xref: /openbmc/linux/drivers/md/raid1.c (revision 8db70d3d)
1 /*
2  * raid1.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5  *
6  * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7  *
8  * RAID-1 management functions.
9  *
10  * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11  *
12  * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
13  * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14  *
15  * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16  * bitmapped intelligence in resync:
17  *
18  *      - bitmap marked during normal i/o
19  *      - bitmap used to skip nondirty blocks during sync
20  *
21  * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22  * - persistent bitmap code
23  *
24  * This program is free software; you can redistribute it and/or modify
25  * it under the terms of the GNU General Public License as published by
26  * the Free Software Foundation; either version 2, or (at your option)
27  * any later version.
28  *
29  * You should have received a copy of the GNU General Public License
30  * (for example /usr/src/linux/COPYING); if not, write to the Free
31  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32  */
33 
34 #include <linux/delay.h>
35 #include <linux/blkdev.h>
36 #include <linux/seq_file.h>
37 #include "md.h"
38 #include "dm-bio-list.h"
39 #include "raid1.h"
40 #include "bitmap.h"
41 
42 #define DEBUG 0
43 #if DEBUG
44 #define PRINTK(x...) printk(x)
45 #else
46 #define PRINTK(x...)
47 #endif
48 
49 /*
50  * Number of guaranteed r1bios in case of extreme VM load:
51  */
52 #define	NR_RAID1_BIOS 256
53 
54 
55 static void unplug_slaves(mddev_t *mddev);
56 
57 static void allow_barrier(conf_t *conf);
58 static void lower_barrier(conf_t *conf);
59 
60 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
61 {
62 	struct pool_info *pi = data;
63 	r1bio_t *r1_bio;
64 	int size = offsetof(r1bio_t, bios[pi->raid_disks]);
65 
66 	/* allocate a r1bio with room for raid_disks entries in the bios array */
67 	r1_bio = kzalloc(size, gfp_flags);
68 	if (!r1_bio)
69 		unplug_slaves(pi->mddev);
70 
71 	return r1_bio;
72 }
73 
74 static void r1bio_pool_free(void *r1_bio, void *data)
75 {
76 	kfree(r1_bio);
77 }
78 
79 #define RESYNC_BLOCK_SIZE (64*1024)
80 //#define RESYNC_BLOCK_SIZE PAGE_SIZE
81 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
82 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
83 #define RESYNC_WINDOW (2048*1024)
84 
85 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
86 {
87 	struct pool_info *pi = data;
88 	struct page *page;
89 	r1bio_t *r1_bio;
90 	struct bio *bio;
91 	int i, j;
92 
93 	r1_bio = r1bio_pool_alloc(gfp_flags, pi);
94 	if (!r1_bio) {
95 		unplug_slaves(pi->mddev);
96 		return NULL;
97 	}
98 
99 	/*
100 	 * Allocate bios : 1 for reading, n-1 for writing
101 	 */
102 	for (j = pi->raid_disks ; j-- ; ) {
103 		bio = bio_alloc(gfp_flags, RESYNC_PAGES);
104 		if (!bio)
105 			goto out_free_bio;
106 		r1_bio->bios[j] = bio;
107 	}
108 	/*
109 	 * Allocate RESYNC_PAGES data pages and attach them to
110 	 * the first bio.
111 	 * If this is a user-requested check/repair, allocate
112 	 * RESYNC_PAGES for each bio.
113 	 */
114 	if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
115 		j = pi->raid_disks;
116 	else
117 		j = 1;
118 	while(j--) {
119 		bio = r1_bio->bios[j];
120 		for (i = 0; i < RESYNC_PAGES; i++) {
121 			page = alloc_page(gfp_flags);
122 			if (unlikely(!page))
123 				goto out_free_pages;
124 
125 			bio->bi_io_vec[i].bv_page = page;
126 			bio->bi_vcnt = i+1;
127 		}
128 	}
129 	/* If not user-requests, copy the page pointers to all bios */
130 	if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
131 		for (i=0; i<RESYNC_PAGES ; i++)
132 			for (j=1; j<pi->raid_disks; j++)
133 				r1_bio->bios[j]->bi_io_vec[i].bv_page =
134 					r1_bio->bios[0]->bi_io_vec[i].bv_page;
135 	}
136 
137 	r1_bio->master_bio = NULL;
138 
139 	return r1_bio;
140 
141 out_free_pages:
142 	for (j=0 ; j < pi->raid_disks; j++)
143 		for (i=0; i < r1_bio->bios[j]->bi_vcnt ; i++)
144 			put_page(r1_bio->bios[j]->bi_io_vec[i].bv_page);
145 	j = -1;
146 out_free_bio:
147 	while ( ++j < pi->raid_disks )
148 		bio_put(r1_bio->bios[j]);
149 	r1bio_pool_free(r1_bio, data);
150 	return NULL;
151 }
152 
153 static void r1buf_pool_free(void *__r1_bio, void *data)
154 {
155 	struct pool_info *pi = data;
156 	int i,j;
157 	r1bio_t *r1bio = __r1_bio;
158 
159 	for (i = 0; i < RESYNC_PAGES; i++)
160 		for (j = pi->raid_disks; j-- ;) {
161 			if (j == 0 ||
162 			    r1bio->bios[j]->bi_io_vec[i].bv_page !=
163 			    r1bio->bios[0]->bi_io_vec[i].bv_page)
164 				safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
165 		}
166 	for (i=0 ; i < pi->raid_disks; i++)
167 		bio_put(r1bio->bios[i]);
168 
169 	r1bio_pool_free(r1bio, data);
170 }
171 
172 static void put_all_bios(conf_t *conf, r1bio_t *r1_bio)
173 {
174 	int i;
175 
176 	for (i = 0; i < conf->raid_disks; i++) {
177 		struct bio **bio = r1_bio->bios + i;
178 		if (*bio && *bio != IO_BLOCKED)
179 			bio_put(*bio);
180 		*bio = NULL;
181 	}
182 }
183 
184 static void free_r1bio(r1bio_t *r1_bio)
185 {
186 	conf_t *conf = mddev_to_conf(r1_bio->mddev);
187 
188 	/*
189 	 * Wake up any possible resync thread that waits for the device
190 	 * to go idle.
191 	 */
192 	allow_barrier(conf);
193 
194 	put_all_bios(conf, r1_bio);
195 	mempool_free(r1_bio, conf->r1bio_pool);
196 }
197 
198 static void put_buf(r1bio_t *r1_bio)
199 {
200 	conf_t *conf = mddev_to_conf(r1_bio->mddev);
201 	int i;
202 
203 	for (i=0; i<conf->raid_disks; i++) {
204 		struct bio *bio = r1_bio->bios[i];
205 		if (bio->bi_end_io)
206 			rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
207 	}
208 
209 	mempool_free(r1_bio, conf->r1buf_pool);
210 
211 	lower_barrier(conf);
212 }
213 
214 static void reschedule_retry(r1bio_t *r1_bio)
215 {
216 	unsigned long flags;
217 	mddev_t *mddev = r1_bio->mddev;
218 	conf_t *conf = mddev_to_conf(mddev);
219 
220 	spin_lock_irqsave(&conf->device_lock, flags);
221 	list_add(&r1_bio->retry_list, &conf->retry_list);
222 	conf->nr_queued ++;
223 	spin_unlock_irqrestore(&conf->device_lock, flags);
224 
225 	wake_up(&conf->wait_barrier);
226 	md_wakeup_thread(mddev->thread);
227 }
228 
229 /*
230  * raid_end_bio_io() is called when we have finished servicing a mirrored
231  * operation and are ready to return a success/failure code to the buffer
232  * cache layer.
233  */
234 static void raid_end_bio_io(r1bio_t *r1_bio)
235 {
236 	struct bio *bio = r1_bio->master_bio;
237 
238 	/* if nobody has done the final endio yet, do it now */
239 	if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
240 		PRINTK(KERN_DEBUG "raid1: sync end %s on sectors %llu-%llu\n",
241 			(bio_data_dir(bio) == WRITE) ? "write" : "read",
242 			(unsigned long long) bio->bi_sector,
243 			(unsigned long long) bio->bi_sector +
244 				(bio->bi_size >> 9) - 1);
245 
246 		bio_endio(bio,
247 			test_bit(R1BIO_Uptodate, &r1_bio->state) ? 0 : -EIO);
248 	}
249 	free_r1bio(r1_bio);
250 }
251 
252 /*
253  * Update disk head position estimator based on IRQ completion info.
254  */
255 static inline void update_head_pos(int disk, r1bio_t *r1_bio)
256 {
257 	conf_t *conf = mddev_to_conf(r1_bio->mddev);
258 
259 	conf->mirrors[disk].head_position =
260 		r1_bio->sector + (r1_bio->sectors);
261 }
262 
263 static void raid1_end_read_request(struct bio *bio, int error)
264 {
265 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
266 	r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
267 	int mirror;
268 	conf_t *conf = mddev_to_conf(r1_bio->mddev);
269 
270 	mirror = r1_bio->read_disk;
271 	/*
272 	 * this branch is our 'one mirror IO has finished' event handler:
273 	 */
274 	update_head_pos(mirror, r1_bio);
275 
276 	if (uptodate)
277 		set_bit(R1BIO_Uptodate, &r1_bio->state);
278 	else {
279 		/* If all other devices have failed, we want to return
280 		 * the error upwards rather than fail the last device.
281 		 * Here we redefine "uptodate" to mean "Don't want to retry"
282 		 */
283 		unsigned long flags;
284 		spin_lock_irqsave(&conf->device_lock, flags);
285 		if (r1_bio->mddev->degraded == conf->raid_disks ||
286 		    (r1_bio->mddev->degraded == conf->raid_disks-1 &&
287 		     !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags)))
288 			uptodate = 1;
289 		spin_unlock_irqrestore(&conf->device_lock, flags);
290 	}
291 
292 	if (uptodate)
293 		raid_end_bio_io(r1_bio);
294 	else {
295 		/*
296 		 * oops, read error:
297 		 */
298 		char b[BDEVNAME_SIZE];
299 		if (printk_ratelimit())
300 			printk(KERN_ERR "raid1: %s: rescheduling sector %llu\n",
301 			       bdevname(conf->mirrors[mirror].rdev->bdev,b), (unsigned long long)r1_bio->sector);
302 		reschedule_retry(r1_bio);
303 	}
304 
305 	rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
306 }
307 
308 static void raid1_end_write_request(struct bio *bio, int error)
309 {
310 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
311 	r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
312 	int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
313 	conf_t *conf = mddev_to_conf(r1_bio->mddev);
314 	struct bio *to_put = NULL;
315 
316 
317 	for (mirror = 0; mirror < conf->raid_disks; mirror++)
318 		if (r1_bio->bios[mirror] == bio)
319 			break;
320 
321 	if (error == -EOPNOTSUPP && test_bit(R1BIO_Barrier, &r1_bio->state)) {
322 		set_bit(BarriersNotsupp, &conf->mirrors[mirror].rdev->flags);
323 		set_bit(R1BIO_BarrierRetry, &r1_bio->state);
324 		r1_bio->mddev->barriers_work = 0;
325 		/* Don't rdev_dec_pending in this branch - keep it for the retry */
326 	} else {
327 		/*
328 		 * this branch is our 'one mirror IO has finished' event handler:
329 		 */
330 		r1_bio->bios[mirror] = NULL;
331 		to_put = bio;
332 		if (!uptodate) {
333 			md_error(r1_bio->mddev, conf->mirrors[mirror].rdev);
334 			/* an I/O failed, we can't clear the bitmap */
335 			set_bit(R1BIO_Degraded, &r1_bio->state);
336 		} else
337 			/*
338 			 * Set R1BIO_Uptodate in our master bio, so that
339 			 * we will return a good error code for to the higher
340 			 * levels even if IO on some other mirrored buffer fails.
341 			 *
342 			 * The 'master' represents the composite IO operation to
343 			 * user-side. So if something waits for IO, then it will
344 			 * wait for the 'master' bio.
345 			 */
346 			set_bit(R1BIO_Uptodate, &r1_bio->state);
347 
348 		update_head_pos(mirror, r1_bio);
349 
350 		if (behind) {
351 			if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
352 				atomic_dec(&r1_bio->behind_remaining);
353 
354 			/* In behind mode, we ACK the master bio once the I/O has safely
355 			 * reached all non-writemostly disks. Setting the Returned bit
356 			 * ensures that this gets done only once -- we don't ever want to
357 			 * return -EIO here, instead we'll wait */
358 
359 			if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
360 			    test_bit(R1BIO_Uptodate, &r1_bio->state)) {
361 				/* Maybe we can return now */
362 				if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
363 					struct bio *mbio = r1_bio->master_bio;
364 					PRINTK(KERN_DEBUG "raid1: behind end write sectors %llu-%llu\n",
365 					       (unsigned long long) mbio->bi_sector,
366 					       (unsigned long long) mbio->bi_sector +
367 					       (mbio->bi_size >> 9) - 1);
368 					bio_endio(mbio, 0);
369 				}
370 			}
371 		}
372 		rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
373 	}
374 	/*
375 	 *
376 	 * Let's see if all mirrored write operations have finished
377 	 * already.
378 	 */
379 	if (atomic_dec_and_test(&r1_bio->remaining)) {
380 		if (test_bit(R1BIO_BarrierRetry, &r1_bio->state))
381 			reschedule_retry(r1_bio);
382 		else {
383 			/* it really is the end of this request */
384 			if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
385 				/* free extra copy of the data pages */
386 				int i = bio->bi_vcnt;
387 				while (i--)
388 					safe_put_page(bio->bi_io_vec[i].bv_page);
389 			}
390 			/* clear the bitmap if all writes complete successfully */
391 			bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
392 					r1_bio->sectors,
393 					!test_bit(R1BIO_Degraded, &r1_bio->state),
394 					behind);
395 			md_write_end(r1_bio->mddev);
396 			raid_end_bio_io(r1_bio);
397 		}
398 	}
399 
400 	if (to_put)
401 		bio_put(to_put);
402 }
403 
404 
405 /*
406  * This routine returns the disk from which the requested read should
407  * be done. There is a per-array 'next expected sequential IO' sector
408  * number - if this matches on the next IO then we use the last disk.
409  * There is also a per-disk 'last know head position' sector that is
410  * maintained from IRQ contexts, both the normal and the resync IO
411  * completion handlers update this position correctly. If there is no
412  * perfect sequential match then we pick the disk whose head is closest.
413  *
414  * If there are 2 mirrors in the same 2 devices, performance degrades
415  * because position is mirror, not device based.
416  *
417  * The rdev for the device selected will have nr_pending incremented.
418  */
419 static int read_balance(conf_t *conf, r1bio_t *r1_bio)
420 {
421 	const unsigned long this_sector = r1_bio->sector;
422 	int new_disk = conf->last_used, disk = new_disk;
423 	int wonly_disk = -1;
424 	const int sectors = r1_bio->sectors;
425 	sector_t new_distance, current_distance;
426 	mdk_rdev_t *rdev;
427 
428 	rcu_read_lock();
429 	/*
430 	 * Check if we can balance. We can balance on the whole
431 	 * device if no resync is going on, or below the resync window.
432 	 * We take the first readable disk when above the resync window.
433 	 */
434  retry:
435 	if (conf->mddev->recovery_cp < MaxSector &&
436 	    (this_sector + sectors >= conf->next_resync)) {
437 		/* Choose the first operation device, for consistancy */
438 		new_disk = 0;
439 
440 		for (rdev = rcu_dereference(conf->mirrors[new_disk].rdev);
441 		     r1_bio->bios[new_disk] == IO_BLOCKED ||
442 		     !rdev || !test_bit(In_sync, &rdev->flags)
443 			     || test_bit(WriteMostly, &rdev->flags);
444 		     rdev = rcu_dereference(conf->mirrors[++new_disk].rdev)) {
445 
446 			if (rdev && test_bit(In_sync, &rdev->flags) &&
447 				r1_bio->bios[new_disk] != IO_BLOCKED)
448 				wonly_disk = new_disk;
449 
450 			if (new_disk == conf->raid_disks - 1) {
451 				new_disk = wonly_disk;
452 				break;
453 			}
454 		}
455 		goto rb_out;
456 	}
457 
458 
459 	/* make sure the disk is operational */
460 	for (rdev = rcu_dereference(conf->mirrors[new_disk].rdev);
461 	     r1_bio->bios[new_disk] == IO_BLOCKED ||
462 	     !rdev || !test_bit(In_sync, &rdev->flags) ||
463 		     test_bit(WriteMostly, &rdev->flags);
464 	     rdev = rcu_dereference(conf->mirrors[new_disk].rdev)) {
465 
466 		if (rdev && test_bit(In_sync, &rdev->flags) &&
467 		    r1_bio->bios[new_disk] != IO_BLOCKED)
468 			wonly_disk = new_disk;
469 
470 		if (new_disk <= 0)
471 			new_disk = conf->raid_disks;
472 		new_disk--;
473 		if (new_disk == disk) {
474 			new_disk = wonly_disk;
475 			break;
476 		}
477 	}
478 
479 	if (new_disk < 0)
480 		goto rb_out;
481 
482 	disk = new_disk;
483 	/* now disk == new_disk == starting point for search */
484 
485 	/*
486 	 * Don't change to another disk for sequential reads:
487 	 */
488 	if (conf->next_seq_sect == this_sector)
489 		goto rb_out;
490 	if (this_sector == conf->mirrors[new_disk].head_position)
491 		goto rb_out;
492 
493 	current_distance = abs(this_sector - conf->mirrors[disk].head_position);
494 
495 	/* Find the disk whose head is closest */
496 
497 	do {
498 		if (disk <= 0)
499 			disk = conf->raid_disks;
500 		disk--;
501 
502 		rdev = rcu_dereference(conf->mirrors[disk].rdev);
503 
504 		if (!rdev || r1_bio->bios[disk] == IO_BLOCKED ||
505 		    !test_bit(In_sync, &rdev->flags) ||
506 		    test_bit(WriteMostly, &rdev->flags))
507 			continue;
508 
509 		if (!atomic_read(&rdev->nr_pending)) {
510 			new_disk = disk;
511 			break;
512 		}
513 		new_distance = abs(this_sector - conf->mirrors[disk].head_position);
514 		if (new_distance < current_distance) {
515 			current_distance = new_distance;
516 			new_disk = disk;
517 		}
518 	} while (disk != conf->last_used);
519 
520  rb_out:
521 
522 
523 	if (new_disk >= 0) {
524 		rdev = rcu_dereference(conf->mirrors[new_disk].rdev);
525 		if (!rdev)
526 			goto retry;
527 		atomic_inc(&rdev->nr_pending);
528 		if (!test_bit(In_sync, &rdev->flags)) {
529 			/* cannot risk returning a device that failed
530 			 * before we inc'ed nr_pending
531 			 */
532 			rdev_dec_pending(rdev, conf->mddev);
533 			goto retry;
534 		}
535 		conf->next_seq_sect = this_sector + sectors;
536 		conf->last_used = new_disk;
537 	}
538 	rcu_read_unlock();
539 
540 	return new_disk;
541 }
542 
543 static void unplug_slaves(mddev_t *mddev)
544 {
545 	conf_t *conf = mddev_to_conf(mddev);
546 	int i;
547 
548 	rcu_read_lock();
549 	for (i=0; i<mddev->raid_disks; i++) {
550 		mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
551 		if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
552 			struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
553 
554 			atomic_inc(&rdev->nr_pending);
555 			rcu_read_unlock();
556 
557 			blk_unplug(r_queue);
558 
559 			rdev_dec_pending(rdev, mddev);
560 			rcu_read_lock();
561 		}
562 	}
563 	rcu_read_unlock();
564 }
565 
566 static void raid1_unplug(struct request_queue *q)
567 {
568 	mddev_t *mddev = q->queuedata;
569 
570 	unplug_slaves(mddev);
571 	md_wakeup_thread(mddev->thread);
572 }
573 
574 static int raid1_congested(void *data, int bits)
575 {
576 	mddev_t *mddev = data;
577 	conf_t *conf = mddev_to_conf(mddev);
578 	int i, ret = 0;
579 
580 	rcu_read_lock();
581 	for (i = 0; i < mddev->raid_disks; i++) {
582 		mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
583 		if (rdev && !test_bit(Faulty, &rdev->flags)) {
584 			struct request_queue *q = bdev_get_queue(rdev->bdev);
585 
586 			/* Note the '|| 1' - when read_balance prefers
587 			 * non-congested targets, it can be removed
588 			 */
589 			if ((bits & (1<<BDI_async_congested)) || 1)
590 				ret |= bdi_congested(&q->backing_dev_info, bits);
591 			else
592 				ret &= bdi_congested(&q->backing_dev_info, bits);
593 		}
594 	}
595 	rcu_read_unlock();
596 	return ret;
597 }
598 
599 
600 static int flush_pending_writes(conf_t *conf)
601 {
602 	/* Any writes that have been queued but are awaiting
603 	 * bitmap updates get flushed here.
604 	 * We return 1 if any requests were actually submitted.
605 	 */
606 	int rv = 0;
607 
608 	spin_lock_irq(&conf->device_lock);
609 
610 	if (conf->pending_bio_list.head) {
611 		struct bio *bio;
612 		bio = bio_list_get(&conf->pending_bio_list);
613 		blk_remove_plug(conf->mddev->queue);
614 		spin_unlock_irq(&conf->device_lock);
615 		/* flush any pending bitmap writes to
616 		 * disk before proceeding w/ I/O */
617 		bitmap_unplug(conf->mddev->bitmap);
618 
619 		while (bio) { /* submit pending writes */
620 			struct bio *next = bio->bi_next;
621 			bio->bi_next = NULL;
622 			generic_make_request(bio);
623 			bio = next;
624 		}
625 		rv = 1;
626 	} else
627 		spin_unlock_irq(&conf->device_lock);
628 	return rv;
629 }
630 
631 /* Barriers....
632  * Sometimes we need to suspend IO while we do something else,
633  * either some resync/recovery, or reconfigure the array.
634  * To do this we raise a 'barrier'.
635  * The 'barrier' is a counter that can be raised multiple times
636  * to count how many activities are happening which preclude
637  * normal IO.
638  * We can only raise the barrier if there is no pending IO.
639  * i.e. if nr_pending == 0.
640  * We choose only to raise the barrier if no-one is waiting for the
641  * barrier to go down.  This means that as soon as an IO request
642  * is ready, no other operations which require a barrier will start
643  * until the IO request has had a chance.
644  *
645  * So: regular IO calls 'wait_barrier'.  When that returns there
646  *    is no backgroup IO happening,  It must arrange to call
647  *    allow_barrier when it has finished its IO.
648  * backgroup IO calls must call raise_barrier.  Once that returns
649  *    there is no normal IO happeing.  It must arrange to call
650  *    lower_barrier when the particular background IO completes.
651  */
652 #define RESYNC_DEPTH 32
653 
654 static void raise_barrier(conf_t *conf)
655 {
656 	spin_lock_irq(&conf->resync_lock);
657 
658 	/* Wait until no block IO is waiting */
659 	wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
660 			    conf->resync_lock,
661 			    raid1_unplug(conf->mddev->queue));
662 
663 	/* block any new IO from starting */
664 	conf->barrier++;
665 
666 	/* No wait for all pending IO to complete */
667 	wait_event_lock_irq(conf->wait_barrier,
668 			    !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
669 			    conf->resync_lock,
670 			    raid1_unplug(conf->mddev->queue));
671 
672 	spin_unlock_irq(&conf->resync_lock);
673 }
674 
675 static void lower_barrier(conf_t *conf)
676 {
677 	unsigned long flags;
678 	spin_lock_irqsave(&conf->resync_lock, flags);
679 	conf->barrier--;
680 	spin_unlock_irqrestore(&conf->resync_lock, flags);
681 	wake_up(&conf->wait_barrier);
682 }
683 
684 static void wait_barrier(conf_t *conf)
685 {
686 	spin_lock_irq(&conf->resync_lock);
687 	if (conf->barrier) {
688 		conf->nr_waiting++;
689 		wait_event_lock_irq(conf->wait_barrier, !conf->barrier,
690 				    conf->resync_lock,
691 				    raid1_unplug(conf->mddev->queue));
692 		conf->nr_waiting--;
693 	}
694 	conf->nr_pending++;
695 	spin_unlock_irq(&conf->resync_lock);
696 }
697 
698 static void allow_barrier(conf_t *conf)
699 {
700 	unsigned long flags;
701 	spin_lock_irqsave(&conf->resync_lock, flags);
702 	conf->nr_pending--;
703 	spin_unlock_irqrestore(&conf->resync_lock, flags);
704 	wake_up(&conf->wait_barrier);
705 }
706 
707 static void freeze_array(conf_t *conf)
708 {
709 	/* stop syncio and normal IO and wait for everything to
710 	 * go quite.
711 	 * We increment barrier and nr_waiting, and then
712 	 * wait until nr_pending match nr_queued+1
713 	 * This is called in the context of one normal IO request
714 	 * that has failed. Thus any sync request that might be pending
715 	 * will be blocked by nr_pending, and we need to wait for
716 	 * pending IO requests to complete or be queued for re-try.
717 	 * Thus the number queued (nr_queued) plus this request (1)
718 	 * must match the number of pending IOs (nr_pending) before
719 	 * we continue.
720 	 */
721 	spin_lock_irq(&conf->resync_lock);
722 	conf->barrier++;
723 	conf->nr_waiting++;
724 	wait_event_lock_irq(conf->wait_barrier,
725 			    conf->nr_pending == conf->nr_queued+1,
726 			    conf->resync_lock,
727 			    ({ flush_pending_writes(conf);
728 			       raid1_unplug(conf->mddev->queue); }));
729 	spin_unlock_irq(&conf->resync_lock);
730 }
731 static void unfreeze_array(conf_t *conf)
732 {
733 	/* reverse the effect of the freeze */
734 	spin_lock_irq(&conf->resync_lock);
735 	conf->barrier--;
736 	conf->nr_waiting--;
737 	wake_up(&conf->wait_barrier);
738 	spin_unlock_irq(&conf->resync_lock);
739 }
740 
741 
742 /* duplicate the data pages for behind I/O */
743 static struct page **alloc_behind_pages(struct bio *bio)
744 {
745 	int i;
746 	struct bio_vec *bvec;
747 	struct page **pages = kzalloc(bio->bi_vcnt * sizeof(struct page *),
748 					GFP_NOIO);
749 	if (unlikely(!pages))
750 		goto do_sync_io;
751 
752 	bio_for_each_segment(bvec, bio, i) {
753 		pages[i] = alloc_page(GFP_NOIO);
754 		if (unlikely(!pages[i]))
755 			goto do_sync_io;
756 		memcpy(kmap(pages[i]) + bvec->bv_offset,
757 			kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
758 		kunmap(pages[i]);
759 		kunmap(bvec->bv_page);
760 	}
761 
762 	return pages;
763 
764 do_sync_io:
765 	if (pages)
766 		for (i = 0; i < bio->bi_vcnt && pages[i]; i++)
767 			put_page(pages[i]);
768 	kfree(pages);
769 	PRINTK("%dB behind alloc failed, doing sync I/O\n", bio->bi_size);
770 	return NULL;
771 }
772 
773 static int make_request(struct request_queue *q, struct bio * bio)
774 {
775 	mddev_t *mddev = q->queuedata;
776 	conf_t *conf = mddev_to_conf(mddev);
777 	mirror_info_t *mirror;
778 	r1bio_t *r1_bio;
779 	struct bio *read_bio;
780 	int i, targets = 0, disks;
781 	struct bitmap *bitmap;
782 	unsigned long flags;
783 	struct bio_list bl;
784 	struct page **behind_pages = NULL;
785 	const int rw = bio_data_dir(bio);
786 	const int do_sync = bio_sync(bio);
787 	int cpu, do_barriers;
788 	mdk_rdev_t *blocked_rdev;
789 
790 	/*
791 	 * Register the new request and wait if the reconstruction
792 	 * thread has put up a bar for new requests.
793 	 * Continue immediately if no resync is active currently.
794 	 * We test barriers_work *after* md_write_start as md_write_start
795 	 * may cause the first superblock write, and that will check out
796 	 * if barriers work.
797 	 */
798 
799 	md_write_start(mddev, bio); /* wait on superblock update early */
800 
801 	if (unlikely(!mddev->barriers_work && bio_barrier(bio))) {
802 		if (rw == WRITE)
803 			md_write_end(mddev);
804 		bio_endio(bio, -EOPNOTSUPP);
805 		return 0;
806 	}
807 
808 	wait_barrier(conf);
809 
810 	bitmap = mddev->bitmap;
811 
812 	cpu = part_stat_lock();
813 	part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
814 	part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw],
815 		      bio_sectors(bio));
816 	part_stat_unlock();
817 
818 	/*
819 	 * make_request() can abort the operation when READA is being
820 	 * used and no empty request is available.
821 	 *
822 	 */
823 	r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
824 
825 	r1_bio->master_bio = bio;
826 	r1_bio->sectors = bio->bi_size >> 9;
827 	r1_bio->state = 0;
828 	r1_bio->mddev = mddev;
829 	r1_bio->sector = bio->bi_sector;
830 
831 	if (rw == READ) {
832 		/*
833 		 * read balancing logic:
834 		 */
835 		int rdisk = read_balance(conf, r1_bio);
836 
837 		if (rdisk < 0) {
838 			/* couldn't find anywhere to read from */
839 			raid_end_bio_io(r1_bio);
840 			return 0;
841 		}
842 		mirror = conf->mirrors + rdisk;
843 
844 		r1_bio->read_disk = rdisk;
845 
846 		read_bio = bio_clone(bio, GFP_NOIO);
847 
848 		r1_bio->bios[rdisk] = read_bio;
849 
850 		read_bio->bi_sector = r1_bio->sector + mirror->rdev->data_offset;
851 		read_bio->bi_bdev = mirror->rdev->bdev;
852 		read_bio->bi_end_io = raid1_end_read_request;
853 		read_bio->bi_rw = READ | do_sync;
854 		read_bio->bi_private = r1_bio;
855 
856 		generic_make_request(read_bio);
857 		return 0;
858 	}
859 
860 	/*
861 	 * WRITE:
862 	 */
863 	/* first select target devices under spinlock and
864 	 * inc refcount on their rdev.  Record them by setting
865 	 * bios[x] to bio
866 	 */
867 	disks = conf->raid_disks;
868 #if 0
869 	{ static int first=1;
870 	if (first) printk("First Write sector %llu disks %d\n",
871 			  (unsigned long long)r1_bio->sector, disks);
872 	first = 0;
873 	}
874 #endif
875  retry_write:
876 	blocked_rdev = NULL;
877 	rcu_read_lock();
878 	for (i = 0;  i < disks; i++) {
879 		mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
880 		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
881 			atomic_inc(&rdev->nr_pending);
882 			blocked_rdev = rdev;
883 			break;
884 		}
885 		if (rdev && !test_bit(Faulty, &rdev->flags)) {
886 			atomic_inc(&rdev->nr_pending);
887 			if (test_bit(Faulty, &rdev->flags)) {
888 				rdev_dec_pending(rdev, mddev);
889 				r1_bio->bios[i] = NULL;
890 			} else
891 				r1_bio->bios[i] = bio;
892 			targets++;
893 		} else
894 			r1_bio->bios[i] = NULL;
895 	}
896 	rcu_read_unlock();
897 
898 	if (unlikely(blocked_rdev)) {
899 		/* Wait for this device to become unblocked */
900 		int j;
901 
902 		for (j = 0; j < i; j++)
903 			if (r1_bio->bios[j])
904 				rdev_dec_pending(conf->mirrors[j].rdev, mddev);
905 
906 		allow_barrier(conf);
907 		md_wait_for_blocked_rdev(blocked_rdev, mddev);
908 		wait_barrier(conf);
909 		goto retry_write;
910 	}
911 
912 	BUG_ON(targets == 0); /* we never fail the last device */
913 
914 	if (targets < conf->raid_disks) {
915 		/* array is degraded, we will not clear the bitmap
916 		 * on I/O completion (see raid1_end_write_request) */
917 		set_bit(R1BIO_Degraded, &r1_bio->state);
918 	}
919 
920 	/* do behind I/O ? */
921 	if (bitmap &&
922 	    atomic_read(&bitmap->behind_writes) < bitmap->max_write_behind &&
923 	    (behind_pages = alloc_behind_pages(bio)) != NULL)
924 		set_bit(R1BIO_BehindIO, &r1_bio->state);
925 
926 	atomic_set(&r1_bio->remaining, 0);
927 	atomic_set(&r1_bio->behind_remaining, 0);
928 
929 	do_barriers = bio_barrier(bio);
930 	if (do_barriers)
931 		set_bit(R1BIO_Barrier, &r1_bio->state);
932 
933 	bio_list_init(&bl);
934 	for (i = 0; i < disks; i++) {
935 		struct bio *mbio;
936 		if (!r1_bio->bios[i])
937 			continue;
938 
939 		mbio = bio_clone(bio, GFP_NOIO);
940 		r1_bio->bios[i] = mbio;
941 
942 		mbio->bi_sector	= r1_bio->sector + conf->mirrors[i].rdev->data_offset;
943 		mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
944 		mbio->bi_end_io	= raid1_end_write_request;
945 		mbio->bi_rw = WRITE | do_barriers | do_sync;
946 		mbio->bi_private = r1_bio;
947 
948 		if (behind_pages) {
949 			struct bio_vec *bvec;
950 			int j;
951 
952 			/* Yes, I really want the '__' version so that
953 			 * we clear any unused pointer in the io_vec, rather
954 			 * than leave them unchanged.  This is important
955 			 * because when we come to free the pages, we won't
956 			 * know the originial bi_idx, so we just free
957 			 * them all
958 			 */
959 			__bio_for_each_segment(bvec, mbio, j, 0)
960 				bvec->bv_page = behind_pages[j];
961 			if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
962 				atomic_inc(&r1_bio->behind_remaining);
963 		}
964 
965 		atomic_inc(&r1_bio->remaining);
966 
967 		bio_list_add(&bl, mbio);
968 	}
969 	kfree(behind_pages); /* the behind pages are attached to the bios now */
970 
971 	bitmap_startwrite(bitmap, bio->bi_sector, r1_bio->sectors,
972 				test_bit(R1BIO_BehindIO, &r1_bio->state));
973 	spin_lock_irqsave(&conf->device_lock, flags);
974 	bio_list_merge(&conf->pending_bio_list, &bl);
975 	bio_list_init(&bl);
976 
977 	blk_plug_device(mddev->queue);
978 	spin_unlock_irqrestore(&conf->device_lock, flags);
979 
980 	/* In case raid1d snuck into freeze_array */
981 	wake_up(&conf->wait_barrier);
982 
983 	if (do_sync)
984 		md_wakeup_thread(mddev->thread);
985 #if 0
986 	while ((bio = bio_list_pop(&bl)) != NULL)
987 		generic_make_request(bio);
988 #endif
989 
990 	return 0;
991 }
992 
993 static void status(struct seq_file *seq, mddev_t *mddev)
994 {
995 	conf_t *conf = mddev_to_conf(mddev);
996 	int i;
997 
998 	seq_printf(seq, " [%d/%d] [", conf->raid_disks,
999 		   conf->raid_disks - mddev->degraded);
1000 	rcu_read_lock();
1001 	for (i = 0; i < conf->raid_disks; i++) {
1002 		mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
1003 		seq_printf(seq, "%s",
1004 			   rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1005 	}
1006 	rcu_read_unlock();
1007 	seq_printf(seq, "]");
1008 }
1009 
1010 
1011 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1012 {
1013 	char b[BDEVNAME_SIZE];
1014 	conf_t *conf = mddev_to_conf(mddev);
1015 
1016 	/*
1017 	 * If it is not operational, then we have already marked it as dead
1018 	 * else if it is the last working disks, ignore the error, let the
1019 	 * next level up know.
1020 	 * else mark the drive as failed
1021 	 */
1022 	if (test_bit(In_sync, &rdev->flags)
1023 	    && (conf->raid_disks - mddev->degraded) == 1) {
1024 		/*
1025 		 * Don't fail the drive, act as though we were just a
1026 		 * normal single drive.
1027 		 * However don't try a recovery from this drive as
1028 		 * it is very likely to fail.
1029 		 */
1030 		mddev->recovery_disabled = 1;
1031 		return;
1032 	}
1033 	if (test_and_clear_bit(In_sync, &rdev->flags)) {
1034 		unsigned long flags;
1035 		spin_lock_irqsave(&conf->device_lock, flags);
1036 		mddev->degraded++;
1037 		set_bit(Faulty, &rdev->flags);
1038 		spin_unlock_irqrestore(&conf->device_lock, flags);
1039 		/*
1040 		 * if recovery is running, make sure it aborts.
1041 		 */
1042 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1043 	} else
1044 		set_bit(Faulty, &rdev->flags);
1045 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
1046 	printk(KERN_ALERT "raid1: Disk failure on %s, disabling device.\n"
1047 		"raid1: Operation continuing on %d devices.\n",
1048 		bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded);
1049 }
1050 
1051 static void print_conf(conf_t *conf)
1052 {
1053 	int i;
1054 
1055 	printk("RAID1 conf printout:\n");
1056 	if (!conf) {
1057 		printk("(!conf)\n");
1058 		return;
1059 	}
1060 	printk(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1061 		conf->raid_disks);
1062 
1063 	rcu_read_lock();
1064 	for (i = 0; i < conf->raid_disks; i++) {
1065 		char b[BDEVNAME_SIZE];
1066 		mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
1067 		if (rdev)
1068 			printk(" disk %d, wo:%d, o:%d, dev:%s\n",
1069 			       i, !test_bit(In_sync, &rdev->flags),
1070 			       !test_bit(Faulty, &rdev->flags),
1071 			       bdevname(rdev->bdev,b));
1072 	}
1073 	rcu_read_unlock();
1074 }
1075 
1076 static void close_sync(conf_t *conf)
1077 {
1078 	wait_barrier(conf);
1079 	allow_barrier(conf);
1080 
1081 	mempool_destroy(conf->r1buf_pool);
1082 	conf->r1buf_pool = NULL;
1083 }
1084 
1085 static int raid1_spare_active(mddev_t *mddev)
1086 {
1087 	int i;
1088 	conf_t *conf = mddev->private;
1089 
1090 	/*
1091 	 * Find all failed disks within the RAID1 configuration
1092 	 * and mark them readable.
1093 	 * Called under mddev lock, so rcu protection not needed.
1094 	 */
1095 	for (i = 0; i < conf->raid_disks; i++) {
1096 		mdk_rdev_t *rdev = conf->mirrors[i].rdev;
1097 		if (rdev
1098 		    && !test_bit(Faulty, &rdev->flags)
1099 		    && !test_and_set_bit(In_sync, &rdev->flags)) {
1100 			unsigned long flags;
1101 			spin_lock_irqsave(&conf->device_lock, flags);
1102 			mddev->degraded--;
1103 			spin_unlock_irqrestore(&conf->device_lock, flags);
1104 		}
1105 	}
1106 
1107 	print_conf(conf);
1108 	return 0;
1109 }
1110 
1111 
1112 static int raid1_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
1113 {
1114 	conf_t *conf = mddev->private;
1115 	int err = -EEXIST;
1116 	int mirror = 0;
1117 	mirror_info_t *p;
1118 	int first = 0;
1119 	int last = mddev->raid_disks - 1;
1120 
1121 	if (rdev->raid_disk >= 0)
1122 		first = last = rdev->raid_disk;
1123 
1124 	for (mirror = first; mirror <= last; mirror++)
1125 		if ( !(p=conf->mirrors+mirror)->rdev) {
1126 
1127 			blk_queue_stack_limits(mddev->queue,
1128 					       rdev->bdev->bd_disk->queue);
1129 			/* as we don't honour merge_bvec_fn, we must never risk
1130 			 * violating it, so limit ->max_sector to one PAGE, as
1131 			 * a one page request is never in violation.
1132 			 */
1133 			if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
1134 			    mddev->queue->max_sectors > (PAGE_SIZE>>9))
1135 				blk_queue_max_sectors(mddev->queue, PAGE_SIZE>>9);
1136 
1137 			p->head_position = 0;
1138 			rdev->raid_disk = mirror;
1139 			err = 0;
1140 			/* As all devices are equivalent, we don't need a full recovery
1141 			 * if this was recently any drive of the array
1142 			 */
1143 			if (rdev->saved_raid_disk < 0)
1144 				conf->fullsync = 1;
1145 			rcu_assign_pointer(p->rdev, rdev);
1146 			break;
1147 		}
1148 
1149 	print_conf(conf);
1150 	return err;
1151 }
1152 
1153 static int raid1_remove_disk(mddev_t *mddev, int number)
1154 {
1155 	conf_t *conf = mddev->private;
1156 	int err = 0;
1157 	mdk_rdev_t *rdev;
1158 	mirror_info_t *p = conf->mirrors+ number;
1159 
1160 	print_conf(conf);
1161 	rdev = p->rdev;
1162 	if (rdev) {
1163 		if (test_bit(In_sync, &rdev->flags) ||
1164 		    atomic_read(&rdev->nr_pending)) {
1165 			err = -EBUSY;
1166 			goto abort;
1167 		}
1168 		/* Only remove non-faulty devices is recovery
1169 		 * is not possible.
1170 		 */
1171 		if (!test_bit(Faulty, &rdev->flags) &&
1172 		    mddev->degraded < conf->raid_disks) {
1173 			err = -EBUSY;
1174 			goto abort;
1175 		}
1176 		p->rdev = NULL;
1177 		synchronize_rcu();
1178 		if (atomic_read(&rdev->nr_pending)) {
1179 			/* lost the race, try later */
1180 			err = -EBUSY;
1181 			p->rdev = rdev;
1182 		}
1183 	}
1184 abort:
1185 
1186 	print_conf(conf);
1187 	return err;
1188 }
1189 
1190 
1191 static void end_sync_read(struct bio *bio, int error)
1192 {
1193 	r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
1194 	int i;
1195 
1196 	for (i=r1_bio->mddev->raid_disks; i--; )
1197 		if (r1_bio->bios[i] == bio)
1198 			break;
1199 	BUG_ON(i < 0);
1200 	update_head_pos(i, r1_bio);
1201 	/*
1202 	 * we have read a block, now it needs to be re-written,
1203 	 * or re-read if the read failed.
1204 	 * We don't do much here, just schedule handling by raid1d
1205 	 */
1206 	if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1207 		set_bit(R1BIO_Uptodate, &r1_bio->state);
1208 
1209 	if (atomic_dec_and_test(&r1_bio->remaining))
1210 		reschedule_retry(r1_bio);
1211 }
1212 
1213 static void end_sync_write(struct bio *bio, int error)
1214 {
1215 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1216 	r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
1217 	mddev_t *mddev = r1_bio->mddev;
1218 	conf_t *conf = mddev_to_conf(mddev);
1219 	int i;
1220 	int mirror=0;
1221 
1222 	for (i = 0; i < conf->raid_disks; i++)
1223 		if (r1_bio->bios[i] == bio) {
1224 			mirror = i;
1225 			break;
1226 		}
1227 	if (!uptodate) {
1228 		int sync_blocks = 0;
1229 		sector_t s = r1_bio->sector;
1230 		long sectors_to_go = r1_bio->sectors;
1231 		/* make sure these bits doesn't get cleared. */
1232 		do {
1233 			bitmap_end_sync(mddev->bitmap, s,
1234 					&sync_blocks, 1);
1235 			s += sync_blocks;
1236 			sectors_to_go -= sync_blocks;
1237 		} while (sectors_to_go > 0);
1238 		md_error(mddev, conf->mirrors[mirror].rdev);
1239 	}
1240 
1241 	update_head_pos(mirror, r1_bio);
1242 
1243 	if (atomic_dec_and_test(&r1_bio->remaining)) {
1244 		sector_t s = r1_bio->sectors;
1245 		put_buf(r1_bio);
1246 		md_done_sync(mddev, s, uptodate);
1247 	}
1248 }
1249 
1250 static void sync_request_write(mddev_t *mddev, r1bio_t *r1_bio)
1251 {
1252 	conf_t *conf = mddev_to_conf(mddev);
1253 	int i;
1254 	int disks = conf->raid_disks;
1255 	struct bio *bio, *wbio;
1256 
1257 	bio = r1_bio->bios[r1_bio->read_disk];
1258 
1259 
1260 	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
1261 		/* We have read all readable devices.  If we haven't
1262 		 * got the block, then there is no hope left.
1263 		 * If we have, then we want to do a comparison
1264 		 * and skip the write if everything is the same.
1265 		 * If any blocks failed to read, then we need to
1266 		 * attempt an over-write
1267 		 */
1268 		int primary;
1269 		if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) {
1270 			for (i=0; i<mddev->raid_disks; i++)
1271 				if (r1_bio->bios[i]->bi_end_io == end_sync_read)
1272 					md_error(mddev, conf->mirrors[i].rdev);
1273 
1274 			md_done_sync(mddev, r1_bio->sectors, 1);
1275 			put_buf(r1_bio);
1276 			return;
1277 		}
1278 		for (primary=0; primary<mddev->raid_disks; primary++)
1279 			if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
1280 			    test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) {
1281 				r1_bio->bios[primary]->bi_end_io = NULL;
1282 				rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
1283 				break;
1284 			}
1285 		r1_bio->read_disk = primary;
1286 		for (i=0; i<mddev->raid_disks; i++)
1287 			if (r1_bio->bios[i]->bi_end_io == end_sync_read) {
1288 				int j;
1289 				int vcnt = r1_bio->sectors >> (PAGE_SHIFT- 9);
1290 				struct bio *pbio = r1_bio->bios[primary];
1291 				struct bio *sbio = r1_bio->bios[i];
1292 
1293 				if (test_bit(BIO_UPTODATE, &sbio->bi_flags)) {
1294 					for (j = vcnt; j-- ; ) {
1295 						struct page *p, *s;
1296 						p = pbio->bi_io_vec[j].bv_page;
1297 						s = sbio->bi_io_vec[j].bv_page;
1298 						if (memcmp(page_address(p),
1299 							   page_address(s),
1300 							   PAGE_SIZE))
1301 							break;
1302 					}
1303 				} else
1304 					j = 0;
1305 				if (j >= 0)
1306 					mddev->resync_mismatches += r1_bio->sectors;
1307 				if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
1308 					      && test_bit(BIO_UPTODATE, &sbio->bi_flags))) {
1309 					sbio->bi_end_io = NULL;
1310 					rdev_dec_pending(conf->mirrors[i].rdev, mddev);
1311 				} else {
1312 					/* fixup the bio for reuse */
1313 					int size;
1314 					sbio->bi_vcnt = vcnt;
1315 					sbio->bi_size = r1_bio->sectors << 9;
1316 					sbio->bi_idx = 0;
1317 					sbio->bi_phys_segments = 0;
1318 					sbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1319 					sbio->bi_flags |= 1 << BIO_UPTODATE;
1320 					sbio->bi_next = NULL;
1321 					sbio->bi_sector = r1_bio->sector +
1322 						conf->mirrors[i].rdev->data_offset;
1323 					sbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1324 					size = sbio->bi_size;
1325 					for (j = 0; j < vcnt ; j++) {
1326 						struct bio_vec *bi;
1327 						bi = &sbio->bi_io_vec[j];
1328 						bi->bv_offset = 0;
1329 						if (size > PAGE_SIZE)
1330 							bi->bv_len = PAGE_SIZE;
1331 						else
1332 							bi->bv_len = size;
1333 						size -= PAGE_SIZE;
1334 						memcpy(page_address(bi->bv_page),
1335 						       page_address(pbio->bi_io_vec[j].bv_page),
1336 						       PAGE_SIZE);
1337 					}
1338 
1339 				}
1340 			}
1341 	}
1342 	if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) {
1343 		/* ouch - failed to read all of that.
1344 		 * Try some synchronous reads of other devices to get
1345 		 * good data, much like with normal read errors.  Only
1346 		 * read into the pages we already have so we don't
1347 		 * need to re-issue the read request.
1348 		 * We don't need to freeze the array, because being in an
1349 		 * active sync request, there is no normal IO, and
1350 		 * no overlapping syncs.
1351 		 */
1352 		sector_t sect = r1_bio->sector;
1353 		int sectors = r1_bio->sectors;
1354 		int idx = 0;
1355 
1356 		while(sectors) {
1357 			int s = sectors;
1358 			int d = r1_bio->read_disk;
1359 			int success = 0;
1360 			mdk_rdev_t *rdev;
1361 
1362 			if (s > (PAGE_SIZE>>9))
1363 				s = PAGE_SIZE >> 9;
1364 			do {
1365 				if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1366 					/* No rcu protection needed here devices
1367 					 * can only be removed when no resync is
1368 					 * active, and resync is currently active
1369 					 */
1370 					rdev = conf->mirrors[d].rdev;
1371 					if (sync_page_io(rdev->bdev,
1372 							 sect + rdev->data_offset,
1373 							 s<<9,
1374 							 bio->bi_io_vec[idx].bv_page,
1375 							 READ)) {
1376 						success = 1;
1377 						break;
1378 					}
1379 				}
1380 				d++;
1381 				if (d == conf->raid_disks)
1382 					d = 0;
1383 			} while (!success && d != r1_bio->read_disk);
1384 
1385 			if (success) {
1386 				int start = d;
1387 				/* write it back and re-read */
1388 				set_bit(R1BIO_Uptodate, &r1_bio->state);
1389 				while (d != r1_bio->read_disk) {
1390 					if (d == 0)
1391 						d = conf->raid_disks;
1392 					d--;
1393 					if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1394 						continue;
1395 					rdev = conf->mirrors[d].rdev;
1396 					atomic_add(s, &rdev->corrected_errors);
1397 					if (sync_page_io(rdev->bdev,
1398 							 sect + rdev->data_offset,
1399 							 s<<9,
1400 							 bio->bi_io_vec[idx].bv_page,
1401 							 WRITE) == 0)
1402 						md_error(mddev, rdev);
1403 				}
1404 				d = start;
1405 				while (d != r1_bio->read_disk) {
1406 					if (d == 0)
1407 						d = conf->raid_disks;
1408 					d--;
1409 					if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1410 						continue;
1411 					rdev = conf->mirrors[d].rdev;
1412 					if (sync_page_io(rdev->bdev,
1413 							 sect + rdev->data_offset,
1414 							 s<<9,
1415 							 bio->bi_io_vec[idx].bv_page,
1416 							 READ) == 0)
1417 						md_error(mddev, rdev);
1418 				}
1419 			} else {
1420 				char b[BDEVNAME_SIZE];
1421 				/* Cannot read from anywhere, array is toast */
1422 				md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
1423 				printk(KERN_ALERT "raid1: %s: unrecoverable I/O read error"
1424 				       " for block %llu\n",
1425 				       bdevname(bio->bi_bdev,b),
1426 				       (unsigned long long)r1_bio->sector);
1427 				md_done_sync(mddev, r1_bio->sectors, 0);
1428 				put_buf(r1_bio);
1429 				return;
1430 			}
1431 			sectors -= s;
1432 			sect += s;
1433 			idx ++;
1434 		}
1435 	}
1436 
1437 	/*
1438 	 * schedule writes
1439 	 */
1440 	atomic_set(&r1_bio->remaining, 1);
1441 	for (i = 0; i < disks ; i++) {
1442 		wbio = r1_bio->bios[i];
1443 		if (wbio->bi_end_io == NULL ||
1444 		    (wbio->bi_end_io == end_sync_read &&
1445 		     (i == r1_bio->read_disk ||
1446 		      !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
1447 			continue;
1448 
1449 		wbio->bi_rw = WRITE;
1450 		wbio->bi_end_io = end_sync_write;
1451 		atomic_inc(&r1_bio->remaining);
1452 		md_sync_acct(conf->mirrors[i].rdev->bdev, wbio->bi_size >> 9);
1453 
1454 		generic_make_request(wbio);
1455 	}
1456 
1457 	if (atomic_dec_and_test(&r1_bio->remaining)) {
1458 		/* if we're here, all write(s) have completed, so clean up */
1459 		md_done_sync(mddev, r1_bio->sectors, 1);
1460 		put_buf(r1_bio);
1461 	}
1462 }
1463 
1464 /*
1465  * This is a kernel thread which:
1466  *
1467  *	1.	Retries failed read operations on working mirrors.
1468  *	2.	Updates the raid superblock when problems encounter.
1469  *	3.	Performs writes following reads for array syncronising.
1470  */
1471 
1472 static void fix_read_error(conf_t *conf, int read_disk,
1473 			   sector_t sect, int sectors)
1474 {
1475 	mddev_t *mddev = conf->mddev;
1476 	while(sectors) {
1477 		int s = sectors;
1478 		int d = read_disk;
1479 		int success = 0;
1480 		int start;
1481 		mdk_rdev_t *rdev;
1482 
1483 		if (s > (PAGE_SIZE>>9))
1484 			s = PAGE_SIZE >> 9;
1485 
1486 		do {
1487 			/* Note: no rcu protection needed here
1488 			 * as this is synchronous in the raid1d thread
1489 			 * which is the thread that might remove
1490 			 * a device.  If raid1d ever becomes multi-threaded....
1491 			 */
1492 			rdev = conf->mirrors[d].rdev;
1493 			if (rdev &&
1494 			    test_bit(In_sync, &rdev->flags) &&
1495 			    sync_page_io(rdev->bdev,
1496 					 sect + rdev->data_offset,
1497 					 s<<9,
1498 					 conf->tmppage, READ))
1499 				success = 1;
1500 			else {
1501 				d++;
1502 				if (d == conf->raid_disks)
1503 					d = 0;
1504 			}
1505 		} while (!success && d != read_disk);
1506 
1507 		if (!success) {
1508 			/* Cannot read from anywhere -- bye bye array */
1509 			md_error(mddev, conf->mirrors[read_disk].rdev);
1510 			break;
1511 		}
1512 		/* write it back and re-read */
1513 		start = d;
1514 		while (d != read_disk) {
1515 			if (d==0)
1516 				d = conf->raid_disks;
1517 			d--;
1518 			rdev = conf->mirrors[d].rdev;
1519 			if (rdev &&
1520 			    test_bit(In_sync, &rdev->flags)) {
1521 				if (sync_page_io(rdev->bdev,
1522 						 sect + rdev->data_offset,
1523 						 s<<9, conf->tmppage, WRITE)
1524 				    == 0)
1525 					/* Well, this device is dead */
1526 					md_error(mddev, rdev);
1527 			}
1528 		}
1529 		d = start;
1530 		while (d != read_disk) {
1531 			char b[BDEVNAME_SIZE];
1532 			if (d==0)
1533 				d = conf->raid_disks;
1534 			d--;
1535 			rdev = conf->mirrors[d].rdev;
1536 			if (rdev &&
1537 			    test_bit(In_sync, &rdev->flags)) {
1538 				if (sync_page_io(rdev->bdev,
1539 						 sect + rdev->data_offset,
1540 						 s<<9, conf->tmppage, READ)
1541 				    == 0)
1542 					/* Well, this device is dead */
1543 					md_error(mddev, rdev);
1544 				else {
1545 					atomic_add(s, &rdev->corrected_errors);
1546 					printk(KERN_INFO
1547 					       "raid1:%s: read error corrected "
1548 					       "(%d sectors at %llu on %s)\n",
1549 					       mdname(mddev), s,
1550 					       (unsigned long long)(sect +
1551 					           rdev->data_offset),
1552 					       bdevname(rdev->bdev, b));
1553 				}
1554 			}
1555 		}
1556 		sectors -= s;
1557 		sect += s;
1558 	}
1559 }
1560 
1561 static void raid1d(mddev_t *mddev)
1562 {
1563 	r1bio_t *r1_bio;
1564 	struct bio *bio;
1565 	unsigned long flags;
1566 	conf_t *conf = mddev_to_conf(mddev);
1567 	struct list_head *head = &conf->retry_list;
1568 	int unplug=0;
1569 	mdk_rdev_t *rdev;
1570 
1571 	md_check_recovery(mddev);
1572 
1573 	for (;;) {
1574 		char b[BDEVNAME_SIZE];
1575 
1576 		unplug += flush_pending_writes(conf);
1577 
1578 		spin_lock_irqsave(&conf->device_lock, flags);
1579 		if (list_empty(head)) {
1580 			spin_unlock_irqrestore(&conf->device_lock, flags);
1581 			break;
1582 		}
1583 		r1_bio = list_entry(head->prev, r1bio_t, retry_list);
1584 		list_del(head->prev);
1585 		conf->nr_queued--;
1586 		spin_unlock_irqrestore(&conf->device_lock, flags);
1587 
1588 		mddev = r1_bio->mddev;
1589 		conf = mddev_to_conf(mddev);
1590 		if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
1591 			sync_request_write(mddev, r1_bio);
1592 			unplug = 1;
1593 		} else if (test_bit(R1BIO_BarrierRetry, &r1_bio->state)) {
1594 			/* some requests in the r1bio were BIO_RW_BARRIER
1595 			 * requests which failed with -EOPNOTSUPP.  Hohumm..
1596 			 * Better resubmit without the barrier.
1597 			 * We know which devices to resubmit for, because
1598 			 * all others have had their bios[] entry cleared.
1599 			 * We already have a nr_pending reference on these rdevs.
1600 			 */
1601 			int i;
1602 			const int do_sync = bio_sync(r1_bio->master_bio);
1603 			clear_bit(R1BIO_BarrierRetry, &r1_bio->state);
1604 			clear_bit(R1BIO_Barrier, &r1_bio->state);
1605 			for (i=0; i < conf->raid_disks; i++)
1606 				if (r1_bio->bios[i])
1607 					atomic_inc(&r1_bio->remaining);
1608 			for (i=0; i < conf->raid_disks; i++)
1609 				if (r1_bio->bios[i]) {
1610 					struct bio_vec *bvec;
1611 					int j;
1612 
1613 					bio = bio_clone(r1_bio->master_bio, GFP_NOIO);
1614 					/* copy pages from the failed bio, as
1615 					 * this might be a write-behind device */
1616 					__bio_for_each_segment(bvec, bio, j, 0)
1617 						bvec->bv_page = bio_iovec_idx(r1_bio->bios[i], j)->bv_page;
1618 					bio_put(r1_bio->bios[i]);
1619 					bio->bi_sector = r1_bio->sector +
1620 						conf->mirrors[i].rdev->data_offset;
1621 					bio->bi_bdev = conf->mirrors[i].rdev->bdev;
1622 					bio->bi_end_io = raid1_end_write_request;
1623 					bio->bi_rw = WRITE | do_sync;
1624 					bio->bi_private = r1_bio;
1625 					r1_bio->bios[i] = bio;
1626 					generic_make_request(bio);
1627 				}
1628 		} else {
1629 			int disk;
1630 
1631 			/* we got a read error. Maybe the drive is bad.  Maybe just
1632 			 * the block and we can fix it.
1633 			 * We freeze all other IO, and try reading the block from
1634 			 * other devices.  When we find one, we re-write
1635 			 * and check it that fixes the read error.
1636 			 * This is all done synchronously while the array is
1637 			 * frozen
1638 			 */
1639 			if (mddev->ro == 0) {
1640 				freeze_array(conf);
1641 				fix_read_error(conf, r1_bio->read_disk,
1642 					       r1_bio->sector,
1643 					       r1_bio->sectors);
1644 				unfreeze_array(conf);
1645 			}
1646 
1647 			bio = r1_bio->bios[r1_bio->read_disk];
1648 			if ((disk=read_balance(conf, r1_bio)) == -1 ||
1649 			    disk == r1_bio->read_disk) {
1650 				printk(KERN_ALERT "raid1: %s: unrecoverable I/O"
1651 				       " read error for block %llu\n",
1652 				       bdevname(bio->bi_bdev,b),
1653 				       (unsigned long long)r1_bio->sector);
1654 				raid_end_bio_io(r1_bio);
1655 			} else {
1656 				const int do_sync = bio_sync(r1_bio->master_bio);
1657 				r1_bio->bios[r1_bio->read_disk] =
1658 					mddev->ro ? IO_BLOCKED : NULL;
1659 				r1_bio->read_disk = disk;
1660 				bio_put(bio);
1661 				bio = bio_clone(r1_bio->master_bio, GFP_NOIO);
1662 				r1_bio->bios[r1_bio->read_disk] = bio;
1663 				rdev = conf->mirrors[disk].rdev;
1664 				if (printk_ratelimit())
1665 					printk(KERN_ERR "raid1: %s: redirecting sector %llu to"
1666 					       " another mirror\n",
1667 					       bdevname(rdev->bdev,b),
1668 					       (unsigned long long)r1_bio->sector);
1669 				bio->bi_sector = r1_bio->sector + rdev->data_offset;
1670 				bio->bi_bdev = rdev->bdev;
1671 				bio->bi_end_io = raid1_end_read_request;
1672 				bio->bi_rw = READ | do_sync;
1673 				bio->bi_private = r1_bio;
1674 				unplug = 1;
1675 				generic_make_request(bio);
1676 			}
1677 		}
1678 	}
1679 	if (unplug)
1680 		unplug_slaves(mddev);
1681 }
1682 
1683 
1684 static int init_resync(conf_t *conf)
1685 {
1686 	int buffs;
1687 
1688 	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
1689 	BUG_ON(conf->r1buf_pool);
1690 	conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
1691 					  conf->poolinfo);
1692 	if (!conf->r1buf_pool)
1693 		return -ENOMEM;
1694 	conf->next_resync = 0;
1695 	return 0;
1696 }
1697 
1698 /*
1699  * perform a "sync" on one "block"
1700  *
1701  * We need to make sure that no normal I/O request - particularly write
1702  * requests - conflict with active sync requests.
1703  *
1704  * This is achieved by tracking pending requests and a 'barrier' concept
1705  * that can be installed to exclude normal IO requests.
1706  */
1707 
1708 static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
1709 {
1710 	conf_t *conf = mddev_to_conf(mddev);
1711 	r1bio_t *r1_bio;
1712 	struct bio *bio;
1713 	sector_t max_sector, nr_sectors;
1714 	int disk = -1;
1715 	int i;
1716 	int wonly = -1;
1717 	int write_targets = 0, read_targets = 0;
1718 	int sync_blocks;
1719 	int still_degraded = 0;
1720 
1721 	if (!conf->r1buf_pool)
1722 	{
1723 /*
1724 		printk("sync start - bitmap %p\n", mddev->bitmap);
1725 */
1726 		if (init_resync(conf))
1727 			return 0;
1728 	}
1729 
1730 	max_sector = mddev->dev_sectors;
1731 	if (sector_nr >= max_sector) {
1732 		/* If we aborted, we need to abort the
1733 		 * sync on the 'current' bitmap chunk (there will
1734 		 * only be one in raid1 resync.
1735 		 * We can find the current addess in mddev->curr_resync
1736 		 */
1737 		if (mddev->curr_resync < max_sector) /* aborted */
1738 			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
1739 						&sync_blocks, 1);
1740 		else /* completed sync */
1741 			conf->fullsync = 0;
1742 
1743 		bitmap_close_sync(mddev->bitmap);
1744 		close_sync(conf);
1745 		return 0;
1746 	}
1747 
1748 	if (mddev->bitmap == NULL &&
1749 	    mddev->recovery_cp == MaxSector &&
1750 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
1751 	    conf->fullsync == 0) {
1752 		*skipped = 1;
1753 		return max_sector - sector_nr;
1754 	}
1755 	/* before building a request, check if we can skip these blocks..
1756 	 * This call the bitmap_start_sync doesn't actually record anything
1757 	 */
1758 	if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
1759 	    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
1760 		/* We can skip this block, and probably several more */
1761 		*skipped = 1;
1762 		return sync_blocks;
1763 	}
1764 	/*
1765 	 * If there is non-resync activity waiting for a turn,
1766 	 * and resync is going fast enough,
1767 	 * then let it though before starting on this new sync request.
1768 	 */
1769 	if (!go_faster && conf->nr_waiting)
1770 		msleep_interruptible(1000);
1771 
1772 	bitmap_cond_end_sync(mddev->bitmap, sector_nr);
1773 	raise_barrier(conf);
1774 
1775 	conf->next_resync = sector_nr;
1776 
1777 	r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
1778 	rcu_read_lock();
1779 	/*
1780 	 * If we get a correctably read error during resync or recovery,
1781 	 * we might want to read from a different device.  So we
1782 	 * flag all drives that could conceivably be read from for READ,
1783 	 * and any others (which will be non-In_sync devices) for WRITE.
1784 	 * If a read fails, we try reading from something else for which READ
1785 	 * is OK.
1786 	 */
1787 
1788 	r1_bio->mddev = mddev;
1789 	r1_bio->sector = sector_nr;
1790 	r1_bio->state = 0;
1791 	set_bit(R1BIO_IsSync, &r1_bio->state);
1792 
1793 	for (i=0; i < conf->raid_disks; i++) {
1794 		mdk_rdev_t *rdev;
1795 		bio = r1_bio->bios[i];
1796 
1797 		/* take from bio_init */
1798 		bio->bi_next = NULL;
1799 		bio->bi_flags |= 1 << BIO_UPTODATE;
1800 		bio->bi_rw = READ;
1801 		bio->bi_vcnt = 0;
1802 		bio->bi_idx = 0;
1803 		bio->bi_phys_segments = 0;
1804 		bio->bi_size = 0;
1805 		bio->bi_end_io = NULL;
1806 		bio->bi_private = NULL;
1807 
1808 		rdev = rcu_dereference(conf->mirrors[i].rdev);
1809 		if (rdev == NULL ||
1810 			   test_bit(Faulty, &rdev->flags)) {
1811 			still_degraded = 1;
1812 			continue;
1813 		} else if (!test_bit(In_sync, &rdev->flags)) {
1814 			bio->bi_rw = WRITE;
1815 			bio->bi_end_io = end_sync_write;
1816 			write_targets ++;
1817 		} else {
1818 			/* may need to read from here */
1819 			bio->bi_rw = READ;
1820 			bio->bi_end_io = end_sync_read;
1821 			if (test_bit(WriteMostly, &rdev->flags)) {
1822 				if (wonly < 0)
1823 					wonly = i;
1824 			} else {
1825 				if (disk < 0)
1826 					disk = i;
1827 			}
1828 			read_targets++;
1829 		}
1830 		atomic_inc(&rdev->nr_pending);
1831 		bio->bi_sector = sector_nr + rdev->data_offset;
1832 		bio->bi_bdev = rdev->bdev;
1833 		bio->bi_private = r1_bio;
1834 	}
1835 	rcu_read_unlock();
1836 	if (disk < 0)
1837 		disk = wonly;
1838 	r1_bio->read_disk = disk;
1839 
1840 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
1841 		/* extra read targets are also write targets */
1842 		write_targets += read_targets-1;
1843 
1844 	if (write_targets == 0 || read_targets == 0) {
1845 		/* There is nowhere to write, so all non-sync
1846 		 * drives must be failed - so we are finished
1847 		 */
1848 		sector_t rv = max_sector - sector_nr;
1849 		*skipped = 1;
1850 		put_buf(r1_bio);
1851 		return rv;
1852 	}
1853 
1854 	if (max_sector > mddev->resync_max)
1855 		max_sector = mddev->resync_max; /* Don't do IO beyond here */
1856 	nr_sectors = 0;
1857 	sync_blocks = 0;
1858 	do {
1859 		struct page *page;
1860 		int len = PAGE_SIZE;
1861 		if (sector_nr + (len>>9) > max_sector)
1862 			len = (max_sector - sector_nr) << 9;
1863 		if (len == 0)
1864 			break;
1865 		if (sync_blocks == 0) {
1866 			if (!bitmap_start_sync(mddev->bitmap, sector_nr,
1867 					       &sync_blocks, still_degraded) &&
1868 			    !conf->fullsync &&
1869 			    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
1870 				break;
1871 			BUG_ON(sync_blocks < (PAGE_SIZE>>9));
1872 			if (len > (sync_blocks<<9))
1873 				len = sync_blocks<<9;
1874 		}
1875 
1876 		for (i=0 ; i < conf->raid_disks; i++) {
1877 			bio = r1_bio->bios[i];
1878 			if (bio->bi_end_io) {
1879 				page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
1880 				if (bio_add_page(bio, page, len, 0) == 0) {
1881 					/* stop here */
1882 					bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
1883 					while (i > 0) {
1884 						i--;
1885 						bio = r1_bio->bios[i];
1886 						if (bio->bi_end_io==NULL)
1887 							continue;
1888 						/* remove last page from this bio */
1889 						bio->bi_vcnt--;
1890 						bio->bi_size -= len;
1891 						bio->bi_flags &= ~(1<< BIO_SEG_VALID);
1892 					}
1893 					goto bio_full;
1894 				}
1895 			}
1896 		}
1897 		nr_sectors += len>>9;
1898 		sector_nr += len>>9;
1899 		sync_blocks -= (len>>9);
1900 	} while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
1901  bio_full:
1902 	r1_bio->sectors = nr_sectors;
1903 
1904 	/* For a user-requested sync, we read all readable devices and do a
1905 	 * compare
1906 	 */
1907 	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
1908 		atomic_set(&r1_bio->remaining, read_targets);
1909 		for (i=0; i<conf->raid_disks; i++) {
1910 			bio = r1_bio->bios[i];
1911 			if (bio->bi_end_io == end_sync_read) {
1912 				md_sync_acct(bio->bi_bdev, nr_sectors);
1913 				generic_make_request(bio);
1914 			}
1915 		}
1916 	} else {
1917 		atomic_set(&r1_bio->remaining, 1);
1918 		bio = r1_bio->bios[r1_bio->read_disk];
1919 		md_sync_acct(bio->bi_bdev, nr_sectors);
1920 		generic_make_request(bio);
1921 
1922 	}
1923 	return nr_sectors;
1924 }
1925 
1926 static sector_t raid1_size(mddev_t *mddev, sector_t sectors, int raid_disks)
1927 {
1928 	if (sectors)
1929 		return sectors;
1930 
1931 	return mddev->dev_sectors;
1932 }
1933 
1934 static int run(mddev_t *mddev)
1935 {
1936 	conf_t *conf;
1937 	int i, j, disk_idx;
1938 	mirror_info_t *disk;
1939 	mdk_rdev_t *rdev;
1940 
1941 	if (mddev->level != 1) {
1942 		printk("raid1: %s: raid level not set to mirroring (%d)\n",
1943 		       mdname(mddev), mddev->level);
1944 		goto out;
1945 	}
1946 	if (mddev->reshape_position != MaxSector) {
1947 		printk("raid1: %s: reshape_position set but not supported\n",
1948 		       mdname(mddev));
1949 		goto out;
1950 	}
1951 	/*
1952 	 * copy the already verified devices into our private RAID1
1953 	 * bookkeeping area. [whatever we allocate in run(),
1954 	 * should be freed in stop()]
1955 	 */
1956 	conf = kzalloc(sizeof(conf_t), GFP_KERNEL);
1957 	mddev->private = conf;
1958 	if (!conf)
1959 		goto out_no_mem;
1960 
1961 	conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks,
1962 				 GFP_KERNEL);
1963 	if (!conf->mirrors)
1964 		goto out_no_mem;
1965 
1966 	conf->tmppage = alloc_page(GFP_KERNEL);
1967 	if (!conf->tmppage)
1968 		goto out_no_mem;
1969 
1970 	conf->poolinfo = kmalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
1971 	if (!conf->poolinfo)
1972 		goto out_no_mem;
1973 	conf->poolinfo->mddev = mddev;
1974 	conf->poolinfo->raid_disks = mddev->raid_disks;
1975 	conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
1976 					  r1bio_pool_free,
1977 					  conf->poolinfo);
1978 	if (!conf->r1bio_pool)
1979 		goto out_no_mem;
1980 
1981 	spin_lock_init(&conf->device_lock);
1982 	mddev->queue->queue_lock = &conf->device_lock;
1983 
1984 	list_for_each_entry(rdev, &mddev->disks, same_set) {
1985 		disk_idx = rdev->raid_disk;
1986 		if (disk_idx >= mddev->raid_disks
1987 		    || disk_idx < 0)
1988 			continue;
1989 		disk = conf->mirrors + disk_idx;
1990 
1991 		disk->rdev = rdev;
1992 
1993 		blk_queue_stack_limits(mddev->queue,
1994 				       rdev->bdev->bd_disk->queue);
1995 		/* as we don't honour merge_bvec_fn, we must never risk
1996 		 * violating it, so limit ->max_sector to one PAGE, as
1997 		 * a one page request is never in violation.
1998 		 */
1999 		if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
2000 		    mddev->queue->max_sectors > (PAGE_SIZE>>9))
2001 			blk_queue_max_sectors(mddev->queue, PAGE_SIZE>>9);
2002 
2003 		disk->head_position = 0;
2004 	}
2005 	conf->raid_disks = mddev->raid_disks;
2006 	conf->mddev = mddev;
2007 	INIT_LIST_HEAD(&conf->retry_list);
2008 
2009 	spin_lock_init(&conf->resync_lock);
2010 	init_waitqueue_head(&conf->wait_barrier);
2011 
2012 	bio_list_init(&conf->pending_bio_list);
2013 	bio_list_init(&conf->flushing_bio_list);
2014 
2015 
2016 	mddev->degraded = 0;
2017 	for (i = 0; i < conf->raid_disks; i++) {
2018 
2019 		disk = conf->mirrors + i;
2020 
2021 		if (!disk->rdev ||
2022 		    !test_bit(In_sync, &disk->rdev->flags)) {
2023 			disk->head_position = 0;
2024 			mddev->degraded++;
2025 			if (disk->rdev)
2026 				conf->fullsync = 1;
2027 		}
2028 	}
2029 	if (mddev->degraded == conf->raid_disks) {
2030 		printk(KERN_ERR "raid1: no operational mirrors for %s\n",
2031 			mdname(mddev));
2032 		goto out_free_conf;
2033 	}
2034 	if (conf->raid_disks - mddev->degraded == 1)
2035 		mddev->recovery_cp = MaxSector;
2036 
2037 	/*
2038 	 * find the first working one and use it as a starting point
2039 	 * to read balancing.
2040 	 */
2041 	for (j = 0; j < conf->raid_disks &&
2042 		     (!conf->mirrors[j].rdev ||
2043 		      !test_bit(In_sync, &conf->mirrors[j].rdev->flags)) ; j++)
2044 		/* nothing */;
2045 	conf->last_used = j;
2046 
2047 
2048 	mddev->thread = md_register_thread(raid1d, mddev, "%s_raid1");
2049 	if (!mddev->thread) {
2050 		printk(KERN_ERR
2051 		       "raid1: couldn't allocate thread for %s\n",
2052 		       mdname(mddev));
2053 		goto out_free_conf;
2054 	}
2055 
2056 	printk(KERN_INFO
2057 		"raid1: raid set %s active with %d out of %d mirrors\n",
2058 		mdname(mddev), mddev->raid_disks - mddev->degraded,
2059 		mddev->raid_disks);
2060 	/*
2061 	 * Ok, everything is just fine now
2062 	 */
2063 	md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
2064 
2065 	mddev->queue->unplug_fn = raid1_unplug;
2066 	mddev->queue->backing_dev_info.congested_fn = raid1_congested;
2067 	mddev->queue->backing_dev_info.congested_data = mddev;
2068 
2069 	return 0;
2070 
2071 out_no_mem:
2072 	printk(KERN_ERR "raid1: couldn't allocate memory for %s\n",
2073 	       mdname(mddev));
2074 
2075 out_free_conf:
2076 	if (conf) {
2077 		if (conf->r1bio_pool)
2078 			mempool_destroy(conf->r1bio_pool);
2079 		kfree(conf->mirrors);
2080 		safe_put_page(conf->tmppage);
2081 		kfree(conf->poolinfo);
2082 		kfree(conf);
2083 		mddev->private = NULL;
2084 	}
2085 out:
2086 	return -EIO;
2087 }
2088 
2089 static int stop(mddev_t *mddev)
2090 {
2091 	conf_t *conf = mddev_to_conf(mddev);
2092 	struct bitmap *bitmap = mddev->bitmap;
2093 	int behind_wait = 0;
2094 
2095 	/* wait for behind writes to complete */
2096 	while (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
2097 		behind_wait++;
2098 		printk(KERN_INFO "raid1: behind writes in progress on device %s, waiting to stop (%d)\n", mdname(mddev), behind_wait);
2099 		set_current_state(TASK_UNINTERRUPTIBLE);
2100 		schedule_timeout(HZ); /* wait a second */
2101 		/* need to kick something here to make sure I/O goes? */
2102 	}
2103 
2104 	raise_barrier(conf);
2105 	lower_barrier(conf);
2106 
2107 	md_unregister_thread(mddev->thread);
2108 	mddev->thread = NULL;
2109 	blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
2110 	if (conf->r1bio_pool)
2111 		mempool_destroy(conf->r1bio_pool);
2112 	kfree(conf->mirrors);
2113 	kfree(conf->poolinfo);
2114 	kfree(conf);
2115 	mddev->private = NULL;
2116 	return 0;
2117 }
2118 
2119 static int raid1_resize(mddev_t *mddev, sector_t sectors)
2120 {
2121 	/* no resync is happening, and there is enough space
2122 	 * on all devices, so we can resize.
2123 	 * We need to make sure resync covers any new space.
2124 	 * If the array is shrinking we should possibly wait until
2125 	 * any io in the removed space completes, but it hardly seems
2126 	 * worth it.
2127 	 */
2128 	md_set_array_sectors(mddev, raid1_size(mddev, sectors, 0));
2129 	if (mddev->array_sectors > raid1_size(mddev, sectors, 0))
2130 		return -EINVAL;
2131 	set_capacity(mddev->gendisk, mddev->array_sectors);
2132 	mddev->changed = 1;
2133 	if (sectors > mddev->dev_sectors &&
2134 	    mddev->recovery_cp == MaxSector) {
2135 		mddev->recovery_cp = mddev->dev_sectors;
2136 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2137 	}
2138 	mddev->dev_sectors = sectors;
2139 	mddev->resync_max_sectors = sectors;
2140 	return 0;
2141 }
2142 
2143 static int raid1_reshape(mddev_t *mddev)
2144 {
2145 	/* We need to:
2146 	 * 1/ resize the r1bio_pool
2147 	 * 2/ resize conf->mirrors
2148 	 *
2149 	 * We allocate a new r1bio_pool if we can.
2150 	 * Then raise a device barrier and wait until all IO stops.
2151 	 * Then resize conf->mirrors and swap in the new r1bio pool.
2152 	 *
2153 	 * At the same time, we "pack" the devices so that all the missing
2154 	 * devices have the higher raid_disk numbers.
2155 	 */
2156 	mempool_t *newpool, *oldpool;
2157 	struct pool_info *newpoolinfo;
2158 	mirror_info_t *newmirrors;
2159 	conf_t *conf = mddev_to_conf(mddev);
2160 	int cnt, raid_disks;
2161 	unsigned long flags;
2162 	int d, d2, err;
2163 
2164 	/* Cannot change chunk_size, layout, or level */
2165 	if (mddev->chunk_size != mddev->new_chunk ||
2166 	    mddev->layout != mddev->new_layout ||
2167 	    mddev->level != mddev->new_level) {
2168 		mddev->new_chunk = mddev->chunk_size;
2169 		mddev->new_layout = mddev->layout;
2170 		mddev->new_level = mddev->level;
2171 		return -EINVAL;
2172 	}
2173 
2174 	err = md_allow_write(mddev);
2175 	if (err)
2176 		return err;
2177 
2178 	raid_disks = mddev->raid_disks + mddev->delta_disks;
2179 
2180 	if (raid_disks < conf->raid_disks) {
2181 		cnt=0;
2182 		for (d= 0; d < conf->raid_disks; d++)
2183 			if (conf->mirrors[d].rdev)
2184 				cnt++;
2185 		if (cnt > raid_disks)
2186 			return -EBUSY;
2187 	}
2188 
2189 	newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
2190 	if (!newpoolinfo)
2191 		return -ENOMEM;
2192 	newpoolinfo->mddev = mddev;
2193 	newpoolinfo->raid_disks = raid_disks;
2194 
2195 	newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2196 				 r1bio_pool_free, newpoolinfo);
2197 	if (!newpool) {
2198 		kfree(newpoolinfo);
2199 		return -ENOMEM;
2200 	}
2201 	newmirrors = kzalloc(sizeof(struct mirror_info) * raid_disks, GFP_KERNEL);
2202 	if (!newmirrors) {
2203 		kfree(newpoolinfo);
2204 		mempool_destroy(newpool);
2205 		return -ENOMEM;
2206 	}
2207 
2208 	raise_barrier(conf);
2209 
2210 	/* ok, everything is stopped */
2211 	oldpool = conf->r1bio_pool;
2212 	conf->r1bio_pool = newpool;
2213 
2214 	for (d = d2 = 0; d < conf->raid_disks; d++) {
2215 		mdk_rdev_t *rdev = conf->mirrors[d].rdev;
2216 		if (rdev && rdev->raid_disk != d2) {
2217 			char nm[20];
2218 			sprintf(nm, "rd%d", rdev->raid_disk);
2219 			sysfs_remove_link(&mddev->kobj, nm);
2220 			rdev->raid_disk = d2;
2221 			sprintf(nm, "rd%d", rdev->raid_disk);
2222 			sysfs_remove_link(&mddev->kobj, nm);
2223 			if (sysfs_create_link(&mddev->kobj,
2224 					      &rdev->kobj, nm))
2225 				printk(KERN_WARNING
2226 				       "md/raid1: cannot register "
2227 				       "%s for %s\n",
2228 				       nm, mdname(mddev));
2229 		}
2230 		if (rdev)
2231 			newmirrors[d2++].rdev = rdev;
2232 	}
2233 	kfree(conf->mirrors);
2234 	conf->mirrors = newmirrors;
2235 	kfree(conf->poolinfo);
2236 	conf->poolinfo = newpoolinfo;
2237 
2238 	spin_lock_irqsave(&conf->device_lock, flags);
2239 	mddev->degraded += (raid_disks - conf->raid_disks);
2240 	spin_unlock_irqrestore(&conf->device_lock, flags);
2241 	conf->raid_disks = mddev->raid_disks = raid_disks;
2242 	mddev->delta_disks = 0;
2243 
2244 	conf->last_used = 0; /* just make sure it is in-range */
2245 	lower_barrier(conf);
2246 
2247 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2248 	md_wakeup_thread(mddev->thread);
2249 
2250 	mempool_destroy(oldpool);
2251 	return 0;
2252 }
2253 
2254 static void raid1_quiesce(mddev_t *mddev, int state)
2255 {
2256 	conf_t *conf = mddev_to_conf(mddev);
2257 
2258 	switch(state) {
2259 	case 1:
2260 		raise_barrier(conf);
2261 		break;
2262 	case 0:
2263 		lower_barrier(conf);
2264 		break;
2265 	}
2266 }
2267 
2268 
2269 static struct mdk_personality raid1_personality =
2270 {
2271 	.name		= "raid1",
2272 	.level		= 1,
2273 	.owner		= THIS_MODULE,
2274 	.make_request	= make_request,
2275 	.run		= run,
2276 	.stop		= stop,
2277 	.status		= status,
2278 	.error_handler	= error,
2279 	.hot_add_disk	= raid1_add_disk,
2280 	.hot_remove_disk= raid1_remove_disk,
2281 	.spare_active	= raid1_spare_active,
2282 	.sync_request	= sync_request,
2283 	.resize		= raid1_resize,
2284 	.size		= raid1_size,
2285 	.check_reshape	= raid1_reshape,
2286 	.quiesce	= raid1_quiesce,
2287 };
2288 
2289 static int __init raid_init(void)
2290 {
2291 	return register_md_personality(&raid1_personality);
2292 }
2293 
2294 static void raid_exit(void)
2295 {
2296 	unregister_md_personality(&raid1_personality);
2297 }
2298 
2299 module_init(raid_init);
2300 module_exit(raid_exit);
2301 MODULE_LICENSE("GPL");
2302 MODULE_ALIAS("md-personality-3"); /* RAID1 */
2303 MODULE_ALIAS("md-raid1");
2304 MODULE_ALIAS("md-level-1");
2305