xref: /openbmc/linux/drivers/md/raid1.c (revision 8e58e327)
1 /*
2  * raid1.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5  *
6  * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7  *
8  * RAID-1 management functions.
9  *
10  * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11  *
12  * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
13  * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14  *
15  * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16  * bitmapped intelligence in resync:
17  *
18  *      - bitmap marked during normal i/o
19  *      - bitmap used to skip nondirty blocks during sync
20  *
21  * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22  * - persistent bitmap code
23  *
24  * This program is free software; you can redistribute it and/or modify
25  * it under the terms of the GNU General Public License as published by
26  * the Free Software Foundation; either version 2, or (at your option)
27  * any later version.
28  *
29  * You should have received a copy of the GNU General Public License
30  * (for example /usr/src/linux/COPYING); if not, write to the Free
31  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32  */
33 
34 #include <linux/slab.h>
35 #include <linux/delay.h>
36 #include <linux/blkdev.h>
37 #include <linux/module.h>
38 #include <linux/seq_file.h>
39 #include <linux/ratelimit.h>
40 #include <trace/events/block.h>
41 #include "md.h"
42 #include "raid1.h"
43 #include "bitmap.h"
44 
45 #define UNSUPPORTED_MDDEV_FLAGS		\
46 	((1L << MD_HAS_JOURNAL) |	\
47 	 (1L << MD_JOURNAL_CLEAN))
48 
49 /*
50  * Number of guaranteed r1bios in case of extreme VM load:
51  */
52 #define	NR_RAID1_BIOS 256
53 
54 /* when we get a read error on a read-only array, we redirect to another
55  * device without failing the first device, or trying to over-write to
56  * correct the read error.  To keep track of bad blocks on a per-bio
57  * level, we store IO_BLOCKED in the appropriate 'bios' pointer
58  */
59 #define IO_BLOCKED ((struct bio *)1)
60 /* When we successfully write to a known bad-block, we need to remove the
61  * bad-block marking which must be done from process context.  So we record
62  * the success by setting devs[n].bio to IO_MADE_GOOD
63  */
64 #define IO_MADE_GOOD ((struct bio *)2)
65 
66 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
67 
68 /* When there are this many requests queue to be written by
69  * the raid1 thread, we become 'congested' to provide back-pressure
70  * for writeback.
71  */
72 static int max_queued_requests = 1024;
73 
74 static void allow_barrier(struct r1conf *conf, sector_t start_next_window,
75 			  sector_t bi_sector);
76 static void lower_barrier(struct r1conf *conf);
77 
78 #define raid1_log(md, fmt, args...)				\
79 	do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid1 " fmt, ##args); } while (0)
80 
81 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
82 {
83 	struct pool_info *pi = data;
84 	int size = offsetof(struct r1bio, bios[pi->raid_disks]);
85 
86 	/* allocate a r1bio with room for raid_disks entries in the bios array */
87 	return kzalloc(size, gfp_flags);
88 }
89 
90 static void r1bio_pool_free(void *r1_bio, void *data)
91 {
92 	kfree(r1_bio);
93 }
94 
95 #define RESYNC_BLOCK_SIZE (64*1024)
96 #define RESYNC_DEPTH 32
97 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
98 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
99 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
100 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
101 #define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
102 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
103 #define NEXT_NORMALIO_DISTANCE (3 * RESYNC_WINDOW_SECTORS)
104 
105 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
106 {
107 	struct pool_info *pi = data;
108 	struct r1bio *r1_bio;
109 	struct bio *bio;
110 	int need_pages;
111 	int i, j;
112 
113 	r1_bio = r1bio_pool_alloc(gfp_flags, pi);
114 	if (!r1_bio)
115 		return NULL;
116 
117 	/*
118 	 * Allocate bios : 1 for reading, n-1 for writing
119 	 */
120 	for (j = pi->raid_disks ; j-- ; ) {
121 		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
122 		if (!bio)
123 			goto out_free_bio;
124 		r1_bio->bios[j] = bio;
125 	}
126 	/*
127 	 * Allocate RESYNC_PAGES data pages and attach them to
128 	 * the first bio.
129 	 * If this is a user-requested check/repair, allocate
130 	 * RESYNC_PAGES for each bio.
131 	 */
132 	if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
133 		need_pages = pi->raid_disks;
134 	else
135 		need_pages = 1;
136 	for (j = 0; j < need_pages; j++) {
137 		bio = r1_bio->bios[j];
138 		bio->bi_vcnt = RESYNC_PAGES;
139 
140 		if (bio_alloc_pages(bio, gfp_flags))
141 			goto out_free_pages;
142 	}
143 	/* If not user-requests, copy the page pointers to all bios */
144 	if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
145 		for (i=0; i<RESYNC_PAGES ; i++)
146 			for (j=1; j<pi->raid_disks; j++)
147 				r1_bio->bios[j]->bi_io_vec[i].bv_page =
148 					r1_bio->bios[0]->bi_io_vec[i].bv_page;
149 	}
150 
151 	r1_bio->master_bio = NULL;
152 
153 	return r1_bio;
154 
155 out_free_pages:
156 	while (--j >= 0)
157 		bio_free_pages(r1_bio->bios[j]);
158 
159 out_free_bio:
160 	while (++j < pi->raid_disks)
161 		bio_put(r1_bio->bios[j]);
162 	r1bio_pool_free(r1_bio, data);
163 	return NULL;
164 }
165 
166 static void r1buf_pool_free(void *__r1_bio, void *data)
167 {
168 	struct pool_info *pi = data;
169 	int i,j;
170 	struct r1bio *r1bio = __r1_bio;
171 
172 	for (i = 0; i < RESYNC_PAGES; i++)
173 		for (j = pi->raid_disks; j-- ;) {
174 			if (j == 0 ||
175 			    r1bio->bios[j]->bi_io_vec[i].bv_page !=
176 			    r1bio->bios[0]->bi_io_vec[i].bv_page)
177 				safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
178 		}
179 	for (i=0 ; i < pi->raid_disks; i++)
180 		bio_put(r1bio->bios[i]);
181 
182 	r1bio_pool_free(r1bio, data);
183 }
184 
185 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
186 {
187 	int i;
188 
189 	for (i = 0; i < conf->raid_disks * 2; i++) {
190 		struct bio **bio = r1_bio->bios + i;
191 		if (!BIO_SPECIAL(*bio))
192 			bio_put(*bio);
193 		*bio = NULL;
194 	}
195 }
196 
197 static void free_r1bio(struct r1bio *r1_bio)
198 {
199 	struct r1conf *conf = r1_bio->mddev->private;
200 
201 	put_all_bios(conf, r1_bio);
202 	mempool_free(r1_bio, conf->r1bio_pool);
203 }
204 
205 static void put_buf(struct r1bio *r1_bio)
206 {
207 	struct r1conf *conf = r1_bio->mddev->private;
208 	int i;
209 
210 	for (i = 0; i < conf->raid_disks * 2; i++) {
211 		struct bio *bio = r1_bio->bios[i];
212 		if (bio->bi_end_io)
213 			rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
214 	}
215 
216 	mempool_free(r1_bio, conf->r1buf_pool);
217 
218 	lower_barrier(conf);
219 }
220 
221 static void reschedule_retry(struct r1bio *r1_bio)
222 {
223 	unsigned long flags;
224 	struct mddev *mddev = r1_bio->mddev;
225 	struct r1conf *conf = mddev->private;
226 
227 	spin_lock_irqsave(&conf->device_lock, flags);
228 	list_add(&r1_bio->retry_list, &conf->retry_list);
229 	conf->nr_queued ++;
230 	spin_unlock_irqrestore(&conf->device_lock, flags);
231 
232 	wake_up(&conf->wait_barrier);
233 	md_wakeup_thread(mddev->thread);
234 }
235 
236 /*
237  * raid_end_bio_io() is called when we have finished servicing a mirrored
238  * operation and are ready to return a success/failure code to the buffer
239  * cache layer.
240  */
241 static void call_bio_endio(struct r1bio *r1_bio)
242 {
243 	struct bio *bio = r1_bio->master_bio;
244 	int done;
245 	struct r1conf *conf = r1_bio->mddev->private;
246 	sector_t start_next_window = r1_bio->start_next_window;
247 	sector_t bi_sector = bio->bi_iter.bi_sector;
248 
249 	if (bio->bi_phys_segments) {
250 		unsigned long flags;
251 		spin_lock_irqsave(&conf->device_lock, flags);
252 		bio->bi_phys_segments--;
253 		done = (bio->bi_phys_segments == 0);
254 		spin_unlock_irqrestore(&conf->device_lock, flags);
255 		/*
256 		 * make_request() might be waiting for
257 		 * bi_phys_segments to decrease
258 		 */
259 		wake_up(&conf->wait_barrier);
260 	} else
261 		done = 1;
262 
263 	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
264 		bio->bi_error = -EIO;
265 
266 	if (done) {
267 		bio_endio(bio);
268 		/*
269 		 * Wake up any possible resync thread that waits for the device
270 		 * to go idle.
271 		 */
272 		allow_barrier(conf, start_next_window, bi_sector);
273 	}
274 }
275 
276 static void raid_end_bio_io(struct r1bio *r1_bio)
277 {
278 	struct bio *bio = r1_bio->master_bio;
279 
280 	/* if nobody has done the final endio yet, do it now */
281 	if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
282 		pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
283 			 (bio_data_dir(bio) == WRITE) ? "write" : "read",
284 			 (unsigned long long) bio->bi_iter.bi_sector,
285 			 (unsigned long long) bio_end_sector(bio) - 1);
286 
287 		call_bio_endio(r1_bio);
288 	}
289 	free_r1bio(r1_bio);
290 }
291 
292 /*
293  * Update disk head position estimator based on IRQ completion info.
294  */
295 static inline void update_head_pos(int disk, struct r1bio *r1_bio)
296 {
297 	struct r1conf *conf = r1_bio->mddev->private;
298 
299 	conf->mirrors[disk].head_position =
300 		r1_bio->sector + (r1_bio->sectors);
301 }
302 
303 /*
304  * Find the disk number which triggered given bio
305  */
306 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
307 {
308 	int mirror;
309 	struct r1conf *conf = r1_bio->mddev->private;
310 	int raid_disks = conf->raid_disks;
311 
312 	for (mirror = 0; mirror < raid_disks * 2; mirror++)
313 		if (r1_bio->bios[mirror] == bio)
314 			break;
315 
316 	BUG_ON(mirror == raid_disks * 2);
317 	update_head_pos(mirror, r1_bio);
318 
319 	return mirror;
320 }
321 
322 static void raid1_end_read_request(struct bio *bio)
323 {
324 	int uptodate = !bio->bi_error;
325 	struct r1bio *r1_bio = bio->bi_private;
326 	struct r1conf *conf = r1_bio->mddev->private;
327 	struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev;
328 
329 	/*
330 	 * this branch is our 'one mirror IO has finished' event handler:
331 	 */
332 	update_head_pos(r1_bio->read_disk, r1_bio);
333 
334 	if (uptodate)
335 		set_bit(R1BIO_Uptodate, &r1_bio->state);
336 	else if (test_bit(FailFast, &rdev->flags) &&
337 		 test_bit(R1BIO_FailFast, &r1_bio->state))
338 		/* This was a fail-fast read so we definitely
339 		 * want to retry */
340 		;
341 	else {
342 		/* If all other devices have failed, we want to return
343 		 * the error upwards rather than fail the last device.
344 		 * Here we redefine "uptodate" to mean "Don't want to retry"
345 		 */
346 		unsigned long flags;
347 		spin_lock_irqsave(&conf->device_lock, flags);
348 		if (r1_bio->mddev->degraded == conf->raid_disks ||
349 		    (r1_bio->mddev->degraded == conf->raid_disks-1 &&
350 		     test_bit(In_sync, &rdev->flags)))
351 			uptodate = 1;
352 		spin_unlock_irqrestore(&conf->device_lock, flags);
353 	}
354 
355 	if (uptodate) {
356 		raid_end_bio_io(r1_bio);
357 		rdev_dec_pending(rdev, conf->mddev);
358 	} else {
359 		/*
360 		 * oops, read error:
361 		 */
362 		char b[BDEVNAME_SIZE];
363 		pr_err_ratelimited("md/raid1:%s: %s: rescheduling sector %llu\n",
364 				   mdname(conf->mddev),
365 				   bdevname(rdev->bdev, b),
366 				   (unsigned long long)r1_bio->sector);
367 		set_bit(R1BIO_ReadError, &r1_bio->state);
368 		reschedule_retry(r1_bio);
369 		/* don't drop the reference on read_disk yet */
370 	}
371 }
372 
373 static void close_write(struct r1bio *r1_bio)
374 {
375 	/* it really is the end of this request */
376 	if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
377 		/* free extra copy of the data pages */
378 		int i = r1_bio->behind_page_count;
379 		while (i--)
380 			safe_put_page(r1_bio->behind_bvecs[i].bv_page);
381 		kfree(r1_bio->behind_bvecs);
382 		r1_bio->behind_bvecs = NULL;
383 	}
384 	/* clear the bitmap if all writes complete successfully */
385 	bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
386 			r1_bio->sectors,
387 			!test_bit(R1BIO_Degraded, &r1_bio->state),
388 			test_bit(R1BIO_BehindIO, &r1_bio->state));
389 	md_write_end(r1_bio->mddev);
390 }
391 
392 static void r1_bio_write_done(struct r1bio *r1_bio)
393 {
394 	if (!atomic_dec_and_test(&r1_bio->remaining))
395 		return;
396 
397 	if (test_bit(R1BIO_WriteError, &r1_bio->state))
398 		reschedule_retry(r1_bio);
399 	else {
400 		close_write(r1_bio);
401 		if (test_bit(R1BIO_MadeGood, &r1_bio->state))
402 			reschedule_retry(r1_bio);
403 		else
404 			raid_end_bio_io(r1_bio);
405 	}
406 }
407 
408 static void raid1_end_write_request(struct bio *bio)
409 {
410 	struct r1bio *r1_bio = bio->bi_private;
411 	int behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
412 	struct r1conf *conf = r1_bio->mddev->private;
413 	struct bio *to_put = NULL;
414 	int mirror = find_bio_disk(r1_bio, bio);
415 	struct md_rdev *rdev = conf->mirrors[mirror].rdev;
416 	bool discard_error;
417 
418 	discard_error = bio->bi_error && bio_op(bio) == REQ_OP_DISCARD;
419 
420 	/*
421 	 * 'one mirror IO has finished' event handler:
422 	 */
423 	if (bio->bi_error && !discard_error) {
424 		set_bit(WriteErrorSeen,	&rdev->flags);
425 		if (!test_and_set_bit(WantReplacement, &rdev->flags))
426 			set_bit(MD_RECOVERY_NEEDED, &
427 				conf->mddev->recovery);
428 
429 		if (test_bit(FailFast, &rdev->flags) &&
430 		    (bio->bi_opf & MD_FAILFAST) &&
431 		    /* We never try FailFast to WriteMostly devices */
432 		    !test_bit(WriteMostly, &rdev->flags)) {
433 			md_error(r1_bio->mddev, rdev);
434 			if (!test_bit(Faulty, &rdev->flags))
435 				/* This is the only remaining device,
436 				 * We need to retry the write without
437 				 * FailFast
438 				 */
439 				set_bit(R1BIO_WriteError, &r1_bio->state);
440 			else {
441 				/* Finished with this branch */
442 				r1_bio->bios[mirror] = NULL;
443 				to_put = bio;
444 			}
445 		} else
446 			set_bit(R1BIO_WriteError, &r1_bio->state);
447 	} else {
448 		/*
449 		 * Set R1BIO_Uptodate in our master bio, so that we
450 		 * will return a good error code for to the higher
451 		 * levels even if IO on some other mirrored buffer
452 		 * fails.
453 		 *
454 		 * The 'master' represents the composite IO operation
455 		 * to user-side. So if something waits for IO, then it
456 		 * will wait for the 'master' bio.
457 		 */
458 		sector_t first_bad;
459 		int bad_sectors;
460 
461 		r1_bio->bios[mirror] = NULL;
462 		to_put = bio;
463 		/*
464 		 * Do not set R1BIO_Uptodate if the current device is
465 		 * rebuilding or Faulty. This is because we cannot use
466 		 * such device for properly reading the data back (we could
467 		 * potentially use it, if the current write would have felt
468 		 * before rdev->recovery_offset, but for simplicity we don't
469 		 * check this here.
470 		 */
471 		if (test_bit(In_sync, &rdev->flags) &&
472 		    !test_bit(Faulty, &rdev->flags))
473 			set_bit(R1BIO_Uptodate, &r1_bio->state);
474 
475 		/* Maybe we can clear some bad blocks. */
476 		if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
477 				&first_bad, &bad_sectors) && !discard_error) {
478 			r1_bio->bios[mirror] = IO_MADE_GOOD;
479 			set_bit(R1BIO_MadeGood, &r1_bio->state);
480 		}
481 	}
482 
483 	if (behind) {
484 		if (test_bit(WriteMostly, &rdev->flags))
485 			atomic_dec(&r1_bio->behind_remaining);
486 
487 		/*
488 		 * In behind mode, we ACK the master bio once the I/O
489 		 * has safely reached all non-writemostly
490 		 * disks. Setting the Returned bit ensures that this
491 		 * gets done only once -- we don't ever want to return
492 		 * -EIO here, instead we'll wait
493 		 */
494 		if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
495 		    test_bit(R1BIO_Uptodate, &r1_bio->state)) {
496 			/* Maybe we can return now */
497 			if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
498 				struct bio *mbio = r1_bio->master_bio;
499 				pr_debug("raid1: behind end write sectors"
500 					 " %llu-%llu\n",
501 					 (unsigned long long) mbio->bi_iter.bi_sector,
502 					 (unsigned long long) bio_end_sector(mbio) - 1);
503 				call_bio_endio(r1_bio);
504 			}
505 		}
506 	}
507 	if (r1_bio->bios[mirror] == NULL)
508 		rdev_dec_pending(rdev, conf->mddev);
509 
510 	/*
511 	 * Let's see if all mirrored write operations have finished
512 	 * already.
513 	 */
514 	r1_bio_write_done(r1_bio);
515 
516 	if (to_put)
517 		bio_put(to_put);
518 }
519 
520 /*
521  * This routine returns the disk from which the requested read should
522  * be done. There is a per-array 'next expected sequential IO' sector
523  * number - if this matches on the next IO then we use the last disk.
524  * There is also a per-disk 'last know head position' sector that is
525  * maintained from IRQ contexts, both the normal and the resync IO
526  * completion handlers update this position correctly. If there is no
527  * perfect sequential match then we pick the disk whose head is closest.
528  *
529  * If there are 2 mirrors in the same 2 devices, performance degrades
530  * because position is mirror, not device based.
531  *
532  * The rdev for the device selected will have nr_pending incremented.
533  */
534 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
535 {
536 	const sector_t this_sector = r1_bio->sector;
537 	int sectors;
538 	int best_good_sectors;
539 	int best_disk, best_dist_disk, best_pending_disk;
540 	int has_nonrot_disk;
541 	int disk;
542 	sector_t best_dist;
543 	unsigned int min_pending;
544 	struct md_rdev *rdev;
545 	int choose_first;
546 	int choose_next_idle;
547 
548 	rcu_read_lock();
549 	/*
550 	 * Check if we can balance. We can balance on the whole
551 	 * device if no resync is going on, or below the resync window.
552 	 * We take the first readable disk when above the resync window.
553 	 */
554  retry:
555 	sectors = r1_bio->sectors;
556 	best_disk = -1;
557 	best_dist_disk = -1;
558 	best_dist = MaxSector;
559 	best_pending_disk = -1;
560 	min_pending = UINT_MAX;
561 	best_good_sectors = 0;
562 	has_nonrot_disk = 0;
563 	choose_next_idle = 0;
564 	clear_bit(R1BIO_FailFast, &r1_bio->state);
565 
566 	if ((conf->mddev->recovery_cp < this_sector + sectors) ||
567 	    (mddev_is_clustered(conf->mddev) &&
568 	    md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
569 		    this_sector + sectors)))
570 		choose_first = 1;
571 	else
572 		choose_first = 0;
573 
574 	for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
575 		sector_t dist;
576 		sector_t first_bad;
577 		int bad_sectors;
578 		unsigned int pending;
579 		bool nonrot;
580 
581 		rdev = rcu_dereference(conf->mirrors[disk].rdev);
582 		if (r1_bio->bios[disk] == IO_BLOCKED
583 		    || rdev == NULL
584 		    || test_bit(Faulty, &rdev->flags))
585 			continue;
586 		if (!test_bit(In_sync, &rdev->flags) &&
587 		    rdev->recovery_offset < this_sector + sectors)
588 			continue;
589 		if (test_bit(WriteMostly, &rdev->flags)) {
590 			/* Don't balance among write-mostly, just
591 			 * use the first as a last resort */
592 			if (best_dist_disk < 0) {
593 				if (is_badblock(rdev, this_sector, sectors,
594 						&first_bad, &bad_sectors)) {
595 					if (first_bad <= this_sector)
596 						/* Cannot use this */
597 						continue;
598 					best_good_sectors = first_bad - this_sector;
599 				} else
600 					best_good_sectors = sectors;
601 				best_dist_disk = disk;
602 				best_pending_disk = disk;
603 			}
604 			continue;
605 		}
606 		/* This is a reasonable device to use.  It might
607 		 * even be best.
608 		 */
609 		if (is_badblock(rdev, this_sector, sectors,
610 				&first_bad, &bad_sectors)) {
611 			if (best_dist < MaxSector)
612 				/* already have a better device */
613 				continue;
614 			if (first_bad <= this_sector) {
615 				/* cannot read here. If this is the 'primary'
616 				 * device, then we must not read beyond
617 				 * bad_sectors from another device..
618 				 */
619 				bad_sectors -= (this_sector - first_bad);
620 				if (choose_first && sectors > bad_sectors)
621 					sectors = bad_sectors;
622 				if (best_good_sectors > sectors)
623 					best_good_sectors = sectors;
624 
625 			} else {
626 				sector_t good_sectors = first_bad - this_sector;
627 				if (good_sectors > best_good_sectors) {
628 					best_good_sectors = good_sectors;
629 					best_disk = disk;
630 				}
631 				if (choose_first)
632 					break;
633 			}
634 			continue;
635 		} else
636 			best_good_sectors = sectors;
637 
638 		if (best_disk >= 0)
639 			/* At least two disks to choose from so failfast is OK */
640 			set_bit(R1BIO_FailFast, &r1_bio->state);
641 
642 		nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
643 		has_nonrot_disk |= nonrot;
644 		pending = atomic_read(&rdev->nr_pending);
645 		dist = abs(this_sector - conf->mirrors[disk].head_position);
646 		if (choose_first) {
647 			best_disk = disk;
648 			break;
649 		}
650 		/* Don't change to another disk for sequential reads */
651 		if (conf->mirrors[disk].next_seq_sect == this_sector
652 		    || dist == 0) {
653 			int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
654 			struct raid1_info *mirror = &conf->mirrors[disk];
655 
656 			best_disk = disk;
657 			/*
658 			 * If buffered sequential IO size exceeds optimal
659 			 * iosize, check if there is idle disk. If yes, choose
660 			 * the idle disk. read_balance could already choose an
661 			 * idle disk before noticing it's a sequential IO in
662 			 * this disk. This doesn't matter because this disk
663 			 * will idle, next time it will be utilized after the
664 			 * first disk has IO size exceeds optimal iosize. In
665 			 * this way, iosize of the first disk will be optimal
666 			 * iosize at least. iosize of the second disk might be
667 			 * small, but not a big deal since when the second disk
668 			 * starts IO, the first disk is likely still busy.
669 			 */
670 			if (nonrot && opt_iosize > 0 &&
671 			    mirror->seq_start != MaxSector &&
672 			    mirror->next_seq_sect > opt_iosize &&
673 			    mirror->next_seq_sect - opt_iosize >=
674 			    mirror->seq_start) {
675 				choose_next_idle = 1;
676 				continue;
677 			}
678 			break;
679 		}
680 
681 		if (choose_next_idle)
682 			continue;
683 
684 		if (min_pending > pending) {
685 			min_pending = pending;
686 			best_pending_disk = disk;
687 		}
688 
689 		if (dist < best_dist) {
690 			best_dist = dist;
691 			best_dist_disk = disk;
692 		}
693 	}
694 
695 	/*
696 	 * If all disks are rotational, choose the closest disk. If any disk is
697 	 * non-rotational, choose the disk with less pending request even the
698 	 * disk is rotational, which might/might not be optimal for raids with
699 	 * mixed ratation/non-rotational disks depending on workload.
700 	 */
701 	if (best_disk == -1) {
702 		if (has_nonrot_disk || min_pending == 0)
703 			best_disk = best_pending_disk;
704 		else
705 			best_disk = best_dist_disk;
706 	}
707 
708 	if (best_disk >= 0) {
709 		rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
710 		if (!rdev)
711 			goto retry;
712 		atomic_inc(&rdev->nr_pending);
713 		sectors = best_good_sectors;
714 
715 		if (conf->mirrors[best_disk].next_seq_sect != this_sector)
716 			conf->mirrors[best_disk].seq_start = this_sector;
717 
718 		conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
719 	}
720 	rcu_read_unlock();
721 	*max_sectors = sectors;
722 
723 	return best_disk;
724 }
725 
726 static int raid1_congested(struct mddev *mddev, int bits)
727 {
728 	struct r1conf *conf = mddev->private;
729 	int i, ret = 0;
730 
731 	if ((bits & (1 << WB_async_congested)) &&
732 	    conf->pending_count >= max_queued_requests)
733 		return 1;
734 
735 	rcu_read_lock();
736 	for (i = 0; i < conf->raid_disks * 2; i++) {
737 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
738 		if (rdev && !test_bit(Faulty, &rdev->flags)) {
739 			struct request_queue *q = bdev_get_queue(rdev->bdev);
740 
741 			BUG_ON(!q);
742 
743 			/* Note the '|| 1' - when read_balance prefers
744 			 * non-congested targets, it can be removed
745 			 */
746 			if ((bits & (1 << WB_async_congested)) || 1)
747 				ret |= bdi_congested(&q->backing_dev_info, bits);
748 			else
749 				ret &= bdi_congested(&q->backing_dev_info, bits);
750 		}
751 	}
752 	rcu_read_unlock();
753 	return ret;
754 }
755 
756 static void flush_pending_writes(struct r1conf *conf)
757 {
758 	/* Any writes that have been queued but are awaiting
759 	 * bitmap updates get flushed here.
760 	 */
761 	spin_lock_irq(&conf->device_lock);
762 
763 	if (conf->pending_bio_list.head) {
764 		struct bio *bio;
765 		bio = bio_list_get(&conf->pending_bio_list);
766 		conf->pending_count = 0;
767 		spin_unlock_irq(&conf->device_lock);
768 		/* flush any pending bitmap writes to
769 		 * disk before proceeding w/ I/O */
770 		bitmap_unplug(conf->mddev->bitmap);
771 		wake_up(&conf->wait_barrier);
772 
773 		while (bio) { /* submit pending writes */
774 			struct bio *next = bio->bi_next;
775 			struct md_rdev *rdev = (void*)bio->bi_bdev;
776 			bio->bi_next = NULL;
777 			bio->bi_bdev = rdev->bdev;
778 			if (test_bit(Faulty, &rdev->flags)) {
779 				bio->bi_error = -EIO;
780 				bio_endio(bio);
781 			} else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
782 					    !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
783 				/* Just ignore it */
784 				bio_endio(bio);
785 			else
786 				generic_make_request(bio);
787 			bio = next;
788 		}
789 	} else
790 		spin_unlock_irq(&conf->device_lock);
791 }
792 
793 /* Barriers....
794  * Sometimes we need to suspend IO while we do something else,
795  * either some resync/recovery, or reconfigure the array.
796  * To do this we raise a 'barrier'.
797  * The 'barrier' is a counter that can be raised multiple times
798  * to count how many activities are happening which preclude
799  * normal IO.
800  * We can only raise the barrier if there is no pending IO.
801  * i.e. if nr_pending == 0.
802  * We choose only to raise the barrier if no-one is waiting for the
803  * barrier to go down.  This means that as soon as an IO request
804  * is ready, no other operations which require a barrier will start
805  * until the IO request has had a chance.
806  *
807  * So: regular IO calls 'wait_barrier'.  When that returns there
808  *    is no backgroup IO happening,  It must arrange to call
809  *    allow_barrier when it has finished its IO.
810  * backgroup IO calls must call raise_barrier.  Once that returns
811  *    there is no normal IO happeing.  It must arrange to call
812  *    lower_barrier when the particular background IO completes.
813  */
814 static void raise_barrier(struct r1conf *conf, sector_t sector_nr)
815 {
816 	spin_lock_irq(&conf->resync_lock);
817 
818 	/* Wait until no block IO is waiting */
819 	wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
820 			    conf->resync_lock);
821 
822 	/* block any new IO from starting */
823 	conf->barrier++;
824 	conf->next_resync = sector_nr;
825 
826 	/* For these conditions we must wait:
827 	 * A: while the array is in frozen state
828 	 * B: while barrier >= RESYNC_DEPTH, meaning resync reach
829 	 *    the max count which allowed.
830 	 * C: next_resync + RESYNC_SECTORS > start_next_window, meaning
831 	 *    next resync will reach to the window which normal bios are
832 	 *    handling.
833 	 * D: while there are any active requests in the current window.
834 	 */
835 	wait_event_lock_irq(conf->wait_barrier,
836 			    !conf->array_frozen &&
837 			    conf->barrier < RESYNC_DEPTH &&
838 			    conf->current_window_requests == 0 &&
839 			    (conf->start_next_window >=
840 			     conf->next_resync + RESYNC_SECTORS),
841 			    conf->resync_lock);
842 
843 	conf->nr_pending++;
844 	spin_unlock_irq(&conf->resync_lock);
845 }
846 
847 static void lower_barrier(struct r1conf *conf)
848 {
849 	unsigned long flags;
850 	BUG_ON(conf->barrier <= 0);
851 	spin_lock_irqsave(&conf->resync_lock, flags);
852 	conf->barrier--;
853 	conf->nr_pending--;
854 	spin_unlock_irqrestore(&conf->resync_lock, flags);
855 	wake_up(&conf->wait_barrier);
856 }
857 
858 static bool need_to_wait_for_sync(struct r1conf *conf, struct bio *bio)
859 {
860 	bool wait = false;
861 
862 	if (conf->array_frozen || !bio)
863 		wait = true;
864 	else if (conf->barrier && bio_data_dir(bio) == WRITE) {
865 		if ((conf->mddev->curr_resync_completed
866 		     >= bio_end_sector(bio)) ||
867 		    (conf->start_next_window + NEXT_NORMALIO_DISTANCE
868 		     <= bio->bi_iter.bi_sector))
869 			wait = false;
870 		else
871 			wait = true;
872 	}
873 
874 	return wait;
875 }
876 
877 static sector_t wait_barrier(struct r1conf *conf, struct bio *bio)
878 {
879 	sector_t sector = 0;
880 
881 	spin_lock_irq(&conf->resync_lock);
882 	if (need_to_wait_for_sync(conf, bio)) {
883 		conf->nr_waiting++;
884 		/* Wait for the barrier to drop.
885 		 * However if there are already pending
886 		 * requests (preventing the barrier from
887 		 * rising completely), and the
888 		 * per-process bio queue isn't empty,
889 		 * then don't wait, as we need to empty
890 		 * that queue to allow conf->start_next_window
891 		 * to increase.
892 		 */
893 		raid1_log(conf->mddev, "wait barrier");
894 		wait_event_lock_irq(conf->wait_barrier,
895 				    !conf->array_frozen &&
896 				    (!conf->barrier ||
897 				     ((conf->start_next_window <
898 				       conf->next_resync + RESYNC_SECTORS) &&
899 				      current->bio_list &&
900 				      !bio_list_empty(current->bio_list))),
901 				    conf->resync_lock);
902 		conf->nr_waiting--;
903 	}
904 
905 	if (bio && bio_data_dir(bio) == WRITE) {
906 		if (bio->bi_iter.bi_sector >= conf->next_resync) {
907 			if (conf->start_next_window == MaxSector)
908 				conf->start_next_window =
909 					conf->next_resync +
910 					NEXT_NORMALIO_DISTANCE;
911 
912 			if ((conf->start_next_window + NEXT_NORMALIO_DISTANCE)
913 			    <= bio->bi_iter.bi_sector)
914 				conf->next_window_requests++;
915 			else
916 				conf->current_window_requests++;
917 			sector = conf->start_next_window;
918 		}
919 	}
920 
921 	conf->nr_pending++;
922 	spin_unlock_irq(&conf->resync_lock);
923 	return sector;
924 }
925 
926 static void allow_barrier(struct r1conf *conf, sector_t start_next_window,
927 			  sector_t bi_sector)
928 {
929 	unsigned long flags;
930 
931 	spin_lock_irqsave(&conf->resync_lock, flags);
932 	conf->nr_pending--;
933 	if (start_next_window) {
934 		if (start_next_window == conf->start_next_window) {
935 			if (conf->start_next_window + NEXT_NORMALIO_DISTANCE
936 			    <= bi_sector)
937 				conf->next_window_requests--;
938 			else
939 				conf->current_window_requests--;
940 		} else
941 			conf->current_window_requests--;
942 
943 		if (!conf->current_window_requests) {
944 			if (conf->next_window_requests) {
945 				conf->current_window_requests =
946 					conf->next_window_requests;
947 				conf->next_window_requests = 0;
948 				conf->start_next_window +=
949 					NEXT_NORMALIO_DISTANCE;
950 			} else
951 				conf->start_next_window = MaxSector;
952 		}
953 	}
954 	spin_unlock_irqrestore(&conf->resync_lock, flags);
955 	wake_up(&conf->wait_barrier);
956 }
957 
958 static void freeze_array(struct r1conf *conf, int extra)
959 {
960 	/* stop syncio and normal IO and wait for everything to
961 	 * go quite.
962 	 * We wait until nr_pending match nr_queued+extra
963 	 * This is called in the context of one normal IO request
964 	 * that has failed. Thus any sync request that might be pending
965 	 * will be blocked by nr_pending, and we need to wait for
966 	 * pending IO requests to complete or be queued for re-try.
967 	 * Thus the number queued (nr_queued) plus this request (extra)
968 	 * must match the number of pending IOs (nr_pending) before
969 	 * we continue.
970 	 */
971 	spin_lock_irq(&conf->resync_lock);
972 	conf->array_frozen = 1;
973 	raid1_log(conf->mddev, "wait freeze");
974 	wait_event_lock_irq_cmd(conf->wait_barrier,
975 				conf->nr_pending == conf->nr_queued+extra,
976 				conf->resync_lock,
977 				flush_pending_writes(conf));
978 	spin_unlock_irq(&conf->resync_lock);
979 }
980 static void unfreeze_array(struct r1conf *conf)
981 {
982 	/* reverse the effect of the freeze */
983 	spin_lock_irq(&conf->resync_lock);
984 	conf->array_frozen = 0;
985 	wake_up(&conf->wait_barrier);
986 	spin_unlock_irq(&conf->resync_lock);
987 }
988 
989 /* duplicate the data pages for behind I/O
990  */
991 static void alloc_behind_pages(struct bio *bio, struct r1bio *r1_bio)
992 {
993 	int i;
994 	struct bio_vec *bvec;
995 	struct bio_vec *bvecs = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec),
996 					GFP_NOIO);
997 	if (unlikely(!bvecs))
998 		return;
999 
1000 	bio_for_each_segment_all(bvec, bio, i) {
1001 		bvecs[i] = *bvec;
1002 		bvecs[i].bv_page = alloc_page(GFP_NOIO);
1003 		if (unlikely(!bvecs[i].bv_page))
1004 			goto do_sync_io;
1005 		memcpy(kmap(bvecs[i].bv_page) + bvec->bv_offset,
1006 		       kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
1007 		kunmap(bvecs[i].bv_page);
1008 		kunmap(bvec->bv_page);
1009 	}
1010 	r1_bio->behind_bvecs = bvecs;
1011 	r1_bio->behind_page_count = bio->bi_vcnt;
1012 	set_bit(R1BIO_BehindIO, &r1_bio->state);
1013 	return;
1014 
1015 do_sync_io:
1016 	for (i = 0; i < bio->bi_vcnt; i++)
1017 		if (bvecs[i].bv_page)
1018 			put_page(bvecs[i].bv_page);
1019 	kfree(bvecs);
1020 	pr_debug("%dB behind alloc failed, doing sync I/O\n",
1021 		 bio->bi_iter.bi_size);
1022 }
1023 
1024 struct raid1_plug_cb {
1025 	struct blk_plug_cb	cb;
1026 	struct bio_list		pending;
1027 	int			pending_cnt;
1028 };
1029 
1030 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1031 {
1032 	struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1033 						  cb);
1034 	struct mddev *mddev = plug->cb.data;
1035 	struct r1conf *conf = mddev->private;
1036 	struct bio *bio;
1037 
1038 	if (from_schedule || current->bio_list) {
1039 		spin_lock_irq(&conf->device_lock);
1040 		bio_list_merge(&conf->pending_bio_list, &plug->pending);
1041 		conf->pending_count += plug->pending_cnt;
1042 		spin_unlock_irq(&conf->device_lock);
1043 		wake_up(&conf->wait_barrier);
1044 		md_wakeup_thread(mddev->thread);
1045 		kfree(plug);
1046 		return;
1047 	}
1048 
1049 	/* we aren't scheduling, so we can do the write-out directly. */
1050 	bio = bio_list_get(&plug->pending);
1051 	bitmap_unplug(mddev->bitmap);
1052 	wake_up(&conf->wait_barrier);
1053 
1054 	while (bio) { /* submit pending writes */
1055 		struct bio *next = bio->bi_next;
1056 		struct md_rdev *rdev = (void*)bio->bi_bdev;
1057 		bio->bi_next = NULL;
1058 		bio->bi_bdev = rdev->bdev;
1059 		if (test_bit(Faulty, &rdev->flags)) {
1060 			bio->bi_error = -EIO;
1061 			bio_endio(bio);
1062 		} else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
1063 				    !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
1064 			/* Just ignore it */
1065 			bio_endio(bio);
1066 		else
1067 			generic_make_request(bio);
1068 		bio = next;
1069 	}
1070 	kfree(plug);
1071 }
1072 
1073 static void raid1_read_request(struct mddev *mddev, struct bio *bio,
1074 				 struct r1bio *r1_bio)
1075 {
1076 	struct r1conf *conf = mddev->private;
1077 	struct raid1_info *mirror;
1078 	struct bio *read_bio;
1079 	struct bitmap *bitmap = mddev->bitmap;
1080 	const int op = bio_op(bio);
1081 	const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1082 	int sectors_handled;
1083 	int max_sectors;
1084 	int rdisk;
1085 
1086 	wait_barrier(conf, bio);
1087 
1088 read_again:
1089 	rdisk = read_balance(conf, r1_bio, &max_sectors);
1090 
1091 	if (rdisk < 0) {
1092 		/* couldn't find anywhere to read from */
1093 		raid_end_bio_io(r1_bio);
1094 		return;
1095 	}
1096 	mirror = conf->mirrors + rdisk;
1097 
1098 	if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1099 	    bitmap) {
1100 		/*
1101 		 * Reading from a write-mostly device must take care not to
1102 		 * over-take any writes that are 'behind'
1103 		 */
1104 		raid1_log(mddev, "wait behind writes");
1105 		wait_event(bitmap->behind_wait,
1106 			   atomic_read(&bitmap->behind_writes) == 0);
1107 	}
1108 	r1_bio->read_disk = rdisk;
1109 	r1_bio->start_next_window = 0;
1110 
1111 	read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1112 	bio_trim(read_bio, r1_bio->sector - bio->bi_iter.bi_sector,
1113 		 max_sectors);
1114 
1115 	r1_bio->bios[rdisk] = read_bio;
1116 
1117 	read_bio->bi_iter.bi_sector = r1_bio->sector +
1118 		mirror->rdev->data_offset;
1119 	read_bio->bi_bdev = mirror->rdev->bdev;
1120 	read_bio->bi_end_io = raid1_end_read_request;
1121 	bio_set_op_attrs(read_bio, op, do_sync);
1122 	if (test_bit(FailFast, &mirror->rdev->flags) &&
1123 	    test_bit(R1BIO_FailFast, &r1_bio->state))
1124 	        read_bio->bi_opf |= MD_FAILFAST;
1125 	read_bio->bi_private = r1_bio;
1126 
1127 	if (mddev->gendisk)
1128 	        trace_block_bio_remap(bdev_get_queue(read_bio->bi_bdev),
1129 	                              read_bio, disk_devt(mddev->gendisk),
1130 	                              r1_bio->sector);
1131 
1132 	if (max_sectors < r1_bio->sectors) {
1133 		/*
1134 		 * could not read all from this device, so we will need another
1135 		 * r1_bio.
1136 		 */
1137 		sectors_handled = (r1_bio->sector + max_sectors
1138 				   - bio->bi_iter.bi_sector);
1139 		r1_bio->sectors = max_sectors;
1140 		spin_lock_irq(&conf->device_lock);
1141 		if (bio->bi_phys_segments == 0)
1142 			bio->bi_phys_segments = 2;
1143 		else
1144 			bio->bi_phys_segments++;
1145 		spin_unlock_irq(&conf->device_lock);
1146 
1147 		/*
1148 		 * Cannot call generic_make_request directly as that will be
1149 		 * queued in __make_request and subsequent mempool_alloc might
1150 		 * block waiting for it.  So hand bio over to raid1d.
1151 		 */
1152 		reschedule_retry(r1_bio);
1153 
1154 		r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1155 
1156 		r1_bio->master_bio = bio;
1157 		r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1158 		r1_bio->state = 0;
1159 		r1_bio->mddev = mddev;
1160 		r1_bio->sector = bio->bi_iter.bi_sector + sectors_handled;
1161 		goto read_again;
1162 	} else
1163 		generic_make_request(read_bio);
1164 }
1165 
1166 static void raid1_write_request(struct mddev *mddev, struct bio *bio,
1167 				struct r1bio *r1_bio)
1168 {
1169 	struct r1conf *conf = mddev->private;
1170 	int i, disks;
1171 	struct bitmap *bitmap = mddev->bitmap;
1172 	unsigned long flags;
1173 	const int op = bio_op(bio);
1174 	const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1175 	const unsigned long do_flush_fua = (bio->bi_opf &
1176 						(REQ_PREFLUSH | REQ_FUA));
1177 	struct md_rdev *blocked_rdev;
1178 	struct blk_plug_cb *cb;
1179 	struct raid1_plug_cb *plug = NULL;
1180 	int first_clone;
1181 	int sectors_handled;
1182 	int max_sectors;
1183 	sector_t start_next_window;
1184 
1185 	/*
1186 	 * Register the new request and wait if the reconstruction
1187 	 * thread has put up a bar for new requests.
1188 	 * Continue immediately if no resync is active currently.
1189 	 */
1190 
1191 	md_write_start(mddev, bio); /* wait on superblock update early */
1192 
1193 	if ((bio_end_sector(bio) > mddev->suspend_lo &&
1194 	    bio->bi_iter.bi_sector < mddev->suspend_hi) ||
1195 	    (mddev_is_clustered(mddev) &&
1196 	     md_cluster_ops->area_resyncing(mddev, WRITE,
1197 		     bio->bi_iter.bi_sector, bio_end_sector(bio)))) {
1198 
1199 		/*
1200 		 * As the suspend_* range is controlled by userspace, we want
1201 		 * an interruptible wait.
1202 		 */
1203 		DEFINE_WAIT(w);
1204 		for (;;) {
1205 			flush_signals(current);
1206 			prepare_to_wait(&conf->wait_barrier,
1207 					&w, TASK_INTERRUPTIBLE);
1208 			if (bio_end_sector(bio) <= mddev->suspend_lo ||
1209 			    bio->bi_iter.bi_sector >= mddev->suspend_hi ||
1210 			    (mddev_is_clustered(mddev) &&
1211 			     !md_cluster_ops->area_resyncing(mddev, WRITE,
1212 				     bio->bi_iter.bi_sector,
1213 				     bio_end_sector(bio))))
1214 				break;
1215 			schedule();
1216 		}
1217 		finish_wait(&conf->wait_barrier, &w);
1218 	}
1219 	start_next_window = wait_barrier(conf, bio);
1220 
1221 	if (conf->pending_count >= max_queued_requests) {
1222 		md_wakeup_thread(mddev->thread);
1223 		raid1_log(mddev, "wait queued");
1224 		wait_event(conf->wait_barrier,
1225 			   conf->pending_count < max_queued_requests);
1226 	}
1227 	/* first select target devices under rcu_lock and
1228 	 * inc refcount on their rdev.  Record them by setting
1229 	 * bios[x] to bio
1230 	 * If there are known/acknowledged bad blocks on any device on
1231 	 * which we have seen a write error, we want to avoid writing those
1232 	 * blocks.
1233 	 * This potentially requires several writes to write around
1234 	 * the bad blocks.  Each set of writes gets it's own r1bio
1235 	 * with a set of bios attached.
1236 	 */
1237 
1238 	disks = conf->raid_disks * 2;
1239  retry_write:
1240 	r1_bio->start_next_window = start_next_window;
1241 	blocked_rdev = NULL;
1242 	rcu_read_lock();
1243 	max_sectors = r1_bio->sectors;
1244 	for (i = 0;  i < disks; i++) {
1245 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1246 		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1247 			atomic_inc(&rdev->nr_pending);
1248 			blocked_rdev = rdev;
1249 			break;
1250 		}
1251 		r1_bio->bios[i] = NULL;
1252 		if (!rdev || test_bit(Faulty, &rdev->flags)) {
1253 			if (i < conf->raid_disks)
1254 				set_bit(R1BIO_Degraded, &r1_bio->state);
1255 			continue;
1256 		}
1257 
1258 		atomic_inc(&rdev->nr_pending);
1259 		if (test_bit(WriteErrorSeen, &rdev->flags)) {
1260 			sector_t first_bad;
1261 			int bad_sectors;
1262 			int is_bad;
1263 
1264 			is_bad = is_badblock(rdev, r1_bio->sector, max_sectors,
1265 					     &first_bad, &bad_sectors);
1266 			if (is_bad < 0) {
1267 				/* mustn't write here until the bad block is
1268 				 * acknowledged*/
1269 				set_bit(BlockedBadBlocks, &rdev->flags);
1270 				blocked_rdev = rdev;
1271 				break;
1272 			}
1273 			if (is_bad && first_bad <= r1_bio->sector) {
1274 				/* Cannot write here at all */
1275 				bad_sectors -= (r1_bio->sector - first_bad);
1276 				if (bad_sectors < max_sectors)
1277 					/* mustn't write more than bad_sectors
1278 					 * to other devices yet
1279 					 */
1280 					max_sectors = bad_sectors;
1281 				rdev_dec_pending(rdev, mddev);
1282 				/* We don't set R1BIO_Degraded as that
1283 				 * only applies if the disk is
1284 				 * missing, so it might be re-added,
1285 				 * and we want to know to recover this
1286 				 * chunk.
1287 				 * In this case the device is here,
1288 				 * and the fact that this chunk is not
1289 				 * in-sync is recorded in the bad
1290 				 * block log
1291 				 */
1292 				continue;
1293 			}
1294 			if (is_bad) {
1295 				int good_sectors = first_bad - r1_bio->sector;
1296 				if (good_sectors < max_sectors)
1297 					max_sectors = good_sectors;
1298 			}
1299 		}
1300 		r1_bio->bios[i] = bio;
1301 	}
1302 	rcu_read_unlock();
1303 
1304 	if (unlikely(blocked_rdev)) {
1305 		/* Wait for this device to become unblocked */
1306 		int j;
1307 		sector_t old = start_next_window;
1308 
1309 		for (j = 0; j < i; j++)
1310 			if (r1_bio->bios[j])
1311 				rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1312 		r1_bio->state = 0;
1313 		allow_barrier(conf, start_next_window, bio->bi_iter.bi_sector);
1314 		raid1_log(mddev, "wait rdev %d blocked", blocked_rdev->raid_disk);
1315 		md_wait_for_blocked_rdev(blocked_rdev, mddev);
1316 		start_next_window = wait_barrier(conf, bio);
1317 		/*
1318 		 * We must make sure the multi r1bios of bio have
1319 		 * the same value of bi_phys_segments
1320 		 */
1321 		if (bio->bi_phys_segments && old &&
1322 		    old != start_next_window)
1323 			/* Wait for the former r1bio(s) to complete */
1324 			wait_event(conf->wait_barrier,
1325 				   bio->bi_phys_segments == 1);
1326 		goto retry_write;
1327 	}
1328 
1329 	if (max_sectors < r1_bio->sectors) {
1330 		/* We are splitting this write into multiple parts, so
1331 		 * we need to prepare for allocating another r1_bio.
1332 		 */
1333 		r1_bio->sectors = max_sectors;
1334 		spin_lock_irq(&conf->device_lock);
1335 		if (bio->bi_phys_segments == 0)
1336 			bio->bi_phys_segments = 2;
1337 		else
1338 			bio->bi_phys_segments++;
1339 		spin_unlock_irq(&conf->device_lock);
1340 	}
1341 	sectors_handled = r1_bio->sector + max_sectors - bio->bi_iter.bi_sector;
1342 
1343 	atomic_set(&r1_bio->remaining, 1);
1344 	atomic_set(&r1_bio->behind_remaining, 0);
1345 
1346 	first_clone = 1;
1347 	for (i = 0; i < disks; i++) {
1348 		struct bio *mbio = NULL;
1349 		sector_t offset;
1350 		if (!r1_bio->bios[i])
1351 			continue;
1352 
1353 		offset = r1_bio->sector - bio->bi_iter.bi_sector;
1354 
1355 		if (first_clone) {
1356 			/* do behind I/O ?
1357 			 * Not if there are too many, or cannot
1358 			 * allocate memory, or a reader on WriteMostly
1359 			 * is waiting for behind writes to flush */
1360 			if (bitmap &&
1361 			    (atomic_read(&bitmap->behind_writes)
1362 			     < mddev->bitmap_info.max_write_behind) &&
1363 			    !waitqueue_active(&bitmap->behind_wait)) {
1364 				mbio = bio_clone_bioset_partial(bio, GFP_NOIO,
1365 								mddev->bio_set,
1366 								offset,
1367 								max_sectors);
1368 				alloc_behind_pages(mbio, r1_bio);
1369 			}
1370 
1371 			bitmap_startwrite(bitmap, r1_bio->sector,
1372 					  r1_bio->sectors,
1373 					  test_bit(R1BIO_BehindIO,
1374 						   &r1_bio->state));
1375 			first_clone = 0;
1376 		}
1377 
1378 		if (!mbio) {
1379 			mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1380 			bio_trim(mbio, offset, max_sectors);
1381 		}
1382 
1383 		if (r1_bio->behind_bvecs) {
1384 			struct bio_vec *bvec;
1385 			int j;
1386 
1387 			/*
1388 			 * We trimmed the bio, so _all is legit
1389 			 */
1390 			bio_for_each_segment_all(bvec, mbio, j)
1391 				bvec->bv_page = r1_bio->behind_bvecs[j].bv_page;
1392 			if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1393 				atomic_inc(&r1_bio->behind_remaining);
1394 		}
1395 
1396 		r1_bio->bios[i] = mbio;
1397 
1398 		mbio->bi_iter.bi_sector	= (r1_bio->sector +
1399 				   conf->mirrors[i].rdev->data_offset);
1400 		mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1401 		mbio->bi_end_io	= raid1_end_write_request;
1402 		bio_set_op_attrs(mbio, op, do_flush_fua | do_sync);
1403 		if (test_bit(FailFast, &conf->mirrors[i].rdev->flags) &&
1404 		    !test_bit(WriteMostly, &conf->mirrors[i].rdev->flags) &&
1405 		    conf->raid_disks - mddev->degraded > 1)
1406 			mbio->bi_opf |= MD_FAILFAST;
1407 		mbio->bi_private = r1_bio;
1408 
1409 		atomic_inc(&r1_bio->remaining);
1410 
1411 		if (mddev->gendisk)
1412 			trace_block_bio_remap(bdev_get_queue(mbio->bi_bdev),
1413 					      mbio, disk_devt(mddev->gendisk),
1414 					      r1_bio->sector);
1415 		/* flush_pending_writes() needs access to the rdev so...*/
1416 		mbio->bi_bdev = (void*)conf->mirrors[i].rdev;
1417 
1418 		cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1419 		if (cb)
1420 			plug = container_of(cb, struct raid1_plug_cb, cb);
1421 		else
1422 			plug = NULL;
1423 		spin_lock_irqsave(&conf->device_lock, flags);
1424 		if (plug) {
1425 			bio_list_add(&plug->pending, mbio);
1426 			plug->pending_cnt++;
1427 		} else {
1428 			bio_list_add(&conf->pending_bio_list, mbio);
1429 			conf->pending_count++;
1430 		}
1431 		spin_unlock_irqrestore(&conf->device_lock, flags);
1432 		if (!plug)
1433 			md_wakeup_thread(mddev->thread);
1434 	}
1435 	/* Mustn't call r1_bio_write_done before this next test,
1436 	 * as it could result in the bio being freed.
1437 	 */
1438 	if (sectors_handled < bio_sectors(bio)) {
1439 		r1_bio_write_done(r1_bio);
1440 		/* We need another r1_bio.  It has already been counted
1441 		 * in bio->bi_phys_segments
1442 		 */
1443 		r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1444 		r1_bio->master_bio = bio;
1445 		r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1446 		r1_bio->state = 0;
1447 		r1_bio->mddev = mddev;
1448 		r1_bio->sector = bio->bi_iter.bi_sector + sectors_handled;
1449 		goto retry_write;
1450 	}
1451 
1452 	r1_bio_write_done(r1_bio);
1453 
1454 	/* In case raid1d snuck in to freeze_array */
1455 	wake_up(&conf->wait_barrier);
1456 }
1457 
1458 static void raid1_make_request(struct mddev *mddev, struct bio *bio)
1459 {
1460 	struct r1conf *conf = mddev->private;
1461 	struct r1bio *r1_bio;
1462 
1463 	/*
1464 	 * make_request() can abort the operation when read-ahead is being
1465 	 * used and no empty request is available.
1466 	 *
1467 	 */
1468 	r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1469 
1470 	r1_bio->master_bio = bio;
1471 	r1_bio->sectors = bio_sectors(bio);
1472 	r1_bio->state = 0;
1473 	r1_bio->mddev = mddev;
1474 	r1_bio->sector = bio->bi_iter.bi_sector;
1475 
1476 	/*
1477 	 * We might need to issue multiple reads to different devices if there
1478 	 * are bad blocks around, so we keep track of the number of reads in
1479 	 * bio->bi_phys_segments.  If this is 0, there is only one r1_bio and
1480 	 * no locking will be needed when requests complete.  If it is
1481 	 * non-zero, then it is the number of not-completed requests.
1482 	 */
1483 	bio->bi_phys_segments = 0;
1484 	bio_clear_flag(bio, BIO_SEG_VALID);
1485 
1486 	if (bio_data_dir(bio) == READ)
1487 		raid1_read_request(mddev, bio, r1_bio);
1488 	else
1489 		raid1_write_request(mddev, bio, r1_bio);
1490 }
1491 
1492 static void raid1_status(struct seq_file *seq, struct mddev *mddev)
1493 {
1494 	struct r1conf *conf = mddev->private;
1495 	int i;
1496 
1497 	seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1498 		   conf->raid_disks - mddev->degraded);
1499 	rcu_read_lock();
1500 	for (i = 0; i < conf->raid_disks; i++) {
1501 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1502 		seq_printf(seq, "%s",
1503 			   rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1504 	}
1505 	rcu_read_unlock();
1506 	seq_printf(seq, "]");
1507 }
1508 
1509 static void raid1_error(struct mddev *mddev, struct md_rdev *rdev)
1510 {
1511 	char b[BDEVNAME_SIZE];
1512 	struct r1conf *conf = mddev->private;
1513 	unsigned long flags;
1514 
1515 	/*
1516 	 * If it is not operational, then we have already marked it as dead
1517 	 * else if it is the last working disks, ignore the error, let the
1518 	 * next level up know.
1519 	 * else mark the drive as failed
1520 	 */
1521 	spin_lock_irqsave(&conf->device_lock, flags);
1522 	if (test_bit(In_sync, &rdev->flags)
1523 	    && (conf->raid_disks - mddev->degraded) == 1) {
1524 		/*
1525 		 * Don't fail the drive, act as though we were just a
1526 		 * normal single drive.
1527 		 * However don't try a recovery from this drive as
1528 		 * it is very likely to fail.
1529 		 */
1530 		conf->recovery_disabled = mddev->recovery_disabled;
1531 		spin_unlock_irqrestore(&conf->device_lock, flags);
1532 		return;
1533 	}
1534 	set_bit(Blocked, &rdev->flags);
1535 	if (test_and_clear_bit(In_sync, &rdev->flags)) {
1536 		mddev->degraded++;
1537 		set_bit(Faulty, &rdev->flags);
1538 	} else
1539 		set_bit(Faulty, &rdev->flags);
1540 	spin_unlock_irqrestore(&conf->device_lock, flags);
1541 	/*
1542 	 * if recovery is running, make sure it aborts.
1543 	 */
1544 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1545 	set_mask_bits(&mddev->sb_flags, 0,
1546 		      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1547 	pr_crit("md/raid1:%s: Disk failure on %s, disabling device.\n"
1548 		"md/raid1:%s: Operation continuing on %d devices.\n",
1549 		mdname(mddev), bdevname(rdev->bdev, b),
1550 		mdname(mddev), conf->raid_disks - mddev->degraded);
1551 }
1552 
1553 static void print_conf(struct r1conf *conf)
1554 {
1555 	int i;
1556 
1557 	pr_debug("RAID1 conf printout:\n");
1558 	if (!conf) {
1559 		pr_debug("(!conf)\n");
1560 		return;
1561 	}
1562 	pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1563 		 conf->raid_disks);
1564 
1565 	rcu_read_lock();
1566 	for (i = 0; i < conf->raid_disks; i++) {
1567 		char b[BDEVNAME_SIZE];
1568 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1569 		if (rdev)
1570 			pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
1571 				 i, !test_bit(In_sync, &rdev->flags),
1572 				 !test_bit(Faulty, &rdev->flags),
1573 				 bdevname(rdev->bdev,b));
1574 	}
1575 	rcu_read_unlock();
1576 }
1577 
1578 static void close_sync(struct r1conf *conf)
1579 {
1580 	wait_barrier(conf, NULL);
1581 	allow_barrier(conf, 0, 0);
1582 
1583 	mempool_destroy(conf->r1buf_pool);
1584 	conf->r1buf_pool = NULL;
1585 
1586 	spin_lock_irq(&conf->resync_lock);
1587 	conf->next_resync = MaxSector - 2 * NEXT_NORMALIO_DISTANCE;
1588 	conf->start_next_window = MaxSector;
1589 	conf->current_window_requests +=
1590 		conf->next_window_requests;
1591 	conf->next_window_requests = 0;
1592 	spin_unlock_irq(&conf->resync_lock);
1593 }
1594 
1595 static int raid1_spare_active(struct mddev *mddev)
1596 {
1597 	int i;
1598 	struct r1conf *conf = mddev->private;
1599 	int count = 0;
1600 	unsigned long flags;
1601 
1602 	/*
1603 	 * Find all failed disks within the RAID1 configuration
1604 	 * and mark them readable.
1605 	 * Called under mddev lock, so rcu protection not needed.
1606 	 * device_lock used to avoid races with raid1_end_read_request
1607 	 * which expects 'In_sync' flags and ->degraded to be consistent.
1608 	 */
1609 	spin_lock_irqsave(&conf->device_lock, flags);
1610 	for (i = 0; i < conf->raid_disks; i++) {
1611 		struct md_rdev *rdev = conf->mirrors[i].rdev;
1612 		struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1613 		if (repl
1614 		    && !test_bit(Candidate, &repl->flags)
1615 		    && repl->recovery_offset == MaxSector
1616 		    && !test_bit(Faulty, &repl->flags)
1617 		    && !test_and_set_bit(In_sync, &repl->flags)) {
1618 			/* replacement has just become active */
1619 			if (!rdev ||
1620 			    !test_and_clear_bit(In_sync, &rdev->flags))
1621 				count++;
1622 			if (rdev) {
1623 				/* Replaced device not technically
1624 				 * faulty, but we need to be sure
1625 				 * it gets removed and never re-added
1626 				 */
1627 				set_bit(Faulty, &rdev->flags);
1628 				sysfs_notify_dirent_safe(
1629 					rdev->sysfs_state);
1630 			}
1631 		}
1632 		if (rdev
1633 		    && rdev->recovery_offset == MaxSector
1634 		    && !test_bit(Faulty, &rdev->flags)
1635 		    && !test_and_set_bit(In_sync, &rdev->flags)) {
1636 			count++;
1637 			sysfs_notify_dirent_safe(rdev->sysfs_state);
1638 		}
1639 	}
1640 	mddev->degraded -= count;
1641 	spin_unlock_irqrestore(&conf->device_lock, flags);
1642 
1643 	print_conf(conf);
1644 	return count;
1645 }
1646 
1647 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1648 {
1649 	struct r1conf *conf = mddev->private;
1650 	int err = -EEXIST;
1651 	int mirror = 0;
1652 	struct raid1_info *p;
1653 	int first = 0;
1654 	int last = conf->raid_disks - 1;
1655 
1656 	if (mddev->recovery_disabled == conf->recovery_disabled)
1657 		return -EBUSY;
1658 
1659 	if (md_integrity_add_rdev(rdev, mddev))
1660 		return -ENXIO;
1661 
1662 	if (rdev->raid_disk >= 0)
1663 		first = last = rdev->raid_disk;
1664 
1665 	/*
1666 	 * find the disk ... but prefer rdev->saved_raid_disk
1667 	 * if possible.
1668 	 */
1669 	if (rdev->saved_raid_disk >= 0 &&
1670 	    rdev->saved_raid_disk >= first &&
1671 	    conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1672 		first = last = rdev->saved_raid_disk;
1673 
1674 	for (mirror = first; mirror <= last; mirror++) {
1675 		p = conf->mirrors+mirror;
1676 		if (!p->rdev) {
1677 
1678 			if (mddev->gendisk)
1679 				disk_stack_limits(mddev->gendisk, rdev->bdev,
1680 						  rdev->data_offset << 9);
1681 
1682 			p->head_position = 0;
1683 			rdev->raid_disk = mirror;
1684 			err = 0;
1685 			/* As all devices are equivalent, we don't need a full recovery
1686 			 * if this was recently any drive of the array
1687 			 */
1688 			if (rdev->saved_raid_disk < 0)
1689 				conf->fullsync = 1;
1690 			rcu_assign_pointer(p->rdev, rdev);
1691 			break;
1692 		}
1693 		if (test_bit(WantReplacement, &p->rdev->flags) &&
1694 		    p[conf->raid_disks].rdev == NULL) {
1695 			/* Add this device as a replacement */
1696 			clear_bit(In_sync, &rdev->flags);
1697 			set_bit(Replacement, &rdev->flags);
1698 			rdev->raid_disk = mirror;
1699 			err = 0;
1700 			conf->fullsync = 1;
1701 			rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1702 			break;
1703 		}
1704 	}
1705 	if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1706 		queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1707 	print_conf(conf);
1708 	return err;
1709 }
1710 
1711 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1712 {
1713 	struct r1conf *conf = mddev->private;
1714 	int err = 0;
1715 	int number = rdev->raid_disk;
1716 	struct raid1_info *p = conf->mirrors + number;
1717 
1718 	if (rdev != p->rdev)
1719 		p = conf->mirrors + conf->raid_disks + number;
1720 
1721 	print_conf(conf);
1722 	if (rdev == p->rdev) {
1723 		if (test_bit(In_sync, &rdev->flags) ||
1724 		    atomic_read(&rdev->nr_pending)) {
1725 			err = -EBUSY;
1726 			goto abort;
1727 		}
1728 		/* Only remove non-faulty devices if recovery
1729 		 * is not possible.
1730 		 */
1731 		if (!test_bit(Faulty, &rdev->flags) &&
1732 		    mddev->recovery_disabled != conf->recovery_disabled &&
1733 		    mddev->degraded < conf->raid_disks) {
1734 			err = -EBUSY;
1735 			goto abort;
1736 		}
1737 		p->rdev = NULL;
1738 		if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1739 			synchronize_rcu();
1740 			if (atomic_read(&rdev->nr_pending)) {
1741 				/* lost the race, try later */
1742 				err = -EBUSY;
1743 				p->rdev = rdev;
1744 				goto abort;
1745 			}
1746 		}
1747 		if (conf->mirrors[conf->raid_disks + number].rdev) {
1748 			/* We just removed a device that is being replaced.
1749 			 * Move down the replacement.  We drain all IO before
1750 			 * doing this to avoid confusion.
1751 			 */
1752 			struct md_rdev *repl =
1753 				conf->mirrors[conf->raid_disks + number].rdev;
1754 			freeze_array(conf, 0);
1755 			clear_bit(Replacement, &repl->flags);
1756 			p->rdev = repl;
1757 			conf->mirrors[conf->raid_disks + number].rdev = NULL;
1758 			unfreeze_array(conf);
1759 			clear_bit(WantReplacement, &rdev->flags);
1760 		} else
1761 			clear_bit(WantReplacement, &rdev->flags);
1762 		err = md_integrity_register(mddev);
1763 	}
1764 abort:
1765 
1766 	print_conf(conf);
1767 	return err;
1768 }
1769 
1770 static void end_sync_read(struct bio *bio)
1771 {
1772 	struct r1bio *r1_bio = bio->bi_private;
1773 
1774 	update_head_pos(r1_bio->read_disk, r1_bio);
1775 
1776 	/*
1777 	 * we have read a block, now it needs to be re-written,
1778 	 * or re-read if the read failed.
1779 	 * We don't do much here, just schedule handling by raid1d
1780 	 */
1781 	if (!bio->bi_error)
1782 		set_bit(R1BIO_Uptodate, &r1_bio->state);
1783 
1784 	if (atomic_dec_and_test(&r1_bio->remaining))
1785 		reschedule_retry(r1_bio);
1786 }
1787 
1788 static void end_sync_write(struct bio *bio)
1789 {
1790 	int uptodate = !bio->bi_error;
1791 	struct r1bio *r1_bio = bio->bi_private;
1792 	struct mddev *mddev = r1_bio->mddev;
1793 	struct r1conf *conf = mddev->private;
1794 	sector_t first_bad;
1795 	int bad_sectors;
1796 	struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev;
1797 
1798 	if (!uptodate) {
1799 		sector_t sync_blocks = 0;
1800 		sector_t s = r1_bio->sector;
1801 		long sectors_to_go = r1_bio->sectors;
1802 		/* make sure these bits doesn't get cleared. */
1803 		do {
1804 			bitmap_end_sync(mddev->bitmap, s,
1805 					&sync_blocks, 1);
1806 			s += sync_blocks;
1807 			sectors_to_go -= sync_blocks;
1808 		} while (sectors_to_go > 0);
1809 		set_bit(WriteErrorSeen, &rdev->flags);
1810 		if (!test_and_set_bit(WantReplacement, &rdev->flags))
1811 			set_bit(MD_RECOVERY_NEEDED, &
1812 				mddev->recovery);
1813 		set_bit(R1BIO_WriteError, &r1_bio->state);
1814 	} else if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
1815 			       &first_bad, &bad_sectors) &&
1816 		   !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1817 				r1_bio->sector,
1818 				r1_bio->sectors,
1819 				&first_bad, &bad_sectors)
1820 		)
1821 		set_bit(R1BIO_MadeGood, &r1_bio->state);
1822 
1823 	if (atomic_dec_and_test(&r1_bio->remaining)) {
1824 		int s = r1_bio->sectors;
1825 		if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1826 		    test_bit(R1BIO_WriteError, &r1_bio->state))
1827 			reschedule_retry(r1_bio);
1828 		else {
1829 			put_buf(r1_bio);
1830 			md_done_sync(mddev, s, uptodate);
1831 		}
1832 	}
1833 }
1834 
1835 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1836 			    int sectors, struct page *page, int rw)
1837 {
1838 	if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
1839 		/* success */
1840 		return 1;
1841 	if (rw == WRITE) {
1842 		set_bit(WriteErrorSeen, &rdev->flags);
1843 		if (!test_and_set_bit(WantReplacement,
1844 				      &rdev->flags))
1845 			set_bit(MD_RECOVERY_NEEDED, &
1846 				rdev->mddev->recovery);
1847 	}
1848 	/* need to record an error - either for the block or the device */
1849 	if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1850 		md_error(rdev->mddev, rdev);
1851 	return 0;
1852 }
1853 
1854 static int fix_sync_read_error(struct r1bio *r1_bio)
1855 {
1856 	/* Try some synchronous reads of other devices to get
1857 	 * good data, much like with normal read errors.  Only
1858 	 * read into the pages we already have so we don't
1859 	 * need to re-issue the read request.
1860 	 * We don't need to freeze the array, because being in an
1861 	 * active sync request, there is no normal IO, and
1862 	 * no overlapping syncs.
1863 	 * We don't need to check is_badblock() again as we
1864 	 * made sure that anything with a bad block in range
1865 	 * will have bi_end_io clear.
1866 	 */
1867 	struct mddev *mddev = r1_bio->mddev;
1868 	struct r1conf *conf = mddev->private;
1869 	struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1870 	sector_t sect = r1_bio->sector;
1871 	int sectors = r1_bio->sectors;
1872 	int idx = 0;
1873 	struct md_rdev *rdev;
1874 
1875 	rdev = conf->mirrors[r1_bio->read_disk].rdev;
1876 	if (test_bit(FailFast, &rdev->flags)) {
1877 		/* Don't try recovering from here - just fail it
1878 		 * ... unless it is the last working device of course */
1879 		md_error(mddev, rdev);
1880 		if (test_bit(Faulty, &rdev->flags))
1881 			/* Don't try to read from here, but make sure
1882 			 * put_buf does it's thing
1883 			 */
1884 			bio->bi_end_io = end_sync_write;
1885 	}
1886 
1887 	while(sectors) {
1888 		int s = sectors;
1889 		int d = r1_bio->read_disk;
1890 		int success = 0;
1891 		int start;
1892 
1893 		if (s > (PAGE_SIZE>>9))
1894 			s = PAGE_SIZE >> 9;
1895 		do {
1896 			if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1897 				/* No rcu protection needed here devices
1898 				 * can only be removed when no resync is
1899 				 * active, and resync is currently active
1900 				 */
1901 				rdev = conf->mirrors[d].rdev;
1902 				if (sync_page_io(rdev, sect, s<<9,
1903 						 bio->bi_io_vec[idx].bv_page,
1904 						 REQ_OP_READ, 0, false)) {
1905 					success = 1;
1906 					break;
1907 				}
1908 			}
1909 			d++;
1910 			if (d == conf->raid_disks * 2)
1911 				d = 0;
1912 		} while (!success && d != r1_bio->read_disk);
1913 
1914 		if (!success) {
1915 			char b[BDEVNAME_SIZE];
1916 			int abort = 0;
1917 			/* Cannot read from anywhere, this block is lost.
1918 			 * Record a bad block on each device.  If that doesn't
1919 			 * work just disable and interrupt the recovery.
1920 			 * Don't fail devices as that won't really help.
1921 			 */
1922 			pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
1923 					    mdname(mddev),
1924 					    bdevname(bio->bi_bdev, b),
1925 					    (unsigned long long)r1_bio->sector);
1926 			for (d = 0; d < conf->raid_disks * 2; d++) {
1927 				rdev = conf->mirrors[d].rdev;
1928 				if (!rdev || test_bit(Faulty, &rdev->flags))
1929 					continue;
1930 				if (!rdev_set_badblocks(rdev, sect, s, 0))
1931 					abort = 1;
1932 			}
1933 			if (abort) {
1934 				conf->recovery_disabled =
1935 					mddev->recovery_disabled;
1936 				set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1937 				md_done_sync(mddev, r1_bio->sectors, 0);
1938 				put_buf(r1_bio);
1939 				return 0;
1940 			}
1941 			/* Try next page */
1942 			sectors -= s;
1943 			sect += s;
1944 			idx++;
1945 			continue;
1946 		}
1947 
1948 		start = d;
1949 		/* write it back and re-read */
1950 		while (d != r1_bio->read_disk) {
1951 			if (d == 0)
1952 				d = conf->raid_disks * 2;
1953 			d--;
1954 			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1955 				continue;
1956 			rdev = conf->mirrors[d].rdev;
1957 			if (r1_sync_page_io(rdev, sect, s,
1958 					    bio->bi_io_vec[idx].bv_page,
1959 					    WRITE) == 0) {
1960 				r1_bio->bios[d]->bi_end_io = NULL;
1961 				rdev_dec_pending(rdev, mddev);
1962 			}
1963 		}
1964 		d = start;
1965 		while (d != r1_bio->read_disk) {
1966 			if (d == 0)
1967 				d = conf->raid_disks * 2;
1968 			d--;
1969 			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1970 				continue;
1971 			rdev = conf->mirrors[d].rdev;
1972 			if (r1_sync_page_io(rdev, sect, s,
1973 					    bio->bi_io_vec[idx].bv_page,
1974 					    READ) != 0)
1975 				atomic_add(s, &rdev->corrected_errors);
1976 		}
1977 		sectors -= s;
1978 		sect += s;
1979 		idx ++;
1980 	}
1981 	set_bit(R1BIO_Uptodate, &r1_bio->state);
1982 	bio->bi_error = 0;
1983 	return 1;
1984 }
1985 
1986 static void process_checks(struct r1bio *r1_bio)
1987 {
1988 	/* We have read all readable devices.  If we haven't
1989 	 * got the block, then there is no hope left.
1990 	 * If we have, then we want to do a comparison
1991 	 * and skip the write if everything is the same.
1992 	 * If any blocks failed to read, then we need to
1993 	 * attempt an over-write
1994 	 */
1995 	struct mddev *mddev = r1_bio->mddev;
1996 	struct r1conf *conf = mddev->private;
1997 	int primary;
1998 	int i;
1999 	int vcnt;
2000 
2001 	/* Fix variable parts of all bios */
2002 	vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
2003 	for (i = 0; i < conf->raid_disks * 2; i++) {
2004 		int j;
2005 		int size;
2006 		int error;
2007 		struct bio *b = r1_bio->bios[i];
2008 		if (b->bi_end_io != end_sync_read)
2009 			continue;
2010 		/* fixup the bio for reuse, but preserve errno */
2011 		error = b->bi_error;
2012 		bio_reset(b);
2013 		b->bi_error = error;
2014 		b->bi_vcnt = vcnt;
2015 		b->bi_iter.bi_size = r1_bio->sectors << 9;
2016 		b->bi_iter.bi_sector = r1_bio->sector +
2017 			conf->mirrors[i].rdev->data_offset;
2018 		b->bi_bdev = conf->mirrors[i].rdev->bdev;
2019 		b->bi_end_io = end_sync_read;
2020 		b->bi_private = r1_bio;
2021 
2022 		size = b->bi_iter.bi_size;
2023 		for (j = 0; j < vcnt ; j++) {
2024 			struct bio_vec *bi;
2025 			bi = &b->bi_io_vec[j];
2026 			bi->bv_offset = 0;
2027 			if (size > PAGE_SIZE)
2028 				bi->bv_len = PAGE_SIZE;
2029 			else
2030 				bi->bv_len = size;
2031 			size -= PAGE_SIZE;
2032 		}
2033 	}
2034 	for (primary = 0; primary < conf->raid_disks * 2; primary++)
2035 		if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
2036 		    !r1_bio->bios[primary]->bi_error) {
2037 			r1_bio->bios[primary]->bi_end_io = NULL;
2038 			rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
2039 			break;
2040 		}
2041 	r1_bio->read_disk = primary;
2042 	for (i = 0; i < conf->raid_disks * 2; i++) {
2043 		int j;
2044 		struct bio *pbio = r1_bio->bios[primary];
2045 		struct bio *sbio = r1_bio->bios[i];
2046 		int error = sbio->bi_error;
2047 
2048 		if (sbio->bi_end_io != end_sync_read)
2049 			continue;
2050 		/* Now we can 'fixup' the error value */
2051 		sbio->bi_error = 0;
2052 
2053 		if (!error) {
2054 			for (j = vcnt; j-- ; ) {
2055 				struct page *p, *s;
2056 				p = pbio->bi_io_vec[j].bv_page;
2057 				s = sbio->bi_io_vec[j].bv_page;
2058 				if (memcmp(page_address(p),
2059 					   page_address(s),
2060 					   sbio->bi_io_vec[j].bv_len))
2061 					break;
2062 			}
2063 		} else
2064 			j = 0;
2065 		if (j >= 0)
2066 			atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
2067 		if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
2068 			      && !error)) {
2069 			/* No need to write to this device. */
2070 			sbio->bi_end_io = NULL;
2071 			rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2072 			continue;
2073 		}
2074 
2075 		bio_copy_data(sbio, pbio);
2076 	}
2077 }
2078 
2079 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
2080 {
2081 	struct r1conf *conf = mddev->private;
2082 	int i;
2083 	int disks = conf->raid_disks * 2;
2084 	struct bio *bio, *wbio;
2085 
2086 	bio = r1_bio->bios[r1_bio->read_disk];
2087 
2088 	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2089 		/* ouch - failed to read all of that. */
2090 		if (!fix_sync_read_error(r1_bio))
2091 			return;
2092 
2093 	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2094 		process_checks(r1_bio);
2095 
2096 	/*
2097 	 * schedule writes
2098 	 */
2099 	atomic_set(&r1_bio->remaining, 1);
2100 	for (i = 0; i < disks ; i++) {
2101 		wbio = r1_bio->bios[i];
2102 		if (wbio->bi_end_io == NULL ||
2103 		    (wbio->bi_end_io == end_sync_read &&
2104 		     (i == r1_bio->read_disk ||
2105 		      !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2106 			continue;
2107 
2108 		bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2109 		if (test_bit(FailFast, &conf->mirrors[i].rdev->flags))
2110 			wbio->bi_opf |= MD_FAILFAST;
2111 
2112 		wbio->bi_end_io = end_sync_write;
2113 		atomic_inc(&r1_bio->remaining);
2114 		md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
2115 
2116 		generic_make_request(wbio);
2117 	}
2118 
2119 	if (atomic_dec_and_test(&r1_bio->remaining)) {
2120 		/* if we're here, all write(s) have completed, so clean up */
2121 		int s = r1_bio->sectors;
2122 		if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2123 		    test_bit(R1BIO_WriteError, &r1_bio->state))
2124 			reschedule_retry(r1_bio);
2125 		else {
2126 			put_buf(r1_bio);
2127 			md_done_sync(mddev, s, 1);
2128 		}
2129 	}
2130 }
2131 
2132 /*
2133  * This is a kernel thread which:
2134  *
2135  *	1.	Retries failed read operations on working mirrors.
2136  *	2.	Updates the raid superblock when problems encounter.
2137  *	3.	Performs writes following reads for array synchronising.
2138  */
2139 
2140 static void fix_read_error(struct r1conf *conf, int read_disk,
2141 			   sector_t sect, int sectors)
2142 {
2143 	struct mddev *mddev = conf->mddev;
2144 	while(sectors) {
2145 		int s = sectors;
2146 		int d = read_disk;
2147 		int success = 0;
2148 		int start;
2149 		struct md_rdev *rdev;
2150 
2151 		if (s > (PAGE_SIZE>>9))
2152 			s = PAGE_SIZE >> 9;
2153 
2154 		do {
2155 			sector_t first_bad;
2156 			int bad_sectors;
2157 
2158 			rcu_read_lock();
2159 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2160 			if (rdev &&
2161 			    (test_bit(In_sync, &rdev->flags) ||
2162 			     (!test_bit(Faulty, &rdev->flags) &&
2163 			      rdev->recovery_offset >= sect + s)) &&
2164 			    is_badblock(rdev, sect, s,
2165 					&first_bad, &bad_sectors) == 0) {
2166 				atomic_inc(&rdev->nr_pending);
2167 				rcu_read_unlock();
2168 				if (sync_page_io(rdev, sect, s<<9,
2169 					 conf->tmppage, REQ_OP_READ, 0, false))
2170 					success = 1;
2171 				rdev_dec_pending(rdev, mddev);
2172 				if (success)
2173 					break;
2174 			} else
2175 				rcu_read_unlock();
2176 			d++;
2177 			if (d == conf->raid_disks * 2)
2178 				d = 0;
2179 		} while (!success && d != read_disk);
2180 
2181 		if (!success) {
2182 			/* Cannot read from anywhere - mark it bad */
2183 			struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2184 			if (!rdev_set_badblocks(rdev, sect, s, 0))
2185 				md_error(mddev, rdev);
2186 			break;
2187 		}
2188 		/* write it back and re-read */
2189 		start = d;
2190 		while (d != read_disk) {
2191 			if (d==0)
2192 				d = conf->raid_disks * 2;
2193 			d--;
2194 			rcu_read_lock();
2195 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2196 			if (rdev &&
2197 			    !test_bit(Faulty, &rdev->flags)) {
2198 				atomic_inc(&rdev->nr_pending);
2199 				rcu_read_unlock();
2200 				r1_sync_page_io(rdev, sect, s,
2201 						conf->tmppage, WRITE);
2202 				rdev_dec_pending(rdev, mddev);
2203 			} else
2204 				rcu_read_unlock();
2205 		}
2206 		d = start;
2207 		while (d != read_disk) {
2208 			char b[BDEVNAME_SIZE];
2209 			if (d==0)
2210 				d = conf->raid_disks * 2;
2211 			d--;
2212 			rcu_read_lock();
2213 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2214 			if (rdev &&
2215 			    !test_bit(Faulty, &rdev->flags)) {
2216 				atomic_inc(&rdev->nr_pending);
2217 				rcu_read_unlock();
2218 				if (r1_sync_page_io(rdev, sect, s,
2219 						    conf->tmppage, READ)) {
2220 					atomic_add(s, &rdev->corrected_errors);
2221 					pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %s)\n",
2222 						mdname(mddev), s,
2223 						(unsigned long long)(sect +
2224 								     rdev->data_offset),
2225 						bdevname(rdev->bdev, b));
2226 				}
2227 				rdev_dec_pending(rdev, mddev);
2228 			} else
2229 				rcu_read_unlock();
2230 		}
2231 		sectors -= s;
2232 		sect += s;
2233 	}
2234 }
2235 
2236 static int narrow_write_error(struct r1bio *r1_bio, int i)
2237 {
2238 	struct mddev *mddev = r1_bio->mddev;
2239 	struct r1conf *conf = mddev->private;
2240 	struct md_rdev *rdev = conf->mirrors[i].rdev;
2241 
2242 	/* bio has the data to be written to device 'i' where
2243 	 * we just recently had a write error.
2244 	 * We repeatedly clone the bio and trim down to one block,
2245 	 * then try the write.  Where the write fails we record
2246 	 * a bad block.
2247 	 * It is conceivable that the bio doesn't exactly align with
2248 	 * blocks.  We must handle this somehow.
2249 	 *
2250 	 * We currently own a reference on the rdev.
2251 	 */
2252 
2253 	int block_sectors;
2254 	sector_t sector;
2255 	int sectors;
2256 	int sect_to_write = r1_bio->sectors;
2257 	int ok = 1;
2258 
2259 	if (rdev->badblocks.shift < 0)
2260 		return 0;
2261 
2262 	block_sectors = roundup(1 << rdev->badblocks.shift,
2263 				bdev_logical_block_size(rdev->bdev) >> 9);
2264 	sector = r1_bio->sector;
2265 	sectors = ((sector + block_sectors)
2266 		   & ~(sector_t)(block_sectors - 1))
2267 		- sector;
2268 
2269 	while (sect_to_write) {
2270 		struct bio *wbio;
2271 		if (sectors > sect_to_write)
2272 			sectors = sect_to_write;
2273 		/* Write at 'sector' for 'sectors'*/
2274 
2275 		if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2276 			unsigned vcnt = r1_bio->behind_page_count;
2277 			struct bio_vec *vec = r1_bio->behind_bvecs;
2278 
2279 			while (!vec->bv_page) {
2280 				vec++;
2281 				vcnt--;
2282 			}
2283 
2284 			wbio = bio_alloc_mddev(GFP_NOIO, vcnt, mddev);
2285 			memcpy(wbio->bi_io_vec, vec, vcnt * sizeof(struct bio_vec));
2286 
2287 			wbio->bi_vcnt = vcnt;
2288 		} else {
2289 			wbio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2290 		}
2291 
2292 		bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2293 		wbio->bi_iter.bi_sector = r1_bio->sector;
2294 		wbio->bi_iter.bi_size = r1_bio->sectors << 9;
2295 
2296 		bio_trim(wbio, sector - r1_bio->sector, sectors);
2297 		wbio->bi_iter.bi_sector += rdev->data_offset;
2298 		wbio->bi_bdev = rdev->bdev;
2299 
2300 		if (submit_bio_wait(wbio) < 0)
2301 			/* failure! */
2302 			ok = rdev_set_badblocks(rdev, sector,
2303 						sectors, 0)
2304 				&& ok;
2305 
2306 		bio_put(wbio);
2307 		sect_to_write -= sectors;
2308 		sector += sectors;
2309 		sectors = block_sectors;
2310 	}
2311 	return ok;
2312 }
2313 
2314 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2315 {
2316 	int m;
2317 	int s = r1_bio->sectors;
2318 	for (m = 0; m < conf->raid_disks * 2 ; m++) {
2319 		struct md_rdev *rdev = conf->mirrors[m].rdev;
2320 		struct bio *bio = r1_bio->bios[m];
2321 		if (bio->bi_end_io == NULL)
2322 			continue;
2323 		if (!bio->bi_error &&
2324 		    test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2325 			rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2326 		}
2327 		if (bio->bi_error &&
2328 		    test_bit(R1BIO_WriteError, &r1_bio->state)) {
2329 			if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2330 				md_error(conf->mddev, rdev);
2331 		}
2332 	}
2333 	put_buf(r1_bio);
2334 	md_done_sync(conf->mddev, s, 1);
2335 }
2336 
2337 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2338 {
2339 	int m;
2340 	bool fail = false;
2341 	for (m = 0; m < conf->raid_disks * 2 ; m++)
2342 		if (r1_bio->bios[m] == IO_MADE_GOOD) {
2343 			struct md_rdev *rdev = conf->mirrors[m].rdev;
2344 			rdev_clear_badblocks(rdev,
2345 					     r1_bio->sector,
2346 					     r1_bio->sectors, 0);
2347 			rdev_dec_pending(rdev, conf->mddev);
2348 		} else if (r1_bio->bios[m] != NULL) {
2349 			/* This drive got a write error.  We need to
2350 			 * narrow down and record precise write
2351 			 * errors.
2352 			 */
2353 			fail = true;
2354 			if (!narrow_write_error(r1_bio, m)) {
2355 				md_error(conf->mddev,
2356 					 conf->mirrors[m].rdev);
2357 				/* an I/O failed, we can't clear the bitmap */
2358 				set_bit(R1BIO_Degraded, &r1_bio->state);
2359 			}
2360 			rdev_dec_pending(conf->mirrors[m].rdev,
2361 					 conf->mddev);
2362 		}
2363 	if (fail) {
2364 		spin_lock_irq(&conf->device_lock);
2365 		list_add(&r1_bio->retry_list, &conf->bio_end_io_list);
2366 		conf->nr_queued++;
2367 		spin_unlock_irq(&conf->device_lock);
2368 		md_wakeup_thread(conf->mddev->thread);
2369 	} else {
2370 		if (test_bit(R1BIO_WriteError, &r1_bio->state))
2371 			close_write(r1_bio);
2372 		raid_end_bio_io(r1_bio);
2373 	}
2374 }
2375 
2376 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2377 {
2378 	int disk;
2379 	int max_sectors;
2380 	struct mddev *mddev = conf->mddev;
2381 	struct bio *bio;
2382 	char b[BDEVNAME_SIZE];
2383 	struct md_rdev *rdev;
2384 	dev_t bio_dev;
2385 	sector_t bio_sector;
2386 
2387 	clear_bit(R1BIO_ReadError, &r1_bio->state);
2388 	/* we got a read error. Maybe the drive is bad.  Maybe just
2389 	 * the block and we can fix it.
2390 	 * We freeze all other IO, and try reading the block from
2391 	 * other devices.  When we find one, we re-write
2392 	 * and check it that fixes the read error.
2393 	 * This is all done synchronously while the array is
2394 	 * frozen
2395 	 */
2396 
2397 	bio = r1_bio->bios[r1_bio->read_disk];
2398 	bdevname(bio->bi_bdev, b);
2399 	bio_dev = bio->bi_bdev->bd_dev;
2400 	bio_sector = conf->mirrors[r1_bio->read_disk].rdev->data_offset + r1_bio->sector;
2401 	bio_put(bio);
2402 	r1_bio->bios[r1_bio->read_disk] = NULL;
2403 
2404 	rdev = conf->mirrors[r1_bio->read_disk].rdev;
2405 	if (mddev->ro == 0
2406 	    && !test_bit(FailFast, &rdev->flags)) {
2407 		freeze_array(conf, 1);
2408 		fix_read_error(conf, r1_bio->read_disk,
2409 			       r1_bio->sector, r1_bio->sectors);
2410 		unfreeze_array(conf);
2411 	} else {
2412 		r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED;
2413 	}
2414 
2415 	rdev_dec_pending(rdev, conf->mddev);
2416 
2417 read_more:
2418 	disk = read_balance(conf, r1_bio, &max_sectors);
2419 	if (disk == -1) {
2420 		pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
2421 				    mdname(mddev), b, (unsigned long long)r1_bio->sector);
2422 		raid_end_bio_io(r1_bio);
2423 	} else {
2424 		const unsigned long do_sync
2425 			= r1_bio->master_bio->bi_opf & REQ_SYNC;
2426 		r1_bio->read_disk = disk;
2427 		bio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2428 		bio_trim(bio, r1_bio->sector - bio->bi_iter.bi_sector,
2429 			 max_sectors);
2430 		r1_bio->bios[r1_bio->read_disk] = bio;
2431 		rdev = conf->mirrors[disk].rdev;
2432 		pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %s\n",
2433 				    mdname(mddev),
2434 				    (unsigned long long)r1_bio->sector,
2435 				    bdevname(rdev->bdev, b));
2436 		bio->bi_iter.bi_sector = r1_bio->sector + rdev->data_offset;
2437 		bio->bi_bdev = rdev->bdev;
2438 		bio->bi_end_io = raid1_end_read_request;
2439 		bio_set_op_attrs(bio, REQ_OP_READ, do_sync);
2440 		if (test_bit(FailFast, &rdev->flags) &&
2441 		    test_bit(R1BIO_FailFast, &r1_bio->state))
2442 			bio->bi_opf |= MD_FAILFAST;
2443 		bio->bi_private = r1_bio;
2444 		if (max_sectors < r1_bio->sectors) {
2445 			/* Drat - have to split this up more */
2446 			struct bio *mbio = r1_bio->master_bio;
2447 			int sectors_handled = (r1_bio->sector + max_sectors
2448 					       - mbio->bi_iter.bi_sector);
2449 			r1_bio->sectors = max_sectors;
2450 			spin_lock_irq(&conf->device_lock);
2451 			if (mbio->bi_phys_segments == 0)
2452 				mbio->bi_phys_segments = 2;
2453 			else
2454 				mbio->bi_phys_segments++;
2455 			spin_unlock_irq(&conf->device_lock);
2456 			trace_block_bio_remap(bdev_get_queue(bio->bi_bdev),
2457 					      bio, bio_dev, bio_sector);
2458 			generic_make_request(bio);
2459 			bio = NULL;
2460 
2461 			r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
2462 
2463 			r1_bio->master_bio = mbio;
2464 			r1_bio->sectors = bio_sectors(mbio) - sectors_handled;
2465 			r1_bio->state = 0;
2466 			set_bit(R1BIO_ReadError, &r1_bio->state);
2467 			r1_bio->mddev = mddev;
2468 			r1_bio->sector = mbio->bi_iter.bi_sector +
2469 				sectors_handled;
2470 
2471 			goto read_more;
2472 		} else {
2473 			trace_block_bio_remap(bdev_get_queue(bio->bi_bdev),
2474 					      bio, bio_dev, bio_sector);
2475 			generic_make_request(bio);
2476 		}
2477 	}
2478 }
2479 
2480 static void raid1d(struct md_thread *thread)
2481 {
2482 	struct mddev *mddev = thread->mddev;
2483 	struct r1bio *r1_bio;
2484 	unsigned long flags;
2485 	struct r1conf *conf = mddev->private;
2486 	struct list_head *head = &conf->retry_list;
2487 	struct blk_plug plug;
2488 
2489 	md_check_recovery(mddev);
2490 
2491 	if (!list_empty_careful(&conf->bio_end_io_list) &&
2492 	    !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2493 		LIST_HEAD(tmp);
2494 		spin_lock_irqsave(&conf->device_lock, flags);
2495 		if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2496 			while (!list_empty(&conf->bio_end_io_list)) {
2497 				list_move(conf->bio_end_io_list.prev, &tmp);
2498 				conf->nr_queued--;
2499 			}
2500 		}
2501 		spin_unlock_irqrestore(&conf->device_lock, flags);
2502 		while (!list_empty(&tmp)) {
2503 			r1_bio = list_first_entry(&tmp, struct r1bio,
2504 						  retry_list);
2505 			list_del(&r1_bio->retry_list);
2506 			if (mddev->degraded)
2507 				set_bit(R1BIO_Degraded, &r1_bio->state);
2508 			if (test_bit(R1BIO_WriteError, &r1_bio->state))
2509 				close_write(r1_bio);
2510 			raid_end_bio_io(r1_bio);
2511 		}
2512 	}
2513 
2514 	blk_start_plug(&plug);
2515 	for (;;) {
2516 
2517 		flush_pending_writes(conf);
2518 
2519 		spin_lock_irqsave(&conf->device_lock, flags);
2520 		if (list_empty(head)) {
2521 			spin_unlock_irqrestore(&conf->device_lock, flags);
2522 			break;
2523 		}
2524 		r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2525 		list_del(head->prev);
2526 		conf->nr_queued--;
2527 		spin_unlock_irqrestore(&conf->device_lock, flags);
2528 
2529 		mddev = r1_bio->mddev;
2530 		conf = mddev->private;
2531 		if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2532 			if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2533 			    test_bit(R1BIO_WriteError, &r1_bio->state))
2534 				handle_sync_write_finished(conf, r1_bio);
2535 			else
2536 				sync_request_write(mddev, r1_bio);
2537 		} else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2538 			   test_bit(R1BIO_WriteError, &r1_bio->state))
2539 			handle_write_finished(conf, r1_bio);
2540 		else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2541 			handle_read_error(conf, r1_bio);
2542 		else
2543 			/* just a partial read to be scheduled from separate
2544 			 * context
2545 			 */
2546 			generic_make_request(r1_bio->bios[r1_bio->read_disk]);
2547 
2548 		cond_resched();
2549 		if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
2550 			md_check_recovery(mddev);
2551 	}
2552 	blk_finish_plug(&plug);
2553 }
2554 
2555 static int init_resync(struct r1conf *conf)
2556 {
2557 	int buffs;
2558 
2559 	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2560 	BUG_ON(conf->r1buf_pool);
2561 	conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2562 					  conf->poolinfo);
2563 	if (!conf->r1buf_pool)
2564 		return -ENOMEM;
2565 	conf->next_resync = 0;
2566 	return 0;
2567 }
2568 
2569 /*
2570  * perform a "sync" on one "block"
2571  *
2572  * We need to make sure that no normal I/O request - particularly write
2573  * requests - conflict with active sync requests.
2574  *
2575  * This is achieved by tracking pending requests and a 'barrier' concept
2576  * that can be installed to exclude normal IO requests.
2577  */
2578 
2579 static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr,
2580 				   int *skipped)
2581 {
2582 	struct r1conf *conf = mddev->private;
2583 	struct r1bio *r1_bio;
2584 	struct bio *bio;
2585 	sector_t max_sector, nr_sectors;
2586 	int disk = -1;
2587 	int i;
2588 	int wonly = -1;
2589 	int write_targets = 0, read_targets = 0;
2590 	sector_t sync_blocks;
2591 	int still_degraded = 0;
2592 	int good_sectors = RESYNC_SECTORS;
2593 	int min_bad = 0; /* number of sectors that are bad in all devices */
2594 
2595 	if (!conf->r1buf_pool)
2596 		if (init_resync(conf))
2597 			return 0;
2598 
2599 	max_sector = mddev->dev_sectors;
2600 	if (sector_nr >= max_sector) {
2601 		/* If we aborted, we need to abort the
2602 		 * sync on the 'current' bitmap chunk (there will
2603 		 * only be one in raid1 resync.
2604 		 * We can find the current addess in mddev->curr_resync
2605 		 */
2606 		if (mddev->curr_resync < max_sector) /* aborted */
2607 			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2608 						&sync_blocks, 1);
2609 		else /* completed sync */
2610 			conf->fullsync = 0;
2611 
2612 		bitmap_close_sync(mddev->bitmap);
2613 		close_sync(conf);
2614 
2615 		if (mddev_is_clustered(mddev)) {
2616 			conf->cluster_sync_low = 0;
2617 			conf->cluster_sync_high = 0;
2618 		}
2619 		return 0;
2620 	}
2621 
2622 	if (mddev->bitmap == NULL &&
2623 	    mddev->recovery_cp == MaxSector &&
2624 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2625 	    conf->fullsync == 0) {
2626 		*skipped = 1;
2627 		return max_sector - sector_nr;
2628 	}
2629 	/* before building a request, check if we can skip these blocks..
2630 	 * This call the bitmap_start_sync doesn't actually record anything
2631 	 */
2632 	if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2633 	    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2634 		/* We can skip this block, and probably several more */
2635 		*skipped = 1;
2636 		return sync_blocks;
2637 	}
2638 
2639 	/*
2640 	 * If there is non-resync activity waiting for a turn, then let it
2641 	 * though before starting on this new sync request.
2642 	 */
2643 	if (conf->nr_waiting)
2644 		schedule_timeout_uninterruptible(1);
2645 
2646 	/* we are incrementing sector_nr below. To be safe, we check against
2647 	 * sector_nr + two times RESYNC_SECTORS
2648 	 */
2649 
2650 	bitmap_cond_end_sync(mddev->bitmap, sector_nr,
2651 		mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
2652 	r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
2653 
2654 	raise_barrier(conf, sector_nr);
2655 
2656 	rcu_read_lock();
2657 	/*
2658 	 * If we get a correctably read error during resync or recovery,
2659 	 * we might want to read from a different device.  So we
2660 	 * flag all drives that could conceivably be read from for READ,
2661 	 * and any others (which will be non-In_sync devices) for WRITE.
2662 	 * If a read fails, we try reading from something else for which READ
2663 	 * is OK.
2664 	 */
2665 
2666 	r1_bio->mddev = mddev;
2667 	r1_bio->sector = sector_nr;
2668 	r1_bio->state = 0;
2669 	set_bit(R1BIO_IsSync, &r1_bio->state);
2670 
2671 	for (i = 0; i < conf->raid_disks * 2; i++) {
2672 		struct md_rdev *rdev;
2673 		bio = r1_bio->bios[i];
2674 		bio_reset(bio);
2675 
2676 		rdev = rcu_dereference(conf->mirrors[i].rdev);
2677 		if (rdev == NULL ||
2678 		    test_bit(Faulty, &rdev->flags)) {
2679 			if (i < conf->raid_disks)
2680 				still_degraded = 1;
2681 		} else if (!test_bit(In_sync, &rdev->flags)) {
2682 			bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2683 			bio->bi_end_io = end_sync_write;
2684 			write_targets ++;
2685 		} else {
2686 			/* may need to read from here */
2687 			sector_t first_bad = MaxSector;
2688 			int bad_sectors;
2689 
2690 			if (is_badblock(rdev, sector_nr, good_sectors,
2691 					&first_bad, &bad_sectors)) {
2692 				if (first_bad > sector_nr)
2693 					good_sectors = first_bad - sector_nr;
2694 				else {
2695 					bad_sectors -= (sector_nr - first_bad);
2696 					if (min_bad == 0 ||
2697 					    min_bad > bad_sectors)
2698 						min_bad = bad_sectors;
2699 				}
2700 			}
2701 			if (sector_nr < first_bad) {
2702 				if (test_bit(WriteMostly, &rdev->flags)) {
2703 					if (wonly < 0)
2704 						wonly = i;
2705 				} else {
2706 					if (disk < 0)
2707 						disk = i;
2708 				}
2709 				bio_set_op_attrs(bio, REQ_OP_READ, 0);
2710 				bio->bi_end_io = end_sync_read;
2711 				read_targets++;
2712 			} else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2713 				test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2714 				!test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2715 				/*
2716 				 * The device is suitable for reading (InSync),
2717 				 * but has bad block(s) here. Let's try to correct them,
2718 				 * if we are doing resync or repair. Otherwise, leave
2719 				 * this device alone for this sync request.
2720 				 */
2721 				bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2722 				bio->bi_end_io = end_sync_write;
2723 				write_targets++;
2724 			}
2725 		}
2726 		if (bio->bi_end_io) {
2727 			atomic_inc(&rdev->nr_pending);
2728 			bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
2729 			bio->bi_bdev = rdev->bdev;
2730 			bio->bi_private = r1_bio;
2731 			if (test_bit(FailFast, &rdev->flags))
2732 				bio->bi_opf |= MD_FAILFAST;
2733 		}
2734 	}
2735 	rcu_read_unlock();
2736 	if (disk < 0)
2737 		disk = wonly;
2738 	r1_bio->read_disk = disk;
2739 
2740 	if (read_targets == 0 && min_bad > 0) {
2741 		/* These sectors are bad on all InSync devices, so we
2742 		 * need to mark them bad on all write targets
2743 		 */
2744 		int ok = 1;
2745 		for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2746 			if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2747 				struct md_rdev *rdev = conf->mirrors[i].rdev;
2748 				ok = rdev_set_badblocks(rdev, sector_nr,
2749 							min_bad, 0
2750 					) && ok;
2751 			}
2752 		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2753 		*skipped = 1;
2754 		put_buf(r1_bio);
2755 
2756 		if (!ok) {
2757 			/* Cannot record the badblocks, so need to
2758 			 * abort the resync.
2759 			 * If there are multiple read targets, could just
2760 			 * fail the really bad ones ???
2761 			 */
2762 			conf->recovery_disabled = mddev->recovery_disabled;
2763 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2764 			return 0;
2765 		} else
2766 			return min_bad;
2767 
2768 	}
2769 	if (min_bad > 0 && min_bad < good_sectors) {
2770 		/* only resync enough to reach the next bad->good
2771 		 * transition */
2772 		good_sectors = min_bad;
2773 	}
2774 
2775 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2776 		/* extra read targets are also write targets */
2777 		write_targets += read_targets-1;
2778 
2779 	if (write_targets == 0 || read_targets == 0) {
2780 		/* There is nowhere to write, so all non-sync
2781 		 * drives must be failed - so we are finished
2782 		 */
2783 		sector_t rv;
2784 		if (min_bad > 0)
2785 			max_sector = sector_nr + min_bad;
2786 		rv = max_sector - sector_nr;
2787 		*skipped = 1;
2788 		put_buf(r1_bio);
2789 		return rv;
2790 	}
2791 
2792 	if (max_sector > mddev->resync_max)
2793 		max_sector = mddev->resync_max; /* Don't do IO beyond here */
2794 	if (max_sector > sector_nr + good_sectors)
2795 		max_sector = sector_nr + good_sectors;
2796 	nr_sectors = 0;
2797 	sync_blocks = 0;
2798 	do {
2799 		struct page *page;
2800 		int len = PAGE_SIZE;
2801 		if (sector_nr + (len>>9) > max_sector)
2802 			len = (max_sector - sector_nr) << 9;
2803 		if (len == 0)
2804 			break;
2805 		if (sync_blocks == 0) {
2806 			if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2807 					       &sync_blocks, still_degraded) &&
2808 			    !conf->fullsync &&
2809 			    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2810 				break;
2811 			if ((len >> 9) > sync_blocks)
2812 				len = sync_blocks<<9;
2813 		}
2814 
2815 		for (i = 0 ; i < conf->raid_disks * 2; i++) {
2816 			bio = r1_bio->bios[i];
2817 			if (bio->bi_end_io) {
2818 				page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
2819 				if (bio_add_page(bio, page, len, 0) == 0) {
2820 					/* stop here */
2821 					bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
2822 					while (i > 0) {
2823 						i--;
2824 						bio = r1_bio->bios[i];
2825 						if (bio->bi_end_io==NULL)
2826 							continue;
2827 						/* remove last page from this bio */
2828 						bio->bi_vcnt--;
2829 						bio->bi_iter.bi_size -= len;
2830 						bio_clear_flag(bio, BIO_SEG_VALID);
2831 					}
2832 					goto bio_full;
2833 				}
2834 			}
2835 		}
2836 		nr_sectors += len>>9;
2837 		sector_nr += len>>9;
2838 		sync_blocks -= (len>>9);
2839 	} while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
2840  bio_full:
2841 	r1_bio->sectors = nr_sectors;
2842 
2843 	if (mddev_is_clustered(mddev) &&
2844 			conf->cluster_sync_high < sector_nr + nr_sectors) {
2845 		conf->cluster_sync_low = mddev->curr_resync_completed;
2846 		conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS;
2847 		/* Send resync message */
2848 		md_cluster_ops->resync_info_update(mddev,
2849 				conf->cluster_sync_low,
2850 				conf->cluster_sync_high);
2851 	}
2852 
2853 	/* For a user-requested sync, we read all readable devices and do a
2854 	 * compare
2855 	 */
2856 	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2857 		atomic_set(&r1_bio->remaining, read_targets);
2858 		for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2859 			bio = r1_bio->bios[i];
2860 			if (bio->bi_end_io == end_sync_read) {
2861 				read_targets--;
2862 				md_sync_acct(bio->bi_bdev, nr_sectors);
2863 				if (read_targets == 1)
2864 					bio->bi_opf &= ~MD_FAILFAST;
2865 				generic_make_request(bio);
2866 			}
2867 		}
2868 	} else {
2869 		atomic_set(&r1_bio->remaining, 1);
2870 		bio = r1_bio->bios[r1_bio->read_disk];
2871 		md_sync_acct(bio->bi_bdev, nr_sectors);
2872 		if (read_targets == 1)
2873 			bio->bi_opf &= ~MD_FAILFAST;
2874 		generic_make_request(bio);
2875 
2876 	}
2877 	return nr_sectors;
2878 }
2879 
2880 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2881 {
2882 	if (sectors)
2883 		return sectors;
2884 
2885 	return mddev->dev_sectors;
2886 }
2887 
2888 static struct r1conf *setup_conf(struct mddev *mddev)
2889 {
2890 	struct r1conf *conf;
2891 	int i;
2892 	struct raid1_info *disk;
2893 	struct md_rdev *rdev;
2894 	int err = -ENOMEM;
2895 
2896 	conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2897 	if (!conf)
2898 		goto abort;
2899 
2900 	conf->mirrors = kzalloc(sizeof(struct raid1_info)
2901 				* mddev->raid_disks * 2,
2902 				 GFP_KERNEL);
2903 	if (!conf->mirrors)
2904 		goto abort;
2905 
2906 	conf->tmppage = alloc_page(GFP_KERNEL);
2907 	if (!conf->tmppage)
2908 		goto abort;
2909 
2910 	conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
2911 	if (!conf->poolinfo)
2912 		goto abort;
2913 	conf->poolinfo->raid_disks = mddev->raid_disks * 2;
2914 	conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2915 					  r1bio_pool_free,
2916 					  conf->poolinfo);
2917 	if (!conf->r1bio_pool)
2918 		goto abort;
2919 
2920 	conf->poolinfo->mddev = mddev;
2921 
2922 	err = -EINVAL;
2923 	spin_lock_init(&conf->device_lock);
2924 	rdev_for_each(rdev, mddev) {
2925 		struct request_queue *q;
2926 		int disk_idx = rdev->raid_disk;
2927 		if (disk_idx >= mddev->raid_disks
2928 		    || disk_idx < 0)
2929 			continue;
2930 		if (test_bit(Replacement, &rdev->flags))
2931 			disk = conf->mirrors + mddev->raid_disks + disk_idx;
2932 		else
2933 			disk = conf->mirrors + disk_idx;
2934 
2935 		if (disk->rdev)
2936 			goto abort;
2937 		disk->rdev = rdev;
2938 		q = bdev_get_queue(rdev->bdev);
2939 
2940 		disk->head_position = 0;
2941 		disk->seq_start = MaxSector;
2942 	}
2943 	conf->raid_disks = mddev->raid_disks;
2944 	conf->mddev = mddev;
2945 	INIT_LIST_HEAD(&conf->retry_list);
2946 	INIT_LIST_HEAD(&conf->bio_end_io_list);
2947 
2948 	spin_lock_init(&conf->resync_lock);
2949 	init_waitqueue_head(&conf->wait_barrier);
2950 
2951 	bio_list_init(&conf->pending_bio_list);
2952 	conf->pending_count = 0;
2953 	conf->recovery_disabled = mddev->recovery_disabled - 1;
2954 
2955 	conf->start_next_window = MaxSector;
2956 	conf->current_window_requests = conf->next_window_requests = 0;
2957 
2958 	err = -EIO;
2959 	for (i = 0; i < conf->raid_disks * 2; i++) {
2960 
2961 		disk = conf->mirrors + i;
2962 
2963 		if (i < conf->raid_disks &&
2964 		    disk[conf->raid_disks].rdev) {
2965 			/* This slot has a replacement. */
2966 			if (!disk->rdev) {
2967 				/* No original, just make the replacement
2968 				 * a recovering spare
2969 				 */
2970 				disk->rdev =
2971 					disk[conf->raid_disks].rdev;
2972 				disk[conf->raid_disks].rdev = NULL;
2973 			} else if (!test_bit(In_sync, &disk->rdev->flags))
2974 				/* Original is not in_sync - bad */
2975 				goto abort;
2976 		}
2977 
2978 		if (!disk->rdev ||
2979 		    !test_bit(In_sync, &disk->rdev->flags)) {
2980 			disk->head_position = 0;
2981 			if (disk->rdev &&
2982 			    (disk->rdev->saved_raid_disk < 0))
2983 				conf->fullsync = 1;
2984 		}
2985 	}
2986 
2987 	err = -ENOMEM;
2988 	conf->thread = md_register_thread(raid1d, mddev, "raid1");
2989 	if (!conf->thread)
2990 		goto abort;
2991 
2992 	return conf;
2993 
2994  abort:
2995 	if (conf) {
2996 		mempool_destroy(conf->r1bio_pool);
2997 		kfree(conf->mirrors);
2998 		safe_put_page(conf->tmppage);
2999 		kfree(conf->poolinfo);
3000 		kfree(conf);
3001 	}
3002 	return ERR_PTR(err);
3003 }
3004 
3005 static void raid1_free(struct mddev *mddev, void *priv);
3006 static int raid1_run(struct mddev *mddev)
3007 {
3008 	struct r1conf *conf;
3009 	int i;
3010 	struct md_rdev *rdev;
3011 	int ret;
3012 	bool discard_supported = false;
3013 
3014 	if (mddev->level != 1) {
3015 		pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n",
3016 			mdname(mddev), mddev->level);
3017 		return -EIO;
3018 	}
3019 	if (mddev->reshape_position != MaxSector) {
3020 		pr_warn("md/raid1:%s: reshape_position set but not supported\n",
3021 			mdname(mddev));
3022 		return -EIO;
3023 	}
3024 	/*
3025 	 * copy the already verified devices into our private RAID1
3026 	 * bookkeeping area. [whatever we allocate in run(),
3027 	 * should be freed in raid1_free()]
3028 	 */
3029 	if (mddev->private == NULL)
3030 		conf = setup_conf(mddev);
3031 	else
3032 		conf = mddev->private;
3033 
3034 	if (IS_ERR(conf))
3035 		return PTR_ERR(conf);
3036 
3037 	if (mddev->queue)
3038 		blk_queue_max_write_same_sectors(mddev->queue, 0);
3039 
3040 	rdev_for_each(rdev, mddev) {
3041 		if (!mddev->gendisk)
3042 			continue;
3043 		disk_stack_limits(mddev->gendisk, rdev->bdev,
3044 				  rdev->data_offset << 9);
3045 		if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3046 			discard_supported = true;
3047 	}
3048 
3049 	mddev->degraded = 0;
3050 	for (i=0; i < conf->raid_disks; i++)
3051 		if (conf->mirrors[i].rdev == NULL ||
3052 		    !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
3053 		    test_bit(Faulty, &conf->mirrors[i].rdev->flags))
3054 			mddev->degraded++;
3055 
3056 	if (conf->raid_disks - mddev->degraded == 1)
3057 		mddev->recovery_cp = MaxSector;
3058 
3059 	if (mddev->recovery_cp != MaxSector)
3060 		pr_info("md/raid1:%s: not clean -- starting background reconstruction\n",
3061 			mdname(mddev));
3062 	pr_info("md/raid1:%s: active with %d out of %d mirrors\n",
3063 		mdname(mddev), mddev->raid_disks - mddev->degraded,
3064 		mddev->raid_disks);
3065 
3066 	/*
3067 	 * Ok, everything is just fine now
3068 	 */
3069 	mddev->thread = conf->thread;
3070 	conf->thread = NULL;
3071 	mddev->private = conf;
3072 	set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
3073 
3074 	md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
3075 
3076 	if (mddev->queue) {
3077 		if (discard_supported)
3078 			queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
3079 						mddev->queue);
3080 		else
3081 			queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
3082 						  mddev->queue);
3083 	}
3084 
3085 	ret =  md_integrity_register(mddev);
3086 	if (ret) {
3087 		md_unregister_thread(&mddev->thread);
3088 		raid1_free(mddev, conf);
3089 	}
3090 	return ret;
3091 }
3092 
3093 static void raid1_free(struct mddev *mddev, void *priv)
3094 {
3095 	struct r1conf *conf = priv;
3096 
3097 	mempool_destroy(conf->r1bio_pool);
3098 	kfree(conf->mirrors);
3099 	safe_put_page(conf->tmppage);
3100 	kfree(conf->poolinfo);
3101 	kfree(conf);
3102 }
3103 
3104 static int raid1_resize(struct mddev *mddev, sector_t sectors)
3105 {
3106 	/* no resync is happening, and there is enough space
3107 	 * on all devices, so we can resize.
3108 	 * We need to make sure resync covers any new space.
3109 	 * If the array is shrinking we should possibly wait until
3110 	 * any io in the removed space completes, but it hardly seems
3111 	 * worth it.
3112 	 */
3113 	sector_t newsize = raid1_size(mddev, sectors, 0);
3114 	if (mddev->external_size &&
3115 	    mddev->array_sectors > newsize)
3116 		return -EINVAL;
3117 	if (mddev->bitmap) {
3118 		int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0);
3119 		if (ret)
3120 			return ret;
3121 	}
3122 	md_set_array_sectors(mddev, newsize);
3123 	set_capacity(mddev->gendisk, mddev->array_sectors);
3124 	revalidate_disk(mddev->gendisk);
3125 	if (sectors > mddev->dev_sectors &&
3126 	    mddev->recovery_cp > mddev->dev_sectors) {
3127 		mddev->recovery_cp = mddev->dev_sectors;
3128 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3129 	}
3130 	mddev->dev_sectors = sectors;
3131 	mddev->resync_max_sectors = sectors;
3132 	return 0;
3133 }
3134 
3135 static int raid1_reshape(struct mddev *mddev)
3136 {
3137 	/* We need to:
3138 	 * 1/ resize the r1bio_pool
3139 	 * 2/ resize conf->mirrors
3140 	 *
3141 	 * We allocate a new r1bio_pool if we can.
3142 	 * Then raise a device barrier and wait until all IO stops.
3143 	 * Then resize conf->mirrors and swap in the new r1bio pool.
3144 	 *
3145 	 * At the same time, we "pack" the devices so that all the missing
3146 	 * devices have the higher raid_disk numbers.
3147 	 */
3148 	mempool_t *newpool, *oldpool;
3149 	struct pool_info *newpoolinfo;
3150 	struct raid1_info *newmirrors;
3151 	struct r1conf *conf = mddev->private;
3152 	int cnt, raid_disks;
3153 	unsigned long flags;
3154 	int d, d2, err;
3155 
3156 	/* Cannot change chunk_size, layout, or level */
3157 	if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3158 	    mddev->layout != mddev->new_layout ||
3159 	    mddev->level != mddev->new_level) {
3160 		mddev->new_chunk_sectors = mddev->chunk_sectors;
3161 		mddev->new_layout = mddev->layout;
3162 		mddev->new_level = mddev->level;
3163 		return -EINVAL;
3164 	}
3165 
3166 	if (!mddev_is_clustered(mddev)) {
3167 		err = md_allow_write(mddev);
3168 		if (err)
3169 			return err;
3170 	}
3171 
3172 	raid_disks = mddev->raid_disks + mddev->delta_disks;
3173 
3174 	if (raid_disks < conf->raid_disks) {
3175 		cnt=0;
3176 		for (d= 0; d < conf->raid_disks; d++)
3177 			if (conf->mirrors[d].rdev)
3178 				cnt++;
3179 		if (cnt > raid_disks)
3180 			return -EBUSY;
3181 	}
3182 
3183 	newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3184 	if (!newpoolinfo)
3185 		return -ENOMEM;
3186 	newpoolinfo->mddev = mddev;
3187 	newpoolinfo->raid_disks = raid_disks * 2;
3188 
3189 	newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
3190 				 r1bio_pool_free, newpoolinfo);
3191 	if (!newpool) {
3192 		kfree(newpoolinfo);
3193 		return -ENOMEM;
3194 	}
3195 	newmirrors = kzalloc(sizeof(struct raid1_info) * raid_disks * 2,
3196 			     GFP_KERNEL);
3197 	if (!newmirrors) {
3198 		kfree(newpoolinfo);
3199 		mempool_destroy(newpool);
3200 		return -ENOMEM;
3201 	}
3202 
3203 	freeze_array(conf, 0);
3204 
3205 	/* ok, everything is stopped */
3206 	oldpool = conf->r1bio_pool;
3207 	conf->r1bio_pool = newpool;
3208 
3209 	for (d = d2 = 0; d < conf->raid_disks; d++) {
3210 		struct md_rdev *rdev = conf->mirrors[d].rdev;
3211 		if (rdev && rdev->raid_disk != d2) {
3212 			sysfs_unlink_rdev(mddev, rdev);
3213 			rdev->raid_disk = d2;
3214 			sysfs_unlink_rdev(mddev, rdev);
3215 			if (sysfs_link_rdev(mddev, rdev))
3216 				pr_warn("md/raid1:%s: cannot register rd%d\n",
3217 					mdname(mddev), rdev->raid_disk);
3218 		}
3219 		if (rdev)
3220 			newmirrors[d2++].rdev = rdev;
3221 	}
3222 	kfree(conf->mirrors);
3223 	conf->mirrors = newmirrors;
3224 	kfree(conf->poolinfo);
3225 	conf->poolinfo = newpoolinfo;
3226 
3227 	spin_lock_irqsave(&conf->device_lock, flags);
3228 	mddev->degraded += (raid_disks - conf->raid_disks);
3229 	spin_unlock_irqrestore(&conf->device_lock, flags);
3230 	conf->raid_disks = mddev->raid_disks = raid_disks;
3231 	mddev->delta_disks = 0;
3232 
3233 	unfreeze_array(conf);
3234 
3235 	set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3236 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3237 	md_wakeup_thread(mddev->thread);
3238 
3239 	mempool_destroy(oldpool);
3240 	return 0;
3241 }
3242 
3243 static void raid1_quiesce(struct mddev *mddev, int state)
3244 {
3245 	struct r1conf *conf = mddev->private;
3246 
3247 	switch(state) {
3248 	case 2: /* wake for suspend */
3249 		wake_up(&conf->wait_barrier);
3250 		break;
3251 	case 1:
3252 		freeze_array(conf, 0);
3253 		break;
3254 	case 0:
3255 		unfreeze_array(conf);
3256 		break;
3257 	}
3258 }
3259 
3260 static void *raid1_takeover(struct mddev *mddev)
3261 {
3262 	/* raid1 can take over:
3263 	 *  raid5 with 2 devices, any layout or chunk size
3264 	 */
3265 	if (mddev->level == 5 && mddev->raid_disks == 2) {
3266 		struct r1conf *conf;
3267 		mddev->new_level = 1;
3268 		mddev->new_layout = 0;
3269 		mddev->new_chunk_sectors = 0;
3270 		conf = setup_conf(mddev);
3271 		if (!IS_ERR(conf)) {
3272 			/* Array must appear to be quiesced */
3273 			conf->array_frozen = 1;
3274 			mddev_clear_unsupported_flags(mddev,
3275 				UNSUPPORTED_MDDEV_FLAGS);
3276 		}
3277 		return conf;
3278 	}
3279 	return ERR_PTR(-EINVAL);
3280 }
3281 
3282 static struct md_personality raid1_personality =
3283 {
3284 	.name		= "raid1",
3285 	.level		= 1,
3286 	.owner		= THIS_MODULE,
3287 	.make_request	= raid1_make_request,
3288 	.run		= raid1_run,
3289 	.free		= raid1_free,
3290 	.status		= raid1_status,
3291 	.error_handler	= raid1_error,
3292 	.hot_add_disk	= raid1_add_disk,
3293 	.hot_remove_disk= raid1_remove_disk,
3294 	.spare_active	= raid1_spare_active,
3295 	.sync_request	= raid1_sync_request,
3296 	.resize		= raid1_resize,
3297 	.size		= raid1_size,
3298 	.check_reshape	= raid1_reshape,
3299 	.quiesce	= raid1_quiesce,
3300 	.takeover	= raid1_takeover,
3301 	.congested	= raid1_congested,
3302 };
3303 
3304 static int __init raid_init(void)
3305 {
3306 	return register_md_personality(&raid1_personality);
3307 }
3308 
3309 static void raid_exit(void)
3310 {
3311 	unregister_md_personality(&raid1_personality);
3312 }
3313 
3314 module_init(raid_init);
3315 module_exit(raid_exit);
3316 MODULE_LICENSE("GPL");
3317 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3318 MODULE_ALIAS("md-personality-3"); /* RAID1 */
3319 MODULE_ALIAS("md-raid1");
3320 MODULE_ALIAS("md-level-1");
3321 
3322 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
3323