xref: /openbmc/linux/drivers/md/raid1.c (revision 95e9fd10)
1 /*
2  * raid1.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5  *
6  * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7  *
8  * RAID-1 management functions.
9  *
10  * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11  *
12  * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
13  * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14  *
15  * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16  * bitmapped intelligence in resync:
17  *
18  *      - bitmap marked during normal i/o
19  *      - bitmap used to skip nondirty blocks during sync
20  *
21  * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22  * - persistent bitmap code
23  *
24  * This program is free software; you can redistribute it and/or modify
25  * it under the terms of the GNU General Public License as published by
26  * the Free Software Foundation; either version 2, or (at your option)
27  * any later version.
28  *
29  * You should have received a copy of the GNU General Public License
30  * (for example /usr/src/linux/COPYING); if not, write to the Free
31  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32  */
33 
34 #include <linux/slab.h>
35 #include <linux/delay.h>
36 #include <linux/blkdev.h>
37 #include <linux/module.h>
38 #include <linux/seq_file.h>
39 #include <linux/ratelimit.h>
40 #include "md.h"
41 #include "raid1.h"
42 #include "bitmap.h"
43 
44 /*
45  * Number of guaranteed r1bios in case of extreme VM load:
46  */
47 #define	NR_RAID1_BIOS 256
48 
49 /* when we get a read error on a read-only array, we redirect to another
50  * device without failing the first device, or trying to over-write to
51  * correct the read error.  To keep track of bad blocks on a per-bio
52  * level, we store IO_BLOCKED in the appropriate 'bios' pointer
53  */
54 #define IO_BLOCKED ((struct bio *)1)
55 /* When we successfully write to a known bad-block, we need to remove the
56  * bad-block marking which must be done from process context.  So we record
57  * the success by setting devs[n].bio to IO_MADE_GOOD
58  */
59 #define IO_MADE_GOOD ((struct bio *)2)
60 
61 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
62 
63 /* When there are this many requests queue to be written by
64  * the raid1 thread, we become 'congested' to provide back-pressure
65  * for writeback.
66  */
67 static int max_queued_requests = 1024;
68 
69 static void allow_barrier(struct r1conf *conf);
70 static void lower_barrier(struct r1conf *conf);
71 
72 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
73 {
74 	struct pool_info *pi = data;
75 	int size = offsetof(struct r1bio, bios[pi->raid_disks]);
76 
77 	/* allocate a r1bio with room for raid_disks entries in the bios array */
78 	return kzalloc(size, gfp_flags);
79 }
80 
81 static void r1bio_pool_free(void *r1_bio, void *data)
82 {
83 	kfree(r1_bio);
84 }
85 
86 #define RESYNC_BLOCK_SIZE (64*1024)
87 //#define RESYNC_BLOCK_SIZE PAGE_SIZE
88 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
89 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
90 #define RESYNC_WINDOW (2048*1024)
91 
92 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
93 {
94 	struct pool_info *pi = data;
95 	struct page *page;
96 	struct r1bio *r1_bio;
97 	struct bio *bio;
98 	int i, j;
99 
100 	r1_bio = r1bio_pool_alloc(gfp_flags, pi);
101 	if (!r1_bio)
102 		return NULL;
103 
104 	/*
105 	 * Allocate bios : 1 for reading, n-1 for writing
106 	 */
107 	for (j = pi->raid_disks ; j-- ; ) {
108 		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
109 		if (!bio)
110 			goto out_free_bio;
111 		r1_bio->bios[j] = bio;
112 	}
113 	/*
114 	 * Allocate RESYNC_PAGES data pages and attach them to
115 	 * the first bio.
116 	 * If this is a user-requested check/repair, allocate
117 	 * RESYNC_PAGES for each bio.
118 	 */
119 	if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
120 		j = pi->raid_disks;
121 	else
122 		j = 1;
123 	while(j--) {
124 		bio = r1_bio->bios[j];
125 		for (i = 0; i < RESYNC_PAGES; i++) {
126 			page = alloc_page(gfp_flags);
127 			if (unlikely(!page))
128 				goto out_free_pages;
129 
130 			bio->bi_io_vec[i].bv_page = page;
131 			bio->bi_vcnt = i+1;
132 		}
133 	}
134 	/* If not user-requests, copy the page pointers to all bios */
135 	if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
136 		for (i=0; i<RESYNC_PAGES ; i++)
137 			for (j=1; j<pi->raid_disks; j++)
138 				r1_bio->bios[j]->bi_io_vec[i].bv_page =
139 					r1_bio->bios[0]->bi_io_vec[i].bv_page;
140 	}
141 
142 	r1_bio->master_bio = NULL;
143 
144 	return r1_bio;
145 
146 out_free_pages:
147 	for (j=0 ; j < pi->raid_disks; j++)
148 		for (i=0; i < r1_bio->bios[j]->bi_vcnt ; i++)
149 			put_page(r1_bio->bios[j]->bi_io_vec[i].bv_page);
150 	j = -1;
151 out_free_bio:
152 	while (++j < pi->raid_disks)
153 		bio_put(r1_bio->bios[j]);
154 	r1bio_pool_free(r1_bio, data);
155 	return NULL;
156 }
157 
158 static void r1buf_pool_free(void *__r1_bio, void *data)
159 {
160 	struct pool_info *pi = data;
161 	int i,j;
162 	struct r1bio *r1bio = __r1_bio;
163 
164 	for (i = 0; i < RESYNC_PAGES; i++)
165 		for (j = pi->raid_disks; j-- ;) {
166 			if (j == 0 ||
167 			    r1bio->bios[j]->bi_io_vec[i].bv_page !=
168 			    r1bio->bios[0]->bi_io_vec[i].bv_page)
169 				safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
170 		}
171 	for (i=0 ; i < pi->raid_disks; i++)
172 		bio_put(r1bio->bios[i]);
173 
174 	r1bio_pool_free(r1bio, data);
175 }
176 
177 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
178 {
179 	int i;
180 
181 	for (i = 0; i < conf->raid_disks * 2; i++) {
182 		struct bio **bio = r1_bio->bios + i;
183 		if (!BIO_SPECIAL(*bio))
184 			bio_put(*bio);
185 		*bio = NULL;
186 	}
187 }
188 
189 static void free_r1bio(struct r1bio *r1_bio)
190 {
191 	struct r1conf *conf = r1_bio->mddev->private;
192 
193 	put_all_bios(conf, r1_bio);
194 	mempool_free(r1_bio, conf->r1bio_pool);
195 }
196 
197 static void put_buf(struct r1bio *r1_bio)
198 {
199 	struct r1conf *conf = r1_bio->mddev->private;
200 	int i;
201 
202 	for (i = 0; i < conf->raid_disks * 2; i++) {
203 		struct bio *bio = r1_bio->bios[i];
204 		if (bio->bi_end_io)
205 			rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
206 	}
207 
208 	mempool_free(r1_bio, conf->r1buf_pool);
209 
210 	lower_barrier(conf);
211 }
212 
213 static void reschedule_retry(struct r1bio *r1_bio)
214 {
215 	unsigned long flags;
216 	struct mddev *mddev = r1_bio->mddev;
217 	struct r1conf *conf = mddev->private;
218 
219 	spin_lock_irqsave(&conf->device_lock, flags);
220 	list_add(&r1_bio->retry_list, &conf->retry_list);
221 	conf->nr_queued ++;
222 	spin_unlock_irqrestore(&conf->device_lock, flags);
223 
224 	wake_up(&conf->wait_barrier);
225 	md_wakeup_thread(mddev->thread);
226 }
227 
228 /*
229  * raid_end_bio_io() is called when we have finished servicing a mirrored
230  * operation and are ready to return a success/failure code to the buffer
231  * cache layer.
232  */
233 static void call_bio_endio(struct r1bio *r1_bio)
234 {
235 	struct bio *bio = r1_bio->master_bio;
236 	int done;
237 	struct r1conf *conf = r1_bio->mddev->private;
238 
239 	if (bio->bi_phys_segments) {
240 		unsigned long flags;
241 		spin_lock_irqsave(&conf->device_lock, flags);
242 		bio->bi_phys_segments--;
243 		done = (bio->bi_phys_segments == 0);
244 		spin_unlock_irqrestore(&conf->device_lock, flags);
245 	} else
246 		done = 1;
247 
248 	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
249 		clear_bit(BIO_UPTODATE, &bio->bi_flags);
250 	if (done) {
251 		bio_endio(bio, 0);
252 		/*
253 		 * Wake up any possible resync thread that waits for the device
254 		 * to go idle.
255 		 */
256 		allow_barrier(conf);
257 	}
258 }
259 
260 static void raid_end_bio_io(struct r1bio *r1_bio)
261 {
262 	struct bio *bio = r1_bio->master_bio;
263 
264 	/* if nobody has done the final endio yet, do it now */
265 	if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
266 		pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
267 			 (bio_data_dir(bio) == WRITE) ? "write" : "read",
268 			 (unsigned long long) bio->bi_sector,
269 			 (unsigned long long) bio->bi_sector +
270 			 (bio->bi_size >> 9) - 1);
271 
272 		call_bio_endio(r1_bio);
273 	}
274 	free_r1bio(r1_bio);
275 }
276 
277 /*
278  * Update disk head position estimator based on IRQ completion info.
279  */
280 static inline void update_head_pos(int disk, struct r1bio *r1_bio)
281 {
282 	struct r1conf *conf = r1_bio->mddev->private;
283 
284 	conf->mirrors[disk].head_position =
285 		r1_bio->sector + (r1_bio->sectors);
286 }
287 
288 /*
289  * Find the disk number which triggered given bio
290  */
291 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
292 {
293 	int mirror;
294 	struct r1conf *conf = r1_bio->mddev->private;
295 	int raid_disks = conf->raid_disks;
296 
297 	for (mirror = 0; mirror < raid_disks * 2; mirror++)
298 		if (r1_bio->bios[mirror] == bio)
299 			break;
300 
301 	BUG_ON(mirror == raid_disks * 2);
302 	update_head_pos(mirror, r1_bio);
303 
304 	return mirror;
305 }
306 
307 static void raid1_end_read_request(struct bio *bio, int error)
308 {
309 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
310 	struct r1bio *r1_bio = bio->bi_private;
311 	int mirror;
312 	struct r1conf *conf = r1_bio->mddev->private;
313 
314 	mirror = r1_bio->read_disk;
315 	/*
316 	 * this branch is our 'one mirror IO has finished' event handler:
317 	 */
318 	update_head_pos(mirror, r1_bio);
319 
320 	if (uptodate)
321 		set_bit(R1BIO_Uptodate, &r1_bio->state);
322 	else {
323 		/* If all other devices have failed, we want to return
324 		 * the error upwards rather than fail the last device.
325 		 * Here we redefine "uptodate" to mean "Don't want to retry"
326 		 */
327 		unsigned long flags;
328 		spin_lock_irqsave(&conf->device_lock, flags);
329 		if (r1_bio->mddev->degraded == conf->raid_disks ||
330 		    (r1_bio->mddev->degraded == conf->raid_disks-1 &&
331 		     !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags)))
332 			uptodate = 1;
333 		spin_unlock_irqrestore(&conf->device_lock, flags);
334 	}
335 
336 	if (uptodate)
337 		raid_end_bio_io(r1_bio);
338 	else {
339 		/*
340 		 * oops, read error:
341 		 */
342 		char b[BDEVNAME_SIZE];
343 		printk_ratelimited(
344 			KERN_ERR "md/raid1:%s: %s: "
345 			"rescheduling sector %llu\n",
346 			mdname(conf->mddev),
347 			bdevname(conf->mirrors[mirror].rdev->bdev,
348 				 b),
349 			(unsigned long long)r1_bio->sector);
350 		set_bit(R1BIO_ReadError, &r1_bio->state);
351 		reschedule_retry(r1_bio);
352 	}
353 
354 	rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
355 }
356 
357 static void close_write(struct r1bio *r1_bio)
358 {
359 	/* it really is the end of this request */
360 	if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
361 		/* free extra copy of the data pages */
362 		int i = r1_bio->behind_page_count;
363 		while (i--)
364 			safe_put_page(r1_bio->behind_bvecs[i].bv_page);
365 		kfree(r1_bio->behind_bvecs);
366 		r1_bio->behind_bvecs = NULL;
367 	}
368 	/* clear the bitmap if all writes complete successfully */
369 	bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
370 			r1_bio->sectors,
371 			!test_bit(R1BIO_Degraded, &r1_bio->state),
372 			test_bit(R1BIO_BehindIO, &r1_bio->state));
373 	md_write_end(r1_bio->mddev);
374 }
375 
376 static void r1_bio_write_done(struct r1bio *r1_bio)
377 {
378 	if (!atomic_dec_and_test(&r1_bio->remaining))
379 		return;
380 
381 	if (test_bit(R1BIO_WriteError, &r1_bio->state))
382 		reschedule_retry(r1_bio);
383 	else {
384 		close_write(r1_bio);
385 		if (test_bit(R1BIO_MadeGood, &r1_bio->state))
386 			reschedule_retry(r1_bio);
387 		else
388 			raid_end_bio_io(r1_bio);
389 	}
390 }
391 
392 static void raid1_end_write_request(struct bio *bio, int error)
393 {
394 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
395 	struct r1bio *r1_bio = bio->bi_private;
396 	int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
397 	struct r1conf *conf = r1_bio->mddev->private;
398 	struct bio *to_put = NULL;
399 
400 	mirror = find_bio_disk(r1_bio, bio);
401 
402 	/*
403 	 * 'one mirror IO has finished' event handler:
404 	 */
405 	if (!uptodate) {
406 		set_bit(WriteErrorSeen,
407 			&conf->mirrors[mirror].rdev->flags);
408 		if (!test_and_set_bit(WantReplacement,
409 				      &conf->mirrors[mirror].rdev->flags))
410 			set_bit(MD_RECOVERY_NEEDED, &
411 				conf->mddev->recovery);
412 
413 		set_bit(R1BIO_WriteError, &r1_bio->state);
414 	} else {
415 		/*
416 		 * Set R1BIO_Uptodate in our master bio, so that we
417 		 * will return a good error code for to the higher
418 		 * levels even if IO on some other mirrored buffer
419 		 * fails.
420 		 *
421 		 * The 'master' represents the composite IO operation
422 		 * to user-side. So if something waits for IO, then it
423 		 * will wait for the 'master' bio.
424 		 */
425 		sector_t first_bad;
426 		int bad_sectors;
427 
428 		r1_bio->bios[mirror] = NULL;
429 		to_put = bio;
430 		set_bit(R1BIO_Uptodate, &r1_bio->state);
431 
432 		/* Maybe we can clear some bad blocks. */
433 		if (is_badblock(conf->mirrors[mirror].rdev,
434 				r1_bio->sector, r1_bio->sectors,
435 				&first_bad, &bad_sectors)) {
436 			r1_bio->bios[mirror] = IO_MADE_GOOD;
437 			set_bit(R1BIO_MadeGood, &r1_bio->state);
438 		}
439 	}
440 
441 	if (behind) {
442 		if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
443 			atomic_dec(&r1_bio->behind_remaining);
444 
445 		/*
446 		 * In behind mode, we ACK the master bio once the I/O
447 		 * has safely reached all non-writemostly
448 		 * disks. Setting the Returned bit ensures that this
449 		 * gets done only once -- we don't ever want to return
450 		 * -EIO here, instead we'll wait
451 		 */
452 		if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
453 		    test_bit(R1BIO_Uptodate, &r1_bio->state)) {
454 			/* Maybe we can return now */
455 			if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
456 				struct bio *mbio = r1_bio->master_bio;
457 				pr_debug("raid1: behind end write sectors"
458 					 " %llu-%llu\n",
459 					 (unsigned long long) mbio->bi_sector,
460 					 (unsigned long long) mbio->bi_sector +
461 					 (mbio->bi_size >> 9) - 1);
462 				call_bio_endio(r1_bio);
463 			}
464 		}
465 	}
466 	if (r1_bio->bios[mirror] == NULL)
467 		rdev_dec_pending(conf->mirrors[mirror].rdev,
468 				 conf->mddev);
469 
470 	/*
471 	 * Let's see if all mirrored write operations have finished
472 	 * already.
473 	 */
474 	r1_bio_write_done(r1_bio);
475 
476 	if (to_put)
477 		bio_put(to_put);
478 }
479 
480 
481 /*
482  * This routine returns the disk from which the requested read should
483  * be done. There is a per-array 'next expected sequential IO' sector
484  * number - if this matches on the next IO then we use the last disk.
485  * There is also a per-disk 'last know head position' sector that is
486  * maintained from IRQ contexts, both the normal and the resync IO
487  * completion handlers update this position correctly. If there is no
488  * perfect sequential match then we pick the disk whose head is closest.
489  *
490  * If there are 2 mirrors in the same 2 devices, performance degrades
491  * because position is mirror, not device based.
492  *
493  * The rdev for the device selected will have nr_pending incremented.
494  */
495 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
496 {
497 	const sector_t this_sector = r1_bio->sector;
498 	int sectors;
499 	int best_good_sectors;
500 	int best_disk, best_dist_disk, best_pending_disk;
501 	int has_nonrot_disk;
502 	int disk;
503 	sector_t best_dist;
504 	unsigned int min_pending;
505 	struct md_rdev *rdev;
506 	int choose_first;
507 	int choose_next_idle;
508 
509 	rcu_read_lock();
510 	/*
511 	 * Check if we can balance. We can balance on the whole
512 	 * device if no resync is going on, or below the resync window.
513 	 * We take the first readable disk when above the resync window.
514 	 */
515  retry:
516 	sectors = r1_bio->sectors;
517 	best_disk = -1;
518 	best_dist_disk = -1;
519 	best_dist = MaxSector;
520 	best_pending_disk = -1;
521 	min_pending = UINT_MAX;
522 	best_good_sectors = 0;
523 	has_nonrot_disk = 0;
524 	choose_next_idle = 0;
525 
526 	if (conf->mddev->recovery_cp < MaxSector &&
527 	    (this_sector + sectors >= conf->next_resync))
528 		choose_first = 1;
529 	else
530 		choose_first = 0;
531 
532 	for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
533 		sector_t dist;
534 		sector_t first_bad;
535 		int bad_sectors;
536 		unsigned int pending;
537 		bool nonrot;
538 
539 		rdev = rcu_dereference(conf->mirrors[disk].rdev);
540 		if (r1_bio->bios[disk] == IO_BLOCKED
541 		    || rdev == NULL
542 		    || test_bit(Unmerged, &rdev->flags)
543 		    || test_bit(Faulty, &rdev->flags))
544 			continue;
545 		if (!test_bit(In_sync, &rdev->flags) &&
546 		    rdev->recovery_offset < this_sector + sectors)
547 			continue;
548 		if (test_bit(WriteMostly, &rdev->flags)) {
549 			/* Don't balance among write-mostly, just
550 			 * use the first as a last resort */
551 			if (best_disk < 0) {
552 				if (is_badblock(rdev, this_sector, sectors,
553 						&first_bad, &bad_sectors)) {
554 					if (first_bad < this_sector)
555 						/* Cannot use this */
556 						continue;
557 					best_good_sectors = first_bad - this_sector;
558 				} else
559 					best_good_sectors = sectors;
560 				best_disk = disk;
561 			}
562 			continue;
563 		}
564 		/* This is a reasonable device to use.  It might
565 		 * even be best.
566 		 */
567 		if (is_badblock(rdev, this_sector, sectors,
568 				&first_bad, &bad_sectors)) {
569 			if (best_dist < MaxSector)
570 				/* already have a better device */
571 				continue;
572 			if (first_bad <= this_sector) {
573 				/* cannot read here. If this is the 'primary'
574 				 * device, then we must not read beyond
575 				 * bad_sectors from another device..
576 				 */
577 				bad_sectors -= (this_sector - first_bad);
578 				if (choose_first && sectors > bad_sectors)
579 					sectors = bad_sectors;
580 				if (best_good_sectors > sectors)
581 					best_good_sectors = sectors;
582 
583 			} else {
584 				sector_t good_sectors = first_bad - this_sector;
585 				if (good_sectors > best_good_sectors) {
586 					best_good_sectors = good_sectors;
587 					best_disk = disk;
588 				}
589 				if (choose_first)
590 					break;
591 			}
592 			continue;
593 		} else
594 			best_good_sectors = sectors;
595 
596 		nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
597 		has_nonrot_disk |= nonrot;
598 		pending = atomic_read(&rdev->nr_pending);
599 		dist = abs(this_sector - conf->mirrors[disk].head_position);
600 		if (choose_first) {
601 			best_disk = disk;
602 			break;
603 		}
604 		/* Don't change to another disk for sequential reads */
605 		if (conf->mirrors[disk].next_seq_sect == this_sector
606 		    || dist == 0) {
607 			int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
608 			struct raid1_info *mirror = &conf->mirrors[disk];
609 
610 			best_disk = disk;
611 			/*
612 			 * If buffered sequential IO size exceeds optimal
613 			 * iosize, check if there is idle disk. If yes, choose
614 			 * the idle disk. read_balance could already choose an
615 			 * idle disk before noticing it's a sequential IO in
616 			 * this disk. This doesn't matter because this disk
617 			 * will idle, next time it will be utilized after the
618 			 * first disk has IO size exceeds optimal iosize. In
619 			 * this way, iosize of the first disk will be optimal
620 			 * iosize at least. iosize of the second disk might be
621 			 * small, but not a big deal since when the second disk
622 			 * starts IO, the first disk is likely still busy.
623 			 */
624 			if (nonrot && opt_iosize > 0 &&
625 			    mirror->seq_start != MaxSector &&
626 			    mirror->next_seq_sect > opt_iosize &&
627 			    mirror->next_seq_sect - opt_iosize >=
628 			    mirror->seq_start) {
629 				choose_next_idle = 1;
630 				continue;
631 			}
632 			break;
633 		}
634 		/* If device is idle, use it */
635 		if (pending == 0) {
636 			best_disk = disk;
637 			break;
638 		}
639 
640 		if (choose_next_idle)
641 			continue;
642 
643 		if (min_pending > pending) {
644 			min_pending = pending;
645 			best_pending_disk = disk;
646 		}
647 
648 		if (dist < best_dist) {
649 			best_dist = dist;
650 			best_dist_disk = disk;
651 		}
652 	}
653 
654 	/*
655 	 * If all disks are rotational, choose the closest disk. If any disk is
656 	 * non-rotational, choose the disk with less pending request even the
657 	 * disk is rotational, which might/might not be optimal for raids with
658 	 * mixed ratation/non-rotational disks depending on workload.
659 	 */
660 	if (best_disk == -1) {
661 		if (has_nonrot_disk)
662 			best_disk = best_pending_disk;
663 		else
664 			best_disk = best_dist_disk;
665 	}
666 
667 	if (best_disk >= 0) {
668 		rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
669 		if (!rdev)
670 			goto retry;
671 		atomic_inc(&rdev->nr_pending);
672 		if (test_bit(Faulty, &rdev->flags)) {
673 			/* cannot risk returning a device that failed
674 			 * before we inc'ed nr_pending
675 			 */
676 			rdev_dec_pending(rdev, conf->mddev);
677 			goto retry;
678 		}
679 		sectors = best_good_sectors;
680 
681 		if (conf->mirrors[best_disk].next_seq_sect != this_sector)
682 			conf->mirrors[best_disk].seq_start = this_sector;
683 
684 		conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
685 	}
686 	rcu_read_unlock();
687 	*max_sectors = sectors;
688 
689 	return best_disk;
690 }
691 
692 static int raid1_mergeable_bvec(struct request_queue *q,
693 				struct bvec_merge_data *bvm,
694 				struct bio_vec *biovec)
695 {
696 	struct mddev *mddev = q->queuedata;
697 	struct r1conf *conf = mddev->private;
698 	sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
699 	int max = biovec->bv_len;
700 
701 	if (mddev->merge_check_needed) {
702 		int disk;
703 		rcu_read_lock();
704 		for (disk = 0; disk < conf->raid_disks * 2; disk++) {
705 			struct md_rdev *rdev = rcu_dereference(
706 				conf->mirrors[disk].rdev);
707 			if (rdev && !test_bit(Faulty, &rdev->flags)) {
708 				struct request_queue *q =
709 					bdev_get_queue(rdev->bdev);
710 				if (q->merge_bvec_fn) {
711 					bvm->bi_sector = sector +
712 						rdev->data_offset;
713 					bvm->bi_bdev = rdev->bdev;
714 					max = min(max, q->merge_bvec_fn(
715 							  q, bvm, biovec));
716 				}
717 			}
718 		}
719 		rcu_read_unlock();
720 	}
721 	return max;
722 
723 }
724 
725 int md_raid1_congested(struct mddev *mddev, int bits)
726 {
727 	struct r1conf *conf = mddev->private;
728 	int i, ret = 0;
729 
730 	if ((bits & (1 << BDI_async_congested)) &&
731 	    conf->pending_count >= max_queued_requests)
732 		return 1;
733 
734 	rcu_read_lock();
735 	for (i = 0; i < conf->raid_disks * 2; i++) {
736 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
737 		if (rdev && !test_bit(Faulty, &rdev->flags)) {
738 			struct request_queue *q = bdev_get_queue(rdev->bdev);
739 
740 			BUG_ON(!q);
741 
742 			/* Note the '|| 1' - when read_balance prefers
743 			 * non-congested targets, it can be removed
744 			 */
745 			if ((bits & (1<<BDI_async_congested)) || 1)
746 				ret |= bdi_congested(&q->backing_dev_info, bits);
747 			else
748 				ret &= bdi_congested(&q->backing_dev_info, bits);
749 		}
750 	}
751 	rcu_read_unlock();
752 	return ret;
753 }
754 EXPORT_SYMBOL_GPL(md_raid1_congested);
755 
756 static int raid1_congested(void *data, int bits)
757 {
758 	struct mddev *mddev = data;
759 
760 	return mddev_congested(mddev, bits) ||
761 		md_raid1_congested(mddev, bits);
762 }
763 
764 static void flush_pending_writes(struct r1conf *conf)
765 {
766 	/* Any writes that have been queued but are awaiting
767 	 * bitmap updates get flushed here.
768 	 */
769 	spin_lock_irq(&conf->device_lock);
770 
771 	if (conf->pending_bio_list.head) {
772 		struct bio *bio;
773 		bio = bio_list_get(&conf->pending_bio_list);
774 		conf->pending_count = 0;
775 		spin_unlock_irq(&conf->device_lock);
776 		/* flush any pending bitmap writes to
777 		 * disk before proceeding w/ I/O */
778 		bitmap_unplug(conf->mddev->bitmap);
779 		wake_up(&conf->wait_barrier);
780 
781 		while (bio) { /* submit pending writes */
782 			struct bio *next = bio->bi_next;
783 			bio->bi_next = NULL;
784 			generic_make_request(bio);
785 			bio = next;
786 		}
787 	} else
788 		spin_unlock_irq(&conf->device_lock);
789 }
790 
791 /* Barriers....
792  * Sometimes we need to suspend IO while we do something else,
793  * either some resync/recovery, or reconfigure the array.
794  * To do this we raise a 'barrier'.
795  * The 'barrier' is a counter that can be raised multiple times
796  * to count how many activities are happening which preclude
797  * normal IO.
798  * We can only raise the barrier if there is no pending IO.
799  * i.e. if nr_pending == 0.
800  * We choose only to raise the barrier if no-one is waiting for the
801  * barrier to go down.  This means that as soon as an IO request
802  * is ready, no other operations which require a barrier will start
803  * until the IO request has had a chance.
804  *
805  * So: regular IO calls 'wait_barrier'.  When that returns there
806  *    is no backgroup IO happening,  It must arrange to call
807  *    allow_barrier when it has finished its IO.
808  * backgroup IO calls must call raise_barrier.  Once that returns
809  *    there is no normal IO happeing.  It must arrange to call
810  *    lower_barrier when the particular background IO completes.
811  */
812 #define RESYNC_DEPTH 32
813 
814 static void raise_barrier(struct r1conf *conf)
815 {
816 	spin_lock_irq(&conf->resync_lock);
817 
818 	/* Wait until no block IO is waiting */
819 	wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
820 			    conf->resync_lock, );
821 
822 	/* block any new IO from starting */
823 	conf->barrier++;
824 
825 	/* Now wait for all pending IO to complete */
826 	wait_event_lock_irq(conf->wait_barrier,
827 			    !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
828 			    conf->resync_lock, );
829 
830 	spin_unlock_irq(&conf->resync_lock);
831 }
832 
833 static void lower_barrier(struct r1conf *conf)
834 {
835 	unsigned long flags;
836 	BUG_ON(conf->barrier <= 0);
837 	spin_lock_irqsave(&conf->resync_lock, flags);
838 	conf->barrier--;
839 	spin_unlock_irqrestore(&conf->resync_lock, flags);
840 	wake_up(&conf->wait_barrier);
841 }
842 
843 static void wait_barrier(struct r1conf *conf)
844 {
845 	spin_lock_irq(&conf->resync_lock);
846 	if (conf->barrier) {
847 		conf->nr_waiting++;
848 		/* Wait for the barrier to drop.
849 		 * However if there are already pending
850 		 * requests (preventing the barrier from
851 		 * rising completely), and the
852 		 * pre-process bio queue isn't empty,
853 		 * then don't wait, as we need to empty
854 		 * that queue to get the nr_pending
855 		 * count down.
856 		 */
857 		wait_event_lock_irq(conf->wait_barrier,
858 				    !conf->barrier ||
859 				    (conf->nr_pending &&
860 				     current->bio_list &&
861 				     !bio_list_empty(current->bio_list)),
862 				    conf->resync_lock,
863 			);
864 		conf->nr_waiting--;
865 	}
866 	conf->nr_pending++;
867 	spin_unlock_irq(&conf->resync_lock);
868 }
869 
870 static void allow_barrier(struct r1conf *conf)
871 {
872 	unsigned long flags;
873 	spin_lock_irqsave(&conf->resync_lock, flags);
874 	conf->nr_pending--;
875 	spin_unlock_irqrestore(&conf->resync_lock, flags);
876 	wake_up(&conf->wait_barrier);
877 }
878 
879 static void freeze_array(struct r1conf *conf)
880 {
881 	/* stop syncio and normal IO and wait for everything to
882 	 * go quite.
883 	 * We increment barrier and nr_waiting, and then
884 	 * wait until nr_pending match nr_queued+1
885 	 * This is called in the context of one normal IO request
886 	 * that has failed. Thus any sync request that might be pending
887 	 * will be blocked by nr_pending, and we need to wait for
888 	 * pending IO requests to complete or be queued for re-try.
889 	 * Thus the number queued (nr_queued) plus this request (1)
890 	 * must match the number of pending IOs (nr_pending) before
891 	 * we continue.
892 	 */
893 	spin_lock_irq(&conf->resync_lock);
894 	conf->barrier++;
895 	conf->nr_waiting++;
896 	wait_event_lock_irq(conf->wait_barrier,
897 			    conf->nr_pending == conf->nr_queued+1,
898 			    conf->resync_lock,
899 			    flush_pending_writes(conf));
900 	spin_unlock_irq(&conf->resync_lock);
901 }
902 static void unfreeze_array(struct r1conf *conf)
903 {
904 	/* reverse the effect of the freeze */
905 	spin_lock_irq(&conf->resync_lock);
906 	conf->barrier--;
907 	conf->nr_waiting--;
908 	wake_up(&conf->wait_barrier);
909 	spin_unlock_irq(&conf->resync_lock);
910 }
911 
912 
913 /* duplicate the data pages for behind I/O
914  */
915 static void alloc_behind_pages(struct bio *bio, struct r1bio *r1_bio)
916 {
917 	int i;
918 	struct bio_vec *bvec;
919 	struct bio_vec *bvecs = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec),
920 					GFP_NOIO);
921 	if (unlikely(!bvecs))
922 		return;
923 
924 	bio_for_each_segment(bvec, bio, i) {
925 		bvecs[i] = *bvec;
926 		bvecs[i].bv_page = alloc_page(GFP_NOIO);
927 		if (unlikely(!bvecs[i].bv_page))
928 			goto do_sync_io;
929 		memcpy(kmap(bvecs[i].bv_page) + bvec->bv_offset,
930 		       kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
931 		kunmap(bvecs[i].bv_page);
932 		kunmap(bvec->bv_page);
933 	}
934 	r1_bio->behind_bvecs = bvecs;
935 	r1_bio->behind_page_count = bio->bi_vcnt;
936 	set_bit(R1BIO_BehindIO, &r1_bio->state);
937 	return;
938 
939 do_sync_io:
940 	for (i = 0; i < bio->bi_vcnt; i++)
941 		if (bvecs[i].bv_page)
942 			put_page(bvecs[i].bv_page);
943 	kfree(bvecs);
944 	pr_debug("%dB behind alloc failed, doing sync I/O\n", bio->bi_size);
945 }
946 
947 struct raid1_plug_cb {
948 	struct blk_plug_cb	cb;
949 	struct bio_list		pending;
950 	int			pending_cnt;
951 };
952 
953 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
954 {
955 	struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
956 						  cb);
957 	struct mddev *mddev = plug->cb.data;
958 	struct r1conf *conf = mddev->private;
959 	struct bio *bio;
960 
961 	if (from_schedule) {
962 		spin_lock_irq(&conf->device_lock);
963 		bio_list_merge(&conf->pending_bio_list, &plug->pending);
964 		conf->pending_count += plug->pending_cnt;
965 		spin_unlock_irq(&conf->device_lock);
966 		md_wakeup_thread(mddev->thread);
967 		kfree(plug);
968 		return;
969 	}
970 
971 	/* we aren't scheduling, so we can do the write-out directly. */
972 	bio = bio_list_get(&plug->pending);
973 	bitmap_unplug(mddev->bitmap);
974 	wake_up(&conf->wait_barrier);
975 
976 	while (bio) { /* submit pending writes */
977 		struct bio *next = bio->bi_next;
978 		bio->bi_next = NULL;
979 		generic_make_request(bio);
980 		bio = next;
981 	}
982 	kfree(plug);
983 }
984 
985 static void make_request(struct mddev *mddev, struct bio * bio)
986 {
987 	struct r1conf *conf = mddev->private;
988 	struct raid1_info *mirror;
989 	struct r1bio *r1_bio;
990 	struct bio *read_bio;
991 	int i, disks;
992 	struct bitmap *bitmap;
993 	unsigned long flags;
994 	const int rw = bio_data_dir(bio);
995 	const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
996 	const unsigned long do_flush_fua = (bio->bi_rw & (REQ_FLUSH | REQ_FUA));
997 	struct md_rdev *blocked_rdev;
998 	struct blk_plug_cb *cb;
999 	struct raid1_plug_cb *plug = NULL;
1000 	int first_clone;
1001 	int sectors_handled;
1002 	int max_sectors;
1003 
1004 	/*
1005 	 * Register the new request and wait if the reconstruction
1006 	 * thread has put up a bar for new requests.
1007 	 * Continue immediately if no resync is active currently.
1008 	 */
1009 
1010 	md_write_start(mddev, bio); /* wait on superblock update early */
1011 
1012 	if (bio_data_dir(bio) == WRITE &&
1013 	    bio->bi_sector + bio->bi_size/512 > mddev->suspend_lo &&
1014 	    bio->bi_sector < mddev->suspend_hi) {
1015 		/* As the suspend_* range is controlled by
1016 		 * userspace, we want an interruptible
1017 		 * wait.
1018 		 */
1019 		DEFINE_WAIT(w);
1020 		for (;;) {
1021 			flush_signals(current);
1022 			prepare_to_wait(&conf->wait_barrier,
1023 					&w, TASK_INTERRUPTIBLE);
1024 			if (bio->bi_sector + bio->bi_size/512 <= mddev->suspend_lo ||
1025 			    bio->bi_sector >= mddev->suspend_hi)
1026 				break;
1027 			schedule();
1028 		}
1029 		finish_wait(&conf->wait_barrier, &w);
1030 	}
1031 
1032 	wait_barrier(conf);
1033 
1034 	bitmap = mddev->bitmap;
1035 
1036 	/*
1037 	 * make_request() can abort the operation when READA is being
1038 	 * used and no empty request is available.
1039 	 *
1040 	 */
1041 	r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1042 
1043 	r1_bio->master_bio = bio;
1044 	r1_bio->sectors = bio->bi_size >> 9;
1045 	r1_bio->state = 0;
1046 	r1_bio->mddev = mddev;
1047 	r1_bio->sector = bio->bi_sector;
1048 
1049 	/* We might need to issue multiple reads to different
1050 	 * devices if there are bad blocks around, so we keep
1051 	 * track of the number of reads in bio->bi_phys_segments.
1052 	 * If this is 0, there is only one r1_bio and no locking
1053 	 * will be needed when requests complete.  If it is
1054 	 * non-zero, then it is the number of not-completed requests.
1055 	 */
1056 	bio->bi_phys_segments = 0;
1057 	clear_bit(BIO_SEG_VALID, &bio->bi_flags);
1058 
1059 	if (rw == READ) {
1060 		/*
1061 		 * read balancing logic:
1062 		 */
1063 		int rdisk;
1064 
1065 read_again:
1066 		rdisk = read_balance(conf, r1_bio, &max_sectors);
1067 
1068 		if (rdisk < 0) {
1069 			/* couldn't find anywhere to read from */
1070 			raid_end_bio_io(r1_bio);
1071 			return;
1072 		}
1073 		mirror = conf->mirrors + rdisk;
1074 
1075 		if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1076 		    bitmap) {
1077 			/* Reading from a write-mostly device must
1078 			 * take care not to over-take any writes
1079 			 * that are 'behind'
1080 			 */
1081 			wait_event(bitmap->behind_wait,
1082 				   atomic_read(&bitmap->behind_writes) == 0);
1083 		}
1084 		r1_bio->read_disk = rdisk;
1085 
1086 		read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1087 		md_trim_bio(read_bio, r1_bio->sector - bio->bi_sector,
1088 			    max_sectors);
1089 
1090 		r1_bio->bios[rdisk] = read_bio;
1091 
1092 		read_bio->bi_sector = r1_bio->sector + mirror->rdev->data_offset;
1093 		read_bio->bi_bdev = mirror->rdev->bdev;
1094 		read_bio->bi_end_io = raid1_end_read_request;
1095 		read_bio->bi_rw = READ | do_sync;
1096 		read_bio->bi_private = r1_bio;
1097 
1098 		if (max_sectors < r1_bio->sectors) {
1099 			/* could not read all from this device, so we will
1100 			 * need another r1_bio.
1101 			 */
1102 
1103 			sectors_handled = (r1_bio->sector + max_sectors
1104 					   - bio->bi_sector);
1105 			r1_bio->sectors = max_sectors;
1106 			spin_lock_irq(&conf->device_lock);
1107 			if (bio->bi_phys_segments == 0)
1108 				bio->bi_phys_segments = 2;
1109 			else
1110 				bio->bi_phys_segments++;
1111 			spin_unlock_irq(&conf->device_lock);
1112 			/* Cannot call generic_make_request directly
1113 			 * as that will be queued in __make_request
1114 			 * and subsequent mempool_alloc might block waiting
1115 			 * for it.  So hand bio over to raid1d.
1116 			 */
1117 			reschedule_retry(r1_bio);
1118 
1119 			r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1120 
1121 			r1_bio->master_bio = bio;
1122 			r1_bio->sectors = (bio->bi_size >> 9) - sectors_handled;
1123 			r1_bio->state = 0;
1124 			r1_bio->mddev = mddev;
1125 			r1_bio->sector = bio->bi_sector + sectors_handled;
1126 			goto read_again;
1127 		} else
1128 			generic_make_request(read_bio);
1129 		return;
1130 	}
1131 
1132 	/*
1133 	 * WRITE:
1134 	 */
1135 	if (conf->pending_count >= max_queued_requests) {
1136 		md_wakeup_thread(mddev->thread);
1137 		wait_event(conf->wait_barrier,
1138 			   conf->pending_count < max_queued_requests);
1139 	}
1140 	/* first select target devices under rcu_lock and
1141 	 * inc refcount on their rdev.  Record them by setting
1142 	 * bios[x] to bio
1143 	 * If there are known/acknowledged bad blocks on any device on
1144 	 * which we have seen a write error, we want to avoid writing those
1145 	 * blocks.
1146 	 * This potentially requires several writes to write around
1147 	 * the bad blocks.  Each set of writes gets it's own r1bio
1148 	 * with a set of bios attached.
1149 	 */
1150 
1151 	disks = conf->raid_disks * 2;
1152  retry_write:
1153 	blocked_rdev = NULL;
1154 	rcu_read_lock();
1155 	max_sectors = r1_bio->sectors;
1156 	for (i = 0;  i < disks; i++) {
1157 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1158 		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1159 			atomic_inc(&rdev->nr_pending);
1160 			blocked_rdev = rdev;
1161 			break;
1162 		}
1163 		r1_bio->bios[i] = NULL;
1164 		if (!rdev || test_bit(Faulty, &rdev->flags)
1165 		    || test_bit(Unmerged, &rdev->flags)) {
1166 			if (i < conf->raid_disks)
1167 				set_bit(R1BIO_Degraded, &r1_bio->state);
1168 			continue;
1169 		}
1170 
1171 		atomic_inc(&rdev->nr_pending);
1172 		if (test_bit(WriteErrorSeen, &rdev->flags)) {
1173 			sector_t first_bad;
1174 			int bad_sectors;
1175 			int is_bad;
1176 
1177 			is_bad = is_badblock(rdev, r1_bio->sector,
1178 					     max_sectors,
1179 					     &first_bad, &bad_sectors);
1180 			if (is_bad < 0) {
1181 				/* mustn't write here until the bad block is
1182 				 * acknowledged*/
1183 				set_bit(BlockedBadBlocks, &rdev->flags);
1184 				blocked_rdev = rdev;
1185 				break;
1186 			}
1187 			if (is_bad && first_bad <= r1_bio->sector) {
1188 				/* Cannot write here at all */
1189 				bad_sectors -= (r1_bio->sector - first_bad);
1190 				if (bad_sectors < max_sectors)
1191 					/* mustn't write more than bad_sectors
1192 					 * to other devices yet
1193 					 */
1194 					max_sectors = bad_sectors;
1195 				rdev_dec_pending(rdev, mddev);
1196 				/* We don't set R1BIO_Degraded as that
1197 				 * only applies if the disk is
1198 				 * missing, so it might be re-added,
1199 				 * and we want to know to recover this
1200 				 * chunk.
1201 				 * In this case the device is here,
1202 				 * and the fact that this chunk is not
1203 				 * in-sync is recorded in the bad
1204 				 * block log
1205 				 */
1206 				continue;
1207 			}
1208 			if (is_bad) {
1209 				int good_sectors = first_bad - r1_bio->sector;
1210 				if (good_sectors < max_sectors)
1211 					max_sectors = good_sectors;
1212 			}
1213 		}
1214 		r1_bio->bios[i] = bio;
1215 	}
1216 	rcu_read_unlock();
1217 
1218 	if (unlikely(blocked_rdev)) {
1219 		/* Wait for this device to become unblocked */
1220 		int j;
1221 
1222 		for (j = 0; j < i; j++)
1223 			if (r1_bio->bios[j])
1224 				rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1225 		r1_bio->state = 0;
1226 		allow_barrier(conf);
1227 		md_wait_for_blocked_rdev(blocked_rdev, mddev);
1228 		wait_barrier(conf);
1229 		goto retry_write;
1230 	}
1231 
1232 	if (max_sectors < r1_bio->sectors) {
1233 		/* We are splitting this write into multiple parts, so
1234 		 * we need to prepare for allocating another r1_bio.
1235 		 */
1236 		r1_bio->sectors = max_sectors;
1237 		spin_lock_irq(&conf->device_lock);
1238 		if (bio->bi_phys_segments == 0)
1239 			bio->bi_phys_segments = 2;
1240 		else
1241 			bio->bi_phys_segments++;
1242 		spin_unlock_irq(&conf->device_lock);
1243 	}
1244 	sectors_handled = r1_bio->sector + max_sectors - bio->bi_sector;
1245 
1246 	atomic_set(&r1_bio->remaining, 1);
1247 	atomic_set(&r1_bio->behind_remaining, 0);
1248 
1249 	first_clone = 1;
1250 	for (i = 0; i < disks; i++) {
1251 		struct bio *mbio;
1252 		if (!r1_bio->bios[i])
1253 			continue;
1254 
1255 		mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1256 		md_trim_bio(mbio, r1_bio->sector - bio->bi_sector, max_sectors);
1257 
1258 		if (first_clone) {
1259 			/* do behind I/O ?
1260 			 * Not if there are too many, or cannot
1261 			 * allocate memory, or a reader on WriteMostly
1262 			 * is waiting for behind writes to flush */
1263 			if (bitmap &&
1264 			    (atomic_read(&bitmap->behind_writes)
1265 			     < mddev->bitmap_info.max_write_behind) &&
1266 			    !waitqueue_active(&bitmap->behind_wait))
1267 				alloc_behind_pages(mbio, r1_bio);
1268 
1269 			bitmap_startwrite(bitmap, r1_bio->sector,
1270 					  r1_bio->sectors,
1271 					  test_bit(R1BIO_BehindIO,
1272 						   &r1_bio->state));
1273 			first_clone = 0;
1274 		}
1275 		if (r1_bio->behind_bvecs) {
1276 			struct bio_vec *bvec;
1277 			int j;
1278 
1279 			/* Yes, I really want the '__' version so that
1280 			 * we clear any unused pointer in the io_vec, rather
1281 			 * than leave them unchanged.  This is important
1282 			 * because when we come to free the pages, we won't
1283 			 * know the original bi_idx, so we just free
1284 			 * them all
1285 			 */
1286 			__bio_for_each_segment(bvec, mbio, j, 0)
1287 				bvec->bv_page = r1_bio->behind_bvecs[j].bv_page;
1288 			if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1289 				atomic_inc(&r1_bio->behind_remaining);
1290 		}
1291 
1292 		r1_bio->bios[i] = mbio;
1293 
1294 		mbio->bi_sector	= (r1_bio->sector +
1295 				   conf->mirrors[i].rdev->data_offset);
1296 		mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1297 		mbio->bi_end_io	= raid1_end_write_request;
1298 		mbio->bi_rw = WRITE | do_flush_fua | do_sync;
1299 		mbio->bi_private = r1_bio;
1300 
1301 		atomic_inc(&r1_bio->remaining);
1302 
1303 		cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1304 		if (cb)
1305 			plug = container_of(cb, struct raid1_plug_cb, cb);
1306 		else
1307 			plug = NULL;
1308 		spin_lock_irqsave(&conf->device_lock, flags);
1309 		if (plug) {
1310 			bio_list_add(&plug->pending, mbio);
1311 			plug->pending_cnt++;
1312 		} else {
1313 			bio_list_add(&conf->pending_bio_list, mbio);
1314 			conf->pending_count++;
1315 		}
1316 		spin_unlock_irqrestore(&conf->device_lock, flags);
1317 		if (!plug)
1318 			md_wakeup_thread(mddev->thread);
1319 	}
1320 	/* Mustn't call r1_bio_write_done before this next test,
1321 	 * as it could result in the bio being freed.
1322 	 */
1323 	if (sectors_handled < (bio->bi_size >> 9)) {
1324 		r1_bio_write_done(r1_bio);
1325 		/* We need another r1_bio.  It has already been counted
1326 		 * in bio->bi_phys_segments
1327 		 */
1328 		r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1329 		r1_bio->master_bio = bio;
1330 		r1_bio->sectors = (bio->bi_size >> 9) - sectors_handled;
1331 		r1_bio->state = 0;
1332 		r1_bio->mddev = mddev;
1333 		r1_bio->sector = bio->bi_sector + sectors_handled;
1334 		goto retry_write;
1335 	}
1336 
1337 	r1_bio_write_done(r1_bio);
1338 
1339 	/* In case raid1d snuck in to freeze_array */
1340 	wake_up(&conf->wait_barrier);
1341 }
1342 
1343 static void status(struct seq_file *seq, struct mddev *mddev)
1344 {
1345 	struct r1conf *conf = mddev->private;
1346 	int i;
1347 
1348 	seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1349 		   conf->raid_disks - mddev->degraded);
1350 	rcu_read_lock();
1351 	for (i = 0; i < conf->raid_disks; i++) {
1352 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1353 		seq_printf(seq, "%s",
1354 			   rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1355 	}
1356 	rcu_read_unlock();
1357 	seq_printf(seq, "]");
1358 }
1359 
1360 
1361 static void error(struct mddev *mddev, struct md_rdev *rdev)
1362 {
1363 	char b[BDEVNAME_SIZE];
1364 	struct r1conf *conf = mddev->private;
1365 
1366 	/*
1367 	 * If it is not operational, then we have already marked it as dead
1368 	 * else if it is the last working disks, ignore the error, let the
1369 	 * next level up know.
1370 	 * else mark the drive as failed
1371 	 */
1372 	if (test_bit(In_sync, &rdev->flags)
1373 	    && (conf->raid_disks - mddev->degraded) == 1) {
1374 		/*
1375 		 * Don't fail the drive, act as though we were just a
1376 		 * normal single drive.
1377 		 * However don't try a recovery from this drive as
1378 		 * it is very likely to fail.
1379 		 */
1380 		conf->recovery_disabled = mddev->recovery_disabled;
1381 		return;
1382 	}
1383 	set_bit(Blocked, &rdev->flags);
1384 	if (test_and_clear_bit(In_sync, &rdev->flags)) {
1385 		unsigned long flags;
1386 		spin_lock_irqsave(&conf->device_lock, flags);
1387 		mddev->degraded++;
1388 		set_bit(Faulty, &rdev->flags);
1389 		spin_unlock_irqrestore(&conf->device_lock, flags);
1390 		/*
1391 		 * if recovery is running, make sure it aborts.
1392 		 */
1393 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1394 	} else
1395 		set_bit(Faulty, &rdev->flags);
1396 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
1397 	printk(KERN_ALERT
1398 	       "md/raid1:%s: Disk failure on %s, disabling device.\n"
1399 	       "md/raid1:%s: Operation continuing on %d devices.\n",
1400 	       mdname(mddev), bdevname(rdev->bdev, b),
1401 	       mdname(mddev), conf->raid_disks - mddev->degraded);
1402 }
1403 
1404 static void print_conf(struct r1conf *conf)
1405 {
1406 	int i;
1407 
1408 	printk(KERN_DEBUG "RAID1 conf printout:\n");
1409 	if (!conf) {
1410 		printk(KERN_DEBUG "(!conf)\n");
1411 		return;
1412 	}
1413 	printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1414 		conf->raid_disks);
1415 
1416 	rcu_read_lock();
1417 	for (i = 0; i < conf->raid_disks; i++) {
1418 		char b[BDEVNAME_SIZE];
1419 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1420 		if (rdev)
1421 			printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1422 			       i, !test_bit(In_sync, &rdev->flags),
1423 			       !test_bit(Faulty, &rdev->flags),
1424 			       bdevname(rdev->bdev,b));
1425 	}
1426 	rcu_read_unlock();
1427 }
1428 
1429 static void close_sync(struct r1conf *conf)
1430 {
1431 	wait_barrier(conf);
1432 	allow_barrier(conf);
1433 
1434 	mempool_destroy(conf->r1buf_pool);
1435 	conf->r1buf_pool = NULL;
1436 }
1437 
1438 static int raid1_spare_active(struct mddev *mddev)
1439 {
1440 	int i;
1441 	struct r1conf *conf = mddev->private;
1442 	int count = 0;
1443 	unsigned long flags;
1444 
1445 	/*
1446 	 * Find all failed disks within the RAID1 configuration
1447 	 * and mark them readable.
1448 	 * Called under mddev lock, so rcu protection not needed.
1449 	 */
1450 	for (i = 0; i < conf->raid_disks; i++) {
1451 		struct md_rdev *rdev = conf->mirrors[i].rdev;
1452 		struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1453 		if (repl
1454 		    && repl->recovery_offset == MaxSector
1455 		    && !test_bit(Faulty, &repl->flags)
1456 		    && !test_and_set_bit(In_sync, &repl->flags)) {
1457 			/* replacement has just become active */
1458 			if (!rdev ||
1459 			    !test_and_clear_bit(In_sync, &rdev->flags))
1460 				count++;
1461 			if (rdev) {
1462 				/* Replaced device not technically
1463 				 * faulty, but we need to be sure
1464 				 * it gets removed and never re-added
1465 				 */
1466 				set_bit(Faulty, &rdev->flags);
1467 				sysfs_notify_dirent_safe(
1468 					rdev->sysfs_state);
1469 			}
1470 		}
1471 		if (rdev
1472 		    && !test_bit(Faulty, &rdev->flags)
1473 		    && !test_and_set_bit(In_sync, &rdev->flags)) {
1474 			count++;
1475 			sysfs_notify_dirent_safe(rdev->sysfs_state);
1476 		}
1477 	}
1478 	spin_lock_irqsave(&conf->device_lock, flags);
1479 	mddev->degraded -= count;
1480 	spin_unlock_irqrestore(&conf->device_lock, flags);
1481 
1482 	print_conf(conf);
1483 	return count;
1484 }
1485 
1486 
1487 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1488 {
1489 	struct r1conf *conf = mddev->private;
1490 	int err = -EEXIST;
1491 	int mirror = 0;
1492 	struct raid1_info *p;
1493 	int first = 0;
1494 	int last = conf->raid_disks - 1;
1495 	struct request_queue *q = bdev_get_queue(rdev->bdev);
1496 
1497 	if (mddev->recovery_disabled == conf->recovery_disabled)
1498 		return -EBUSY;
1499 
1500 	if (rdev->raid_disk >= 0)
1501 		first = last = rdev->raid_disk;
1502 
1503 	if (q->merge_bvec_fn) {
1504 		set_bit(Unmerged, &rdev->flags);
1505 		mddev->merge_check_needed = 1;
1506 	}
1507 
1508 	for (mirror = first; mirror <= last; mirror++) {
1509 		p = conf->mirrors+mirror;
1510 		if (!p->rdev) {
1511 
1512 			disk_stack_limits(mddev->gendisk, rdev->bdev,
1513 					  rdev->data_offset << 9);
1514 
1515 			p->head_position = 0;
1516 			rdev->raid_disk = mirror;
1517 			err = 0;
1518 			/* As all devices are equivalent, we don't need a full recovery
1519 			 * if this was recently any drive of the array
1520 			 */
1521 			if (rdev->saved_raid_disk < 0)
1522 				conf->fullsync = 1;
1523 			rcu_assign_pointer(p->rdev, rdev);
1524 			break;
1525 		}
1526 		if (test_bit(WantReplacement, &p->rdev->flags) &&
1527 		    p[conf->raid_disks].rdev == NULL) {
1528 			/* Add this device as a replacement */
1529 			clear_bit(In_sync, &rdev->flags);
1530 			set_bit(Replacement, &rdev->flags);
1531 			rdev->raid_disk = mirror;
1532 			err = 0;
1533 			conf->fullsync = 1;
1534 			rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1535 			break;
1536 		}
1537 	}
1538 	if (err == 0 && test_bit(Unmerged, &rdev->flags)) {
1539 		/* Some requests might not have seen this new
1540 		 * merge_bvec_fn.  We must wait for them to complete
1541 		 * before merging the device fully.
1542 		 * First we make sure any code which has tested
1543 		 * our function has submitted the request, then
1544 		 * we wait for all outstanding requests to complete.
1545 		 */
1546 		synchronize_sched();
1547 		raise_barrier(conf);
1548 		lower_barrier(conf);
1549 		clear_bit(Unmerged, &rdev->flags);
1550 	}
1551 	md_integrity_add_rdev(rdev, mddev);
1552 	print_conf(conf);
1553 	return err;
1554 }
1555 
1556 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1557 {
1558 	struct r1conf *conf = mddev->private;
1559 	int err = 0;
1560 	int number = rdev->raid_disk;
1561 	struct raid1_info *p = conf->mirrors + number;
1562 
1563 	if (rdev != p->rdev)
1564 		p = conf->mirrors + conf->raid_disks + number;
1565 
1566 	print_conf(conf);
1567 	if (rdev == p->rdev) {
1568 		if (test_bit(In_sync, &rdev->flags) ||
1569 		    atomic_read(&rdev->nr_pending)) {
1570 			err = -EBUSY;
1571 			goto abort;
1572 		}
1573 		/* Only remove non-faulty devices if recovery
1574 		 * is not possible.
1575 		 */
1576 		if (!test_bit(Faulty, &rdev->flags) &&
1577 		    mddev->recovery_disabled != conf->recovery_disabled &&
1578 		    mddev->degraded < conf->raid_disks) {
1579 			err = -EBUSY;
1580 			goto abort;
1581 		}
1582 		p->rdev = NULL;
1583 		synchronize_rcu();
1584 		if (atomic_read(&rdev->nr_pending)) {
1585 			/* lost the race, try later */
1586 			err = -EBUSY;
1587 			p->rdev = rdev;
1588 			goto abort;
1589 		} else if (conf->mirrors[conf->raid_disks + number].rdev) {
1590 			/* We just removed a device that is being replaced.
1591 			 * Move down the replacement.  We drain all IO before
1592 			 * doing this to avoid confusion.
1593 			 */
1594 			struct md_rdev *repl =
1595 				conf->mirrors[conf->raid_disks + number].rdev;
1596 			raise_barrier(conf);
1597 			clear_bit(Replacement, &repl->flags);
1598 			p->rdev = repl;
1599 			conf->mirrors[conf->raid_disks + number].rdev = NULL;
1600 			lower_barrier(conf);
1601 			clear_bit(WantReplacement, &rdev->flags);
1602 		} else
1603 			clear_bit(WantReplacement, &rdev->flags);
1604 		err = md_integrity_register(mddev);
1605 	}
1606 abort:
1607 
1608 	print_conf(conf);
1609 	return err;
1610 }
1611 
1612 
1613 static void end_sync_read(struct bio *bio, int error)
1614 {
1615 	struct r1bio *r1_bio = bio->bi_private;
1616 
1617 	update_head_pos(r1_bio->read_disk, r1_bio);
1618 
1619 	/*
1620 	 * we have read a block, now it needs to be re-written,
1621 	 * or re-read if the read failed.
1622 	 * We don't do much here, just schedule handling by raid1d
1623 	 */
1624 	if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1625 		set_bit(R1BIO_Uptodate, &r1_bio->state);
1626 
1627 	if (atomic_dec_and_test(&r1_bio->remaining))
1628 		reschedule_retry(r1_bio);
1629 }
1630 
1631 static void end_sync_write(struct bio *bio, int error)
1632 {
1633 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1634 	struct r1bio *r1_bio = bio->bi_private;
1635 	struct mddev *mddev = r1_bio->mddev;
1636 	struct r1conf *conf = mddev->private;
1637 	int mirror=0;
1638 	sector_t first_bad;
1639 	int bad_sectors;
1640 
1641 	mirror = find_bio_disk(r1_bio, bio);
1642 
1643 	if (!uptodate) {
1644 		sector_t sync_blocks = 0;
1645 		sector_t s = r1_bio->sector;
1646 		long sectors_to_go = r1_bio->sectors;
1647 		/* make sure these bits doesn't get cleared. */
1648 		do {
1649 			bitmap_end_sync(mddev->bitmap, s,
1650 					&sync_blocks, 1);
1651 			s += sync_blocks;
1652 			sectors_to_go -= sync_blocks;
1653 		} while (sectors_to_go > 0);
1654 		set_bit(WriteErrorSeen,
1655 			&conf->mirrors[mirror].rdev->flags);
1656 		if (!test_and_set_bit(WantReplacement,
1657 				      &conf->mirrors[mirror].rdev->flags))
1658 			set_bit(MD_RECOVERY_NEEDED, &
1659 				mddev->recovery);
1660 		set_bit(R1BIO_WriteError, &r1_bio->state);
1661 	} else if (is_badblock(conf->mirrors[mirror].rdev,
1662 			       r1_bio->sector,
1663 			       r1_bio->sectors,
1664 			       &first_bad, &bad_sectors) &&
1665 		   !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1666 				r1_bio->sector,
1667 				r1_bio->sectors,
1668 				&first_bad, &bad_sectors)
1669 		)
1670 		set_bit(R1BIO_MadeGood, &r1_bio->state);
1671 
1672 	if (atomic_dec_and_test(&r1_bio->remaining)) {
1673 		int s = r1_bio->sectors;
1674 		if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1675 		    test_bit(R1BIO_WriteError, &r1_bio->state))
1676 			reschedule_retry(r1_bio);
1677 		else {
1678 			put_buf(r1_bio);
1679 			md_done_sync(mddev, s, uptodate);
1680 		}
1681 	}
1682 }
1683 
1684 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1685 			    int sectors, struct page *page, int rw)
1686 {
1687 	if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
1688 		/* success */
1689 		return 1;
1690 	if (rw == WRITE) {
1691 		set_bit(WriteErrorSeen, &rdev->flags);
1692 		if (!test_and_set_bit(WantReplacement,
1693 				      &rdev->flags))
1694 			set_bit(MD_RECOVERY_NEEDED, &
1695 				rdev->mddev->recovery);
1696 	}
1697 	/* need to record an error - either for the block or the device */
1698 	if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1699 		md_error(rdev->mddev, rdev);
1700 	return 0;
1701 }
1702 
1703 static int fix_sync_read_error(struct r1bio *r1_bio)
1704 {
1705 	/* Try some synchronous reads of other devices to get
1706 	 * good data, much like with normal read errors.  Only
1707 	 * read into the pages we already have so we don't
1708 	 * need to re-issue the read request.
1709 	 * We don't need to freeze the array, because being in an
1710 	 * active sync request, there is no normal IO, and
1711 	 * no overlapping syncs.
1712 	 * We don't need to check is_badblock() again as we
1713 	 * made sure that anything with a bad block in range
1714 	 * will have bi_end_io clear.
1715 	 */
1716 	struct mddev *mddev = r1_bio->mddev;
1717 	struct r1conf *conf = mddev->private;
1718 	struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1719 	sector_t sect = r1_bio->sector;
1720 	int sectors = r1_bio->sectors;
1721 	int idx = 0;
1722 
1723 	while(sectors) {
1724 		int s = sectors;
1725 		int d = r1_bio->read_disk;
1726 		int success = 0;
1727 		struct md_rdev *rdev;
1728 		int start;
1729 
1730 		if (s > (PAGE_SIZE>>9))
1731 			s = PAGE_SIZE >> 9;
1732 		do {
1733 			if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1734 				/* No rcu protection needed here devices
1735 				 * can only be removed when no resync is
1736 				 * active, and resync is currently active
1737 				 */
1738 				rdev = conf->mirrors[d].rdev;
1739 				if (sync_page_io(rdev, sect, s<<9,
1740 						 bio->bi_io_vec[idx].bv_page,
1741 						 READ, false)) {
1742 					success = 1;
1743 					break;
1744 				}
1745 			}
1746 			d++;
1747 			if (d == conf->raid_disks * 2)
1748 				d = 0;
1749 		} while (!success && d != r1_bio->read_disk);
1750 
1751 		if (!success) {
1752 			char b[BDEVNAME_SIZE];
1753 			int abort = 0;
1754 			/* Cannot read from anywhere, this block is lost.
1755 			 * Record a bad block on each device.  If that doesn't
1756 			 * work just disable and interrupt the recovery.
1757 			 * Don't fail devices as that won't really help.
1758 			 */
1759 			printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error"
1760 			       " for block %llu\n",
1761 			       mdname(mddev),
1762 			       bdevname(bio->bi_bdev, b),
1763 			       (unsigned long long)r1_bio->sector);
1764 			for (d = 0; d < conf->raid_disks * 2; d++) {
1765 				rdev = conf->mirrors[d].rdev;
1766 				if (!rdev || test_bit(Faulty, &rdev->flags))
1767 					continue;
1768 				if (!rdev_set_badblocks(rdev, sect, s, 0))
1769 					abort = 1;
1770 			}
1771 			if (abort) {
1772 				conf->recovery_disabled =
1773 					mddev->recovery_disabled;
1774 				set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1775 				md_done_sync(mddev, r1_bio->sectors, 0);
1776 				put_buf(r1_bio);
1777 				return 0;
1778 			}
1779 			/* Try next page */
1780 			sectors -= s;
1781 			sect += s;
1782 			idx++;
1783 			continue;
1784 		}
1785 
1786 		start = d;
1787 		/* write it back and re-read */
1788 		while (d != r1_bio->read_disk) {
1789 			if (d == 0)
1790 				d = conf->raid_disks * 2;
1791 			d--;
1792 			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1793 				continue;
1794 			rdev = conf->mirrors[d].rdev;
1795 			if (r1_sync_page_io(rdev, sect, s,
1796 					    bio->bi_io_vec[idx].bv_page,
1797 					    WRITE) == 0) {
1798 				r1_bio->bios[d]->bi_end_io = NULL;
1799 				rdev_dec_pending(rdev, mddev);
1800 			}
1801 		}
1802 		d = start;
1803 		while (d != r1_bio->read_disk) {
1804 			if (d == 0)
1805 				d = conf->raid_disks * 2;
1806 			d--;
1807 			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1808 				continue;
1809 			rdev = conf->mirrors[d].rdev;
1810 			if (r1_sync_page_io(rdev, sect, s,
1811 					    bio->bi_io_vec[idx].bv_page,
1812 					    READ) != 0)
1813 				atomic_add(s, &rdev->corrected_errors);
1814 		}
1815 		sectors -= s;
1816 		sect += s;
1817 		idx ++;
1818 	}
1819 	set_bit(R1BIO_Uptodate, &r1_bio->state);
1820 	set_bit(BIO_UPTODATE, &bio->bi_flags);
1821 	return 1;
1822 }
1823 
1824 static int process_checks(struct r1bio *r1_bio)
1825 {
1826 	/* We have read all readable devices.  If we haven't
1827 	 * got the block, then there is no hope left.
1828 	 * If we have, then we want to do a comparison
1829 	 * and skip the write if everything is the same.
1830 	 * If any blocks failed to read, then we need to
1831 	 * attempt an over-write
1832 	 */
1833 	struct mddev *mddev = r1_bio->mddev;
1834 	struct r1conf *conf = mddev->private;
1835 	int primary;
1836 	int i;
1837 	int vcnt;
1838 
1839 	for (primary = 0; primary < conf->raid_disks * 2; primary++)
1840 		if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
1841 		    test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) {
1842 			r1_bio->bios[primary]->bi_end_io = NULL;
1843 			rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
1844 			break;
1845 		}
1846 	r1_bio->read_disk = primary;
1847 	vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
1848 	for (i = 0; i < conf->raid_disks * 2; i++) {
1849 		int j;
1850 		struct bio *pbio = r1_bio->bios[primary];
1851 		struct bio *sbio = r1_bio->bios[i];
1852 		int size;
1853 
1854 		if (r1_bio->bios[i]->bi_end_io != end_sync_read)
1855 			continue;
1856 
1857 		if (test_bit(BIO_UPTODATE, &sbio->bi_flags)) {
1858 			for (j = vcnt; j-- ; ) {
1859 				struct page *p, *s;
1860 				p = pbio->bi_io_vec[j].bv_page;
1861 				s = sbio->bi_io_vec[j].bv_page;
1862 				if (memcmp(page_address(p),
1863 					   page_address(s),
1864 					   sbio->bi_io_vec[j].bv_len))
1865 					break;
1866 			}
1867 		} else
1868 			j = 0;
1869 		if (j >= 0)
1870 			mddev->resync_mismatches += r1_bio->sectors;
1871 		if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
1872 			      && test_bit(BIO_UPTODATE, &sbio->bi_flags))) {
1873 			/* No need to write to this device. */
1874 			sbio->bi_end_io = NULL;
1875 			rdev_dec_pending(conf->mirrors[i].rdev, mddev);
1876 			continue;
1877 		}
1878 		/* fixup the bio for reuse */
1879 		sbio->bi_vcnt = vcnt;
1880 		sbio->bi_size = r1_bio->sectors << 9;
1881 		sbio->bi_idx = 0;
1882 		sbio->bi_phys_segments = 0;
1883 		sbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1884 		sbio->bi_flags |= 1 << BIO_UPTODATE;
1885 		sbio->bi_next = NULL;
1886 		sbio->bi_sector = r1_bio->sector +
1887 			conf->mirrors[i].rdev->data_offset;
1888 		sbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1889 		size = sbio->bi_size;
1890 		for (j = 0; j < vcnt ; j++) {
1891 			struct bio_vec *bi;
1892 			bi = &sbio->bi_io_vec[j];
1893 			bi->bv_offset = 0;
1894 			if (size > PAGE_SIZE)
1895 				bi->bv_len = PAGE_SIZE;
1896 			else
1897 				bi->bv_len = size;
1898 			size -= PAGE_SIZE;
1899 			memcpy(page_address(bi->bv_page),
1900 			       page_address(pbio->bi_io_vec[j].bv_page),
1901 			       PAGE_SIZE);
1902 		}
1903 	}
1904 	return 0;
1905 }
1906 
1907 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
1908 {
1909 	struct r1conf *conf = mddev->private;
1910 	int i;
1911 	int disks = conf->raid_disks * 2;
1912 	struct bio *bio, *wbio;
1913 
1914 	bio = r1_bio->bios[r1_bio->read_disk];
1915 
1916 	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
1917 		/* ouch - failed to read all of that. */
1918 		if (!fix_sync_read_error(r1_bio))
1919 			return;
1920 
1921 	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
1922 		if (process_checks(r1_bio) < 0)
1923 			return;
1924 	/*
1925 	 * schedule writes
1926 	 */
1927 	atomic_set(&r1_bio->remaining, 1);
1928 	for (i = 0; i < disks ; i++) {
1929 		wbio = r1_bio->bios[i];
1930 		if (wbio->bi_end_io == NULL ||
1931 		    (wbio->bi_end_io == end_sync_read &&
1932 		     (i == r1_bio->read_disk ||
1933 		      !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
1934 			continue;
1935 
1936 		wbio->bi_rw = WRITE;
1937 		wbio->bi_end_io = end_sync_write;
1938 		atomic_inc(&r1_bio->remaining);
1939 		md_sync_acct(conf->mirrors[i].rdev->bdev, wbio->bi_size >> 9);
1940 
1941 		generic_make_request(wbio);
1942 	}
1943 
1944 	if (atomic_dec_and_test(&r1_bio->remaining)) {
1945 		/* if we're here, all write(s) have completed, so clean up */
1946 		int s = r1_bio->sectors;
1947 		if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1948 		    test_bit(R1BIO_WriteError, &r1_bio->state))
1949 			reschedule_retry(r1_bio);
1950 		else {
1951 			put_buf(r1_bio);
1952 			md_done_sync(mddev, s, 1);
1953 		}
1954 	}
1955 }
1956 
1957 /*
1958  * This is a kernel thread which:
1959  *
1960  *	1.	Retries failed read operations on working mirrors.
1961  *	2.	Updates the raid superblock when problems encounter.
1962  *	3.	Performs writes following reads for array synchronising.
1963  */
1964 
1965 static void fix_read_error(struct r1conf *conf, int read_disk,
1966 			   sector_t sect, int sectors)
1967 {
1968 	struct mddev *mddev = conf->mddev;
1969 	while(sectors) {
1970 		int s = sectors;
1971 		int d = read_disk;
1972 		int success = 0;
1973 		int start;
1974 		struct md_rdev *rdev;
1975 
1976 		if (s > (PAGE_SIZE>>9))
1977 			s = PAGE_SIZE >> 9;
1978 
1979 		do {
1980 			/* Note: no rcu protection needed here
1981 			 * as this is synchronous in the raid1d thread
1982 			 * which is the thread that might remove
1983 			 * a device.  If raid1d ever becomes multi-threaded....
1984 			 */
1985 			sector_t first_bad;
1986 			int bad_sectors;
1987 
1988 			rdev = conf->mirrors[d].rdev;
1989 			if (rdev &&
1990 			    (test_bit(In_sync, &rdev->flags) ||
1991 			     (!test_bit(Faulty, &rdev->flags) &&
1992 			      rdev->recovery_offset >= sect + s)) &&
1993 			    is_badblock(rdev, sect, s,
1994 					&first_bad, &bad_sectors) == 0 &&
1995 			    sync_page_io(rdev, sect, s<<9,
1996 					 conf->tmppage, READ, false))
1997 				success = 1;
1998 			else {
1999 				d++;
2000 				if (d == conf->raid_disks * 2)
2001 					d = 0;
2002 			}
2003 		} while (!success && d != read_disk);
2004 
2005 		if (!success) {
2006 			/* Cannot read from anywhere - mark it bad */
2007 			struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2008 			if (!rdev_set_badblocks(rdev, sect, s, 0))
2009 				md_error(mddev, rdev);
2010 			break;
2011 		}
2012 		/* write it back and re-read */
2013 		start = d;
2014 		while (d != read_disk) {
2015 			if (d==0)
2016 				d = conf->raid_disks * 2;
2017 			d--;
2018 			rdev = conf->mirrors[d].rdev;
2019 			if (rdev &&
2020 			    test_bit(In_sync, &rdev->flags))
2021 				r1_sync_page_io(rdev, sect, s,
2022 						conf->tmppage, WRITE);
2023 		}
2024 		d = start;
2025 		while (d != read_disk) {
2026 			char b[BDEVNAME_SIZE];
2027 			if (d==0)
2028 				d = conf->raid_disks * 2;
2029 			d--;
2030 			rdev = conf->mirrors[d].rdev;
2031 			if (rdev &&
2032 			    test_bit(In_sync, &rdev->flags)) {
2033 				if (r1_sync_page_io(rdev, sect, s,
2034 						    conf->tmppage, READ)) {
2035 					atomic_add(s, &rdev->corrected_errors);
2036 					printk(KERN_INFO
2037 					       "md/raid1:%s: read error corrected "
2038 					       "(%d sectors at %llu on %s)\n",
2039 					       mdname(mddev), s,
2040 					       (unsigned long long)(sect +
2041 					           rdev->data_offset),
2042 					       bdevname(rdev->bdev, b));
2043 				}
2044 			}
2045 		}
2046 		sectors -= s;
2047 		sect += s;
2048 	}
2049 }
2050 
2051 static void bi_complete(struct bio *bio, int error)
2052 {
2053 	complete((struct completion *)bio->bi_private);
2054 }
2055 
2056 static int submit_bio_wait(int rw, struct bio *bio)
2057 {
2058 	struct completion event;
2059 	rw |= REQ_SYNC;
2060 
2061 	init_completion(&event);
2062 	bio->bi_private = &event;
2063 	bio->bi_end_io = bi_complete;
2064 	submit_bio(rw, bio);
2065 	wait_for_completion(&event);
2066 
2067 	return test_bit(BIO_UPTODATE, &bio->bi_flags);
2068 }
2069 
2070 static int narrow_write_error(struct r1bio *r1_bio, int i)
2071 {
2072 	struct mddev *mddev = r1_bio->mddev;
2073 	struct r1conf *conf = mddev->private;
2074 	struct md_rdev *rdev = conf->mirrors[i].rdev;
2075 	int vcnt, idx;
2076 	struct bio_vec *vec;
2077 
2078 	/* bio has the data to be written to device 'i' where
2079 	 * we just recently had a write error.
2080 	 * We repeatedly clone the bio and trim down to one block,
2081 	 * then try the write.  Where the write fails we record
2082 	 * a bad block.
2083 	 * It is conceivable that the bio doesn't exactly align with
2084 	 * blocks.  We must handle this somehow.
2085 	 *
2086 	 * We currently own a reference on the rdev.
2087 	 */
2088 
2089 	int block_sectors;
2090 	sector_t sector;
2091 	int sectors;
2092 	int sect_to_write = r1_bio->sectors;
2093 	int ok = 1;
2094 
2095 	if (rdev->badblocks.shift < 0)
2096 		return 0;
2097 
2098 	block_sectors = 1 << rdev->badblocks.shift;
2099 	sector = r1_bio->sector;
2100 	sectors = ((sector + block_sectors)
2101 		   & ~(sector_t)(block_sectors - 1))
2102 		- sector;
2103 
2104 	if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2105 		vcnt = r1_bio->behind_page_count;
2106 		vec = r1_bio->behind_bvecs;
2107 		idx = 0;
2108 		while (vec[idx].bv_page == NULL)
2109 			idx++;
2110 	} else {
2111 		vcnt = r1_bio->master_bio->bi_vcnt;
2112 		vec = r1_bio->master_bio->bi_io_vec;
2113 		idx = r1_bio->master_bio->bi_idx;
2114 	}
2115 	while (sect_to_write) {
2116 		struct bio *wbio;
2117 		if (sectors > sect_to_write)
2118 			sectors = sect_to_write;
2119 		/* Write at 'sector' for 'sectors'*/
2120 
2121 		wbio = bio_alloc_mddev(GFP_NOIO, vcnt, mddev);
2122 		memcpy(wbio->bi_io_vec, vec, vcnt * sizeof(struct bio_vec));
2123 		wbio->bi_sector = r1_bio->sector;
2124 		wbio->bi_rw = WRITE;
2125 		wbio->bi_vcnt = vcnt;
2126 		wbio->bi_size = r1_bio->sectors << 9;
2127 		wbio->bi_idx = idx;
2128 
2129 		md_trim_bio(wbio, sector - r1_bio->sector, sectors);
2130 		wbio->bi_sector += rdev->data_offset;
2131 		wbio->bi_bdev = rdev->bdev;
2132 		if (submit_bio_wait(WRITE, wbio) == 0)
2133 			/* failure! */
2134 			ok = rdev_set_badblocks(rdev, sector,
2135 						sectors, 0)
2136 				&& ok;
2137 
2138 		bio_put(wbio);
2139 		sect_to_write -= sectors;
2140 		sector += sectors;
2141 		sectors = block_sectors;
2142 	}
2143 	return ok;
2144 }
2145 
2146 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2147 {
2148 	int m;
2149 	int s = r1_bio->sectors;
2150 	for (m = 0; m < conf->raid_disks * 2 ; m++) {
2151 		struct md_rdev *rdev = conf->mirrors[m].rdev;
2152 		struct bio *bio = r1_bio->bios[m];
2153 		if (bio->bi_end_io == NULL)
2154 			continue;
2155 		if (test_bit(BIO_UPTODATE, &bio->bi_flags) &&
2156 		    test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2157 			rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2158 		}
2159 		if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
2160 		    test_bit(R1BIO_WriteError, &r1_bio->state)) {
2161 			if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2162 				md_error(conf->mddev, rdev);
2163 		}
2164 	}
2165 	put_buf(r1_bio);
2166 	md_done_sync(conf->mddev, s, 1);
2167 }
2168 
2169 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2170 {
2171 	int m;
2172 	for (m = 0; m < conf->raid_disks * 2 ; m++)
2173 		if (r1_bio->bios[m] == IO_MADE_GOOD) {
2174 			struct md_rdev *rdev = conf->mirrors[m].rdev;
2175 			rdev_clear_badblocks(rdev,
2176 					     r1_bio->sector,
2177 					     r1_bio->sectors, 0);
2178 			rdev_dec_pending(rdev, conf->mddev);
2179 		} else if (r1_bio->bios[m] != NULL) {
2180 			/* This drive got a write error.  We need to
2181 			 * narrow down and record precise write
2182 			 * errors.
2183 			 */
2184 			if (!narrow_write_error(r1_bio, m)) {
2185 				md_error(conf->mddev,
2186 					 conf->mirrors[m].rdev);
2187 				/* an I/O failed, we can't clear the bitmap */
2188 				set_bit(R1BIO_Degraded, &r1_bio->state);
2189 			}
2190 			rdev_dec_pending(conf->mirrors[m].rdev,
2191 					 conf->mddev);
2192 		}
2193 	if (test_bit(R1BIO_WriteError, &r1_bio->state))
2194 		close_write(r1_bio);
2195 	raid_end_bio_io(r1_bio);
2196 }
2197 
2198 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2199 {
2200 	int disk;
2201 	int max_sectors;
2202 	struct mddev *mddev = conf->mddev;
2203 	struct bio *bio;
2204 	char b[BDEVNAME_SIZE];
2205 	struct md_rdev *rdev;
2206 
2207 	clear_bit(R1BIO_ReadError, &r1_bio->state);
2208 	/* we got a read error. Maybe the drive is bad.  Maybe just
2209 	 * the block and we can fix it.
2210 	 * We freeze all other IO, and try reading the block from
2211 	 * other devices.  When we find one, we re-write
2212 	 * and check it that fixes the read error.
2213 	 * This is all done synchronously while the array is
2214 	 * frozen
2215 	 */
2216 	if (mddev->ro == 0) {
2217 		freeze_array(conf);
2218 		fix_read_error(conf, r1_bio->read_disk,
2219 			       r1_bio->sector, r1_bio->sectors);
2220 		unfreeze_array(conf);
2221 	} else
2222 		md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
2223 
2224 	bio = r1_bio->bios[r1_bio->read_disk];
2225 	bdevname(bio->bi_bdev, b);
2226 read_more:
2227 	disk = read_balance(conf, r1_bio, &max_sectors);
2228 	if (disk == -1) {
2229 		printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O"
2230 		       " read error for block %llu\n",
2231 		       mdname(mddev), b, (unsigned long long)r1_bio->sector);
2232 		raid_end_bio_io(r1_bio);
2233 	} else {
2234 		const unsigned long do_sync
2235 			= r1_bio->master_bio->bi_rw & REQ_SYNC;
2236 		if (bio) {
2237 			r1_bio->bios[r1_bio->read_disk] =
2238 				mddev->ro ? IO_BLOCKED : NULL;
2239 			bio_put(bio);
2240 		}
2241 		r1_bio->read_disk = disk;
2242 		bio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2243 		md_trim_bio(bio, r1_bio->sector - bio->bi_sector, max_sectors);
2244 		r1_bio->bios[r1_bio->read_disk] = bio;
2245 		rdev = conf->mirrors[disk].rdev;
2246 		printk_ratelimited(KERN_ERR
2247 				   "md/raid1:%s: redirecting sector %llu"
2248 				   " to other mirror: %s\n",
2249 				   mdname(mddev),
2250 				   (unsigned long long)r1_bio->sector,
2251 				   bdevname(rdev->bdev, b));
2252 		bio->bi_sector = r1_bio->sector + rdev->data_offset;
2253 		bio->bi_bdev = rdev->bdev;
2254 		bio->bi_end_io = raid1_end_read_request;
2255 		bio->bi_rw = READ | do_sync;
2256 		bio->bi_private = r1_bio;
2257 		if (max_sectors < r1_bio->sectors) {
2258 			/* Drat - have to split this up more */
2259 			struct bio *mbio = r1_bio->master_bio;
2260 			int sectors_handled = (r1_bio->sector + max_sectors
2261 					       - mbio->bi_sector);
2262 			r1_bio->sectors = max_sectors;
2263 			spin_lock_irq(&conf->device_lock);
2264 			if (mbio->bi_phys_segments == 0)
2265 				mbio->bi_phys_segments = 2;
2266 			else
2267 				mbio->bi_phys_segments++;
2268 			spin_unlock_irq(&conf->device_lock);
2269 			generic_make_request(bio);
2270 			bio = NULL;
2271 
2272 			r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
2273 
2274 			r1_bio->master_bio = mbio;
2275 			r1_bio->sectors = (mbio->bi_size >> 9)
2276 					  - sectors_handled;
2277 			r1_bio->state = 0;
2278 			set_bit(R1BIO_ReadError, &r1_bio->state);
2279 			r1_bio->mddev = mddev;
2280 			r1_bio->sector = mbio->bi_sector + sectors_handled;
2281 
2282 			goto read_more;
2283 		} else
2284 			generic_make_request(bio);
2285 	}
2286 }
2287 
2288 static void raid1d(struct mddev *mddev)
2289 {
2290 	struct r1bio *r1_bio;
2291 	unsigned long flags;
2292 	struct r1conf *conf = mddev->private;
2293 	struct list_head *head = &conf->retry_list;
2294 	struct blk_plug plug;
2295 
2296 	md_check_recovery(mddev);
2297 
2298 	blk_start_plug(&plug);
2299 	for (;;) {
2300 
2301 		flush_pending_writes(conf);
2302 
2303 		spin_lock_irqsave(&conf->device_lock, flags);
2304 		if (list_empty(head)) {
2305 			spin_unlock_irqrestore(&conf->device_lock, flags);
2306 			break;
2307 		}
2308 		r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2309 		list_del(head->prev);
2310 		conf->nr_queued--;
2311 		spin_unlock_irqrestore(&conf->device_lock, flags);
2312 
2313 		mddev = r1_bio->mddev;
2314 		conf = mddev->private;
2315 		if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2316 			if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2317 			    test_bit(R1BIO_WriteError, &r1_bio->state))
2318 				handle_sync_write_finished(conf, r1_bio);
2319 			else
2320 				sync_request_write(mddev, r1_bio);
2321 		} else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2322 			   test_bit(R1BIO_WriteError, &r1_bio->state))
2323 			handle_write_finished(conf, r1_bio);
2324 		else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2325 			handle_read_error(conf, r1_bio);
2326 		else
2327 			/* just a partial read to be scheduled from separate
2328 			 * context
2329 			 */
2330 			generic_make_request(r1_bio->bios[r1_bio->read_disk]);
2331 
2332 		cond_resched();
2333 		if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2334 			md_check_recovery(mddev);
2335 	}
2336 	blk_finish_plug(&plug);
2337 }
2338 
2339 
2340 static int init_resync(struct r1conf *conf)
2341 {
2342 	int buffs;
2343 
2344 	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2345 	BUG_ON(conf->r1buf_pool);
2346 	conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2347 					  conf->poolinfo);
2348 	if (!conf->r1buf_pool)
2349 		return -ENOMEM;
2350 	conf->next_resync = 0;
2351 	return 0;
2352 }
2353 
2354 /*
2355  * perform a "sync" on one "block"
2356  *
2357  * We need to make sure that no normal I/O request - particularly write
2358  * requests - conflict with active sync requests.
2359  *
2360  * This is achieved by tracking pending requests and a 'barrier' concept
2361  * that can be installed to exclude normal IO requests.
2362  */
2363 
2364 static sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
2365 {
2366 	struct r1conf *conf = mddev->private;
2367 	struct r1bio *r1_bio;
2368 	struct bio *bio;
2369 	sector_t max_sector, nr_sectors;
2370 	int disk = -1;
2371 	int i;
2372 	int wonly = -1;
2373 	int write_targets = 0, read_targets = 0;
2374 	sector_t sync_blocks;
2375 	int still_degraded = 0;
2376 	int good_sectors = RESYNC_SECTORS;
2377 	int min_bad = 0; /* number of sectors that are bad in all devices */
2378 
2379 	if (!conf->r1buf_pool)
2380 		if (init_resync(conf))
2381 			return 0;
2382 
2383 	max_sector = mddev->dev_sectors;
2384 	if (sector_nr >= max_sector) {
2385 		/* If we aborted, we need to abort the
2386 		 * sync on the 'current' bitmap chunk (there will
2387 		 * only be one in raid1 resync.
2388 		 * We can find the current addess in mddev->curr_resync
2389 		 */
2390 		if (mddev->curr_resync < max_sector) /* aborted */
2391 			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2392 						&sync_blocks, 1);
2393 		else /* completed sync */
2394 			conf->fullsync = 0;
2395 
2396 		bitmap_close_sync(mddev->bitmap);
2397 		close_sync(conf);
2398 		return 0;
2399 	}
2400 
2401 	if (mddev->bitmap == NULL &&
2402 	    mddev->recovery_cp == MaxSector &&
2403 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2404 	    conf->fullsync == 0) {
2405 		*skipped = 1;
2406 		return max_sector - sector_nr;
2407 	}
2408 	/* before building a request, check if we can skip these blocks..
2409 	 * This call the bitmap_start_sync doesn't actually record anything
2410 	 */
2411 	if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2412 	    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2413 		/* We can skip this block, and probably several more */
2414 		*skipped = 1;
2415 		return sync_blocks;
2416 	}
2417 	/*
2418 	 * If there is non-resync activity waiting for a turn,
2419 	 * and resync is going fast enough,
2420 	 * then let it though before starting on this new sync request.
2421 	 */
2422 	if (!go_faster && conf->nr_waiting)
2423 		msleep_interruptible(1000);
2424 
2425 	bitmap_cond_end_sync(mddev->bitmap, sector_nr);
2426 	r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
2427 	raise_barrier(conf);
2428 
2429 	conf->next_resync = sector_nr;
2430 
2431 	rcu_read_lock();
2432 	/*
2433 	 * If we get a correctably read error during resync or recovery,
2434 	 * we might want to read from a different device.  So we
2435 	 * flag all drives that could conceivably be read from for READ,
2436 	 * and any others (which will be non-In_sync devices) for WRITE.
2437 	 * If a read fails, we try reading from something else for which READ
2438 	 * is OK.
2439 	 */
2440 
2441 	r1_bio->mddev = mddev;
2442 	r1_bio->sector = sector_nr;
2443 	r1_bio->state = 0;
2444 	set_bit(R1BIO_IsSync, &r1_bio->state);
2445 
2446 	for (i = 0; i < conf->raid_disks * 2; i++) {
2447 		struct md_rdev *rdev;
2448 		bio = r1_bio->bios[i];
2449 
2450 		/* take from bio_init */
2451 		bio->bi_next = NULL;
2452 		bio->bi_flags &= ~(BIO_POOL_MASK-1);
2453 		bio->bi_flags |= 1 << BIO_UPTODATE;
2454 		bio->bi_rw = READ;
2455 		bio->bi_vcnt = 0;
2456 		bio->bi_idx = 0;
2457 		bio->bi_phys_segments = 0;
2458 		bio->bi_size = 0;
2459 		bio->bi_end_io = NULL;
2460 		bio->bi_private = NULL;
2461 
2462 		rdev = rcu_dereference(conf->mirrors[i].rdev);
2463 		if (rdev == NULL ||
2464 		    test_bit(Faulty, &rdev->flags)) {
2465 			if (i < conf->raid_disks)
2466 				still_degraded = 1;
2467 		} else if (!test_bit(In_sync, &rdev->flags)) {
2468 			bio->bi_rw = WRITE;
2469 			bio->bi_end_io = end_sync_write;
2470 			write_targets ++;
2471 		} else {
2472 			/* may need to read from here */
2473 			sector_t first_bad = MaxSector;
2474 			int bad_sectors;
2475 
2476 			if (is_badblock(rdev, sector_nr, good_sectors,
2477 					&first_bad, &bad_sectors)) {
2478 				if (first_bad > sector_nr)
2479 					good_sectors = first_bad - sector_nr;
2480 				else {
2481 					bad_sectors -= (sector_nr - first_bad);
2482 					if (min_bad == 0 ||
2483 					    min_bad > bad_sectors)
2484 						min_bad = bad_sectors;
2485 				}
2486 			}
2487 			if (sector_nr < first_bad) {
2488 				if (test_bit(WriteMostly, &rdev->flags)) {
2489 					if (wonly < 0)
2490 						wonly = i;
2491 				} else {
2492 					if (disk < 0)
2493 						disk = i;
2494 				}
2495 				bio->bi_rw = READ;
2496 				bio->bi_end_io = end_sync_read;
2497 				read_targets++;
2498 			} else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2499 				test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2500 				!test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2501 				/*
2502 				 * The device is suitable for reading (InSync),
2503 				 * but has bad block(s) here. Let's try to correct them,
2504 				 * if we are doing resync or repair. Otherwise, leave
2505 				 * this device alone for this sync request.
2506 				 */
2507 				bio->bi_rw = WRITE;
2508 				bio->bi_end_io = end_sync_write;
2509 				write_targets++;
2510 			}
2511 		}
2512 		if (bio->bi_end_io) {
2513 			atomic_inc(&rdev->nr_pending);
2514 			bio->bi_sector = sector_nr + rdev->data_offset;
2515 			bio->bi_bdev = rdev->bdev;
2516 			bio->bi_private = r1_bio;
2517 		}
2518 	}
2519 	rcu_read_unlock();
2520 	if (disk < 0)
2521 		disk = wonly;
2522 	r1_bio->read_disk = disk;
2523 
2524 	if (read_targets == 0 && min_bad > 0) {
2525 		/* These sectors are bad on all InSync devices, so we
2526 		 * need to mark them bad on all write targets
2527 		 */
2528 		int ok = 1;
2529 		for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2530 			if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2531 				struct md_rdev *rdev = conf->mirrors[i].rdev;
2532 				ok = rdev_set_badblocks(rdev, sector_nr,
2533 							min_bad, 0
2534 					) && ok;
2535 			}
2536 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
2537 		*skipped = 1;
2538 		put_buf(r1_bio);
2539 
2540 		if (!ok) {
2541 			/* Cannot record the badblocks, so need to
2542 			 * abort the resync.
2543 			 * If there are multiple read targets, could just
2544 			 * fail the really bad ones ???
2545 			 */
2546 			conf->recovery_disabled = mddev->recovery_disabled;
2547 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2548 			return 0;
2549 		} else
2550 			return min_bad;
2551 
2552 	}
2553 	if (min_bad > 0 && min_bad < good_sectors) {
2554 		/* only resync enough to reach the next bad->good
2555 		 * transition */
2556 		good_sectors = min_bad;
2557 	}
2558 
2559 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2560 		/* extra read targets are also write targets */
2561 		write_targets += read_targets-1;
2562 
2563 	if (write_targets == 0 || read_targets == 0) {
2564 		/* There is nowhere to write, so all non-sync
2565 		 * drives must be failed - so we are finished
2566 		 */
2567 		sector_t rv;
2568 		if (min_bad > 0)
2569 			max_sector = sector_nr + min_bad;
2570 		rv = max_sector - sector_nr;
2571 		*skipped = 1;
2572 		put_buf(r1_bio);
2573 		return rv;
2574 	}
2575 
2576 	if (max_sector > mddev->resync_max)
2577 		max_sector = mddev->resync_max; /* Don't do IO beyond here */
2578 	if (max_sector > sector_nr + good_sectors)
2579 		max_sector = sector_nr + good_sectors;
2580 	nr_sectors = 0;
2581 	sync_blocks = 0;
2582 	do {
2583 		struct page *page;
2584 		int len = PAGE_SIZE;
2585 		if (sector_nr + (len>>9) > max_sector)
2586 			len = (max_sector - sector_nr) << 9;
2587 		if (len == 0)
2588 			break;
2589 		if (sync_blocks == 0) {
2590 			if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2591 					       &sync_blocks, still_degraded) &&
2592 			    !conf->fullsync &&
2593 			    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2594 				break;
2595 			BUG_ON(sync_blocks < (PAGE_SIZE>>9));
2596 			if ((len >> 9) > sync_blocks)
2597 				len = sync_blocks<<9;
2598 		}
2599 
2600 		for (i = 0 ; i < conf->raid_disks * 2; i++) {
2601 			bio = r1_bio->bios[i];
2602 			if (bio->bi_end_io) {
2603 				page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
2604 				if (bio_add_page(bio, page, len, 0) == 0) {
2605 					/* stop here */
2606 					bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
2607 					while (i > 0) {
2608 						i--;
2609 						bio = r1_bio->bios[i];
2610 						if (bio->bi_end_io==NULL)
2611 							continue;
2612 						/* remove last page from this bio */
2613 						bio->bi_vcnt--;
2614 						bio->bi_size -= len;
2615 						bio->bi_flags &= ~(1<< BIO_SEG_VALID);
2616 					}
2617 					goto bio_full;
2618 				}
2619 			}
2620 		}
2621 		nr_sectors += len>>9;
2622 		sector_nr += len>>9;
2623 		sync_blocks -= (len>>9);
2624 	} while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
2625  bio_full:
2626 	r1_bio->sectors = nr_sectors;
2627 
2628 	/* For a user-requested sync, we read all readable devices and do a
2629 	 * compare
2630 	 */
2631 	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2632 		atomic_set(&r1_bio->remaining, read_targets);
2633 		for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2634 			bio = r1_bio->bios[i];
2635 			if (bio->bi_end_io == end_sync_read) {
2636 				read_targets--;
2637 				md_sync_acct(bio->bi_bdev, nr_sectors);
2638 				generic_make_request(bio);
2639 			}
2640 		}
2641 	} else {
2642 		atomic_set(&r1_bio->remaining, 1);
2643 		bio = r1_bio->bios[r1_bio->read_disk];
2644 		md_sync_acct(bio->bi_bdev, nr_sectors);
2645 		generic_make_request(bio);
2646 
2647 	}
2648 	return nr_sectors;
2649 }
2650 
2651 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2652 {
2653 	if (sectors)
2654 		return sectors;
2655 
2656 	return mddev->dev_sectors;
2657 }
2658 
2659 static struct r1conf *setup_conf(struct mddev *mddev)
2660 {
2661 	struct r1conf *conf;
2662 	int i;
2663 	struct raid1_info *disk;
2664 	struct md_rdev *rdev;
2665 	int err = -ENOMEM;
2666 
2667 	conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2668 	if (!conf)
2669 		goto abort;
2670 
2671 	conf->mirrors = kzalloc(sizeof(struct raid1_info)
2672 				* mddev->raid_disks * 2,
2673 				 GFP_KERNEL);
2674 	if (!conf->mirrors)
2675 		goto abort;
2676 
2677 	conf->tmppage = alloc_page(GFP_KERNEL);
2678 	if (!conf->tmppage)
2679 		goto abort;
2680 
2681 	conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
2682 	if (!conf->poolinfo)
2683 		goto abort;
2684 	conf->poolinfo->raid_disks = mddev->raid_disks * 2;
2685 	conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2686 					  r1bio_pool_free,
2687 					  conf->poolinfo);
2688 	if (!conf->r1bio_pool)
2689 		goto abort;
2690 
2691 	conf->poolinfo->mddev = mddev;
2692 
2693 	err = -EINVAL;
2694 	spin_lock_init(&conf->device_lock);
2695 	rdev_for_each(rdev, mddev) {
2696 		struct request_queue *q;
2697 		int disk_idx = rdev->raid_disk;
2698 		if (disk_idx >= mddev->raid_disks
2699 		    || disk_idx < 0)
2700 			continue;
2701 		if (test_bit(Replacement, &rdev->flags))
2702 			disk = conf->mirrors + conf->raid_disks + disk_idx;
2703 		else
2704 			disk = conf->mirrors + disk_idx;
2705 
2706 		if (disk->rdev)
2707 			goto abort;
2708 		disk->rdev = rdev;
2709 		q = bdev_get_queue(rdev->bdev);
2710 		if (q->merge_bvec_fn)
2711 			mddev->merge_check_needed = 1;
2712 
2713 		disk->head_position = 0;
2714 		disk->seq_start = MaxSector;
2715 	}
2716 	conf->raid_disks = mddev->raid_disks;
2717 	conf->mddev = mddev;
2718 	INIT_LIST_HEAD(&conf->retry_list);
2719 
2720 	spin_lock_init(&conf->resync_lock);
2721 	init_waitqueue_head(&conf->wait_barrier);
2722 
2723 	bio_list_init(&conf->pending_bio_list);
2724 	conf->pending_count = 0;
2725 	conf->recovery_disabled = mddev->recovery_disabled - 1;
2726 
2727 	err = -EIO;
2728 	for (i = 0; i < conf->raid_disks * 2; i++) {
2729 
2730 		disk = conf->mirrors + i;
2731 
2732 		if (i < conf->raid_disks &&
2733 		    disk[conf->raid_disks].rdev) {
2734 			/* This slot has a replacement. */
2735 			if (!disk->rdev) {
2736 				/* No original, just make the replacement
2737 				 * a recovering spare
2738 				 */
2739 				disk->rdev =
2740 					disk[conf->raid_disks].rdev;
2741 				disk[conf->raid_disks].rdev = NULL;
2742 			} else if (!test_bit(In_sync, &disk->rdev->flags))
2743 				/* Original is not in_sync - bad */
2744 				goto abort;
2745 		}
2746 
2747 		if (!disk->rdev ||
2748 		    !test_bit(In_sync, &disk->rdev->flags)) {
2749 			disk->head_position = 0;
2750 			if (disk->rdev &&
2751 			    (disk->rdev->saved_raid_disk < 0))
2752 				conf->fullsync = 1;
2753 		}
2754 	}
2755 
2756 	err = -ENOMEM;
2757 	conf->thread = md_register_thread(raid1d, mddev, "raid1");
2758 	if (!conf->thread) {
2759 		printk(KERN_ERR
2760 		       "md/raid1:%s: couldn't allocate thread\n",
2761 		       mdname(mddev));
2762 		goto abort;
2763 	}
2764 
2765 	return conf;
2766 
2767  abort:
2768 	if (conf) {
2769 		if (conf->r1bio_pool)
2770 			mempool_destroy(conf->r1bio_pool);
2771 		kfree(conf->mirrors);
2772 		safe_put_page(conf->tmppage);
2773 		kfree(conf->poolinfo);
2774 		kfree(conf);
2775 	}
2776 	return ERR_PTR(err);
2777 }
2778 
2779 static int stop(struct mddev *mddev);
2780 static int run(struct mddev *mddev)
2781 {
2782 	struct r1conf *conf;
2783 	int i;
2784 	struct md_rdev *rdev;
2785 	int ret;
2786 
2787 	if (mddev->level != 1) {
2788 		printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n",
2789 		       mdname(mddev), mddev->level);
2790 		return -EIO;
2791 	}
2792 	if (mddev->reshape_position != MaxSector) {
2793 		printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n",
2794 		       mdname(mddev));
2795 		return -EIO;
2796 	}
2797 	/*
2798 	 * copy the already verified devices into our private RAID1
2799 	 * bookkeeping area. [whatever we allocate in run(),
2800 	 * should be freed in stop()]
2801 	 */
2802 	if (mddev->private == NULL)
2803 		conf = setup_conf(mddev);
2804 	else
2805 		conf = mddev->private;
2806 
2807 	if (IS_ERR(conf))
2808 		return PTR_ERR(conf);
2809 
2810 	rdev_for_each(rdev, mddev) {
2811 		if (!mddev->gendisk)
2812 			continue;
2813 		disk_stack_limits(mddev->gendisk, rdev->bdev,
2814 				  rdev->data_offset << 9);
2815 	}
2816 
2817 	mddev->degraded = 0;
2818 	for (i=0; i < conf->raid_disks; i++)
2819 		if (conf->mirrors[i].rdev == NULL ||
2820 		    !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
2821 		    test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2822 			mddev->degraded++;
2823 
2824 	if (conf->raid_disks - mddev->degraded == 1)
2825 		mddev->recovery_cp = MaxSector;
2826 
2827 	if (mddev->recovery_cp != MaxSector)
2828 		printk(KERN_NOTICE "md/raid1:%s: not clean"
2829 		       " -- starting background reconstruction\n",
2830 		       mdname(mddev));
2831 	printk(KERN_INFO
2832 		"md/raid1:%s: active with %d out of %d mirrors\n",
2833 		mdname(mddev), mddev->raid_disks - mddev->degraded,
2834 		mddev->raid_disks);
2835 
2836 	/*
2837 	 * Ok, everything is just fine now
2838 	 */
2839 	mddev->thread = conf->thread;
2840 	conf->thread = NULL;
2841 	mddev->private = conf;
2842 
2843 	md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
2844 
2845 	if (mddev->queue) {
2846 		mddev->queue->backing_dev_info.congested_fn = raid1_congested;
2847 		mddev->queue->backing_dev_info.congested_data = mddev;
2848 		blk_queue_merge_bvec(mddev->queue, raid1_mergeable_bvec);
2849 	}
2850 
2851 	ret =  md_integrity_register(mddev);
2852 	if (ret)
2853 		stop(mddev);
2854 	return ret;
2855 }
2856 
2857 static int stop(struct mddev *mddev)
2858 {
2859 	struct r1conf *conf = mddev->private;
2860 	struct bitmap *bitmap = mddev->bitmap;
2861 
2862 	/* wait for behind writes to complete */
2863 	if (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
2864 		printk(KERN_INFO "md/raid1:%s: behind writes in progress - waiting to stop.\n",
2865 		       mdname(mddev));
2866 		/* need to kick something here to make sure I/O goes? */
2867 		wait_event(bitmap->behind_wait,
2868 			   atomic_read(&bitmap->behind_writes) == 0);
2869 	}
2870 
2871 	raise_barrier(conf);
2872 	lower_barrier(conf);
2873 
2874 	md_unregister_thread(&mddev->thread);
2875 	if (conf->r1bio_pool)
2876 		mempool_destroy(conf->r1bio_pool);
2877 	kfree(conf->mirrors);
2878 	kfree(conf->poolinfo);
2879 	kfree(conf);
2880 	mddev->private = NULL;
2881 	return 0;
2882 }
2883 
2884 static int raid1_resize(struct mddev *mddev, sector_t sectors)
2885 {
2886 	/* no resync is happening, and there is enough space
2887 	 * on all devices, so we can resize.
2888 	 * We need to make sure resync covers any new space.
2889 	 * If the array is shrinking we should possibly wait until
2890 	 * any io in the removed space completes, but it hardly seems
2891 	 * worth it.
2892 	 */
2893 	sector_t newsize = raid1_size(mddev, sectors, 0);
2894 	if (mddev->external_size &&
2895 	    mddev->array_sectors > newsize)
2896 		return -EINVAL;
2897 	if (mddev->bitmap) {
2898 		int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0);
2899 		if (ret)
2900 			return ret;
2901 	}
2902 	md_set_array_sectors(mddev, newsize);
2903 	set_capacity(mddev->gendisk, mddev->array_sectors);
2904 	revalidate_disk(mddev->gendisk);
2905 	if (sectors > mddev->dev_sectors &&
2906 	    mddev->recovery_cp > mddev->dev_sectors) {
2907 		mddev->recovery_cp = mddev->dev_sectors;
2908 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2909 	}
2910 	mddev->dev_sectors = sectors;
2911 	mddev->resync_max_sectors = sectors;
2912 	return 0;
2913 }
2914 
2915 static int raid1_reshape(struct mddev *mddev)
2916 {
2917 	/* We need to:
2918 	 * 1/ resize the r1bio_pool
2919 	 * 2/ resize conf->mirrors
2920 	 *
2921 	 * We allocate a new r1bio_pool if we can.
2922 	 * Then raise a device barrier and wait until all IO stops.
2923 	 * Then resize conf->mirrors and swap in the new r1bio pool.
2924 	 *
2925 	 * At the same time, we "pack" the devices so that all the missing
2926 	 * devices have the higher raid_disk numbers.
2927 	 */
2928 	mempool_t *newpool, *oldpool;
2929 	struct pool_info *newpoolinfo;
2930 	struct raid1_info *newmirrors;
2931 	struct r1conf *conf = mddev->private;
2932 	int cnt, raid_disks;
2933 	unsigned long flags;
2934 	int d, d2, err;
2935 
2936 	/* Cannot change chunk_size, layout, or level */
2937 	if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
2938 	    mddev->layout != mddev->new_layout ||
2939 	    mddev->level != mddev->new_level) {
2940 		mddev->new_chunk_sectors = mddev->chunk_sectors;
2941 		mddev->new_layout = mddev->layout;
2942 		mddev->new_level = mddev->level;
2943 		return -EINVAL;
2944 	}
2945 
2946 	err = md_allow_write(mddev);
2947 	if (err)
2948 		return err;
2949 
2950 	raid_disks = mddev->raid_disks + mddev->delta_disks;
2951 
2952 	if (raid_disks < conf->raid_disks) {
2953 		cnt=0;
2954 		for (d= 0; d < conf->raid_disks; d++)
2955 			if (conf->mirrors[d].rdev)
2956 				cnt++;
2957 		if (cnt > raid_disks)
2958 			return -EBUSY;
2959 	}
2960 
2961 	newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
2962 	if (!newpoolinfo)
2963 		return -ENOMEM;
2964 	newpoolinfo->mddev = mddev;
2965 	newpoolinfo->raid_disks = raid_disks * 2;
2966 
2967 	newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2968 				 r1bio_pool_free, newpoolinfo);
2969 	if (!newpool) {
2970 		kfree(newpoolinfo);
2971 		return -ENOMEM;
2972 	}
2973 	newmirrors = kzalloc(sizeof(struct raid1_info) * raid_disks * 2,
2974 			     GFP_KERNEL);
2975 	if (!newmirrors) {
2976 		kfree(newpoolinfo);
2977 		mempool_destroy(newpool);
2978 		return -ENOMEM;
2979 	}
2980 
2981 	raise_barrier(conf);
2982 
2983 	/* ok, everything is stopped */
2984 	oldpool = conf->r1bio_pool;
2985 	conf->r1bio_pool = newpool;
2986 
2987 	for (d = d2 = 0; d < conf->raid_disks; d++) {
2988 		struct md_rdev *rdev = conf->mirrors[d].rdev;
2989 		if (rdev && rdev->raid_disk != d2) {
2990 			sysfs_unlink_rdev(mddev, rdev);
2991 			rdev->raid_disk = d2;
2992 			sysfs_unlink_rdev(mddev, rdev);
2993 			if (sysfs_link_rdev(mddev, rdev))
2994 				printk(KERN_WARNING
2995 				       "md/raid1:%s: cannot register rd%d\n",
2996 				       mdname(mddev), rdev->raid_disk);
2997 		}
2998 		if (rdev)
2999 			newmirrors[d2++].rdev = rdev;
3000 	}
3001 	kfree(conf->mirrors);
3002 	conf->mirrors = newmirrors;
3003 	kfree(conf->poolinfo);
3004 	conf->poolinfo = newpoolinfo;
3005 
3006 	spin_lock_irqsave(&conf->device_lock, flags);
3007 	mddev->degraded += (raid_disks - conf->raid_disks);
3008 	spin_unlock_irqrestore(&conf->device_lock, flags);
3009 	conf->raid_disks = mddev->raid_disks = raid_disks;
3010 	mddev->delta_disks = 0;
3011 
3012 	lower_barrier(conf);
3013 
3014 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3015 	md_wakeup_thread(mddev->thread);
3016 
3017 	mempool_destroy(oldpool);
3018 	return 0;
3019 }
3020 
3021 static void raid1_quiesce(struct mddev *mddev, int state)
3022 {
3023 	struct r1conf *conf = mddev->private;
3024 
3025 	switch(state) {
3026 	case 2: /* wake for suspend */
3027 		wake_up(&conf->wait_barrier);
3028 		break;
3029 	case 1:
3030 		raise_barrier(conf);
3031 		break;
3032 	case 0:
3033 		lower_barrier(conf);
3034 		break;
3035 	}
3036 }
3037 
3038 static void *raid1_takeover(struct mddev *mddev)
3039 {
3040 	/* raid1 can take over:
3041 	 *  raid5 with 2 devices, any layout or chunk size
3042 	 */
3043 	if (mddev->level == 5 && mddev->raid_disks == 2) {
3044 		struct r1conf *conf;
3045 		mddev->new_level = 1;
3046 		mddev->new_layout = 0;
3047 		mddev->new_chunk_sectors = 0;
3048 		conf = setup_conf(mddev);
3049 		if (!IS_ERR(conf))
3050 			conf->barrier = 1;
3051 		return conf;
3052 	}
3053 	return ERR_PTR(-EINVAL);
3054 }
3055 
3056 static struct md_personality raid1_personality =
3057 {
3058 	.name		= "raid1",
3059 	.level		= 1,
3060 	.owner		= THIS_MODULE,
3061 	.make_request	= make_request,
3062 	.run		= run,
3063 	.stop		= stop,
3064 	.status		= status,
3065 	.error_handler	= error,
3066 	.hot_add_disk	= raid1_add_disk,
3067 	.hot_remove_disk= raid1_remove_disk,
3068 	.spare_active	= raid1_spare_active,
3069 	.sync_request	= sync_request,
3070 	.resize		= raid1_resize,
3071 	.size		= raid1_size,
3072 	.check_reshape	= raid1_reshape,
3073 	.quiesce	= raid1_quiesce,
3074 	.takeover	= raid1_takeover,
3075 };
3076 
3077 static int __init raid_init(void)
3078 {
3079 	return register_md_personality(&raid1_personality);
3080 }
3081 
3082 static void raid_exit(void)
3083 {
3084 	unregister_md_personality(&raid1_personality);
3085 }
3086 
3087 module_init(raid_init);
3088 module_exit(raid_exit);
3089 MODULE_LICENSE("GPL");
3090 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3091 MODULE_ALIAS("md-personality-3"); /* RAID1 */
3092 MODULE_ALIAS("md-raid1");
3093 MODULE_ALIAS("md-level-1");
3094 
3095 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
3096