *bio; 1655 sector_t max_sector, nr_sectors; 1656 int disk = -1; 1657 int i; 1658 int wonly = -1; 1659 int write_targets = 0, read_targets = 0; 1660 int sync_blocks; 1661 int still_degraded = 0; 1662 1663 if (!conf->r1buf_pool) 1664 { 1665 /* 1666 printk("sync start - bitmap %p\n", mddev->bitmap); 1667 */ 1668 if (init_resync(conf)) 1669 return 0; 1670 } 1671 1672 max_sector = mddev->size << 1; 1673 if (sector_nr >= max_sector) { 1674 /* If we aborted, we need to abort the 1675 * sync on the 'current' bitmap chunk (there will 1676 * only be one in raid1 resync. 1677 * We can find the current addess in mddev->curr_resync 1678 */ 1679 if (mddev->curr_resync < max_sector) /* aborted */ 1680 bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 1681 &sync_blocks, 1); 1682 else /* completed sync */ 1683 conf->fullsync = 0; 1684 1685 bitmap_close_sync(mddev->bitmap); 1686 close_sync(conf); 1687 return 0; 1688 } 1689 1690 if (mddev->bitmap == NULL && 1691 mddev->recovery_cp == MaxSector && 1692 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 1693 conf->fullsync == 0) { 1694 *skipped = 1; 1695 return max_sector - sector_nr; 1696 } 1697 /* before building a request, check if we can skip these blocks.. 1698 * This call the bitmap_start_sync doesn't actually record anything 1699 */ 1700 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) && 1701 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 1702 /* We can skip this block, and probably several more */ 1703 *skipped = 1; 1704 return sync_blocks; 1705 } 1706 /* 1707 * If there is non-resync activity waiting for a turn, 1708 * and resync is going fast enough, 1709 * then let it though before starting on this new sync request. 1710 */ 1711 if (!go_faster && conf->nr_waiting) 1712 msleep_interruptible(1000); 1713 1714 bitmap_cond_end_sync(mddev->bitmap, sector_nr); 1715 raise_barrier(conf); 1716 1717 conf->next_resync = sector_nr; 1718 1719 r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO); 1720 rcu_read_lock(); 1721 /* 1722 * If we get a correctably read error during resync or recovery, 1723 * we might want to read from a different device. So we 1724 * flag all drives that could conceivably be read from for READ, 1725 * and any others (which will be non-In_sync devices) for WRITE. 1726 * If a read fails, we try reading from something else for which READ 1727 * is OK. 1728 */ 1729 1730 r1_bio->mddev = mddev; 1731 r1_bio->sector = sector_nr; 1732 r1_bio->state = 0; 1733 set_bit(R1BIO_IsSync, &r1_bio->state); 1734 1735 for (i=0; i < conf->raid_disks; i++) { 1736 mdk_rdev_t *rdev; 1737 bio = r1_bio->bios[i]; 1738 1739 /* take from bio_init */ 1740 bio->bi_next = NULL; 1741 bio->bi_flags |= 1 << BIO_UPTODATE; 1742 bio->bi_rw = READ; 1743 bio->bi_vcnt = 0; 1744 bio->bi_idx = 0; 1745 bio->bi_phys_segments = 0; 1746 bio->bi_hw_segments = 0; 1747 bio->bi_size = 0; 1748 bio->bi_end_io = NULL; 1749 bio->bi_private = NULL; 1750 1751 rdev = rcu_dereference(conf->mirrors[i].rdev); 1752 if (rdev == NULL || 1753 test_bit(Faulty, &rdev->flags)) { 1754 still_degraded = 1; 1755 continue; 1756 } else if (!test_bit(In_sync, &rdev->flags)) { 1757 bio->bi_rw = WRITE; 1758 bio->bi_end_io = end_sync_write; 1759 write_targets ++; 1760 } else { 1761 /* may need to read from here */ 1762 bio->bi_rw = READ; 1763 bio->bi_end_io = end_sync_read; 1764 if (test_bit(WriteMostly, &rdev->flags)) { 1765 if (wonly < 0) 1766 wonly = i; 1767 } else { 1768 if (disk < 0) 1769 disk = i; 1770 } 1771 read_targets++; 1772 } 1773 atomic_inc(&rdev->nr_pending); 1774 bio->bi_sector = sector_nr + rdev->data_offset; 1775 bio->bi_bdev = rdev->bdev; 1776 bio->bi_private = r1_bio; 1777 } 1778 rcu_read_unlock(); 1779 if (disk < 0) 1780 disk = wonly; 1781 r1_bio->read_disk = disk; 1782 1783 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0) 1784 /* extra read targets are also write targets */ 1785 write_targets += read_targets-1; 1786 1787 if (write_targets == 0 || read_targets == 0) { 1788 /* There is nowhere to write, so all non-sync 1789 * drives must be failed - so we are finished 1790 */ 1791 sector_t rv = max_sector - sector_nr; 1792 *skipped = 1; 1793 put_buf(r1_bio); 1794 return rv; 1795 } 1796 1797 if (max_sector > mddev->resync_max) 1798 max_sector = mddev->resync_max; /* Don't do IO beyond here */ 1799 nr_sectors = 0; 1800 sync_blocks = 0; 1801 do { 1802 struct page *page; 1803 int len = PAGE_SIZE; 1804 if (sector_nr + (len>>9) > max_sector) 1805 len = (max_sector - sector_nr) << 9; 1806 if (len == 0) 1807 break; 1808 if (sync_blocks == 0) { 1809 if (!bitmap_start_sync(mddev->bitmap, sector_nr, 1810 &sync_blocks, still_degraded) && 1811 !conf->fullsync && 1812 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 1813 break; 1814 BUG_ON(sync_blocks < (PAGE_SIZE>>9)); 1815 if (len > (sync_blocks<<9)) 1816 len = sync_blocks<<9; 1817 } 1818 1819 for (i=0 ; i < conf->raid_disks; i++) { 1820 bio = r1_bio->bios[i]; 1821 if (bio->bi_end_io) { 1822 page = bio->bi_io_vec[bio->bi_vcnt].bv_page; 1823 if (bio_add_page(bio, page, len, 0) == 0) { 1824 /* stop here */ 1825 bio->bi_io_vec[bio->bi_vcnt].bv_page = page; 1826 while (i > 0) { 1827 i--; 1828 bio = r1_bio->bios[i]; 1829 if (bio->bi_end_io==NULL) 1830 continue; 1831 /* remove last page from this bio */ 1832 bio->bi_vcnt--; 1833 bio->bi_size -= len; 1834 bio->bi_flags &= ~(1<< BIO_SEG_VALID); 1835 } 1836 goto bio_full; 1837 } 1838 } 1839 } 1840 nr_sectors += len>>9; 1841 sector_nr += len>>9; 1842 sync_blocks -= (len>>9); 1843 } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES); 1844 bio_full: 1845 r1_bio->sectors = nr_sectors; 1846 1847 /* For a user-requested sync, we read all readable devices and do a 1848 * compare 1849 */ 1850 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 1851 atomic_set(&r1_bio->remaining, read_targets); 1852 for (i=0; i<conf->raid_disks; i++) { 1853 bio = r1_bio->bios[i]; 1854 if (bio->bi_end_io == end_sync_read) { 1855 md_sync_acct(bio->bi_bdev, nr_sectors); 1856 generic_make_request(bio); 1857 } 1858 } 1859 } else { 1860 atomic_set(&r1_bio->remaining, 1); 1861 bio = r1_bio->bios[r1_bio->read_disk]; 1862 md_sync_acct(bio->bi_bdev, nr_sectors); 1863 generic_make_request(bio); 1864 1865 } 1866 return nr_sectors; 1867 } 1868 1869 static int run(mddev_t *mddev) 1870 { 1871 conf_t *conf; 1872 int i, j, disk_idx; 1873 mirror_info_t *disk; 1874 mdk_rdev_t *rdev; 1875 struct list_head *tmp; 1876 1877 if (mddev->level != 1) { 1878 printk("raid1: %s: raid level not set to mirroring (%d)\n", 1879 mdname(mddev), mddev->level); 1880 goto out; 1881 } 1882 if (mddev->reshape_position != MaxSector) { 1883 printk("raid1: %s: reshape_position set but not supported\n", 1884 mdname(mddev)); 1885 goto out; 1886 } 1887 /* 1888 * copy the already verified devices into our private RAID1 1889 * bookkeeping area. [whatever we allocate in run(), 1890 * should be freed in stop()] 1891 */ 1892 conf = kzalloc(sizeof(conf_t), GFP_KERNEL); 1893 mddev->private = conf; 1894 if (!conf) 1895 goto out_no_mem; 1896 1897 conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks, 1898 GFP_KERNEL); 1899 if (!conf->mirrors) 1900 goto out_no_mem; 1901 1902 conf->tmppage = alloc_page(GFP_KERNEL); 1903 if (!conf->tmppage) 1904 goto out_no_mem; 1905 1906 conf->poolinfo = kmalloc(sizeof(*conf->poolinfo), GFP_KERNEL); 1907 if (!conf->poolinfo) 1908 goto out_no_mem; 1909 conf->poolinfo->mddev = mddev; 1910 conf->poolinfo->raid_disks = mddev->raid_disks; 1911 conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc, 1912 r1bio_pool_free, 1913 conf->poolinfo); 1914 if (!conf->r1bio_pool) 1915 goto out_no_mem; 1916 1917 rdev_for_each(rdev, tmp, mddev) { 1918 disk_idx = rdev->raid_disk; 1919 if (disk_idx >= mddev->raid_disks 1920 || disk_idx < 0) 1921 continue; 1922 disk = conf->mirrors + disk_idx; 1923 1924 disk->rdev = rdev; 1925 1926 blk_queue_stack_limits(mddev->queue, 1927 rdev->bdev->bd_disk->queue); 1928 /* as we don't honour merge_bvec_fn, we must never risk 1929 * violating it, so limit ->max_sector to one PAGE, as 1930 * a one page request is never in violation. 1931 */ 1932 if (rdev->bdev->bd_disk->queue->merge_bvec_fn && 1933 mddev->queue->max_sectors > (PAGE_SIZE>>9)) 1934 blk_queue_max_sectors(mddev->queue, PAGE_SIZE>>9); 1935 1936 disk->head_position = 0; 1937 } 1938 conf->raid_disks = mddev->raid_disks; 1939 conf->mddev = mddev; 1940 spin_lock_init(&conf->device_lock); 1941 INIT_LIST_HEAD(&conf->retry_list); 1942 1943 spin_lock_init(&conf->resync_lock); 1944 init_waitqueue_head(&conf->wait_barrier); 1945 1946 bio_list_init(&conf->pending_bio_list); 1947 bio_list_init(&conf->flushing_bio_list); 1948 1949 1950 mddev->degraded = 0; 1951 for (i = 0; i < conf->raid_disks; i++) { 1952 1953 disk = conf->mirrors + i; 1954 1955 if (!disk->rdev || 1956 !test_bit(In_sync, &disk->rdev->flags)) { 1957 disk->head_position = 0; 1958 mddev->degraded++; 1959 if (disk->rdev) 1960 conf->fullsync = 1; 1961 } 1962 } 1963 if (mddev->degraded == conf->raid_disks) { 1964 printk(KERN_ERR "raid1: no operational mirrors for %s\n", 1965 mdname(mddev)); 1966 goto out_free_conf; 1967 } 1968 if (conf->raid_disks - mddev->degraded == 1) 1969 mddev->recovery_cp = MaxSector; 1970 1971 /* 1972 * find the first working one and use it as a starting point 1973 * to read balancing. 1974 */ 1975 for (j = 0; j < conf->raid_disks && 1976 (!conf->mirrors[j].rdev || 1977 !test_bit(In_sync, &conf->mirrors[j].rdev->flags)) ; j++) 1978 /* nothing */; 1979 conf->last_used = j; 1980 1981 1982 mddev->thread = md_register_thread(raid1d, mddev, "%s_raid1"); 1983 if (!mddev->thread) { 1984 printk(KERN_ERR 1985 "raid1: couldn't allocate thread for %s\n", 1986 mdname(mddev)); 1987 goto out_free_conf; 1988 } 1989 1990 printk(KERN_INFO 1991 "raid1: raid set %s active with %d out of %d mirrors\n", 1992 mdname(mddev), mddev->raid_disks - mddev->degraded, 1993 mddev->raid_disks); 1994 /* 1995 * Ok, everything is just fine now 1996 */ 1997 mddev->array_size = mddev->size; 1998 1999 mddev->queue->unplug_fn = raid1_unplug; 2000 mddev->queue->backing_dev_info.congested_fn = raid1_congested; 2001 mddev->queue->backing_dev_info.congested_data = mddev; 2002 2003 return 0; 2004 2005 out_no_mem: 2006 printk(KERN_ERR "raid1: couldn't allocate memory for %s\n", 2007 mdname(mddev)); 2008 2009 out_free_conf: 2010 if (conf) { 2011 if (conf->r1bio_pool) 2012 mempool_destroy(conf->r1bio_pool); 2013 kfree(conf->mirrors); 2014 safe_put_page(conf->tmppage); 2015 kfree(conf->poolinfo); 2016 kfree(conf); 2017 mddev->private = NULL; 2018 } 2019 out: 2020 return -EIO; 2021 } 2022 2023 static int stop(mddev_t *mddev) 2024 { 2025 conf_t *conf = mddev_to_conf(mddev); 2026 struct bitmap *bitmap = mddev->bitmap; 2027 int behind_wait = 0; 2028 2029 /* wait for behind writes to complete */ 2030 while (bitmap && atomic_read(&bitmap->behind_writes) > 0) { 2031 behind_wait++; 2032 printk(KERN_INFO "raid1: behind writes in progress on device %s, waiting to stop (%d)\n", mdname(mddev), behind_wait); 2033 set_current_state(TASK_UNINTERRUPTIBLE); 2034 schedule_timeout(HZ); /* wait a second */ 2035 /* need to kick something here to make sure I/O goes? */ 2036 } 2037 2038 md_unregister_thread(mddev->thread); 2039 mddev->thread = NULL; 2040 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/ 2041 if (conf->r1bio_pool) 2042 mempool_destroy(conf->r1bio_pool); 2043 kfree(conf->mirrors); 2044 kfree(conf->poolinfo); 2045 kfree(conf); 2046 mddev->private = NULL; 2047 return 0; 2048 } 2049 2050 static int raid1_resize(mddev_t *mddev, sector_t sectors) 2051 { 2052 /* no resync is happening, and there is enough space 2053 * on all devices, so we can resize. 2054 * We need to make sure resync covers any new space. 2055 * If the array is shrinking we should possibly wait until 2056 * any io in the removed space completes, but it hardly seems 2057 * worth it. 2058 */ 2059 mddev->array_size = sectors>>1; 2060 set_capacity(mddev->gendisk, mddev->array_size << 1); 2061 mddev->changed = 1; 2062 if (mddev->array_size > mddev->size && mddev->recovery_cp == MaxSector) { 2063 mddev->recovery_cp = mddev->size << 1; 2064 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 2065 } 2066 mddev->size = mddev->array_size; 2067 mddev->resync_max_sectors = sectors; 2068 return 0; 2069 } 2070 2071 static int raid1_reshape(mddev_t *mddev) 2072 { 2073 /* We need to: 2074 * 1/ resize the r1bio_pool 2075 * 2/ resize conf->mirrors 2076 * 2077 * We allocate a new r1bio_pool if we can. 2078 * Then raise a device barrier and wait until all IO stops. 2079 * Then resize conf->mirrors and swap in the new r1bio pool. 2080 * 2081 * At the same time, we "pack" the devices so that all the missing 2082 * devices have the higher raid_disk numbers. 2083 */ 2084 mempool_t *newpool, *oldpool; 2085 struct pool_info *newpoolinfo; 2086 mirror_info_t *newmirrors; 2087 conf_t *conf = mddev_to_conf(mddev); 2088 int cnt, raid_disks; 2089 unsigned long flags; 2090 int d, d2; 2091 2092 /* Cannot change chunk_size, layout, or level */ 2093 if (mddev->chunk_size != mddev->new_chunk || 2094 mddev->layout != mddev->new_layout || 2095 mddev->level != mddev->new_level) { 2096 mddev->new_chunk = mddev->chunk_size; 2097 mddev->new_layout = mddev->layout; 2098 mddev->new_level = mddev->level; 2099 return -EINVAL; 2100 } 2101 2102 md_allow_write(mddev); 2103 2104 raid_disks = mddev->raid_disks + mddev->delta_disks; 2105 2106 if (raid_disks < conf->raid_disks) { 2107 cnt=0; 2108 for (d= 0; d < conf->raid_disks; d++) 2109 if (conf->mirrors[d].rdev) 2110 cnt++; 2111 if (cnt > raid_disks) 2112 return -EBUSY; 2113 } 2114 2115 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL); 2116 if (!newpoolinfo) 2117 return -ENOMEM; 2118 newpoolinfo->mddev = mddev; 2119 newpoolinfo->raid_disks = raid_disks; 2120 2121 newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc, 2122 r1bio_pool_free, newpoolinfo); 2123 if (!newpool) { 2124 kfree(newpoolinfo); 2125 return -ENOMEM; 2126 } 2127 newmirrors = kzalloc(sizeof(struct mirror_info) * raid_disks, GFP_KERNEL); 2128 if (!newmirrors) { 2129 kfree(newpoolinfo); 2130 mempool_destroy(newpool); 2131 return -ENOMEM; 2132 } 2133 2134 raise_barrier(conf); 2135 2136 /* ok, everything is stopped */ 2137 oldpool = conf->r1bio_pool; 2138 conf->r1bio_pool = newpool; 2139 2140 for (d = d2 = 0; d < conf->raid_disks; d++) { 2141 mdk_rdev_t *rdev = conf->mirrors[d].rdev; 2142 if (rdev && rdev->raid_disk != d2) { 2143 char nm[20]; 2144 sprintf(nm, "rd%d", rdev->raid_disk); 2145 sysfs_remove_link(&mddev->kobj, nm); 2146 rdev->raid_disk = d2; 2147 sprintf(nm, "rd%d", rdev->raid_disk); 2148 sysfs_remove_link(&mddev->kobj, nm); 2149 if (sysfs_create_link(&mddev->kobj, 2150 &rdev->kobj, nm)) 2151 printk(KERN_WARNING 2152 "md/raid1: cannot register " 2153 "%s for %s\n", 2154 nm, mdname(mddev)); 2155 } 2156 if (rdev) 2157 newmirrors[d2++].rdev = rdev; 2158 } 2159 kfree(conf->mirrors); 2160 conf->mirrors = newmirrors; 2161 kfree(conf->poolinfo); 2162 conf->poolinfo = newpoolinfo; 2163 2164 spin_lock_irqsave(&conf->device_lock, flags); 2165 mddev->degraded += (raid_disks - conf->raid_disks); 2166 spin_unlock_irqrestore(&conf->device_lock, flags); 2167 conf->raid_disks = mddev->raid_disks = raid_disks; 2168 mddev->delta_disks = 0; 2169 2170 conf->last_used = 0; /* just make sure it is in-range */ 2171 lower_barrier(conf); 2172 2173 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 2174 md_wakeup_thread(mddev->thread); 2175 2176 mempool_destroy(oldpool); 2177 return 0; 2178 } 2179 2180 static void raid1_quiesce(mddev_t *mddev, int state) 2181 { 2182 conf_t *conf = mddev_to_conf(mddev); 2183 2184 switch(state) { 2185 case 1: 2186 raise_barrier(conf); 2187 break; 2188 case 0: 2189 lower_barrier(conf); 2190 break; 2191 } 2192 } 2193 2194 2195 static struct mdk_personality raid1_personality = 2196 { 2197 .name = "raid1", 2198 .level = 1, 2199 .owner = THIS_MODULE, 2200 .make_request = make_request, 2201 .run = run, 2202 .stop = stop, 2203 .status = status, 2204 .error_handler = error, 2205 .hot_add_disk = raid1_add_disk, 2206 .hot_remove_disk= raid1_remove_disk, 2207 .spare_active = raid1_spare_active, 2208 .sync_request = sync_request, 2209 .resize = raid1_resize, 2210 .check_reshape = raid1_reshape, 2211 .quiesce = raid1_quiesce, 2212 }; 2213 2214 static int __init raid_init(void) 2215 { 2216 return register_md_personality(&raid1_personality); 2217 } 2218 2219 static void raid_exit(void) 2220 { 2221 unregister_md_personality(&raid1_personality); 2222 } 2223 2224 module_init(raid_init); 2225 module_exit(raid_exit); 2226 MODULE_LICENSE("GPL"); 2227 MODULE_ALIAS("md-personality-3"); /* RAID1 */ 2228 MODULE_ALIAS("md-raid1"); 2229 MODULE_ALIAS("md-level-1"); 2230