xref: /openbmc/linux/drivers/md/raid1.c (revision 9659281c)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * raid1.c : Multiple Devices driver for Linux
4  *
5  * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
6  *
7  * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
8  *
9  * RAID-1 management functions.
10  *
11  * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
12  *
13  * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
14  * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
15  *
16  * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
17  * bitmapped intelligence in resync:
18  *
19  *      - bitmap marked during normal i/o
20  *      - bitmap used to skip nondirty blocks during sync
21  *
22  * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
23  * - persistent bitmap code
24  */
25 
26 #include <linux/slab.h>
27 #include <linux/delay.h>
28 #include <linux/blkdev.h>
29 #include <linux/module.h>
30 #include <linux/seq_file.h>
31 #include <linux/ratelimit.h>
32 #include <linux/interval_tree_generic.h>
33 
34 #include <trace/events/block.h>
35 
36 #include "md.h"
37 #include "raid1.h"
38 #include "md-bitmap.h"
39 
40 #define UNSUPPORTED_MDDEV_FLAGS		\
41 	((1L << MD_HAS_JOURNAL) |	\
42 	 (1L << MD_JOURNAL_CLEAN) |	\
43 	 (1L << MD_HAS_PPL) |		\
44 	 (1L << MD_HAS_MULTIPLE_PPLS))
45 
46 static void allow_barrier(struct r1conf *conf, sector_t sector_nr);
47 static void lower_barrier(struct r1conf *conf, sector_t sector_nr);
48 
49 #define raid1_log(md, fmt, args...)				\
50 	do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid1 " fmt, ##args); } while (0)
51 
52 #include "raid1-10.c"
53 
54 #define START(node) ((node)->start)
55 #define LAST(node) ((node)->last)
56 INTERVAL_TREE_DEFINE(struct serial_info, node, sector_t, _subtree_last,
57 		     START, LAST, static inline, raid1_rb);
58 
59 static int check_and_add_serial(struct md_rdev *rdev, struct r1bio *r1_bio,
60 				struct serial_info *si, int idx)
61 {
62 	unsigned long flags;
63 	int ret = 0;
64 	sector_t lo = r1_bio->sector;
65 	sector_t hi = lo + r1_bio->sectors;
66 	struct serial_in_rdev *serial = &rdev->serial[idx];
67 
68 	spin_lock_irqsave(&serial->serial_lock, flags);
69 	/* collision happened */
70 	if (raid1_rb_iter_first(&serial->serial_rb, lo, hi))
71 		ret = -EBUSY;
72 	else {
73 		si->start = lo;
74 		si->last = hi;
75 		raid1_rb_insert(si, &serial->serial_rb);
76 	}
77 	spin_unlock_irqrestore(&serial->serial_lock, flags);
78 
79 	return ret;
80 }
81 
82 static void wait_for_serialization(struct md_rdev *rdev, struct r1bio *r1_bio)
83 {
84 	struct mddev *mddev = rdev->mddev;
85 	struct serial_info *si;
86 	int idx = sector_to_idx(r1_bio->sector);
87 	struct serial_in_rdev *serial = &rdev->serial[idx];
88 
89 	if (WARN_ON(!mddev->serial_info_pool))
90 		return;
91 	si = mempool_alloc(mddev->serial_info_pool, GFP_NOIO);
92 	wait_event(serial->serial_io_wait,
93 		   check_and_add_serial(rdev, r1_bio, si, idx) == 0);
94 }
95 
96 static void remove_serial(struct md_rdev *rdev, sector_t lo, sector_t hi)
97 {
98 	struct serial_info *si;
99 	unsigned long flags;
100 	int found = 0;
101 	struct mddev *mddev = rdev->mddev;
102 	int idx = sector_to_idx(lo);
103 	struct serial_in_rdev *serial = &rdev->serial[idx];
104 
105 	spin_lock_irqsave(&serial->serial_lock, flags);
106 	for (si = raid1_rb_iter_first(&serial->serial_rb, lo, hi);
107 	     si; si = raid1_rb_iter_next(si, lo, hi)) {
108 		if (si->start == lo && si->last == hi) {
109 			raid1_rb_remove(si, &serial->serial_rb);
110 			mempool_free(si, mddev->serial_info_pool);
111 			found = 1;
112 			break;
113 		}
114 	}
115 	if (!found)
116 		WARN(1, "The write IO is not recorded for serialization\n");
117 	spin_unlock_irqrestore(&serial->serial_lock, flags);
118 	wake_up(&serial->serial_io_wait);
119 }
120 
121 /*
122  * for resync bio, r1bio pointer can be retrieved from the per-bio
123  * 'struct resync_pages'.
124  */
125 static inline struct r1bio *get_resync_r1bio(struct bio *bio)
126 {
127 	return get_resync_pages(bio)->raid_bio;
128 }
129 
130 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
131 {
132 	struct pool_info *pi = data;
133 	int size = offsetof(struct r1bio, bios[pi->raid_disks]);
134 
135 	/* allocate a r1bio with room for raid_disks entries in the bios array */
136 	return kzalloc(size, gfp_flags);
137 }
138 
139 #define RESYNC_DEPTH 32
140 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
141 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
142 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
143 #define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
144 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
145 
146 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
147 {
148 	struct pool_info *pi = data;
149 	struct r1bio *r1_bio;
150 	struct bio *bio;
151 	int need_pages;
152 	int j;
153 	struct resync_pages *rps;
154 
155 	r1_bio = r1bio_pool_alloc(gfp_flags, pi);
156 	if (!r1_bio)
157 		return NULL;
158 
159 	rps = kmalloc_array(pi->raid_disks, sizeof(struct resync_pages),
160 			    gfp_flags);
161 	if (!rps)
162 		goto out_free_r1bio;
163 
164 	/*
165 	 * Allocate bios : 1 for reading, n-1 for writing
166 	 */
167 	for (j = pi->raid_disks ; j-- ; ) {
168 		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
169 		if (!bio)
170 			goto out_free_bio;
171 		r1_bio->bios[j] = bio;
172 	}
173 	/*
174 	 * Allocate RESYNC_PAGES data pages and attach them to
175 	 * the first bio.
176 	 * If this is a user-requested check/repair, allocate
177 	 * RESYNC_PAGES for each bio.
178 	 */
179 	if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
180 		need_pages = pi->raid_disks;
181 	else
182 		need_pages = 1;
183 	for (j = 0; j < pi->raid_disks; j++) {
184 		struct resync_pages *rp = &rps[j];
185 
186 		bio = r1_bio->bios[j];
187 
188 		if (j < need_pages) {
189 			if (resync_alloc_pages(rp, gfp_flags))
190 				goto out_free_pages;
191 		} else {
192 			memcpy(rp, &rps[0], sizeof(*rp));
193 			resync_get_all_pages(rp);
194 		}
195 
196 		rp->raid_bio = r1_bio;
197 		bio->bi_private = rp;
198 	}
199 
200 	r1_bio->master_bio = NULL;
201 
202 	return r1_bio;
203 
204 out_free_pages:
205 	while (--j >= 0)
206 		resync_free_pages(&rps[j]);
207 
208 out_free_bio:
209 	while (++j < pi->raid_disks)
210 		bio_put(r1_bio->bios[j]);
211 	kfree(rps);
212 
213 out_free_r1bio:
214 	rbio_pool_free(r1_bio, data);
215 	return NULL;
216 }
217 
218 static void r1buf_pool_free(void *__r1_bio, void *data)
219 {
220 	struct pool_info *pi = data;
221 	int i;
222 	struct r1bio *r1bio = __r1_bio;
223 	struct resync_pages *rp = NULL;
224 
225 	for (i = pi->raid_disks; i--; ) {
226 		rp = get_resync_pages(r1bio->bios[i]);
227 		resync_free_pages(rp);
228 		bio_put(r1bio->bios[i]);
229 	}
230 
231 	/* resync pages array stored in the 1st bio's .bi_private */
232 	kfree(rp);
233 
234 	rbio_pool_free(r1bio, data);
235 }
236 
237 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
238 {
239 	int i;
240 
241 	for (i = 0; i < conf->raid_disks * 2; i++) {
242 		struct bio **bio = r1_bio->bios + i;
243 		if (!BIO_SPECIAL(*bio))
244 			bio_put(*bio);
245 		*bio = NULL;
246 	}
247 }
248 
249 static void free_r1bio(struct r1bio *r1_bio)
250 {
251 	struct r1conf *conf = r1_bio->mddev->private;
252 
253 	put_all_bios(conf, r1_bio);
254 	mempool_free(r1_bio, &conf->r1bio_pool);
255 }
256 
257 static void put_buf(struct r1bio *r1_bio)
258 {
259 	struct r1conf *conf = r1_bio->mddev->private;
260 	sector_t sect = r1_bio->sector;
261 	int i;
262 
263 	for (i = 0; i < conf->raid_disks * 2; i++) {
264 		struct bio *bio = r1_bio->bios[i];
265 		if (bio->bi_end_io)
266 			rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
267 	}
268 
269 	mempool_free(r1_bio, &conf->r1buf_pool);
270 
271 	lower_barrier(conf, sect);
272 }
273 
274 static void reschedule_retry(struct r1bio *r1_bio)
275 {
276 	unsigned long flags;
277 	struct mddev *mddev = r1_bio->mddev;
278 	struct r1conf *conf = mddev->private;
279 	int idx;
280 
281 	idx = sector_to_idx(r1_bio->sector);
282 	spin_lock_irqsave(&conf->device_lock, flags);
283 	list_add(&r1_bio->retry_list, &conf->retry_list);
284 	atomic_inc(&conf->nr_queued[idx]);
285 	spin_unlock_irqrestore(&conf->device_lock, flags);
286 
287 	wake_up(&conf->wait_barrier);
288 	md_wakeup_thread(mddev->thread);
289 }
290 
291 /*
292  * raid_end_bio_io() is called when we have finished servicing a mirrored
293  * operation and are ready to return a success/failure code to the buffer
294  * cache layer.
295  */
296 static void call_bio_endio(struct r1bio *r1_bio)
297 {
298 	struct bio *bio = r1_bio->master_bio;
299 
300 	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
301 		bio->bi_status = BLK_STS_IOERR;
302 
303 	if (blk_queue_io_stat(bio->bi_bdev->bd_disk->queue))
304 		bio_end_io_acct(bio, r1_bio->start_time);
305 	bio_endio(bio);
306 }
307 
308 static void raid_end_bio_io(struct r1bio *r1_bio)
309 {
310 	struct bio *bio = r1_bio->master_bio;
311 	struct r1conf *conf = r1_bio->mddev->private;
312 
313 	/* if nobody has done the final endio yet, do it now */
314 	if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
315 		pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
316 			 (bio_data_dir(bio) == WRITE) ? "write" : "read",
317 			 (unsigned long long) bio->bi_iter.bi_sector,
318 			 (unsigned long long) bio_end_sector(bio) - 1);
319 
320 		call_bio_endio(r1_bio);
321 	}
322 	/*
323 	 * Wake up any possible resync thread that waits for the device
324 	 * to go idle.  All I/Os, even write-behind writes, are done.
325 	 */
326 	allow_barrier(conf, r1_bio->sector);
327 
328 	free_r1bio(r1_bio);
329 }
330 
331 /*
332  * Update disk head position estimator based on IRQ completion info.
333  */
334 static inline void update_head_pos(int disk, struct r1bio *r1_bio)
335 {
336 	struct r1conf *conf = r1_bio->mddev->private;
337 
338 	conf->mirrors[disk].head_position =
339 		r1_bio->sector + (r1_bio->sectors);
340 }
341 
342 /*
343  * Find the disk number which triggered given bio
344  */
345 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
346 {
347 	int mirror;
348 	struct r1conf *conf = r1_bio->mddev->private;
349 	int raid_disks = conf->raid_disks;
350 
351 	for (mirror = 0; mirror < raid_disks * 2; mirror++)
352 		if (r1_bio->bios[mirror] == bio)
353 			break;
354 
355 	BUG_ON(mirror == raid_disks * 2);
356 	update_head_pos(mirror, r1_bio);
357 
358 	return mirror;
359 }
360 
361 static void raid1_end_read_request(struct bio *bio)
362 {
363 	int uptodate = !bio->bi_status;
364 	struct r1bio *r1_bio = bio->bi_private;
365 	struct r1conf *conf = r1_bio->mddev->private;
366 	struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev;
367 
368 	/*
369 	 * this branch is our 'one mirror IO has finished' event handler:
370 	 */
371 	update_head_pos(r1_bio->read_disk, r1_bio);
372 
373 	if (uptodate)
374 		set_bit(R1BIO_Uptodate, &r1_bio->state);
375 	else if (test_bit(FailFast, &rdev->flags) &&
376 		 test_bit(R1BIO_FailFast, &r1_bio->state))
377 		/* This was a fail-fast read so we definitely
378 		 * want to retry */
379 		;
380 	else {
381 		/* If all other devices have failed, we want to return
382 		 * the error upwards rather than fail the last device.
383 		 * Here we redefine "uptodate" to mean "Don't want to retry"
384 		 */
385 		unsigned long flags;
386 		spin_lock_irqsave(&conf->device_lock, flags);
387 		if (r1_bio->mddev->degraded == conf->raid_disks ||
388 		    (r1_bio->mddev->degraded == conf->raid_disks-1 &&
389 		     test_bit(In_sync, &rdev->flags)))
390 			uptodate = 1;
391 		spin_unlock_irqrestore(&conf->device_lock, flags);
392 	}
393 
394 	if (uptodate) {
395 		raid_end_bio_io(r1_bio);
396 		rdev_dec_pending(rdev, conf->mddev);
397 	} else {
398 		/*
399 		 * oops, read error:
400 		 */
401 		char b[BDEVNAME_SIZE];
402 		pr_err_ratelimited("md/raid1:%s: %s: rescheduling sector %llu\n",
403 				   mdname(conf->mddev),
404 				   bdevname(rdev->bdev, b),
405 				   (unsigned long long)r1_bio->sector);
406 		set_bit(R1BIO_ReadError, &r1_bio->state);
407 		reschedule_retry(r1_bio);
408 		/* don't drop the reference on read_disk yet */
409 	}
410 }
411 
412 static void close_write(struct r1bio *r1_bio)
413 {
414 	/* it really is the end of this request */
415 	if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
416 		bio_free_pages(r1_bio->behind_master_bio);
417 		bio_put(r1_bio->behind_master_bio);
418 		r1_bio->behind_master_bio = NULL;
419 	}
420 	/* clear the bitmap if all writes complete successfully */
421 	md_bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
422 			   r1_bio->sectors,
423 			   !test_bit(R1BIO_Degraded, &r1_bio->state),
424 			   test_bit(R1BIO_BehindIO, &r1_bio->state));
425 	md_write_end(r1_bio->mddev);
426 }
427 
428 static void r1_bio_write_done(struct r1bio *r1_bio)
429 {
430 	if (!atomic_dec_and_test(&r1_bio->remaining))
431 		return;
432 
433 	if (test_bit(R1BIO_WriteError, &r1_bio->state))
434 		reschedule_retry(r1_bio);
435 	else {
436 		close_write(r1_bio);
437 		if (test_bit(R1BIO_MadeGood, &r1_bio->state))
438 			reschedule_retry(r1_bio);
439 		else
440 			raid_end_bio_io(r1_bio);
441 	}
442 }
443 
444 static void raid1_end_write_request(struct bio *bio)
445 {
446 	struct r1bio *r1_bio = bio->bi_private;
447 	int behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
448 	struct r1conf *conf = r1_bio->mddev->private;
449 	struct bio *to_put = NULL;
450 	int mirror = find_bio_disk(r1_bio, bio);
451 	struct md_rdev *rdev = conf->mirrors[mirror].rdev;
452 	bool discard_error;
453 	sector_t lo = r1_bio->sector;
454 	sector_t hi = r1_bio->sector + r1_bio->sectors;
455 
456 	discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
457 
458 	/*
459 	 * 'one mirror IO has finished' event handler:
460 	 */
461 	if (bio->bi_status && !discard_error) {
462 		set_bit(WriteErrorSeen,	&rdev->flags);
463 		if (!test_and_set_bit(WantReplacement, &rdev->flags))
464 			set_bit(MD_RECOVERY_NEEDED, &
465 				conf->mddev->recovery);
466 
467 		if (test_bit(FailFast, &rdev->flags) &&
468 		    (bio->bi_opf & MD_FAILFAST) &&
469 		    /* We never try FailFast to WriteMostly devices */
470 		    !test_bit(WriteMostly, &rdev->flags)) {
471 			md_error(r1_bio->mddev, rdev);
472 		}
473 
474 		/*
475 		 * When the device is faulty, it is not necessary to
476 		 * handle write error.
477 		 */
478 		if (!test_bit(Faulty, &rdev->flags))
479 			set_bit(R1BIO_WriteError, &r1_bio->state);
480 		else {
481 			/* Fail the request */
482 			set_bit(R1BIO_Degraded, &r1_bio->state);
483 			/* Finished with this branch */
484 			r1_bio->bios[mirror] = NULL;
485 			to_put = bio;
486 		}
487 	} else {
488 		/*
489 		 * Set R1BIO_Uptodate in our master bio, so that we
490 		 * will return a good error code for to the higher
491 		 * levels even if IO on some other mirrored buffer
492 		 * fails.
493 		 *
494 		 * The 'master' represents the composite IO operation
495 		 * to user-side. So if something waits for IO, then it
496 		 * will wait for the 'master' bio.
497 		 */
498 		sector_t first_bad;
499 		int bad_sectors;
500 
501 		r1_bio->bios[mirror] = NULL;
502 		to_put = bio;
503 		/*
504 		 * Do not set R1BIO_Uptodate if the current device is
505 		 * rebuilding or Faulty. This is because we cannot use
506 		 * such device for properly reading the data back (we could
507 		 * potentially use it, if the current write would have felt
508 		 * before rdev->recovery_offset, but for simplicity we don't
509 		 * check this here.
510 		 */
511 		if (test_bit(In_sync, &rdev->flags) &&
512 		    !test_bit(Faulty, &rdev->flags))
513 			set_bit(R1BIO_Uptodate, &r1_bio->state);
514 
515 		/* Maybe we can clear some bad blocks. */
516 		if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
517 				&first_bad, &bad_sectors) && !discard_error) {
518 			r1_bio->bios[mirror] = IO_MADE_GOOD;
519 			set_bit(R1BIO_MadeGood, &r1_bio->state);
520 		}
521 	}
522 
523 	if (behind) {
524 		if (test_bit(CollisionCheck, &rdev->flags))
525 			remove_serial(rdev, lo, hi);
526 		if (test_bit(WriteMostly, &rdev->flags))
527 			atomic_dec(&r1_bio->behind_remaining);
528 
529 		/*
530 		 * In behind mode, we ACK the master bio once the I/O
531 		 * has safely reached all non-writemostly
532 		 * disks. Setting the Returned bit ensures that this
533 		 * gets done only once -- we don't ever want to return
534 		 * -EIO here, instead we'll wait
535 		 */
536 		if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
537 		    test_bit(R1BIO_Uptodate, &r1_bio->state)) {
538 			/* Maybe we can return now */
539 			if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
540 				struct bio *mbio = r1_bio->master_bio;
541 				pr_debug("raid1: behind end write sectors"
542 					 " %llu-%llu\n",
543 					 (unsigned long long) mbio->bi_iter.bi_sector,
544 					 (unsigned long long) bio_end_sector(mbio) - 1);
545 				call_bio_endio(r1_bio);
546 			}
547 		}
548 	} else if (rdev->mddev->serialize_policy)
549 		remove_serial(rdev, lo, hi);
550 	if (r1_bio->bios[mirror] == NULL)
551 		rdev_dec_pending(rdev, conf->mddev);
552 
553 	/*
554 	 * Let's see if all mirrored write operations have finished
555 	 * already.
556 	 */
557 	r1_bio_write_done(r1_bio);
558 
559 	if (to_put)
560 		bio_put(to_put);
561 }
562 
563 static sector_t align_to_barrier_unit_end(sector_t start_sector,
564 					  sector_t sectors)
565 {
566 	sector_t len;
567 
568 	WARN_ON(sectors == 0);
569 	/*
570 	 * len is the number of sectors from start_sector to end of the
571 	 * barrier unit which start_sector belongs to.
572 	 */
573 	len = round_up(start_sector + 1, BARRIER_UNIT_SECTOR_SIZE) -
574 	      start_sector;
575 
576 	if (len > sectors)
577 		len = sectors;
578 
579 	return len;
580 }
581 
582 /*
583  * This routine returns the disk from which the requested read should
584  * be done. There is a per-array 'next expected sequential IO' sector
585  * number - if this matches on the next IO then we use the last disk.
586  * There is also a per-disk 'last know head position' sector that is
587  * maintained from IRQ contexts, both the normal and the resync IO
588  * completion handlers update this position correctly. If there is no
589  * perfect sequential match then we pick the disk whose head is closest.
590  *
591  * If there are 2 mirrors in the same 2 devices, performance degrades
592  * because position is mirror, not device based.
593  *
594  * The rdev for the device selected will have nr_pending incremented.
595  */
596 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
597 {
598 	const sector_t this_sector = r1_bio->sector;
599 	int sectors;
600 	int best_good_sectors;
601 	int best_disk, best_dist_disk, best_pending_disk;
602 	int has_nonrot_disk;
603 	int disk;
604 	sector_t best_dist;
605 	unsigned int min_pending;
606 	struct md_rdev *rdev;
607 	int choose_first;
608 	int choose_next_idle;
609 
610 	rcu_read_lock();
611 	/*
612 	 * Check if we can balance. We can balance on the whole
613 	 * device if no resync is going on, or below the resync window.
614 	 * We take the first readable disk when above the resync window.
615 	 */
616  retry:
617 	sectors = r1_bio->sectors;
618 	best_disk = -1;
619 	best_dist_disk = -1;
620 	best_dist = MaxSector;
621 	best_pending_disk = -1;
622 	min_pending = UINT_MAX;
623 	best_good_sectors = 0;
624 	has_nonrot_disk = 0;
625 	choose_next_idle = 0;
626 	clear_bit(R1BIO_FailFast, &r1_bio->state);
627 
628 	if ((conf->mddev->recovery_cp < this_sector + sectors) ||
629 	    (mddev_is_clustered(conf->mddev) &&
630 	    md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
631 		    this_sector + sectors)))
632 		choose_first = 1;
633 	else
634 		choose_first = 0;
635 
636 	for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
637 		sector_t dist;
638 		sector_t first_bad;
639 		int bad_sectors;
640 		unsigned int pending;
641 		bool nonrot;
642 
643 		rdev = rcu_dereference(conf->mirrors[disk].rdev);
644 		if (r1_bio->bios[disk] == IO_BLOCKED
645 		    || rdev == NULL
646 		    || test_bit(Faulty, &rdev->flags))
647 			continue;
648 		if (!test_bit(In_sync, &rdev->flags) &&
649 		    rdev->recovery_offset < this_sector + sectors)
650 			continue;
651 		if (test_bit(WriteMostly, &rdev->flags)) {
652 			/* Don't balance among write-mostly, just
653 			 * use the first as a last resort */
654 			if (best_dist_disk < 0) {
655 				if (is_badblock(rdev, this_sector, sectors,
656 						&first_bad, &bad_sectors)) {
657 					if (first_bad <= this_sector)
658 						/* Cannot use this */
659 						continue;
660 					best_good_sectors = first_bad - this_sector;
661 				} else
662 					best_good_sectors = sectors;
663 				best_dist_disk = disk;
664 				best_pending_disk = disk;
665 			}
666 			continue;
667 		}
668 		/* This is a reasonable device to use.  It might
669 		 * even be best.
670 		 */
671 		if (is_badblock(rdev, this_sector, sectors,
672 				&first_bad, &bad_sectors)) {
673 			if (best_dist < MaxSector)
674 				/* already have a better device */
675 				continue;
676 			if (first_bad <= this_sector) {
677 				/* cannot read here. If this is the 'primary'
678 				 * device, then we must not read beyond
679 				 * bad_sectors from another device..
680 				 */
681 				bad_sectors -= (this_sector - first_bad);
682 				if (choose_first && sectors > bad_sectors)
683 					sectors = bad_sectors;
684 				if (best_good_sectors > sectors)
685 					best_good_sectors = sectors;
686 
687 			} else {
688 				sector_t good_sectors = first_bad - this_sector;
689 				if (good_sectors > best_good_sectors) {
690 					best_good_sectors = good_sectors;
691 					best_disk = disk;
692 				}
693 				if (choose_first)
694 					break;
695 			}
696 			continue;
697 		} else {
698 			if ((sectors > best_good_sectors) && (best_disk >= 0))
699 				best_disk = -1;
700 			best_good_sectors = sectors;
701 		}
702 
703 		if (best_disk >= 0)
704 			/* At least two disks to choose from so failfast is OK */
705 			set_bit(R1BIO_FailFast, &r1_bio->state);
706 
707 		nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
708 		has_nonrot_disk |= nonrot;
709 		pending = atomic_read(&rdev->nr_pending);
710 		dist = abs(this_sector - conf->mirrors[disk].head_position);
711 		if (choose_first) {
712 			best_disk = disk;
713 			break;
714 		}
715 		/* Don't change to another disk for sequential reads */
716 		if (conf->mirrors[disk].next_seq_sect == this_sector
717 		    || dist == 0) {
718 			int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
719 			struct raid1_info *mirror = &conf->mirrors[disk];
720 
721 			best_disk = disk;
722 			/*
723 			 * If buffered sequential IO size exceeds optimal
724 			 * iosize, check if there is idle disk. If yes, choose
725 			 * the idle disk. read_balance could already choose an
726 			 * idle disk before noticing it's a sequential IO in
727 			 * this disk. This doesn't matter because this disk
728 			 * will idle, next time it will be utilized after the
729 			 * first disk has IO size exceeds optimal iosize. In
730 			 * this way, iosize of the first disk will be optimal
731 			 * iosize at least. iosize of the second disk might be
732 			 * small, but not a big deal since when the second disk
733 			 * starts IO, the first disk is likely still busy.
734 			 */
735 			if (nonrot && opt_iosize > 0 &&
736 			    mirror->seq_start != MaxSector &&
737 			    mirror->next_seq_sect > opt_iosize &&
738 			    mirror->next_seq_sect - opt_iosize >=
739 			    mirror->seq_start) {
740 				choose_next_idle = 1;
741 				continue;
742 			}
743 			break;
744 		}
745 
746 		if (choose_next_idle)
747 			continue;
748 
749 		if (min_pending > pending) {
750 			min_pending = pending;
751 			best_pending_disk = disk;
752 		}
753 
754 		if (dist < best_dist) {
755 			best_dist = dist;
756 			best_dist_disk = disk;
757 		}
758 	}
759 
760 	/*
761 	 * If all disks are rotational, choose the closest disk. If any disk is
762 	 * non-rotational, choose the disk with less pending request even the
763 	 * disk is rotational, which might/might not be optimal for raids with
764 	 * mixed ratation/non-rotational disks depending on workload.
765 	 */
766 	if (best_disk == -1) {
767 		if (has_nonrot_disk || min_pending == 0)
768 			best_disk = best_pending_disk;
769 		else
770 			best_disk = best_dist_disk;
771 	}
772 
773 	if (best_disk >= 0) {
774 		rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
775 		if (!rdev)
776 			goto retry;
777 		atomic_inc(&rdev->nr_pending);
778 		sectors = best_good_sectors;
779 
780 		if (conf->mirrors[best_disk].next_seq_sect != this_sector)
781 			conf->mirrors[best_disk].seq_start = this_sector;
782 
783 		conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
784 	}
785 	rcu_read_unlock();
786 	*max_sectors = sectors;
787 
788 	return best_disk;
789 }
790 
791 static void flush_bio_list(struct r1conf *conf, struct bio *bio)
792 {
793 	/* flush any pending bitmap writes to disk before proceeding w/ I/O */
794 	md_bitmap_unplug(conf->mddev->bitmap);
795 	wake_up(&conf->wait_barrier);
796 
797 	while (bio) { /* submit pending writes */
798 		struct bio *next = bio->bi_next;
799 		struct md_rdev *rdev = (void *)bio->bi_bdev;
800 		bio->bi_next = NULL;
801 		bio_set_dev(bio, rdev->bdev);
802 		if (test_bit(Faulty, &rdev->flags)) {
803 			bio_io_error(bio);
804 		} else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
805 				    !blk_queue_discard(bio->bi_bdev->bd_disk->queue)))
806 			/* Just ignore it */
807 			bio_endio(bio);
808 		else
809 			submit_bio_noacct(bio);
810 		bio = next;
811 		cond_resched();
812 	}
813 }
814 
815 static void flush_pending_writes(struct r1conf *conf)
816 {
817 	/* Any writes that have been queued but are awaiting
818 	 * bitmap updates get flushed here.
819 	 */
820 	spin_lock_irq(&conf->device_lock);
821 
822 	if (conf->pending_bio_list.head) {
823 		struct blk_plug plug;
824 		struct bio *bio;
825 
826 		bio = bio_list_get(&conf->pending_bio_list);
827 		conf->pending_count = 0;
828 		spin_unlock_irq(&conf->device_lock);
829 
830 		/*
831 		 * As this is called in a wait_event() loop (see freeze_array),
832 		 * current->state might be TASK_UNINTERRUPTIBLE which will
833 		 * cause a warning when we prepare to wait again.  As it is
834 		 * rare that this path is taken, it is perfectly safe to force
835 		 * us to go around the wait_event() loop again, so the warning
836 		 * is a false-positive.  Silence the warning by resetting
837 		 * thread state
838 		 */
839 		__set_current_state(TASK_RUNNING);
840 		blk_start_plug(&plug);
841 		flush_bio_list(conf, bio);
842 		blk_finish_plug(&plug);
843 	} else
844 		spin_unlock_irq(&conf->device_lock);
845 }
846 
847 /* Barriers....
848  * Sometimes we need to suspend IO while we do something else,
849  * either some resync/recovery, or reconfigure the array.
850  * To do this we raise a 'barrier'.
851  * The 'barrier' is a counter that can be raised multiple times
852  * to count how many activities are happening which preclude
853  * normal IO.
854  * We can only raise the barrier if there is no pending IO.
855  * i.e. if nr_pending == 0.
856  * We choose only to raise the barrier if no-one is waiting for the
857  * barrier to go down.  This means that as soon as an IO request
858  * is ready, no other operations which require a barrier will start
859  * until the IO request has had a chance.
860  *
861  * So: regular IO calls 'wait_barrier'.  When that returns there
862  *    is no backgroup IO happening,  It must arrange to call
863  *    allow_barrier when it has finished its IO.
864  * backgroup IO calls must call raise_barrier.  Once that returns
865  *    there is no normal IO happeing.  It must arrange to call
866  *    lower_barrier when the particular background IO completes.
867  *
868  * If resync/recovery is interrupted, returns -EINTR;
869  * Otherwise, returns 0.
870  */
871 static int raise_barrier(struct r1conf *conf, sector_t sector_nr)
872 {
873 	int idx = sector_to_idx(sector_nr);
874 
875 	spin_lock_irq(&conf->resync_lock);
876 
877 	/* Wait until no block IO is waiting */
878 	wait_event_lock_irq(conf->wait_barrier,
879 			    !atomic_read(&conf->nr_waiting[idx]),
880 			    conf->resync_lock);
881 
882 	/* block any new IO from starting */
883 	atomic_inc(&conf->barrier[idx]);
884 	/*
885 	 * In raise_barrier() we firstly increase conf->barrier[idx] then
886 	 * check conf->nr_pending[idx]. In _wait_barrier() we firstly
887 	 * increase conf->nr_pending[idx] then check conf->barrier[idx].
888 	 * A memory barrier here to make sure conf->nr_pending[idx] won't
889 	 * be fetched before conf->barrier[idx] is increased. Otherwise
890 	 * there will be a race between raise_barrier() and _wait_barrier().
891 	 */
892 	smp_mb__after_atomic();
893 
894 	/* For these conditions we must wait:
895 	 * A: while the array is in frozen state
896 	 * B: while conf->nr_pending[idx] is not 0, meaning regular I/O
897 	 *    existing in corresponding I/O barrier bucket.
898 	 * C: while conf->barrier[idx] >= RESYNC_DEPTH, meaning reaches
899 	 *    max resync count which allowed on current I/O barrier bucket.
900 	 */
901 	wait_event_lock_irq(conf->wait_barrier,
902 			    (!conf->array_frozen &&
903 			     !atomic_read(&conf->nr_pending[idx]) &&
904 			     atomic_read(&conf->barrier[idx]) < RESYNC_DEPTH) ||
905 				test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery),
906 			    conf->resync_lock);
907 
908 	if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
909 		atomic_dec(&conf->barrier[idx]);
910 		spin_unlock_irq(&conf->resync_lock);
911 		wake_up(&conf->wait_barrier);
912 		return -EINTR;
913 	}
914 
915 	atomic_inc(&conf->nr_sync_pending);
916 	spin_unlock_irq(&conf->resync_lock);
917 
918 	return 0;
919 }
920 
921 static void lower_barrier(struct r1conf *conf, sector_t sector_nr)
922 {
923 	int idx = sector_to_idx(sector_nr);
924 
925 	BUG_ON(atomic_read(&conf->barrier[idx]) <= 0);
926 
927 	atomic_dec(&conf->barrier[idx]);
928 	atomic_dec(&conf->nr_sync_pending);
929 	wake_up(&conf->wait_barrier);
930 }
931 
932 static void _wait_barrier(struct r1conf *conf, int idx)
933 {
934 	/*
935 	 * We need to increase conf->nr_pending[idx] very early here,
936 	 * then raise_barrier() can be blocked when it waits for
937 	 * conf->nr_pending[idx] to be 0. Then we can avoid holding
938 	 * conf->resync_lock when there is no barrier raised in same
939 	 * barrier unit bucket. Also if the array is frozen, I/O
940 	 * should be blocked until array is unfrozen.
941 	 */
942 	atomic_inc(&conf->nr_pending[idx]);
943 	/*
944 	 * In _wait_barrier() we firstly increase conf->nr_pending[idx], then
945 	 * check conf->barrier[idx]. In raise_barrier() we firstly increase
946 	 * conf->barrier[idx], then check conf->nr_pending[idx]. A memory
947 	 * barrier is necessary here to make sure conf->barrier[idx] won't be
948 	 * fetched before conf->nr_pending[idx] is increased. Otherwise there
949 	 * will be a race between _wait_barrier() and raise_barrier().
950 	 */
951 	smp_mb__after_atomic();
952 
953 	/*
954 	 * Don't worry about checking two atomic_t variables at same time
955 	 * here. If during we check conf->barrier[idx], the array is
956 	 * frozen (conf->array_frozen is 1), and chonf->barrier[idx] is
957 	 * 0, it is safe to return and make the I/O continue. Because the
958 	 * array is frozen, all I/O returned here will eventually complete
959 	 * or be queued, no race will happen. See code comment in
960 	 * frozen_array().
961 	 */
962 	if (!READ_ONCE(conf->array_frozen) &&
963 	    !atomic_read(&conf->barrier[idx]))
964 		return;
965 
966 	/*
967 	 * After holding conf->resync_lock, conf->nr_pending[idx]
968 	 * should be decreased before waiting for barrier to drop.
969 	 * Otherwise, we may encounter a race condition because
970 	 * raise_barrer() might be waiting for conf->nr_pending[idx]
971 	 * to be 0 at same time.
972 	 */
973 	spin_lock_irq(&conf->resync_lock);
974 	atomic_inc(&conf->nr_waiting[idx]);
975 	atomic_dec(&conf->nr_pending[idx]);
976 	/*
977 	 * In case freeze_array() is waiting for
978 	 * get_unqueued_pending() == extra
979 	 */
980 	wake_up(&conf->wait_barrier);
981 	/* Wait for the barrier in same barrier unit bucket to drop. */
982 	wait_event_lock_irq(conf->wait_barrier,
983 			    !conf->array_frozen &&
984 			     !atomic_read(&conf->barrier[idx]),
985 			    conf->resync_lock);
986 	atomic_inc(&conf->nr_pending[idx]);
987 	atomic_dec(&conf->nr_waiting[idx]);
988 	spin_unlock_irq(&conf->resync_lock);
989 }
990 
991 static void wait_read_barrier(struct r1conf *conf, sector_t sector_nr)
992 {
993 	int idx = sector_to_idx(sector_nr);
994 
995 	/*
996 	 * Very similar to _wait_barrier(). The difference is, for read
997 	 * I/O we don't need wait for sync I/O, but if the whole array
998 	 * is frozen, the read I/O still has to wait until the array is
999 	 * unfrozen. Since there is no ordering requirement with
1000 	 * conf->barrier[idx] here, memory barrier is unnecessary as well.
1001 	 */
1002 	atomic_inc(&conf->nr_pending[idx]);
1003 
1004 	if (!READ_ONCE(conf->array_frozen))
1005 		return;
1006 
1007 	spin_lock_irq(&conf->resync_lock);
1008 	atomic_inc(&conf->nr_waiting[idx]);
1009 	atomic_dec(&conf->nr_pending[idx]);
1010 	/*
1011 	 * In case freeze_array() is waiting for
1012 	 * get_unqueued_pending() == extra
1013 	 */
1014 	wake_up(&conf->wait_barrier);
1015 	/* Wait for array to be unfrozen */
1016 	wait_event_lock_irq(conf->wait_barrier,
1017 			    !conf->array_frozen,
1018 			    conf->resync_lock);
1019 	atomic_inc(&conf->nr_pending[idx]);
1020 	atomic_dec(&conf->nr_waiting[idx]);
1021 	spin_unlock_irq(&conf->resync_lock);
1022 }
1023 
1024 static void wait_barrier(struct r1conf *conf, sector_t sector_nr)
1025 {
1026 	int idx = sector_to_idx(sector_nr);
1027 
1028 	_wait_barrier(conf, idx);
1029 }
1030 
1031 static void _allow_barrier(struct r1conf *conf, int idx)
1032 {
1033 	atomic_dec(&conf->nr_pending[idx]);
1034 	wake_up(&conf->wait_barrier);
1035 }
1036 
1037 static void allow_barrier(struct r1conf *conf, sector_t sector_nr)
1038 {
1039 	int idx = sector_to_idx(sector_nr);
1040 
1041 	_allow_barrier(conf, idx);
1042 }
1043 
1044 /* conf->resync_lock should be held */
1045 static int get_unqueued_pending(struct r1conf *conf)
1046 {
1047 	int idx, ret;
1048 
1049 	ret = atomic_read(&conf->nr_sync_pending);
1050 	for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
1051 		ret += atomic_read(&conf->nr_pending[idx]) -
1052 			atomic_read(&conf->nr_queued[idx]);
1053 
1054 	return ret;
1055 }
1056 
1057 static void freeze_array(struct r1conf *conf, int extra)
1058 {
1059 	/* Stop sync I/O and normal I/O and wait for everything to
1060 	 * go quiet.
1061 	 * This is called in two situations:
1062 	 * 1) management command handlers (reshape, remove disk, quiesce).
1063 	 * 2) one normal I/O request failed.
1064 
1065 	 * After array_frozen is set to 1, new sync IO will be blocked at
1066 	 * raise_barrier(), and new normal I/O will blocked at _wait_barrier()
1067 	 * or wait_read_barrier(). The flying I/Os will either complete or be
1068 	 * queued. When everything goes quite, there are only queued I/Os left.
1069 
1070 	 * Every flying I/O contributes to a conf->nr_pending[idx], idx is the
1071 	 * barrier bucket index which this I/O request hits. When all sync and
1072 	 * normal I/O are queued, sum of all conf->nr_pending[] will match sum
1073 	 * of all conf->nr_queued[]. But normal I/O failure is an exception,
1074 	 * in handle_read_error(), we may call freeze_array() before trying to
1075 	 * fix the read error. In this case, the error read I/O is not queued,
1076 	 * so get_unqueued_pending() == 1.
1077 	 *
1078 	 * Therefore before this function returns, we need to wait until
1079 	 * get_unqueued_pendings(conf) gets equal to extra. For
1080 	 * normal I/O context, extra is 1, in rested situations extra is 0.
1081 	 */
1082 	spin_lock_irq(&conf->resync_lock);
1083 	conf->array_frozen = 1;
1084 	raid1_log(conf->mddev, "wait freeze");
1085 	wait_event_lock_irq_cmd(
1086 		conf->wait_barrier,
1087 		get_unqueued_pending(conf) == extra,
1088 		conf->resync_lock,
1089 		flush_pending_writes(conf));
1090 	spin_unlock_irq(&conf->resync_lock);
1091 }
1092 static void unfreeze_array(struct r1conf *conf)
1093 {
1094 	/* reverse the effect of the freeze */
1095 	spin_lock_irq(&conf->resync_lock);
1096 	conf->array_frozen = 0;
1097 	spin_unlock_irq(&conf->resync_lock);
1098 	wake_up(&conf->wait_barrier);
1099 }
1100 
1101 static void alloc_behind_master_bio(struct r1bio *r1_bio,
1102 					   struct bio *bio)
1103 {
1104 	int size = bio->bi_iter.bi_size;
1105 	unsigned vcnt = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1106 	int i = 0;
1107 	struct bio *behind_bio = NULL;
1108 
1109 	behind_bio = bio_alloc_bioset(GFP_NOIO, vcnt, &r1_bio->mddev->bio_set);
1110 	if (!behind_bio)
1111 		return;
1112 
1113 	/* discard op, we don't support writezero/writesame yet */
1114 	if (!bio_has_data(bio)) {
1115 		behind_bio->bi_iter.bi_size = size;
1116 		goto skip_copy;
1117 	}
1118 
1119 	behind_bio->bi_write_hint = bio->bi_write_hint;
1120 
1121 	while (i < vcnt && size) {
1122 		struct page *page;
1123 		int len = min_t(int, PAGE_SIZE, size);
1124 
1125 		page = alloc_page(GFP_NOIO);
1126 		if (unlikely(!page))
1127 			goto free_pages;
1128 
1129 		bio_add_page(behind_bio, page, len, 0);
1130 
1131 		size -= len;
1132 		i++;
1133 	}
1134 
1135 	bio_copy_data(behind_bio, bio);
1136 skip_copy:
1137 	r1_bio->behind_master_bio = behind_bio;
1138 	set_bit(R1BIO_BehindIO, &r1_bio->state);
1139 
1140 	return;
1141 
1142 free_pages:
1143 	pr_debug("%dB behind alloc failed, doing sync I/O\n",
1144 		 bio->bi_iter.bi_size);
1145 	bio_free_pages(behind_bio);
1146 	bio_put(behind_bio);
1147 }
1148 
1149 struct raid1_plug_cb {
1150 	struct blk_plug_cb	cb;
1151 	struct bio_list		pending;
1152 	int			pending_cnt;
1153 };
1154 
1155 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1156 {
1157 	struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1158 						  cb);
1159 	struct mddev *mddev = plug->cb.data;
1160 	struct r1conf *conf = mddev->private;
1161 	struct bio *bio;
1162 
1163 	if (from_schedule || current->bio_list) {
1164 		spin_lock_irq(&conf->device_lock);
1165 		bio_list_merge(&conf->pending_bio_list, &plug->pending);
1166 		conf->pending_count += plug->pending_cnt;
1167 		spin_unlock_irq(&conf->device_lock);
1168 		wake_up(&conf->wait_barrier);
1169 		md_wakeup_thread(mddev->thread);
1170 		kfree(plug);
1171 		return;
1172 	}
1173 
1174 	/* we aren't scheduling, so we can do the write-out directly. */
1175 	bio = bio_list_get(&plug->pending);
1176 	flush_bio_list(conf, bio);
1177 	kfree(plug);
1178 }
1179 
1180 static void init_r1bio(struct r1bio *r1_bio, struct mddev *mddev, struct bio *bio)
1181 {
1182 	r1_bio->master_bio = bio;
1183 	r1_bio->sectors = bio_sectors(bio);
1184 	r1_bio->state = 0;
1185 	r1_bio->mddev = mddev;
1186 	r1_bio->sector = bio->bi_iter.bi_sector;
1187 }
1188 
1189 static inline struct r1bio *
1190 alloc_r1bio(struct mddev *mddev, struct bio *bio)
1191 {
1192 	struct r1conf *conf = mddev->private;
1193 	struct r1bio *r1_bio;
1194 
1195 	r1_bio = mempool_alloc(&conf->r1bio_pool, GFP_NOIO);
1196 	/* Ensure no bio records IO_BLOCKED */
1197 	memset(r1_bio->bios, 0, conf->raid_disks * sizeof(r1_bio->bios[0]));
1198 	init_r1bio(r1_bio, mddev, bio);
1199 	return r1_bio;
1200 }
1201 
1202 static void raid1_read_request(struct mddev *mddev, struct bio *bio,
1203 			       int max_read_sectors, struct r1bio *r1_bio)
1204 {
1205 	struct r1conf *conf = mddev->private;
1206 	struct raid1_info *mirror;
1207 	struct bio *read_bio;
1208 	struct bitmap *bitmap = mddev->bitmap;
1209 	const int op = bio_op(bio);
1210 	const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1211 	int max_sectors;
1212 	int rdisk;
1213 	bool r1bio_existed = !!r1_bio;
1214 	char b[BDEVNAME_SIZE];
1215 
1216 	/*
1217 	 * If r1_bio is set, we are blocking the raid1d thread
1218 	 * so there is a tiny risk of deadlock.  So ask for
1219 	 * emergency memory if needed.
1220 	 */
1221 	gfp_t gfp = r1_bio ? (GFP_NOIO | __GFP_HIGH) : GFP_NOIO;
1222 
1223 	if (r1bio_existed) {
1224 		/* Need to get the block device name carefully */
1225 		struct md_rdev *rdev;
1226 		rcu_read_lock();
1227 		rdev = rcu_dereference(conf->mirrors[r1_bio->read_disk].rdev);
1228 		if (rdev)
1229 			bdevname(rdev->bdev, b);
1230 		else
1231 			strcpy(b, "???");
1232 		rcu_read_unlock();
1233 	}
1234 
1235 	/*
1236 	 * Still need barrier for READ in case that whole
1237 	 * array is frozen.
1238 	 */
1239 	wait_read_barrier(conf, bio->bi_iter.bi_sector);
1240 
1241 	if (!r1_bio)
1242 		r1_bio = alloc_r1bio(mddev, bio);
1243 	else
1244 		init_r1bio(r1_bio, mddev, bio);
1245 	r1_bio->sectors = max_read_sectors;
1246 
1247 	/*
1248 	 * make_request() can abort the operation when read-ahead is being
1249 	 * used and no empty request is available.
1250 	 */
1251 	rdisk = read_balance(conf, r1_bio, &max_sectors);
1252 
1253 	if (rdisk < 0) {
1254 		/* couldn't find anywhere to read from */
1255 		if (r1bio_existed) {
1256 			pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
1257 					    mdname(mddev),
1258 					    b,
1259 					    (unsigned long long)r1_bio->sector);
1260 		}
1261 		raid_end_bio_io(r1_bio);
1262 		return;
1263 	}
1264 	mirror = conf->mirrors + rdisk;
1265 
1266 	if (r1bio_existed)
1267 		pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %s\n",
1268 				    mdname(mddev),
1269 				    (unsigned long long)r1_bio->sector,
1270 				    bdevname(mirror->rdev->bdev, b));
1271 
1272 	if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1273 	    bitmap) {
1274 		/*
1275 		 * Reading from a write-mostly device must take care not to
1276 		 * over-take any writes that are 'behind'
1277 		 */
1278 		raid1_log(mddev, "wait behind writes");
1279 		wait_event(bitmap->behind_wait,
1280 			   atomic_read(&bitmap->behind_writes) == 0);
1281 	}
1282 
1283 	if (max_sectors < bio_sectors(bio)) {
1284 		struct bio *split = bio_split(bio, max_sectors,
1285 					      gfp, &conf->bio_split);
1286 		bio_chain(split, bio);
1287 		submit_bio_noacct(bio);
1288 		bio = split;
1289 		r1_bio->master_bio = bio;
1290 		r1_bio->sectors = max_sectors;
1291 	}
1292 
1293 	r1_bio->read_disk = rdisk;
1294 
1295 	if (!r1bio_existed && blk_queue_io_stat(bio->bi_bdev->bd_disk->queue))
1296 		r1_bio->start_time = bio_start_io_acct(bio);
1297 
1298 	read_bio = bio_clone_fast(bio, gfp, &mddev->bio_set);
1299 
1300 	r1_bio->bios[rdisk] = read_bio;
1301 
1302 	read_bio->bi_iter.bi_sector = r1_bio->sector +
1303 		mirror->rdev->data_offset;
1304 	bio_set_dev(read_bio, mirror->rdev->bdev);
1305 	read_bio->bi_end_io = raid1_end_read_request;
1306 	bio_set_op_attrs(read_bio, op, do_sync);
1307 	if (test_bit(FailFast, &mirror->rdev->flags) &&
1308 	    test_bit(R1BIO_FailFast, &r1_bio->state))
1309 	        read_bio->bi_opf |= MD_FAILFAST;
1310 	read_bio->bi_private = r1_bio;
1311 
1312 	if (mddev->gendisk)
1313 	        trace_block_bio_remap(read_bio, disk_devt(mddev->gendisk),
1314 				      r1_bio->sector);
1315 
1316 	submit_bio_noacct(read_bio);
1317 }
1318 
1319 static void raid1_write_request(struct mddev *mddev, struct bio *bio,
1320 				int max_write_sectors)
1321 {
1322 	struct r1conf *conf = mddev->private;
1323 	struct r1bio *r1_bio;
1324 	int i, disks;
1325 	struct bitmap *bitmap = mddev->bitmap;
1326 	unsigned long flags;
1327 	struct md_rdev *blocked_rdev;
1328 	struct blk_plug_cb *cb;
1329 	struct raid1_plug_cb *plug = NULL;
1330 	int first_clone;
1331 	int max_sectors;
1332 
1333 	if (mddev_is_clustered(mddev) &&
1334 	     md_cluster_ops->area_resyncing(mddev, WRITE,
1335 		     bio->bi_iter.bi_sector, bio_end_sector(bio))) {
1336 
1337 		DEFINE_WAIT(w);
1338 		for (;;) {
1339 			prepare_to_wait(&conf->wait_barrier,
1340 					&w, TASK_IDLE);
1341 			if (!md_cluster_ops->area_resyncing(mddev, WRITE,
1342 							bio->bi_iter.bi_sector,
1343 							bio_end_sector(bio)))
1344 				break;
1345 			schedule();
1346 		}
1347 		finish_wait(&conf->wait_barrier, &w);
1348 	}
1349 
1350 	/*
1351 	 * Register the new request and wait if the reconstruction
1352 	 * thread has put up a bar for new requests.
1353 	 * Continue immediately if no resync is active currently.
1354 	 */
1355 	wait_barrier(conf, bio->bi_iter.bi_sector);
1356 
1357 	r1_bio = alloc_r1bio(mddev, bio);
1358 	r1_bio->sectors = max_write_sectors;
1359 
1360 	if (conf->pending_count >= max_queued_requests) {
1361 		md_wakeup_thread(mddev->thread);
1362 		raid1_log(mddev, "wait queued");
1363 		wait_event(conf->wait_barrier,
1364 			   conf->pending_count < max_queued_requests);
1365 	}
1366 	/* first select target devices under rcu_lock and
1367 	 * inc refcount on their rdev.  Record them by setting
1368 	 * bios[x] to bio
1369 	 * If there are known/acknowledged bad blocks on any device on
1370 	 * which we have seen a write error, we want to avoid writing those
1371 	 * blocks.
1372 	 * This potentially requires several writes to write around
1373 	 * the bad blocks.  Each set of writes gets it's own r1bio
1374 	 * with a set of bios attached.
1375 	 */
1376 
1377 	disks = conf->raid_disks * 2;
1378  retry_write:
1379 	blocked_rdev = NULL;
1380 	rcu_read_lock();
1381 	max_sectors = r1_bio->sectors;
1382 	for (i = 0;  i < disks; i++) {
1383 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1384 		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1385 			atomic_inc(&rdev->nr_pending);
1386 			blocked_rdev = rdev;
1387 			break;
1388 		}
1389 		r1_bio->bios[i] = NULL;
1390 		if (!rdev || test_bit(Faulty, &rdev->flags)) {
1391 			if (i < conf->raid_disks)
1392 				set_bit(R1BIO_Degraded, &r1_bio->state);
1393 			continue;
1394 		}
1395 
1396 		atomic_inc(&rdev->nr_pending);
1397 		if (test_bit(WriteErrorSeen, &rdev->flags)) {
1398 			sector_t first_bad;
1399 			int bad_sectors;
1400 			int is_bad;
1401 
1402 			is_bad = is_badblock(rdev, r1_bio->sector, max_sectors,
1403 					     &first_bad, &bad_sectors);
1404 			if (is_bad < 0) {
1405 				/* mustn't write here until the bad block is
1406 				 * acknowledged*/
1407 				set_bit(BlockedBadBlocks, &rdev->flags);
1408 				blocked_rdev = rdev;
1409 				break;
1410 			}
1411 			if (is_bad && first_bad <= r1_bio->sector) {
1412 				/* Cannot write here at all */
1413 				bad_sectors -= (r1_bio->sector - first_bad);
1414 				if (bad_sectors < max_sectors)
1415 					/* mustn't write more than bad_sectors
1416 					 * to other devices yet
1417 					 */
1418 					max_sectors = bad_sectors;
1419 				rdev_dec_pending(rdev, mddev);
1420 				/* We don't set R1BIO_Degraded as that
1421 				 * only applies if the disk is
1422 				 * missing, so it might be re-added,
1423 				 * and we want to know to recover this
1424 				 * chunk.
1425 				 * In this case the device is here,
1426 				 * and the fact that this chunk is not
1427 				 * in-sync is recorded in the bad
1428 				 * block log
1429 				 */
1430 				continue;
1431 			}
1432 			if (is_bad) {
1433 				int good_sectors = first_bad - r1_bio->sector;
1434 				if (good_sectors < max_sectors)
1435 					max_sectors = good_sectors;
1436 			}
1437 		}
1438 		r1_bio->bios[i] = bio;
1439 	}
1440 	rcu_read_unlock();
1441 
1442 	if (unlikely(blocked_rdev)) {
1443 		/* Wait for this device to become unblocked */
1444 		int j;
1445 
1446 		for (j = 0; j < i; j++)
1447 			if (r1_bio->bios[j])
1448 				rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1449 		r1_bio->state = 0;
1450 		allow_barrier(conf, bio->bi_iter.bi_sector);
1451 		raid1_log(mddev, "wait rdev %d blocked", blocked_rdev->raid_disk);
1452 		md_wait_for_blocked_rdev(blocked_rdev, mddev);
1453 		wait_barrier(conf, bio->bi_iter.bi_sector);
1454 		goto retry_write;
1455 	}
1456 
1457 	if (max_sectors < bio_sectors(bio)) {
1458 		struct bio *split = bio_split(bio, max_sectors,
1459 					      GFP_NOIO, &conf->bio_split);
1460 		bio_chain(split, bio);
1461 		submit_bio_noacct(bio);
1462 		bio = split;
1463 		r1_bio->master_bio = bio;
1464 		r1_bio->sectors = max_sectors;
1465 	}
1466 
1467 	if (blk_queue_io_stat(bio->bi_bdev->bd_disk->queue))
1468 		r1_bio->start_time = bio_start_io_acct(bio);
1469 	atomic_set(&r1_bio->remaining, 1);
1470 	atomic_set(&r1_bio->behind_remaining, 0);
1471 
1472 	first_clone = 1;
1473 
1474 	for (i = 0; i < disks; i++) {
1475 		struct bio *mbio = NULL;
1476 		struct md_rdev *rdev = conf->mirrors[i].rdev;
1477 		if (!r1_bio->bios[i])
1478 			continue;
1479 
1480 		if (first_clone) {
1481 			/* do behind I/O ?
1482 			 * Not if there are too many, or cannot
1483 			 * allocate memory, or a reader on WriteMostly
1484 			 * is waiting for behind writes to flush */
1485 			if (bitmap &&
1486 			    (atomic_read(&bitmap->behind_writes)
1487 			     < mddev->bitmap_info.max_write_behind) &&
1488 			    !waitqueue_active(&bitmap->behind_wait)) {
1489 				alloc_behind_master_bio(r1_bio, bio);
1490 			}
1491 
1492 			md_bitmap_startwrite(bitmap, r1_bio->sector, r1_bio->sectors,
1493 					     test_bit(R1BIO_BehindIO, &r1_bio->state));
1494 			first_clone = 0;
1495 		}
1496 
1497 		if (r1_bio->behind_master_bio)
1498 			mbio = bio_clone_fast(r1_bio->behind_master_bio,
1499 					      GFP_NOIO, &mddev->bio_set);
1500 		else
1501 			mbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set);
1502 
1503 		if (r1_bio->behind_master_bio) {
1504 			if (test_bit(CollisionCheck, &rdev->flags))
1505 				wait_for_serialization(rdev, r1_bio);
1506 			if (test_bit(WriteMostly, &rdev->flags))
1507 				atomic_inc(&r1_bio->behind_remaining);
1508 		} else if (mddev->serialize_policy)
1509 			wait_for_serialization(rdev, r1_bio);
1510 
1511 		r1_bio->bios[i] = mbio;
1512 
1513 		mbio->bi_iter.bi_sector	= (r1_bio->sector +
1514 				   conf->mirrors[i].rdev->data_offset);
1515 		bio_set_dev(mbio, conf->mirrors[i].rdev->bdev);
1516 		mbio->bi_end_io	= raid1_end_write_request;
1517 		mbio->bi_opf = bio_op(bio) | (bio->bi_opf & (REQ_SYNC | REQ_FUA));
1518 		if (test_bit(FailFast, &conf->mirrors[i].rdev->flags) &&
1519 		    !test_bit(WriteMostly, &conf->mirrors[i].rdev->flags) &&
1520 		    conf->raid_disks - mddev->degraded > 1)
1521 			mbio->bi_opf |= MD_FAILFAST;
1522 		mbio->bi_private = r1_bio;
1523 
1524 		atomic_inc(&r1_bio->remaining);
1525 
1526 		if (mddev->gendisk)
1527 			trace_block_bio_remap(mbio, disk_devt(mddev->gendisk),
1528 					      r1_bio->sector);
1529 		/* flush_pending_writes() needs access to the rdev so...*/
1530 		mbio->bi_bdev = (void *)conf->mirrors[i].rdev;
1531 
1532 		cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1533 		if (cb)
1534 			plug = container_of(cb, struct raid1_plug_cb, cb);
1535 		else
1536 			plug = NULL;
1537 		if (plug) {
1538 			bio_list_add(&plug->pending, mbio);
1539 			plug->pending_cnt++;
1540 		} else {
1541 			spin_lock_irqsave(&conf->device_lock, flags);
1542 			bio_list_add(&conf->pending_bio_list, mbio);
1543 			conf->pending_count++;
1544 			spin_unlock_irqrestore(&conf->device_lock, flags);
1545 			md_wakeup_thread(mddev->thread);
1546 		}
1547 	}
1548 
1549 	r1_bio_write_done(r1_bio);
1550 
1551 	/* In case raid1d snuck in to freeze_array */
1552 	wake_up(&conf->wait_barrier);
1553 }
1554 
1555 static bool raid1_make_request(struct mddev *mddev, struct bio *bio)
1556 {
1557 	sector_t sectors;
1558 
1559 	if (unlikely(bio->bi_opf & REQ_PREFLUSH)
1560 	    && md_flush_request(mddev, bio))
1561 		return true;
1562 
1563 	/*
1564 	 * There is a limit to the maximum size, but
1565 	 * the read/write handler might find a lower limit
1566 	 * due to bad blocks.  To avoid multiple splits,
1567 	 * we pass the maximum number of sectors down
1568 	 * and let the lower level perform the split.
1569 	 */
1570 	sectors = align_to_barrier_unit_end(
1571 		bio->bi_iter.bi_sector, bio_sectors(bio));
1572 
1573 	if (bio_data_dir(bio) == READ)
1574 		raid1_read_request(mddev, bio, sectors, NULL);
1575 	else {
1576 		if (!md_write_start(mddev,bio))
1577 			return false;
1578 		raid1_write_request(mddev, bio, sectors);
1579 	}
1580 	return true;
1581 }
1582 
1583 static void raid1_status(struct seq_file *seq, struct mddev *mddev)
1584 {
1585 	struct r1conf *conf = mddev->private;
1586 	int i;
1587 
1588 	seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1589 		   conf->raid_disks - mddev->degraded);
1590 	rcu_read_lock();
1591 	for (i = 0; i < conf->raid_disks; i++) {
1592 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1593 		seq_printf(seq, "%s",
1594 			   rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1595 	}
1596 	rcu_read_unlock();
1597 	seq_printf(seq, "]");
1598 }
1599 
1600 static void raid1_error(struct mddev *mddev, struct md_rdev *rdev)
1601 {
1602 	char b[BDEVNAME_SIZE];
1603 	struct r1conf *conf = mddev->private;
1604 	unsigned long flags;
1605 
1606 	/*
1607 	 * If it is not operational, then we have already marked it as dead
1608 	 * else if it is the last working disks with "fail_last_dev == false",
1609 	 * ignore the error, let the next level up know.
1610 	 * else mark the drive as failed
1611 	 */
1612 	spin_lock_irqsave(&conf->device_lock, flags);
1613 	if (test_bit(In_sync, &rdev->flags) && !mddev->fail_last_dev
1614 	    && (conf->raid_disks - mddev->degraded) == 1) {
1615 		/*
1616 		 * Don't fail the drive, act as though we were just a
1617 		 * normal single drive.
1618 		 * However don't try a recovery from this drive as
1619 		 * it is very likely to fail.
1620 		 */
1621 		conf->recovery_disabled = mddev->recovery_disabled;
1622 		spin_unlock_irqrestore(&conf->device_lock, flags);
1623 		return;
1624 	}
1625 	set_bit(Blocked, &rdev->flags);
1626 	if (test_and_clear_bit(In_sync, &rdev->flags))
1627 		mddev->degraded++;
1628 	set_bit(Faulty, &rdev->flags);
1629 	spin_unlock_irqrestore(&conf->device_lock, flags);
1630 	/*
1631 	 * if recovery is running, make sure it aborts.
1632 	 */
1633 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1634 	set_mask_bits(&mddev->sb_flags, 0,
1635 		      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1636 	pr_crit("md/raid1:%s: Disk failure on %s, disabling device.\n"
1637 		"md/raid1:%s: Operation continuing on %d devices.\n",
1638 		mdname(mddev), bdevname(rdev->bdev, b),
1639 		mdname(mddev), conf->raid_disks - mddev->degraded);
1640 }
1641 
1642 static void print_conf(struct r1conf *conf)
1643 {
1644 	int i;
1645 
1646 	pr_debug("RAID1 conf printout:\n");
1647 	if (!conf) {
1648 		pr_debug("(!conf)\n");
1649 		return;
1650 	}
1651 	pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1652 		 conf->raid_disks);
1653 
1654 	rcu_read_lock();
1655 	for (i = 0; i < conf->raid_disks; i++) {
1656 		char b[BDEVNAME_SIZE];
1657 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1658 		if (rdev)
1659 			pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
1660 				 i, !test_bit(In_sync, &rdev->flags),
1661 				 !test_bit(Faulty, &rdev->flags),
1662 				 bdevname(rdev->bdev,b));
1663 	}
1664 	rcu_read_unlock();
1665 }
1666 
1667 static void close_sync(struct r1conf *conf)
1668 {
1669 	int idx;
1670 
1671 	for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++) {
1672 		_wait_barrier(conf, idx);
1673 		_allow_barrier(conf, idx);
1674 	}
1675 
1676 	mempool_exit(&conf->r1buf_pool);
1677 }
1678 
1679 static int raid1_spare_active(struct mddev *mddev)
1680 {
1681 	int i;
1682 	struct r1conf *conf = mddev->private;
1683 	int count = 0;
1684 	unsigned long flags;
1685 
1686 	/*
1687 	 * Find all failed disks within the RAID1 configuration
1688 	 * and mark them readable.
1689 	 * Called under mddev lock, so rcu protection not needed.
1690 	 * device_lock used to avoid races with raid1_end_read_request
1691 	 * which expects 'In_sync' flags and ->degraded to be consistent.
1692 	 */
1693 	spin_lock_irqsave(&conf->device_lock, flags);
1694 	for (i = 0; i < conf->raid_disks; i++) {
1695 		struct md_rdev *rdev = conf->mirrors[i].rdev;
1696 		struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1697 		if (repl
1698 		    && !test_bit(Candidate, &repl->flags)
1699 		    && repl->recovery_offset == MaxSector
1700 		    && !test_bit(Faulty, &repl->flags)
1701 		    && !test_and_set_bit(In_sync, &repl->flags)) {
1702 			/* replacement has just become active */
1703 			if (!rdev ||
1704 			    !test_and_clear_bit(In_sync, &rdev->flags))
1705 				count++;
1706 			if (rdev) {
1707 				/* Replaced device not technically
1708 				 * faulty, but we need to be sure
1709 				 * it gets removed and never re-added
1710 				 */
1711 				set_bit(Faulty, &rdev->flags);
1712 				sysfs_notify_dirent_safe(
1713 					rdev->sysfs_state);
1714 			}
1715 		}
1716 		if (rdev
1717 		    && rdev->recovery_offset == MaxSector
1718 		    && !test_bit(Faulty, &rdev->flags)
1719 		    && !test_and_set_bit(In_sync, &rdev->flags)) {
1720 			count++;
1721 			sysfs_notify_dirent_safe(rdev->sysfs_state);
1722 		}
1723 	}
1724 	mddev->degraded -= count;
1725 	spin_unlock_irqrestore(&conf->device_lock, flags);
1726 
1727 	print_conf(conf);
1728 	return count;
1729 }
1730 
1731 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1732 {
1733 	struct r1conf *conf = mddev->private;
1734 	int err = -EEXIST;
1735 	int mirror = 0;
1736 	struct raid1_info *p;
1737 	int first = 0;
1738 	int last = conf->raid_disks - 1;
1739 
1740 	if (mddev->recovery_disabled == conf->recovery_disabled)
1741 		return -EBUSY;
1742 
1743 	if (md_integrity_add_rdev(rdev, mddev))
1744 		return -ENXIO;
1745 
1746 	if (rdev->raid_disk >= 0)
1747 		first = last = rdev->raid_disk;
1748 
1749 	/*
1750 	 * find the disk ... but prefer rdev->saved_raid_disk
1751 	 * if possible.
1752 	 */
1753 	if (rdev->saved_raid_disk >= 0 &&
1754 	    rdev->saved_raid_disk >= first &&
1755 	    rdev->saved_raid_disk < conf->raid_disks &&
1756 	    conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1757 		first = last = rdev->saved_raid_disk;
1758 
1759 	for (mirror = first; mirror <= last; mirror++) {
1760 		p = conf->mirrors + mirror;
1761 		if (!p->rdev) {
1762 			if (mddev->gendisk)
1763 				disk_stack_limits(mddev->gendisk, rdev->bdev,
1764 						  rdev->data_offset << 9);
1765 
1766 			p->head_position = 0;
1767 			rdev->raid_disk = mirror;
1768 			err = 0;
1769 			/* As all devices are equivalent, we don't need a full recovery
1770 			 * if this was recently any drive of the array
1771 			 */
1772 			if (rdev->saved_raid_disk < 0)
1773 				conf->fullsync = 1;
1774 			rcu_assign_pointer(p->rdev, rdev);
1775 			break;
1776 		}
1777 		if (test_bit(WantReplacement, &p->rdev->flags) &&
1778 		    p[conf->raid_disks].rdev == NULL) {
1779 			/* Add this device as a replacement */
1780 			clear_bit(In_sync, &rdev->flags);
1781 			set_bit(Replacement, &rdev->flags);
1782 			rdev->raid_disk = mirror;
1783 			err = 0;
1784 			conf->fullsync = 1;
1785 			rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1786 			break;
1787 		}
1788 	}
1789 	if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1790 		blk_queue_flag_set(QUEUE_FLAG_DISCARD, mddev->queue);
1791 	print_conf(conf);
1792 	return err;
1793 }
1794 
1795 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1796 {
1797 	struct r1conf *conf = mddev->private;
1798 	int err = 0;
1799 	int number = rdev->raid_disk;
1800 	struct raid1_info *p = conf->mirrors + number;
1801 
1802 	if (rdev != p->rdev)
1803 		p = conf->mirrors + conf->raid_disks + number;
1804 
1805 	print_conf(conf);
1806 	if (rdev == p->rdev) {
1807 		if (test_bit(In_sync, &rdev->flags) ||
1808 		    atomic_read(&rdev->nr_pending)) {
1809 			err = -EBUSY;
1810 			goto abort;
1811 		}
1812 		/* Only remove non-faulty devices if recovery
1813 		 * is not possible.
1814 		 */
1815 		if (!test_bit(Faulty, &rdev->flags) &&
1816 		    mddev->recovery_disabled != conf->recovery_disabled &&
1817 		    mddev->degraded < conf->raid_disks) {
1818 			err = -EBUSY;
1819 			goto abort;
1820 		}
1821 		p->rdev = NULL;
1822 		if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1823 			synchronize_rcu();
1824 			if (atomic_read(&rdev->nr_pending)) {
1825 				/* lost the race, try later */
1826 				err = -EBUSY;
1827 				p->rdev = rdev;
1828 				goto abort;
1829 			}
1830 		}
1831 		if (conf->mirrors[conf->raid_disks + number].rdev) {
1832 			/* We just removed a device that is being replaced.
1833 			 * Move down the replacement.  We drain all IO before
1834 			 * doing this to avoid confusion.
1835 			 */
1836 			struct md_rdev *repl =
1837 				conf->mirrors[conf->raid_disks + number].rdev;
1838 			freeze_array(conf, 0);
1839 			if (atomic_read(&repl->nr_pending)) {
1840 				/* It means that some queued IO of retry_list
1841 				 * hold repl. Thus, we cannot set replacement
1842 				 * as NULL, avoiding rdev NULL pointer
1843 				 * dereference in sync_request_write and
1844 				 * handle_write_finished.
1845 				 */
1846 				err = -EBUSY;
1847 				unfreeze_array(conf);
1848 				goto abort;
1849 			}
1850 			clear_bit(Replacement, &repl->flags);
1851 			p->rdev = repl;
1852 			conf->mirrors[conf->raid_disks + number].rdev = NULL;
1853 			unfreeze_array(conf);
1854 		}
1855 
1856 		clear_bit(WantReplacement, &rdev->flags);
1857 		err = md_integrity_register(mddev);
1858 	}
1859 abort:
1860 
1861 	print_conf(conf);
1862 	return err;
1863 }
1864 
1865 static void end_sync_read(struct bio *bio)
1866 {
1867 	struct r1bio *r1_bio = get_resync_r1bio(bio);
1868 
1869 	update_head_pos(r1_bio->read_disk, r1_bio);
1870 
1871 	/*
1872 	 * we have read a block, now it needs to be re-written,
1873 	 * or re-read if the read failed.
1874 	 * We don't do much here, just schedule handling by raid1d
1875 	 */
1876 	if (!bio->bi_status)
1877 		set_bit(R1BIO_Uptodate, &r1_bio->state);
1878 
1879 	if (atomic_dec_and_test(&r1_bio->remaining))
1880 		reschedule_retry(r1_bio);
1881 }
1882 
1883 static void abort_sync_write(struct mddev *mddev, struct r1bio *r1_bio)
1884 {
1885 	sector_t sync_blocks = 0;
1886 	sector_t s = r1_bio->sector;
1887 	long sectors_to_go = r1_bio->sectors;
1888 
1889 	/* make sure these bits don't get cleared. */
1890 	do {
1891 		md_bitmap_end_sync(mddev->bitmap, s, &sync_blocks, 1);
1892 		s += sync_blocks;
1893 		sectors_to_go -= sync_blocks;
1894 	} while (sectors_to_go > 0);
1895 }
1896 
1897 static void put_sync_write_buf(struct r1bio *r1_bio, int uptodate)
1898 {
1899 	if (atomic_dec_and_test(&r1_bio->remaining)) {
1900 		struct mddev *mddev = r1_bio->mddev;
1901 		int s = r1_bio->sectors;
1902 
1903 		if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1904 		    test_bit(R1BIO_WriteError, &r1_bio->state))
1905 			reschedule_retry(r1_bio);
1906 		else {
1907 			put_buf(r1_bio);
1908 			md_done_sync(mddev, s, uptodate);
1909 		}
1910 	}
1911 }
1912 
1913 static void end_sync_write(struct bio *bio)
1914 {
1915 	int uptodate = !bio->bi_status;
1916 	struct r1bio *r1_bio = get_resync_r1bio(bio);
1917 	struct mddev *mddev = r1_bio->mddev;
1918 	struct r1conf *conf = mddev->private;
1919 	sector_t first_bad;
1920 	int bad_sectors;
1921 	struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev;
1922 
1923 	if (!uptodate) {
1924 		abort_sync_write(mddev, r1_bio);
1925 		set_bit(WriteErrorSeen, &rdev->flags);
1926 		if (!test_and_set_bit(WantReplacement, &rdev->flags))
1927 			set_bit(MD_RECOVERY_NEEDED, &
1928 				mddev->recovery);
1929 		set_bit(R1BIO_WriteError, &r1_bio->state);
1930 	} else if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
1931 			       &first_bad, &bad_sectors) &&
1932 		   !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1933 				r1_bio->sector,
1934 				r1_bio->sectors,
1935 				&first_bad, &bad_sectors)
1936 		)
1937 		set_bit(R1BIO_MadeGood, &r1_bio->state);
1938 
1939 	put_sync_write_buf(r1_bio, uptodate);
1940 }
1941 
1942 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1943 			    int sectors, struct page *page, int rw)
1944 {
1945 	if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
1946 		/* success */
1947 		return 1;
1948 	if (rw == WRITE) {
1949 		set_bit(WriteErrorSeen, &rdev->flags);
1950 		if (!test_and_set_bit(WantReplacement,
1951 				      &rdev->flags))
1952 			set_bit(MD_RECOVERY_NEEDED, &
1953 				rdev->mddev->recovery);
1954 	}
1955 	/* need to record an error - either for the block or the device */
1956 	if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1957 		md_error(rdev->mddev, rdev);
1958 	return 0;
1959 }
1960 
1961 static int fix_sync_read_error(struct r1bio *r1_bio)
1962 {
1963 	/* Try some synchronous reads of other devices to get
1964 	 * good data, much like with normal read errors.  Only
1965 	 * read into the pages we already have so we don't
1966 	 * need to re-issue the read request.
1967 	 * We don't need to freeze the array, because being in an
1968 	 * active sync request, there is no normal IO, and
1969 	 * no overlapping syncs.
1970 	 * We don't need to check is_badblock() again as we
1971 	 * made sure that anything with a bad block in range
1972 	 * will have bi_end_io clear.
1973 	 */
1974 	struct mddev *mddev = r1_bio->mddev;
1975 	struct r1conf *conf = mddev->private;
1976 	struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1977 	struct page **pages = get_resync_pages(bio)->pages;
1978 	sector_t sect = r1_bio->sector;
1979 	int sectors = r1_bio->sectors;
1980 	int idx = 0;
1981 	struct md_rdev *rdev;
1982 
1983 	rdev = conf->mirrors[r1_bio->read_disk].rdev;
1984 	if (test_bit(FailFast, &rdev->flags)) {
1985 		/* Don't try recovering from here - just fail it
1986 		 * ... unless it is the last working device of course */
1987 		md_error(mddev, rdev);
1988 		if (test_bit(Faulty, &rdev->flags))
1989 			/* Don't try to read from here, but make sure
1990 			 * put_buf does it's thing
1991 			 */
1992 			bio->bi_end_io = end_sync_write;
1993 	}
1994 
1995 	while(sectors) {
1996 		int s = sectors;
1997 		int d = r1_bio->read_disk;
1998 		int success = 0;
1999 		int start;
2000 
2001 		if (s > (PAGE_SIZE>>9))
2002 			s = PAGE_SIZE >> 9;
2003 		do {
2004 			if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
2005 				/* No rcu protection needed here devices
2006 				 * can only be removed when no resync is
2007 				 * active, and resync is currently active
2008 				 */
2009 				rdev = conf->mirrors[d].rdev;
2010 				if (sync_page_io(rdev, sect, s<<9,
2011 						 pages[idx],
2012 						 REQ_OP_READ, 0, false)) {
2013 					success = 1;
2014 					break;
2015 				}
2016 			}
2017 			d++;
2018 			if (d == conf->raid_disks * 2)
2019 				d = 0;
2020 		} while (!success && d != r1_bio->read_disk);
2021 
2022 		if (!success) {
2023 			char b[BDEVNAME_SIZE];
2024 			int abort = 0;
2025 			/* Cannot read from anywhere, this block is lost.
2026 			 * Record a bad block on each device.  If that doesn't
2027 			 * work just disable and interrupt the recovery.
2028 			 * Don't fail devices as that won't really help.
2029 			 */
2030 			pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
2031 					    mdname(mddev), bio_devname(bio, b),
2032 					    (unsigned long long)r1_bio->sector);
2033 			for (d = 0; d < conf->raid_disks * 2; d++) {
2034 				rdev = conf->mirrors[d].rdev;
2035 				if (!rdev || test_bit(Faulty, &rdev->flags))
2036 					continue;
2037 				if (!rdev_set_badblocks(rdev, sect, s, 0))
2038 					abort = 1;
2039 			}
2040 			if (abort) {
2041 				conf->recovery_disabled =
2042 					mddev->recovery_disabled;
2043 				set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2044 				md_done_sync(mddev, r1_bio->sectors, 0);
2045 				put_buf(r1_bio);
2046 				return 0;
2047 			}
2048 			/* Try next page */
2049 			sectors -= s;
2050 			sect += s;
2051 			idx++;
2052 			continue;
2053 		}
2054 
2055 		start = d;
2056 		/* write it back and re-read */
2057 		while (d != r1_bio->read_disk) {
2058 			if (d == 0)
2059 				d = conf->raid_disks * 2;
2060 			d--;
2061 			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2062 				continue;
2063 			rdev = conf->mirrors[d].rdev;
2064 			if (r1_sync_page_io(rdev, sect, s,
2065 					    pages[idx],
2066 					    WRITE) == 0) {
2067 				r1_bio->bios[d]->bi_end_io = NULL;
2068 				rdev_dec_pending(rdev, mddev);
2069 			}
2070 		}
2071 		d = start;
2072 		while (d != r1_bio->read_disk) {
2073 			if (d == 0)
2074 				d = conf->raid_disks * 2;
2075 			d--;
2076 			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2077 				continue;
2078 			rdev = conf->mirrors[d].rdev;
2079 			if (r1_sync_page_io(rdev, sect, s,
2080 					    pages[idx],
2081 					    READ) != 0)
2082 				atomic_add(s, &rdev->corrected_errors);
2083 		}
2084 		sectors -= s;
2085 		sect += s;
2086 		idx ++;
2087 	}
2088 	set_bit(R1BIO_Uptodate, &r1_bio->state);
2089 	bio->bi_status = 0;
2090 	return 1;
2091 }
2092 
2093 static void process_checks(struct r1bio *r1_bio)
2094 {
2095 	/* We have read all readable devices.  If we haven't
2096 	 * got the block, then there is no hope left.
2097 	 * If we have, then we want to do a comparison
2098 	 * and skip the write if everything is the same.
2099 	 * If any blocks failed to read, then we need to
2100 	 * attempt an over-write
2101 	 */
2102 	struct mddev *mddev = r1_bio->mddev;
2103 	struct r1conf *conf = mddev->private;
2104 	int primary;
2105 	int i;
2106 	int vcnt;
2107 
2108 	/* Fix variable parts of all bios */
2109 	vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
2110 	for (i = 0; i < conf->raid_disks * 2; i++) {
2111 		blk_status_t status;
2112 		struct bio *b = r1_bio->bios[i];
2113 		struct resync_pages *rp = get_resync_pages(b);
2114 		if (b->bi_end_io != end_sync_read)
2115 			continue;
2116 		/* fixup the bio for reuse, but preserve errno */
2117 		status = b->bi_status;
2118 		bio_reset(b);
2119 		b->bi_status = status;
2120 		b->bi_iter.bi_sector = r1_bio->sector +
2121 			conf->mirrors[i].rdev->data_offset;
2122 		bio_set_dev(b, conf->mirrors[i].rdev->bdev);
2123 		b->bi_end_io = end_sync_read;
2124 		rp->raid_bio = r1_bio;
2125 		b->bi_private = rp;
2126 
2127 		/* initialize bvec table again */
2128 		md_bio_reset_resync_pages(b, rp, r1_bio->sectors << 9);
2129 	}
2130 	for (primary = 0; primary < conf->raid_disks * 2; primary++)
2131 		if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
2132 		    !r1_bio->bios[primary]->bi_status) {
2133 			r1_bio->bios[primary]->bi_end_io = NULL;
2134 			rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
2135 			break;
2136 		}
2137 	r1_bio->read_disk = primary;
2138 	for (i = 0; i < conf->raid_disks * 2; i++) {
2139 		int j = 0;
2140 		struct bio *pbio = r1_bio->bios[primary];
2141 		struct bio *sbio = r1_bio->bios[i];
2142 		blk_status_t status = sbio->bi_status;
2143 		struct page **ppages = get_resync_pages(pbio)->pages;
2144 		struct page **spages = get_resync_pages(sbio)->pages;
2145 		struct bio_vec *bi;
2146 		int page_len[RESYNC_PAGES] = { 0 };
2147 		struct bvec_iter_all iter_all;
2148 
2149 		if (sbio->bi_end_io != end_sync_read)
2150 			continue;
2151 		/* Now we can 'fixup' the error value */
2152 		sbio->bi_status = 0;
2153 
2154 		bio_for_each_segment_all(bi, sbio, iter_all)
2155 			page_len[j++] = bi->bv_len;
2156 
2157 		if (!status) {
2158 			for (j = vcnt; j-- ; ) {
2159 				if (memcmp(page_address(ppages[j]),
2160 					   page_address(spages[j]),
2161 					   page_len[j]))
2162 					break;
2163 			}
2164 		} else
2165 			j = 0;
2166 		if (j >= 0)
2167 			atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
2168 		if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
2169 			      && !status)) {
2170 			/* No need to write to this device. */
2171 			sbio->bi_end_io = NULL;
2172 			rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2173 			continue;
2174 		}
2175 
2176 		bio_copy_data(sbio, pbio);
2177 	}
2178 }
2179 
2180 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
2181 {
2182 	struct r1conf *conf = mddev->private;
2183 	int i;
2184 	int disks = conf->raid_disks * 2;
2185 	struct bio *wbio;
2186 
2187 	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2188 		/* ouch - failed to read all of that. */
2189 		if (!fix_sync_read_error(r1_bio))
2190 			return;
2191 
2192 	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2193 		process_checks(r1_bio);
2194 
2195 	/*
2196 	 * schedule writes
2197 	 */
2198 	atomic_set(&r1_bio->remaining, 1);
2199 	for (i = 0; i < disks ; i++) {
2200 		wbio = r1_bio->bios[i];
2201 		if (wbio->bi_end_io == NULL ||
2202 		    (wbio->bi_end_io == end_sync_read &&
2203 		     (i == r1_bio->read_disk ||
2204 		      !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2205 			continue;
2206 		if (test_bit(Faulty, &conf->mirrors[i].rdev->flags)) {
2207 			abort_sync_write(mddev, r1_bio);
2208 			continue;
2209 		}
2210 
2211 		bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2212 		if (test_bit(FailFast, &conf->mirrors[i].rdev->flags))
2213 			wbio->bi_opf |= MD_FAILFAST;
2214 
2215 		wbio->bi_end_io = end_sync_write;
2216 		atomic_inc(&r1_bio->remaining);
2217 		md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
2218 
2219 		submit_bio_noacct(wbio);
2220 	}
2221 
2222 	put_sync_write_buf(r1_bio, 1);
2223 }
2224 
2225 /*
2226  * This is a kernel thread which:
2227  *
2228  *	1.	Retries failed read operations on working mirrors.
2229  *	2.	Updates the raid superblock when problems encounter.
2230  *	3.	Performs writes following reads for array synchronising.
2231  */
2232 
2233 static void fix_read_error(struct r1conf *conf, int read_disk,
2234 			   sector_t sect, int sectors)
2235 {
2236 	struct mddev *mddev = conf->mddev;
2237 	while(sectors) {
2238 		int s = sectors;
2239 		int d = read_disk;
2240 		int success = 0;
2241 		int start;
2242 		struct md_rdev *rdev;
2243 
2244 		if (s > (PAGE_SIZE>>9))
2245 			s = PAGE_SIZE >> 9;
2246 
2247 		do {
2248 			sector_t first_bad;
2249 			int bad_sectors;
2250 
2251 			rcu_read_lock();
2252 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2253 			if (rdev &&
2254 			    (test_bit(In_sync, &rdev->flags) ||
2255 			     (!test_bit(Faulty, &rdev->flags) &&
2256 			      rdev->recovery_offset >= sect + s)) &&
2257 			    is_badblock(rdev, sect, s,
2258 					&first_bad, &bad_sectors) == 0) {
2259 				atomic_inc(&rdev->nr_pending);
2260 				rcu_read_unlock();
2261 				if (sync_page_io(rdev, sect, s<<9,
2262 					 conf->tmppage, REQ_OP_READ, 0, false))
2263 					success = 1;
2264 				rdev_dec_pending(rdev, mddev);
2265 				if (success)
2266 					break;
2267 			} else
2268 				rcu_read_unlock();
2269 			d++;
2270 			if (d == conf->raid_disks * 2)
2271 				d = 0;
2272 		} while (!success && d != read_disk);
2273 
2274 		if (!success) {
2275 			/* Cannot read from anywhere - mark it bad */
2276 			struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2277 			if (!rdev_set_badblocks(rdev, sect, s, 0))
2278 				md_error(mddev, rdev);
2279 			break;
2280 		}
2281 		/* write it back and re-read */
2282 		start = d;
2283 		while (d != read_disk) {
2284 			if (d==0)
2285 				d = conf->raid_disks * 2;
2286 			d--;
2287 			rcu_read_lock();
2288 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2289 			if (rdev &&
2290 			    !test_bit(Faulty, &rdev->flags)) {
2291 				atomic_inc(&rdev->nr_pending);
2292 				rcu_read_unlock();
2293 				r1_sync_page_io(rdev, sect, s,
2294 						conf->tmppage, WRITE);
2295 				rdev_dec_pending(rdev, mddev);
2296 			} else
2297 				rcu_read_unlock();
2298 		}
2299 		d = start;
2300 		while (d != read_disk) {
2301 			char b[BDEVNAME_SIZE];
2302 			if (d==0)
2303 				d = conf->raid_disks * 2;
2304 			d--;
2305 			rcu_read_lock();
2306 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2307 			if (rdev &&
2308 			    !test_bit(Faulty, &rdev->flags)) {
2309 				atomic_inc(&rdev->nr_pending);
2310 				rcu_read_unlock();
2311 				if (r1_sync_page_io(rdev, sect, s,
2312 						    conf->tmppage, READ)) {
2313 					atomic_add(s, &rdev->corrected_errors);
2314 					pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %s)\n",
2315 						mdname(mddev), s,
2316 						(unsigned long long)(sect +
2317 								     rdev->data_offset),
2318 						bdevname(rdev->bdev, b));
2319 				}
2320 				rdev_dec_pending(rdev, mddev);
2321 			} else
2322 				rcu_read_unlock();
2323 		}
2324 		sectors -= s;
2325 		sect += s;
2326 	}
2327 }
2328 
2329 static int narrow_write_error(struct r1bio *r1_bio, int i)
2330 {
2331 	struct mddev *mddev = r1_bio->mddev;
2332 	struct r1conf *conf = mddev->private;
2333 	struct md_rdev *rdev = conf->mirrors[i].rdev;
2334 
2335 	/* bio has the data to be written to device 'i' where
2336 	 * we just recently had a write error.
2337 	 * We repeatedly clone the bio and trim down to one block,
2338 	 * then try the write.  Where the write fails we record
2339 	 * a bad block.
2340 	 * It is conceivable that the bio doesn't exactly align with
2341 	 * blocks.  We must handle this somehow.
2342 	 *
2343 	 * We currently own a reference on the rdev.
2344 	 */
2345 
2346 	int block_sectors;
2347 	sector_t sector;
2348 	int sectors;
2349 	int sect_to_write = r1_bio->sectors;
2350 	int ok = 1;
2351 
2352 	if (rdev->badblocks.shift < 0)
2353 		return 0;
2354 
2355 	block_sectors = roundup(1 << rdev->badblocks.shift,
2356 				bdev_logical_block_size(rdev->bdev) >> 9);
2357 	sector = r1_bio->sector;
2358 	sectors = ((sector + block_sectors)
2359 		   & ~(sector_t)(block_sectors - 1))
2360 		- sector;
2361 
2362 	while (sect_to_write) {
2363 		struct bio *wbio;
2364 		if (sectors > sect_to_write)
2365 			sectors = sect_to_write;
2366 		/* Write at 'sector' for 'sectors'*/
2367 
2368 		if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2369 			wbio = bio_clone_fast(r1_bio->behind_master_bio,
2370 					      GFP_NOIO,
2371 					      &mddev->bio_set);
2372 		} else {
2373 			wbio = bio_clone_fast(r1_bio->master_bio, GFP_NOIO,
2374 					      &mddev->bio_set);
2375 		}
2376 
2377 		bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2378 		wbio->bi_iter.bi_sector = r1_bio->sector;
2379 		wbio->bi_iter.bi_size = r1_bio->sectors << 9;
2380 
2381 		bio_trim(wbio, sector - r1_bio->sector, sectors);
2382 		wbio->bi_iter.bi_sector += rdev->data_offset;
2383 		bio_set_dev(wbio, rdev->bdev);
2384 
2385 		if (submit_bio_wait(wbio) < 0)
2386 			/* failure! */
2387 			ok = rdev_set_badblocks(rdev, sector,
2388 						sectors, 0)
2389 				&& ok;
2390 
2391 		bio_put(wbio);
2392 		sect_to_write -= sectors;
2393 		sector += sectors;
2394 		sectors = block_sectors;
2395 	}
2396 	return ok;
2397 }
2398 
2399 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2400 {
2401 	int m;
2402 	int s = r1_bio->sectors;
2403 	for (m = 0; m < conf->raid_disks * 2 ; m++) {
2404 		struct md_rdev *rdev = conf->mirrors[m].rdev;
2405 		struct bio *bio = r1_bio->bios[m];
2406 		if (bio->bi_end_io == NULL)
2407 			continue;
2408 		if (!bio->bi_status &&
2409 		    test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2410 			rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2411 		}
2412 		if (bio->bi_status &&
2413 		    test_bit(R1BIO_WriteError, &r1_bio->state)) {
2414 			if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2415 				md_error(conf->mddev, rdev);
2416 		}
2417 	}
2418 	put_buf(r1_bio);
2419 	md_done_sync(conf->mddev, s, 1);
2420 }
2421 
2422 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2423 {
2424 	int m, idx;
2425 	bool fail = false;
2426 
2427 	for (m = 0; m < conf->raid_disks * 2 ; m++)
2428 		if (r1_bio->bios[m] == IO_MADE_GOOD) {
2429 			struct md_rdev *rdev = conf->mirrors[m].rdev;
2430 			rdev_clear_badblocks(rdev,
2431 					     r1_bio->sector,
2432 					     r1_bio->sectors, 0);
2433 			rdev_dec_pending(rdev, conf->mddev);
2434 		} else if (r1_bio->bios[m] != NULL) {
2435 			/* This drive got a write error.  We need to
2436 			 * narrow down and record precise write
2437 			 * errors.
2438 			 */
2439 			fail = true;
2440 			if (!narrow_write_error(r1_bio, m)) {
2441 				md_error(conf->mddev,
2442 					 conf->mirrors[m].rdev);
2443 				/* an I/O failed, we can't clear the bitmap */
2444 				set_bit(R1BIO_Degraded, &r1_bio->state);
2445 			}
2446 			rdev_dec_pending(conf->mirrors[m].rdev,
2447 					 conf->mddev);
2448 		}
2449 	if (fail) {
2450 		spin_lock_irq(&conf->device_lock);
2451 		list_add(&r1_bio->retry_list, &conf->bio_end_io_list);
2452 		idx = sector_to_idx(r1_bio->sector);
2453 		atomic_inc(&conf->nr_queued[idx]);
2454 		spin_unlock_irq(&conf->device_lock);
2455 		/*
2456 		 * In case freeze_array() is waiting for condition
2457 		 * get_unqueued_pending() == extra to be true.
2458 		 */
2459 		wake_up(&conf->wait_barrier);
2460 		md_wakeup_thread(conf->mddev->thread);
2461 	} else {
2462 		if (test_bit(R1BIO_WriteError, &r1_bio->state))
2463 			close_write(r1_bio);
2464 		raid_end_bio_io(r1_bio);
2465 	}
2466 }
2467 
2468 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2469 {
2470 	struct mddev *mddev = conf->mddev;
2471 	struct bio *bio;
2472 	struct md_rdev *rdev;
2473 
2474 	clear_bit(R1BIO_ReadError, &r1_bio->state);
2475 	/* we got a read error. Maybe the drive is bad.  Maybe just
2476 	 * the block and we can fix it.
2477 	 * We freeze all other IO, and try reading the block from
2478 	 * other devices.  When we find one, we re-write
2479 	 * and check it that fixes the read error.
2480 	 * This is all done synchronously while the array is
2481 	 * frozen
2482 	 */
2483 
2484 	bio = r1_bio->bios[r1_bio->read_disk];
2485 	bio_put(bio);
2486 	r1_bio->bios[r1_bio->read_disk] = NULL;
2487 
2488 	rdev = conf->mirrors[r1_bio->read_disk].rdev;
2489 	if (mddev->ro == 0
2490 	    && !test_bit(FailFast, &rdev->flags)) {
2491 		freeze_array(conf, 1);
2492 		fix_read_error(conf, r1_bio->read_disk,
2493 			       r1_bio->sector, r1_bio->sectors);
2494 		unfreeze_array(conf);
2495 	} else if (mddev->ro == 0 && test_bit(FailFast, &rdev->flags)) {
2496 		md_error(mddev, rdev);
2497 	} else {
2498 		r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED;
2499 	}
2500 
2501 	rdev_dec_pending(rdev, conf->mddev);
2502 	allow_barrier(conf, r1_bio->sector);
2503 	bio = r1_bio->master_bio;
2504 
2505 	/* Reuse the old r1_bio so that the IO_BLOCKED settings are preserved */
2506 	r1_bio->state = 0;
2507 	raid1_read_request(mddev, bio, r1_bio->sectors, r1_bio);
2508 }
2509 
2510 static void raid1d(struct md_thread *thread)
2511 {
2512 	struct mddev *mddev = thread->mddev;
2513 	struct r1bio *r1_bio;
2514 	unsigned long flags;
2515 	struct r1conf *conf = mddev->private;
2516 	struct list_head *head = &conf->retry_list;
2517 	struct blk_plug plug;
2518 	int idx;
2519 
2520 	md_check_recovery(mddev);
2521 
2522 	if (!list_empty_careful(&conf->bio_end_io_list) &&
2523 	    !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2524 		LIST_HEAD(tmp);
2525 		spin_lock_irqsave(&conf->device_lock, flags);
2526 		if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
2527 			list_splice_init(&conf->bio_end_io_list, &tmp);
2528 		spin_unlock_irqrestore(&conf->device_lock, flags);
2529 		while (!list_empty(&tmp)) {
2530 			r1_bio = list_first_entry(&tmp, struct r1bio,
2531 						  retry_list);
2532 			list_del(&r1_bio->retry_list);
2533 			idx = sector_to_idx(r1_bio->sector);
2534 			atomic_dec(&conf->nr_queued[idx]);
2535 			if (mddev->degraded)
2536 				set_bit(R1BIO_Degraded, &r1_bio->state);
2537 			if (test_bit(R1BIO_WriteError, &r1_bio->state))
2538 				close_write(r1_bio);
2539 			raid_end_bio_io(r1_bio);
2540 		}
2541 	}
2542 
2543 	blk_start_plug(&plug);
2544 	for (;;) {
2545 
2546 		flush_pending_writes(conf);
2547 
2548 		spin_lock_irqsave(&conf->device_lock, flags);
2549 		if (list_empty(head)) {
2550 			spin_unlock_irqrestore(&conf->device_lock, flags);
2551 			break;
2552 		}
2553 		r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2554 		list_del(head->prev);
2555 		idx = sector_to_idx(r1_bio->sector);
2556 		atomic_dec(&conf->nr_queued[idx]);
2557 		spin_unlock_irqrestore(&conf->device_lock, flags);
2558 
2559 		mddev = r1_bio->mddev;
2560 		conf = mddev->private;
2561 		if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2562 			if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2563 			    test_bit(R1BIO_WriteError, &r1_bio->state))
2564 				handle_sync_write_finished(conf, r1_bio);
2565 			else
2566 				sync_request_write(mddev, r1_bio);
2567 		} else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2568 			   test_bit(R1BIO_WriteError, &r1_bio->state))
2569 			handle_write_finished(conf, r1_bio);
2570 		else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2571 			handle_read_error(conf, r1_bio);
2572 		else
2573 			WARN_ON_ONCE(1);
2574 
2575 		cond_resched();
2576 		if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
2577 			md_check_recovery(mddev);
2578 	}
2579 	blk_finish_plug(&plug);
2580 }
2581 
2582 static int init_resync(struct r1conf *conf)
2583 {
2584 	int buffs;
2585 
2586 	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2587 	BUG_ON(mempool_initialized(&conf->r1buf_pool));
2588 
2589 	return mempool_init(&conf->r1buf_pool, buffs, r1buf_pool_alloc,
2590 			    r1buf_pool_free, conf->poolinfo);
2591 }
2592 
2593 static struct r1bio *raid1_alloc_init_r1buf(struct r1conf *conf)
2594 {
2595 	struct r1bio *r1bio = mempool_alloc(&conf->r1buf_pool, GFP_NOIO);
2596 	struct resync_pages *rps;
2597 	struct bio *bio;
2598 	int i;
2599 
2600 	for (i = conf->poolinfo->raid_disks; i--; ) {
2601 		bio = r1bio->bios[i];
2602 		rps = bio->bi_private;
2603 		bio_reset(bio);
2604 		bio->bi_private = rps;
2605 	}
2606 	r1bio->master_bio = NULL;
2607 	return r1bio;
2608 }
2609 
2610 /*
2611  * perform a "sync" on one "block"
2612  *
2613  * We need to make sure that no normal I/O request - particularly write
2614  * requests - conflict with active sync requests.
2615  *
2616  * This is achieved by tracking pending requests and a 'barrier' concept
2617  * that can be installed to exclude normal IO requests.
2618  */
2619 
2620 static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr,
2621 				   int *skipped)
2622 {
2623 	struct r1conf *conf = mddev->private;
2624 	struct r1bio *r1_bio;
2625 	struct bio *bio;
2626 	sector_t max_sector, nr_sectors;
2627 	int disk = -1;
2628 	int i;
2629 	int wonly = -1;
2630 	int write_targets = 0, read_targets = 0;
2631 	sector_t sync_blocks;
2632 	int still_degraded = 0;
2633 	int good_sectors = RESYNC_SECTORS;
2634 	int min_bad = 0; /* number of sectors that are bad in all devices */
2635 	int idx = sector_to_idx(sector_nr);
2636 	int page_idx = 0;
2637 
2638 	if (!mempool_initialized(&conf->r1buf_pool))
2639 		if (init_resync(conf))
2640 			return 0;
2641 
2642 	max_sector = mddev->dev_sectors;
2643 	if (sector_nr >= max_sector) {
2644 		/* If we aborted, we need to abort the
2645 		 * sync on the 'current' bitmap chunk (there will
2646 		 * only be one in raid1 resync.
2647 		 * We can find the current addess in mddev->curr_resync
2648 		 */
2649 		if (mddev->curr_resync < max_sector) /* aborted */
2650 			md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2651 					   &sync_blocks, 1);
2652 		else /* completed sync */
2653 			conf->fullsync = 0;
2654 
2655 		md_bitmap_close_sync(mddev->bitmap);
2656 		close_sync(conf);
2657 
2658 		if (mddev_is_clustered(mddev)) {
2659 			conf->cluster_sync_low = 0;
2660 			conf->cluster_sync_high = 0;
2661 		}
2662 		return 0;
2663 	}
2664 
2665 	if (mddev->bitmap == NULL &&
2666 	    mddev->recovery_cp == MaxSector &&
2667 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2668 	    conf->fullsync == 0) {
2669 		*skipped = 1;
2670 		return max_sector - sector_nr;
2671 	}
2672 	/* before building a request, check if we can skip these blocks..
2673 	 * This call the bitmap_start_sync doesn't actually record anything
2674 	 */
2675 	if (!md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2676 	    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2677 		/* We can skip this block, and probably several more */
2678 		*skipped = 1;
2679 		return sync_blocks;
2680 	}
2681 
2682 	/*
2683 	 * If there is non-resync activity waiting for a turn, then let it
2684 	 * though before starting on this new sync request.
2685 	 */
2686 	if (atomic_read(&conf->nr_waiting[idx]))
2687 		schedule_timeout_uninterruptible(1);
2688 
2689 	/* we are incrementing sector_nr below. To be safe, we check against
2690 	 * sector_nr + two times RESYNC_SECTORS
2691 	 */
2692 
2693 	md_bitmap_cond_end_sync(mddev->bitmap, sector_nr,
2694 		mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
2695 
2696 
2697 	if (raise_barrier(conf, sector_nr))
2698 		return 0;
2699 
2700 	r1_bio = raid1_alloc_init_r1buf(conf);
2701 
2702 	rcu_read_lock();
2703 	/*
2704 	 * If we get a correctably read error during resync or recovery,
2705 	 * we might want to read from a different device.  So we
2706 	 * flag all drives that could conceivably be read from for READ,
2707 	 * and any others (which will be non-In_sync devices) for WRITE.
2708 	 * If a read fails, we try reading from something else for which READ
2709 	 * is OK.
2710 	 */
2711 
2712 	r1_bio->mddev = mddev;
2713 	r1_bio->sector = sector_nr;
2714 	r1_bio->state = 0;
2715 	set_bit(R1BIO_IsSync, &r1_bio->state);
2716 	/* make sure good_sectors won't go across barrier unit boundary */
2717 	good_sectors = align_to_barrier_unit_end(sector_nr, good_sectors);
2718 
2719 	for (i = 0; i < conf->raid_disks * 2; i++) {
2720 		struct md_rdev *rdev;
2721 		bio = r1_bio->bios[i];
2722 
2723 		rdev = rcu_dereference(conf->mirrors[i].rdev);
2724 		if (rdev == NULL ||
2725 		    test_bit(Faulty, &rdev->flags)) {
2726 			if (i < conf->raid_disks)
2727 				still_degraded = 1;
2728 		} else if (!test_bit(In_sync, &rdev->flags)) {
2729 			bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2730 			bio->bi_end_io = end_sync_write;
2731 			write_targets ++;
2732 		} else {
2733 			/* may need to read from here */
2734 			sector_t first_bad = MaxSector;
2735 			int bad_sectors;
2736 
2737 			if (is_badblock(rdev, sector_nr, good_sectors,
2738 					&first_bad, &bad_sectors)) {
2739 				if (first_bad > sector_nr)
2740 					good_sectors = first_bad - sector_nr;
2741 				else {
2742 					bad_sectors -= (sector_nr - first_bad);
2743 					if (min_bad == 0 ||
2744 					    min_bad > bad_sectors)
2745 						min_bad = bad_sectors;
2746 				}
2747 			}
2748 			if (sector_nr < first_bad) {
2749 				if (test_bit(WriteMostly, &rdev->flags)) {
2750 					if (wonly < 0)
2751 						wonly = i;
2752 				} else {
2753 					if (disk < 0)
2754 						disk = i;
2755 				}
2756 				bio_set_op_attrs(bio, REQ_OP_READ, 0);
2757 				bio->bi_end_io = end_sync_read;
2758 				read_targets++;
2759 			} else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2760 				test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2761 				!test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2762 				/*
2763 				 * The device is suitable for reading (InSync),
2764 				 * but has bad block(s) here. Let's try to correct them,
2765 				 * if we are doing resync or repair. Otherwise, leave
2766 				 * this device alone for this sync request.
2767 				 */
2768 				bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2769 				bio->bi_end_io = end_sync_write;
2770 				write_targets++;
2771 			}
2772 		}
2773 		if (rdev && bio->bi_end_io) {
2774 			atomic_inc(&rdev->nr_pending);
2775 			bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
2776 			bio_set_dev(bio, rdev->bdev);
2777 			if (test_bit(FailFast, &rdev->flags))
2778 				bio->bi_opf |= MD_FAILFAST;
2779 		}
2780 	}
2781 	rcu_read_unlock();
2782 	if (disk < 0)
2783 		disk = wonly;
2784 	r1_bio->read_disk = disk;
2785 
2786 	if (read_targets == 0 && min_bad > 0) {
2787 		/* These sectors are bad on all InSync devices, so we
2788 		 * need to mark them bad on all write targets
2789 		 */
2790 		int ok = 1;
2791 		for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2792 			if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2793 				struct md_rdev *rdev = conf->mirrors[i].rdev;
2794 				ok = rdev_set_badblocks(rdev, sector_nr,
2795 							min_bad, 0
2796 					) && ok;
2797 			}
2798 		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2799 		*skipped = 1;
2800 		put_buf(r1_bio);
2801 
2802 		if (!ok) {
2803 			/* Cannot record the badblocks, so need to
2804 			 * abort the resync.
2805 			 * If there are multiple read targets, could just
2806 			 * fail the really bad ones ???
2807 			 */
2808 			conf->recovery_disabled = mddev->recovery_disabled;
2809 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2810 			return 0;
2811 		} else
2812 			return min_bad;
2813 
2814 	}
2815 	if (min_bad > 0 && min_bad < good_sectors) {
2816 		/* only resync enough to reach the next bad->good
2817 		 * transition */
2818 		good_sectors = min_bad;
2819 	}
2820 
2821 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2822 		/* extra read targets are also write targets */
2823 		write_targets += read_targets-1;
2824 
2825 	if (write_targets == 0 || read_targets == 0) {
2826 		/* There is nowhere to write, so all non-sync
2827 		 * drives must be failed - so we are finished
2828 		 */
2829 		sector_t rv;
2830 		if (min_bad > 0)
2831 			max_sector = sector_nr + min_bad;
2832 		rv = max_sector - sector_nr;
2833 		*skipped = 1;
2834 		put_buf(r1_bio);
2835 		return rv;
2836 	}
2837 
2838 	if (max_sector > mddev->resync_max)
2839 		max_sector = mddev->resync_max; /* Don't do IO beyond here */
2840 	if (max_sector > sector_nr + good_sectors)
2841 		max_sector = sector_nr + good_sectors;
2842 	nr_sectors = 0;
2843 	sync_blocks = 0;
2844 	do {
2845 		struct page *page;
2846 		int len = PAGE_SIZE;
2847 		if (sector_nr + (len>>9) > max_sector)
2848 			len = (max_sector - sector_nr) << 9;
2849 		if (len == 0)
2850 			break;
2851 		if (sync_blocks == 0) {
2852 			if (!md_bitmap_start_sync(mddev->bitmap, sector_nr,
2853 						  &sync_blocks, still_degraded) &&
2854 			    !conf->fullsync &&
2855 			    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2856 				break;
2857 			if ((len >> 9) > sync_blocks)
2858 				len = sync_blocks<<9;
2859 		}
2860 
2861 		for (i = 0 ; i < conf->raid_disks * 2; i++) {
2862 			struct resync_pages *rp;
2863 
2864 			bio = r1_bio->bios[i];
2865 			rp = get_resync_pages(bio);
2866 			if (bio->bi_end_io) {
2867 				page = resync_fetch_page(rp, page_idx);
2868 
2869 				/*
2870 				 * won't fail because the vec table is big
2871 				 * enough to hold all these pages
2872 				 */
2873 				bio_add_page(bio, page, len, 0);
2874 			}
2875 		}
2876 		nr_sectors += len>>9;
2877 		sector_nr += len>>9;
2878 		sync_blocks -= (len>>9);
2879 	} while (++page_idx < RESYNC_PAGES);
2880 
2881 	r1_bio->sectors = nr_sectors;
2882 
2883 	if (mddev_is_clustered(mddev) &&
2884 			conf->cluster_sync_high < sector_nr + nr_sectors) {
2885 		conf->cluster_sync_low = mddev->curr_resync_completed;
2886 		conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS;
2887 		/* Send resync message */
2888 		md_cluster_ops->resync_info_update(mddev,
2889 				conf->cluster_sync_low,
2890 				conf->cluster_sync_high);
2891 	}
2892 
2893 	/* For a user-requested sync, we read all readable devices and do a
2894 	 * compare
2895 	 */
2896 	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2897 		atomic_set(&r1_bio->remaining, read_targets);
2898 		for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2899 			bio = r1_bio->bios[i];
2900 			if (bio->bi_end_io == end_sync_read) {
2901 				read_targets--;
2902 				md_sync_acct_bio(bio, nr_sectors);
2903 				if (read_targets == 1)
2904 					bio->bi_opf &= ~MD_FAILFAST;
2905 				submit_bio_noacct(bio);
2906 			}
2907 		}
2908 	} else {
2909 		atomic_set(&r1_bio->remaining, 1);
2910 		bio = r1_bio->bios[r1_bio->read_disk];
2911 		md_sync_acct_bio(bio, nr_sectors);
2912 		if (read_targets == 1)
2913 			bio->bi_opf &= ~MD_FAILFAST;
2914 		submit_bio_noacct(bio);
2915 	}
2916 	return nr_sectors;
2917 }
2918 
2919 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2920 {
2921 	if (sectors)
2922 		return sectors;
2923 
2924 	return mddev->dev_sectors;
2925 }
2926 
2927 static struct r1conf *setup_conf(struct mddev *mddev)
2928 {
2929 	struct r1conf *conf;
2930 	int i;
2931 	struct raid1_info *disk;
2932 	struct md_rdev *rdev;
2933 	int err = -ENOMEM;
2934 
2935 	conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2936 	if (!conf)
2937 		goto abort;
2938 
2939 	conf->nr_pending = kcalloc(BARRIER_BUCKETS_NR,
2940 				   sizeof(atomic_t), GFP_KERNEL);
2941 	if (!conf->nr_pending)
2942 		goto abort;
2943 
2944 	conf->nr_waiting = kcalloc(BARRIER_BUCKETS_NR,
2945 				   sizeof(atomic_t), GFP_KERNEL);
2946 	if (!conf->nr_waiting)
2947 		goto abort;
2948 
2949 	conf->nr_queued = kcalloc(BARRIER_BUCKETS_NR,
2950 				  sizeof(atomic_t), GFP_KERNEL);
2951 	if (!conf->nr_queued)
2952 		goto abort;
2953 
2954 	conf->barrier = kcalloc(BARRIER_BUCKETS_NR,
2955 				sizeof(atomic_t), GFP_KERNEL);
2956 	if (!conf->barrier)
2957 		goto abort;
2958 
2959 	conf->mirrors = kzalloc(array3_size(sizeof(struct raid1_info),
2960 					    mddev->raid_disks, 2),
2961 				GFP_KERNEL);
2962 	if (!conf->mirrors)
2963 		goto abort;
2964 
2965 	conf->tmppage = alloc_page(GFP_KERNEL);
2966 	if (!conf->tmppage)
2967 		goto abort;
2968 
2969 	conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
2970 	if (!conf->poolinfo)
2971 		goto abort;
2972 	conf->poolinfo->raid_disks = mddev->raid_disks * 2;
2973 	err = mempool_init(&conf->r1bio_pool, NR_RAID_BIOS, r1bio_pool_alloc,
2974 			   rbio_pool_free, conf->poolinfo);
2975 	if (err)
2976 		goto abort;
2977 
2978 	err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
2979 	if (err)
2980 		goto abort;
2981 
2982 	conf->poolinfo->mddev = mddev;
2983 
2984 	err = -EINVAL;
2985 	spin_lock_init(&conf->device_lock);
2986 	rdev_for_each(rdev, mddev) {
2987 		int disk_idx = rdev->raid_disk;
2988 		if (disk_idx >= mddev->raid_disks
2989 		    || disk_idx < 0)
2990 			continue;
2991 		if (test_bit(Replacement, &rdev->flags))
2992 			disk = conf->mirrors + mddev->raid_disks + disk_idx;
2993 		else
2994 			disk = conf->mirrors + disk_idx;
2995 
2996 		if (disk->rdev)
2997 			goto abort;
2998 		disk->rdev = rdev;
2999 		disk->head_position = 0;
3000 		disk->seq_start = MaxSector;
3001 	}
3002 	conf->raid_disks = mddev->raid_disks;
3003 	conf->mddev = mddev;
3004 	INIT_LIST_HEAD(&conf->retry_list);
3005 	INIT_LIST_HEAD(&conf->bio_end_io_list);
3006 
3007 	spin_lock_init(&conf->resync_lock);
3008 	init_waitqueue_head(&conf->wait_barrier);
3009 
3010 	bio_list_init(&conf->pending_bio_list);
3011 	conf->pending_count = 0;
3012 	conf->recovery_disabled = mddev->recovery_disabled - 1;
3013 
3014 	err = -EIO;
3015 	for (i = 0; i < conf->raid_disks * 2; i++) {
3016 
3017 		disk = conf->mirrors + i;
3018 
3019 		if (i < conf->raid_disks &&
3020 		    disk[conf->raid_disks].rdev) {
3021 			/* This slot has a replacement. */
3022 			if (!disk->rdev) {
3023 				/* No original, just make the replacement
3024 				 * a recovering spare
3025 				 */
3026 				disk->rdev =
3027 					disk[conf->raid_disks].rdev;
3028 				disk[conf->raid_disks].rdev = NULL;
3029 			} else if (!test_bit(In_sync, &disk->rdev->flags))
3030 				/* Original is not in_sync - bad */
3031 				goto abort;
3032 		}
3033 
3034 		if (!disk->rdev ||
3035 		    !test_bit(In_sync, &disk->rdev->flags)) {
3036 			disk->head_position = 0;
3037 			if (disk->rdev &&
3038 			    (disk->rdev->saved_raid_disk < 0))
3039 				conf->fullsync = 1;
3040 		}
3041 	}
3042 
3043 	err = -ENOMEM;
3044 	conf->thread = md_register_thread(raid1d, mddev, "raid1");
3045 	if (!conf->thread)
3046 		goto abort;
3047 
3048 	return conf;
3049 
3050  abort:
3051 	if (conf) {
3052 		mempool_exit(&conf->r1bio_pool);
3053 		kfree(conf->mirrors);
3054 		safe_put_page(conf->tmppage);
3055 		kfree(conf->poolinfo);
3056 		kfree(conf->nr_pending);
3057 		kfree(conf->nr_waiting);
3058 		kfree(conf->nr_queued);
3059 		kfree(conf->barrier);
3060 		bioset_exit(&conf->bio_split);
3061 		kfree(conf);
3062 	}
3063 	return ERR_PTR(err);
3064 }
3065 
3066 static void raid1_free(struct mddev *mddev, void *priv);
3067 static int raid1_run(struct mddev *mddev)
3068 {
3069 	struct r1conf *conf;
3070 	int i;
3071 	struct md_rdev *rdev;
3072 	int ret;
3073 	bool discard_supported = false;
3074 
3075 	if (mddev->level != 1) {
3076 		pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n",
3077 			mdname(mddev), mddev->level);
3078 		return -EIO;
3079 	}
3080 	if (mddev->reshape_position != MaxSector) {
3081 		pr_warn("md/raid1:%s: reshape_position set but not supported\n",
3082 			mdname(mddev));
3083 		return -EIO;
3084 	}
3085 	if (mddev_init_writes_pending(mddev) < 0)
3086 		return -ENOMEM;
3087 	/*
3088 	 * copy the already verified devices into our private RAID1
3089 	 * bookkeeping area. [whatever we allocate in run(),
3090 	 * should be freed in raid1_free()]
3091 	 */
3092 	if (mddev->private == NULL)
3093 		conf = setup_conf(mddev);
3094 	else
3095 		conf = mddev->private;
3096 
3097 	if (IS_ERR(conf))
3098 		return PTR_ERR(conf);
3099 
3100 	if (mddev->queue) {
3101 		blk_queue_max_write_same_sectors(mddev->queue, 0);
3102 		blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
3103 	}
3104 
3105 	rdev_for_each(rdev, mddev) {
3106 		if (!mddev->gendisk)
3107 			continue;
3108 		disk_stack_limits(mddev->gendisk, rdev->bdev,
3109 				  rdev->data_offset << 9);
3110 		if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3111 			discard_supported = true;
3112 	}
3113 
3114 	mddev->degraded = 0;
3115 	for (i = 0; i < conf->raid_disks; i++)
3116 		if (conf->mirrors[i].rdev == NULL ||
3117 		    !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
3118 		    test_bit(Faulty, &conf->mirrors[i].rdev->flags))
3119 			mddev->degraded++;
3120 	/*
3121 	 * RAID1 needs at least one disk in active
3122 	 */
3123 	if (conf->raid_disks - mddev->degraded < 1) {
3124 		ret = -EINVAL;
3125 		goto abort;
3126 	}
3127 
3128 	if (conf->raid_disks - mddev->degraded == 1)
3129 		mddev->recovery_cp = MaxSector;
3130 
3131 	if (mddev->recovery_cp != MaxSector)
3132 		pr_info("md/raid1:%s: not clean -- starting background reconstruction\n",
3133 			mdname(mddev));
3134 	pr_info("md/raid1:%s: active with %d out of %d mirrors\n",
3135 		mdname(mddev), mddev->raid_disks - mddev->degraded,
3136 		mddev->raid_disks);
3137 
3138 	/*
3139 	 * Ok, everything is just fine now
3140 	 */
3141 	mddev->thread = conf->thread;
3142 	conf->thread = NULL;
3143 	mddev->private = conf;
3144 	set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
3145 
3146 	md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
3147 
3148 	if (mddev->queue) {
3149 		if (discard_supported)
3150 			blk_queue_flag_set(QUEUE_FLAG_DISCARD,
3151 						mddev->queue);
3152 		else
3153 			blk_queue_flag_clear(QUEUE_FLAG_DISCARD,
3154 						  mddev->queue);
3155 	}
3156 
3157 	ret = md_integrity_register(mddev);
3158 	if (ret) {
3159 		md_unregister_thread(&mddev->thread);
3160 		goto abort;
3161 	}
3162 	return 0;
3163 
3164 abort:
3165 	raid1_free(mddev, conf);
3166 	return ret;
3167 }
3168 
3169 static void raid1_free(struct mddev *mddev, void *priv)
3170 {
3171 	struct r1conf *conf = priv;
3172 
3173 	mempool_exit(&conf->r1bio_pool);
3174 	kfree(conf->mirrors);
3175 	safe_put_page(conf->tmppage);
3176 	kfree(conf->poolinfo);
3177 	kfree(conf->nr_pending);
3178 	kfree(conf->nr_waiting);
3179 	kfree(conf->nr_queued);
3180 	kfree(conf->barrier);
3181 	bioset_exit(&conf->bio_split);
3182 	kfree(conf);
3183 }
3184 
3185 static int raid1_resize(struct mddev *mddev, sector_t sectors)
3186 {
3187 	/* no resync is happening, and there is enough space
3188 	 * on all devices, so we can resize.
3189 	 * We need to make sure resync covers any new space.
3190 	 * If the array is shrinking we should possibly wait until
3191 	 * any io in the removed space completes, but it hardly seems
3192 	 * worth it.
3193 	 */
3194 	sector_t newsize = raid1_size(mddev, sectors, 0);
3195 	if (mddev->external_size &&
3196 	    mddev->array_sectors > newsize)
3197 		return -EINVAL;
3198 	if (mddev->bitmap) {
3199 		int ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
3200 		if (ret)
3201 			return ret;
3202 	}
3203 	md_set_array_sectors(mddev, newsize);
3204 	if (sectors > mddev->dev_sectors &&
3205 	    mddev->recovery_cp > mddev->dev_sectors) {
3206 		mddev->recovery_cp = mddev->dev_sectors;
3207 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3208 	}
3209 	mddev->dev_sectors = sectors;
3210 	mddev->resync_max_sectors = sectors;
3211 	return 0;
3212 }
3213 
3214 static int raid1_reshape(struct mddev *mddev)
3215 {
3216 	/* We need to:
3217 	 * 1/ resize the r1bio_pool
3218 	 * 2/ resize conf->mirrors
3219 	 *
3220 	 * We allocate a new r1bio_pool if we can.
3221 	 * Then raise a device barrier and wait until all IO stops.
3222 	 * Then resize conf->mirrors and swap in the new r1bio pool.
3223 	 *
3224 	 * At the same time, we "pack" the devices so that all the missing
3225 	 * devices have the higher raid_disk numbers.
3226 	 */
3227 	mempool_t newpool, oldpool;
3228 	struct pool_info *newpoolinfo;
3229 	struct raid1_info *newmirrors;
3230 	struct r1conf *conf = mddev->private;
3231 	int cnt, raid_disks;
3232 	unsigned long flags;
3233 	int d, d2;
3234 	int ret;
3235 
3236 	memset(&newpool, 0, sizeof(newpool));
3237 	memset(&oldpool, 0, sizeof(oldpool));
3238 
3239 	/* Cannot change chunk_size, layout, or level */
3240 	if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3241 	    mddev->layout != mddev->new_layout ||
3242 	    mddev->level != mddev->new_level) {
3243 		mddev->new_chunk_sectors = mddev->chunk_sectors;
3244 		mddev->new_layout = mddev->layout;
3245 		mddev->new_level = mddev->level;
3246 		return -EINVAL;
3247 	}
3248 
3249 	if (!mddev_is_clustered(mddev))
3250 		md_allow_write(mddev);
3251 
3252 	raid_disks = mddev->raid_disks + mddev->delta_disks;
3253 
3254 	if (raid_disks < conf->raid_disks) {
3255 		cnt=0;
3256 		for (d= 0; d < conf->raid_disks; d++)
3257 			if (conf->mirrors[d].rdev)
3258 				cnt++;
3259 		if (cnt > raid_disks)
3260 			return -EBUSY;
3261 	}
3262 
3263 	newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3264 	if (!newpoolinfo)
3265 		return -ENOMEM;
3266 	newpoolinfo->mddev = mddev;
3267 	newpoolinfo->raid_disks = raid_disks * 2;
3268 
3269 	ret = mempool_init(&newpool, NR_RAID_BIOS, r1bio_pool_alloc,
3270 			   rbio_pool_free, newpoolinfo);
3271 	if (ret) {
3272 		kfree(newpoolinfo);
3273 		return ret;
3274 	}
3275 	newmirrors = kzalloc(array3_size(sizeof(struct raid1_info),
3276 					 raid_disks, 2),
3277 			     GFP_KERNEL);
3278 	if (!newmirrors) {
3279 		kfree(newpoolinfo);
3280 		mempool_exit(&newpool);
3281 		return -ENOMEM;
3282 	}
3283 
3284 	freeze_array(conf, 0);
3285 
3286 	/* ok, everything is stopped */
3287 	oldpool = conf->r1bio_pool;
3288 	conf->r1bio_pool = newpool;
3289 
3290 	for (d = d2 = 0; d < conf->raid_disks; d++) {
3291 		struct md_rdev *rdev = conf->mirrors[d].rdev;
3292 		if (rdev && rdev->raid_disk != d2) {
3293 			sysfs_unlink_rdev(mddev, rdev);
3294 			rdev->raid_disk = d2;
3295 			sysfs_unlink_rdev(mddev, rdev);
3296 			if (sysfs_link_rdev(mddev, rdev))
3297 				pr_warn("md/raid1:%s: cannot register rd%d\n",
3298 					mdname(mddev), rdev->raid_disk);
3299 		}
3300 		if (rdev)
3301 			newmirrors[d2++].rdev = rdev;
3302 	}
3303 	kfree(conf->mirrors);
3304 	conf->mirrors = newmirrors;
3305 	kfree(conf->poolinfo);
3306 	conf->poolinfo = newpoolinfo;
3307 
3308 	spin_lock_irqsave(&conf->device_lock, flags);
3309 	mddev->degraded += (raid_disks - conf->raid_disks);
3310 	spin_unlock_irqrestore(&conf->device_lock, flags);
3311 	conf->raid_disks = mddev->raid_disks = raid_disks;
3312 	mddev->delta_disks = 0;
3313 
3314 	unfreeze_array(conf);
3315 
3316 	set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3317 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3318 	md_wakeup_thread(mddev->thread);
3319 
3320 	mempool_exit(&oldpool);
3321 	return 0;
3322 }
3323 
3324 static void raid1_quiesce(struct mddev *mddev, int quiesce)
3325 {
3326 	struct r1conf *conf = mddev->private;
3327 
3328 	if (quiesce)
3329 		freeze_array(conf, 0);
3330 	else
3331 		unfreeze_array(conf);
3332 }
3333 
3334 static void *raid1_takeover(struct mddev *mddev)
3335 {
3336 	/* raid1 can take over:
3337 	 *  raid5 with 2 devices, any layout or chunk size
3338 	 */
3339 	if (mddev->level == 5 && mddev->raid_disks == 2) {
3340 		struct r1conf *conf;
3341 		mddev->new_level = 1;
3342 		mddev->new_layout = 0;
3343 		mddev->new_chunk_sectors = 0;
3344 		conf = setup_conf(mddev);
3345 		if (!IS_ERR(conf)) {
3346 			/* Array must appear to be quiesced */
3347 			conf->array_frozen = 1;
3348 			mddev_clear_unsupported_flags(mddev,
3349 				UNSUPPORTED_MDDEV_FLAGS);
3350 		}
3351 		return conf;
3352 	}
3353 	return ERR_PTR(-EINVAL);
3354 }
3355 
3356 static struct md_personality raid1_personality =
3357 {
3358 	.name		= "raid1",
3359 	.level		= 1,
3360 	.owner		= THIS_MODULE,
3361 	.make_request	= raid1_make_request,
3362 	.run		= raid1_run,
3363 	.free		= raid1_free,
3364 	.status		= raid1_status,
3365 	.error_handler	= raid1_error,
3366 	.hot_add_disk	= raid1_add_disk,
3367 	.hot_remove_disk= raid1_remove_disk,
3368 	.spare_active	= raid1_spare_active,
3369 	.sync_request	= raid1_sync_request,
3370 	.resize		= raid1_resize,
3371 	.size		= raid1_size,
3372 	.check_reshape	= raid1_reshape,
3373 	.quiesce	= raid1_quiesce,
3374 	.takeover	= raid1_takeover,
3375 };
3376 
3377 static int __init raid_init(void)
3378 {
3379 	return register_md_personality(&raid1_personality);
3380 }
3381 
3382 static void raid_exit(void)
3383 {
3384 	unregister_md_personality(&raid1_personality);
3385 }
3386 
3387 module_init(raid_init);
3388 module_exit(raid_exit);
3389 MODULE_LICENSE("GPL");
3390 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3391 MODULE_ALIAS("md-personality-3"); /* RAID1 */
3392 MODULE_ALIAS("md-raid1");
3393 MODULE_ALIAS("md-level-1");
3394 
3395 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
3396