1 /* 2 * raid1.c : Multiple Devices driver for Linux 3 * 4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat 5 * 6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman 7 * 8 * RAID-1 management functions. 9 * 10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000 11 * 12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk> 13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au> 14 * 15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support 16 * bitmapped intelligence in resync: 17 * 18 * - bitmap marked during normal i/o 19 * - bitmap used to skip nondirty blocks during sync 20 * 21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology: 22 * - persistent bitmap code 23 * 24 * This program is free software; you can redistribute it and/or modify 25 * it under the terms of the GNU General Public License as published by 26 * the Free Software Foundation; either version 2, or (at your option) 27 * any later version. 28 * 29 * You should have received a copy of the GNU General Public License 30 * (for example /usr/src/linux/COPYING); if not, write to the Free 31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 32 */ 33 34 #include <linux/slab.h> 35 #include <linux/delay.h> 36 #include <linux/blkdev.h> 37 #include <linux/module.h> 38 #include <linux/seq_file.h> 39 #include <linux/ratelimit.h> 40 #include "md.h" 41 #include "raid1.h" 42 #include "bitmap.h" 43 44 /* 45 * Number of guaranteed r1bios in case of extreme VM load: 46 */ 47 #define NR_RAID1_BIOS 256 48 49 /* when we get a read error on a read-only array, we redirect to another 50 * device without failing the first device, or trying to over-write to 51 * correct the read error. To keep track of bad blocks on a per-bio 52 * level, we store IO_BLOCKED in the appropriate 'bios' pointer 53 */ 54 #define IO_BLOCKED ((struct bio *)1) 55 /* When we successfully write to a known bad-block, we need to remove the 56 * bad-block marking which must be done from process context. So we record 57 * the success by setting devs[n].bio to IO_MADE_GOOD 58 */ 59 #define IO_MADE_GOOD ((struct bio *)2) 60 61 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2) 62 63 /* When there are this many requests queue to be written by 64 * the raid1 thread, we become 'congested' to provide back-pressure 65 * for writeback. 66 */ 67 static int max_queued_requests = 1024; 68 69 static void allow_barrier(struct r1conf *conf); 70 static void lower_barrier(struct r1conf *conf); 71 72 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data) 73 { 74 struct pool_info *pi = data; 75 int size = offsetof(struct r1bio, bios[pi->raid_disks]); 76 77 /* allocate a r1bio with room for raid_disks entries in the bios array */ 78 return kzalloc(size, gfp_flags); 79 } 80 81 static void r1bio_pool_free(void *r1_bio, void *data) 82 { 83 kfree(r1_bio); 84 } 85 86 #define RESYNC_BLOCK_SIZE (64*1024) 87 //#define RESYNC_BLOCK_SIZE PAGE_SIZE 88 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9) 89 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE) 90 #define RESYNC_WINDOW (2048*1024) 91 92 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data) 93 { 94 struct pool_info *pi = data; 95 struct page *page; 96 struct r1bio *r1_bio; 97 struct bio *bio; 98 int i, j; 99 100 r1_bio = r1bio_pool_alloc(gfp_flags, pi); 101 if (!r1_bio) 102 return NULL; 103 104 /* 105 * Allocate bios : 1 for reading, n-1 for writing 106 */ 107 for (j = pi->raid_disks ; j-- ; ) { 108 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES); 109 if (!bio) 110 goto out_free_bio; 111 r1_bio->bios[j] = bio; 112 } 113 /* 114 * Allocate RESYNC_PAGES data pages and attach them to 115 * the first bio. 116 * If this is a user-requested check/repair, allocate 117 * RESYNC_PAGES for each bio. 118 */ 119 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) 120 j = pi->raid_disks; 121 else 122 j = 1; 123 while(j--) { 124 bio = r1_bio->bios[j]; 125 for (i = 0; i < RESYNC_PAGES; i++) { 126 page = alloc_page(gfp_flags); 127 if (unlikely(!page)) 128 goto out_free_pages; 129 130 bio->bi_io_vec[i].bv_page = page; 131 bio->bi_vcnt = i+1; 132 } 133 } 134 /* If not user-requests, copy the page pointers to all bios */ 135 if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) { 136 for (i=0; i<RESYNC_PAGES ; i++) 137 for (j=1; j<pi->raid_disks; j++) 138 r1_bio->bios[j]->bi_io_vec[i].bv_page = 139 r1_bio->bios[0]->bi_io_vec[i].bv_page; 140 } 141 142 r1_bio->master_bio = NULL; 143 144 return r1_bio; 145 146 out_free_pages: 147 for (j=0 ; j < pi->raid_disks; j++) 148 for (i=0; i < r1_bio->bios[j]->bi_vcnt ; i++) 149 put_page(r1_bio->bios[j]->bi_io_vec[i].bv_page); 150 j = -1; 151 out_free_bio: 152 while (++j < pi->raid_disks) 153 bio_put(r1_bio->bios[j]); 154 r1bio_pool_free(r1_bio, data); 155 return NULL; 156 } 157 158 static void r1buf_pool_free(void *__r1_bio, void *data) 159 { 160 struct pool_info *pi = data; 161 int i,j; 162 struct r1bio *r1bio = __r1_bio; 163 164 for (i = 0; i < RESYNC_PAGES; i++) 165 for (j = pi->raid_disks; j-- ;) { 166 if (j == 0 || 167 r1bio->bios[j]->bi_io_vec[i].bv_page != 168 r1bio->bios[0]->bi_io_vec[i].bv_page) 169 safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page); 170 } 171 for (i=0 ; i < pi->raid_disks; i++) 172 bio_put(r1bio->bios[i]); 173 174 r1bio_pool_free(r1bio, data); 175 } 176 177 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio) 178 { 179 int i; 180 181 for (i = 0; i < conf->raid_disks * 2; i++) { 182 struct bio **bio = r1_bio->bios + i; 183 if (!BIO_SPECIAL(*bio)) 184 bio_put(*bio); 185 *bio = NULL; 186 } 187 } 188 189 static void free_r1bio(struct r1bio *r1_bio) 190 { 191 struct r1conf *conf = r1_bio->mddev->private; 192 193 put_all_bios(conf, r1_bio); 194 mempool_free(r1_bio, conf->r1bio_pool); 195 } 196 197 static void put_buf(struct r1bio *r1_bio) 198 { 199 struct r1conf *conf = r1_bio->mddev->private; 200 int i; 201 202 for (i = 0; i < conf->raid_disks * 2; i++) { 203 struct bio *bio = r1_bio->bios[i]; 204 if (bio->bi_end_io) 205 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev); 206 } 207 208 mempool_free(r1_bio, conf->r1buf_pool); 209 210 lower_barrier(conf); 211 } 212 213 static void reschedule_retry(struct r1bio *r1_bio) 214 { 215 unsigned long flags; 216 struct mddev *mddev = r1_bio->mddev; 217 struct r1conf *conf = mddev->private; 218 219 spin_lock_irqsave(&conf->device_lock, flags); 220 list_add(&r1_bio->retry_list, &conf->retry_list); 221 conf->nr_queued ++; 222 spin_unlock_irqrestore(&conf->device_lock, flags); 223 224 wake_up(&conf->wait_barrier); 225 md_wakeup_thread(mddev->thread); 226 } 227 228 /* 229 * raid_end_bio_io() is called when we have finished servicing a mirrored 230 * operation and are ready to return a success/failure code to the buffer 231 * cache layer. 232 */ 233 static void call_bio_endio(struct r1bio *r1_bio) 234 { 235 struct bio *bio = r1_bio->master_bio; 236 int done; 237 struct r1conf *conf = r1_bio->mddev->private; 238 239 if (bio->bi_phys_segments) { 240 unsigned long flags; 241 spin_lock_irqsave(&conf->device_lock, flags); 242 bio->bi_phys_segments--; 243 done = (bio->bi_phys_segments == 0); 244 spin_unlock_irqrestore(&conf->device_lock, flags); 245 } else 246 done = 1; 247 248 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) 249 clear_bit(BIO_UPTODATE, &bio->bi_flags); 250 if (done) { 251 bio_endio(bio, 0); 252 /* 253 * Wake up any possible resync thread that waits for the device 254 * to go idle. 255 */ 256 allow_barrier(conf); 257 } 258 } 259 260 static void raid_end_bio_io(struct r1bio *r1_bio) 261 { 262 struct bio *bio = r1_bio->master_bio; 263 264 /* if nobody has done the final endio yet, do it now */ 265 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) { 266 pr_debug("raid1: sync end %s on sectors %llu-%llu\n", 267 (bio_data_dir(bio) == WRITE) ? "write" : "read", 268 (unsigned long long) bio->bi_sector, 269 (unsigned long long) bio->bi_sector + 270 (bio->bi_size >> 9) - 1); 271 272 call_bio_endio(r1_bio); 273 } 274 free_r1bio(r1_bio); 275 } 276 277 /* 278 * Update disk head position estimator based on IRQ completion info. 279 */ 280 static inline void update_head_pos(int disk, struct r1bio *r1_bio) 281 { 282 struct r1conf *conf = r1_bio->mddev->private; 283 284 conf->mirrors[disk].head_position = 285 r1_bio->sector + (r1_bio->sectors); 286 } 287 288 /* 289 * Find the disk number which triggered given bio 290 */ 291 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio) 292 { 293 int mirror; 294 struct r1conf *conf = r1_bio->mddev->private; 295 int raid_disks = conf->raid_disks; 296 297 for (mirror = 0; mirror < raid_disks * 2; mirror++) 298 if (r1_bio->bios[mirror] == bio) 299 break; 300 301 BUG_ON(mirror == raid_disks * 2); 302 update_head_pos(mirror, r1_bio); 303 304 return mirror; 305 } 306 307 static void raid1_end_read_request(struct bio *bio, int error) 308 { 309 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 310 struct r1bio *r1_bio = bio->bi_private; 311 int mirror; 312 struct r1conf *conf = r1_bio->mddev->private; 313 314 mirror = r1_bio->read_disk; 315 /* 316 * this branch is our 'one mirror IO has finished' event handler: 317 */ 318 update_head_pos(mirror, r1_bio); 319 320 if (uptodate) 321 set_bit(R1BIO_Uptodate, &r1_bio->state); 322 else { 323 /* If all other devices have failed, we want to return 324 * the error upwards rather than fail the last device. 325 * Here we redefine "uptodate" to mean "Don't want to retry" 326 */ 327 unsigned long flags; 328 spin_lock_irqsave(&conf->device_lock, flags); 329 if (r1_bio->mddev->degraded == conf->raid_disks || 330 (r1_bio->mddev->degraded == conf->raid_disks-1 && 331 !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags))) 332 uptodate = 1; 333 spin_unlock_irqrestore(&conf->device_lock, flags); 334 } 335 336 if (uptodate) 337 raid_end_bio_io(r1_bio); 338 else { 339 /* 340 * oops, read error: 341 */ 342 char b[BDEVNAME_SIZE]; 343 printk_ratelimited( 344 KERN_ERR "md/raid1:%s: %s: " 345 "rescheduling sector %llu\n", 346 mdname(conf->mddev), 347 bdevname(conf->mirrors[mirror].rdev->bdev, 348 b), 349 (unsigned long long)r1_bio->sector); 350 set_bit(R1BIO_ReadError, &r1_bio->state); 351 reschedule_retry(r1_bio); 352 } 353 354 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev); 355 } 356 357 static void close_write(struct r1bio *r1_bio) 358 { 359 /* it really is the end of this request */ 360 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) { 361 /* free extra copy of the data pages */ 362 int i = r1_bio->behind_page_count; 363 while (i--) 364 safe_put_page(r1_bio->behind_bvecs[i].bv_page); 365 kfree(r1_bio->behind_bvecs); 366 r1_bio->behind_bvecs = NULL; 367 } 368 /* clear the bitmap if all writes complete successfully */ 369 bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector, 370 r1_bio->sectors, 371 !test_bit(R1BIO_Degraded, &r1_bio->state), 372 test_bit(R1BIO_BehindIO, &r1_bio->state)); 373 md_write_end(r1_bio->mddev); 374 } 375 376 static void r1_bio_write_done(struct r1bio *r1_bio) 377 { 378 if (!atomic_dec_and_test(&r1_bio->remaining)) 379 return; 380 381 if (test_bit(R1BIO_WriteError, &r1_bio->state)) 382 reschedule_retry(r1_bio); 383 else { 384 close_write(r1_bio); 385 if (test_bit(R1BIO_MadeGood, &r1_bio->state)) 386 reschedule_retry(r1_bio); 387 else 388 raid_end_bio_io(r1_bio); 389 } 390 } 391 392 static void raid1_end_write_request(struct bio *bio, int error) 393 { 394 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 395 struct r1bio *r1_bio = bio->bi_private; 396 int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state); 397 struct r1conf *conf = r1_bio->mddev->private; 398 struct bio *to_put = NULL; 399 400 mirror = find_bio_disk(r1_bio, bio); 401 402 /* 403 * 'one mirror IO has finished' event handler: 404 */ 405 if (!uptodate) { 406 set_bit(WriteErrorSeen, 407 &conf->mirrors[mirror].rdev->flags); 408 if (!test_and_set_bit(WantReplacement, 409 &conf->mirrors[mirror].rdev->flags)) 410 set_bit(MD_RECOVERY_NEEDED, & 411 conf->mddev->recovery); 412 413 set_bit(R1BIO_WriteError, &r1_bio->state); 414 } else { 415 /* 416 * Set R1BIO_Uptodate in our master bio, so that we 417 * will return a good error code for to the higher 418 * levels even if IO on some other mirrored buffer 419 * fails. 420 * 421 * The 'master' represents the composite IO operation 422 * to user-side. So if something waits for IO, then it 423 * will wait for the 'master' bio. 424 */ 425 sector_t first_bad; 426 int bad_sectors; 427 428 r1_bio->bios[mirror] = NULL; 429 to_put = bio; 430 set_bit(R1BIO_Uptodate, &r1_bio->state); 431 432 /* Maybe we can clear some bad blocks. */ 433 if (is_badblock(conf->mirrors[mirror].rdev, 434 r1_bio->sector, r1_bio->sectors, 435 &first_bad, &bad_sectors)) { 436 r1_bio->bios[mirror] = IO_MADE_GOOD; 437 set_bit(R1BIO_MadeGood, &r1_bio->state); 438 } 439 } 440 441 if (behind) { 442 if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags)) 443 atomic_dec(&r1_bio->behind_remaining); 444 445 /* 446 * In behind mode, we ACK the master bio once the I/O 447 * has safely reached all non-writemostly 448 * disks. Setting the Returned bit ensures that this 449 * gets done only once -- we don't ever want to return 450 * -EIO here, instead we'll wait 451 */ 452 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) && 453 test_bit(R1BIO_Uptodate, &r1_bio->state)) { 454 /* Maybe we can return now */ 455 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) { 456 struct bio *mbio = r1_bio->master_bio; 457 pr_debug("raid1: behind end write sectors" 458 " %llu-%llu\n", 459 (unsigned long long) mbio->bi_sector, 460 (unsigned long long) mbio->bi_sector + 461 (mbio->bi_size >> 9) - 1); 462 call_bio_endio(r1_bio); 463 } 464 } 465 } 466 if (r1_bio->bios[mirror] == NULL) 467 rdev_dec_pending(conf->mirrors[mirror].rdev, 468 conf->mddev); 469 470 /* 471 * Let's see if all mirrored write operations have finished 472 * already. 473 */ 474 r1_bio_write_done(r1_bio); 475 476 if (to_put) 477 bio_put(to_put); 478 } 479 480 481 /* 482 * This routine returns the disk from which the requested read should 483 * be done. There is a per-array 'next expected sequential IO' sector 484 * number - if this matches on the next IO then we use the last disk. 485 * There is also a per-disk 'last know head position' sector that is 486 * maintained from IRQ contexts, both the normal and the resync IO 487 * completion handlers update this position correctly. If there is no 488 * perfect sequential match then we pick the disk whose head is closest. 489 * 490 * If there are 2 mirrors in the same 2 devices, performance degrades 491 * because position is mirror, not device based. 492 * 493 * The rdev for the device selected will have nr_pending incremented. 494 */ 495 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors) 496 { 497 const sector_t this_sector = r1_bio->sector; 498 int sectors; 499 int best_good_sectors; 500 int best_disk, best_dist_disk, best_pending_disk; 501 int has_nonrot_disk; 502 int disk; 503 sector_t best_dist; 504 unsigned int min_pending; 505 struct md_rdev *rdev; 506 int choose_first; 507 int choose_next_idle; 508 509 rcu_read_lock(); 510 /* 511 * Check if we can balance. We can balance on the whole 512 * device if no resync is going on, or below the resync window. 513 * We take the first readable disk when above the resync window. 514 */ 515 retry: 516 sectors = r1_bio->sectors; 517 best_disk = -1; 518 best_dist_disk = -1; 519 best_dist = MaxSector; 520 best_pending_disk = -1; 521 min_pending = UINT_MAX; 522 best_good_sectors = 0; 523 has_nonrot_disk = 0; 524 choose_next_idle = 0; 525 526 if (conf->mddev->recovery_cp < MaxSector && 527 (this_sector + sectors >= conf->next_resync)) 528 choose_first = 1; 529 else 530 choose_first = 0; 531 532 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) { 533 sector_t dist; 534 sector_t first_bad; 535 int bad_sectors; 536 unsigned int pending; 537 bool nonrot; 538 539 rdev = rcu_dereference(conf->mirrors[disk].rdev); 540 if (r1_bio->bios[disk] == IO_BLOCKED 541 || rdev == NULL 542 || test_bit(Unmerged, &rdev->flags) 543 || test_bit(Faulty, &rdev->flags)) 544 continue; 545 if (!test_bit(In_sync, &rdev->flags) && 546 rdev->recovery_offset < this_sector + sectors) 547 continue; 548 if (test_bit(WriteMostly, &rdev->flags)) { 549 /* Don't balance among write-mostly, just 550 * use the first as a last resort */ 551 if (best_disk < 0) { 552 if (is_badblock(rdev, this_sector, sectors, 553 &first_bad, &bad_sectors)) { 554 if (first_bad < this_sector) 555 /* Cannot use this */ 556 continue; 557 best_good_sectors = first_bad - this_sector; 558 } else 559 best_good_sectors = sectors; 560 best_disk = disk; 561 } 562 continue; 563 } 564 /* This is a reasonable device to use. It might 565 * even be best. 566 */ 567 if (is_badblock(rdev, this_sector, sectors, 568 &first_bad, &bad_sectors)) { 569 if (best_dist < MaxSector) 570 /* already have a better device */ 571 continue; 572 if (first_bad <= this_sector) { 573 /* cannot read here. If this is the 'primary' 574 * device, then we must not read beyond 575 * bad_sectors from another device.. 576 */ 577 bad_sectors -= (this_sector - first_bad); 578 if (choose_first && sectors > bad_sectors) 579 sectors = bad_sectors; 580 if (best_good_sectors > sectors) 581 best_good_sectors = sectors; 582 583 } else { 584 sector_t good_sectors = first_bad - this_sector; 585 if (good_sectors > best_good_sectors) { 586 best_good_sectors = good_sectors; 587 best_disk = disk; 588 } 589 if (choose_first) 590 break; 591 } 592 continue; 593 } else 594 best_good_sectors = sectors; 595 596 nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev)); 597 has_nonrot_disk |= nonrot; 598 pending = atomic_read(&rdev->nr_pending); 599 dist = abs(this_sector - conf->mirrors[disk].head_position); 600 if (choose_first) { 601 best_disk = disk; 602 break; 603 } 604 /* Don't change to another disk for sequential reads */ 605 if (conf->mirrors[disk].next_seq_sect == this_sector 606 || dist == 0) { 607 int opt_iosize = bdev_io_opt(rdev->bdev) >> 9; 608 struct raid1_info *mirror = &conf->mirrors[disk]; 609 610 best_disk = disk; 611 /* 612 * If buffered sequential IO size exceeds optimal 613 * iosize, check if there is idle disk. If yes, choose 614 * the idle disk. read_balance could already choose an 615 * idle disk before noticing it's a sequential IO in 616 * this disk. This doesn't matter because this disk 617 * will idle, next time it will be utilized after the 618 * first disk has IO size exceeds optimal iosize. In 619 * this way, iosize of the first disk will be optimal 620 * iosize at least. iosize of the second disk might be 621 * small, but not a big deal since when the second disk 622 * starts IO, the first disk is likely still busy. 623 */ 624 if (nonrot && opt_iosize > 0 && 625 mirror->seq_start != MaxSector && 626 mirror->next_seq_sect > opt_iosize && 627 mirror->next_seq_sect - opt_iosize >= 628 mirror->seq_start) { 629 choose_next_idle = 1; 630 continue; 631 } 632 break; 633 } 634 /* If device is idle, use it */ 635 if (pending == 0) { 636 best_disk = disk; 637 break; 638 } 639 640 if (choose_next_idle) 641 continue; 642 643 if (min_pending > pending) { 644 min_pending = pending; 645 best_pending_disk = disk; 646 } 647 648 if (dist < best_dist) { 649 best_dist = dist; 650 best_dist_disk = disk; 651 } 652 } 653 654 /* 655 * If all disks are rotational, choose the closest disk. If any disk is 656 * non-rotational, choose the disk with less pending request even the 657 * disk is rotational, which might/might not be optimal for raids with 658 * mixed ratation/non-rotational disks depending on workload. 659 */ 660 if (best_disk == -1) { 661 if (has_nonrot_disk) 662 best_disk = best_pending_disk; 663 else 664 best_disk = best_dist_disk; 665 } 666 667 if (best_disk >= 0) { 668 rdev = rcu_dereference(conf->mirrors[best_disk].rdev); 669 if (!rdev) 670 goto retry; 671 atomic_inc(&rdev->nr_pending); 672 if (test_bit(Faulty, &rdev->flags)) { 673 /* cannot risk returning a device that failed 674 * before we inc'ed nr_pending 675 */ 676 rdev_dec_pending(rdev, conf->mddev); 677 goto retry; 678 } 679 sectors = best_good_sectors; 680 681 if (conf->mirrors[best_disk].next_seq_sect != this_sector) 682 conf->mirrors[best_disk].seq_start = this_sector; 683 684 conf->mirrors[best_disk].next_seq_sect = this_sector + sectors; 685 } 686 rcu_read_unlock(); 687 *max_sectors = sectors; 688 689 return best_disk; 690 } 691 692 static int raid1_mergeable_bvec(struct request_queue *q, 693 struct bvec_merge_data *bvm, 694 struct bio_vec *biovec) 695 { 696 struct mddev *mddev = q->queuedata; 697 struct r1conf *conf = mddev->private; 698 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev); 699 int max = biovec->bv_len; 700 701 if (mddev->merge_check_needed) { 702 int disk; 703 rcu_read_lock(); 704 for (disk = 0; disk < conf->raid_disks * 2; disk++) { 705 struct md_rdev *rdev = rcu_dereference( 706 conf->mirrors[disk].rdev); 707 if (rdev && !test_bit(Faulty, &rdev->flags)) { 708 struct request_queue *q = 709 bdev_get_queue(rdev->bdev); 710 if (q->merge_bvec_fn) { 711 bvm->bi_sector = sector + 712 rdev->data_offset; 713 bvm->bi_bdev = rdev->bdev; 714 max = min(max, q->merge_bvec_fn( 715 q, bvm, biovec)); 716 } 717 } 718 } 719 rcu_read_unlock(); 720 } 721 return max; 722 723 } 724 725 int md_raid1_congested(struct mddev *mddev, int bits) 726 { 727 struct r1conf *conf = mddev->private; 728 int i, ret = 0; 729 730 if ((bits & (1 << BDI_async_congested)) && 731 conf->pending_count >= max_queued_requests) 732 return 1; 733 734 rcu_read_lock(); 735 for (i = 0; i < conf->raid_disks * 2; i++) { 736 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 737 if (rdev && !test_bit(Faulty, &rdev->flags)) { 738 struct request_queue *q = bdev_get_queue(rdev->bdev); 739 740 BUG_ON(!q); 741 742 /* Note the '|| 1' - when read_balance prefers 743 * non-congested targets, it can be removed 744 */ 745 if ((bits & (1<<BDI_async_congested)) || 1) 746 ret |= bdi_congested(&q->backing_dev_info, bits); 747 else 748 ret &= bdi_congested(&q->backing_dev_info, bits); 749 } 750 } 751 rcu_read_unlock(); 752 return ret; 753 } 754 EXPORT_SYMBOL_GPL(md_raid1_congested); 755 756 static int raid1_congested(void *data, int bits) 757 { 758 struct mddev *mddev = data; 759 760 return mddev_congested(mddev, bits) || 761 md_raid1_congested(mddev, bits); 762 } 763 764 static void flush_pending_writes(struct r1conf *conf) 765 { 766 /* Any writes that have been queued but are awaiting 767 * bitmap updates get flushed here. 768 */ 769 spin_lock_irq(&conf->device_lock); 770 771 if (conf->pending_bio_list.head) { 772 struct bio *bio; 773 bio = bio_list_get(&conf->pending_bio_list); 774 conf->pending_count = 0; 775 spin_unlock_irq(&conf->device_lock); 776 /* flush any pending bitmap writes to 777 * disk before proceeding w/ I/O */ 778 bitmap_unplug(conf->mddev->bitmap); 779 wake_up(&conf->wait_barrier); 780 781 while (bio) { /* submit pending writes */ 782 struct bio *next = bio->bi_next; 783 bio->bi_next = NULL; 784 generic_make_request(bio); 785 bio = next; 786 } 787 } else 788 spin_unlock_irq(&conf->device_lock); 789 } 790 791 /* Barriers.... 792 * Sometimes we need to suspend IO while we do something else, 793 * either some resync/recovery, or reconfigure the array. 794 * To do this we raise a 'barrier'. 795 * The 'barrier' is a counter that can be raised multiple times 796 * to count how many activities are happening which preclude 797 * normal IO. 798 * We can only raise the barrier if there is no pending IO. 799 * i.e. if nr_pending == 0. 800 * We choose only to raise the barrier if no-one is waiting for the 801 * barrier to go down. This means that as soon as an IO request 802 * is ready, no other operations which require a barrier will start 803 * until the IO request has had a chance. 804 * 805 * So: regular IO calls 'wait_barrier'. When that returns there 806 * is no backgroup IO happening, It must arrange to call 807 * allow_barrier when it has finished its IO. 808 * backgroup IO calls must call raise_barrier. Once that returns 809 * there is no normal IO happeing. It must arrange to call 810 * lower_barrier when the particular background IO completes. 811 */ 812 #define RESYNC_DEPTH 32 813 814 static void raise_barrier(struct r1conf *conf) 815 { 816 spin_lock_irq(&conf->resync_lock); 817 818 /* Wait until no block IO is waiting */ 819 wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting, 820 conf->resync_lock, ); 821 822 /* block any new IO from starting */ 823 conf->barrier++; 824 825 /* Now wait for all pending IO to complete */ 826 wait_event_lock_irq(conf->wait_barrier, 827 !conf->nr_pending && conf->barrier < RESYNC_DEPTH, 828 conf->resync_lock, ); 829 830 spin_unlock_irq(&conf->resync_lock); 831 } 832 833 static void lower_barrier(struct r1conf *conf) 834 { 835 unsigned long flags; 836 BUG_ON(conf->barrier <= 0); 837 spin_lock_irqsave(&conf->resync_lock, flags); 838 conf->barrier--; 839 spin_unlock_irqrestore(&conf->resync_lock, flags); 840 wake_up(&conf->wait_barrier); 841 } 842 843 static void wait_barrier(struct r1conf *conf) 844 { 845 spin_lock_irq(&conf->resync_lock); 846 if (conf->barrier) { 847 conf->nr_waiting++; 848 /* Wait for the barrier to drop. 849 * However if there are already pending 850 * requests (preventing the barrier from 851 * rising completely), and the 852 * pre-process bio queue isn't empty, 853 * then don't wait, as we need to empty 854 * that queue to get the nr_pending 855 * count down. 856 */ 857 wait_event_lock_irq(conf->wait_barrier, 858 !conf->barrier || 859 (conf->nr_pending && 860 current->bio_list && 861 !bio_list_empty(current->bio_list)), 862 conf->resync_lock, 863 ); 864 conf->nr_waiting--; 865 } 866 conf->nr_pending++; 867 spin_unlock_irq(&conf->resync_lock); 868 } 869 870 static void allow_barrier(struct r1conf *conf) 871 { 872 unsigned long flags; 873 spin_lock_irqsave(&conf->resync_lock, flags); 874 conf->nr_pending--; 875 spin_unlock_irqrestore(&conf->resync_lock, flags); 876 wake_up(&conf->wait_barrier); 877 } 878 879 static void freeze_array(struct r1conf *conf) 880 { 881 /* stop syncio and normal IO and wait for everything to 882 * go quite. 883 * We increment barrier and nr_waiting, and then 884 * wait until nr_pending match nr_queued+1 885 * This is called in the context of one normal IO request 886 * that has failed. Thus any sync request that might be pending 887 * will be blocked by nr_pending, and we need to wait for 888 * pending IO requests to complete or be queued for re-try. 889 * Thus the number queued (nr_queued) plus this request (1) 890 * must match the number of pending IOs (nr_pending) before 891 * we continue. 892 */ 893 spin_lock_irq(&conf->resync_lock); 894 conf->barrier++; 895 conf->nr_waiting++; 896 wait_event_lock_irq(conf->wait_barrier, 897 conf->nr_pending == conf->nr_queued+1, 898 conf->resync_lock, 899 flush_pending_writes(conf)); 900 spin_unlock_irq(&conf->resync_lock); 901 } 902 static void unfreeze_array(struct r1conf *conf) 903 { 904 /* reverse the effect of the freeze */ 905 spin_lock_irq(&conf->resync_lock); 906 conf->barrier--; 907 conf->nr_waiting--; 908 wake_up(&conf->wait_barrier); 909 spin_unlock_irq(&conf->resync_lock); 910 } 911 912 913 /* duplicate the data pages for behind I/O 914 */ 915 static void alloc_behind_pages(struct bio *bio, struct r1bio *r1_bio) 916 { 917 int i; 918 struct bio_vec *bvec; 919 struct bio_vec *bvecs = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec), 920 GFP_NOIO); 921 if (unlikely(!bvecs)) 922 return; 923 924 bio_for_each_segment(bvec, bio, i) { 925 bvecs[i] = *bvec; 926 bvecs[i].bv_page = alloc_page(GFP_NOIO); 927 if (unlikely(!bvecs[i].bv_page)) 928 goto do_sync_io; 929 memcpy(kmap(bvecs[i].bv_page) + bvec->bv_offset, 930 kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len); 931 kunmap(bvecs[i].bv_page); 932 kunmap(bvec->bv_page); 933 } 934 r1_bio->behind_bvecs = bvecs; 935 r1_bio->behind_page_count = bio->bi_vcnt; 936 set_bit(R1BIO_BehindIO, &r1_bio->state); 937 return; 938 939 do_sync_io: 940 for (i = 0; i < bio->bi_vcnt; i++) 941 if (bvecs[i].bv_page) 942 put_page(bvecs[i].bv_page); 943 kfree(bvecs); 944 pr_debug("%dB behind alloc failed, doing sync I/O\n", bio->bi_size); 945 } 946 947 struct raid1_plug_cb { 948 struct blk_plug_cb cb; 949 struct bio_list pending; 950 int pending_cnt; 951 }; 952 953 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule) 954 { 955 struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb, 956 cb); 957 struct mddev *mddev = plug->cb.data; 958 struct r1conf *conf = mddev->private; 959 struct bio *bio; 960 961 if (from_schedule) { 962 spin_lock_irq(&conf->device_lock); 963 bio_list_merge(&conf->pending_bio_list, &plug->pending); 964 conf->pending_count += plug->pending_cnt; 965 spin_unlock_irq(&conf->device_lock); 966 md_wakeup_thread(mddev->thread); 967 kfree(plug); 968 return; 969 } 970 971 /* we aren't scheduling, so we can do the write-out directly. */ 972 bio = bio_list_get(&plug->pending); 973 bitmap_unplug(mddev->bitmap); 974 wake_up(&conf->wait_barrier); 975 976 while (bio) { /* submit pending writes */ 977 struct bio *next = bio->bi_next; 978 bio->bi_next = NULL; 979 generic_make_request(bio); 980 bio = next; 981 } 982 kfree(plug); 983 } 984 985 static void make_request(struct mddev *mddev, struct bio * bio) 986 { 987 struct r1conf *conf = mddev->private; 988 struct raid1_info *mirror; 989 struct r1bio *r1_bio; 990 struct bio *read_bio; 991 int i, disks; 992 struct bitmap *bitmap; 993 unsigned long flags; 994 const int rw = bio_data_dir(bio); 995 const unsigned long do_sync = (bio->bi_rw & REQ_SYNC); 996 const unsigned long do_flush_fua = (bio->bi_rw & (REQ_FLUSH | REQ_FUA)); 997 struct md_rdev *blocked_rdev; 998 struct blk_plug_cb *cb; 999 struct raid1_plug_cb *plug = NULL; 1000 int first_clone; 1001 int sectors_handled; 1002 int max_sectors; 1003 1004 /* 1005 * Register the new request and wait if the reconstruction 1006 * thread has put up a bar for new requests. 1007 * Continue immediately if no resync is active currently. 1008 */ 1009 1010 md_write_start(mddev, bio); /* wait on superblock update early */ 1011 1012 if (bio_data_dir(bio) == WRITE && 1013 bio->bi_sector + bio->bi_size/512 > mddev->suspend_lo && 1014 bio->bi_sector < mddev->suspend_hi) { 1015 /* As the suspend_* range is controlled by 1016 * userspace, we want an interruptible 1017 * wait. 1018 */ 1019 DEFINE_WAIT(w); 1020 for (;;) { 1021 flush_signals(current); 1022 prepare_to_wait(&conf->wait_barrier, 1023 &w, TASK_INTERRUPTIBLE); 1024 if (bio->bi_sector + bio->bi_size/512 <= mddev->suspend_lo || 1025 bio->bi_sector >= mddev->suspend_hi) 1026 break; 1027 schedule(); 1028 } 1029 finish_wait(&conf->wait_barrier, &w); 1030 } 1031 1032 wait_barrier(conf); 1033 1034 bitmap = mddev->bitmap; 1035 1036 /* 1037 * make_request() can abort the operation when READA is being 1038 * used and no empty request is available. 1039 * 1040 */ 1041 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO); 1042 1043 r1_bio->master_bio = bio; 1044 r1_bio->sectors = bio->bi_size >> 9; 1045 r1_bio->state = 0; 1046 r1_bio->mddev = mddev; 1047 r1_bio->sector = bio->bi_sector; 1048 1049 /* We might need to issue multiple reads to different 1050 * devices if there are bad blocks around, so we keep 1051 * track of the number of reads in bio->bi_phys_segments. 1052 * If this is 0, there is only one r1_bio and no locking 1053 * will be needed when requests complete. If it is 1054 * non-zero, then it is the number of not-completed requests. 1055 */ 1056 bio->bi_phys_segments = 0; 1057 clear_bit(BIO_SEG_VALID, &bio->bi_flags); 1058 1059 if (rw == READ) { 1060 /* 1061 * read balancing logic: 1062 */ 1063 int rdisk; 1064 1065 read_again: 1066 rdisk = read_balance(conf, r1_bio, &max_sectors); 1067 1068 if (rdisk < 0) { 1069 /* couldn't find anywhere to read from */ 1070 raid_end_bio_io(r1_bio); 1071 return; 1072 } 1073 mirror = conf->mirrors + rdisk; 1074 1075 if (test_bit(WriteMostly, &mirror->rdev->flags) && 1076 bitmap) { 1077 /* Reading from a write-mostly device must 1078 * take care not to over-take any writes 1079 * that are 'behind' 1080 */ 1081 wait_event(bitmap->behind_wait, 1082 atomic_read(&bitmap->behind_writes) == 0); 1083 } 1084 r1_bio->read_disk = rdisk; 1085 1086 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev); 1087 md_trim_bio(read_bio, r1_bio->sector - bio->bi_sector, 1088 max_sectors); 1089 1090 r1_bio->bios[rdisk] = read_bio; 1091 1092 read_bio->bi_sector = r1_bio->sector + mirror->rdev->data_offset; 1093 read_bio->bi_bdev = mirror->rdev->bdev; 1094 read_bio->bi_end_io = raid1_end_read_request; 1095 read_bio->bi_rw = READ | do_sync; 1096 read_bio->bi_private = r1_bio; 1097 1098 if (max_sectors < r1_bio->sectors) { 1099 /* could not read all from this device, so we will 1100 * need another r1_bio. 1101 */ 1102 1103 sectors_handled = (r1_bio->sector + max_sectors 1104 - bio->bi_sector); 1105 r1_bio->sectors = max_sectors; 1106 spin_lock_irq(&conf->device_lock); 1107 if (bio->bi_phys_segments == 0) 1108 bio->bi_phys_segments = 2; 1109 else 1110 bio->bi_phys_segments++; 1111 spin_unlock_irq(&conf->device_lock); 1112 /* Cannot call generic_make_request directly 1113 * as that will be queued in __make_request 1114 * and subsequent mempool_alloc might block waiting 1115 * for it. So hand bio over to raid1d. 1116 */ 1117 reschedule_retry(r1_bio); 1118 1119 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO); 1120 1121 r1_bio->master_bio = bio; 1122 r1_bio->sectors = (bio->bi_size >> 9) - sectors_handled; 1123 r1_bio->state = 0; 1124 r1_bio->mddev = mddev; 1125 r1_bio->sector = bio->bi_sector + sectors_handled; 1126 goto read_again; 1127 } else 1128 generic_make_request(read_bio); 1129 return; 1130 } 1131 1132 /* 1133 * WRITE: 1134 */ 1135 if (conf->pending_count >= max_queued_requests) { 1136 md_wakeup_thread(mddev->thread); 1137 wait_event(conf->wait_barrier, 1138 conf->pending_count < max_queued_requests); 1139 } 1140 /* first select target devices under rcu_lock and 1141 * inc refcount on their rdev. Record them by setting 1142 * bios[x] to bio 1143 * If there are known/acknowledged bad blocks on any device on 1144 * which we have seen a write error, we want to avoid writing those 1145 * blocks. 1146 * This potentially requires several writes to write around 1147 * the bad blocks. Each set of writes gets it's own r1bio 1148 * with a set of bios attached. 1149 */ 1150 1151 disks = conf->raid_disks * 2; 1152 retry_write: 1153 blocked_rdev = NULL; 1154 rcu_read_lock(); 1155 max_sectors = r1_bio->sectors; 1156 for (i = 0; i < disks; i++) { 1157 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 1158 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) { 1159 atomic_inc(&rdev->nr_pending); 1160 blocked_rdev = rdev; 1161 break; 1162 } 1163 r1_bio->bios[i] = NULL; 1164 if (!rdev || test_bit(Faulty, &rdev->flags) 1165 || test_bit(Unmerged, &rdev->flags)) { 1166 if (i < conf->raid_disks) 1167 set_bit(R1BIO_Degraded, &r1_bio->state); 1168 continue; 1169 } 1170 1171 atomic_inc(&rdev->nr_pending); 1172 if (test_bit(WriteErrorSeen, &rdev->flags)) { 1173 sector_t first_bad; 1174 int bad_sectors; 1175 int is_bad; 1176 1177 is_bad = is_badblock(rdev, r1_bio->sector, 1178 max_sectors, 1179 &first_bad, &bad_sectors); 1180 if (is_bad < 0) { 1181 /* mustn't write here until the bad block is 1182 * acknowledged*/ 1183 set_bit(BlockedBadBlocks, &rdev->flags); 1184 blocked_rdev = rdev; 1185 break; 1186 } 1187 if (is_bad && first_bad <= r1_bio->sector) { 1188 /* Cannot write here at all */ 1189 bad_sectors -= (r1_bio->sector - first_bad); 1190 if (bad_sectors < max_sectors) 1191 /* mustn't write more than bad_sectors 1192 * to other devices yet 1193 */ 1194 max_sectors = bad_sectors; 1195 rdev_dec_pending(rdev, mddev); 1196 /* We don't set R1BIO_Degraded as that 1197 * only applies if the disk is 1198 * missing, so it might be re-added, 1199 * and we want to know to recover this 1200 * chunk. 1201 * In this case the device is here, 1202 * and the fact that this chunk is not 1203 * in-sync is recorded in the bad 1204 * block log 1205 */ 1206 continue; 1207 } 1208 if (is_bad) { 1209 int good_sectors = first_bad - r1_bio->sector; 1210 if (good_sectors < max_sectors) 1211 max_sectors = good_sectors; 1212 } 1213 } 1214 r1_bio->bios[i] = bio; 1215 } 1216 rcu_read_unlock(); 1217 1218 if (unlikely(blocked_rdev)) { 1219 /* Wait for this device to become unblocked */ 1220 int j; 1221 1222 for (j = 0; j < i; j++) 1223 if (r1_bio->bios[j]) 1224 rdev_dec_pending(conf->mirrors[j].rdev, mddev); 1225 r1_bio->state = 0; 1226 allow_barrier(conf); 1227 md_wait_for_blocked_rdev(blocked_rdev, mddev); 1228 wait_barrier(conf); 1229 goto retry_write; 1230 } 1231 1232 if (max_sectors < r1_bio->sectors) { 1233 /* We are splitting this write into multiple parts, so 1234 * we need to prepare for allocating another r1_bio. 1235 */ 1236 r1_bio->sectors = max_sectors; 1237 spin_lock_irq(&conf->device_lock); 1238 if (bio->bi_phys_segments == 0) 1239 bio->bi_phys_segments = 2; 1240 else 1241 bio->bi_phys_segments++; 1242 spin_unlock_irq(&conf->device_lock); 1243 } 1244 sectors_handled = r1_bio->sector + max_sectors - bio->bi_sector; 1245 1246 atomic_set(&r1_bio->remaining, 1); 1247 atomic_set(&r1_bio->behind_remaining, 0); 1248 1249 first_clone = 1; 1250 for (i = 0; i < disks; i++) { 1251 struct bio *mbio; 1252 if (!r1_bio->bios[i]) 1253 continue; 1254 1255 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev); 1256 md_trim_bio(mbio, r1_bio->sector - bio->bi_sector, max_sectors); 1257 1258 if (first_clone) { 1259 /* do behind I/O ? 1260 * Not if there are too many, or cannot 1261 * allocate memory, or a reader on WriteMostly 1262 * is waiting for behind writes to flush */ 1263 if (bitmap && 1264 (atomic_read(&bitmap->behind_writes) 1265 < mddev->bitmap_info.max_write_behind) && 1266 !waitqueue_active(&bitmap->behind_wait)) 1267 alloc_behind_pages(mbio, r1_bio); 1268 1269 bitmap_startwrite(bitmap, r1_bio->sector, 1270 r1_bio->sectors, 1271 test_bit(R1BIO_BehindIO, 1272 &r1_bio->state)); 1273 first_clone = 0; 1274 } 1275 if (r1_bio->behind_bvecs) { 1276 struct bio_vec *bvec; 1277 int j; 1278 1279 /* Yes, I really want the '__' version so that 1280 * we clear any unused pointer in the io_vec, rather 1281 * than leave them unchanged. This is important 1282 * because when we come to free the pages, we won't 1283 * know the original bi_idx, so we just free 1284 * them all 1285 */ 1286 __bio_for_each_segment(bvec, mbio, j, 0) 1287 bvec->bv_page = r1_bio->behind_bvecs[j].bv_page; 1288 if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags)) 1289 atomic_inc(&r1_bio->behind_remaining); 1290 } 1291 1292 r1_bio->bios[i] = mbio; 1293 1294 mbio->bi_sector = (r1_bio->sector + 1295 conf->mirrors[i].rdev->data_offset); 1296 mbio->bi_bdev = conf->mirrors[i].rdev->bdev; 1297 mbio->bi_end_io = raid1_end_write_request; 1298 mbio->bi_rw = WRITE | do_flush_fua | do_sync; 1299 mbio->bi_private = r1_bio; 1300 1301 atomic_inc(&r1_bio->remaining); 1302 1303 cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug)); 1304 if (cb) 1305 plug = container_of(cb, struct raid1_plug_cb, cb); 1306 else 1307 plug = NULL; 1308 spin_lock_irqsave(&conf->device_lock, flags); 1309 if (plug) { 1310 bio_list_add(&plug->pending, mbio); 1311 plug->pending_cnt++; 1312 } else { 1313 bio_list_add(&conf->pending_bio_list, mbio); 1314 conf->pending_count++; 1315 } 1316 spin_unlock_irqrestore(&conf->device_lock, flags); 1317 if (!plug) 1318 md_wakeup_thread(mddev->thread); 1319 } 1320 /* Mustn't call r1_bio_write_done before this next test, 1321 * as it could result in the bio being freed. 1322 */ 1323 if (sectors_handled < (bio->bi_size >> 9)) { 1324 r1_bio_write_done(r1_bio); 1325 /* We need another r1_bio. It has already been counted 1326 * in bio->bi_phys_segments 1327 */ 1328 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO); 1329 r1_bio->master_bio = bio; 1330 r1_bio->sectors = (bio->bi_size >> 9) - sectors_handled; 1331 r1_bio->state = 0; 1332 r1_bio->mddev = mddev; 1333 r1_bio->sector = bio->bi_sector + sectors_handled; 1334 goto retry_write; 1335 } 1336 1337 r1_bio_write_done(r1_bio); 1338 1339 /* In case raid1d snuck in to freeze_array */ 1340 wake_up(&conf->wait_barrier); 1341 } 1342 1343 static void status(struct seq_file *seq, struct mddev *mddev) 1344 { 1345 struct r1conf *conf = mddev->private; 1346 int i; 1347 1348 seq_printf(seq, " [%d/%d] [", conf->raid_disks, 1349 conf->raid_disks - mddev->degraded); 1350 rcu_read_lock(); 1351 for (i = 0; i < conf->raid_disks; i++) { 1352 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 1353 seq_printf(seq, "%s", 1354 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_"); 1355 } 1356 rcu_read_unlock(); 1357 seq_printf(seq, "]"); 1358 } 1359 1360 1361 static void error(struct mddev *mddev, struct md_rdev *rdev) 1362 { 1363 char b[BDEVNAME_SIZE]; 1364 struct r1conf *conf = mddev->private; 1365 1366 /* 1367 * If it is not operational, then we have already marked it as dead 1368 * else if it is the last working disks, ignore the error, let the 1369 * next level up know. 1370 * else mark the drive as failed 1371 */ 1372 if (test_bit(In_sync, &rdev->flags) 1373 && (conf->raid_disks - mddev->degraded) == 1) { 1374 /* 1375 * Don't fail the drive, act as though we were just a 1376 * normal single drive. 1377 * However don't try a recovery from this drive as 1378 * it is very likely to fail. 1379 */ 1380 conf->recovery_disabled = mddev->recovery_disabled; 1381 return; 1382 } 1383 set_bit(Blocked, &rdev->flags); 1384 if (test_and_clear_bit(In_sync, &rdev->flags)) { 1385 unsigned long flags; 1386 spin_lock_irqsave(&conf->device_lock, flags); 1387 mddev->degraded++; 1388 set_bit(Faulty, &rdev->flags); 1389 spin_unlock_irqrestore(&conf->device_lock, flags); 1390 /* 1391 * if recovery is running, make sure it aborts. 1392 */ 1393 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 1394 } else 1395 set_bit(Faulty, &rdev->flags); 1396 set_bit(MD_CHANGE_DEVS, &mddev->flags); 1397 printk(KERN_ALERT 1398 "md/raid1:%s: Disk failure on %s, disabling device.\n" 1399 "md/raid1:%s: Operation continuing on %d devices.\n", 1400 mdname(mddev), bdevname(rdev->bdev, b), 1401 mdname(mddev), conf->raid_disks - mddev->degraded); 1402 } 1403 1404 static void print_conf(struct r1conf *conf) 1405 { 1406 int i; 1407 1408 printk(KERN_DEBUG "RAID1 conf printout:\n"); 1409 if (!conf) { 1410 printk(KERN_DEBUG "(!conf)\n"); 1411 return; 1412 } 1413 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded, 1414 conf->raid_disks); 1415 1416 rcu_read_lock(); 1417 for (i = 0; i < conf->raid_disks; i++) { 1418 char b[BDEVNAME_SIZE]; 1419 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 1420 if (rdev) 1421 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n", 1422 i, !test_bit(In_sync, &rdev->flags), 1423 !test_bit(Faulty, &rdev->flags), 1424 bdevname(rdev->bdev,b)); 1425 } 1426 rcu_read_unlock(); 1427 } 1428 1429 static void close_sync(struct r1conf *conf) 1430 { 1431 wait_barrier(conf); 1432 allow_barrier(conf); 1433 1434 mempool_destroy(conf->r1buf_pool); 1435 conf->r1buf_pool = NULL; 1436 } 1437 1438 static int raid1_spare_active(struct mddev *mddev) 1439 { 1440 int i; 1441 struct r1conf *conf = mddev->private; 1442 int count = 0; 1443 unsigned long flags; 1444 1445 /* 1446 * Find all failed disks within the RAID1 configuration 1447 * and mark them readable. 1448 * Called under mddev lock, so rcu protection not needed. 1449 */ 1450 for (i = 0; i < conf->raid_disks; i++) { 1451 struct md_rdev *rdev = conf->mirrors[i].rdev; 1452 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev; 1453 if (repl 1454 && repl->recovery_offset == MaxSector 1455 && !test_bit(Faulty, &repl->flags) 1456 && !test_and_set_bit(In_sync, &repl->flags)) { 1457 /* replacement has just become active */ 1458 if (!rdev || 1459 !test_and_clear_bit(In_sync, &rdev->flags)) 1460 count++; 1461 if (rdev) { 1462 /* Replaced device not technically 1463 * faulty, but we need to be sure 1464 * it gets removed and never re-added 1465 */ 1466 set_bit(Faulty, &rdev->flags); 1467 sysfs_notify_dirent_safe( 1468 rdev->sysfs_state); 1469 } 1470 } 1471 if (rdev 1472 && !test_bit(Faulty, &rdev->flags) 1473 && !test_and_set_bit(In_sync, &rdev->flags)) { 1474 count++; 1475 sysfs_notify_dirent_safe(rdev->sysfs_state); 1476 } 1477 } 1478 spin_lock_irqsave(&conf->device_lock, flags); 1479 mddev->degraded -= count; 1480 spin_unlock_irqrestore(&conf->device_lock, flags); 1481 1482 print_conf(conf); 1483 return count; 1484 } 1485 1486 1487 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev) 1488 { 1489 struct r1conf *conf = mddev->private; 1490 int err = -EEXIST; 1491 int mirror = 0; 1492 struct raid1_info *p; 1493 int first = 0; 1494 int last = conf->raid_disks - 1; 1495 struct request_queue *q = bdev_get_queue(rdev->bdev); 1496 1497 if (mddev->recovery_disabled == conf->recovery_disabled) 1498 return -EBUSY; 1499 1500 if (rdev->raid_disk >= 0) 1501 first = last = rdev->raid_disk; 1502 1503 if (q->merge_bvec_fn) { 1504 set_bit(Unmerged, &rdev->flags); 1505 mddev->merge_check_needed = 1; 1506 } 1507 1508 for (mirror = first; mirror <= last; mirror++) { 1509 p = conf->mirrors+mirror; 1510 if (!p->rdev) { 1511 1512 disk_stack_limits(mddev->gendisk, rdev->bdev, 1513 rdev->data_offset << 9); 1514 1515 p->head_position = 0; 1516 rdev->raid_disk = mirror; 1517 err = 0; 1518 /* As all devices are equivalent, we don't need a full recovery 1519 * if this was recently any drive of the array 1520 */ 1521 if (rdev->saved_raid_disk < 0) 1522 conf->fullsync = 1; 1523 rcu_assign_pointer(p->rdev, rdev); 1524 break; 1525 } 1526 if (test_bit(WantReplacement, &p->rdev->flags) && 1527 p[conf->raid_disks].rdev == NULL) { 1528 /* Add this device as a replacement */ 1529 clear_bit(In_sync, &rdev->flags); 1530 set_bit(Replacement, &rdev->flags); 1531 rdev->raid_disk = mirror; 1532 err = 0; 1533 conf->fullsync = 1; 1534 rcu_assign_pointer(p[conf->raid_disks].rdev, rdev); 1535 break; 1536 } 1537 } 1538 if (err == 0 && test_bit(Unmerged, &rdev->flags)) { 1539 /* Some requests might not have seen this new 1540 * merge_bvec_fn. We must wait for them to complete 1541 * before merging the device fully. 1542 * First we make sure any code which has tested 1543 * our function has submitted the request, then 1544 * we wait for all outstanding requests to complete. 1545 */ 1546 synchronize_sched(); 1547 raise_barrier(conf); 1548 lower_barrier(conf); 1549 clear_bit(Unmerged, &rdev->flags); 1550 } 1551 md_integrity_add_rdev(rdev, mddev); 1552 print_conf(conf); 1553 return err; 1554 } 1555 1556 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev) 1557 { 1558 struct r1conf *conf = mddev->private; 1559 int err = 0; 1560 int number = rdev->raid_disk; 1561 struct raid1_info *p = conf->mirrors + number; 1562 1563 if (rdev != p->rdev) 1564 p = conf->mirrors + conf->raid_disks + number; 1565 1566 print_conf(conf); 1567 if (rdev == p->rdev) { 1568 if (test_bit(In_sync, &rdev->flags) || 1569 atomic_read(&rdev->nr_pending)) { 1570 err = -EBUSY; 1571 goto abort; 1572 } 1573 /* Only remove non-faulty devices if recovery 1574 * is not possible. 1575 */ 1576 if (!test_bit(Faulty, &rdev->flags) && 1577 mddev->recovery_disabled != conf->recovery_disabled && 1578 mddev->degraded < conf->raid_disks) { 1579 err = -EBUSY; 1580 goto abort; 1581 } 1582 p->rdev = NULL; 1583 synchronize_rcu(); 1584 if (atomic_read(&rdev->nr_pending)) { 1585 /* lost the race, try later */ 1586 err = -EBUSY; 1587 p->rdev = rdev; 1588 goto abort; 1589 } else if (conf->mirrors[conf->raid_disks + number].rdev) { 1590 /* We just removed a device that is being replaced. 1591 * Move down the replacement. We drain all IO before 1592 * doing this to avoid confusion. 1593 */ 1594 struct md_rdev *repl = 1595 conf->mirrors[conf->raid_disks + number].rdev; 1596 raise_barrier(conf); 1597 clear_bit(Replacement, &repl->flags); 1598 p->rdev = repl; 1599 conf->mirrors[conf->raid_disks + number].rdev = NULL; 1600 lower_barrier(conf); 1601 clear_bit(WantReplacement, &rdev->flags); 1602 } else 1603 clear_bit(WantReplacement, &rdev->flags); 1604 err = md_integrity_register(mddev); 1605 } 1606 abort: 1607 1608 print_conf(conf); 1609 return err; 1610 } 1611 1612 1613 static void end_sync_read(struct bio *bio, int error) 1614 { 1615 struct r1bio *r1_bio = bio->bi_private; 1616 1617 update_head_pos(r1_bio->read_disk, r1_bio); 1618 1619 /* 1620 * we have read a block, now it needs to be re-written, 1621 * or re-read if the read failed. 1622 * We don't do much here, just schedule handling by raid1d 1623 */ 1624 if (test_bit(BIO_UPTODATE, &bio->bi_flags)) 1625 set_bit(R1BIO_Uptodate, &r1_bio->state); 1626 1627 if (atomic_dec_and_test(&r1_bio->remaining)) 1628 reschedule_retry(r1_bio); 1629 } 1630 1631 static void end_sync_write(struct bio *bio, int error) 1632 { 1633 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 1634 struct r1bio *r1_bio = bio->bi_private; 1635 struct mddev *mddev = r1_bio->mddev; 1636 struct r1conf *conf = mddev->private; 1637 int mirror=0; 1638 sector_t first_bad; 1639 int bad_sectors; 1640 1641 mirror = find_bio_disk(r1_bio, bio); 1642 1643 if (!uptodate) { 1644 sector_t sync_blocks = 0; 1645 sector_t s = r1_bio->sector; 1646 long sectors_to_go = r1_bio->sectors; 1647 /* make sure these bits doesn't get cleared. */ 1648 do { 1649 bitmap_end_sync(mddev->bitmap, s, 1650 &sync_blocks, 1); 1651 s += sync_blocks; 1652 sectors_to_go -= sync_blocks; 1653 } while (sectors_to_go > 0); 1654 set_bit(WriteErrorSeen, 1655 &conf->mirrors[mirror].rdev->flags); 1656 if (!test_and_set_bit(WantReplacement, 1657 &conf->mirrors[mirror].rdev->flags)) 1658 set_bit(MD_RECOVERY_NEEDED, & 1659 mddev->recovery); 1660 set_bit(R1BIO_WriteError, &r1_bio->state); 1661 } else if (is_badblock(conf->mirrors[mirror].rdev, 1662 r1_bio->sector, 1663 r1_bio->sectors, 1664 &first_bad, &bad_sectors) && 1665 !is_badblock(conf->mirrors[r1_bio->read_disk].rdev, 1666 r1_bio->sector, 1667 r1_bio->sectors, 1668 &first_bad, &bad_sectors) 1669 ) 1670 set_bit(R1BIO_MadeGood, &r1_bio->state); 1671 1672 if (atomic_dec_and_test(&r1_bio->remaining)) { 1673 int s = r1_bio->sectors; 1674 if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 1675 test_bit(R1BIO_WriteError, &r1_bio->state)) 1676 reschedule_retry(r1_bio); 1677 else { 1678 put_buf(r1_bio); 1679 md_done_sync(mddev, s, uptodate); 1680 } 1681 } 1682 } 1683 1684 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector, 1685 int sectors, struct page *page, int rw) 1686 { 1687 if (sync_page_io(rdev, sector, sectors << 9, page, rw, false)) 1688 /* success */ 1689 return 1; 1690 if (rw == WRITE) { 1691 set_bit(WriteErrorSeen, &rdev->flags); 1692 if (!test_and_set_bit(WantReplacement, 1693 &rdev->flags)) 1694 set_bit(MD_RECOVERY_NEEDED, & 1695 rdev->mddev->recovery); 1696 } 1697 /* need to record an error - either for the block or the device */ 1698 if (!rdev_set_badblocks(rdev, sector, sectors, 0)) 1699 md_error(rdev->mddev, rdev); 1700 return 0; 1701 } 1702 1703 static int fix_sync_read_error(struct r1bio *r1_bio) 1704 { 1705 /* Try some synchronous reads of other devices to get 1706 * good data, much like with normal read errors. Only 1707 * read into the pages we already have so we don't 1708 * need to re-issue the read request. 1709 * We don't need to freeze the array, because being in an 1710 * active sync request, there is no normal IO, and 1711 * no overlapping syncs. 1712 * We don't need to check is_badblock() again as we 1713 * made sure that anything with a bad block in range 1714 * will have bi_end_io clear. 1715 */ 1716 struct mddev *mddev = r1_bio->mddev; 1717 struct r1conf *conf = mddev->private; 1718 struct bio *bio = r1_bio->bios[r1_bio->read_disk]; 1719 sector_t sect = r1_bio->sector; 1720 int sectors = r1_bio->sectors; 1721 int idx = 0; 1722 1723 while(sectors) { 1724 int s = sectors; 1725 int d = r1_bio->read_disk; 1726 int success = 0; 1727 struct md_rdev *rdev; 1728 int start; 1729 1730 if (s > (PAGE_SIZE>>9)) 1731 s = PAGE_SIZE >> 9; 1732 do { 1733 if (r1_bio->bios[d]->bi_end_io == end_sync_read) { 1734 /* No rcu protection needed here devices 1735 * can only be removed when no resync is 1736 * active, and resync is currently active 1737 */ 1738 rdev = conf->mirrors[d].rdev; 1739 if (sync_page_io(rdev, sect, s<<9, 1740 bio->bi_io_vec[idx].bv_page, 1741 READ, false)) { 1742 success = 1; 1743 break; 1744 } 1745 } 1746 d++; 1747 if (d == conf->raid_disks * 2) 1748 d = 0; 1749 } while (!success && d != r1_bio->read_disk); 1750 1751 if (!success) { 1752 char b[BDEVNAME_SIZE]; 1753 int abort = 0; 1754 /* Cannot read from anywhere, this block is lost. 1755 * Record a bad block on each device. If that doesn't 1756 * work just disable and interrupt the recovery. 1757 * Don't fail devices as that won't really help. 1758 */ 1759 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error" 1760 " for block %llu\n", 1761 mdname(mddev), 1762 bdevname(bio->bi_bdev, b), 1763 (unsigned long long)r1_bio->sector); 1764 for (d = 0; d < conf->raid_disks * 2; d++) { 1765 rdev = conf->mirrors[d].rdev; 1766 if (!rdev || test_bit(Faulty, &rdev->flags)) 1767 continue; 1768 if (!rdev_set_badblocks(rdev, sect, s, 0)) 1769 abort = 1; 1770 } 1771 if (abort) { 1772 conf->recovery_disabled = 1773 mddev->recovery_disabled; 1774 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 1775 md_done_sync(mddev, r1_bio->sectors, 0); 1776 put_buf(r1_bio); 1777 return 0; 1778 } 1779 /* Try next page */ 1780 sectors -= s; 1781 sect += s; 1782 idx++; 1783 continue; 1784 } 1785 1786 start = d; 1787 /* write it back and re-read */ 1788 while (d != r1_bio->read_disk) { 1789 if (d == 0) 1790 d = conf->raid_disks * 2; 1791 d--; 1792 if (r1_bio->bios[d]->bi_end_io != end_sync_read) 1793 continue; 1794 rdev = conf->mirrors[d].rdev; 1795 if (r1_sync_page_io(rdev, sect, s, 1796 bio->bi_io_vec[idx].bv_page, 1797 WRITE) == 0) { 1798 r1_bio->bios[d]->bi_end_io = NULL; 1799 rdev_dec_pending(rdev, mddev); 1800 } 1801 } 1802 d = start; 1803 while (d != r1_bio->read_disk) { 1804 if (d == 0) 1805 d = conf->raid_disks * 2; 1806 d--; 1807 if (r1_bio->bios[d]->bi_end_io != end_sync_read) 1808 continue; 1809 rdev = conf->mirrors[d].rdev; 1810 if (r1_sync_page_io(rdev, sect, s, 1811 bio->bi_io_vec[idx].bv_page, 1812 READ) != 0) 1813 atomic_add(s, &rdev->corrected_errors); 1814 } 1815 sectors -= s; 1816 sect += s; 1817 idx ++; 1818 } 1819 set_bit(R1BIO_Uptodate, &r1_bio->state); 1820 set_bit(BIO_UPTODATE, &bio->bi_flags); 1821 return 1; 1822 } 1823 1824 static int process_checks(struct r1bio *r1_bio) 1825 { 1826 /* We have read all readable devices. If we haven't 1827 * got the block, then there is no hope left. 1828 * If we have, then we want to do a comparison 1829 * and skip the write if everything is the same. 1830 * If any blocks failed to read, then we need to 1831 * attempt an over-write 1832 */ 1833 struct mddev *mddev = r1_bio->mddev; 1834 struct r1conf *conf = mddev->private; 1835 int primary; 1836 int i; 1837 int vcnt; 1838 1839 for (primary = 0; primary < conf->raid_disks * 2; primary++) 1840 if (r1_bio->bios[primary]->bi_end_io == end_sync_read && 1841 test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) { 1842 r1_bio->bios[primary]->bi_end_io = NULL; 1843 rdev_dec_pending(conf->mirrors[primary].rdev, mddev); 1844 break; 1845 } 1846 r1_bio->read_disk = primary; 1847 vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9); 1848 for (i = 0; i < conf->raid_disks * 2; i++) { 1849 int j; 1850 struct bio *pbio = r1_bio->bios[primary]; 1851 struct bio *sbio = r1_bio->bios[i]; 1852 int size; 1853 1854 if (r1_bio->bios[i]->bi_end_io != end_sync_read) 1855 continue; 1856 1857 if (test_bit(BIO_UPTODATE, &sbio->bi_flags)) { 1858 for (j = vcnt; j-- ; ) { 1859 struct page *p, *s; 1860 p = pbio->bi_io_vec[j].bv_page; 1861 s = sbio->bi_io_vec[j].bv_page; 1862 if (memcmp(page_address(p), 1863 page_address(s), 1864 sbio->bi_io_vec[j].bv_len)) 1865 break; 1866 } 1867 } else 1868 j = 0; 1869 if (j >= 0) 1870 mddev->resync_mismatches += r1_bio->sectors; 1871 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery) 1872 && test_bit(BIO_UPTODATE, &sbio->bi_flags))) { 1873 /* No need to write to this device. */ 1874 sbio->bi_end_io = NULL; 1875 rdev_dec_pending(conf->mirrors[i].rdev, mddev); 1876 continue; 1877 } 1878 /* fixup the bio for reuse */ 1879 sbio->bi_vcnt = vcnt; 1880 sbio->bi_size = r1_bio->sectors << 9; 1881 sbio->bi_idx = 0; 1882 sbio->bi_phys_segments = 0; 1883 sbio->bi_flags &= ~(BIO_POOL_MASK - 1); 1884 sbio->bi_flags |= 1 << BIO_UPTODATE; 1885 sbio->bi_next = NULL; 1886 sbio->bi_sector = r1_bio->sector + 1887 conf->mirrors[i].rdev->data_offset; 1888 sbio->bi_bdev = conf->mirrors[i].rdev->bdev; 1889 size = sbio->bi_size; 1890 for (j = 0; j < vcnt ; j++) { 1891 struct bio_vec *bi; 1892 bi = &sbio->bi_io_vec[j]; 1893 bi->bv_offset = 0; 1894 if (size > PAGE_SIZE) 1895 bi->bv_len = PAGE_SIZE; 1896 else 1897 bi->bv_len = size; 1898 size -= PAGE_SIZE; 1899 memcpy(page_address(bi->bv_page), 1900 page_address(pbio->bi_io_vec[j].bv_page), 1901 PAGE_SIZE); 1902 } 1903 } 1904 return 0; 1905 } 1906 1907 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio) 1908 { 1909 struct r1conf *conf = mddev->private; 1910 int i; 1911 int disks = conf->raid_disks * 2; 1912 struct bio *bio, *wbio; 1913 1914 bio = r1_bio->bios[r1_bio->read_disk]; 1915 1916 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) 1917 /* ouch - failed to read all of that. */ 1918 if (!fix_sync_read_error(r1_bio)) 1919 return; 1920 1921 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 1922 if (process_checks(r1_bio) < 0) 1923 return; 1924 /* 1925 * schedule writes 1926 */ 1927 atomic_set(&r1_bio->remaining, 1); 1928 for (i = 0; i < disks ; i++) { 1929 wbio = r1_bio->bios[i]; 1930 if (wbio->bi_end_io == NULL || 1931 (wbio->bi_end_io == end_sync_read && 1932 (i == r1_bio->read_disk || 1933 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery)))) 1934 continue; 1935 1936 wbio->bi_rw = WRITE; 1937 wbio->bi_end_io = end_sync_write; 1938 atomic_inc(&r1_bio->remaining); 1939 md_sync_acct(conf->mirrors[i].rdev->bdev, wbio->bi_size >> 9); 1940 1941 generic_make_request(wbio); 1942 } 1943 1944 if (atomic_dec_and_test(&r1_bio->remaining)) { 1945 /* if we're here, all write(s) have completed, so clean up */ 1946 int s = r1_bio->sectors; 1947 if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 1948 test_bit(R1BIO_WriteError, &r1_bio->state)) 1949 reschedule_retry(r1_bio); 1950 else { 1951 put_buf(r1_bio); 1952 md_done_sync(mddev, s, 1); 1953 } 1954 } 1955 } 1956 1957 /* 1958 * This is a kernel thread which: 1959 * 1960 * 1. Retries failed read operations on working mirrors. 1961 * 2. Updates the raid superblock when problems encounter. 1962 * 3. Performs writes following reads for array synchronising. 1963 */ 1964 1965 static void fix_read_error(struct r1conf *conf, int read_disk, 1966 sector_t sect, int sectors) 1967 { 1968 struct mddev *mddev = conf->mddev; 1969 while(sectors) { 1970 int s = sectors; 1971 int d = read_disk; 1972 int success = 0; 1973 int start; 1974 struct md_rdev *rdev; 1975 1976 if (s > (PAGE_SIZE>>9)) 1977 s = PAGE_SIZE >> 9; 1978 1979 do { 1980 /* Note: no rcu protection needed here 1981 * as this is synchronous in the raid1d thread 1982 * which is the thread that might remove 1983 * a device. If raid1d ever becomes multi-threaded.... 1984 */ 1985 sector_t first_bad; 1986 int bad_sectors; 1987 1988 rdev = conf->mirrors[d].rdev; 1989 if (rdev && 1990 (test_bit(In_sync, &rdev->flags) || 1991 (!test_bit(Faulty, &rdev->flags) && 1992 rdev->recovery_offset >= sect + s)) && 1993 is_badblock(rdev, sect, s, 1994 &first_bad, &bad_sectors) == 0 && 1995 sync_page_io(rdev, sect, s<<9, 1996 conf->tmppage, READ, false)) 1997 success = 1; 1998 else { 1999 d++; 2000 if (d == conf->raid_disks * 2) 2001 d = 0; 2002 } 2003 } while (!success && d != read_disk); 2004 2005 if (!success) { 2006 /* Cannot read from anywhere - mark it bad */ 2007 struct md_rdev *rdev = conf->mirrors[read_disk].rdev; 2008 if (!rdev_set_badblocks(rdev, sect, s, 0)) 2009 md_error(mddev, rdev); 2010 break; 2011 } 2012 /* write it back and re-read */ 2013 start = d; 2014 while (d != read_disk) { 2015 if (d==0) 2016 d = conf->raid_disks * 2; 2017 d--; 2018 rdev = conf->mirrors[d].rdev; 2019 if (rdev && 2020 test_bit(In_sync, &rdev->flags)) 2021 r1_sync_page_io(rdev, sect, s, 2022 conf->tmppage, WRITE); 2023 } 2024 d = start; 2025 while (d != read_disk) { 2026 char b[BDEVNAME_SIZE]; 2027 if (d==0) 2028 d = conf->raid_disks * 2; 2029 d--; 2030 rdev = conf->mirrors[d].rdev; 2031 if (rdev && 2032 test_bit(In_sync, &rdev->flags)) { 2033 if (r1_sync_page_io(rdev, sect, s, 2034 conf->tmppage, READ)) { 2035 atomic_add(s, &rdev->corrected_errors); 2036 printk(KERN_INFO 2037 "md/raid1:%s: read error corrected " 2038 "(%d sectors at %llu on %s)\n", 2039 mdname(mddev), s, 2040 (unsigned long long)(sect + 2041 rdev->data_offset), 2042 bdevname(rdev->bdev, b)); 2043 } 2044 } 2045 } 2046 sectors -= s; 2047 sect += s; 2048 } 2049 } 2050 2051 static void bi_complete(struct bio *bio, int error) 2052 { 2053 complete((struct completion *)bio->bi_private); 2054 } 2055 2056 static int submit_bio_wait(int rw, struct bio *bio) 2057 { 2058 struct completion event; 2059 rw |= REQ_SYNC; 2060 2061 init_completion(&event); 2062 bio->bi_private = &event; 2063 bio->bi_end_io = bi_complete; 2064 submit_bio(rw, bio); 2065 wait_for_completion(&event); 2066 2067 return test_bit(BIO_UPTODATE, &bio->bi_flags); 2068 } 2069 2070 static int narrow_write_error(struct r1bio *r1_bio, int i) 2071 { 2072 struct mddev *mddev = r1_bio->mddev; 2073 struct r1conf *conf = mddev->private; 2074 struct md_rdev *rdev = conf->mirrors[i].rdev; 2075 int vcnt, idx; 2076 struct bio_vec *vec; 2077 2078 /* bio has the data to be written to device 'i' where 2079 * we just recently had a write error. 2080 * We repeatedly clone the bio and trim down to one block, 2081 * then try the write. Where the write fails we record 2082 * a bad block. 2083 * It is conceivable that the bio doesn't exactly align with 2084 * blocks. We must handle this somehow. 2085 * 2086 * We currently own a reference on the rdev. 2087 */ 2088 2089 int block_sectors; 2090 sector_t sector; 2091 int sectors; 2092 int sect_to_write = r1_bio->sectors; 2093 int ok = 1; 2094 2095 if (rdev->badblocks.shift < 0) 2096 return 0; 2097 2098 block_sectors = 1 << rdev->badblocks.shift; 2099 sector = r1_bio->sector; 2100 sectors = ((sector + block_sectors) 2101 & ~(sector_t)(block_sectors - 1)) 2102 - sector; 2103 2104 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) { 2105 vcnt = r1_bio->behind_page_count; 2106 vec = r1_bio->behind_bvecs; 2107 idx = 0; 2108 while (vec[idx].bv_page == NULL) 2109 idx++; 2110 } else { 2111 vcnt = r1_bio->master_bio->bi_vcnt; 2112 vec = r1_bio->master_bio->bi_io_vec; 2113 idx = r1_bio->master_bio->bi_idx; 2114 } 2115 while (sect_to_write) { 2116 struct bio *wbio; 2117 if (sectors > sect_to_write) 2118 sectors = sect_to_write; 2119 /* Write at 'sector' for 'sectors'*/ 2120 2121 wbio = bio_alloc_mddev(GFP_NOIO, vcnt, mddev); 2122 memcpy(wbio->bi_io_vec, vec, vcnt * sizeof(struct bio_vec)); 2123 wbio->bi_sector = r1_bio->sector; 2124 wbio->bi_rw = WRITE; 2125 wbio->bi_vcnt = vcnt; 2126 wbio->bi_size = r1_bio->sectors << 9; 2127 wbio->bi_idx = idx; 2128 2129 md_trim_bio(wbio, sector - r1_bio->sector, sectors); 2130 wbio->bi_sector += rdev->data_offset; 2131 wbio->bi_bdev = rdev->bdev; 2132 if (submit_bio_wait(WRITE, wbio) == 0) 2133 /* failure! */ 2134 ok = rdev_set_badblocks(rdev, sector, 2135 sectors, 0) 2136 && ok; 2137 2138 bio_put(wbio); 2139 sect_to_write -= sectors; 2140 sector += sectors; 2141 sectors = block_sectors; 2142 } 2143 return ok; 2144 } 2145 2146 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio) 2147 { 2148 int m; 2149 int s = r1_bio->sectors; 2150 for (m = 0; m < conf->raid_disks * 2 ; m++) { 2151 struct md_rdev *rdev = conf->mirrors[m].rdev; 2152 struct bio *bio = r1_bio->bios[m]; 2153 if (bio->bi_end_io == NULL) 2154 continue; 2155 if (test_bit(BIO_UPTODATE, &bio->bi_flags) && 2156 test_bit(R1BIO_MadeGood, &r1_bio->state)) { 2157 rdev_clear_badblocks(rdev, r1_bio->sector, s, 0); 2158 } 2159 if (!test_bit(BIO_UPTODATE, &bio->bi_flags) && 2160 test_bit(R1BIO_WriteError, &r1_bio->state)) { 2161 if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0)) 2162 md_error(conf->mddev, rdev); 2163 } 2164 } 2165 put_buf(r1_bio); 2166 md_done_sync(conf->mddev, s, 1); 2167 } 2168 2169 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio) 2170 { 2171 int m; 2172 for (m = 0; m < conf->raid_disks * 2 ; m++) 2173 if (r1_bio->bios[m] == IO_MADE_GOOD) { 2174 struct md_rdev *rdev = conf->mirrors[m].rdev; 2175 rdev_clear_badblocks(rdev, 2176 r1_bio->sector, 2177 r1_bio->sectors, 0); 2178 rdev_dec_pending(rdev, conf->mddev); 2179 } else if (r1_bio->bios[m] != NULL) { 2180 /* This drive got a write error. We need to 2181 * narrow down and record precise write 2182 * errors. 2183 */ 2184 if (!narrow_write_error(r1_bio, m)) { 2185 md_error(conf->mddev, 2186 conf->mirrors[m].rdev); 2187 /* an I/O failed, we can't clear the bitmap */ 2188 set_bit(R1BIO_Degraded, &r1_bio->state); 2189 } 2190 rdev_dec_pending(conf->mirrors[m].rdev, 2191 conf->mddev); 2192 } 2193 if (test_bit(R1BIO_WriteError, &r1_bio->state)) 2194 close_write(r1_bio); 2195 raid_end_bio_io(r1_bio); 2196 } 2197 2198 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio) 2199 { 2200 int disk; 2201 int max_sectors; 2202 struct mddev *mddev = conf->mddev; 2203 struct bio *bio; 2204 char b[BDEVNAME_SIZE]; 2205 struct md_rdev *rdev; 2206 2207 clear_bit(R1BIO_ReadError, &r1_bio->state); 2208 /* we got a read error. Maybe the drive is bad. Maybe just 2209 * the block and we can fix it. 2210 * We freeze all other IO, and try reading the block from 2211 * other devices. When we find one, we re-write 2212 * and check it that fixes the read error. 2213 * This is all done synchronously while the array is 2214 * frozen 2215 */ 2216 if (mddev->ro == 0) { 2217 freeze_array(conf); 2218 fix_read_error(conf, r1_bio->read_disk, 2219 r1_bio->sector, r1_bio->sectors); 2220 unfreeze_array(conf); 2221 } else 2222 md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev); 2223 2224 bio = r1_bio->bios[r1_bio->read_disk]; 2225 bdevname(bio->bi_bdev, b); 2226 read_more: 2227 disk = read_balance(conf, r1_bio, &max_sectors); 2228 if (disk == -1) { 2229 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O" 2230 " read error for block %llu\n", 2231 mdname(mddev), b, (unsigned long long)r1_bio->sector); 2232 raid_end_bio_io(r1_bio); 2233 } else { 2234 const unsigned long do_sync 2235 = r1_bio->master_bio->bi_rw & REQ_SYNC; 2236 if (bio) { 2237 r1_bio->bios[r1_bio->read_disk] = 2238 mddev->ro ? IO_BLOCKED : NULL; 2239 bio_put(bio); 2240 } 2241 r1_bio->read_disk = disk; 2242 bio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev); 2243 md_trim_bio(bio, r1_bio->sector - bio->bi_sector, max_sectors); 2244 r1_bio->bios[r1_bio->read_disk] = bio; 2245 rdev = conf->mirrors[disk].rdev; 2246 printk_ratelimited(KERN_ERR 2247 "md/raid1:%s: redirecting sector %llu" 2248 " to other mirror: %s\n", 2249 mdname(mddev), 2250 (unsigned long long)r1_bio->sector, 2251 bdevname(rdev->bdev, b)); 2252 bio->bi_sector = r1_bio->sector + rdev->data_offset; 2253 bio->bi_bdev = rdev->bdev; 2254 bio->bi_end_io = raid1_end_read_request; 2255 bio->bi_rw = READ | do_sync; 2256 bio->bi_private = r1_bio; 2257 if (max_sectors < r1_bio->sectors) { 2258 /* Drat - have to split this up more */ 2259 struct bio *mbio = r1_bio->master_bio; 2260 int sectors_handled = (r1_bio->sector + max_sectors 2261 - mbio->bi_sector); 2262 r1_bio->sectors = max_sectors; 2263 spin_lock_irq(&conf->device_lock); 2264 if (mbio->bi_phys_segments == 0) 2265 mbio->bi_phys_segments = 2; 2266 else 2267 mbio->bi_phys_segments++; 2268 spin_unlock_irq(&conf->device_lock); 2269 generic_make_request(bio); 2270 bio = NULL; 2271 2272 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO); 2273 2274 r1_bio->master_bio = mbio; 2275 r1_bio->sectors = (mbio->bi_size >> 9) 2276 - sectors_handled; 2277 r1_bio->state = 0; 2278 set_bit(R1BIO_ReadError, &r1_bio->state); 2279 r1_bio->mddev = mddev; 2280 r1_bio->sector = mbio->bi_sector + sectors_handled; 2281 2282 goto read_more; 2283 } else 2284 generic_make_request(bio); 2285 } 2286 } 2287 2288 static void raid1d(struct mddev *mddev) 2289 { 2290 struct r1bio *r1_bio; 2291 unsigned long flags; 2292 struct r1conf *conf = mddev->private; 2293 struct list_head *head = &conf->retry_list; 2294 struct blk_plug plug; 2295 2296 md_check_recovery(mddev); 2297 2298 blk_start_plug(&plug); 2299 for (;;) { 2300 2301 flush_pending_writes(conf); 2302 2303 spin_lock_irqsave(&conf->device_lock, flags); 2304 if (list_empty(head)) { 2305 spin_unlock_irqrestore(&conf->device_lock, flags); 2306 break; 2307 } 2308 r1_bio = list_entry(head->prev, struct r1bio, retry_list); 2309 list_del(head->prev); 2310 conf->nr_queued--; 2311 spin_unlock_irqrestore(&conf->device_lock, flags); 2312 2313 mddev = r1_bio->mddev; 2314 conf = mddev->private; 2315 if (test_bit(R1BIO_IsSync, &r1_bio->state)) { 2316 if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 2317 test_bit(R1BIO_WriteError, &r1_bio->state)) 2318 handle_sync_write_finished(conf, r1_bio); 2319 else 2320 sync_request_write(mddev, r1_bio); 2321 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 2322 test_bit(R1BIO_WriteError, &r1_bio->state)) 2323 handle_write_finished(conf, r1_bio); 2324 else if (test_bit(R1BIO_ReadError, &r1_bio->state)) 2325 handle_read_error(conf, r1_bio); 2326 else 2327 /* just a partial read to be scheduled from separate 2328 * context 2329 */ 2330 generic_make_request(r1_bio->bios[r1_bio->read_disk]); 2331 2332 cond_resched(); 2333 if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) 2334 md_check_recovery(mddev); 2335 } 2336 blk_finish_plug(&plug); 2337 } 2338 2339 2340 static int init_resync(struct r1conf *conf) 2341 { 2342 int buffs; 2343 2344 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE; 2345 BUG_ON(conf->r1buf_pool); 2346 conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free, 2347 conf->poolinfo); 2348 if (!conf->r1buf_pool) 2349 return -ENOMEM; 2350 conf->next_resync = 0; 2351 return 0; 2352 } 2353 2354 /* 2355 * perform a "sync" on one "block" 2356 * 2357 * We need to make sure that no normal I/O request - particularly write 2358 * requests - conflict with active sync requests. 2359 * 2360 * This is achieved by tracking pending requests and a 'barrier' concept 2361 * that can be installed to exclude normal IO requests. 2362 */ 2363 2364 static sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster) 2365 { 2366 struct r1conf *conf = mddev->private; 2367 struct r1bio *r1_bio; 2368 struct bio *bio; 2369 sector_t max_sector, nr_sectors; 2370 int disk = -1; 2371 int i; 2372 int wonly = -1; 2373 int write_targets = 0, read_targets = 0; 2374 sector_t sync_blocks; 2375 int still_degraded = 0; 2376 int good_sectors = RESYNC_SECTORS; 2377 int min_bad = 0; /* number of sectors that are bad in all devices */ 2378 2379 if (!conf->r1buf_pool) 2380 if (init_resync(conf)) 2381 return 0; 2382 2383 max_sector = mddev->dev_sectors; 2384 if (sector_nr >= max_sector) { 2385 /* If we aborted, we need to abort the 2386 * sync on the 'current' bitmap chunk (there will 2387 * only be one in raid1 resync. 2388 * We can find the current addess in mddev->curr_resync 2389 */ 2390 if (mddev->curr_resync < max_sector) /* aborted */ 2391 bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 2392 &sync_blocks, 1); 2393 else /* completed sync */ 2394 conf->fullsync = 0; 2395 2396 bitmap_close_sync(mddev->bitmap); 2397 close_sync(conf); 2398 return 0; 2399 } 2400 2401 if (mddev->bitmap == NULL && 2402 mddev->recovery_cp == MaxSector && 2403 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 2404 conf->fullsync == 0) { 2405 *skipped = 1; 2406 return max_sector - sector_nr; 2407 } 2408 /* before building a request, check if we can skip these blocks.. 2409 * This call the bitmap_start_sync doesn't actually record anything 2410 */ 2411 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) && 2412 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 2413 /* We can skip this block, and probably several more */ 2414 *skipped = 1; 2415 return sync_blocks; 2416 } 2417 /* 2418 * If there is non-resync activity waiting for a turn, 2419 * and resync is going fast enough, 2420 * then let it though before starting on this new sync request. 2421 */ 2422 if (!go_faster && conf->nr_waiting) 2423 msleep_interruptible(1000); 2424 2425 bitmap_cond_end_sync(mddev->bitmap, sector_nr); 2426 r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO); 2427 raise_barrier(conf); 2428 2429 conf->next_resync = sector_nr; 2430 2431 rcu_read_lock(); 2432 /* 2433 * If we get a correctably read error during resync or recovery, 2434 * we might want to read from a different device. So we 2435 * flag all drives that could conceivably be read from for READ, 2436 * and any others (which will be non-In_sync devices) for WRITE. 2437 * If a read fails, we try reading from something else for which READ 2438 * is OK. 2439 */ 2440 2441 r1_bio->mddev = mddev; 2442 r1_bio->sector = sector_nr; 2443 r1_bio->state = 0; 2444 set_bit(R1BIO_IsSync, &r1_bio->state); 2445 2446 for (i = 0; i < conf->raid_disks * 2; i++) { 2447 struct md_rdev *rdev; 2448 bio = r1_bio->bios[i]; 2449 2450 /* take from bio_init */ 2451 bio->bi_next = NULL; 2452 bio->bi_flags &= ~(BIO_POOL_MASK-1); 2453 bio->bi_flags |= 1 << BIO_UPTODATE; 2454 bio->bi_rw = READ; 2455 bio->bi_vcnt = 0; 2456 bio->bi_idx = 0; 2457 bio->bi_phys_segments = 0; 2458 bio->bi_size = 0; 2459 bio->bi_end_io = NULL; 2460 bio->bi_private = NULL; 2461 2462 rdev = rcu_dereference(conf->mirrors[i].rdev); 2463 if (rdev == NULL || 2464 test_bit(Faulty, &rdev->flags)) { 2465 if (i < conf->raid_disks) 2466 still_degraded = 1; 2467 } else if (!test_bit(In_sync, &rdev->flags)) { 2468 bio->bi_rw = WRITE; 2469 bio->bi_end_io = end_sync_write; 2470 write_targets ++; 2471 } else { 2472 /* may need to read from here */ 2473 sector_t first_bad = MaxSector; 2474 int bad_sectors; 2475 2476 if (is_badblock(rdev, sector_nr, good_sectors, 2477 &first_bad, &bad_sectors)) { 2478 if (first_bad > sector_nr) 2479 good_sectors = first_bad - sector_nr; 2480 else { 2481 bad_sectors -= (sector_nr - first_bad); 2482 if (min_bad == 0 || 2483 min_bad > bad_sectors) 2484 min_bad = bad_sectors; 2485 } 2486 } 2487 if (sector_nr < first_bad) { 2488 if (test_bit(WriteMostly, &rdev->flags)) { 2489 if (wonly < 0) 2490 wonly = i; 2491 } else { 2492 if (disk < 0) 2493 disk = i; 2494 } 2495 bio->bi_rw = READ; 2496 bio->bi_end_io = end_sync_read; 2497 read_targets++; 2498 } else if (!test_bit(WriteErrorSeen, &rdev->flags) && 2499 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && 2500 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) { 2501 /* 2502 * The device is suitable for reading (InSync), 2503 * but has bad block(s) here. Let's try to correct them, 2504 * if we are doing resync or repair. Otherwise, leave 2505 * this device alone for this sync request. 2506 */ 2507 bio->bi_rw = WRITE; 2508 bio->bi_end_io = end_sync_write; 2509 write_targets++; 2510 } 2511 } 2512 if (bio->bi_end_io) { 2513 atomic_inc(&rdev->nr_pending); 2514 bio->bi_sector = sector_nr + rdev->data_offset; 2515 bio->bi_bdev = rdev->bdev; 2516 bio->bi_private = r1_bio; 2517 } 2518 } 2519 rcu_read_unlock(); 2520 if (disk < 0) 2521 disk = wonly; 2522 r1_bio->read_disk = disk; 2523 2524 if (read_targets == 0 && min_bad > 0) { 2525 /* These sectors are bad on all InSync devices, so we 2526 * need to mark them bad on all write targets 2527 */ 2528 int ok = 1; 2529 for (i = 0 ; i < conf->raid_disks * 2 ; i++) 2530 if (r1_bio->bios[i]->bi_end_io == end_sync_write) { 2531 struct md_rdev *rdev = conf->mirrors[i].rdev; 2532 ok = rdev_set_badblocks(rdev, sector_nr, 2533 min_bad, 0 2534 ) && ok; 2535 } 2536 set_bit(MD_CHANGE_DEVS, &mddev->flags); 2537 *skipped = 1; 2538 put_buf(r1_bio); 2539 2540 if (!ok) { 2541 /* Cannot record the badblocks, so need to 2542 * abort the resync. 2543 * If there are multiple read targets, could just 2544 * fail the really bad ones ??? 2545 */ 2546 conf->recovery_disabled = mddev->recovery_disabled; 2547 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 2548 return 0; 2549 } else 2550 return min_bad; 2551 2552 } 2553 if (min_bad > 0 && min_bad < good_sectors) { 2554 /* only resync enough to reach the next bad->good 2555 * transition */ 2556 good_sectors = min_bad; 2557 } 2558 2559 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0) 2560 /* extra read targets are also write targets */ 2561 write_targets += read_targets-1; 2562 2563 if (write_targets == 0 || read_targets == 0) { 2564 /* There is nowhere to write, so all non-sync 2565 * drives must be failed - so we are finished 2566 */ 2567 sector_t rv; 2568 if (min_bad > 0) 2569 max_sector = sector_nr + min_bad; 2570 rv = max_sector - sector_nr; 2571 *skipped = 1; 2572 put_buf(r1_bio); 2573 return rv; 2574 } 2575 2576 if (max_sector > mddev->resync_max) 2577 max_sector = mddev->resync_max; /* Don't do IO beyond here */ 2578 if (max_sector > sector_nr + good_sectors) 2579 max_sector = sector_nr + good_sectors; 2580 nr_sectors = 0; 2581 sync_blocks = 0; 2582 do { 2583 struct page *page; 2584 int len = PAGE_SIZE; 2585 if (sector_nr + (len>>9) > max_sector) 2586 len = (max_sector - sector_nr) << 9; 2587 if (len == 0) 2588 break; 2589 if (sync_blocks == 0) { 2590 if (!bitmap_start_sync(mddev->bitmap, sector_nr, 2591 &sync_blocks, still_degraded) && 2592 !conf->fullsync && 2593 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 2594 break; 2595 BUG_ON(sync_blocks < (PAGE_SIZE>>9)); 2596 if ((len >> 9) > sync_blocks) 2597 len = sync_blocks<<9; 2598 } 2599 2600 for (i = 0 ; i < conf->raid_disks * 2; i++) { 2601 bio = r1_bio->bios[i]; 2602 if (bio->bi_end_io) { 2603 page = bio->bi_io_vec[bio->bi_vcnt].bv_page; 2604 if (bio_add_page(bio, page, len, 0) == 0) { 2605 /* stop here */ 2606 bio->bi_io_vec[bio->bi_vcnt].bv_page = page; 2607 while (i > 0) { 2608 i--; 2609 bio = r1_bio->bios[i]; 2610 if (bio->bi_end_io==NULL) 2611 continue; 2612 /* remove last page from this bio */ 2613 bio->bi_vcnt--; 2614 bio->bi_size -= len; 2615 bio->bi_flags &= ~(1<< BIO_SEG_VALID); 2616 } 2617 goto bio_full; 2618 } 2619 } 2620 } 2621 nr_sectors += len>>9; 2622 sector_nr += len>>9; 2623 sync_blocks -= (len>>9); 2624 } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES); 2625 bio_full: 2626 r1_bio->sectors = nr_sectors; 2627 2628 /* For a user-requested sync, we read all readable devices and do a 2629 * compare 2630 */ 2631 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 2632 atomic_set(&r1_bio->remaining, read_targets); 2633 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) { 2634 bio = r1_bio->bios[i]; 2635 if (bio->bi_end_io == end_sync_read) { 2636 read_targets--; 2637 md_sync_acct(bio->bi_bdev, nr_sectors); 2638 generic_make_request(bio); 2639 } 2640 } 2641 } else { 2642 atomic_set(&r1_bio->remaining, 1); 2643 bio = r1_bio->bios[r1_bio->read_disk]; 2644 md_sync_acct(bio->bi_bdev, nr_sectors); 2645 generic_make_request(bio); 2646 2647 } 2648 return nr_sectors; 2649 } 2650 2651 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks) 2652 { 2653 if (sectors) 2654 return sectors; 2655 2656 return mddev->dev_sectors; 2657 } 2658 2659 static struct r1conf *setup_conf(struct mddev *mddev) 2660 { 2661 struct r1conf *conf; 2662 int i; 2663 struct raid1_info *disk; 2664 struct md_rdev *rdev; 2665 int err = -ENOMEM; 2666 2667 conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL); 2668 if (!conf) 2669 goto abort; 2670 2671 conf->mirrors = kzalloc(sizeof(struct raid1_info) 2672 * mddev->raid_disks * 2, 2673 GFP_KERNEL); 2674 if (!conf->mirrors) 2675 goto abort; 2676 2677 conf->tmppage = alloc_page(GFP_KERNEL); 2678 if (!conf->tmppage) 2679 goto abort; 2680 2681 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL); 2682 if (!conf->poolinfo) 2683 goto abort; 2684 conf->poolinfo->raid_disks = mddev->raid_disks * 2; 2685 conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc, 2686 r1bio_pool_free, 2687 conf->poolinfo); 2688 if (!conf->r1bio_pool) 2689 goto abort; 2690 2691 conf->poolinfo->mddev = mddev; 2692 2693 err = -EINVAL; 2694 spin_lock_init(&conf->device_lock); 2695 rdev_for_each(rdev, mddev) { 2696 struct request_queue *q; 2697 int disk_idx = rdev->raid_disk; 2698 if (disk_idx >= mddev->raid_disks 2699 || disk_idx < 0) 2700 continue; 2701 if (test_bit(Replacement, &rdev->flags)) 2702 disk = conf->mirrors + conf->raid_disks + disk_idx; 2703 else 2704 disk = conf->mirrors + disk_idx; 2705 2706 if (disk->rdev) 2707 goto abort; 2708 disk->rdev = rdev; 2709 q = bdev_get_queue(rdev->bdev); 2710 if (q->merge_bvec_fn) 2711 mddev->merge_check_needed = 1; 2712 2713 disk->head_position = 0; 2714 disk->seq_start = MaxSector; 2715 } 2716 conf->raid_disks = mddev->raid_disks; 2717 conf->mddev = mddev; 2718 INIT_LIST_HEAD(&conf->retry_list); 2719 2720 spin_lock_init(&conf->resync_lock); 2721 init_waitqueue_head(&conf->wait_barrier); 2722 2723 bio_list_init(&conf->pending_bio_list); 2724 conf->pending_count = 0; 2725 conf->recovery_disabled = mddev->recovery_disabled - 1; 2726 2727 err = -EIO; 2728 for (i = 0; i < conf->raid_disks * 2; i++) { 2729 2730 disk = conf->mirrors + i; 2731 2732 if (i < conf->raid_disks && 2733 disk[conf->raid_disks].rdev) { 2734 /* This slot has a replacement. */ 2735 if (!disk->rdev) { 2736 /* No original, just make the replacement 2737 * a recovering spare 2738 */ 2739 disk->rdev = 2740 disk[conf->raid_disks].rdev; 2741 disk[conf->raid_disks].rdev = NULL; 2742 } else if (!test_bit(In_sync, &disk->rdev->flags)) 2743 /* Original is not in_sync - bad */ 2744 goto abort; 2745 } 2746 2747 if (!disk->rdev || 2748 !test_bit(In_sync, &disk->rdev->flags)) { 2749 disk->head_position = 0; 2750 if (disk->rdev && 2751 (disk->rdev->saved_raid_disk < 0)) 2752 conf->fullsync = 1; 2753 } 2754 } 2755 2756 err = -ENOMEM; 2757 conf->thread = md_register_thread(raid1d, mddev, "raid1"); 2758 if (!conf->thread) { 2759 printk(KERN_ERR 2760 "md/raid1:%s: couldn't allocate thread\n", 2761 mdname(mddev)); 2762 goto abort; 2763 } 2764 2765 return conf; 2766 2767 abort: 2768 if (conf) { 2769 if (conf->r1bio_pool) 2770 mempool_destroy(conf->r1bio_pool); 2771 kfree(conf->mirrors); 2772 safe_put_page(conf->tmppage); 2773 kfree(conf->poolinfo); 2774 kfree(conf); 2775 } 2776 return ERR_PTR(err); 2777 } 2778 2779 static int stop(struct mddev *mddev); 2780 static int run(struct mddev *mddev) 2781 { 2782 struct r1conf *conf; 2783 int i; 2784 struct md_rdev *rdev; 2785 int ret; 2786 2787 if (mddev->level != 1) { 2788 printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n", 2789 mdname(mddev), mddev->level); 2790 return -EIO; 2791 } 2792 if (mddev->reshape_position != MaxSector) { 2793 printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n", 2794 mdname(mddev)); 2795 return -EIO; 2796 } 2797 /* 2798 * copy the already verified devices into our private RAID1 2799 * bookkeeping area. [whatever we allocate in run(), 2800 * should be freed in stop()] 2801 */ 2802 if (mddev->private == NULL) 2803 conf = setup_conf(mddev); 2804 else 2805 conf = mddev->private; 2806 2807 if (IS_ERR(conf)) 2808 return PTR_ERR(conf); 2809 2810 rdev_for_each(rdev, mddev) { 2811 if (!mddev->gendisk) 2812 continue; 2813 disk_stack_limits(mddev->gendisk, rdev->bdev, 2814 rdev->data_offset << 9); 2815 } 2816 2817 mddev->degraded = 0; 2818 for (i=0; i < conf->raid_disks; i++) 2819 if (conf->mirrors[i].rdev == NULL || 2820 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) || 2821 test_bit(Faulty, &conf->mirrors[i].rdev->flags)) 2822 mddev->degraded++; 2823 2824 if (conf->raid_disks - mddev->degraded == 1) 2825 mddev->recovery_cp = MaxSector; 2826 2827 if (mddev->recovery_cp != MaxSector) 2828 printk(KERN_NOTICE "md/raid1:%s: not clean" 2829 " -- starting background reconstruction\n", 2830 mdname(mddev)); 2831 printk(KERN_INFO 2832 "md/raid1:%s: active with %d out of %d mirrors\n", 2833 mdname(mddev), mddev->raid_disks - mddev->degraded, 2834 mddev->raid_disks); 2835 2836 /* 2837 * Ok, everything is just fine now 2838 */ 2839 mddev->thread = conf->thread; 2840 conf->thread = NULL; 2841 mddev->private = conf; 2842 2843 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0)); 2844 2845 if (mddev->queue) { 2846 mddev->queue->backing_dev_info.congested_fn = raid1_congested; 2847 mddev->queue->backing_dev_info.congested_data = mddev; 2848 blk_queue_merge_bvec(mddev->queue, raid1_mergeable_bvec); 2849 } 2850 2851 ret = md_integrity_register(mddev); 2852 if (ret) 2853 stop(mddev); 2854 return ret; 2855 } 2856 2857 static int stop(struct mddev *mddev) 2858 { 2859 struct r1conf *conf = mddev->private; 2860 struct bitmap *bitmap = mddev->bitmap; 2861 2862 /* wait for behind writes to complete */ 2863 if (bitmap && atomic_read(&bitmap->behind_writes) > 0) { 2864 printk(KERN_INFO "md/raid1:%s: behind writes in progress - waiting to stop.\n", 2865 mdname(mddev)); 2866 /* need to kick something here to make sure I/O goes? */ 2867 wait_event(bitmap->behind_wait, 2868 atomic_read(&bitmap->behind_writes) == 0); 2869 } 2870 2871 raise_barrier(conf); 2872 lower_barrier(conf); 2873 2874 md_unregister_thread(&mddev->thread); 2875 if (conf->r1bio_pool) 2876 mempool_destroy(conf->r1bio_pool); 2877 kfree(conf->mirrors); 2878 kfree(conf->poolinfo); 2879 kfree(conf); 2880 mddev->private = NULL; 2881 return 0; 2882 } 2883 2884 static int raid1_resize(struct mddev *mddev, sector_t sectors) 2885 { 2886 /* no resync is happening, and there is enough space 2887 * on all devices, so we can resize. 2888 * We need to make sure resync covers any new space. 2889 * If the array is shrinking we should possibly wait until 2890 * any io in the removed space completes, but it hardly seems 2891 * worth it. 2892 */ 2893 sector_t newsize = raid1_size(mddev, sectors, 0); 2894 if (mddev->external_size && 2895 mddev->array_sectors > newsize) 2896 return -EINVAL; 2897 if (mddev->bitmap) { 2898 int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0); 2899 if (ret) 2900 return ret; 2901 } 2902 md_set_array_sectors(mddev, newsize); 2903 set_capacity(mddev->gendisk, mddev->array_sectors); 2904 revalidate_disk(mddev->gendisk); 2905 if (sectors > mddev->dev_sectors && 2906 mddev->recovery_cp > mddev->dev_sectors) { 2907 mddev->recovery_cp = mddev->dev_sectors; 2908 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 2909 } 2910 mddev->dev_sectors = sectors; 2911 mddev->resync_max_sectors = sectors; 2912 return 0; 2913 } 2914 2915 static int raid1_reshape(struct mddev *mddev) 2916 { 2917 /* We need to: 2918 * 1/ resize the r1bio_pool 2919 * 2/ resize conf->mirrors 2920 * 2921 * We allocate a new r1bio_pool if we can. 2922 * Then raise a device barrier and wait until all IO stops. 2923 * Then resize conf->mirrors and swap in the new r1bio pool. 2924 * 2925 * At the same time, we "pack" the devices so that all the missing 2926 * devices have the higher raid_disk numbers. 2927 */ 2928 mempool_t *newpool, *oldpool; 2929 struct pool_info *newpoolinfo; 2930 struct raid1_info *newmirrors; 2931 struct r1conf *conf = mddev->private; 2932 int cnt, raid_disks; 2933 unsigned long flags; 2934 int d, d2, err; 2935 2936 /* Cannot change chunk_size, layout, or level */ 2937 if (mddev->chunk_sectors != mddev->new_chunk_sectors || 2938 mddev->layout != mddev->new_layout || 2939 mddev->level != mddev->new_level) { 2940 mddev->new_chunk_sectors = mddev->chunk_sectors; 2941 mddev->new_layout = mddev->layout; 2942 mddev->new_level = mddev->level; 2943 return -EINVAL; 2944 } 2945 2946 err = md_allow_write(mddev); 2947 if (err) 2948 return err; 2949 2950 raid_disks = mddev->raid_disks + mddev->delta_disks; 2951 2952 if (raid_disks < conf->raid_disks) { 2953 cnt=0; 2954 for (d= 0; d < conf->raid_disks; d++) 2955 if (conf->mirrors[d].rdev) 2956 cnt++; 2957 if (cnt > raid_disks) 2958 return -EBUSY; 2959 } 2960 2961 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL); 2962 if (!newpoolinfo) 2963 return -ENOMEM; 2964 newpoolinfo->mddev = mddev; 2965 newpoolinfo->raid_disks = raid_disks * 2; 2966 2967 newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc, 2968 r1bio_pool_free, newpoolinfo); 2969 if (!newpool) { 2970 kfree(newpoolinfo); 2971 return -ENOMEM; 2972 } 2973 newmirrors = kzalloc(sizeof(struct raid1_info) * raid_disks * 2, 2974 GFP_KERNEL); 2975 if (!newmirrors) { 2976 kfree(newpoolinfo); 2977 mempool_destroy(newpool); 2978 return -ENOMEM; 2979 } 2980 2981 raise_barrier(conf); 2982 2983 /* ok, everything is stopped */ 2984 oldpool = conf->r1bio_pool; 2985 conf->r1bio_pool = newpool; 2986 2987 for (d = d2 = 0; d < conf->raid_disks; d++) { 2988 struct md_rdev *rdev = conf->mirrors[d].rdev; 2989 if (rdev && rdev->raid_disk != d2) { 2990 sysfs_unlink_rdev(mddev, rdev); 2991 rdev->raid_disk = d2; 2992 sysfs_unlink_rdev(mddev, rdev); 2993 if (sysfs_link_rdev(mddev, rdev)) 2994 printk(KERN_WARNING 2995 "md/raid1:%s: cannot register rd%d\n", 2996 mdname(mddev), rdev->raid_disk); 2997 } 2998 if (rdev) 2999 newmirrors[d2++].rdev = rdev; 3000 } 3001 kfree(conf->mirrors); 3002 conf->mirrors = newmirrors; 3003 kfree(conf->poolinfo); 3004 conf->poolinfo = newpoolinfo; 3005 3006 spin_lock_irqsave(&conf->device_lock, flags); 3007 mddev->degraded += (raid_disks - conf->raid_disks); 3008 spin_unlock_irqrestore(&conf->device_lock, flags); 3009 conf->raid_disks = mddev->raid_disks = raid_disks; 3010 mddev->delta_disks = 0; 3011 3012 lower_barrier(conf); 3013 3014 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3015 md_wakeup_thread(mddev->thread); 3016 3017 mempool_destroy(oldpool); 3018 return 0; 3019 } 3020 3021 static void raid1_quiesce(struct mddev *mddev, int state) 3022 { 3023 struct r1conf *conf = mddev->private; 3024 3025 switch(state) { 3026 case 2: /* wake for suspend */ 3027 wake_up(&conf->wait_barrier); 3028 break; 3029 case 1: 3030 raise_barrier(conf); 3031 break; 3032 case 0: 3033 lower_barrier(conf); 3034 break; 3035 } 3036 } 3037 3038 static void *raid1_takeover(struct mddev *mddev) 3039 { 3040 /* raid1 can take over: 3041 * raid5 with 2 devices, any layout or chunk size 3042 */ 3043 if (mddev->level == 5 && mddev->raid_disks == 2) { 3044 struct r1conf *conf; 3045 mddev->new_level = 1; 3046 mddev->new_layout = 0; 3047 mddev->new_chunk_sectors = 0; 3048 conf = setup_conf(mddev); 3049 if (!IS_ERR(conf)) 3050 conf->barrier = 1; 3051 return conf; 3052 } 3053 return ERR_PTR(-EINVAL); 3054 } 3055 3056 static struct md_personality raid1_personality = 3057 { 3058 .name = "raid1", 3059 .level = 1, 3060 .owner = THIS_MODULE, 3061 .make_request = make_request, 3062 .run = run, 3063 .stop = stop, 3064 .status = status, 3065 .error_handler = error, 3066 .hot_add_disk = raid1_add_disk, 3067 .hot_remove_disk= raid1_remove_disk, 3068 .spare_active = raid1_spare_active, 3069 .sync_request = sync_request, 3070 .resize = raid1_resize, 3071 .size = raid1_size, 3072 .check_reshape = raid1_reshape, 3073 .quiesce = raid1_quiesce, 3074 .takeover = raid1_takeover, 3075 }; 3076 3077 static int __init raid_init(void) 3078 { 3079 return register_md_personality(&raid1_personality); 3080 } 3081 3082 static void raid_exit(void) 3083 { 3084 unregister_md_personality(&raid1_personality); 3085 } 3086 3087 module_init(raid_init); 3088 module_exit(raid_exit); 3089 MODULE_LICENSE("GPL"); 3090 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD"); 3091 MODULE_ALIAS("md-personality-3"); /* RAID1 */ 3092 MODULE_ALIAS("md-raid1"); 3093 MODULE_ALIAS("md-level-1"); 3094 3095 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR); 3096