1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * raid1.c : Multiple Devices driver for Linux 4 * 5 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat 6 * 7 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman 8 * 9 * RAID-1 management functions. 10 * 11 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000 12 * 13 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk> 14 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au> 15 * 16 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support 17 * bitmapped intelligence in resync: 18 * 19 * - bitmap marked during normal i/o 20 * - bitmap used to skip nondirty blocks during sync 21 * 22 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology: 23 * - persistent bitmap code 24 */ 25 26 #include <linux/slab.h> 27 #include <linux/delay.h> 28 #include <linux/blkdev.h> 29 #include <linux/module.h> 30 #include <linux/seq_file.h> 31 #include <linux/ratelimit.h> 32 #include <linux/interval_tree_generic.h> 33 34 #include <trace/events/block.h> 35 36 #include "md.h" 37 #include "raid1.h" 38 #include "md-bitmap.h" 39 40 #define UNSUPPORTED_MDDEV_FLAGS \ 41 ((1L << MD_HAS_JOURNAL) | \ 42 (1L << MD_JOURNAL_CLEAN) | \ 43 (1L << MD_HAS_PPL) | \ 44 (1L << MD_HAS_MULTIPLE_PPLS)) 45 46 static void allow_barrier(struct r1conf *conf, sector_t sector_nr); 47 static void lower_barrier(struct r1conf *conf, sector_t sector_nr); 48 49 #define raid1_log(md, fmt, args...) \ 50 do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid1 " fmt, ##args); } while (0) 51 52 #include "raid1-10.c" 53 54 #define START(node) ((node)->start) 55 #define LAST(node) ((node)->last) 56 INTERVAL_TREE_DEFINE(struct serial_info, node, sector_t, _subtree_last, 57 START, LAST, static inline, raid1_rb); 58 59 static int check_and_add_serial(struct md_rdev *rdev, struct r1bio *r1_bio, 60 struct serial_info *si, int idx) 61 { 62 unsigned long flags; 63 int ret = 0; 64 sector_t lo = r1_bio->sector; 65 sector_t hi = lo + r1_bio->sectors; 66 struct serial_in_rdev *serial = &rdev->serial[idx]; 67 68 spin_lock_irqsave(&serial->serial_lock, flags); 69 /* collision happened */ 70 if (raid1_rb_iter_first(&serial->serial_rb, lo, hi)) 71 ret = -EBUSY; 72 else { 73 si->start = lo; 74 si->last = hi; 75 raid1_rb_insert(si, &serial->serial_rb); 76 } 77 spin_unlock_irqrestore(&serial->serial_lock, flags); 78 79 return ret; 80 } 81 82 static void wait_for_serialization(struct md_rdev *rdev, struct r1bio *r1_bio) 83 { 84 struct mddev *mddev = rdev->mddev; 85 struct serial_info *si; 86 int idx = sector_to_idx(r1_bio->sector); 87 struct serial_in_rdev *serial = &rdev->serial[idx]; 88 89 if (WARN_ON(!mddev->serial_info_pool)) 90 return; 91 si = mempool_alloc(mddev->serial_info_pool, GFP_NOIO); 92 wait_event(serial->serial_io_wait, 93 check_and_add_serial(rdev, r1_bio, si, idx) == 0); 94 } 95 96 static void remove_serial(struct md_rdev *rdev, sector_t lo, sector_t hi) 97 { 98 struct serial_info *si; 99 unsigned long flags; 100 int found = 0; 101 struct mddev *mddev = rdev->mddev; 102 int idx = sector_to_idx(lo); 103 struct serial_in_rdev *serial = &rdev->serial[idx]; 104 105 spin_lock_irqsave(&serial->serial_lock, flags); 106 for (si = raid1_rb_iter_first(&serial->serial_rb, lo, hi); 107 si; si = raid1_rb_iter_next(si, lo, hi)) { 108 if (si->start == lo && si->last == hi) { 109 raid1_rb_remove(si, &serial->serial_rb); 110 mempool_free(si, mddev->serial_info_pool); 111 found = 1; 112 break; 113 } 114 } 115 if (!found) 116 WARN(1, "The write IO is not recorded for serialization\n"); 117 spin_unlock_irqrestore(&serial->serial_lock, flags); 118 wake_up(&serial->serial_io_wait); 119 } 120 121 /* 122 * for resync bio, r1bio pointer can be retrieved from the per-bio 123 * 'struct resync_pages'. 124 */ 125 static inline struct r1bio *get_resync_r1bio(struct bio *bio) 126 { 127 return get_resync_pages(bio)->raid_bio; 128 } 129 130 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data) 131 { 132 struct pool_info *pi = data; 133 int size = offsetof(struct r1bio, bios[pi->raid_disks]); 134 135 /* allocate a r1bio with room for raid_disks entries in the bios array */ 136 return kzalloc(size, gfp_flags); 137 } 138 139 #define RESYNC_DEPTH 32 140 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9) 141 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH) 142 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9) 143 #define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW) 144 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9) 145 146 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data) 147 { 148 struct pool_info *pi = data; 149 struct r1bio *r1_bio; 150 struct bio *bio; 151 int need_pages; 152 int j; 153 struct resync_pages *rps; 154 155 r1_bio = r1bio_pool_alloc(gfp_flags, pi); 156 if (!r1_bio) 157 return NULL; 158 159 rps = kmalloc_array(pi->raid_disks, sizeof(struct resync_pages), 160 gfp_flags); 161 if (!rps) 162 goto out_free_r1bio; 163 164 /* 165 * Allocate bios : 1 for reading, n-1 for writing 166 */ 167 for (j = pi->raid_disks ; j-- ; ) { 168 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES); 169 if (!bio) 170 goto out_free_bio; 171 r1_bio->bios[j] = bio; 172 } 173 /* 174 * Allocate RESYNC_PAGES data pages and attach them to 175 * the first bio. 176 * If this is a user-requested check/repair, allocate 177 * RESYNC_PAGES for each bio. 178 */ 179 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) 180 need_pages = pi->raid_disks; 181 else 182 need_pages = 1; 183 for (j = 0; j < pi->raid_disks; j++) { 184 struct resync_pages *rp = &rps[j]; 185 186 bio = r1_bio->bios[j]; 187 188 if (j < need_pages) { 189 if (resync_alloc_pages(rp, gfp_flags)) 190 goto out_free_pages; 191 } else { 192 memcpy(rp, &rps[0], sizeof(*rp)); 193 resync_get_all_pages(rp); 194 } 195 196 rp->raid_bio = r1_bio; 197 bio->bi_private = rp; 198 } 199 200 r1_bio->master_bio = NULL; 201 202 return r1_bio; 203 204 out_free_pages: 205 while (--j >= 0) 206 resync_free_pages(&rps[j]); 207 208 out_free_bio: 209 while (++j < pi->raid_disks) 210 bio_put(r1_bio->bios[j]); 211 kfree(rps); 212 213 out_free_r1bio: 214 rbio_pool_free(r1_bio, data); 215 return NULL; 216 } 217 218 static void r1buf_pool_free(void *__r1_bio, void *data) 219 { 220 struct pool_info *pi = data; 221 int i; 222 struct r1bio *r1bio = __r1_bio; 223 struct resync_pages *rp = NULL; 224 225 for (i = pi->raid_disks; i--; ) { 226 rp = get_resync_pages(r1bio->bios[i]); 227 resync_free_pages(rp); 228 bio_put(r1bio->bios[i]); 229 } 230 231 /* resync pages array stored in the 1st bio's .bi_private */ 232 kfree(rp); 233 234 rbio_pool_free(r1bio, data); 235 } 236 237 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio) 238 { 239 int i; 240 241 for (i = 0; i < conf->raid_disks * 2; i++) { 242 struct bio **bio = r1_bio->bios + i; 243 if (!BIO_SPECIAL(*bio)) 244 bio_put(*bio); 245 *bio = NULL; 246 } 247 } 248 249 static void free_r1bio(struct r1bio *r1_bio) 250 { 251 struct r1conf *conf = r1_bio->mddev->private; 252 253 put_all_bios(conf, r1_bio); 254 mempool_free(r1_bio, &conf->r1bio_pool); 255 } 256 257 static void put_buf(struct r1bio *r1_bio) 258 { 259 struct r1conf *conf = r1_bio->mddev->private; 260 sector_t sect = r1_bio->sector; 261 int i; 262 263 for (i = 0; i < conf->raid_disks * 2; i++) { 264 struct bio *bio = r1_bio->bios[i]; 265 if (bio->bi_end_io) 266 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev); 267 } 268 269 mempool_free(r1_bio, &conf->r1buf_pool); 270 271 lower_barrier(conf, sect); 272 } 273 274 static void reschedule_retry(struct r1bio *r1_bio) 275 { 276 unsigned long flags; 277 struct mddev *mddev = r1_bio->mddev; 278 struct r1conf *conf = mddev->private; 279 int idx; 280 281 idx = sector_to_idx(r1_bio->sector); 282 spin_lock_irqsave(&conf->device_lock, flags); 283 list_add(&r1_bio->retry_list, &conf->retry_list); 284 atomic_inc(&conf->nr_queued[idx]); 285 spin_unlock_irqrestore(&conf->device_lock, flags); 286 287 wake_up(&conf->wait_barrier); 288 md_wakeup_thread(mddev->thread); 289 } 290 291 /* 292 * raid_end_bio_io() is called when we have finished servicing a mirrored 293 * operation and are ready to return a success/failure code to the buffer 294 * cache layer. 295 */ 296 static void call_bio_endio(struct r1bio *r1_bio) 297 { 298 struct bio *bio = r1_bio->master_bio; 299 300 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) 301 bio->bi_status = BLK_STS_IOERR; 302 303 bio_endio(bio); 304 } 305 306 static void raid_end_bio_io(struct r1bio *r1_bio) 307 { 308 struct bio *bio = r1_bio->master_bio; 309 struct r1conf *conf = r1_bio->mddev->private; 310 311 /* if nobody has done the final endio yet, do it now */ 312 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) { 313 pr_debug("raid1: sync end %s on sectors %llu-%llu\n", 314 (bio_data_dir(bio) == WRITE) ? "write" : "read", 315 (unsigned long long) bio->bi_iter.bi_sector, 316 (unsigned long long) bio_end_sector(bio) - 1); 317 318 call_bio_endio(r1_bio); 319 } 320 /* 321 * Wake up any possible resync thread that waits for the device 322 * to go idle. All I/Os, even write-behind writes, are done. 323 */ 324 allow_barrier(conf, r1_bio->sector); 325 326 free_r1bio(r1_bio); 327 } 328 329 /* 330 * Update disk head position estimator based on IRQ completion info. 331 */ 332 static inline void update_head_pos(int disk, struct r1bio *r1_bio) 333 { 334 struct r1conf *conf = r1_bio->mddev->private; 335 336 conf->mirrors[disk].head_position = 337 r1_bio->sector + (r1_bio->sectors); 338 } 339 340 /* 341 * Find the disk number which triggered given bio 342 */ 343 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio) 344 { 345 int mirror; 346 struct r1conf *conf = r1_bio->mddev->private; 347 int raid_disks = conf->raid_disks; 348 349 for (mirror = 0; mirror < raid_disks * 2; mirror++) 350 if (r1_bio->bios[mirror] == bio) 351 break; 352 353 BUG_ON(mirror == raid_disks * 2); 354 update_head_pos(mirror, r1_bio); 355 356 return mirror; 357 } 358 359 static void raid1_end_read_request(struct bio *bio) 360 { 361 int uptodate = !bio->bi_status; 362 struct r1bio *r1_bio = bio->bi_private; 363 struct r1conf *conf = r1_bio->mddev->private; 364 struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev; 365 366 /* 367 * this branch is our 'one mirror IO has finished' event handler: 368 */ 369 update_head_pos(r1_bio->read_disk, r1_bio); 370 371 if (uptodate) 372 set_bit(R1BIO_Uptodate, &r1_bio->state); 373 else if (test_bit(FailFast, &rdev->flags) && 374 test_bit(R1BIO_FailFast, &r1_bio->state)) 375 /* This was a fail-fast read so we definitely 376 * want to retry */ 377 ; 378 else { 379 /* If all other devices have failed, we want to return 380 * the error upwards rather than fail the last device. 381 * Here we redefine "uptodate" to mean "Don't want to retry" 382 */ 383 unsigned long flags; 384 spin_lock_irqsave(&conf->device_lock, flags); 385 if (r1_bio->mddev->degraded == conf->raid_disks || 386 (r1_bio->mddev->degraded == conf->raid_disks-1 && 387 test_bit(In_sync, &rdev->flags))) 388 uptodate = 1; 389 spin_unlock_irqrestore(&conf->device_lock, flags); 390 } 391 392 if (uptodate) { 393 raid_end_bio_io(r1_bio); 394 rdev_dec_pending(rdev, conf->mddev); 395 } else { 396 /* 397 * oops, read error: 398 */ 399 char b[BDEVNAME_SIZE]; 400 pr_err_ratelimited("md/raid1:%s: %s: rescheduling sector %llu\n", 401 mdname(conf->mddev), 402 bdevname(rdev->bdev, b), 403 (unsigned long long)r1_bio->sector); 404 set_bit(R1BIO_ReadError, &r1_bio->state); 405 reschedule_retry(r1_bio); 406 /* don't drop the reference on read_disk yet */ 407 } 408 } 409 410 static void close_write(struct r1bio *r1_bio) 411 { 412 /* it really is the end of this request */ 413 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) { 414 bio_free_pages(r1_bio->behind_master_bio); 415 bio_put(r1_bio->behind_master_bio); 416 r1_bio->behind_master_bio = NULL; 417 } 418 /* clear the bitmap if all writes complete successfully */ 419 md_bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector, 420 r1_bio->sectors, 421 !test_bit(R1BIO_Degraded, &r1_bio->state), 422 test_bit(R1BIO_BehindIO, &r1_bio->state)); 423 md_write_end(r1_bio->mddev); 424 } 425 426 static void r1_bio_write_done(struct r1bio *r1_bio) 427 { 428 if (!atomic_dec_and_test(&r1_bio->remaining)) 429 return; 430 431 if (test_bit(R1BIO_WriteError, &r1_bio->state)) 432 reschedule_retry(r1_bio); 433 else { 434 close_write(r1_bio); 435 if (test_bit(R1BIO_MadeGood, &r1_bio->state)) 436 reschedule_retry(r1_bio); 437 else 438 raid_end_bio_io(r1_bio); 439 } 440 } 441 442 static void raid1_end_write_request(struct bio *bio) 443 { 444 struct r1bio *r1_bio = bio->bi_private; 445 int behind = test_bit(R1BIO_BehindIO, &r1_bio->state); 446 struct r1conf *conf = r1_bio->mddev->private; 447 struct bio *to_put = NULL; 448 int mirror = find_bio_disk(r1_bio, bio); 449 struct md_rdev *rdev = conf->mirrors[mirror].rdev; 450 bool discard_error; 451 sector_t lo = r1_bio->sector; 452 sector_t hi = r1_bio->sector + r1_bio->sectors; 453 454 discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD; 455 456 /* 457 * 'one mirror IO has finished' event handler: 458 */ 459 if (bio->bi_status && !discard_error) { 460 set_bit(WriteErrorSeen, &rdev->flags); 461 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 462 set_bit(MD_RECOVERY_NEEDED, & 463 conf->mddev->recovery); 464 465 if (test_bit(FailFast, &rdev->flags) && 466 (bio->bi_opf & MD_FAILFAST) && 467 /* We never try FailFast to WriteMostly devices */ 468 !test_bit(WriteMostly, &rdev->flags)) { 469 md_error(r1_bio->mddev, rdev); 470 } 471 472 /* 473 * When the device is faulty, it is not necessary to 474 * handle write error. 475 * For failfast, this is the only remaining device, 476 * We need to retry the write without FailFast. 477 */ 478 if (!test_bit(Faulty, &rdev->flags)) 479 set_bit(R1BIO_WriteError, &r1_bio->state); 480 else { 481 /* Finished with this branch */ 482 r1_bio->bios[mirror] = NULL; 483 to_put = bio; 484 } 485 } else { 486 /* 487 * Set R1BIO_Uptodate in our master bio, so that we 488 * will return a good error code for to the higher 489 * levels even if IO on some other mirrored buffer 490 * fails. 491 * 492 * The 'master' represents the composite IO operation 493 * to user-side. So if something waits for IO, then it 494 * will wait for the 'master' bio. 495 */ 496 sector_t first_bad; 497 int bad_sectors; 498 499 r1_bio->bios[mirror] = NULL; 500 to_put = bio; 501 /* 502 * Do not set R1BIO_Uptodate if the current device is 503 * rebuilding or Faulty. This is because we cannot use 504 * such device for properly reading the data back (we could 505 * potentially use it, if the current write would have felt 506 * before rdev->recovery_offset, but for simplicity we don't 507 * check this here. 508 */ 509 if (test_bit(In_sync, &rdev->flags) && 510 !test_bit(Faulty, &rdev->flags)) 511 set_bit(R1BIO_Uptodate, &r1_bio->state); 512 513 /* Maybe we can clear some bad blocks. */ 514 if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors, 515 &first_bad, &bad_sectors) && !discard_error) { 516 r1_bio->bios[mirror] = IO_MADE_GOOD; 517 set_bit(R1BIO_MadeGood, &r1_bio->state); 518 } 519 } 520 521 if (behind) { 522 if (test_bit(CollisionCheck, &rdev->flags)) 523 remove_serial(rdev, lo, hi); 524 if (test_bit(WriteMostly, &rdev->flags)) 525 atomic_dec(&r1_bio->behind_remaining); 526 527 /* 528 * In behind mode, we ACK the master bio once the I/O 529 * has safely reached all non-writemostly 530 * disks. Setting the Returned bit ensures that this 531 * gets done only once -- we don't ever want to return 532 * -EIO here, instead we'll wait 533 */ 534 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) && 535 test_bit(R1BIO_Uptodate, &r1_bio->state)) { 536 /* Maybe we can return now */ 537 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) { 538 struct bio *mbio = r1_bio->master_bio; 539 pr_debug("raid1: behind end write sectors" 540 " %llu-%llu\n", 541 (unsigned long long) mbio->bi_iter.bi_sector, 542 (unsigned long long) bio_end_sector(mbio) - 1); 543 call_bio_endio(r1_bio); 544 } 545 } 546 } else if (rdev->mddev->serialize_policy) 547 remove_serial(rdev, lo, hi); 548 if (r1_bio->bios[mirror] == NULL) 549 rdev_dec_pending(rdev, conf->mddev); 550 551 /* 552 * Let's see if all mirrored write operations have finished 553 * already. 554 */ 555 r1_bio_write_done(r1_bio); 556 557 if (to_put) 558 bio_put(to_put); 559 } 560 561 static sector_t align_to_barrier_unit_end(sector_t start_sector, 562 sector_t sectors) 563 { 564 sector_t len; 565 566 WARN_ON(sectors == 0); 567 /* 568 * len is the number of sectors from start_sector to end of the 569 * barrier unit which start_sector belongs to. 570 */ 571 len = round_up(start_sector + 1, BARRIER_UNIT_SECTOR_SIZE) - 572 start_sector; 573 574 if (len > sectors) 575 len = sectors; 576 577 return len; 578 } 579 580 /* 581 * This routine returns the disk from which the requested read should 582 * be done. There is a per-array 'next expected sequential IO' sector 583 * number - if this matches on the next IO then we use the last disk. 584 * There is also a per-disk 'last know head position' sector that is 585 * maintained from IRQ contexts, both the normal and the resync IO 586 * completion handlers update this position correctly. If there is no 587 * perfect sequential match then we pick the disk whose head is closest. 588 * 589 * If there are 2 mirrors in the same 2 devices, performance degrades 590 * because position is mirror, not device based. 591 * 592 * The rdev for the device selected will have nr_pending incremented. 593 */ 594 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors) 595 { 596 const sector_t this_sector = r1_bio->sector; 597 int sectors; 598 int best_good_sectors; 599 int best_disk, best_dist_disk, best_pending_disk; 600 int has_nonrot_disk; 601 int disk; 602 sector_t best_dist; 603 unsigned int min_pending; 604 struct md_rdev *rdev; 605 int choose_first; 606 int choose_next_idle; 607 608 rcu_read_lock(); 609 /* 610 * Check if we can balance. We can balance on the whole 611 * device if no resync is going on, or below the resync window. 612 * We take the first readable disk when above the resync window. 613 */ 614 retry: 615 sectors = r1_bio->sectors; 616 best_disk = -1; 617 best_dist_disk = -1; 618 best_dist = MaxSector; 619 best_pending_disk = -1; 620 min_pending = UINT_MAX; 621 best_good_sectors = 0; 622 has_nonrot_disk = 0; 623 choose_next_idle = 0; 624 clear_bit(R1BIO_FailFast, &r1_bio->state); 625 626 if ((conf->mddev->recovery_cp < this_sector + sectors) || 627 (mddev_is_clustered(conf->mddev) && 628 md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector, 629 this_sector + sectors))) 630 choose_first = 1; 631 else 632 choose_first = 0; 633 634 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) { 635 sector_t dist; 636 sector_t first_bad; 637 int bad_sectors; 638 unsigned int pending; 639 bool nonrot; 640 641 rdev = rcu_dereference(conf->mirrors[disk].rdev); 642 if (r1_bio->bios[disk] == IO_BLOCKED 643 || rdev == NULL 644 || test_bit(Faulty, &rdev->flags)) 645 continue; 646 if (!test_bit(In_sync, &rdev->flags) && 647 rdev->recovery_offset < this_sector + sectors) 648 continue; 649 if (test_bit(WriteMostly, &rdev->flags)) { 650 /* Don't balance among write-mostly, just 651 * use the first as a last resort */ 652 if (best_dist_disk < 0) { 653 if (is_badblock(rdev, this_sector, sectors, 654 &first_bad, &bad_sectors)) { 655 if (first_bad <= this_sector) 656 /* Cannot use this */ 657 continue; 658 best_good_sectors = first_bad - this_sector; 659 } else 660 best_good_sectors = sectors; 661 best_dist_disk = disk; 662 best_pending_disk = disk; 663 } 664 continue; 665 } 666 /* This is a reasonable device to use. It might 667 * even be best. 668 */ 669 if (is_badblock(rdev, this_sector, sectors, 670 &first_bad, &bad_sectors)) { 671 if (best_dist < MaxSector) 672 /* already have a better device */ 673 continue; 674 if (first_bad <= this_sector) { 675 /* cannot read here. If this is the 'primary' 676 * device, then we must not read beyond 677 * bad_sectors from another device.. 678 */ 679 bad_sectors -= (this_sector - first_bad); 680 if (choose_first && sectors > bad_sectors) 681 sectors = bad_sectors; 682 if (best_good_sectors > sectors) 683 best_good_sectors = sectors; 684 685 } else { 686 sector_t good_sectors = first_bad - this_sector; 687 if (good_sectors > best_good_sectors) { 688 best_good_sectors = good_sectors; 689 best_disk = disk; 690 } 691 if (choose_first) 692 break; 693 } 694 continue; 695 } else { 696 if ((sectors > best_good_sectors) && (best_disk >= 0)) 697 best_disk = -1; 698 best_good_sectors = sectors; 699 } 700 701 if (best_disk >= 0) 702 /* At least two disks to choose from so failfast is OK */ 703 set_bit(R1BIO_FailFast, &r1_bio->state); 704 705 nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev)); 706 has_nonrot_disk |= nonrot; 707 pending = atomic_read(&rdev->nr_pending); 708 dist = abs(this_sector - conf->mirrors[disk].head_position); 709 if (choose_first) { 710 best_disk = disk; 711 break; 712 } 713 /* Don't change to another disk for sequential reads */ 714 if (conf->mirrors[disk].next_seq_sect == this_sector 715 || dist == 0) { 716 int opt_iosize = bdev_io_opt(rdev->bdev) >> 9; 717 struct raid1_info *mirror = &conf->mirrors[disk]; 718 719 best_disk = disk; 720 /* 721 * If buffered sequential IO size exceeds optimal 722 * iosize, check if there is idle disk. If yes, choose 723 * the idle disk. read_balance could already choose an 724 * idle disk before noticing it's a sequential IO in 725 * this disk. This doesn't matter because this disk 726 * will idle, next time it will be utilized after the 727 * first disk has IO size exceeds optimal iosize. In 728 * this way, iosize of the first disk will be optimal 729 * iosize at least. iosize of the second disk might be 730 * small, but not a big deal since when the second disk 731 * starts IO, the first disk is likely still busy. 732 */ 733 if (nonrot && opt_iosize > 0 && 734 mirror->seq_start != MaxSector && 735 mirror->next_seq_sect > opt_iosize && 736 mirror->next_seq_sect - opt_iosize >= 737 mirror->seq_start) { 738 choose_next_idle = 1; 739 continue; 740 } 741 break; 742 } 743 744 if (choose_next_idle) 745 continue; 746 747 if (min_pending > pending) { 748 min_pending = pending; 749 best_pending_disk = disk; 750 } 751 752 if (dist < best_dist) { 753 best_dist = dist; 754 best_dist_disk = disk; 755 } 756 } 757 758 /* 759 * If all disks are rotational, choose the closest disk. If any disk is 760 * non-rotational, choose the disk with less pending request even the 761 * disk is rotational, which might/might not be optimal for raids with 762 * mixed ratation/non-rotational disks depending on workload. 763 */ 764 if (best_disk == -1) { 765 if (has_nonrot_disk || min_pending == 0) 766 best_disk = best_pending_disk; 767 else 768 best_disk = best_dist_disk; 769 } 770 771 if (best_disk >= 0) { 772 rdev = rcu_dereference(conf->mirrors[best_disk].rdev); 773 if (!rdev) 774 goto retry; 775 atomic_inc(&rdev->nr_pending); 776 sectors = best_good_sectors; 777 778 if (conf->mirrors[best_disk].next_seq_sect != this_sector) 779 conf->mirrors[best_disk].seq_start = this_sector; 780 781 conf->mirrors[best_disk].next_seq_sect = this_sector + sectors; 782 } 783 rcu_read_unlock(); 784 *max_sectors = sectors; 785 786 return best_disk; 787 } 788 789 static int raid1_congested(struct mddev *mddev, int bits) 790 { 791 struct r1conf *conf = mddev->private; 792 int i, ret = 0; 793 794 if ((bits & (1 << WB_async_congested)) && 795 conf->pending_count >= max_queued_requests) 796 return 1; 797 798 rcu_read_lock(); 799 for (i = 0; i < conf->raid_disks * 2; i++) { 800 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 801 if (rdev && !test_bit(Faulty, &rdev->flags)) { 802 struct request_queue *q = bdev_get_queue(rdev->bdev); 803 804 BUG_ON(!q); 805 806 /* Note the '|| 1' - when read_balance prefers 807 * non-congested targets, it can be removed 808 */ 809 if ((bits & (1 << WB_async_congested)) || 1) 810 ret |= bdi_congested(q->backing_dev_info, bits); 811 else 812 ret &= bdi_congested(q->backing_dev_info, bits); 813 } 814 } 815 rcu_read_unlock(); 816 return ret; 817 } 818 819 static void flush_bio_list(struct r1conf *conf, struct bio *bio) 820 { 821 /* flush any pending bitmap writes to disk before proceeding w/ I/O */ 822 md_bitmap_unplug(conf->mddev->bitmap); 823 wake_up(&conf->wait_barrier); 824 825 while (bio) { /* submit pending writes */ 826 struct bio *next = bio->bi_next; 827 struct md_rdev *rdev = (void *)bio->bi_disk; 828 bio->bi_next = NULL; 829 bio_set_dev(bio, rdev->bdev); 830 if (test_bit(Faulty, &rdev->flags)) { 831 bio_io_error(bio); 832 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) && 833 !blk_queue_discard(bio->bi_disk->queue))) 834 /* Just ignore it */ 835 bio_endio(bio); 836 else 837 generic_make_request(bio); 838 bio = next; 839 cond_resched(); 840 } 841 } 842 843 static void flush_pending_writes(struct r1conf *conf) 844 { 845 /* Any writes that have been queued but are awaiting 846 * bitmap updates get flushed here. 847 */ 848 spin_lock_irq(&conf->device_lock); 849 850 if (conf->pending_bio_list.head) { 851 struct blk_plug plug; 852 struct bio *bio; 853 854 bio = bio_list_get(&conf->pending_bio_list); 855 conf->pending_count = 0; 856 spin_unlock_irq(&conf->device_lock); 857 858 /* 859 * As this is called in a wait_event() loop (see freeze_array), 860 * current->state might be TASK_UNINTERRUPTIBLE which will 861 * cause a warning when we prepare to wait again. As it is 862 * rare that this path is taken, it is perfectly safe to force 863 * us to go around the wait_event() loop again, so the warning 864 * is a false-positive. Silence the warning by resetting 865 * thread state 866 */ 867 __set_current_state(TASK_RUNNING); 868 blk_start_plug(&plug); 869 flush_bio_list(conf, bio); 870 blk_finish_plug(&plug); 871 } else 872 spin_unlock_irq(&conf->device_lock); 873 } 874 875 /* Barriers.... 876 * Sometimes we need to suspend IO while we do something else, 877 * either some resync/recovery, or reconfigure the array. 878 * To do this we raise a 'barrier'. 879 * The 'barrier' is a counter that can be raised multiple times 880 * to count how many activities are happening which preclude 881 * normal IO. 882 * We can only raise the barrier if there is no pending IO. 883 * i.e. if nr_pending == 0. 884 * We choose only to raise the barrier if no-one is waiting for the 885 * barrier to go down. This means that as soon as an IO request 886 * is ready, no other operations which require a barrier will start 887 * until the IO request has had a chance. 888 * 889 * So: regular IO calls 'wait_barrier'. When that returns there 890 * is no backgroup IO happening, It must arrange to call 891 * allow_barrier when it has finished its IO. 892 * backgroup IO calls must call raise_barrier. Once that returns 893 * there is no normal IO happeing. It must arrange to call 894 * lower_barrier when the particular background IO completes. 895 * 896 * If resync/recovery is interrupted, returns -EINTR; 897 * Otherwise, returns 0. 898 */ 899 static int raise_barrier(struct r1conf *conf, sector_t sector_nr) 900 { 901 int idx = sector_to_idx(sector_nr); 902 903 spin_lock_irq(&conf->resync_lock); 904 905 /* Wait until no block IO is waiting */ 906 wait_event_lock_irq(conf->wait_barrier, 907 !atomic_read(&conf->nr_waiting[idx]), 908 conf->resync_lock); 909 910 /* block any new IO from starting */ 911 atomic_inc(&conf->barrier[idx]); 912 /* 913 * In raise_barrier() we firstly increase conf->barrier[idx] then 914 * check conf->nr_pending[idx]. In _wait_barrier() we firstly 915 * increase conf->nr_pending[idx] then check conf->barrier[idx]. 916 * A memory barrier here to make sure conf->nr_pending[idx] won't 917 * be fetched before conf->barrier[idx] is increased. Otherwise 918 * there will be a race between raise_barrier() and _wait_barrier(). 919 */ 920 smp_mb__after_atomic(); 921 922 /* For these conditions we must wait: 923 * A: while the array is in frozen state 924 * B: while conf->nr_pending[idx] is not 0, meaning regular I/O 925 * existing in corresponding I/O barrier bucket. 926 * C: while conf->barrier[idx] >= RESYNC_DEPTH, meaning reaches 927 * max resync count which allowed on current I/O barrier bucket. 928 */ 929 wait_event_lock_irq(conf->wait_barrier, 930 (!conf->array_frozen && 931 !atomic_read(&conf->nr_pending[idx]) && 932 atomic_read(&conf->barrier[idx]) < RESYNC_DEPTH) || 933 test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery), 934 conf->resync_lock); 935 936 if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) { 937 atomic_dec(&conf->barrier[idx]); 938 spin_unlock_irq(&conf->resync_lock); 939 wake_up(&conf->wait_barrier); 940 return -EINTR; 941 } 942 943 atomic_inc(&conf->nr_sync_pending); 944 spin_unlock_irq(&conf->resync_lock); 945 946 return 0; 947 } 948 949 static void lower_barrier(struct r1conf *conf, sector_t sector_nr) 950 { 951 int idx = sector_to_idx(sector_nr); 952 953 BUG_ON(atomic_read(&conf->barrier[idx]) <= 0); 954 955 atomic_dec(&conf->barrier[idx]); 956 atomic_dec(&conf->nr_sync_pending); 957 wake_up(&conf->wait_barrier); 958 } 959 960 static void _wait_barrier(struct r1conf *conf, int idx) 961 { 962 /* 963 * We need to increase conf->nr_pending[idx] very early here, 964 * then raise_barrier() can be blocked when it waits for 965 * conf->nr_pending[idx] to be 0. Then we can avoid holding 966 * conf->resync_lock when there is no barrier raised in same 967 * barrier unit bucket. Also if the array is frozen, I/O 968 * should be blocked until array is unfrozen. 969 */ 970 atomic_inc(&conf->nr_pending[idx]); 971 /* 972 * In _wait_barrier() we firstly increase conf->nr_pending[idx], then 973 * check conf->barrier[idx]. In raise_barrier() we firstly increase 974 * conf->barrier[idx], then check conf->nr_pending[idx]. A memory 975 * barrier is necessary here to make sure conf->barrier[idx] won't be 976 * fetched before conf->nr_pending[idx] is increased. Otherwise there 977 * will be a race between _wait_barrier() and raise_barrier(). 978 */ 979 smp_mb__after_atomic(); 980 981 /* 982 * Don't worry about checking two atomic_t variables at same time 983 * here. If during we check conf->barrier[idx], the array is 984 * frozen (conf->array_frozen is 1), and chonf->barrier[idx] is 985 * 0, it is safe to return and make the I/O continue. Because the 986 * array is frozen, all I/O returned here will eventually complete 987 * or be queued, no race will happen. See code comment in 988 * frozen_array(). 989 */ 990 if (!READ_ONCE(conf->array_frozen) && 991 !atomic_read(&conf->barrier[idx])) 992 return; 993 994 /* 995 * After holding conf->resync_lock, conf->nr_pending[idx] 996 * should be decreased before waiting for barrier to drop. 997 * Otherwise, we may encounter a race condition because 998 * raise_barrer() might be waiting for conf->nr_pending[idx] 999 * to be 0 at same time. 1000 */ 1001 spin_lock_irq(&conf->resync_lock); 1002 atomic_inc(&conf->nr_waiting[idx]); 1003 atomic_dec(&conf->nr_pending[idx]); 1004 /* 1005 * In case freeze_array() is waiting for 1006 * get_unqueued_pending() == extra 1007 */ 1008 wake_up(&conf->wait_barrier); 1009 /* Wait for the barrier in same barrier unit bucket to drop. */ 1010 wait_event_lock_irq(conf->wait_barrier, 1011 !conf->array_frozen && 1012 !atomic_read(&conf->barrier[idx]), 1013 conf->resync_lock); 1014 atomic_inc(&conf->nr_pending[idx]); 1015 atomic_dec(&conf->nr_waiting[idx]); 1016 spin_unlock_irq(&conf->resync_lock); 1017 } 1018 1019 static void wait_read_barrier(struct r1conf *conf, sector_t sector_nr) 1020 { 1021 int idx = sector_to_idx(sector_nr); 1022 1023 /* 1024 * Very similar to _wait_barrier(). The difference is, for read 1025 * I/O we don't need wait for sync I/O, but if the whole array 1026 * is frozen, the read I/O still has to wait until the array is 1027 * unfrozen. Since there is no ordering requirement with 1028 * conf->barrier[idx] here, memory barrier is unnecessary as well. 1029 */ 1030 atomic_inc(&conf->nr_pending[idx]); 1031 1032 if (!READ_ONCE(conf->array_frozen)) 1033 return; 1034 1035 spin_lock_irq(&conf->resync_lock); 1036 atomic_inc(&conf->nr_waiting[idx]); 1037 atomic_dec(&conf->nr_pending[idx]); 1038 /* 1039 * In case freeze_array() is waiting for 1040 * get_unqueued_pending() == extra 1041 */ 1042 wake_up(&conf->wait_barrier); 1043 /* Wait for array to be unfrozen */ 1044 wait_event_lock_irq(conf->wait_barrier, 1045 !conf->array_frozen, 1046 conf->resync_lock); 1047 atomic_inc(&conf->nr_pending[idx]); 1048 atomic_dec(&conf->nr_waiting[idx]); 1049 spin_unlock_irq(&conf->resync_lock); 1050 } 1051 1052 static void wait_barrier(struct r1conf *conf, sector_t sector_nr) 1053 { 1054 int idx = sector_to_idx(sector_nr); 1055 1056 _wait_barrier(conf, idx); 1057 } 1058 1059 static void _allow_barrier(struct r1conf *conf, int idx) 1060 { 1061 atomic_dec(&conf->nr_pending[idx]); 1062 wake_up(&conf->wait_barrier); 1063 } 1064 1065 static void allow_barrier(struct r1conf *conf, sector_t sector_nr) 1066 { 1067 int idx = sector_to_idx(sector_nr); 1068 1069 _allow_barrier(conf, idx); 1070 } 1071 1072 /* conf->resync_lock should be held */ 1073 static int get_unqueued_pending(struct r1conf *conf) 1074 { 1075 int idx, ret; 1076 1077 ret = atomic_read(&conf->nr_sync_pending); 1078 for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++) 1079 ret += atomic_read(&conf->nr_pending[idx]) - 1080 atomic_read(&conf->nr_queued[idx]); 1081 1082 return ret; 1083 } 1084 1085 static void freeze_array(struct r1conf *conf, int extra) 1086 { 1087 /* Stop sync I/O and normal I/O and wait for everything to 1088 * go quiet. 1089 * This is called in two situations: 1090 * 1) management command handlers (reshape, remove disk, quiesce). 1091 * 2) one normal I/O request failed. 1092 1093 * After array_frozen is set to 1, new sync IO will be blocked at 1094 * raise_barrier(), and new normal I/O will blocked at _wait_barrier() 1095 * or wait_read_barrier(). The flying I/Os will either complete or be 1096 * queued. When everything goes quite, there are only queued I/Os left. 1097 1098 * Every flying I/O contributes to a conf->nr_pending[idx], idx is the 1099 * barrier bucket index which this I/O request hits. When all sync and 1100 * normal I/O are queued, sum of all conf->nr_pending[] will match sum 1101 * of all conf->nr_queued[]. But normal I/O failure is an exception, 1102 * in handle_read_error(), we may call freeze_array() before trying to 1103 * fix the read error. In this case, the error read I/O is not queued, 1104 * so get_unqueued_pending() == 1. 1105 * 1106 * Therefore before this function returns, we need to wait until 1107 * get_unqueued_pendings(conf) gets equal to extra. For 1108 * normal I/O context, extra is 1, in rested situations extra is 0. 1109 */ 1110 spin_lock_irq(&conf->resync_lock); 1111 conf->array_frozen = 1; 1112 raid1_log(conf->mddev, "wait freeze"); 1113 wait_event_lock_irq_cmd( 1114 conf->wait_barrier, 1115 get_unqueued_pending(conf) == extra, 1116 conf->resync_lock, 1117 flush_pending_writes(conf)); 1118 spin_unlock_irq(&conf->resync_lock); 1119 } 1120 static void unfreeze_array(struct r1conf *conf) 1121 { 1122 /* reverse the effect of the freeze */ 1123 spin_lock_irq(&conf->resync_lock); 1124 conf->array_frozen = 0; 1125 spin_unlock_irq(&conf->resync_lock); 1126 wake_up(&conf->wait_barrier); 1127 } 1128 1129 static void alloc_behind_master_bio(struct r1bio *r1_bio, 1130 struct bio *bio) 1131 { 1132 int size = bio->bi_iter.bi_size; 1133 unsigned vcnt = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; 1134 int i = 0; 1135 struct bio *behind_bio = NULL; 1136 1137 behind_bio = bio_alloc_mddev(GFP_NOIO, vcnt, r1_bio->mddev); 1138 if (!behind_bio) 1139 return; 1140 1141 /* discard op, we don't support writezero/writesame yet */ 1142 if (!bio_has_data(bio)) { 1143 behind_bio->bi_iter.bi_size = size; 1144 goto skip_copy; 1145 } 1146 1147 behind_bio->bi_write_hint = bio->bi_write_hint; 1148 1149 while (i < vcnt && size) { 1150 struct page *page; 1151 int len = min_t(int, PAGE_SIZE, size); 1152 1153 page = alloc_page(GFP_NOIO); 1154 if (unlikely(!page)) 1155 goto free_pages; 1156 1157 bio_add_page(behind_bio, page, len, 0); 1158 1159 size -= len; 1160 i++; 1161 } 1162 1163 bio_copy_data(behind_bio, bio); 1164 skip_copy: 1165 r1_bio->behind_master_bio = behind_bio; 1166 set_bit(R1BIO_BehindIO, &r1_bio->state); 1167 1168 return; 1169 1170 free_pages: 1171 pr_debug("%dB behind alloc failed, doing sync I/O\n", 1172 bio->bi_iter.bi_size); 1173 bio_free_pages(behind_bio); 1174 bio_put(behind_bio); 1175 } 1176 1177 struct raid1_plug_cb { 1178 struct blk_plug_cb cb; 1179 struct bio_list pending; 1180 int pending_cnt; 1181 }; 1182 1183 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule) 1184 { 1185 struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb, 1186 cb); 1187 struct mddev *mddev = plug->cb.data; 1188 struct r1conf *conf = mddev->private; 1189 struct bio *bio; 1190 1191 if (from_schedule || current->bio_list) { 1192 spin_lock_irq(&conf->device_lock); 1193 bio_list_merge(&conf->pending_bio_list, &plug->pending); 1194 conf->pending_count += plug->pending_cnt; 1195 spin_unlock_irq(&conf->device_lock); 1196 wake_up(&conf->wait_barrier); 1197 md_wakeup_thread(mddev->thread); 1198 kfree(plug); 1199 return; 1200 } 1201 1202 /* we aren't scheduling, so we can do the write-out directly. */ 1203 bio = bio_list_get(&plug->pending); 1204 flush_bio_list(conf, bio); 1205 kfree(plug); 1206 } 1207 1208 static void init_r1bio(struct r1bio *r1_bio, struct mddev *mddev, struct bio *bio) 1209 { 1210 r1_bio->master_bio = bio; 1211 r1_bio->sectors = bio_sectors(bio); 1212 r1_bio->state = 0; 1213 r1_bio->mddev = mddev; 1214 r1_bio->sector = bio->bi_iter.bi_sector; 1215 } 1216 1217 static inline struct r1bio * 1218 alloc_r1bio(struct mddev *mddev, struct bio *bio) 1219 { 1220 struct r1conf *conf = mddev->private; 1221 struct r1bio *r1_bio; 1222 1223 r1_bio = mempool_alloc(&conf->r1bio_pool, GFP_NOIO); 1224 /* Ensure no bio records IO_BLOCKED */ 1225 memset(r1_bio->bios, 0, conf->raid_disks * sizeof(r1_bio->bios[0])); 1226 init_r1bio(r1_bio, mddev, bio); 1227 return r1_bio; 1228 } 1229 1230 static void raid1_read_request(struct mddev *mddev, struct bio *bio, 1231 int max_read_sectors, struct r1bio *r1_bio) 1232 { 1233 struct r1conf *conf = mddev->private; 1234 struct raid1_info *mirror; 1235 struct bio *read_bio; 1236 struct bitmap *bitmap = mddev->bitmap; 1237 const int op = bio_op(bio); 1238 const unsigned long do_sync = (bio->bi_opf & REQ_SYNC); 1239 int max_sectors; 1240 int rdisk; 1241 bool print_msg = !!r1_bio; 1242 char b[BDEVNAME_SIZE]; 1243 1244 /* 1245 * If r1_bio is set, we are blocking the raid1d thread 1246 * so there is a tiny risk of deadlock. So ask for 1247 * emergency memory if needed. 1248 */ 1249 gfp_t gfp = r1_bio ? (GFP_NOIO | __GFP_HIGH) : GFP_NOIO; 1250 1251 if (print_msg) { 1252 /* Need to get the block device name carefully */ 1253 struct md_rdev *rdev; 1254 rcu_read_lock(); 1255 rdev = rcu_dereference(conf->mirrors[r1_bio->read_disk].rdev); 1256 if (rdev) 1257 bdevname(rdev->bdev, b); 1258 else 1259 strcpy(b, "???"); 1260 rcu_read_unlock(); 1261 } 1262 1263 /* 1264 * Still need barrier for READ in case that whole 1265 * array is frozen. 1266 */ 1267 wait_read_barrier(conf, bio->bi_iter.bi_sector); 1268 1269 if (!r1_bio) 1270 r1_bio = alloc_r1bio(mddev, bio); 1271 else 1272 init_r1bio(r1_bio, mddev, bio); 1273 r1_bio->sectors = max_read_sectors; 1274 1275 /* 1276 * make_request() can abort the operation when read-ahead is being 1277 * used and no empty request is available. 1278 */ 1279 rdisk = read_balance(conf, r1_bio, &max_sectors); 1280 1281 if (rdisk < 0) { 1282 /* couldn't find anywhere to read from */ 1283 if (print_msg) { 1284 pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n", 1285 mdname(mddev), 1286 b, 1287 (unsigned long long)r1_bio->sector); 1288 } 1289 raid_end_bio_io(r1_bio); 1290 return; 1291 } 1292 mirror = conf->mirrors + rdisk; 1293 1294 if (print_msg) 1295 pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %s\n", 1296 mdname(mddev), 1297 (unsigned long long)r1_bio->sector, 1298 bdevname(mirror->rdev->bdev, b)); 1299 1300 if (test_bit(WriteMostly, &mirror->rdev->flags) && 1301 bitmap) { 1302 /* 1303 * Reading from a write-mostly device must take care not to 1304 * over-take any writes that are 'behind' 1305 */ 1306 raid1_log(mddev, "wait behind writes"); 1307 wait_event(bitmap->behind_wait, 1308 atomic_read(&bitmap->behind_writes) == 0); 1309 } 1310 1311 if (max_sectors < bio_sectors(bio)) { 1312 struct bio *split = bio_split(bio, max_sectors, 1313 gfp, &conf->bio_split); 1314 bio_chain(split, bio); 1315 generic_make_request(bio); 1316 bio = split; 1317 r1_bio->master_bio = bio; 1318 r1_bio->sectors = max_sectors; 1319 } 1320 1321 r1_bio->read_disk = rdisk; 1322 1323 read_bio = bio_clone_fast(bio, gfp, &mddev->bio_set); 1324 1325 r1_bio->bios[rdisk] = read_bio; 1326 1327 read_bio->bi_iter.bi_sector = r1_bio->sector + 1328 mirror->rdev->data_offset; 1329 bio_set_dev(read_bio, mirror->rdev->bdev); 1330 read_bio->bi_end_io = raid1_end_read_request; 1331 bio_set_op_attrs(read_bio, op, do_sync); 1332 if (test_bit(FailFast, &mirror->rdev->flags) && 1333 test_bit(R1BIO_FailFast, &r1_bio->state)) 1334 read_bio->bi_opf |= MD_FAILFAST; 1335 read_bio->bi_private = r1_bio; 1336 1337 if (mddev->gendisk) 1338 trace_block_bio_remap(read_bio->bi_disk->queue, read_bio, 1339 disk_devt(mddev->gendisk), r1_bio->sector); 1340 1341 generic_make_request(read_bio); 1342 } 1343 1344 static void raid1_write_request(struct mddev *mddev, struct bio *bio, 1345 int max_write_sectors) 1346 { 1347 struct r1conf *conf = mddev->private; 1348 struct r1bio *r1_bio; 1349 int i, disks; 1350 struct bitmap *bitmap = mddev->bitmap; 1351 unsigned long flags; 1352 struct md_rdev *blocked_rdev; 1353 struct blk_plug_cb *cb; 1354 struct raid1_plug_cb *plug = NULL; 1355 int first_clone; 1356 int max_sectors; 1357 1358 if (mddev_is_clustered(mddev) && 1359 md_cluster_ops->area_resyncing(mddev, WRITE, 1360 bio->bi_iter.bi_sector, bio_end_sector(bio))) { 1361 1362 DEFINE_WAIT(w); 1363 for (;;) { 1364 prepare_to_wait(&conf->wait_barrier, 1365 &w, TASK_IDLE); 1366 if (!md_cluster_ops->area_resyncing(mddev, WRITE, 1367 bio->bi_iter.bi_sector, 1368 bio_end_sector(bio))) 1369 break; 1370 schedule(); 1371 } 1372 finish_wait(&conf->wait_barrier, &w); 1373 } 1374 1375 /* 1376 * Register the new request and wait if the reconstruction 1377 * thread has put up a bar for new requests. 1378 * Continue immediately if no resync is active currently. 1379 */ 1380 wait_barrier(conf, bio->bi_iter.bi_sector); 1381 1382 r1_bio = alloc_r1bio(mddev, bio); 1383 r1_bio->sectors = max_write_sectors; 1384 1385 if (conf->pending_count >= max_queued_requests) { 1386 md_wakeup_thread(mddev->thread); 1387 raid1_log(mddev, "wait queued"); 1388 wait_event(conf->wait_barrier, 1389 conf->pending_count < max_queued_requests); 1390 } 1391 /* first select target devices under rcu_lock and 1392 * inc refcount on their rdev. Record them by setting 1393 * bios[x] to bio 1394 * If there are known/acknowledged bad blocks on any device on 1395 * which we have seen a write error, we want to avoid writing those 1396 * blocks. 1397 * This potentially requires several writes to write around 1398 * the bad blocks. Each set of writes gets it's own r1bio 1399 * with a set of bios attached. 1400 */ 1401 1402 disks = conf->raid_disks * 2; 1403 retry_write: 1404 blocked_rdev = NULL; 1405 rcu_read_lock(); 1406 max_sectors = r1_bio->sectors; 1407 for (i = 0; i < disks; i++) { 1408 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 1409 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) { 1410 atomic_inc(&rdev->nr_pending); 1411 blocked_rdev = rdev; 1412 break; 1413 } 1414 r1_bio->bios[i] = NULL; 1415 if (!rdev || test_bit(Faulty, &rdev->flags)) { 1416 if (i < conf->raid_disks) 1417 set_bit(R1BIO_Degraded, &r1_bio->state); 1418 continue; 1419 } 1420 1421 atomic_inc(&rdev->nr_pending); 1422 if (test_bit(WriteErrorSeen, &rdev->flags)) { 1423 sector_t first_bad; 1424 int bad_sectors; 1425 int is_bad; 1426 1427 is_bad = is_badblock(rdev, r1_bio->sector, max_sectors, 1428 &first_bad, &bad_sectors); 1429 if (is_bad < 0) { 1430 /* mustn't write here until the bad block is 1431 * acknowledged*/ 1432 set_bit(BlockedBadBlocks, &rdev->flags); 1433 blocked_rdev = rdev; 1434 break; 1435 } 1436 if (is_bad && first_bad <= r1_bio->sector) { 1437 /* Cannot write here at all */ 1438 bad_sectors -= (r1_bio->sector - first_bad); 1439 if (bad_sectors < max_sectors) 1440 /* mustn't write more than bad_sectors 1441 * to other devices yet 1442 */ 1443 max_sectors = bad_sectors; 1444 rdev_dec_pending(rdev, mddev); 1445 /* We don't set R1BIO_Degraded as that 1446 * only applies if the disk is 1447 * missing, so it might be re-added, 1448 * and we want to know to recover this 1449 * chunk. 1450 * In this case the device is here, 1451 * and the fact that this chunk is not 1452 * in-sync is recorded in the bad 1453 * block log 1454 */ 1455 continue; 1456 } 1457 if (is_bad) { 1458 int good_sectors = first_bad - r1_bio->sector; 1459 if (good_sectors < max_sectors) 1460 max_sectors = good_sectors; 1461 } 1462 } 1463 r1_bio->bios[i] = bio; 1464 } 1465 rcu_read_unlock(); 1466 1467 if (unlikely(blocked_rdev)) { 1468 /* Wait for this device to become unblocked */ 1469 int j; 1470 1471 for (j = 0; j < i; j++) 1472 if (r1_bio->bios[j]) 1473 rdev_dec_pending(conf->mirrors[j].rdev, mddev); 1474 r1_bio->state = 0; 1475 allow_barrier(conf, bio->bi_iter.bi_sector); 1476 raid1_log(mddev, "wait rdev %d blocked", blocked_rdev->raid_disk); 1477 md_wait_for_blocked_rdev(blocked_rdev, mddev); 1478 wait_barrier(conf, bio->bi_iter.bi_sector); 1479 goto retry_write; 1480 } 1481 1482 if (max_sectors < bio_sectors(bio)) { 1483 struct bio *split = bio_split(bio, max_sectors, 1484 GFP_NOIO, &conf->bio_split); 1485 bio_chain(split, bio); 1486 generic_make_request(bio); 1487 bio = split; 1488 r1_bio->master_bio = bio; 1489 r1_bio->sectors = max_sectors; 1490 } 1491 1492 atomic_set(&r1_bio->remaining, 1); 1493 atomic_set(&r1_bio->behind_remaining, 0); 1494 1495 first_clone = 1; 1496 1497 for (i = 0; i < disks; i++) { 1498 struct bio *mbio = NULL; 1499 struct md_rdev *rdev = conf->mirrors[i].rdev; 1500 if (!r1_bio->bios[i]) 1501 continue; 1502 1503 if (first_clone) { 1504 /* do behind I/O ? 1505 * Not if there are too many, or cannot 1506 * allocate memory, or a reader on WriteMostly 1507 * is waiting for behind writes to flush */ 1508 if (bitmap && 1509 (atomic_read(&bitmap->behind_writes) 1510 < mddev->bitmap_info.max_write_behind) && 1511 !waitqueue_active(&bitmap->behind_wait)) { 1512 alloc_behind_master_bio(r1_bio, bio); 1513 } 1514 1515 md_bitmap_startwrite(bitmap, r1_bio->sector, r1_bio->sectors, 1516 test_bit(R1BIO_BehindIO, &r1_bio->state)); 1517 first_clone = 0; 1518 } 1519 1520 if (r1_bio->behind_master_bio) 1521 mbio = bio_clone_fast(r1_bio->behind_master_bio, 1522 GFP_NOIO, &mddev->bio_set); 1523 else 1524 mbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set); 1525 1526 if (r1_bio->behind_master_bio) { 1527 if (test_bit(CollisionCheck, &rdev->flags)) 1528 wait_for_serialization(rdev, r1_bio); 1529 if (test_bit(WriteMostly, &rdev->flags)) 1530 atomic_inc(&r1_bio->behind_remaining); 1531 } else if (mddev->serialize_policy) 1532 wait_for_serialization(rdev, r1_bio); 1533 1534 r1_bio->bios[i] = mbio; 1535 1536 mbio->bi_iter.bi_sector = (r1_bio->sector + 1537 conf->mirrors[i].rdev->data_offset); 1538 bio_set_dev(mbio, conf->mirrors[i].rdev->bdev); 1539 mbio->bi_end_io = raid1_end_write_request; 1540 mbio->bi_opf = bio_op(bio) | (bio->bi_opf & (REQ_SYNC | REQ_FUA)); 1541 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags) && 1542 !test_bit(WriteMostly, &conf->mirrors[i].rdev->flags) && 1543 conf->raid_disks - mddev->degraded > 1) 1544 mbio->bi_opf |= MD_FAILFAST; 1545 mbio->bi_private = r1_bio; 1546 1547 atomic_inc(&r1_bio->remaining); 1548 1549 if (mddev->gendisk) 1550 trace_block_bio_remap(mbio->bi_disk->queue, 1551 mbio, disk_devt(mddev->gendisk), 1552 r1_bio->sector); 1553 /* flush_pending_writes() needs access to the rdev so...*/ 1554 mbio->bi_disk = (void *)conf->mirrors[i].rdev; 1555 1556 cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug)); 1557 if (cb) 1558 plug = container_of(cb, struct raid1_plug_cb, cb); 1559 else 1560 plug = NULL; 1561 if (plug) { 1562 bio_list_add(&plug->pending, mbio); 1563 plug->pending_cnt++; 1564 } else { 1565 spin_lock_irqsave(&conf->device_lock, flags); 1566 bio_list_add(&conf->pending_bio_list, mbio); 1567 conf->pending_count++; 1568 spin_unlock_irqrestore(&conf->device_lock, flags); 1569 md_wakeup_thread(mddev->thread); 1570 } 1571 } 1572 1573 r1_bio_write_done(r1_bio); 1574 1575 /* In case raid1d snuck in to freeze_array */ 1576 wake_up(&conf->wait_barrier); 1577 } 1578 1579 static bool raid1_make_request(struct mddev *mddev, struct bio *bio) 1580 { 1581 sector_t sectors; 1582 1583 if (unlikely(bio->bi_opf & REQ_PREFLUSH) 1584 && md_flush_request(mddev, bio)) 1585 return true; 1586 1587 /* 1588 * There is a limit to the maximum size, but 1589 * the read/write handler might find a lower limit 1590 * due to bad blocks. To avoid multiple splits, 1591 * we pass the maximum number of sectors down 1592 * and let the lower level perform the split. 1593 */ 1594 sectors = align_to_barrier_unit_end( 1595 bio->bi_iter.bi_sector, bio_sectors(bio)); 1596 1597 if (bio_data_dir(bio) == READ) 1598 raid1_read_request(mddev, bio, sectors, NULL); 1599 else { 1600 if (!md_write_start(mddev,bio)) 1601 return false; 1602 raid1_write_request(mddev, bio, sectors); 1603 } 1604 return true; 1605 } 1606 1607 static void raid1_status(struct seq_file *seq, struct mddev *mddev) 1608 { 1609 struct r1conf *conf = mddev->private; 1610 int i; 1611 1612 seq_printf(seq, " [%d/%d] [", conf->raid_disks, 1613 conf->raid_disks - mddev->degraded); 1614 rcu_read_lock(); 1615 for (i = 0; i < conf->raid_disks; i++) { 1616 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 1617 seq_printf(seq, "%s", 1618 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_"); 1619 } 1620 rcu_read_unlock(); 1621 seq_printf(seq, "]"); 1622 } 1623 1624 static void raid1_error(struct mddev *mddev, struct md_rdev *rdev) 1625 { 1626 char b[BDEVNAME_SIZE]; 1627 struct r1conf *conf = mddev->private; 1628 unsigned long flags; 1629 1630 /* 1631 * If it is not operational, then we have already marked it as dead 1632 * else if it is the last working disks with "fail_last_dev == false", 1633 * ignore the error, let the next level up know. 1634 * else mark the drive as failed 1635 */ 1636 spin_lock_irqsave(&conf->device_lock, flags); 1637 if (test_bit(In_sync, &rdev->flags) && !mddev->fail_last_dev 1638 && (conf->raid_disks - mddev->degraded) == 1) { 1639 /* 1640 * Don't fail the drive, act as though we were just a 1641 * normal single drive. 1642 * However don't try a recovery from this drive as 1643 * it is very likely to fail. 1644 */ 1645 conf->recovery_disabled = mddev->recovery_disabled; 1646 spin_unlock_irqrestore(&conf->device_lock, flags); 1647 return; 1648 } 1649 set_bit(Blocked, &rdev->flags); 1650 if (test_and_clear_bit(In_sync, &rdev->flags)) 1651 mddev->degraded++; 1652 set_bit(Faulty, &rdev->flags); 1653 spin_unlock_irqrestore(&conf->device_lock, flags); 1654 /* 1655 * if recovery is running, make sure it aborts. 1656 */ 1657 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 1658 set_mask_bits(&mddev->sb_flags, 0, 1659 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING)); 1660 pr_crit("md/raid1:%s: Disk failure on %s, disabling device.\n" 1661 "md/raid1:%s: Operation continuing on %d devices.\n", 1662 mdname(mddev), bdevname(rdev->bdev, b), 1663 mdname(mddev), conf->raid_disks - mddev->degraded); 1664 } 1665 1666 static void print_conf(struct r1conf *conf) 1667 { 1668 int i; 1669 1670 pr_debug("RAID1 conf printout:\n"); 1671 if (!conf) { 1672 pr_debug("(!conf)\n"); 1673 return; 1674 } 1675 pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded, 1676 conf->raid_disks); 1677 1678 rcu_read_lock(); 1679 for (i = 0; i < conf->raid_disks; i++) { 1680 char b[BDEVNAME_SIZE]; 1681 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 1682 if (rdev) 1683 pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n", 1684 i, !test_bit(In_sync, &rdev->flags), 1685 !test_bit(Faulty, &rdev->flags), 1686 bdevname(rdev->bdev,b)); 1687 } 1688 rcu_read_unlock(); 1689 } 1690 1691 static void close_sync(struct r1conf *conf) 1692 { 1693 int idx; 1694 1695 for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++) { 1696 _wait_barrier(conf, idx); 1697 _allow_barrier(conf, idx); 1698 } 1699 1700 mempool_exit(&conf->r1buf_pool); 1701 } 1702 1703 static int raid1_spare_active(struct mddev *mddev) 1704 { 1705 int i; 1706 struct r1conf *conf = mddev->private; 1707 int count = 0; 1708 unsigned long flags; 1709 1710 /* 1711 * Find all failed disks within the RAID1 configuration 1712 * and mark them readable. 1713 * Called under mddev lock, so rcu protection not needed. 1714 * device_lock used to avoid races with raid1_end_read_request 1715 * which expects 'In_sync' flags and ->degraded to be consistent. 1716 */ 1717 spin_lock_irqsave(&conf->device_lock, flags); 1718 for (i = 0; i < conf->raid_disks; i++) { 1719 struct md_rdev *rdev = conf->mirrors[i].rdev; 1720 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev; 1721 if (repl 1722 && !test_bit(Candidate, &repl->flags) 1723 && repl->recovery_offset == MaxSector 1724 && !test_bit(Faulty, &repl->flags) 1725 && !test_and_set_bit(In_sync, &repl->flags)) { 1726 /* replacement has just become active */ 1727 if (!rdev || 1728 !test_and_clear_bit(In_sync, &rdev->flags)) 1729 count++; 1730 if (rdev) { 1731 /* Replaced device not technically 1732 * faulty, but we need to be sure 1733 * it gets removed and never re-added 1734 */ 1735 set_bit(Faulty, &rdev->flags); 1736 sysfs_notify_dirent_safe( 1737 rdev->sysfs_state); 1738 } 1739 } 1740 if (rdev 1741 && rdev->recovery_offset == MaxSector 1742 && !test_bit(Faulty, &rdev->flags) 1743 && !test_and_set_bit(In_sync, &rdev->flags)) { 1744 count++; 1745 sysfs_notify_dirent_safe(rdev->sysfs_state); 1746 } 1747 } 1748 mddev->degraded -= count; 1749 spin_unlock_irqrestore(&conf->device_lock, flags); 1750 1751 print_conf(conf); 1752 return count; 1753 } 1754 1755 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev) 1756 { 1757 struct r1conf *conf = mddev->private; 1758 int err = -EEXIST; 1759 int mirror = 0; 1760 struct raid1_info *p; 1761 int first = 0; 1762 int last = conf->raid_disks - 1; 1763 1764 if (mddev->recovery_disabled == conf->recovery_disabled) 1765 return -EBUSY; 1766 1767 if (md_integrity_add_rdev(rdev, mddev)) 1768 return -ENXIO; 1769 1770 if (rdev->raid_disk >= 0) 1771 first = last = rdev->raid_disk; 1772 1773 /* 1774 * find the disk ... but prefer rdev->saved_raid_disk 1775 * if possible. 1776 */ 1777 if (rdev->saved_raid_disk >= 0 && 1778 rdev->saved_raid_disk >= first && 1779 rdev->saved_raid_disk < conf->raid_disks && 1780 conf->mirrors[rdev->saved_raid_disk].rdev == NULL) 1781 first = last = rdev->saved_raid_disk; 1782 1783 for (mirror = first; mirror <= last; mirror++) { 1784 p = conf->mirrors + mirror; 1785 if (!p->rdev) { 1786 if (mddev->gendisk) 1787 disk_stack_limits(mddev->gendisk, rdev->bdev, 1788 rdev->data_offset << 9); 1789 1790 p->head_position = 0; 1791 rdev->raid_disk = mirror; 1792 err = 0; 1793 /* As all devices are equivalent, we don't need a full recovery 1794 * if this was recently any drive of the array 1795 */ 1796 if (rdev->saved_raid_disk < 0) 1797 conf->fullsync = 1; 1798 rcu_assign_pointer(p->rdev, rdev); 1799 break; 1800 } 1801 if (test_bit(WantReplacement, &p->rdev->flags) && 1802 p[conf->raid_disks].rdev == NULL) { 1803 /* Add this device as a replacement */ 1804 clear_bit(In_sync, &rdev->flags); 1805 set_bit(Replacement, &rdev->flags); 1806 rdev->raid_disk = mirror; 1807 err = 0; 1808 conf->fullsync = 1; 1809 rcu_assign_pointer(p[conf->raid_disks].rdev, rdev); 1810 break; 1811 } 1812 } 1813 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev))) 1814 blk_queue_flag_set(QUEUE_FLAG_DISCARD, mddev->queue); 1815 print_conf(conf); 1816 return err; 1817 } 1818 1819 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev) 1820 { 1821 struct r1conf *conf = mddev->private; 1822 int err = 0; 1823 int number = rdev->raid_disk; 1824 struct raid1_info *p = conf->mirrors + number; 1825 1826 if (rdev != p->rdev) 1827 p = conf->mirrors + conf->raid_disks + number; 1828 1829 print_conf(conf); 1830 if (rdev == p->rdev) { 1831 if (test_bit(In_sync, &rdev->flags) || 1832 atomic_read(&rdev->nr_pending)) { 1833 err = -EBUSY; 1834 goto abort; 1835 } 1836 /* Only remove non-faulty devices if recovery 1837 * is not possible. 1838 */ 1839 if (!test_bit(Faulty, &rdev->flags) && 1840 mddev->recovery_disabled != conf->recovery_disabled && 1841 mddev->degraded < conf->raid_disks) { 1842 err = -EBUSY; 1843 goto abort; 1844 } 1845 p->rdev = NULL; 1846 if (!test_bit(RemoveSynchronized, &rdev->flags)) { 1847 synchronize_rcu(); 1848 if (atomic_read(&rdev->nr_pending)) { 1849 /* lost the race, try later */ 1850 err = -EBUSY; 1851 p->rdev = rdev; 1852 goto abort; 1853 } 1854 } 1855 if (conf->mirrors[conf->raid_disks + number].rdev) { 1856 /* We just removed a device that is being replaced. 1857 * Move down the replacement. We drain all IO before 1858 * doing this to avoid confusion. 1859 */ 1860 struct md_rdev *repl = 1861 conf->mirrors[conf->raid_disks + number].rdev; 1862 freeze_array(conf, 0); 1863 if (atomic_read(&repl->nr_pending)) { 1864 /* It means that some queued IO of retry_list 1865 * hold repl. Thus, we cannot set replacement 1866 * as NULL, avoiding rdev NULL pointer 1867 * dereference in sync_request_write and 1868 * handle_write_finished. 1869 */ 1870 err = -EBUSY; 1871 unfreeze_array(conf); 1872 goto abort; 1873 } 1874 clear_bit(Replacement, &repl->flags); 1875 p->rdev = repl; 1876 conf->mirrors[conf->raid_disks + number].rdev = NULL; 1877 unfreeze_array(conf); 1878 } 1879 1880 clear_bit(WantReplacement, &rdev->flags); 1881 err = md_integrity_register(mddev); 1882 } 1883 abort: 1884 1885 print_conf(conf); 1886 return err; 1887 } 1888 1889 static void end_sync_read(struct bio *bio) 1890 { 1891 struct r1bio *r1_bio = get_resync_r1bio(bio); 1892 1893 update_head_pos(r1_bio->read_disk, r1_bio); 1894 1895 /* 1896 * we have read a block, now it needs to be re-written, 1897 * or re-read if the read failed. 1898 * We don't do much here, just schedule handling by raid1d 1899 */ 1900 if (!bio->bi_status) 1901 set_bit(R1BIO_Uptodate, &r1_bio->state); 1902 1903 if (atomic_dec_and_test(&r1_bio->remaining)) 1904 reschedule_retry(r1_bio); 1905 } 1906 1907 static void abort_sync_write(struct mddev *mddev, struct r1bio *r1_bio) 1908 { 1909 sector_t sync_blocks = 0; 1910 sector_t s = r1_bio->sector; 1911 long sectors_to_go = r1_bio->sectors; 1912 1913 /* make sure these bits don't get cleared. */ 1914 do { 1915 md_bitmap_end_sync(mddev->bitmap, s, &sync_blocks, 1); 1916 s += sync_blocks; 1917 sectors_to_go -= sync_blocks; 1918 } while (sectors_to_go > 0); 1919 } 1920 1921 static void put_sync_write_buf(struct r1bio *r1_bio, int uptodate) 1922 { 1923 if (atomic_dec_and_test(&r1_bio->remaining)) { 1924 struct mddev *mddev = r1_bio->mddev; 1925 int s = r1_bio->sectors; 1926 1927 if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 1928 test_bit(R1BIO_WriteError, &r1_bio->state)) 1929 reschedule_retry(r1_bio); 1930 else { 1931 put_buf(r1_bio); 1932 md_done_sync(mddev, s, uptodate); 1933 } 1934 } 1935 } 1936 1937 static void end_sync_write(struct bio *bio) 1938 { 1939 int uptodate = !bio->bi_status; 1940 struct r1bio *r1_bio = get_resync_r1bio(bio); 1941 struct mddev *mddev = r1_bio->mddev; 1942 struct r1conf *conf = mddev->private; 1943 sector_t first_bad; 1944 int bad_sectors; 1945 struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev; 1946 1947 if (!uptodate) { 1948 abort_sync_write(mddev, r1_bio); 1949 set_bit(WriteErrorSeen, &rdev->flags); 1950 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 1951 set_bit(MD_RECOVERY_NEEDED, & 1952 mddev->recovery); 1953 set_bit(R1BIO_WriteError, &r1_bio->state); 1954 } else if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors, 1955 &first_bad, &bad_sectors) && 1956 !is_badblock(conf->mirrors[r1_bio->read_disk].rdev, 1957 r1_bio->sector, 1958 r1_bio->sectors, 1959 &first_bad, &bad_sectors) 1960 ) 1961 set_bit(R1BIO_MadeGood, &r1_bio->state); 1962 1963 put_sync_write_buf(r1_bio, uptodate); 1964 } 1965 1966 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector, 1967 int sectors, struct page *page, int rw) 1968 { 1969 if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false)) 1970 /* success */ 1971 return 1; 1972 if (rw == WRITE) { 1973 set_bit(WriteErrorSeen, &rdev->flags); 1974 if (!test_and_set_bit(WantReplacement, 1975 &rdev->flags)) 1976 set_bit(MD_RECOVERY_NEEDED, & 1977 rdev->mddev->recovery); 1978 } 1979 /* need to record an error - either for the block or the device */ 1980 if (!rdev_set_badblocks(rdev, sector, sectors, 0)) 1981 md_error(rdev->mddev, rdev); 1982 return 0; 1983 } 1984 1985 static int fix_sync_read_error(struct r1bio *r1_bio) 1986 { 1987 /* Try some synchronous reads of other devices to get 1988 * good data, much like with normal read errors. Only 1989 * read into the pages we already have so we don't 1990 * need to re-issue the read request. 1991 * We don't need to freeze the array, because being in an 1992 * active sync request, there is no normal IO, and 1993 * no overlapping syncs. 1994 * We don't need to check is_badblock() again as we 1995 * made sure that anything with a bad block in range 1996 * will have bi_end_io clear. 1997 */ 1998 struct mddev *mddev = r1_bio->mddev; 1999 struct r1conf *conf = mddev->private; 2000 struct bio *bio = r1_bio->bios[r1_bio->read_disk]; 2001 struct page **pages = get_resync_pages(bio)->pages; 2002 sector_t sect = r1_bio->sector; 2003 int sectors = r1_bio->sectors; 2004 int idx = 0; 2005 struct md_rdev *rdev; 2006 2007 rdev = conf->mirrors[r1_bio->read_disk].rdev; 2008 if (test_bit(FailFast, &rdev->flags)) { 2009 /* Don't try recovering from here - just fail it 2010 * ... unless it is the last working device of course */ 2011 md_error(mddev, rdev); 2012 if (test_bit(Faulty, &rdev->flags)) 2013 /* Don't try to read from here, but make sure 2014 * put_buf does it's thing 2015 */ 2016 bio->bi_end_io = end_sync_write; 2017 } 2018 2019 while(sectors) { 2020 int s = sectors; 2021 int d = r1_bio->read_disk; 2022 int success = 0; 2023 int start; 2024 2025 if (s > (PAGE_SIZE>>9)) 2026 s = PAGE_SIZE >> 9; 2027 do { 2028 if (r1_bio->bios[d]->bi_end_io == end_sync_read) { 2029 /* No rcu protection needed here devices 2030 * can only be removed when no resync is 2031 * active, and resync is currently active 2032 */ 2033 rdev = conf->mirrors[d].rdev; 2034 if (sync_page_io(rdev, sect, s<<9, 2035 pages[idx], 2036 REQ_OP_READ, 0, false)) { 2037 success = 1; 2038 break; 2039 } 2040 } 2041 d++; 2042 if (d == conf->raid_disks * 2) 2043 d = 0; 2044 } while (!success && d != r1_bio->read_disk); 2045 2046 if (!success) { 2047 char b[BDEVNAME_SIZE]; 2048 int abort = 0; 2049 /* Cannot read from anywhere, this block is lost. 2050 * Record a bad block on each device. If that doesn't 2051 * work just disable and interrupt the recovery. 2052 * Don't fail devices as that won't really help. 2053 */ 2054 pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n", 2055 mdname(mddev), bio_devname(bio, b), 2056 (unsigned long long)r1_bio->sector); 2057 for (d = 0; d < conf->raid_disks * 2; d++) { 2058 rdev = conf->mirrors[d].rdev; 2059 if (!rdev || test_bit(Faulty, &rdev->flags)) 2060 continue; 2061 if (!rdev_set_badblocks(rdev, sect, s, 0)) 2062 abort = 1; 2063 } 2064 if (abort) { 2065 conf->recovery_disabled = 2066 mddev->recovery_disabled; 2067 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 2068 md_done_sync(mddev, r1_bio->sectors, 0); 2069 put_buf(r1_bio); 2070 return 0; 2071 } 2072 /* Try next page */ 2073 sectors -= s; 2074 sect += s; 2075 idx++; 2076 continue; 2077 } 2078 2079 start = d; 2080 /* write it back and re-read */ 2081 while (d != r1_bio->read_disk) { 2082 if (d == 0) 2083 d = conf->raid_disks * 2; 2084 d--; 2085 if (r1_bio->bios[d]->bi_end_io != end_sync_read) 2086 continue; 2087 rdev = conf->mirrors[d].rdev; 2088 if (r1_sync_page_io(rdev, sect, s, 2089 pages[idx], 2090 WRITE) == 0) { 2091 r1_bio->bios[d]->bi_end_io = NULL; 2092 rdev_dec_pending(rdev, mddev); 2093 } 2094 } 2095 d = start; 2096 while (d != r1_bio->read_disk) { 2097 if (d == 0) 2098 d = conf->raid_disks * 2; 2099 d--; 2100 if (r1_bio->bios[d]->bi_end_io != end_sync_read) 2101 continue; 2102 rdev = conf->mirrors[d].rdev; 2103 if (r1_sync_page_io(rdev, sect, s, 2104 pages[idx], 2105 READ) != 0) 2106 atomic_add(s, &rdev->corrected_errors); 2107 } 2108 sectors -= s; 2109 sect += s; 2110 idx ++; 2111 } 2112 set_bit(R1BIO_Uptodate, &r1_bio->state); 2113 bio->bi_status = 0; 2114 return 1; 2115 } 2116 2117 static void process_checks(struct r1bio *r1_bio) 2118 { 2119 /* We have read all readable devices. If we haven't 2120 * got the block, then there is no hope left. 2121 * If we have, then we want to do a comparison 2122 * and skip the write if everything is the same. 2123 * If any blocks failed to read, then we need to 2124 * attempt an over-write 2125 */ 2126 struct mddev *mddev = r1_bio->mddev; 2127 struct r1conf *conf = mddev->private; 2128 int primary; 2129 int i; 2130 int vcnt; 2131 2132 /* Fix variable parts of all bios */ 2133 vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9); 2134 for (i = 0; i < conf->raid_disks * 2; i++) { 2135 blk_status_t status; 2136 struct bio *b = r1_bio->bios[i]; 2137 struct resync_pages *rp = get_resync_pages(b); 2138 if (b->bi_end_io != end_sync_read) 2139 continue; 2140 /* fixup the bio for reuse, but preserve errno */ 2141 status = b->bi_status; 2142 bio_reset(b); 2143 b->bi_status = status; 2144 b->bi_iter.bi_sector = r1_bio->sector + 2145 conf->mirrors[i].rdev->data_offset; 2146 bio_set_dev(b, conf->mirrors[i].rdev->bdev); 2147 b->bi_end_io = end_sync_read; 2148 rp->raid_bio = r1_bio; 2149 b->bi_private = rp; 2150 2151 /* initialize bvec table again */ 2152 md_bio_reset_resync_pages(b, rp, r1_bio->sectors << 9); 2153 } 2154 for (primary = 0; primary < conf->raid_disks * 2; primary++) 2155 if (r1_bio->bios[primary]->bi_end_io == end_sync_read && 2156 !r1_bio->bios[primary]->bi_status) { 2157 r1_bio->bios[primary]->bi_end_io = NULL; 2158 rdev_dec_pending(conf->mirrors[primary].rdev, mddev); 2159 break; 2160 } 2161 r1_bio->read_disk = primary; 2162 for (i = 0; i < conf->raid_disks * 2; i++) { 2163 int j = 0; 2164 struct bio *pbio = r1_bio->bios[primary]; 2165 struct bio *sbio = r1_bio->bios[i]; 2166 blk_status_t status = sbio->bi_status; 2167 struct page **ppages = get_resync_pages(pbio)->pages; 2168 struct page **spages = get_resync_pages(sbio)->pages; 2169 struct bio_vec *bi; 2170 int page_len[RESYNC_PAGES] = { 0 }; 2171 struct bvec_iter_all iter_all; 2172 2173 if (sbio->bi_end_io != end_sync_read) 2174 continue; 2175 /* Now we can 'fixup' the error value */ 2176 sbio->bi_status = 0; 2177 2178 bio_for_each_segment_all(bi, sbio, iter_all) 2179 page_len[j++] = bi->bv_len; 2180 2181 if (!status) { 2182 for (j = vcnt; j-- ; ) { 2183 if (memcmp(page_address(ppages[j]), 2184 page_address(spages[j]), 2185 page_len[j])) 2186 break; 2187 } 2188 } else 2189 j = 0; 2190 if (j >= 0) 2191 atomic64_add(r1_bio->sectors, &mddev->resync_mismatches); 2192 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery) 2193 && !status)) { 2194 /* No need to write to this device. */ 2195 sbio->bi_end_io = NULL; 2196 rdev_dec_pending(conf->mirrors[i].rdev, mddev); 2197 continue; 2198 } 2199 2200 bio_copy_data(sbio, pbio); 2201 } 2202 } 2203 2204 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio) 2205 { 2206 struct r1conf *conf = mddev->private; 2207 int i; 2208 int disks = conf->raid_disks * 2; 2209 struct bio *wbio; 2210 2211 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) 2212 /* ouch - failed to read all of that. */ 2213 if (!fix_sync_read_error(r1_bio)) 2214 return; 2215 2216 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 2217 process_checks(r1_bio); 2218 2219 /* 2220 * schedule writes 2221 */ 2222 atomic_set(&r1_bio->remaining, 1); 2223 for (i = 0; i < disks ; i++) { 2224 wbio = r1_bio->bios[i]; 2225 if (wbio->bi_end_io == NULL || 2226 (wbio->bi_end_io == end_sync_read && 2227 (i == r1_bio->read_disk || 2228 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery)))) 2229 continue; 2230 if (test_bit(Faulty, &conf->mirrors[i].rdev->flags)) { 2231 abort_sync_write(mddev, r1_bio); 2232 continue; 2233 } 2234 2235 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0); 2236 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags)) 2237 wbio->bi_opf |= MD_FAILFAST; 2238 2239 wbio->bi_end_io = end_sync_write; 2240 atomic_inc(&r1_bio->remaining); 2241 md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio)); 2242 2243 generic_make_request(wbio); 2244 } 2245 2246 put_sync_write_buf(r1_bio, 1); 2247 } 2248 2249 /* 2250 * This is a kernel thread which: 2251 * 2252 * 1. Retries failed read operations on working mirrors. 2253 * 2. Updates the raid superblock when problems encounter. 2254 * 3. Performs writes following reads for array synchronising. 2255 */ 2256 2257 static void fix_read_error(struct r1conf *conf, int read_disk, 2258 sector_t sect, int sectors) 2259 { 2260 struct mddev *mddev = conf->mddev; 2261 while(sectors) { 2262 int s = sectors; 2263 int d = read_disk; 2264 int success = 0; 2265 int start; 2266 struct md_rdev *rdev; 2267 2268 if (s > (PAGE_SIZE>>9)) 2269 s = PAGE_SIZE >> 9; 2270 2271 do { 2272 sector_t first_bad; 2273 int bad_sectors; 2274 2275 rcu_read_lock(); 2276 rdev = rcu_dereference(conf->mirrors[d].rdev); 2277 if (rdev && 2278 (test_bit(In_sync, &rdev->flags) || 2279 (!test_bit(Faulty, &rdev->flags) && 2280 rdev->recovery_offset >= sect + s)) && 2281 is_badblock(rdev, sect, s, 2282 &first_bad, &bad_sectors) == 0) { 2283 atomic_inc(&rdev->nr_pending); 2284 rcu_read_unlock(); 2285 if (sync_page_io(rdev, sect, s<<9, 2286 conf->tmppage, REQ_OP_READ, 0, false)) 2287 success = 1; 2288 rdev_dec_pending(rdev, mddev); 2289 if (success) 2290 break; 2291 } else 2292 rcu_read_unlock(); 2293 d++; 2294 if (d == conf->raid_disks * 2) 2295 d = 0; 2296 } while (!success && d != read_disk); 2297 2298 if (!success) { 2299 /* Cannot read from anywhere - mark it bad */ 2300 struct md_rdev *rdev = conf->mirrors[read_disk].rdev; 2301 if (!rdev_set_badblocks(rdev, sect, s, 0)) 2302 md_error(mddev, rdev); 2303 break; 2304 } 2305 /* write it back and re-read */ 2306 start = d; 2307 while (d != read_disk) { 2308 if (d==0) 2309 d = conf->raid_disks * 2; 2310 d--; 2311 rcu_read_lock(); 2312 rdev = rcu_dereference(conf->mirrors[d].rdev); 2313 if (rdev && 2314 !test_bit(Faulty, &rdev->flags)) { 2315 atomic_inc(&rdev->nr_pending); 2316 rcu_read_unlock(); 2317 r1_sync_page_io(rdev, sect, s, 2318 conf->tmppage, WRITE); 2319 rdev_dec_pending(rdev, mddev); 2320 } else 2321 rcu_read_unlock(); 2322 } 2323 d = start; 2324 while (d != read_disk) { 2325 char b[BDEVNAME_SIZE]; 2326 if (d==0) 2327 d = conf->raid_disks * 2; 2328 d--; 2329 rcu_read_lock(); 2330 rdev = rcu_dereference(conf->mirrors[d].rdev); 2331 if (rdev && 2332 !test_bit(Faulty, &rdev->flags)) { 2333 atomic_inc(&rdev->nr_pending); 2334 rcu_read_unlock(); 2335 if (r1_sync_page_io(rdev, sect, s, 2336 conf->tmppage, READ)) { 2337 atomic_add(s, &rdev->corrected_errors); 2338 pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %s)\n", 2339 mdname(mddev), s, 2340 (unsigned long long)(sect + 2341 rdev->data_offset), 2342 bdevname(rdev->bdev, b)); 2343 } 2344 rdev_dec_pending(rdev, mddev); 2345 } else 2346 rcu_read_unlock(); 2347 } 2348 sectors -= s; 2349 sect += s; 2350 } 2351 } 2352 2353 static int narrow_write_error(struct r1bio *r1_bio, int i) 2354 { 2355 struct mddev *mddev = r1_bio->mddev; 2356 struct r1conf *conf = mddev->private; 2357 struct md_rdev *rdev = conf->mirrors[i].rdev; 2358 2359 /* bio has the data to be written to device 'i' where 2360 * we just recently had a write error. 2361 * We repeatedly clone the bio and trim down to one block, 2362 * then try the write. Where the write fails we record 2363 * a bad block. 2364 * It is conceivable that the bio doesn't exactly align with 2365 * blocks. We must handle this somehow. 2366 * 2367 * We currently own a reference on the rdev. 2368 */ 2369 2370 int block_sectors; 2371 sector_t sector; 2372 int sectors; 2373 int sect_to_write = r1_bio->sectors; 2374 int ok = 1; 2375 2376 if (rdev->badblocks.shift < 0) 2377 return 0; 2378 2379 block_sectors = roundup(1 << rdev->badblocks.shift, 2380 bdev_logical_block_size(rdev->bdev) >> 9); 2381 sector = r1_bio->sector; 2382 sectors = ((sector + block_sectors) 2383 & ~(sector_t)(block_sectors - 1)) 2384 - sector; 2385 2386 while (sect_to_write) { 2387 struct bio *wbio; 2388 if (sectors > sect_to_write) 2389 sectors = sect_to_write; 2390 /* Write at 'sector' for 'sectors'*/ 2391 2392 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) { 2393 wbio = bio_clone_fast(r1_bio->behind_master_bio, 2394 GFP_NOIO, 2395 &mddev->bio_set); 2396 } else { 2397 wbio = bio_clone_fast(r1_bio->master_bio, GFP_NOIO, 2398 &mddev->bio_set); 2399 } 2400 2401 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0); 2402 wbio->bi_iter.bi_sector = r1_bio->sector; 2403 wbio->bi_iter.bi_size = r1_bio->sectors << 9; 2404 2405 bio_trim(wbio, sector - r1_bio->sector, sectors); 2406 wbio->bi_iter.bi_sector += rdev->data_offset; 2407 bio_set_dev(wbio, rdev->bdev); 2408 2409 if (submit_bio_wait(wbio) < 0) 2410 /* failure! */ 2411 ok = rdev_set_badblocks(rdev, sector, 2412 sectors, 0) 2413 && ok; 2414 2415 bio_put(wbio); 2416 sect_to_write -= sectors; 2417 sector += sectors; 2418 sectors = block_sectors; 2419 } 2420 return ok; 2421 } 2422 2423 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio) 2424 { 2425 int m; 2426 int s = r1_bio->sectors; 2427 for (m = 0; m < conf->raid_disks * 2 ; m++) { 2428 struct md_rdev *rdev = conf->mirrors[m].rdev; 2429 struct bio *bio = r1_bio->bios[m]; 2430 if (bio->bi_end_io == NULL) 2431 continue; 2432 if (!bio->bi_status && 2433 test_bit(R1BIO_MadeGood, &r1_bio->state)) { 2434 rdev_clear_badblocks(rdev, r1_bio->sector, s, 0); 2435 } 2436 if (bio->bi_status && 2437 test_bit(R1BIO_WriteError, &r1_bio->state)) { 2438 if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0)) 2439 md_error(conf->mddev, rdev); 2440 } 2441 } 2442 put_buf(r1_bio); 2443 md_done_sync(conf->mddev, s, 1); 2444 } 2445 2446 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio) 2447 { 2448 int m, idx; 2449 bool fail = false; 2450 2451 for (m = 0; m < conf->raid_disks * 2 ; m++) 2452 if (r1_bio->bios[m] == IO_MADE_GOOD) { 2453 struct md_rdev *rdev = conf->mirrors[m].rdev; 2454 rdev_clear_badblocks(rdev, 2455 r1_bio->sector, 2456 r1_bio->sectors, 0); 2457 rdev_dec_pending(rdev, conf->mddev); 2458 } else if (r1_bio->bios[m] != NULL) { 2459 /* This drive got a write error. We need to 2460 * narrow down and record precise write 2461 * errors. 2462 */ 2463 fail = true; 2464 if (!narrow_write_error(r1_bio, m)) { 2465 md_error(conf->mddev, 2466 conf->mirrors[m].rdev); 2467 /* an I/O failed, we can't clear the bitmap */ 2468 set_bit(R1BIO_Degraded, &r1_bio->state); 2469 } 2470 rdev_dec_pending(conf->mirrors[m].rdev, 2471 conf->mddev); 2472 } 2473 if (fail) { 2474 spin_lock_irq(&conf->device_lock); 2475 list_add(&r1_bio->retry_list, &conf->bio_end_io_list); 2476 idx = sector_to_idx(r1_bio->sector); 2477 atomic_inc(&conf->nr_queued[idx]); 2478 spin_unlock_irq(&conf->device_lock); 2479 /* 2480 * In case freeze_array() is waiting for condition 2481 * get_unqueued_pending() == extra to be true. 2482 */ 2483 wake_up(&conf->wait_barrier); 2484 md_wakeup_thread(conf->mddev->thread); 2485 } else { 2486 if (test_bit(R1BIO_WriteError, &r1_bio->state)) 2487 close_write(r1_bio); 2488 raid_end_bio_io(r1_bio); 2489 } 2490 } 2491 2492 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio) 2493 { 2494 struct mddev *mddev = conf->mddev; 2495 struct bio *bio; 2496 struct md_rdev *rdev; 2497 2498 clear_bit(R1BIO_ReadError, &r1_bio->state); 2499 /* we got a read error. Maybe the drive is bad. Maybe just 2500 * the block and we can fix it. 2501 * We freeze all other IO, and try reading the block from 2502 * other devices. When we find one, we re-write 2503 * and check it that fixes the read error. 2504 * This is all done synchronously while the array is 2505 * frozen 2506 */ 2507 2508 bio = r1_bio->bios[r1_bio->read_disk]; 2509 bio_put(bio); 2510 r1_bio->bios[r1_bio->read_disk] = NULL; 2511 2512 rdev = conf->mirrors[r1_bio->read_disk].rdev; 2513 if (mddev->ro == 0 2514 && !test_bit(FailFast, &rdev->flags)) { 2515 freeze_array(conf, 1); 2516 fix_read_error(conf, r1_bio->read_disk, 2517 r1_bio->sector, r1_bio->sectors); 2518 unfreeze_array(conf); 2519 } else if (mddev->ro == 0 && test_bit(FailFast, &rdev->flags)) { 2520 md_error(mddev, rdev); 2521 } else { 2522 r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED; 2523 } 2524 2525 rdev_dec_pending(rdev, conf->mddev); 2526 allow_barrier(conf, r1_bio->sector); 2527 bio = r1_bio->master_bio; 2528 2529 /* Reuse the old r1_bio so that the IO_BLOCKED settings are preserved */ 2530 r1_bio->state = 0; 2531 raid1_read_request(mddev, bio, r1_bio->sectors, r1_bio); 2532 } 2533 2534 static void raid1d(struct md_thread *thread) 2535 { 2536 struct mddev *mddev = thread->mddev; 2537 struct r1bio *r1_bio; 2538 unsigned long flags; 2539 struct r1conf *conf = mddev->private; 2540 struct list_head *head = &conf->retry_list; 2541 struct blk_plug plug; 2542 int idx; 2543 2544 md_check_recovery(mddev); 2545 2546 if (!list_empty_careful(&conf->bio_end_io_list) && 2547 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) { 2548 LIST_HEAD(tmp); 2549 spin_lock_irqsave(&conf->device_lock, flags); 2550 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) 2551 list_splice_init(&conf->bio_end_io_list, &tmp); 2552 spin_unlock_irqrestore(&conf->device_lock, flags); 2553 while (!list_empty(&tmp)) { 2554 r1_bio = list_first_entry(&tmp, struct r1bio, 2555 retry_list); 2556 list_del(&r1_bio->retry_list); 2557 idx = sector_to_idx(r1_bio->sector); 2558 atomic_dec(&conf->nr_queued[idx]); 2559 if (mddev->degraded) 2560 set_bit(R1BIO_Degraded, &r1_bio->state); 2561 if (test_bit(R1BIO_WriteError, &r1_bio->state)) 2562 close_write(r1_bio); 2563 raid_end_bio_io(r1_bio); 2564 } 2565 } 2566 2567 blk_start_plug(&plug); 2568 for (;;) { 2569 2570 flush_pending_writes(conf); 2571 2572 spin_lock_irqsave(&conf->device_lock, flags); 2573 if (list_empty(head)) { 2574 spin_unlock_irqrestore(&conf->device_lock, flags); 2575 break; 2576 } 2577 r1_bio = list_entry(head->prev, struct r1bio, retry_list); 2578 list_del(head->prev); 2579 idx = sector_to_idx(r1_bio->sector); 2580 atomic_dec(&conf->nr_queued[idx]); 2581 spin_unlock_irqrestore(&conf->device_lock, flags); 2582 2583 mddev = r1_bio->mddev; 2584 conf = mddev->private; 2585 if (test_bit(R1BIO_IsSync, &r1_bio->state)) { 2586 if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 2587 test_bit(R1BIO_WriteError, &r1_bio->state)) 2588 handle_sync_write_finished(conf, r1_bio); 2589 else 2590 sync_request_write(mddev, r1_bio); 2591 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 2592 test_bit(R1BIO_WriteError, &r1_bio->state)) 2593 handle_write_finished(conf, r1_bio); 2594 else if (test_bit(R1BIO_ReadError, &r1_bio->state)) 2595 handle_read_error(conf, r1_bio); 2596 else 2597 WARN_ON_ONCE(1); 2598 2599 cond_resched(); 2600 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING)) 2601 md_check_recovery(mddev); 2602 } 2603 blk_finish_plug(&plug); 2604 } 2605 2606 static int init_resync(struct r1conf *conf) 2607 { 2608 int buffs; 2609 2610 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE; 2611 BUG_ON(mempool_initialized(&conf->r1buf_pool)); 2612 2613 return mempool_init(&conf->r1buf_pool, buffs, r1buf_pool_alloc, 2614 r1buf_pool_free, conf->poolinfo); 2615 } 2616 2617 static struct r1bio *raid1_alloc_init_r1buf(struct r1conf *conf) 2618 { 2619 struct r1bio *r1bio = mempool_alloc(&conf->r1buf_pool, GFP_NOIO); 2620 struct resync_pages *rps; 2621 struct bio *bio; 2622 int i; 2623 2624 for (i = conf->poolinfo->raid_disks; i--; ) { 2625 bio = r1bio->bios[i]; 2626 rps = bio->bi_private; 2627 bio_reset(bio); 2628 bio->bi_private = rps; 2629 } 2630 r1bio->master_bio = NULL; 2631 return r1bio; 2632 } 2633 2634 /* 2635 * perform a "sync" on one "block" 2636 * 2637 * We need to make sure that no normal I/O request - particularly write 2638 * requests - conflict with active sync requests. 2639 * 2640 * This is achieved by tracking pending requests and a 'barrier' concept 2641 * that can be installed to exclude normal IO requests. 2642 */ 2643 2644 static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr, 2645 int *skipped) 2646 { 2647 struct r1conf *conf = mddev->private; 2648 struct r1bio *r1_bio; 2649 struct bio *bio; 2650 sector_t max_sector, nr_sectors; 2651 int disk = -1; 2652 int i; 2653 int wonly = -1; 2654 int write_targets = 0, read_targets = 0; 2655 sector_t sync_blocks; 2656 int still_degraded = 0; 2657 int good_sectors = RESYNC_SECTORS; 2658 int min_bad = 0; /* number of sectors that are bad in all devices */ 2659 int idx = sector_to_idx(sector_nr); 2660 int page_idx = 0; 2661 2662 if (!mempool_initialized(&conf->r1buf_pool)) 2663 if (init_resync(conf)) 2664 return 0; 2665 2666 max_sector = mddev->dev_sectors; 2667 if (sector_nr >= max_sector) { 2668 /* If we aborted, we need to abort the 2669 * sync on the 'current' bitmap chunk (there will 2670 * only be one in raid1 resync. 2671 * We can find the current addess in mddev->curr_resync 2672 */ 2673 if (mddev->curr_resync < max_sector) /* aborted */ 2674 md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 2675 &sync_blocks, 1); 2676 else /* completed sync */ 2677 conf->fullsync = 0; 2678 2679 md_bitmap_close_sync(mddev->bitmap); 2680 close_sync(conf); 2681 2682 if (mddev_is_clustered(mddev)) { 2683 conf->cluster_sync_low = 0; 2684 conf->cluster_sync_high = 0; 2685 } 2686 return 0; 2687 } 2688 2689 if (mddev->bitmap == NULL && 2690 mddev->recovery_cp == MaxSector && 2691 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 2692 conf->fullsync == 0) { 2693 *skipped = 1; 2694 return max_sector - sector_nr; 2695 } 2696 /* before building a request, check if we can skip these blocks.. 2697 * This call the bitmap_start_sync doesn't actually record anything 2698 */ 2699 if (!md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) && 2700 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 2701 /* We can skip this block, and probably several more */ 2702 *skipped = 1; 2703 return sync_blocks; 2704 } 2705 2706 /* 2707 * If there is non-resync activity waiting for a turn, then let it 2708 * though before starting on this new sync request. 2709 */ 2710 if (atomic_read(&conf->nr_waiting[idx])) 2711 schedule_timeout_uninterruptible(1); 2712 2713 /* we are incrementing sector_nr below. To be safe, we check against 2714 * sector_nr + two times RESYNC_SECTORS 2715 */ 2716 2717 md_bitmap_cond_end_sync(mddev->bitmap, sector_nr, 2718 mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high)); 2719 2720 2721 if (raise_barrier(conf, sector_nr)) 2722 return 0; 2723 2724 r1_bio = raid1_alloc_init_r1buf(conf); 2725 2726 rcu_read_lock(); 2727 /* 2728 * If we get a correctably read error during resync or recovery, 2729 * we might want to read from a different device. So we 2730 * flag all drives that could conceivably be read from for READ, 2731 * and any others (which will be non-In_sync devices) for WRITE. 2732 * If a read fails, we try reading from something else for which READ 2733 * is OK. 2734 */ 2735 2736 r1_bio->mddev = mddev; 2737 r1_bio->sector = sector_nr; 2738 r1_bio->state = 0; 2739 set_bit(R1BIO_IsSync, &r1_bio->state); 2740 /* make sure good_sectors won't go across barrier unit boundary */ 2741 good_sectors = align_to_barrier_unit_end(sector_nr, good_sectors); 2742 2743 for (i = 0; i < conf->raid_disks * 2; i++) { 2744 struct md_rdev *rdev; 2745 bio = r1_bio->bios[i]; 2746 2747 rdev = rcu_dereference(conf->mirrors[i].rdev); 2748 if (rdev == NULL || 2749 test_bit(Faulty, &rdev->flags)) { 2750 if (i < conf->raid_disks) 2751 still_degraded = 1; 2752 } else if (!test_bit(In_sync, &rdev->flags)) { 2753 bio_set_op_attrs(bio, REQ_OP_WRITE, 0); 2754 bio->bi_end_io = end_sync_write; 2755 write_targets ++; 2756 } else { 2757 /* may need to read from here */ 2758 sector_t first_bad = MaxSector; 2759 int bad_sectors; 2760 2761 if (is_badblock(rdev, sector_nr, good_sectors, 2762 &first_bad, &bad_sectors)) { 2763 if (first_bad > sector_nr) 2764 good_sectors = first_bad - sector_nr; 2765 else { 2766 bad_sectors -= (sector_nr - first_bad); 2767 if (min_bad == 0 || 2768 min_bad > bad_sectors) 2769 min_bad = bad_sectors; 2770 } 2771 } 2772 if (sector_nr < first_bad) { 2773 if (test_bit(WriteMostly, &rdev->flags)) { 2774 if (wonly < 0) 2775 wonly = i; 2776 } else { 2777 if (disk < 0) 2778 disk = i; 2779 } 2780 bio_set_op_attrs(bio, REQ_OP_READ, 0); 2781 bio->bi_end_io = end_sync_read; 2782 read_targets++; 2783 } else if (!test_bit(WriteErrorSeen, &rdev->flags) && 2784 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && 2785 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) { 2786 /* 2787 * The device is suitable for reading (InSync), 2788 * but has bad block(s) here. Let's try to correct them, 2789 * if we are doing resync or repair. Otherwise, leave 2790 * this device alone for this sync request. 2791 */ 2792 bio_set_op_attrs(bio, REQ_OP_WRITE, 0); 2793 bio->bi_end_io = end_sync_write; 2794 write_targets++; 2795 } 2796 } 2797 if (rdev && bio->bi_end_io) { 2798 atomic_inc(&rdev->nr_pending); 2799 bio->bi_iter.bi_sector = sector_nr + rdev->data_offset; 2800 bio_set_dev(bio, rdev->bdev); 2801 if (test_bit(FailFast, &rdev->flags)) 2802 bio->bi_opf |= MD_FAILFAST; 2803 } 2804 } 2805 rcu_read_unlock(); 2806 if (disk < 0) 2807 disk = wonly; 2808 r1_bio->read_disk = disk; 2809 2810 if (read_targets == 0 && min_bad > 0) { 2811 /* These sectors are bad on all InSync devices, so we 2812 * need to mark them bad on all write targets 2813 */ 2814 int ok = 1; 2815 for (i = 0 ; i < conf->raid_disks * 2 ; i++) 2816 if (r1_bio->bios[i]->bi_end_io == end_sync_write) { 2817 struct md_rdev *rdev = conf->mirrors[i].rdev; 2818 ok = rdev_set_badblocks(rdev, sector_nr, 2819 min_bad, 0 2820 ) && ok; 2821 } 2822 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2823 *skipped = 1; 2824 put_buf(r1_bio); 2825 2826 if (!ok) { 2827 /* Cannot record the badblocks, so need to 2828 * abort the resync. 2829 * If there are multiple read targets, could just 2830 * fail the really bad ones ??? 2831 */ 2832 conf->recovery_disabled = mddev->recovery_disabled; 2833 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 2834 return 0; 2835 } else 2836 return min_bad; 2837 2838 } 2839 if (min_bad > 0 && min_bad < good_sectors) { 2840 /* only resync enough to reach the next bad->good 2841 * transition */ 2842 good_sectors = min_bad; 2843 } 2844 2845 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0) 2846 /* extra read targets are also write targets */ 2847 write_targets += read_targets-1; 2848 2849 if (write_targets == 0 || read_targets == 0) { 2850 /* There is nowhere to write, so all non-sync 2851 * drives must be failed - so we are finished 2852 */ 2853 sector_t rv; 2854 if (min_bad > 0) 2855 max_sector = sector_nr + min_bad; 2856 rv = max_sector - sector_nr; 2857 *skipped = 1; 2858 put_buf(r1_bio); 2859 return rv; 2860 } 2861 2862 if (max_sector > mddev->resync_max) 2863 max_sector = mddev->resync_max; /* Don't do IO beyond here */ 2864 if (max_sector > sector_nr + good_sectors) 2865 max_sector = sector_nr + good_sectors; 2866 nr_sectors = 0; 2867 sync_blocks = 0; 2868 do { 2869 struct page *page; 2870 int len = PAGE_SIZE; 2871 if (sector_nr + (len>>9) > max_sector) 2872 len = (max_sector - sector_nr) << 9; 2873 if (len == 0) 2874 break; 2875 if (sync_blocks == 0) { 2876 if (!md_bitmap_start_sync(mddev->bitmap, sector_nr, 2877 &sync_blocks, still_degraded) && 2878 !conf->fullsync && 2879 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 2880 break; 2881 if ((len >> 9) > sync_blocks) 2882 len = sync_blocks<<9; 2883 } 2884 2885 for (i = 0 ; i < conf->raid_disks * 2; i++) { 2886 struct resync_pages *rp; 2887 2888 bio = r1_bio->bios[i]; 2889 rp = get_resync_pages(bio); 2890 if (bio->bi_end_io) { 2891 page = resync_fetch_page(rp, page_idx); 2892 2893 /* 2894 * won't fail because the vec table is big 2895 * enough to hold all these pages 2896 */ 2897 bio_add_page(bio, page, len, 0); 2898 } 2899 } 2900 nr_sectors += len>>9; 2901 sector_nr += len>>9; 2902 sync_blocks -= (len>>9); 2903 } while (++page_idx < RESYNC_PAGES); 2904 2905 r1_bio->sectors = nr_sectors; 2906 2907 if (mddev_is_clustered(mddev) && 2908 conf->cluster_sync_high < sector_nr + nr_sectors) { 2909 conf->cluster_sync_low = mddev->curr_resync_completed; 2910 conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS; 2911 /* Send resync message */ 2912 md_cluster_ops->resync_info_update(mddev, 2913 conf->cluster_sync_low, 2914 conf->cluster_sync_high); 2915 } 2916 2917 /* For a user-requested sync, we read all readable devices and do a 2918 * compare 2919 */ 2920 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 2921 atomic_set(&r1_bio->remaining, read_targets); 2922 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) { 2923 bio = r1_bio->bios[i]; 2924 if (bio->bi_end_io == end_sync_read) { 2925 read_targets--; 2926 md_sync_acct_bio(bio, nr_sectors); 2927 if (read_targets == 1) 2928 bio->bi_opf &= ~MD_FAILFAST; 2929 generic_make_request(bio); 2930 } 2931 } 2932 } else { 2933 atomic_set(&r1_bio->remaining, 1); 2934 bio = r1_bio->bios[r1_bio->read_disk]; 2935 md_sync_acct_bio(bio, nr_sectors); 2936 if (read_targets == 1) 2937 bio->bi_opf &= ~MD_FAILFAST; 2938 generic_make_request(bio); 2939 } 2940 return nr_sectors; 2941 } 2942 2943 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks) 2944 { 2945 if (sectors) 2946 return sectors; 2947 2948 return mddev->dev_sectors; 2949 } 2950 2951 static struct r1conf *setup_conf(struct mddev *mddev) 2952 { 2953 struct r1conf *conf; 2954 int i; 2955 struct raid1_info *disk; 2956 struct md_rdev *rdev; 2957 int err = -ENOMEM; 2958 2959 conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL); 2960 if (!conf) 2961 goto abort; 2962 2963 conf->nr_pending = kcalloc(BARRIER_BUCKETS_NR, 2964 sizeof(atomic_t), GFP_KERNEL); 2965 if (!conf->nr_pending) 2966 goto abort; 2967 2968 conf->nr_waiting = kcalloc(BARRIER_BUCKETS_NR, 2969 sizeof(atomic_t), GFP_KERNEL); 2970 if (!conf->nr_waiting) 2971 goto abort; 2972 2973 conf->nr_queued = kcalloc(BARRIER_BUCKETS_NR, 2974 sizeof(atomic_t), GFP_KERNEL); 2975 if (!conf->nr_queued) 2976 goto abort; 2977 2978 conf->barrier = kcalloc(BARRIER_BUCKETS_NR, 2979 sizeof(atomic_t), GFP_KERNEL); 2980 if (!conf->barrier) 2981 goto abort; 2982 2983 conf->mirrors = kzalloc(array3_size(sizeof(struct raid1_info), 2984 mddev->raid_disks, 2), 2985 GFP_KERNEL); 2986 if (!conf->mirrors) 2987 goto abort; 2988 2989 conf->tmppage = alloc_page(GFP_KERNEL); 2990 if (!conf->tmppage) 2991 goto abort; 2992 2993 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL); 2994 if (!conf->poolinfo) 2995 goto abort; 2996 conf->poolinfo->raid_disks = mddev->raid_disks * 2; 2997 err = mempool_init(&conf->r1bio_pool, NR_RAID_BIOS, r1bio_pool_alloc, 2998 rbio_pool_free, conf->poolinfo); 2999 if (err) 3000 goto abort; 3001 3002 err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0); 3003 if (err) 3004 goto abort; 3005 3006 conf->poolinfo->mddev = mddev; 3007 3008 err = -EINVAL; 3009 spin_lock_init(&conf->device_lock); 3010 rdev_for_each(rdev, mddev) { 3011 int disk_idx = rdev->raid_disk; 3012 if (disk_idx >= mddev->raid_disks 3013 || disk_idx < 0) 3014 continue; 3015 if (test_bit(Replacement, &rdev->flags)) 3016 disk = conf->mirrors + mddev->raid_disks + disk_idx; 3017 else 3018 disk = conf->mirrors + disk_idx; 3019 3020 if (disk->rdev) 3021 goto abort; 3022 disk->rdev = rdev; 3023 disk->head_position = 0; 3024 disk->seq_start = MaxSector; 3025 } 3026 conf->raid_disks = mddev->raid_disks; 3027 conf->mddev = mddev; 3028 INIT_LIST_HEAD(&conf->retry_list); 3029 INIT_LIST_HEAD(&conf->bio_end_io_list); 3030 3031 spin_lock_init(&conf->resync_lock); 3032 init_waitqueue_head(&conf->wait_barrier); 3033 3034 bio_list_init(&conf->pending_bio_list); 3035 conf->pending_count = 0; 3036 conf->recovery_disabled = mddev->recovery_disabled - 1; 3037 3038 err = -EIO; 3039 for (i = 0; i < conf->raid_disks * 2; i++) { 3040 3041 disk = conf->mirrors + i; 3042 3043 if (i < conf->raid_disks && 3044 disk[conf->raid_disks].rdev) { 3045 /* This slot has a replacement. */ 3046 if (!disk->rdev) { 3047 /* No original, just make the replacement 3048 * a recovering spare 3049 */ 3050 disk->rdev = 3051 disk[conf->raid_disks].rdev; 3052 disk[conf->raid_disks].rdev = NULL; 3053 } else if (!test_bit(In_sync, &disk->rdev->flags)) 3054 /* Original is not in_sync - bad */ 3055 goto abort; 3056 } 3057 3058 if (!disk->rdev || 3059 !test_bit(In_sync, &disk->rdev->flags)) { 3060 disk->head_position = 0; 3061 if (disk->rdev && 3062 (disk->rdev->saved_raid_disk < 0)) 3063 conf->fullsync = 1; 3064 } 3065 } 3066 3067 err = -ENOMEM; 3068 conf->thread = md_register_thread(raid1d, mddev, "raid1"); 3069 if (!conf->thread) 3070 goto abort; 3071 3072 return conf; 3073 3074 abort: 3075 if (conf) { 3076 mempool_exit(&conf->r1bio_pool); 3077 kfree(conf->mirrors); 3078 safe_put_page(conf->tmppage); 3079 kfree(conf->poolinfo); 3080 kfree(conf->nr_pending); 3081 kfree(conf->nr_waiting); 3082 kfree(conf->nr_queued); 3083 kfree(conf->barrier); 3084 bioset_exit(&conf->bio_split); 3085 kfree(conf); 3086 } 3087 return ERR_PTR(err); 3088 } 3089 3090 static void raid1_free(struct mddev *mddev, void *priv); 3091 static int raid1_run(struct mddev *mddev) 3092 { 3093 struct r1conf *conf; 3094 int i; 3095 struct md_rdev *rdev; 3096 int ret; 3097 bool discard_supported = false; 3098 3099 if (mddev->level != 1) { 3100 pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n", 3101 mdname(mddev), mddev->level); 3102 return -EIO; 3103 } 3104 if (mddev->reshape_position != MaxSector) { 3105 pr_warn("md/raid1:%s: reshape_position set but not supported\n", 3106 mdname(mddev)); 3107 return -EIO; 3108 } 3109 if (mddev_init_writes_pending(mddev) < 0) 3110 return -ENOMEM; 3111 /* 3112 * copy the already verified devices into our private RAID1 3113 * bookkeeping area. [whatever we allocate in run(), 3114 * should be freed in raid1_free()] 3115 */ 3116 if (mddev->private == NULL) 3117 conf = setup_conf(mddev); 3118 else 3119 conf = mddev->private; 3120 3121 if (IS_ERR(conf)) 3122 return PTR_ERR(conf); 3123 3124 if (mddev->queue) { 3125 blk_queue_max_write_same_sectors(mddev->queue, 0); 3126 blk_queue_max_write_zeroes_sectors(mddev->queue, 0); 3127 } 3128 3129 rdev_for_each(rdev, mddev) { 3130 if (!mddev->gendisk) 3131 continue; 3132 disk_stack_limits(mddev->gendisk, rdev->bdev, 3133 rdev->data_offset << 9); 3134 if (blk_queue_discard(bdev_get_queue(rdev->bdev))) 3135 discard_supported = true; 3136 } 3137 3138 mddev->degraded = 0; 3139 for (i = 0; i < conf->raid_disks; i++) 3140 if (conf->mirrors[i].rdev == NULL || 3141 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) || 3142 test_bit(Faulty, &conf->mirrors[i].rdev->flags)) 3143 mddev->degraded++; 3144 /* 3145 * RAID1 needs at least one disk in active 3146 */ 3147 if (conf->raid_disks - mddev->degraded < 1) { 3148 ret = -EINVAL; 3149 goto abort; 3150 } 3151 3152 if (conf->raid_disks - mddev->degraded == 1) 3153 mddev->recovery_cp = MaxSector; 3154 3155 if (mddev->recovery_cp != MaxSector) 3156 pr_info("md/raid1:%s: not clean -- starting background reconstruction\n", 3157 mdname(mddev)); 3158 pr_info("md/raid1:%s: active with %d out of %d mirrors\n", 3159 mdname(mddev), mddev->raid_disks - mddev->degraded, 3160 mddev->raid_disks); 3161 3162 /* 3163 * Ok, everything is just fine now 3164 */ 3165 mddev->thread = conf->thread; 3166 conf->thread = NULL; 3167 mddev->private = conf; 3168 set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags); 3169 3170 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0)); 3171 3172 if (mddev->queue) { 3173 if (discard_supported) 3174 blk_queue_flag_set(QUEUE_FLAG_DISCARD, 3175 mddev->queue); 3176 else 3177 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, 3178 mddev->queue); 3179 } 3180 3181 ret = md_integrity_register(mddev); 3182 if (ret) { 3183 md_unregister_thread(&mddev->thread); 3184 goto abort; 3185 } 3186 return 0; 3187 3188 abort: 3189 raid1_free(mddev, conf); 3190 return ret; 3191 } 3192 3193 static void raid1_free(struct mddev *mddev, void *priv) 3194 { 3195 struct r1conf *conf = priv; 3196 3197 mempool_exit(&conf->r1bio_pool); 3198 kfree(conf->mirrors); 3199 safe_put_page(conf->tmppage); 3200 kfree(conf->poolinfo); 3201 kfree(conf->nr_pending); 3202 kfree(conf->nr_waiting); 3203 kfree(conf->nr_queued); 3204 kfree(conf->barrier); 3205 bioset_exit(&conf->bio_split); 3206 kfree(conf); 3207 } 3208 3209 static int raid1_resize(struct mddev *mddev, sector_t sectors) 3210 { 3211 /* no resync is happening, and there is enough space 3212 * on all devices, so we can resize. 3213 * We need to make sure resync covers any new space. 3214 * If the array is shrinking we should possibly wait until 3215 * any io in the removed space completes, but it hardly seems 3216 * worth it. 3217 */ 3218 sector_t newsize = raid1_size(mddev, sectors, 0); 3219 if (mddev->external_size && 3220 mddev->array_sectors > newsize) 3221 return -EINVAL; 3222 if (mddev->bitmap) { 3223 int ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0); 3224 if (ret) 3225 return ret; 3226 } 3227 md_set_array_sectors(mddev, newsize); 3228 if (sectors > mddev->dev_sectors && 3229 mddev->recovery_cp > mddev->dev_sectors) { 3230 mddev->recovery_cp = mddev->dev_sectors; 3231 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3232 } 3233 mddev->dev_sectors = sectors; 3234 mddev->resync_max_sectors = sectors; 3235 return 0; 3236 } 3237 3238 static int raid1_reshape(struct mddev *mddev) 3239 { 3240 /* We need to: 3241 * 1/ resize the r1bio_pool 3242 * 2/ resize conf->mirrors 3243 * 3244 * We allocate a new r1bio_pool if we can. 3245 * Then raise a device barrier and wait until all IO stops. 3246 * Then resize conf->mirrors and swap in the new r1bio pool. 3247 * 3248 * At the same time, we "pack" the devices so that all the missing 3249 * devices have the higher raid_disk numbers. 3250 */ 3251 mempool_t newpool, oldpool; 3252 struct pool_info *newpoolinfo; 3253 struct raid1_info *newmirrors; 3254 struct r1conf *conf = mddev->private; 3255 int cnt, raid_disks; 3256 unsigned long flags; 3257 int d, d2; 3258 int ret; 3259 3260 memset(&newpool, 0, sizeof(newpool)); 3261 memset(&oldpool, 0, sizeof(oldpool)); 3262 3263 /* Cannot change chunk_size, layout, or level */ 3264 if (mddev->chunk_sectors != mddev->new_chunk_sectors || 3265 mddev->layout != mddev->new_layout || 3266 mddev->level != mddev->new_level) { 3267 mddev->new_chunk_sectors = mddev->chunk_sectors; 3268 mddev->new_layout = mddev->layout; 3269 mddev->new_level = mddev->level; 3270 return -EINVAL; 3271 } 3272 3273 if (!mddev_is_clustered(mddev)) 3274 md_allow_write(mddev); 3275 3276 raid_disks = mddev->raid_disks + mddev->delta_disks; 3277 3278 if (raid_disks < conf->raid_disks) { 3279 cnt=0; 3280 for (d= 0; d < conf->raid_disks; d++) 3281 if (conf->mirrors[d].rdev) 3282 cnt++; 3283 if (cnt > raid_disks) 3284 return -EBUSY; 3285 } 3286 3287 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL); 3288 if (!newpoolinfo) 3289 return -ENOMEM; 3290 newpoolinfo->mddev = mddev; 3291 newpoolinfo->raid_disks = raid_disks * 2; 3292 3293 ret = mempool_init(&newpool, NR_RAID_BIOS, r1bio_pool_alloc, 3294 rbio_pool_free, newpoolinfo); 3295 if (ret) { 3296 kfree(newpoolinfo); 3297 return ret; 3298 } 3299 newmirrors = kzalloc(array3_size(sizeof(struct raid1_info), 3300 raid_disks, 2), 3301 GFP_KERNEL); 3302 if (!newmirrors) { 3303 kfree(newpoolinfo); 3304 mempool_exit(&newpool); 3305 return -ENOMEM; 3306 } 3307 3308 freeze_array(conf, 0); 3309 3310 /* ok, everything is stopped */ 3311 oldpool = conf->r1bio_pool; 3312 conf->r1bio_pool = newpool; 3313 3314 for (d = d2 = 0; d < conf->raid_disks; d++) { 3315 struct md_rdev *rdev = conf->mirrors[d].rdev; 3316 if (rdev && rdev->raid_disk != d2) { 3317 sysfs_unlink_rdev(mddev, rdev); 3318 rdev->raid_disk = d2; 3319 sysfs_unlink_rdev(mddev, rdev); 3320 if (sysfs_link_rdev(mddev, rdev)) 3321 pr_warn("md/raid1:%s: cannot register rd%d\n", 3322 mdname(mddev), rdev->raid_disk); 3323 } 3324 if (rdev) 3325 newmirrors[d2++].rdev = rdev; 3326 } 3327 kfree(conf->mirrors); 3328 conf->mirrors = newmirrors; 3329 kfree(conf->poolinfo); 3330 conf->poolinfo = newpoolinfo; 3331 3332 spin_lock_irqsave(&conf->device_lock, flags); 3333 mddev->degraded += (raid_disks - conf->raid_disks); 3334 spin_unlock_irqrestore(&conf->device_lock, flags); 3335 conf->raid_disks = mddev->raid_disks = raid_disks; 3336 mddev->delta_disks = 0; 3337 3338 unfreeze_array(conf); 3339 3340 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 3341 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3342 md_wakeup_thread(mddev->thread); 3343 3344 mempool_exit(&oldpool); 3345 return 0; 3346 } 3347 3348 static void raid1_quiesce(struct mddev *mddev, int quiesce) 3349 { 3350 struct r1conf *conf = mddev->private; 3351 3352 if (quiesce) 3353 freeze_array(conf, 0); 3354 else 3355 unfreeze_array(conf); 3356 } 3357 3358 static void *raid1_takeover(struct mddev *mddev) 3359 { 3360 /* raid1 can take over: 3361 * raid5 with 2 devices, any layout or chunk size 3362 */ 3363 if (mddev->level == 5 && mddev->raid_disks == 2) { 3364 struct r1conf *conf; 3365 mddev->new_level = 1; 3366 mddev->new_layout = 0; 3367 mddev->new_chunk_sectors = 0; 3368 conf = setup_conf(mddev); 3369 if (!IS_ERR(conf)) { 3370 /* Array must appear to be quiesced */ 3371 conf->array_frozen = 1; 3372 mddev_clear_unsupported_flags(mddev, 3373 UNSUPPORTED_MDDEV_FLAGS); 3374 } 3375 return conf; 3376 } 3377 return ERR_PTR(-EINVAL); 3378 } 3379 3380 static struct md_personality raid1_personality = 3381 { 3382 .name = "raid1", 3383 .level = 1, 3384 .owner = THIS_MODULE, 3385 .make_request = raid1_make_request, 3386 .run = raid1_run, 3387 .free = raid1_free, 3388 .status = raid1_status, 3389 .error_handler = raid1_error, 3390 .hot_add_disk = raid1_add_disk, 3391 .hot_remove_disk= raid1_remove_disk, 3392 .spare_active = raid1_spare_active, 3393 .sync_request = raid1_sync_request, 3394 .resize = raid1_resize, 3395 .size = raid1_size, 3396 .check_reshape = raid1_reshape, 3397 .quiesce = raid1_quiesce, 3398 .takeover = raid1_takeover, 3399 .congested = raid1_congested, 3400 }; 3401 3402 static int __init raid_init(void) 3403 { 3404 return register_md_personality(&raid1_personality); 3405 } 3406 3407 static void raid_exit(void) 3408 { 3409 unregister_md_personality(&raid1_personality); 3410 } 3411 3412 module_init(raid_init); 3413 module_exit(raid_exit); 3414 MODULE_LICENSE("GPL"); 3415 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD"); 3416 MODULE_ALIAS("md-personality-3"); /* RAID1 */ 3417 MODULE_ALIAS("md-raid1"); 3418 MODULE_ALIAS("md-level-1"); 3419 3420 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR); 3421