xref: /openbmc/linux/drivers/md/raid1.c (revision 8d08a4c1)
1 /*
2  * raid1.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5  *
6  * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7  *
8  * RAID-1 management functions.
9  *
10  * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11  *
12  * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
13  * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14  *
15  * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16  * bitmapped intelligence in resync:
17  *
18  *      - bitmap marked during normal i/o
19  *      - bitmap used to skip nondirty blocks during sync
20  *
21  * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22  * - persistent bitmap code
23  *
24  * This program is free software; you can redistribute it and/or modify
25  * it under the terms of the GNU General Public License as published by
26  * the Free Software Foundation; either version 2, or (at your option)
27  * any later version.
28  *
29  * You should have received a copy of the GNU General Public License
30  * (for example /usr/src/linux/COPYING); if not, write to the Free
31  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32  */
33 
34 #include <linux/slab.h>
35 #include <linux/delay.h>
36 #include <linux/blkdev.h>
37 #include <linux/module.h>
38 #include <linux/seq_file.h>
39 #include <linux/ratelimit.h>
40 #include <linux/sched/signal.h>
41 
42 #include <trace/events/block.h>
43 
44 #include "md.h"
45 #include "raid1.h"
46 #include "bitmap.h"
47 
48 #define UNSUPPORTED_MDDEV_FLAGS		\
49 	((1L << MD_HAS_JOURNAL) |	\
50 	 (1L << MD_JOURNAL_CLEAN) |	\
51 	 (1L << MD_HAS_PPL))
52 
53 /*
54  * Number of guaranteed r1bios in case of extreme VM load:
55  */
56 #define	NR_RAID1_BIOS 256
57 
58 /* when we get a read error on a read-only array, we redirect to another
59  * device without failing the first device, or trying to over-write to
60  * correct the read error.  To keep track of bad blocks on a per-bio
61  * level, we store IO_BLOCKED in the appropriate 'bios' pointer
62  */
63 #define IO_BLOCKED ((struct bio *)1)
64 /* When we successfully write to a known bad-block, we need to remove the
65  * bad-block marking which must be done from process context.  So we record
66  * the success by setting devs[n].bio to IO_MADE_GOOD
67  */
68 #define IO_MADE_GOOD ((struct bio *)2)
69 
70 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
71 
72 /* When there are this many requests queue to be written by
73  * the raid1 thread, we become 'congested' to provide back-pressure
74  * for writeback.
75  */
76 static int max_queued_requests = 1024;
77 
78 static void allow_barrier(struct r1conf *conf, sector_t sector_nr);
79 static void lower_barrier(struct r1conf *conf, sector_t sector_nr);
80 
81 #define raid1_log(md, fmt, args...)				\
82 	do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid1 " fmt, ##args); } while (0)
83 
84 /*
85  * 'strct resync_pages' stores actual pages used for doing the resync
86  *  IO, and it is per-bio, so make .bi_private points to it.
87  */
88 static inline struct resync_pages *get_resync_pages(struct bio *bio)
89 {
90 	return bio->bi_private;
91 }
92 
93 /*
94  * for resync bio, r1bio pointer can be retrieved from the per-bio
95  * 'struct resync_pages'.
96  */
97 static inline struct r1bio *get_resync_r1bio(struct bio *bio)
98 {
99 	return get_resync_pages(bio)->raid_bio;
100 }
101 
102 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
103 {
104 	struct pool_info *pi = data;
105 	int size = offsetof(struct r1bio, bios[pi->raid_disks]);
106 
107 	/* allocate a r1bio with room for raid_disks entries in the bios array */
108 	return kzalloc(size, gfp_flags);
109 }
110 
111 static void r1bio_pool_free(void *r1_bio, void *data)
112 {
113 	kfree(r1_bio);
114 }
115 
116 #define RESYNC_DEPTH 32
117 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
118 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
119 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
120 #define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
121 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
122 
123 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
124 {
125 	struct pool_info *pi = data;
126 	struct r1bio *r1_bio;
127 	struct bio *bio;
128 	int need_pages;
129 	int j;
130 	struct resync_pages *rps;
131 
132 	r1_bio = r1bio_pool_alloc(gfp_flags, pi);
133 	if (!r1_bio)
134 		return NULL;
135 
136 	rps = kmalloc(sizeof(struct resync_pages) * pi->raid_disks,
137 		      gfp_flags);
138 	if (!rps)
139 		goto out_free_r1bio;
140 
141 	/*
142 	 * Allocate bios : 1 for reading, n-1 for writing
143 	 */
144 	for (j = pi->raid_disks ; j-- ; ) {
145 		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
146 		if (!bio)
147 			goto out_free_bio;
148 		r1_bio->bios[j] = bio;
149 	}
150 	/*
151 	 * Allocate RESYNC_PAGES data pages and attach them to
152 	 * the first bio.
153 	 * If this is a user-requested check/repair, allocate
154 	 * RESYNC_PAGES for each bio.
155 	 */
156 	if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
157 		need_pages = pi->raid_disks;
158 	else
159 		need_pages = 1;
160 	for (j = 0; j < pi->raid_disks; j++) {
161 		struct resync_pages *rp = &rps[j];
162 
163 		bio = r1_bio->bios[j];
164 
165 		if (j < need_pages) {
166 			if (resync_alloc_pages(rp, gfp_flags))
167 				goto out_free_pages;
168 		} else {
169 			memcpy(rp, &rps[0], sizeof(*rp));
170 			resync_get_all_pages(rp);
171 		}
172 
173 		rp->idx = 0;
174 		rp->raid_bio = r1_bio;
175 		bio->bi_private = rp;
176 	}
177 
178 	r1_bio->master_bio = NULL;
179 
180 	return r1_bio;
181 
182 out_free_pages:
183 	while (--j >= 0)
184 		resync_free_pages(&rps[j]);
185 
186 out_free_bio:
187 	while (++j < pi->raid_disks)
188 		bio_put(r1_bio->bios[j]);
189 	kfree(rps);
190 
191 out_free_r1bio:
192 	r1bio_pool_free(r1_bio, data);
193 	return NULL;
194 }
195 
196 static void r1buf_pool_free(void *__r1_bio, void *data)
197 {
198 	struct pool_info *pi = data;
199 	int i;
200 	struct r1bio *r1bio = __r1_bio;
201 	struct resync_pages *rp = NULL;
202 
203 	for (i = pi->raid_disks; i--; ) {
204 		rp = get_resync_pages(r1bio->bios[i]);
205 		resync_free_pages(rp);
206 		bio_put(r1bio->bios[i]);
207 	}
208 
209 	/* resync pages array stored in the 1st bio's .bi_private */
210 	kfree(rp);
211 
212 	r1bio_pool_free(r1bio, data);
213 }
214 
215 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
216 {
217 	int i;
218 
219 	for (i = 0; i < conf->raid_disks * 2; i++) {
220 		struct bio **bio = r1_bio->bios + i;
221 		if (!BIO_SPECIAL(*bio))
222 			bio_put(*bio);
223 		*bio = NULL;
224 	}
225 }
226 
227 static void free_r1bio(struct r1bio *r1_bio)
228 {
229 	struct r1conf *conf = r1_bio->mddev->private;
230 
231 	put_all_bios(conf, r1_bio);
232 	mempool_free(r1_bio, conf->r1bio_pool);
233 }
234 
235 static void put_buf(struct r1bio *r1_bio)
236 {
237 	struct r1conf *conf = r1_bio->mddev->private;
238 	sector_t sect = r1_bio->sector;
239 	int i;
240 
241 	for (i = 0; i < conf->raid_disks * 2; i++) {
242 		struct bio *bio = r1_bio->bios[i];
243 		if (bio->bi_end_io)
244 			rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
245 	}
246 
247 	mempool_free(r1_bio, conf->r1buf_pool);
248 
249 	lower_barrier(conf, sect);
250 }
251 
252 static void reschedule_retry(struct r1bio *r1_bio)
253 {
254 	unsigned long flags;
255 	struct mddev *mddev = r1_bio->mddev;
256 	struct r1conf *conf = mddev->private;
257 	int idx;
258 
259 	idx = sector_to_idx(r1_bio->sector);
260 	spin_lock_irqsave(&conf->device_lock, flags);
261 	list_add(&r1_bio->retry_list, &conf->retry_list);
262 	atomic_inc(&conf->nr_queued[idx]);
263 	spin_unlock_irqrestore(&conf->device_lock, flags);
264 
265 	wake_up(&conf->wait_barrier);
266 	md_wakeup_thread(mddev->thread);
267 }
268 
269 /*
270  * raid_end_bio_io() is called when we have finished servicing a mirrored
271  * operation and are ready to return a success/failure code to the buffer
272  * cache layer.
273  */
274 static void call_bio_endio(struct r1bio *r1_bio)
275 {
276 	struct bio *bio = r1_bio->master_bio;
277 	struct r1conf *conf = r1_bio->mddev->private;
278 
279 	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
280 		bio->bi_status = BLK_STS_IOERR;
281 
282 	bio_endio(bio);
283 	/*
284 	 * Wake up any possible resync thread that waits for the device
285 	 * to go idle.
286 	 */
287 	allow_barrier(conf, r1_bio->sector);
288 }
289 
290 static void raid_end_bio_io(struct r1bio *r1_bio)
291 {
292 	struct bio *bio = r1_bio->master_bio;
293 
294 	/* if nobody has done the final endio yet, do it now */
295 	if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
296 		pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
297 			 (bio_data_dir(bio) == WRITE) ? "write" : "read",
298 			 (unsigned long long) bio->bi_iter.bi_sector,
299 			 (unsigned long long) bio_end_sector(bio) - 1);
300 
301 		call_bio_endio(r1_bio);
302 	}
303 	free_r1bio(r1_bio);
304 }
305 
306 /*
307  * Update disk head position estimator based on IRQ completion info.
308  */
309 static inline void update_head_pos(int disk, struct r1bio *r1_bio)
310 {
311 	struct r1conf *conf = r1_bio->mddev->private;
312 
313 	conf->mirrors[disk].head_position =
314 		r1_bio->sector + (r1_bio->sectors);
315 }
316 
317 /*
318  * Find the disk number which triggered given bio
319  */
320 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
321 {
322 	int mirror;
323 	struct r1conf *conf = r1_bio->mddev->private;
324 	int raid_disks = conf->raid_disks;
325 
326 	for (mirror = 0; mirror < raid_disks * 2; mirror++)
327 		if (r1_bio->bios[mirror] == bio)
328 			break;
329 
330 	BUG_ON(mirror == raid_disks * 2);
331 	update_head_pos(mirror, r1_bio);
332 
333 	return mirror;
334 }
335 
336 static void raid1_end_read_request(struct bio *bio)
337 {
338 	int uptodate = !bio->bi_status;
339 	struct r1bio *r1_bio = bio->bi_private;
340 	struct r1conf *conf = r1_bio->mddev->private;
341 	struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev;
342 
343 	/*
344 	 * this branch is our 'one mirror IO has finished' event handler:
345 	 */
346 	update_head_pos(r1_bio->read_disk, r1_bio);
347 
348 	if (uptodate)
349 		set_bit(R1BIO_Uptodate, &r1_bio->state);
350 	else if (test_bit(FailFast, &rdev->flags) &&
351 		 test_bit(R1BIO_FailFast, &r1_bio->state))
352 		/* This was a fail-fast read so we definitely
353 		 * want to retry */
354 		;
355 	else {
356 		/* If all other devices have failed, we want to return
357 		 * the error upwards rather than fail the last device.
358 		 * Here we redefine "uptodate" to mean "Don't want to retry"
359 		 */
360 		unsigned long flags;
361 		spin_lock_irqsave(&conf->device_lock, flags);
362 		if (r1_bio->mddev->degraded == conf->raid_disks ||
363 		    (r1_bio->mddev->degraded == conf->raid_disks-1 &&
364 		     test_bit(In_sync, &rdev->flags)))
365 			uptodate = 1;
366 		spin_unlock_irqrestore(&conf->device_lock, flags);
367 	}
368 
369 	if (uptodate) {
370 		raid_end_bio_io(r1_bio);
371 		rdev_dec_pending(rdev, conf->mddev);
372 	} else {
373 		/*
374 		 * oops, read error:
375 		 */
376 		char b[BDEVNAME_SIZE];
377 		pr_err_ratelimited("md/raid1:%s: %s: rescheduling sector %llu\n",
378 				   mdname(conf->mddev),
379 				   bdevname(rdev->bdev, b),
380 				   (unsigned long long)r1_bio->sector);
381 		set_bit(R1BIO_ReadError, &r1_bio->state);
382 		reschedule_retry(r1_bio);
383 		/* don't drop the reference on read_disk yet */
384 	}
385 }
386 
387 static void close_write(struct r1bio *r1_bio)
388 {
389 	/* it really is the end of this request */
390 	if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
391 		bio_free_pages(r1_bio->behind_master_bio);
392 		bio_put(r1_bio->behind_master_bio);
393 		r1_bio->behind_master_bio = NULL;
394 	}
395 	/* clear the bitmap if all writes complete successfully */
396 	bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
397 			r1_bio->sectors,
398 			!test_bit(R1BIO_Degraded, &r1_bio->state),
399 			test_bit(R1BIO_BehindIO, &r1_bio->state));
400 	md_write_end(r1_bio->mddev);
401 }
402 
403 static void r1_bio_write_done(struct r1bio *r1_bio)
404 {
405 	if (!atomic_dec_and_test(&r1_bio->remaining))
406 		return;
407 
408 	if (test_bit(R1BIO_WriteError, &r1_bio->state))
409 		reschedule_retry(r1_bio);
410 	else {
411 		close_write(r1_bio);
412 		if (test_bit(R1BIO_MadeGood, &r1_bio->state))
413 			reschedule_retry(r1_bio);
414 		else
415 			raid_end_bio_io(r1_bio);
416 	}
417 }
418 
419 static void raid1_end_write_request(struct bio *bio)
420 {
421 	struct r1bio *r1_bio = bio->bi_private;
422 	int behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
423 	struct r1conf *conf = r1_bio->mddev->private;
424 	struct bio *to_put = NULL;
425 	int mirror = find_bio_disk(r1_bio, bio);
426 	struct md_rdev *rdev = conf->mirrors[mirror].rdev;
427 	bool discard_error;
428 
429 	discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
430 
431 	/*
432 	 * 'one mirror IO has finished' event handler:
433 	 */
434 	if (bio->bi_status && !discard_error) {
435 		set_bit(WriteErrorSeen,	&rdev->flags);
436 		if (!test_and_set_bit(WantReplacement, &rdev->flags))
437 			set_bit(MD_RECOVERY_NEEDED, &
438 				conf->mddev->recovery);
439 
440 		if (test_bit(FailFast, &rdev->flags) &&
441 		    (bio->bi_opf & MD_FAILFAST) &&
442 		    /* We never try FailFast to WriteMostly devices */
443 		    !test_bit(WriteMostly, &rdev->flags)) {
444 			md_error(r1_bio->mddev, rdev);
445 			if (!test_bit(Faulty, &rdev->flags))
446 				/* This is the only remaining device,
447 				 * We need to retry the write without
448 				 * FailFast
449 				 */
450 				set_bit(R1BIO_WriteError, &r1_bio->state);
451 			else {
452 				/* Finished with this branch */
453 				r1_bio->bios[mirror] = NULL;
454 				to_put = bio;
455 			}
456 		} else
457 			set_bit(R1BIO_WriteError, &r1_bio->state);
458 	} else {
459 		/*
460 		 * Set R1BIO_Uptodate in our master bio, so that we
461 		 * will return a good error code for to the higher
462 		 * levels even if IO on some other mirrored buffer
463 		 * fails.
464 		 *
465 		 * The 'master' represents the composite IO operation
466 		 * to user-side. So if something waits for IO, then it
467 		 * will wait for the 'master' bio.
468 		 */
469 		sector_t first_bad;
470 		int bad_sectors;
471 
472 		r1_bio->bios[mirror] = NULL;
473 		to_put = bio;
474 		/*
475 		 * Do not set R1BIO_Uptodate if the current device is
476 		 * rebuilding or Faulty. This is because we cannot use
477 		 * such device for properly reading the data back (we could
478 		 * potentially use it, if the current write would have felt
479 		 * before rdev->recovery_offset, but for simplicity we don't
480 		 * check this here.
481 		 */
482 		if (test_bit(In_sync, &rdev->flags) &&
483 		    !test_bit(Faulty, &rdev->flags))
484 			set_bit(R1BIO_Uptodate, &r1_bio->state);
485 
486 		/* Maybe we can clear some bad blocks. */
487 		if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
488 				&first_bad, &bad_sectors) && !discard_error) {
489 			r1_bio->bios[mirror] = IO_MADE_GOOD;
490 			set_bit(R1BIO_MadeGood, &r1_bio->state);
491 		}
492 	}
493 
494 	if (behind) {
495 		/* we release behind master bio when all write are done */
496 		if (r1_bio->behind_master_bio == bio)
497 			to_put = NULL;
498 
499 		if (test_bit(WriteMostly, &rdev->flags))
500 			atomic_dec(&r1_bio->behind_remaining);
501 
502 		/*
503 		 * In behind mode, we ACK the master bio once the I/O
504 		 * has safely reached all non-writemostly
505 		 * disks. Setting the Returned bit ensures that this
506 		 * gets done only once -- we don't ever want to return
507 		 * -EIO here, instead we'll wait
508 		 */
509 		if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
510 		    test_bit(R1BIO_Uptodate, &r1_bio->state)) {
511 			/* Maybe we can return now */
512 			if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
513 				struct bio *mbio = r1_bio->master_bio;
514 				pr_debug("raid1: behind end write sectors"
515 					 " %llu-%llu\n",
516 					 (unsigned long long) mbio->bi_iter.bi_sector,
517 					 (unsigned long long) bio_end_sector(mbio) - 1);
518 				call_bio_endio(r1_bio);
519 			}
520 		}
521 	}
522 	if (r1_bio->bios[mirror] == NULL)
523 		rdev_dec_pending(rdev, conf->mddev);
524 
525 	/*
526 	 * Let's see if all mirrored write operations have finished
527 	 * already.
528 	 */
529 	r1_bio_write_done(r1_bio);
530 
531 	if (to_put)
532 		bio_put(to_put);
533 }
534 
535 static sector_t align_to_barrier_unit_end(sector_t start_sector,
536 					  sector_t sectors)
537 {
538 	sector_t len;
539 
540 	WARN_ON(sectors == 0);
541 	/*
542 	 * len is the number of sectors from start_sector to end of the
543 	 * barrier unit which start_sector belongs to.
544 	 */
545 	len = round_up(start_sector + 1, BARRIER_UNIT_SECTOR_SIZE) -
546 	      start_sector;
547 
548 	if (len > sectors)
549 		len = sectors;
550 
551 	return len;
552 }
553 
554 /*
555  * This routine returns the disk from which the requested read should
556  * be done. There is a per-array 'next expected sequential IO' sector
557  * number - if this matches on the next IO then we use the last disk.
558  * There is also a per-disk 'last know head position' sector that is
559  * maintained from IRQ contexts, both the normal and the resync IO
560  * completion handlers update this position correctly. If there is no
561  * perfect sequential match then we pick the disk whose head is closest.
562  *
563  * If there are 2 mirrors in the same 2 devices, performance degrades
564  * because position is mirror, not device based.
565  *
566  * The rdev for the device selected will have nr_pending incremented.
567  */
568 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
569 {
570 	const sector_t this_sector = r1_bio->sector;
571 	int sectors;
572 	int best_good_sectors;
573 	int best_disk, best_dist_disk, best_pending_disk;
574 	int has_nonrot_disk;
575 	int disk;
576 	sector_t best_dist;
577 	unsigned int min_pending;
578 	struct md_rdev *rdev;
579 	int choose_first;
580 	int choose_next_idle;
581 
582 	rcu_read_lock();
583 	/*
584 	 * Check if we can balance. We can balance on the whole
585 	 * device if no resync is going on, or below the resync window.
586 	 * We take the first readable disk when above the resync window.
587 	 */
588  retry:
589 	sectors = r1_bio->sectors;
590 	best_disk = -1;
591 	best_dist_disk = -1;
592 	best_dist = MaxSector;
593 	best_pending_disk = -1;
594 	min_pending = UINT_MAX;
595 	best_good_sectors = 0;
596 	has_nonrot_disk = 0;
597 	choose_next_idle = 0;
598 	clear_bit(R1BIO_FailFast, &r1_bio->state);
599 
600 	if ((conf->mddev->recovery_cp < this_sector + sectors) ||
601 	    (mddev_is_clustered(conf->mddev) &&
602 	    md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
603 		    this_sector + sectors)))
604 		choose_first = 1;
605 	else
606 		choose_first = 0;
607 
608 	for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
609 		sector_t dist;
610 		sector_t first_bad;
611 		int bad_sectors;
612 		unsigned int pending;
613 		bool nonrot;
614 
615 		rdev = rcu_dereference(conf->mirrors[disk].rdev);
616 		if (r1_bio->bios[disk] == IO_BLOCKED
617 		    || rdev == NULL
618 		    || test_bit(Faulty, &rdev->flags))
619 			continue;
620 		if (!test_bit(In_sync, &rdev->flags) &&
621 		    rdev->recovery_offset < this_sector + sectors)
622 			continue;
623 		if (test_bit(WriteMostly, &rdev->flags)) {
624 			/* Don't balance among write-mostly, just
625 			 * use the first as a last resort */
626 			if (best_dist_disk < 0) {
627 				if (is_badblock(rdev, this_sector, sectors,
628 						&first_bad, &bad_sectors)) {
629 					if (first_bad <= this_sector)
630 						/* Cannot use this */
631 						continue;
632 					best_good_sectors = first_bad - this_sector;
633 				} else
634 					best_good_sectors = sectors;
635 				best_dist_disk = disk;
636 				best_pending_disk = disk;
637 			}
638 			continue;
639 		}
640 		/* This is a reasonable device to use.  It might
641 		 * even be best.
642 		 */
643 		if (is_badblock(rdev, this_sector, sectors,
644 				&first_bad, &bad_sectors)) {
645 			if (best_dist < MaxSector)
646 				/* already have a better device */
647 				continue;
648 			if (first_bad <= this_sector) {
649 				/* cannot read here. If this is the 'primary'
650 				 * device, then we must not read beyond
651 				 * bad_sectors from another device..
652 				 */
653 				bad_sectors -= (this_sector - first_bad);
654 				if (choose_first && sectors > bad_sectors)
655 					sectors = bad_sectors;
656 				if (best_good_sectors > sectors)
657 					best_good_sectors = sectors;
658 
659 			} else {
660 				sector_t good_sectors = first_bad - this_sector;
661 				if (good_sectors > best_good_sectors) {
662 					best_good_sectors = good_sectors;
663 					best_disk = disk;
664 				}
665 				if (choose_first)
666 					break;
667 			}
668 			continue;
669 		} else {
670 			if ((sectors > best_good_sectors) && (best_disk >= 0))
671 				best_disk = -1;
672 			best_good_sectors = sectors;
673 		}
674 
675 		if (best_disk >= 0)
676 			/* At least two disks to choose from so failfast is OK */
677 			set_bit(R1BIO_FailFast, &r1_bio->state);
678 
679 		nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
680 		has_nonrot_disk |= nonrot;
681 		pending = atomic_read(&rdev->nr_pending);
682 		dist = abs(this_sector - conf->mirrors[disk].head_position);
683 		if (choose_first) {
684 			best_disk = disk;
685 			break;
686 		}
687 		/* Don't change to another disk for sequential reads */
688 		if (conf->mirrors[disk].next_seq_sect == this_sector
689 		    || dist == 0) {
690 			int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
691 			struct raid1_info *mirror = &conf->mirrors[disk];
692 
693 			best_disk = disk;
694 			/*
695 			 * If buffered sequential IO size exceeds optimal
696 			 * iosize, check if there is idle disk. If yes, choose
697 			 * the idle disk. read_balance could already choose an
698 			 * idle disk before noticing it's a sequential IO in
699 			 * this disk. This doesn't matter because this disk
700 			 * will idle, next time it will be utilized after the
701 			 * first disk has IO size exceeds optimal iosize. In
702 			 * this way, iosize of the first disk will be optimal
703 			 * iosize at least. iosize of the second disk might be
704 			 * small, but not a big deal since when the second disk
705 			 * starts IO, the first disk is likely still busy.
706 			 */
707 			if (nonrot && opt_iosize > 0 &&
708 			    mirror->seq_start != MaxSector &&
709 			    mirror->next_seq_sect > opt_iosize &&
710 			    mirror->next_seq_sect - opt_iosize >=
711 			    mirror->seq_start) {
712 				choose_next_idle = 1;
713 				continue;
714 			}
715 			break;
716 		}
717 
718 		if (choose_next_idle)
719 			continue;
720 
721 		if (min_pending > pending) {
722 			min_pending = pending;
723 			best_pending_disk = disk;
724 		}
725 
726 		if (dist < best_dist) {
727 			best_dist = dist;
728 			best_dist_disk = disk;
729 		}
730 	}
731 
732 	/*
733 	 * If all disks are rotational, choose the closest disk. If any disk is
734 	 * non-rotational, choose the disk with less pending request even the
735 	 * disk is rotational, which might/might not be optimal for raids with
736 	 * mixed ratation/non-rotational disks depending on workload.
737 	 */
738 	if (best_disk == -1) {
739 		if (has_nonrot_disk || min_pending == 0)
740 			best_disk = best_pending_disk;
741 		else
742 			best_disk = best_dist_disk;
743 	}
744 
745 	if (best_disk >= 0) {
746 		rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
747 		if (!rdev)
748 			goto retry;
749 		atomic_inc(&rdev->nr_pending);
750 		sectors = best_good_sectors;
751 
752 		if (conf->mirrors[best_disk].next_seq_sect != this_sector)
753 			conf->mirrors[best_disk].seq_start = this_sector;
754 
755 		conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
756 	}
757 	rcu_read_unlock();
758 	*max_sectors = sectors;
759 
760 	return best_disk;
761 }
762 
763 static int raid1_congested(struct mddev *mddev, int bits)
764 {
765 	struct r1conf *conf = mddev->private;
766 	int i, ret = 0;
767 
768 	if ((bits & (1 << WB_async_congested)) &&
769 	    conf->pending_count >= max_queued_requests)
770 		return 1;
771 
772 	rcu_read_lock();
773 	for (i = 0; i < conf->raid_disks * 2; i++) {
774 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
775 		if (rdev && !test_bit(Faulty, &rdev->flags)) {
776 			struct request_queue *q = bdev_get_queue(rdev->bdev);
777 
778 			BUG_ON(!q);
779 
780 			/* Note the '|| 1' - when read_balance prefers
781 			 * non-congested targets, it can be removed
782 			 */
783 			if ((bits & (1 << WB_async_congested)) || 1)
784 				ret |= bdi_congested(q->backing_dev_info, bits);
785 			else
786 				ret &= bdi_congested(q->backing_dev_info, bits);
787 		}
788 	}
789 	rcu_read_unlock();
790 	return ret;
791 }
792 
793 static void flush_bio_list(struct r1conf *conf, struct bio *bio)
794 {
795 	/* flush any pending bitmap writes to disk before proceeding w/ I/O */
796 	bitmap_unplug(conf->mddev->bitmap);
797 	wake_up(&conf->wait_barrier);
798 
799 	while (bio) { /* submit pending writes */
800 		struct bio *next = bio->bi_next;
801 		struct md_rdev *rdev = (void*)bio->bi_bdev;
802 		bio->bi_next = NULL;
803 		bio->bi_bdev = rdev->bdev;
804 		if (test_bit(Faulty, &rdev->flags)) {
805 			bio->bi_status = BLK_STS_IOERR;
806 			bio_endio(bio);
807 		} else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
808 				    !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
809 			/* Just ignore it */
810 			bio_endio(bio);
811 		else
812 			generic_make_request(bio);
813 		bio = next;
814 	}
815 }
816 
817 static void flush_pending_writes(struct r1conf *conf)
818 {
819 	/* Any writes that have been queued but are awaiting
820 	 * bitmap updates get flushed here.
821 	 */
822 	spin_lock_irq(&conf->device_lock);
823 
824 	if (conf->pending_bio_list.head) {
825 		struct bio *bio;
826 		bio = bio_list_get(&conf->pending_bio_list);
827 		conf->pending_count = 0;
828 		spin_unlock_irq(&conf->device_lock);
829 		flush_bio_list(conf, bio);
830 	} else
831 		spin_unlock_irq(&conf->device_lock);
832 }
833 
834 /* Barriers....
835  * Sometimes we need to suspend IO while we do something else,
836  * either some resync/recovery, or reconfigure the array.
837  * To do this we raise a 'barrier'.
838  * The 'barrier' is a counter that can be raised multiple times
839  * to count how many activities are happening which preclude
840  * normal IO.
841  * We can only raise the barrier if there is no pending IO.
842  * i.e. if nr_pending == 0.
843  * We choose only to raise the barrier if no-one is waiting for the
844  * barrier to go down.  This means that as soon as an IO request
845  * is ready, no other operations which require a barrier will start
846  * until the IO request has had a chance.
847  *
848  * So: regular IO calls 'wait_barrier'.  When that returns there
849  *    is no backgroup IO happening,  It must arrange to call
850  *    allow_barrier when it has finished its IO.
851  * backgroup IO calls must call raise_barrier.  Once that returns
852  *    there is no normal IO happeing.  It must arrange to call
853  *    lower_barrier when the particular background IO completes.
854  */
855 static void raise_barrier(struct r1conf *conf, sector_t sector_nr)
856 {
857 	int idx = sector_to_idx(sector_nr);
858 
859 	spin_lock_irq(&conf->resync_lock);
860 
861 	/* Wait until no block IO is waiting */
862 	wait_event_lock_irq(conf->wait_barrier,
863 			    !atomic_read(&conf->nr_waiting[idx]),
864 			    conf->resync_lock);
865 
866 	/* block any new IO from starting */
867 	atomic_inc(&conf->barrier[idx]);
868 	/*
869 	 * In raise_barrier() we firstly increase conf->barrier[idx] then
870 	 * check conf->nr_pending[idx]. In _wait_barrier() we firstly
871 	 * increase conf->nr_pending[idx] then check conf->barrier[idx].
872 	 * A memory barrier here to make sure conf->nr_pending[idx] won't
873 	 * be fetched before conf->barrier[idx] is increased. Otherwise
874 	 * there will be a race between raise_barrier() and _wait_barrier().
875 	 */
876 	smp_mb__after_atomic();
877 
878 	/* For these conditions we must wait:
879 	 * A: while the array is in frozen state
880 	 * B: while conf->nr_pending[idx] is not 0, meaning regular I/O
881 	 *    existing in corresponding I/O barrier bucket.
882 	 * C: while conf->barrier[idx] >= RESYNC_DEPTH, meaning reaches
883 	 *    max resync count which allowed on current I/O barrier bucket.
884 	 */
885 	wait_event_lock_irq(conf->wait_barrier,
886 			    !conf->array_frozen &&
887 			     !atomic_read(&conf->nr_pending[idx]) &&
888 			     atomic_read(&conf->barrier[idx]) < RESYNC_DEPTH,
889 			    conf->resync_lock);
890 
891 	atomic_inc(&conf->nr_sync_pending);
892 	spin_unlock_irq(&conf->resync_lock);
893 }
894 
895 static void lower_barrier(struct r1conf *conf, sector_t sector_nr)
896 {
897 	int idx = sector_to_idx(sector_nr);
898 
899 	BUG_ON(atomic_read(&conf->barrier[idx]) <= 0);
900 
901 	atomic_dec(&conf->barrier[idx]);
902 	atomic_dec(&conf->nr_sync_pending);
903 	wake_up(&conf->wait_barrier);
904 }
905 
906 static void _wait_barrier(struct r1conf *conf, int idx)
907 {
908 	/*
909 	 * We need to increase conf->nr_pending[idx] very early here,
910 	 * then raise_barrier() can be blocked when it waits for
911 	 * conf->nr_pending[idx] to be 0. Then we can avoid holding
912 	 * conf->resync_lock when there is no barrier raised in same
913 	 * barrier unit bucket. Also if the array is frozen, I/O
914 	 * should be blocked until array is unfrozen.
915 	 */
916 	atomic_inc(&conf->nr_pending[idx]);
917 	/*
918 	 * In _wait_barrier() we firstly increase conf->nr_pending[idx], then
919 	 * check conf->barrier[idx]. In raise_barrier() we firstly increase
920 	 * conf->barrier[idx], then check conf->nr_pending[idx]. A memory
921 	 * barrier is necessary here to make sure conf->barrier[idx] won't be
922 	 * fetched before conf->nr_pending[idx] is increased. Otherwise there
923 	 * will be a race between _wait_barrier() and raise_barrier().
924 	 */
925 	smp_mb__after_atomic();
926 
927 	/*
928 	 * Don't worry about checking two atomic_t variables at same time
929 	 * here. If during we check conf->barrier[idx], the array is
930 	 * frozen (conf->array_frozen is 1), and chonf->barrier[idx] is
931 	 * 0, it is safe to return and make the I/O continue. Because the
932 	 * array is frozen, all I/O returned here will eventually complete
933 	 * or be queued, no race will happen. See code comment in
934 	 * frozen_array().
935 	 */
936 	if (!READ_ONCE(conf->array_frozen) &&
937 	    !atomic_read(&conf->barrier[idx]))
938 		return;
939 
940 	/*
941 	 * After holding conf->resync_lock, conf->nr_pending[idx]
942 	 * should be decreased before waiting for barrier to drop.
943 	 * Otherwise, we may encounter a race condition because
944 	 * raise_barrer() might be waiting for conf->nr_pending[idx]
945 	 * to be 0 at same time.
946 	 */
947 	spin_lock_irq(&conf->resync_lock);
948 	atomic_inc(&conf->nr_waiting[idx]);
949 	atomic_dec(&conf->nr_pending[idx]);
950 	/*
951 	 * In case freeze_array() is waiting for
952 	 * get_unqueued_pending() == extra
953 	 */
954 	wake_up(&conf->wait_barrier);
955 	/* Wait for the barrier in same barrier unit bucket to drop. */
956 	wait_event_lock_irq(conf->wait_barrier,
957 			    !conf->array_frozen &&
958 			     !atomic_read(&conf->barrier[idx]),
959 			    conf->resync_lock);
960 	atomic_inc(&conf->nr_pending[idx]);
961 	atomic_dec(&conf->nr_waiting[idx]);
962 	spin_unlock_irq(&conf->resync_lock);
963 }
964 
965 static void wait_read_barrier(struct r1conf *conf, sector_t sector_nr)
966 {
967 	int idx = sector_to_idx(sector_nr);
968 
969 	/*
970 	 * Very similar to _wait_barrier(). The difference is, for read
971 	 * I/O we don't need wait for sync I/O, but if the whole array
972 	 * is frozen, the read I/O still has to wait until the array is
973 	 * unfrozen. Since there is no ordering requirement with
974 	 * conf->barrier[idx] here, memory barrier is unnecessary as well.
975 	 */
976 	atomic_inc(&conf->nr_pending[idx]);
977 
978 	if (!READ_ONCE(conf->array_frozen))
979 		return;
980 
981 	spin_lock_irq(&conf->resync_lock);
982 	atomic_inc(&conf->nr_waiting[idx]);
983 	atomic_dec(&conf->nr_pending[idx]);
984 	/*
985 	 * In case freeze_array() is waiting for
986 	 * get_unqueued_pending() == extra
987 	 */
988 	wake_up(&conf->wait_barrier);
989 	/* Wait for array to be unfrozen */
990 	wait_event_lock_irq(conf->wait_barrier,
991 			    !conf->array_frozen,
992 			    conf->resync_lock);
993 	atomic_inc(&conf->nr_pending[idx]);
994 	atomic_dec(&conf->nr_waiting[idx]);
995 	spin_unlock_irq(&conf->resync_lock);
996 }
997 
998 static void wait_barrier(struct r1conf *conf, sector_t sector_nr)
999 {
1000 	int idx = sector_to_idx(sector_nr);
1001 
1002 	_wait_barrier(conf, idx);
1003 }
1004 
1005 static void wait_all_barriers(struct r1conf *conf)
1006 {
1007 	int idx;
1008 
1009 	for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
1010 		_wait_barrier(conf, idx);
1011 }
1012 
1013 static void _allow_barrier(struct r1conf *conf, int idx)
1014 {
1015 	atomic_dec(&conf->nr_pending[idx]);
1016 	wake_up(&conf->wait_barrier);
1017 }
1018 
1019 static void allow_barrier(struct r1conf *conf, sector_t sector_nr)
1020 {
1021 	int idx = sector_to_idx(sector_nr);
1022 
1023 	_allow_barrier(conf, idx);
1024 }
1025 
1026 static void allow_all_barriers(struct r1conf *conf)
1027 {
1028 	int idx;
1029 
1030 	for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
1031 		_allow_barrier(conf, idx);
1032 }
1033 
1034 /* conf->resync_lock should be held */
1035 static int get_unqueued_pending(struct r1conf *conf)
1036 {
1037 	int idx, ret;
1038 
1039 	ret = atomic_read(&conf->nr_sync_pending);
1040 	for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
1041 		ret += atomic_read(&conf->nr_pending[idx]) -
1042 			atomic_read(&conf->nr_queued[idx]);
1043 
1044 	return ret;
1045 }
1046 
1047 static void freeze_array(struct r1conf *conf, int extra)
1048 {
1049 	/* Stop sync I/O and normal I/O and wait for everything to
1050 	 * go quiet.
1051 	 * This is called in two situations:
1052 	 * 1) management command handlers (reshape, remove disk, quiesce).
1053 	 * 2) one normal I/O request failed.
1054 
1055 	 * After array_frozen is set to 1, new sync IO will be blocked at
1056 	 * raise_barrier(), and new normal I/O will blocked at _wait_barrier()
1057 	 * or wait_read_barrier(). The flying I/Os will either complete or be
1058 	 * queued. When everything goes quite, there are only queued I/Os left.
1059 
1060 	 * Every flying I/O contributes to a conf->nr_pending[idx], idx is the
1061 	 * barrier bucket index which this I/O request hits. When all sync and
1062 	 * normal I/O are queued, sum of all conf->nr_pending[] will match sum
1063 	 * of all conf->nr_queued[]. But normal I/O failure is an exception,
1064 	 * in handle_read_error(), we may call freeze_array() before trying to
1065 	 * fix the read error. In this case, the error read I/O is not queued,
1066 	 * so get_unqueued_pending() == 1.
1067 	 *
1068 	 * Therefore before this function returns, we need to wait until
1069 	 * get_unqueued_pendings(conf) gets equal to extra. For
1070 	 * normal I/O context, extra is 1, in rested situations extra is 0.
1071 	 */
1072 	spin_lock_irq(&conf->resync_lock);
1073 	conf->array_frozen = 1;
1074 	raid1_log(conf->mddev, "wait freeze");
1075 	wait_event_lock_irq_cmd(
1076 		conf->wait_barrier,
1077 		get_unqueued_pending(conf) == extra,
1078 		conf->resync_lock,
1079 		flush_pending_writes(conf));
1080 	spin_unlock_irq(&conf->resync_lock);
1081 }
1082 static void unfreeze_array(struct r1conf *conf)
1083 {
1084 	/* reverse the effect of the freeze */
1085 	spin_lock_irq(&conf->resync_lock);
1086 	conf->array_frozen = 0;
1087 	spin_unlock_irq(&conf->resync_lock);
1088 	wake_up(&conf->wait_barrier);
1089 }
1090 
1091 static struct bio *alloc_behind_master_bio(struct r1bio *r1_bio,
1092 					   struct bio *bio)
1093 {
1094 	int size = bio->bi_iter.bi_size;
1095 	unsigned vcnt = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1096 	int i = 0;
1097 	struct bio *behind_bio = NULL;
1098 
1099 	behind_bio = bio_alloc_mddev(GFP_NOIO, vcnt, r1_bio->mddev);
1100 	if (!behind_bio)
1101 		goto fail;
1102 
1103 	/* discard op, we don't support writezero/writesame yet */
1104 	if (!bio_has_data(bio))
1105 		goto skip_copy;
1106 
1107 	while (i < vcnt && size) {
1108 		struct page *page;
1109 		int len = min_t(int, PAGE_SIZE, size);
1110 
1111 		page = alloc_page(GFP_NOIO);
1112 		if (unlikely(!page))
1113 			goto free_pages;
1114 
1115 		bio_add_page(behind_bio, page, len, 0);
1116 
1117 		size -= len;
1118 		i++;
1119 	}
1120 
1121 	bio_copy_data(behind_bio, bio);
1122 skip_copy:
1123 	r1_bio->behind_master_bio = behind_bio;;
1124 	set_bit(R1BIO_BehindIO, &r1_bio->state);
1125 
1126 	return behind_bio;
1127 
1128 free_pages:
1129 	pr_debug("%dB behind alloc failed, doing sync I/O\n",
1130 		 bio->bi_iter.bi_size);
1131 	bio_free_pages(behind_bio);
1132 fail:
1133 	return behind_bio;
1134 }
1135 
1136 struct raid1_plug_cb {
1137 	struct blk_plug_cb	cb;
1138 	struct bio_list		pending;
1139 	int			pending_cnt;
1140 };
1141 
1142 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1143 {
1144 	struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1145 						  cb);
1146 	struct mddev *mddev = plug->cb.data;
1147 	struct r1conf *conf = mddev->private;
1148 	struct bio *bio;
1149 
1150 	if (from_schedule || current->bio_list) {
1151 		spin_lock_irq(&conf->device_lock);
1152 		bio_list_merge(&conf->pending_bio_list, &plug->pending);
1153 		conf->pending_count += plug->pending_cnt;
1154 		spin_unlock_irq(&conf->device_lock);
1155 		wake_up(&conf->wait_barrier);
1156 		md_wakeup_thread(mddev->thread);
1157 		kfree(plug);
1158 		return;
1159 	}
1160 
1161 	/* we aren't scheduling, so we can do the write-out directly. */
1162 	bio = bio_list_get(&plug->pending);
1163 	flush_bio_list(conf, bio);
1164 	kfree(plug);
1165 }
1166 
1167 static void init_r1bio(struct r1bio *r1_bio, struct mddev *mddev, struct bio *bio)
1168 {
1169 	r1_bio->master_bio = bio;
1170 	r1_bio->sectors = bio_sectors(bio);
1171 	r1_bio->state = 0;
1172 	r1_bio->mddev = mddev;
1173 	r1_bio->sector = bio->bi_iter.bi_sector;
1174 }
1175 
1176 static inline struct r1bio *
1177 alloc_r1bio(struct mddev *mddev, struct bio *bio)
1178 {
1179 	struct r1conf *conf = mddev->private;
1180 	struct r1bio *r1_bio;
1181 
1182 	r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1183 	/* Ensure no bio records IO_BLOCKED */
1184 	memset(r1_bio->bios, 0, conf->raid_disks * sizeof(r1_bio->bios[0]));
1185 	init_r1bio(r1_bio, mddev, bio);
1186 	return r1_bio;
1187 }
1188 
1189 static void raid1_read_request(struct mddev *mddev, struct bio *bio,
1190 			       int max_read_sectors, struct r1bio *r1_bio)
1191 {
1192 	struct r1conf *conf = mddev->private;
1193 	struct raid1_info *mirror;
1194 	struct bio *read_bio;
1195 	struct bitmap *bitmap = mddev->bitmap;
1196 	const int op = bio_op(bio);
1197 	const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1198 	int max_sectors;
1199 	int rdisk;
1200 	bool print_msg = !!r1_bio;
1201 	char b[BDEVNAME_SIZE];
1202 
1203 	/*
1204 	 * If r1_bio is set, we are blocking the raid1d thread
1205 	 * so there is a tiny risk of deadlock.  So ask for
1206 	 * emergency memory if needed.
1207 	 */
1208 	gfp_t gfp = r1_bio ? (GFP_NOIO | __GFP_HIGH) : GFP_NOIO;
1209 
1210 	if (print_msg) {
1211 		/* Need to get the block device name carefully */
1212 		struct md_rdev *rdev;
1213 		rcu_read_lock();
1214 		rdev = rcu_dereference(conf->mirrors[r1_bio->read_disk].rdev);
1215 		if (rdev)
1216 			bdevname(rdev->bdev, b);
1217 		else
1218 			strcpy(b, "???");
1219 		rcu_read_unlock();
1220 	}
1221 
1222 	/*
1223 	 * Still need barrier for READ in case that whole
1224 	 * array is frozen.
1225 	 */
1226 	wait_read_barrier(conf, bio->bi_iter.bi_sector);
1227 
1228 	if (!r1_bio)
1229 		r1_bio = alloc_r1bio(mddev, bio);
1230 	else
1231 		init_r1bio(r1_bio, mddev, bio);
1232 	r1_bio->sectors = max_read_sectors;
1233 
1234 	/*
1235 	 * make_request() can abort the operation when read-ahead is being
1236 	 * used and no empty request is available.
1237 	 */
1238 	rdisk = read_balance(conf, r1_bio, &max_sectors);
1239 
1240 	if (rdisk < 0) {
1241 		/* couldn't find anywhere to read from */
1242 		if (print_msg) {
1243 			pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
1244 					    mdname(mddev),
1245 					    b,
1246 					    (unsigned long long)r1_bio->sector);
1247 		}
1248 		raid_end_bio_io(r1_bio);
1249 		return;
1250 	}
1251 	mirror = conf->mirrors + rdisk;
1252 
1253 	if (print_msg)
1254 		pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %s\n",
1255 				    mdname(mddev),
1256 				    (unsigned long long)r1_bio->sector,
1257 				    bdevname(mirror->rdev->bdev, b));
1258 
1259 	if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1260 	    bitmap) {
1261 		/*
1262 		 * Reading from a write-mostly device must take care not to
1263 		 * over-take any writes that are 'behind'
1264 		 */
1265 		raid1_log(mddev, "wait behind writes");
1266 		wait_event(bitmap->behind_wait,
1267 			   atomic_read(&bitmap->behind_writes) == 0);
1268 	}
1269 
1270 	if (max_sectors < bio_sectors(bio)) {
1271 		struct bio *split = bio_split(bio, max_sectors,
1272 					      gfp, conf->bio_split);
1273 		bio_chain(split, bio);
1274 		generic_make_request(bio);
1275 		bio = split;
1276 		r1_bio->master_bio = bio;
1277 		r1_bio->sectors = max_sectors;
1278 	}
1279 
1280 	r1_bio->read_disk = rdisk;
1281 
1282 	read_bio = bio_clone_fast(bio, gfp, mddev->bio_set);
1283 
1284 	r1_bio->bios[rdisk] = read_bio;
1285 
1286 	read_bio->bi_iter.bi_sector = r1_bio->sector +
1287 		mirror->rdev->data_offset;
1288 	read_bio->bi_bdev = mirror->rdev->bdev;
1289 	read_bio->bi_end_io = raid1_end_read_request;
1290 	bio_set_op_attrs(read_bio, op, do_sync);
1291 	if (test_bit(FailFast, &mirror->rdev->flags) &&
1292 	    test_bit(R1BIO_FailFast, &r1_bio->state))
1293 	        read_bio->bi_opf |= MD_FAILFAST;
1294 	read_bio->bi_private = r1_bio;
1295 
1296 	if (mddev->gendisk)
1297 	        trace_block_bio_remap(bdev_get_queue(read_bio->bi_bdev),
1298 	                              read_bio, disk_devt(mddev->gendisk),
1299 	                              r1_bio->sector);
1300 
1301 	generic_make_request(read_bio);
1302 }
1303 
1304 static void raid1_write_request(struct mddev *mddev, struct bio *bio,
1305 				int max_write_sectors)
1306 {
1307 	struct r1conf *conf = mddev->private;
1308 	struct r1bio *r1_bio;
1309 	int i, disks;
1310 	struct bitmap *bitmap = mddev->bitmap;
1311 	unsigned long flags;
1312 	struct md_rdev *blocked_rdev;
1313 	struct blk_plug_cb *cb;
1314 	struct raid1_plug_cb *plug = NULL;
1315 	int first_clone;
1316 	int max_sectors;
1317 
1318 	/*
1319 	 * Register the new request and wait if the reconstruction
1320 	 * thread has put up a bar for new requests.
1321 	 * Continue immediately if no resync is active currently.
1322 	 */
1323 
1324 
1325 	if ((bio_end_sector(bio) > mddev->suspend_lo &&
1326 	    bio->bi_iter.bi_sector < mddev->suspend_hi) ||
1327 	    (mddev_is_clustered(mddev) &&
1328 	     md_cluster_ops->area_resyncing(mddev, WRITE,
1329 		     bio->bi_iter.bi_sector, bio_end_sector(bio)))) {
1330 
1331 		/*
1332 		 * As the suspend_* range is controlled by userspace, we want
1333 		 * an interruptible wait.
1334 		 */
1335 		DEFINE_WAIT(w);
1336 		for (;;) {
1337 			sigset_t full, old;
1338 			prepare_to_wait(&conf->wait_barrier,
1339 					&w, TASK_INTERRUPTIBLE);
1340 			if (bio_end_sector(bio) <= mddev->suspend_lo ||
1341 			    bio->bi_iter.bi_sector >= mddev->suspend_hi ||
1342 			    (mddev_is_clustered(mddev) &&
1343 			     !md_cluster_ops->area_resyncing(mddev, WRITE,
1344 				     bio->bi_iter.bi_sector,
1345 				     bio_end_sector(bio))))
1346 				break;
1347 			sigfillset(&full);
1348 			sigprocmask(SIG_BLOCK, &full, &old);
1349 			schedule();
1350 			sigprocmask(SIG_SETMASK, &old, NULL);
1351 		}
1352 		finish_wait(&conf->wait_barrier, &w);
1353 	}
1354 	wait_barrier(conf, bio->bi_iter.bi_sector);
1355 
1356 	r1_bio = alloc_r1bio(mddev, bio);
1357 	r1_bio->sectors = max_write_sectors;
1358 
1359 	if (conf->pending_count >= max_queued_requests) {
1360 		md_wakeup_thread(mddev->thread);
1361 		raid1_log(mddev, "wait queued");
1362 		wait_event(conf->wait_barrier,
1363 			   conf->pending_count < max_queued_requests);
1364 	}
1365 	/* first select target devices under rcu_lock and
1366 	 * inc refcount on their rdev.  Record them by setting
1367 	 * bios[x] to bio
1368 	 * If there are known/acknowledged bad blocks on any device on
1369 	 * which we have seen a write error, we want to avoid writing those
1370 	 * blocks.
1371 	 * This potentially requires several writes to write around
1372 	 * the bad blocks.  Each set of writes gets it's own r1bio
1373 	 * with a set of bios attached.
1374 	 */
1375 
1376 	disks = conf->raid_disks * 2;
1377  retry_write:
1378 	blocked_rdev = NULL;
1379 	rcu_read_lock();
1380 	max_sectors = r1_bio->sectors;
1381 	for (i = 0;  i < disks; i++) {
1382 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1383 		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1384 			atomic_inc(&rdev->nr_pending);
1385 			blocked_rdev = rdev;
1386 			break;
1387 		}
1388 		r1_bio->bios[i] = NULL;
1389 		if (!rdev || test_bit(Faulty, &rdev->flags)) {
1390 			if (i < conf->raid_disks)
1391 				set_bit(R1BIO_Degraded, &r1_bio->state);
1392 			continue;
1393 		}
1394 
1395 		atomic_inc(&rdev->nr_pending);
1396 		if (test_bit(WriteErrorSeen, &rdev->flags)) {
1397 			sector_t first_bad;
1398 			int bad_sectors;
1399 			int is_bad;
1400 
1401 			is_bad = is_badblock(rdev, r1_bio->sector, max_sectors,
1402 					     &first_bad, &bad_sectors);
1403 			if (is_bad < 0) {
1404 				/* mustn't write here until the bad block is
1405 				 * acknowledged*/
1406 				set_bit(BlockedBadBlocks, &rdev->flags);
1407 				blocked_rdev = rdev;
1408 				break;
1409 			}
1410 			if (is_bad && first_bad <= r1_bio->sector) {
1411 				/* Cannot write here at all */
1412 				bad_sectors -= (r1_bio->sector - first_bad);
1413 				if (bad_sectors < max_sectors)
1414 					/* mustn't write more than bad_sectors
1415 					 * to other devices yet
1416 					 */
1417 					max_sectors = bad_sectors;
1418 				rdev_dec_pending(rdev, mddev);
1419 				/* We don't set R1BIO_Degraded as that
1420 				 * only applies if the disk is
1421 				 * missing, so it might be re-added,
1422 				 * and we want to know to recover this
1423 				 * chunk.
1424 				 * In this case the device is here,
1425 				 * and the fact that this chunk is not
1426 				 * in-sync is recorded in the bad
1427 				 * block log
1428 				 */
1429 				continue;
1430 			}
1431 			if (is_bad) {
1432 				int good_sectors = first_bad - r1_bio->sector;
1433 				if (good_sectors < max_sectors)
1434 					max_sectors = good_sectors;
1435 			}
1436 		}
1437 		r1_bio->bios[i] = bio;
1438 	}
1439 	rcu_read_unlock();
1440 
1441 	if (unlikely(blocked_rdev)) {
1442 		/* Wait for this device to become unblocked */
1443 		int j;
1444 
1445 		for (j = 0; j < i; j++)
1446 			if (r1_bio->bios[j])
1447 				rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1448 		r1_bio->state = 0;
1449 		allow_barrier(conf, bio->bi_iter.bi_sector);
1450 		raid1_log(mddev, "wait rdev %d blocked", blocked_rdev->raid_disk);
1451 		md_wait_for_blocked_rdev(blocked_rdev, mddev);
1452 		wait_barrier(conf, bio->bi_iter.bi_sector);
1453 		goto retry_write;
1454 	}
1455 
1456 	if (max_sectors < bio_sectors(bio)) {
1457 		struct bio *split = bio_split(bio, max_sectors,
1458 					      GFP_NOIO, conf->bio_split);
1459 		bio_chain(split, bio);
1460 		generic_make_request(bio);
1461 		bio = split;
1462 		r1_bio->master_bio = bio;
1463 		r1_bio->sectors = max_sectors;
1464 	}
1465 
1466 	atomic_set(&r1_bio->remaining, 1);
1467 	atomic_set(&r1_bio->behind_remaining, 0);
1468 
1469 	first_clone = 1;
1470 
1471 	for (i = 0; i < disks; i++) {
1472 		struct bio *mbio = NULL;
1473 		if (!r1_bio->bios[i])
1474 			continue;
1475 
1476 
1477 		if (first_clone) {
1478 			/* do behind I/O ?
1479 			 * Not if there are too many, or cannot
1480 			 * allocate memory, or a reader on WriteMostly
1481 			 * is waiting for behind writes to flush */
1482 			if (bitmap &&
1483 			    (atomic_read(&bitmap->behind_writes)
1484 			     < mddev->bitmap_info.max_write_behind) &&
1485 			    !waitqueue_active(&bitmap->behind_wait)) {
1486 				mbio = alloc_behind_master_bio(r1_bio, bio);
1487 			}
1488 
1489 			bitmap_startwrite(bitmap, r1_bio->sector,
1490 					  r1_bio->sectors,
1491 					  test_bit(R1BIO_BehindIO,
1492 						   &r1_bio->state));
1493 			first_clone = 0;
1494 		}
1495 
1496 		if (!mbio) {
1497 			if (r1_bio->behind_master_bio)
1498 				mbio = bio_clone_fast(r1_bio->behind_master_bio,
1499 						      GFP_NOIO,
1500 						      mddev->bio_set);
1501 			else
1502 				mbio = bio_clone_fast(bio, GFP_NOIO, mddev->bio_set);
1503 		}
1504 
1505 		if (r1_bio->behind_master_bio) {
1506 			if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1507 				atomic_inc(&r1_bio->behind_remaining);
1508 		}
1509 
1510 		r1_bio->bios[i] = mbio;
1511 
1512 		mbio->bi_iter.bi_sector	= (r1_bio->sector +
1513 				   conf->mirrors[i].rdev->data_offset);
1514 		mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1515 		mbio->bi_end_io	= raid1_end_write_request;
1516 		mbio->bi_opf = bio_op(bio) | (bio->bi_opf & (REQ_SYNC | REQ_FUA));
1517 		if (test_bit(FailFast, &conf->mirrors[i].rdev->flags) &&
1518 		    !test_bit(WriteMostly, &conf->mirrors[i].rdev->flags) &&
1519 		    conf->raid_disks - mddev->degraded > 1)
1520 			mbio->bi_opf |= MD_FAILFAST;
1521 		mbio->bi_private = r1_bio;
1522 
1523 		atomic_inc(&r1_bio->remaining);
1524 
1525 		if (mddev->gendisk)
1526 			trace_block_bio_remap(bdev_get_queue(mbio->bi_bdev),
1527 					      mbio, disk_devt(mddev->gendisk),
1528 					      r1_bio->sector);
1529 		/* flush_pending_writes() needs access to the rdev so...*/
1530 		mbio->bi_bdev = (void*)conf->mirrors[i].rdev;
1531 
1532 		cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1533 		if (cb)
1534 			plug = container_of(cb, struct raid1_plug_cb, cb);
1535 		else
1536 			plug = NULL;
1537 		if (plug) {
1538 			bio_list_add(&plug->pending, mbio);
1539 			plug->pending_cnt++;
1540 		} else {
1541 			spin_lock_irqsave(&conf->device_lock, flags);
1542 			bio_list_add(&conf->pending_bio_list, mbio);
1543 			conf->pending_count++;
1544 			spin_unlock_irqrestore(&conf->device_lock, flags);
1545 			md_wakeup_thread(mddev->thread);
1546 		}
1547 	}
1548 
1549 	r1_bio_write_done(r1_bio);
1550 
1551 	/* In case raid1d snuck in to freeze_array */
1552 	wake_up(&conf->wait_barrier);
1553 }
1554 
1555 static bool raid1_make_request(struct mddev *mddev, struct bio *bio)
1556 {
1557 	sector_t sectors;
1558 
1559 	if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1560 		md_flush_request(mddev, bio);
1561 		return true;
1562 	}
1563 
1564 	/*
1565 	 * There is a limit to the maximum size, but
1566 	 * the read/write handler might find a lower limit
1567 	 * due to bad blocks.  To avoid multiple splits,
1568 	 * we pass the maximum number of sectors down
1569 	 * and let the lower level perform the split.
1570 	 */
1571 	sectors = align_to_barrier_unit_end(
1572 		bio->bi_iter.bi_sector, bio_sectors(bio));
1573 
1574 	if (bio_data_dir(bio) == READ)
1575 		raid1_read_request(mddev, bio, sectors, NULL);
1576 	else {
1577 		if (!md_write_start(mddev,bio))
1578 			return false;
1579 		raid1_write_request(mddev, bio, sectors);
1580 	}
1581 	return true;
1582 }
1583 
1584 static void raid1_status(struct seq_file *seq, struct mddev *mddev)
1585 {
1586 	struct r1conf *conf = mddev->private;
1587 	int i;
1588 
1589 	seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1590 		   conf->raid_disks - mddev->degraded);
1591 	rcu_read_lock();
1592 	for (i = 0; i < conf->raid_disks; i++) {
1593 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1594 		seq_printf(seq, "%s",
1595 			   rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1596 	}
1597 	rcu_read_unlock();
1598 	seq_printf(seq, "]");
1599 }
1600 
1601 static void raid1_error(struct mddev *mddev, struct md_rdev *rdev)
1602 {
1603 	char b[BDEVNAME_SIZE];
1604 	struct r1conf *conf = mddev->private;
1605 	unsigned long flags;
1606 
1607 	/*
1608 	 * If it is not operational, then we have already marked it as dead
1609 	 * else if it is the last working disks, ignore the error, let the
1610 	 * next level up know.
1611 	 * else mark the drive as failed
1612 	 */
1613 	spin_lock_irqsave(&conf->device_lock, flags);
1614 	if (test_bit(In_sync, &rdev->flags)
1615 	    && (conf->raid_disks - mddev->degraded) == 1) {
1616 		/*
1617 		 * Don't fail the drive, act as though we were just a
1618 		 * normal single drive.
1619 		 * However don't try a recovery from this drive as
1620 		 * it is very likely to fail.
1621 		 */
1622 		conf->recovery_disabled = mddev->recovery_disabled;
1623 		spin_unlock_irqrestore(&conf->device_lock, flags);
1624 		return;
1625 	}
1626 	set_bit(Blocked, &rdev->flags);
1627 	if (test_and_clear_bit(In_sync, &rdev->flags)) {
1628 		mddev->degraded++;
1629 		set_bit(Faulty, &rdev->flags);
1630 	} else
1631 		set_bit(Faulty, &rdev->flags);
1632 	spin_unlock_irqrestore(&conf->device_lock, flags);
1633 	/*
1634 	 * if recovery is running, make sure it aborts.
1635 	 */
1636 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1637 	set_mask_bits(&mddev->sb_flags, 0,
1638 		      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1639 	pr_crit("md/raid1:%s: Disk failure on %s, disabling device.\n"
1640 		"md/raid1:%s: Operation continuing on %d devices.\n",
1641 		mdname(mddev), bdevname(rdev->bdev, b),
1642 		mdname(mddev), conf->raid_disks - mddev->degraded);
1643 }
1644 
1645 static void print_conf(struct r1conf *conf)
1646 {
1647 	int i;
1648 
1649 	pr_debug("RAID1 conf printout:\n");
1650 	if (!conf) {
1651 		pr_debug("(!conf)\n");
1652 		return;
1653 	}
1654 	pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1655 		 conf->raid_disks);
1656 
1657 	rcu_read_lock();
1658 	for (i = 0; i < conf->raid_disks; i++) {
1659 		char b[BDEVNAME_SIZE];
1660 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1661 		if (rdev)
1662 			pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
1663 				 i, !test_bit(In_sync, &rdev->flags),
1664 				 !test_bit(Faulty, &rdev->flags),
1665 				 bdevname(rdev->bdev,b));
1666 	}
1667 	rcu_read_unlock();
1668 }
1669 
1670 static void close_sync(struct r1conf *conf)
1671 {
1672 	wait_all_barriers(conf);
1673 	allow_all_barriers(conf);
1674 
1675 	mempool_destroy(conf->r1buf_pool);
1676 	conf->r1buf_pool = NULL;
1677 }
1678 
1679 static int raid1_spare_active(struct mddev *mddev)
1680 {
1681 	int i;
1682 	struct r1conf *conf = mddev->private;
1683 	int count = 0;
1684 	unsigned long flags;
1685 
1686 	/*
1687 	 * Find all failed disks within the RAID1 configuration
1688 	 * and mark them readable.
1689 	 * Called under mddev lock, so rcu protection not needed.
1690 	 * device_lock used to avoid races with raid1_end_read_request
1691 	 * which expects 'In_sync' flags and ->degraded to be consistent.
1692 	 */
1693 	spin_lock_irqsave(&conf->device_lock, flags);
1694 	for (i = 0; i < conf->raid_disks; i++) {
1695 		struct md_rdev *rdev = conf->mirrors[i].rdev;
1696 		struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1697 		if (repl
1698 		    && !test_bit(Candidate, &repl->flags)
1699 		    && repl->recovery_offset == MaxSector
1700 		    && !test_bit(Faulty, &repl->flags)
1701 		    && !test_and_set_bit(In_sync, &repl->flags)) {
1702 			/* replacement has just become active */
1703 			if (!rdev ||
1704 			    !test_and_clear_bit(In_sync, &rdev->flags))
1705 				count++;
1706 			if (rdev) {
1707 				/* Replaced device not technically
1708 				 * faulty, but we need to be sure
1709 				 * it gets removed and never re-added
1710 				 */
1711 				set_bit(Faulty, &rdev->flags);
1712 				sysfs_notify_dirent_safe(
1713 					rdev->sysfs_state);
1714 			}
1715 		}
1716 		if (rdev
1717 		    && rdev->recovery_offset == MaxSector
1718 		    && !test_bit(Faulty, &rdev->flags)
1719 		    && !test_and_set_bit(In_sync, &rdev->flags)) {
1720 			count++;
1721 			sysfs_notify_dirent_safe(rdev->sysfs_state);
1722 		}
1723 	}
1724 	mddev->degraded -= count;
1725 	spin_unlock_irqrestore(&conf->device_lock, flags);
1726 
1727 	print_conf(conf);
1728 	return count;
1729 }
1730 
1731 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1732 {
1733 	struct r1conf *conf = mddev->private;
1734 	int err = -EEXIST;
1735 	int mirror = 0;
1736 	struct raid1_info *p;
1737 	int first = 0;
1738 	int last = conf->raid_disks - 1;
1739 
1740 	if (mddev->recovery_disabled == conf->recovery_disabled)
1741 		return -EBUSY;
1742 
1743 	if (md_integrity_add_rdev(rdev, mddev))
1744 		return -ENXIO;
1745 
1746 	if (rdev->raid_disk >= 0)
1747 		first = last = rdev->raid_disk;
1748 
1749 	/*
1750 	 * find the disk ... but prefer rdev->saved_raid_disk
1751 	 * if possible.
1752 	 */
1753 	if (rdev->saved_raid_disk >= 0 &&
1754 	    rdev->saved_raid_disk >= first &&
1755 	    conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1756 		first = last = rdev->saved_raid_disk;
1757 
1758 	for (mirror = first; mirror <= last; mirror++) {
1759 		p = conf->mirrors+mirror;
1760 		if (!p->rdev) {
1761 
1762 			if (mddev->gendisk)
1763 				disk_stack_limits(mddev->gendisk, rdev->bdev,
1764 						  rdev->data_offset << 9);
1765 
1766 			p->head_position = 0;
1767 			rdev->raid_disk = mirror;
1768 			err = 0;
1769 			/* As all devices are equivalent, we don't need a full recovery
1770 			 * if this was recently any drive of the array
1771 			 */
1772 			if (rdev->saved_raid_disk < 0)
1773 				conf->fullsync = 1;
1774 			rcu_assign_pointer(p->rdev, rdev);
1775 			break;
1776 		}
1777 		if (test_bit(WantReplacement, &p->rdev->flags) &&
1778 		    p[conf->raid_disks].rdev == NULL) {
1779 			/* Add this device as a replacement */
1780 			clear_bit(In_sync, &rdev->flags);
1781 			set_bit(Replacement, &rdev->flags);
1782 			rdev->raid_disk = mirror;
1783 			err = 0;
1784 			conf->fullsync = 1;
1785 			rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1786 			break;
1787 		}
1788 	}
1789 	if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1790 		queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1791 	print_conf(conf);
1792 	return err;
1793 }
1794 
1795 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1796 {
1797 	struct r1conf *conf = mddev->private;
1798 	int err = 0;
1799 	int number = rdev->raid_disk;
1800 	struct raid1_info *p = conf->mirrors + number;
1801 
1802 	if (rdev != p->rdev)
1803 		p = conf->mirrors + conf->raid_disks + number;
1804 
1805 	print_conf(conf);
1806 	if (rdev == p->rdev) {
1807 		if (test_bit(In_sync, &rdev->flags) ||
1808 		    atomic_read(&rdev->nr_pending)) {
1809 			err = -EBUSY;
1810 			goto abort;
1811 		}
1812 		/* Only remove non-faulty devices if recovery
1813 		 * is not possible.
1814 		 */
1815 		if (!test_bit(Faulty, &rdev->flags) &&
1816 		    mddev->recovery_disabled != conf->recovery_disabled &&
1817 		    mddev->degraded < conf->raid_disks) {
1818 			err = -EBUSY;
1819 			goto abort;
1820 		}
1821 		p->rdev = NULL;
1822 		if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1823 			synchronize_rcu();
1824 			if (atomic_read(&rdev->nr_pending)) {
1825 				/* lost the race, try later */
1826 				err = -EBUSY;
1827 				p->rdev = rdev;
1828 				goto abort;
1829 			}
1830 		}
1831 		if (conf->mirrors[conf->raid_disks + number].rdev) {
1832 			/* We just removed a device that is being replaced.
1833 			 * Move down the replacement.  We drain all IO before
1834 			 * doing this to avoid confusion.
1835 			 */
1836 			struct md_rdev *repl =
1837 				conf->mirrors[conf->raid_disks + number].rdev;
1838 			freeze_array(conf, 0);
1839 			clear_bit(Replacement, &repl->flags);
1840 			p->rdev = repl;
1841 			conf->mirrors[conf->raid_disks + number].rdev = NULL;
1842 			unfreeze_array(conf);
1843 		}
1844 
1845 		clear_bit(WantReplacement, &rdev->flags);
1846 		err = md_integrity_register(mddev);
1847 	}
1848 abort:
1849 
1850 	print_conf(conf);
1851 	return err;
1852 }
1853 
1854 static void end_sync_read(struct bio *bio)
1855 {
1856 	struct r1bio *r1_bio = get_resync_r1bio(bio);
1857 
1858 	update_head_pos(r1_bio->read_disk, r1_bio);
1859 
1860 	/*
1861 	 * we have read a block, now it needs to be re-written,
1862 	 * or re-read if the read failed.
1863 	 * We don't do much here, just schedule handling by raid1d
1864 	 */
1865 	if (!bio->bi_status)
1866 		set_bit(R1BIO_Uptodate, &r1_bio->state);
1867 
1868 	if (atomic_dec_and_test(&r1_bio->remaining))
1869 		reschedule_retry(r1_bio);
1870 }
1871 
1872 static void end_sync_write(struct bio *bio)
1873 {
1874 	int uptodate = !bio->bi_status;
1875 	struct r1bio *r1_bio = get_resync_r1bio(bio);
1876 	struct mddev *mddev = r1_bio->mddev;
1877 	struct r1conf *conf = mddev->private;
1878 	sector_t first_bad;
1879 	int bad_sectors;
1880 	struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev;
1881 
1882 	if (!uptodate) {
1883 		sector_t sync_blocks = 0;
1884 		sector_t s = r1_bio->sector;
1885 		long sectors_to_go = r1_bio->sectors;
1886 		/* make sure these bits doesn't get cleared. */
1887 		do {
1888 			bitmap_end_sync(mddev->bitmap, s,
1889 					&sync_blocks, 1);
1890 			s += sync_blocks;
1891 			sectors_to_go -= sync_blocks;
1892 		} while (sectors_to_go > 0);
1893 		set_bit(WriteErrorSeen, &rdev->flags);
1894 		if (!test_and_set_bit(WantReplacement, &rdev->flags))
1895 			set_bit(MD_RECOVERY_NEEDED, &
1896 				mddev->recovery);
1897 		set_bit(R1BIO_WriteError, &r1_bio->state);
1898 	} else if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
1899 			       &first_bad, &bad_sectors) &&
1900 		   !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1901 				r1_bio->sector,
1902 				r1_bio->sectors,
1903 				&first_bad, &bad_sectors)
1904 		)
1905 		set_bit(R1BIO_MadeGood, &r1_bio->state);
1906 
1907 	if (atomic_dec_and_test(&r1_bio->remaining)) {
1908 		int s = r1_bio->sectors;
1909 		if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1910 		    test_bit(R1BIO_WriteError, &r1_bio->state))
1911 			reschedule_retry(r1_bio);
1912 		else {
1913 			put_buf(r1_bio);
1914 			md_done_sync(mddev, s, uptodate);
1915 		}
1916 	}
1917 }
1918 
1919 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1920 			    int sectors, struct page *page, int rw)
1921 {
1922 	if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
1923 		/* success */
1924 		return 1;
1925 	if (rw == WRITE) {
1926 		set_bit(WriteErrorSeen, &rdev->flags);
1927 		if (!test_and_set_bit(WantReplacement,
1928 				      &rdev->flags))
1929 			set_bit(MD_RECOVERY_NEEDED, &
1930 				rdev->mddev->recovery);
1931 	}
1932 	/* need to record an error - either for the block or the device */
1933 	if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1934 		md_error(rdev->mddev, rdev);
1935 	return 0;
1936 }
1937 
1938 static int fix_sync_read_error(struct r1bio *r1_bio)
1939 {
1940 	/* Try some synchronous reads of other devices to get
1941 	 * good data, much like with normal read errors.  Only
1942 	 * read into the pages we already have so we don't
1943 	 * need to re-issue the read request.
1944 	 * We don't need to freeze the array, because being in an
1945 	 * active sync request, there is no normal IO, and
1946 	 * no overlapping syncs.
1947 	 * We don't need to check is_badblock() again as we
1948 	 * made sure that anything with a bad block in range
1949 	 * will have bi_end_io clear.
1950 	 */
1951 	struct mddev *mddev = r1_bio->mddev;
1952 	struct r1conf *conf = mddev->private;
1953 	struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1954 	struct page **pages = get_resync_pages(bio)->pages;
1955 	sector_t sect = r1_bio->sector;
1956 	int sectors = r1_bio->sectors;
1957 	int idx = 0;
1958 	struct md_rdev *rdev;
1959 
1960 	rdev = conf->mirrors[r1_bio->read_disk].rdev;
1961 	if (test_bit(FailFast, &rdev->flags)) {
1962 		/* Don't try recovering from here - just fail it
1963 		 * ... unless it is the last working device of course */
1964 		md_error(mddev, rdev);
1965 		if (test_bit(Faulty, &rdev->flags))
1966 			/* Don't try to read from here, but make sure
1967 			 * put_buf does it's thing
1968 			 */
1969 			bio->bi_end_io = end_sync_write;
1970 	}
1971 
1972 	while(sectors) {
1973 		int s = sectors;
1974 		int d = r1_bio->read_disk;
1975 		int success = 0;
1976 		int start;
1977 
1978 		if (s > (PAGE_SIZE>>9))
1979 			s = PAGE_SIZE >> 9;
1980 		do {
1981 			if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1982 				/* No rcu protection needed here devices
1983 				 * can only be removed when no resync is
1984 				 * active, and resync is currently active
1985 				 */
1986 				rdev = conf->mirrors[d].rdev;
1987 				if (sync_page_io(rdev, sect, s<<9,
1988 						 pages[idx],
1989 						 REQ_OP_READ, 0, false)) {
1990 					success = 1;
1991 					break;
1992 				}
1993 			}
1994 			d++;
1995 			if (d == conf->raid_disks * 2)
1996 				d = 0;
1997 		} while (!success && d != r1_bio->read_disk);
1998 
1999 		if (!success) {
2000 			char b[BDEVNAME_SIZE];
2001 			int abort = 0;
2002 			/* Cannot read from anywhere, this block is lost.
2003 			 * Record a bad block on each device.  If that doesn't
2004 			 * work just disable and interrupt the recovery.
2005 			 * Don't fail devices as that won't really help.
2006 			 */
2007 			pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
2008 					    mdname(mddev),
2009 					    bdevname(bio->bi_bdev, b),
2010 					    (unsigned long long)r1_bio->sector);
2011 			for (d = 0; d < conf->raid_disks * 2; d++) {
2012 				rdev = conf->mirrors[d].rdev;
2013 				if (!rdev || test_bit(Faulty, &rdev->flags))
2014 					continue;
2015 				if (!rdev_set_badblocks(rdev, sect, s, 0))
2016 					abort = 1;
2017 			}
2018 			if (abort) {
2019 				conf->recovery_disabled =
2020 					mddev->recovery_disabled;
2021 				set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2022 				md_done_sync(mddev, r1_bio->sectors, 0);
2023 				put_buf(r1_bio);
2024 				return 0;
2025 			}
2026 			/* Try next page */
2027 			sectors -= s;
2028 			sect += s;
2029 			idx++;
2030 			continue;
2031 		}
2032 
2033 		start = d;
2034 		/* write it back and re-read */
2035 		while (d != r1_bio->read_disk) {
2036 			if (d == 0)
2037 				d = conf->raid_disks * 2;
2038 			d--;
2039 			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2040 				continue;
2041 			rdev = conf->mirrors[d].rdev;
2042 			if (r1_sync_page_io(rdev, sect, s,
2043 					    pages[idx],
2044 					    WRITE) == 0) {
2045 				r1_bio->bios[d]->bi_end_io = NULL;
2046 				rdev_dec_pending(rdev, mddev);
2047 			}
2048 		}
2049 		d = start;
2050 		while (d != r1_bio->read_disk) {
2051 			if (d == 0)
2052 				d = conf->raid_disks * 2;
2053 			d--;
2054 			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2055 				continue;
2056 			rdev = conf->mirrors[d].rdev;
2057 			if (r1_sync_page_io(rdev, sect, s,
2058 					    pages[idx],
2059 					    READ) != 0)
2060 				atomic_add(s, &rdev->corrected_errors);
2061 		}
2062 		sectors -= s;
2063 		sect += s;
2064 		idx ++;
2065 	}
2066 	set_bit(R1BIO_Uptodate, &r1_bio->state);
2067 	bio->bi_status = 0;
2068 	return 1;
2069 }
2070 
2071 static void process_checks(struct r1bio *r1_bio)
2072 {
2073 	/* We have read all readable devices.  If we haven't
2074 	 * got the block, then there is no hope left.
2075 	 * If we have, then we want to do a comparison
2076 	 * and skip the write if everything is the same.
2077 	 * If any blocks failed to read, then we need to
2078 	 * attempt an over-write
2079 	 */
2080 	struct mddev *mddev = r1_bio->mddev;
2081 	struct r1conf *conf = mddev->private;
2082 	int primary;
2083 	int i;
2084 	int vcnt;
2085 
2086 	/* Fix variable parts of all bios */
2087 	vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
2088 	for (i = 0; i < conf->raid_disks * 2; i++) {
2089 		int j;
2090 		int size;
2091 		blk_status_t status;
2092 		struct bio_vec *bi;
2093 		struct bio *b = r1_bio->bios[i];
2094 		struct resync_pages *rp = get_resync_pages(b);
2095 		if (b->bi_end_io != end_sync_read)
2096 			continue;
2097 		/* fixup the bio for reuse, but preserve errno */
2098 		status = b->bi_status;
2099 		bio_reset(b);
2100 		b->bi_status = status;
2101 		b->bi_vcnt = vcnt;
2102 		b->bi_iter.bi_size = r1_bio->sectors << 9;
2103 		b->bi_iter.bi_sector = r1_bio->sector +
2104 			conf->mirrors[i].rdev->data_offset;
2105 		b->bi_bdev = conf->mirrors[i].rdev->bdev;
2106 		b->bi_end_io = end_sync_read;
2107 		rp->raid_bio = r1_bio;
2108 		b->bi_private = rp;
2109 
2110 		size = b->bi_iter.bi_size;
2111 		bio_for_each_segment_all(bi, b, j) {
2112 			bi->bv_offset = 0;
2113 			if (size > PAGE_SIZE)
2114 				bi->bv_len = PAGE_SIZE;
2115 			else
2116 				bi->bv_len = size;
2117 			size -= PAGE_SIZE;
2118 		}
2119 	}
2120 	for (primary = 0; primary < conf->raid_disks * 2; primary++)
2121 		if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
2122 		    !r1_bio->bios[primary]->bi_status) {
2123 			r1_bio->bios[primary]->bi_end_io = NULL;
2124 			rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
2125 			break;
2126 		}
2127 	r1_bio->read_disk = primary;
2128 	for (i = 0; i < conf->raid_disks * 2; i++) {
2129 		int j;
2130 		struct bio *pbio = r1_bio->bios[primary];
2131 		struct bio *sbio = r1_bio->bios[i];
2132 		blk_status_t status = sbio->bi_status;
2133 		struct page **ppages = get_resync_pages(pbio)->pages;
2134 		struct page **spages = get_resync_pages(sbio)->pages;
2135 		struct bio_vec *bi;
2136 		int page_len[RESYNC_PAGES] = { 0 };
2137 
2138 		if (sbio->bi_end_io != end_sync_read)
2139 			continue;
2140 		/* Now we can 'fixup' the error value */
2141 		sbio->bi_status = 0;
2142 
2143 		bio_for_each_segment_all(bi, sbio, j)
2144 			page_len[j] = bi->bv_len;
2145 
2146 		if (!status) {
2147 			for (j = vcnt; j-- ; ) {
2148 				if (memcmp(page_address(ppages[j]),
2149 					   page_address(spages[j]),
2150 					   page_len[j]))
2151 					break;
2152 			}
2153 		} else
2154 			j = 0;
2155 		if (j >= 0)
2156 			atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
2157 		if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
2158 			      && !status)) {
2159 			/* No need to write to this device. */
2160 			sbio->bi_end_io = NULL;
2161 			rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2162 			continue;
2163 		}
2164 
2165 		bio_copy_data(sbio, pbio);
2166 	}
2167 }
2168 
2169 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
2170 {
2171 	struct r1conf *conf = mddev->private;
2172 	int i;
2173 	int disks = conf->raid_disks * 2;
2174 	struct bio *wbio;
2175 
2176 	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2177 		/* ouch - failed to read all of that. */
2178 		if (!fix_sync_read_error(r1_bio))
2179 			return;
2180 
2181 	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2182 		process_checks(r1_bio);
2183 
2184 	/*
2185 	 * schedule writes
2186 	 */
2187 	atomic_set(&r1_bio->remaining, 1);
2188 	for (i = 0; i < disks ; i++) {
2189 		wbio = r1_bio->bios[i];
2190 		if (wbio->bi_end_io == NULL ||
2191 		    (wbio->bi_end_io == end_sync_read &&
2192 		     (i == r1_bio->read_disk ||
2193 		      !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2194 			continue;
2195 		if (test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2196 			continue;
2197 
2198 		bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2199 		if (test_bit(FailFast, &conf->mirrors[i].rdev->flags))
2200 			wbio->bi_opf |= MD_FAILFAST;
2201 
2202 		wbio->bi_end_io = end_sync_write;
2203 		atomic_inc(&r1_bio->remaining);
2204 		md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
2205 
2206 		generic_make_request(wbio);
2207 	}
2208 
2209 	if (atomic_dec_and_test(&r1_bio->remaining)) {
2210 		/* if we're here, all write(s) have completed, so clean up */
2211 		int s = r1_bio->sectors;
2212 		if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2213 		    test_bit(R1BIO_WriteError, &r1_bio->state))
2214 			reschedule_retry(r1_bio);
2215 		else {
2216 			put_buf(r1_bio);
2217 			md_done_sync(mddev, s, 1);
2218 		}
2219 	}
2220 }
2221 
2222 /*
2223  * This is a kernel thread which:
2224  *
2225  *	1.	Retries failed read operations on working mirrors.
2226  *	2.	Updates the raid superblock when problems encounter.
2227  *	3.	Performs writes following reads for array synchronising.
2228  */
2229 
2230 static void fix_read_error(struct r1conf *conf, int read_disk,
2231 			   sector_t sect, int sectors)
2232 {
2233 	struct mddev *mddev = conf->mddev;
2234 	while(sectors) {
2235 		int s = sectors;
2236 		int d = read_disk;
2237 		int success = 0;
2238 		int start;
2239 		struct md_rdev *rdev;
2240 
2241 		if (s > (PAGE_SIZE>>9))
2242 			s = PAGE_SIZE >> 9;
2243 
2244 		do {
2245 			sector_t first_bad;
2246 			int bad_sectors;
2247 
2248 			rcu_read_lock();
2249 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2250 			if (rdev &&
2251 			    (test_bit(In_sync, &rdev->flags) ||
2252 			     (!test_bit(Faulty, &rdev->flags) &&
2253 			      rdev->recovery_offset >= sect + s)) &&
2254 			    is_badblock(rdev, sect, s,
2255 					&first_bad, &bad_sectors) == 0) {
2256 				atomic_inc(&rdev->nr_pending);
2257 				rcu_read_unlock();
2258 				if (sync_page_io(rdev, sect, s<<9,
2259 					 conf->tmppage, REQ_OP_READ, 0, false))
2260 					success = 1;
2261 				rdev_dec_pending(rdev, mddev);
2262 				if (success)
2263 					break;
2264 			} else
2265 				rcu_read_unlock();
2266 			d++;
2267 			if (d == conf->raid_disks * 2)
2268 				d = 0;
2269 		} while (!success && d != read_disk);
2270 
2271 		if (!success) {
2272 			/* Cannot read from anywhere - mark it bad */
2273 			struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2274 			if (!rdev_set_badblocks(rdev, sect, s, 0))
2275 				md_error(mddev, rdev);
2276 			break;
2277 		}
2278 		/* write it back and re-read */
2279 		start = d;
2280 		while (d != read_disk) {
2281 			if (d==0)
2282 				d = conf->raid_disks * 2;
2283 			d--;
2284 			rcu_read_lock();
2285 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2286 			if (rdev &&
2287 			    !test_bit(Faulty, &rdev->flags)) {
2288 				atomic_inc(&rdev->nr_pending);
2289 				rcu_read_unlock();
2290 				r1_sync_page_io(rdev, sect, s,
2291 						conf->tmppage, WRITE);
2292 				rdev_dec_pending(rdev, mddev);
2293 			} else
2294 				rcu_read_unlock();
2295 		}
2296 		d = start;
2297 		while (d != read_disk) {
2298 			char b[BDEVNAME_SIZE];
2299 			if (d==0)
2300 				d = conf->raid_disks * 2;
2301 			d--;
2302 			rcu_read_lock();
2303 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2304 			if (rdev &&
2305 			    !test_bit(Faulty, &rdev->flags)) {
2306 				atomic_inc(&rdev->nr_pending);
2307 				rcu_read_unlock();
2308 				if (r1_sync_page_io(rdev, sect, s,
2309 						    conf->tmppage, READ)) {
2310 					atomic_add(s, &rdev->corrected_errors);
2311 					pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %s)\n",
2312 						mdname(mddev), s,
2313 						(unsigned long long)(sect +
2314 								     rdev->data_offset),
2315 						bdevname(rdev->bdev, b));
2316 				}
2317 				rdev_dec_pending(rdev, mddev);
2318 			} else
2319 				rcu_read_unlock();
2320 		}
2321 		sectors -= s;
2322 		sect += s;
2323 	}
2324 }
2325 
2326 static int narrow_write_error(struct r1bio *r1_bio, int i)
2327 {
2328 	struct mddev *mddev = r1_bio->mddev;
2329 	struct r1conf *conf = mddev->private;
2330 	struct md_rdev *rdev = conf->mirrors[i].rdev;
2331 
2332 	/* bio has the data to be written to device 'i' where
2333 	 * we just recently had a write error.
2334 	 * We repeatedly clone the bio and trim down to one block,
2335 	 * then try the write.  Where the write fails we record
2336 	 * a bad block.
2337 	 * It is conceivable that the bio doesn't exactly align with
2338 	 * blocks.  We must handle this somehow.
2339 	 *
2340 	 * We currently own a reference on the rdev.
2341 	 */
2342 
2343 	int block_sectors;
2344 	sector_t sector;
2345 	int sectors;
2346 	int sect_to_write = r1_bio->sectors;
2347 	int ok = 1;
2348 
2349 	if (rdev->badblocks.shift < 0)
2350 		return 0;
2351 
2352 	block_sectors = roundup(1 << rdev->badblocks.shift,
2353 				bdev_logical_block_size(rdev->bdev) >> 9);
2354 	sector = r1_bio->sector;
2355 	sectors = ((sector + block_sectors)
2356 		   & ~(sector_t)(block_sectors - 1))
2357 		- sector;
2358 
2359 	while (sect_to_write) {
2360 		struct bio *wbio;
2361 		if (sectors > sect_to_write)
2362 			sectors = sect_to_write;
2363 		/* Write at 'sector' for 'sectors'*/
2364 
2365 		if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2366 			wbio = bio_clone_fast(r1_bio->behind_master_bio,
2367 					      GFP_NOIO,
2368 					      mddev->bio_set);
2369 			/* We really need a _all clone */
2370 			wbio->bi_iter = (struct bvec_iter){ 0 };
2371 		} else {
2372 			wbio = bio_clone_fast(r1_bio->master_bio, GFP_NOIO,
2373 					      mddev->bio_set);
2374 		}
2375 
2376 		bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2377 		wbio->bi_iter.bi_sector = r1_bio->sector;
2378 		wbio->bi_iter.bi_size = r1_bio->sectors << 9;
2379 
2380 		bio_trim(wbio, sector - r1_bio->sector, sectors);
2381 		wbio->bi_iter.bi_sector += rdev->data_offset;
2382 		wbio->bi_bdev = rdev->bdev;
2383 
2384 		if (submit_bio_wait(wbio) < 0)
2385 			/* failure! */
2386 			ok = rdev_set_badblocks(rdev, sector,
2387 						sectors, 0)
2388 				&& ok;
2389 
2390 		bio_put(wbio);
2391 		sect_to_write -= sectors;
2392 		sector += sectors;
2393 		sectors = block_sectors;
2394 	}
2395 	return ok;
2396 }
2397 
2398 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2399 {
2400 	int m;
2401 	int s = r1_bio->sectors;
2402 	for (m = 0; m < conf->raid_disks * 2 ; m++) {
2403 		struct md_rdev *rdev = conf->mirrors[m].rdev;
2404 		struct bio *bio = r1_bio->bios[m];
2405 		if (bio->bi_end_io == NULL)
2406 			continue;
2407 		if (!bio->bi_status &&
2408 		    test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2409 			rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2410 		}
2411 		if (bio->bi_status &&
2412 		    test_bit(R1BIO_WriteError, &r1_bio->state)) {
2413 			if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2414 				md_error(conf->mddev, rdev);
2415 		}
2416 	}
2417 	put_buf(r1_bio);
2418 	md_done_sync(conf->mddev, s, 1);
2419 }
2420 
2421 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2422 {
2423 	int m, idx;
2424 	bool fail = false;
2425 
2426 	for (m = 0; m < conf->raid_disks * 2 ; m++)
2427 		if (r1_bio->bios[m] == IO_MADE_GOOD) {
2428 			struct md_rdev *rdev = conf->mirrors[m].rdev;
2429 			rdev_clear_badblocks(rdev,
2430 					     r1_bio->sector,
2431 					     r1_bio->sectors, 0);
2432 			rdev_dec_pending(rdev, conf->mddev);
2433 		} else if (r1_bio->bios[m] != NULL) {
2434 			/* This drive got a write error.  We need to
2435 			 * narrow down and record precise write
2436 			 * errors.
2437 			 */
2438 			fail = true;
2439 			if (!narrow_write_error(r1_bio, m)) {
2440 				md_error(conf->mddev,
2441 					 conf->mirrors[m].rdev);
2442 				/* an I/O failed, we can't clear the bitmap */
2443 				set_bit(R1BIO_Degraded, &r1_bio->state);
2444 			}
2445 			rdev_dec_pending(conf->mirrors[m].rdev,
2446 					 conf->mddev);
2447 		}
2448 	if (fail) {
2449 		spin_lock_irq(&conf->device_lock);
2450 		list_add(&r1_bio->retry_list, &conf->bio_end_io_list);
2451 		idx = sector_to_idx(r1_bio->sector);
2452 		atomic_inc(&conf->nr_queued[idx]);
2453 		spin_unlock_irq(&conf->device_lock);
2454 		/*
2455 		 * In case freeze_array() is waiting for condition
2456 		 * get_unqueued_pending() == extra to be true.
2457 		 */
2458 		wake_up(&conf->wait_barrier);
2459 		md_wakeup_thread(conf->mddev->thread);
2460 	} else {
2461 		if (test_bit(R1BIO_WriteError, &r1_bio->state))
2462 			close_write(r1_bio);
2463 		raid_end_bio_io(r1_bio);
2464 	}
2465 }
2466 
2467 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2468 {
2469 	struct mddev *mddev = conf->mddev;
2470 	struct bio *bio;
2471 	struct md_rdev *rdev;
2472 	dev_t bio_dev;
2473 	sector_t bio_sector;
2474 
2475 	clear_bit(R1BIO_ReadError, &r1_bio->state);
2476 	/* we got a read error. Maybe the drive is bad.  Maybe just
2477 	 * the block and we can fix it.
2478 	 * We freeze all other IO, and try reading the block from
2479 	 * other devices.  When we find one, we re-write
2480 	 * and check it that fixes the read error.
2481 	 * This is all done synchronously while the array is
2482 	 * frozen
2483 	 */
2484 
2485 	bio = r1_bio->bios[r1_bio->read_disk];
2486 	bio_dev = bio->bi_bdev->bd_dev;
2487 	bio_sector = conf->mirrors[r1_bio->read_disk].rdev->data_offset + r1_bio->sector;
2488 	bio_put(bio);
2489 	r1_bio->bios[r1_bio->read_disk] = NULL;
2490 
2491 	rdev = conf->mirrors[r1_bio->read_disk].rdev;
2492 	if (mddev->ro == 0
2493 	    && !test_bit(FailFast, &rdev->flags)) {
2494 		freeze_array(conf, 1);
2495 		fix_read_error(conf, r1_bio->read_disk,
2496 			       r1_bio->sector, r1_bio->sectors);
2497 		unfreeze_array(conf);
2498 	} else {
2499 		r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED;
2500 	}
2501 
2502 	rdev_dec_pending(rdev, conf->mddev);
2503 	allow_barrier(conf, r1_bio->sector);
2504 	bio = r1_bio->master_bio;
2505 
2506 	/* Reuse the old r1_bio so that the IO_BLOCKED settings are preserved */
2507 	r1_bio->state = 0;
2508 	raid1_read_request(mddev, bio, r1_bio->sectors, r1_bio);
2509 }
2510 
2511 static void raid1d(struct md_thread *thread)
2512 {
2513 	struct mddev *mddev = thread->mddev;
2514 	struct r1bio *r1_bio;
2515 	unsigned long flags;
2516 	struct r1conf *conf = mddev->private;
2517 	struct list_head *head = &conf->retry_list;
2518 	struct blk_plug plug;
2519 	int idx;
2520 
2521 	md_check_recovery(mddev);
2522 
2523 	if (!list_empty_careful(&conf->bio_end_io_list) &&
2524 	    !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2525 		LIST_HEAD(tmp);
2526 		spin_lock_irqsave(&conf->device_lock, flags);
2527 		if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
2528 			list_splice_init(&conf->bio_end_io_list, &tmp);
2529 		spin_unlock_irqrestore(&conf->device_lock, flags);
2530 		while (!list_empty(&tmp)) {
2531 			r1_bio = list_first_entry(&tmp, struct r1bio,
2532 						  retry_list);
2533 			list_del(&r1_bio->retry_list);
2534 			idx = sector_to_idx(r1_bio->sector);
2535 			atomic_dec(&conf->nr_queued[idx]);
2536 			if (mddev->degraded)
2537 				set_bit(R1BIO_Degraded, &r1_bio->state);
2538 			if (test_bit(R1BIO_WriteError, &r1_bio->state))
2539 				close_write(r1_bio);
2540 			raid_end_bio_io(r1_bio);
2541 		}
2542 	}
2543 
2544 	blk_start_plug(&plug);
2545 	for (;;) {
2546 
2547 		flush_pending_writes(conf);
2548 
2549 		spin_lock_irqsave(&conf->device_lock, flags);
2550 		if (list_empty(head)) {
2551 			spin_unlock_irqrestore(&conf->device_lock, flags);
2552 			break;
2553 		}
2554 		r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2555 		list_del(head->prev);
2556 		idx = sector_to_idx(r1_bio->sector);
2557 		atomic_dec(&conf->nr_queued[idx]);
2558 		spin_unlock_irqrestore(&conf->device_lock, flags);
2559 
2560 		mddev = r1_bio->mddev;
2561 		conf = mddev->private;
2562 		if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2563 			if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2564 			    test_bit(R1BIO_WriteError, &r1_bio->state))
2565 				handle_sync_write_finished(conf, r1_bio);
2566 			else
2567 				sync_request_write(mddev, r1_bio);
2568 		} else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2569 			   test_bit(R1BIO_WriteError, &r1_bio->state))
2570 			handle_write_finished(conf, r1_bio);
2571 		else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2572 			handle_read_error(conf, r1_bio);
2573 		else
2574 			WARN_ON_ONCE(1);
2575 
2576 		cond_resched();
2577 		if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
2578 			md_check_recovery(mddev);
2579 	}
2580 	blk_finish_plug(&plug);
2581 }
2582 
2583 static int init_resync(struct r1conf *conf)
2584 {
2585 	int buffs;
2586 
2587 	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2588 	BUG_ON(conf->r1buf_pool);
2589 	conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2590 					  conf->poolinfo);
2591 	if (!conf->r1buf_pool)
2592 		return -ENOMEM;
2593 	return 0;
2594 }
2595 
2596 /*
2597  * perform a "sync" on one "block"
2598  *
2599  * We need to make sure that no normal I/O request - particularly write
2600  * requests - conflict with active sync requests.
2601  *
2602  * This is achieved by tracking pending requests and a 'barrier' concept
2603  * that can be installed to exclude normal IO requests.
2604  */
2605 
2606 static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr,
2607 				   int *skipped)
2608 {
2609 	struct r1conf *conf = mddev->private;
2610 	struct r1bio *r1_bio;
2611 	struct bio *bio;
2612 	sector_t max_sector, nr_sectors;
2613 	int disk = -1;
2614 	int i;
2615 	int wonly = -1;
2616 	int write_targets = 0, read_targets = 0;
2617 	sector_t sync_blocks;
2618 	int still_degraded = 0;
2619 	int good_sectors = RESYNC_SECTORS;
2620 	int min_bad = 0; /* number of sectors that are bad in all devices */
2621 	int idx = sector_to_idx(sector_nr);
2622 
2623 	if (!conf->r1buf_pool)
2624 		if (init_resync(conf))
2625 			return 0;
2626 
2627 	max_sector = mddev->dev_sectors;
2628 	if (sector_nr >= max_sector) {
2629 		/* If we aborted, we need to abort the
2630 		 * sync on the 'current' bitmap chunk (there will
2631 		 * only be one in raid1 resync.
2632 		 * We can find the current addess in mddev->curr_resync
2633 		 */
2634 		if (mddev->curr_resync < max_sector) /* aborted */
2635 			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2636 						&sync_blocks, 1);
2637 		else /* completed sync */
2638 			conf->fullsync = 0;
2639 
2640 		bitmap_close_sync(mddev->bitmap);
2641 		close_sync(conf);
2642 
2643 		if (mddev_is_clustered(mddev)) {
2644 			conf->cluster_sync_low = 0;
2645 			conf->cluster_sync_high = 0;
2646 		}
2647 		return 0;
2648 	}
2649 
2650 	if (mddev->bitmap == NULL &&
2651 	    mddev->recovery_cp == MaxSector &&
2652 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2653 	    conf->fullsync == 0) {
2654 		*skipped = 1;
2655 		return max_sector - sector_nr;
2656 	}
2657 	/* before building a request, check if we can skip these blocks..
2658 	 * This call the bitmap_start_sync doesn't actually record anything
2659 	 */
2660 	if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2661 	    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2662 		/* We can skip this block, and probably several more */
2663 		*skipped = 1;
2664 		return sync_blocks;
2665 	}
2666 
2667 	/*
2668 	 * If there is non-resync activity waiting for a turn, then let it
2669 	 * though before starting on this new sync request.
2670 	 */
2671 	if (atomic_read(&conf->nr_waiting[idx]))
2672 		schedule_timeout_uninterruptible(1);
2673 
2674 	/* we are incrementing sector_nr below. To be safe, we check against
2675 	 * sector_nr + two times RESYNC_SECTORS
2676 	 */
2677 
2678 	bitmap_cond_end_sync(mddev->bitmap, sector_nr,
2679 		mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
2680 	r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
2681 
2682 	raise_barrier(conf, sector_nr);
2683 
2684 	rcu_read_lock();
2685 	/*
2686 	 * If we get a correctably read error during resync or recovery,
2687 	 * we might want to read from a different device.  So we
2688 	 * flag all drives that could conceivably be read from for READ,
2689 	 * and any others (which will be non-In_sync devices) for WRITE.
2690 	 * If a read fails, we try reading from something else for which READ
2691 	 * is OK.
2692 	 */
2693 
2694 	r1_bio->mddev = mddev;
2695 	r1_bio->sector = sector_nr;
2696 	r1_bio->state = 0;
2697 	set_bit(R1BIO_IsSync, &r1_bio->state);
2698 	/* make sure good_sectors won't go across barrier unit boundary */
2699 	good_sectors = align_to_barrier_unit_end(sector_nr, good_sectors);
2700 
2701 	for (i = 0; i < conf->raid_disks * 2; i++) {
2702 		struct md_rdev *rdev;
2703 		bio = r1_bio->bios[i];
2704 
2705 		rdev = rcu_dereference(conf->mirrors[i].rdev);
2706 		if (rdev == NULL ||
2707 		    test_bit(Faulty, &rdev->flags)) {
2708 			if (i < conf->raid_disks)
2709 				still_degraded = 1;
2710 		} else if (!test_bit(In_sync, &rdev->flags)) {
2711 			bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2712 			bio->bi_end_io = end_sync_write;
2713 			write_targets ++;
2714 		} else {
2715 			/* may need to read from here */
2716 			sector_t first_bad = MaxSector;
2717 			int bad_sectors;
2718 
2719 			if (is_badblock(rdev, sector_nr, good_sectors,
2720 					&first_bad, &bad_sectors)) {
2721 				if (first_bad > sector_nr)
2722 					good_sectors = first_bad - sector_nr;
2723 				else {
2724 					bad_sectors -= (sector_nr - first_bad);
2725 					if (min_bad == 0 ||
2726 					    min_bad > bad_sectors)
2727 						min_bad = bad_sectors;
2728 				}
2729 			}
2730 			if (sector_nr < first_bad) {
2731 				if (test_bit(WriteMostly, &rdev->flags)) {
2732 					if (wonly < 0)
2733 						wonly = i;
2734 				} else {
2735 					if (disk < 0)
2736 						disk = i;
2737 				}
2738 				bio_set_op_attrs(bio, REQ_OP_READ, 0);
2739 				bio->bi_end_io = end_sync_read;
2740 				read_targets++;
2741 			} else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2742 				test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2743 				!test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2744 				/*
2745 				 * The device is suitable for reading (InSync),
2746 				 * but has bad block(s) here. Let's try to correct them,
2747 				 * if we are doing resync or repair. Otherwise, leave
2748 				 * this device alone for this sync request.
2749 				 */
2750 				bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2751 				bio->bi_end_io = end_sync_write;
2752 				write_targets++;
2753 			}
2754 		}
2755 		if (bio->bi_end_io) {
2756 			atomic_inc(&rdev->nr_pending);
2757 			bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
2758 			bio->bi_bdev = rdev->bdev;
2759 			if (test_bit(FailFast, &rdev->flags))
2760 				bio->bi_opf |= MD_FAILFAST;
2761 		}
2762 	}
2763 	rcu_read_unlock();
2764 	if (disk < 0)
2765 		disk = wonly;
2766 	r1_bio->read_disk = disk;
2767 
2768 	if (read_targets == 0 && min_bad > 0) {
2769 		/* These sectors are bad on all InSync devices, so we
2770 		 * need to mark them bad on all write targets
2771 		 */
2772 		int ok = 1;
2773 		for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2774 			if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2775 				struct md_rdev *rdev = conf->mirrors[i].rdev;
2776 				ok = rdev_set_badblocks(rdev, sector_nr,
2777 							min_bad, 0
2778 					) && ok;
2779 			}
2780 		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2781 		*skipped = 1;
2782 		put_buf(r1_bio);
2783 
2784 		if (!ok) {
2785 			/* Cannot record the badblocks, so need to
2786 			 * abort the resync.
2787 			 * If there are multiple read targets, could just
2788 			 * fail the really bad ones ???
2789 			 */
2790 			conf->recovery_disabled = mddev->recovery_disabled;
2791 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2792 			return 0;
2793 		} else
2794 			return min_bad;
2795 
2796 	}
2797 	if (min_bad > 0 && min_bad < good_sectors) {
2798 		/* only resync enough to reach the next bad->good
2799 		 * transition */
2800 		good_sectors = min_bad;
2801 	}
2802 
2803 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2804 		/* extra read targets are also write targets */
2805 		write_targets += read_targets-1;
2806 
2807 	if (write_targets == 0 || read_targets == 0) {
2808 		/* There is nowhere to write, so all non-sync
2809 		 * drives must be failed - so we are finished
2810 		 */
2811 		sector_t rv;
2812 		if (min_bad > 0)
2813 			max_sector = sector_nr + min_bad;
2814 		rv = max_sector - sector_nr;
2815 		*skipped = 1;
2816 		put_buf(r1_bio);
2817 		return rv;
2818 	}
2819 
2820 	if (max_sector > mddev->resync_max)
2821 		max_sector = mddev->resync_max; /* Don't do IO beyond here */
2822 	if (max_sector > sector_nr + good_sectors)
2823 		max_sector = sector_nr + good_sectors;
2824 	nr_sectors = 0;
2825 	sync_blocks = 0;
2826 	do {
2827 		struct page *page;
2828 		int len = PAGE_SIZE;
2829 		if (sector_nr + (len>>9) > max_sector)
2830 			len = (max_sector - sector_nr) << 9;
2831 		if (len == 0)
2832 			break;
2833 		if (sync_blocks == 0) {
2834 			if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2835 					       &sync_blocks, still_degraded) &&
2836 			    !conf->fullsync &&
2837 			    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2838 				break;
2839 			if ((len >> 9) > sync_blocks)
2840 				len = sync_blocks<<9;
2841 		}
2842 
2843 		for (i = 0 ; i < conf->raid_disks * 2; i++) {
2844 			struct resync_pages *rp;
2845 
2846 			bio = r1_bio->bios[i];
2847 			rp = get_resync_pages(bio);
2848 			if (bio->bi_end_io) {
2849 				page = resync_fetch_page(rp, rp->idx++);
2850 
2851 				/*
2852 				 * won't fail because the vec table is big
2853 				 * enough to hold all these pages
2854 				 */
2855 				bio_add_page(bio, page, len, 0);
2856 			}
2857 		}
2858 		nr_sectors += len>>9;
2859 		sector_nr += len>>9;
2860 		sync_blocks -= (len>>9);
2861 	} while (get_resync_pages(r1_bio->bios[disk]->bi_private)->idx < RESYNC_PAGES);
2862 
2863 	r1_bio->sectors = nr_sectors;
2864 
2865 	if (mddev_is_clustered(mddev) &&
2866 			conf->cluster_sync_high < sector_nr + nr_sectors) {
2867 		conf->cluster_sync_low = mddev->curr_resync_completed;
2868 		conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS;
2869 		/* Send resync message */
2870 		md_cluster_ops->resync_info_update(mddev,
2871 				conf->cluster_sync_low,
2872 				conf->cluster_sync_high);
2873 	}
2874 
2875 	/* For a user-requested sync, we read all readable devices and do a
2876 	 * compare
2877 	 */
2878 	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2879 		atomic_set(&r1_bio->remaining, read_targets);
2880 		for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2881 			bio = r1_bio->bios[i];
2882 			if (bio->bi_end_io == end_sync_read) {
2883 				read_targets--;
2884 				md_sync_acct(bio->bi_bdev, nr_sectors);
2885 				if (read_targets == 1)
2886 					bio->bi_opf &= ~MD_FAILFAST;
2887 				generic_make_request(bio);
2888 			}
2889 		}
2890 	} else {
2891 		atomic_set(&r1_bio->remaining, 1);
2892 		bio = r1_bio->bios[r1_bio->read_disk];
2893 		md_sync_acct(bio->bi_bdev, nr_sectors);
2894 		if (read_targets == 1)
2895 			bio->bi_opf &= ~MD_FAILFAST;
2896 		generic_make_request(bio);
2897 
2898 	}
2899 	return nr_sectors;
2900 }
2901 
2902 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2903 {
2904 	if (sectors)
2905 		return sectors;
2906 
2907 	return mddev->dev_sectors;
2908 }
2909 
2910 static struct r1conf *setup_conf(struct mddev *mddev)
2911 {
2912 	struct r1conf *conf;
2913 	int i;
2914 	struct raid1_info *disk;
2915 	struct md_rdev *rdev;
2916 	int err = -ENOMEM;
2917 
2918 	conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2919 	if (!conf)
2920 		goto abort;
2921 
2922 	conf->nr_pending = kcalloc(BARRIER_BUCKETS_NR,
2923 				   sizeof(atomic_t), GFP_KERNEL);
2924 	if (!conf->nr_pending)
2925 		goto abort;
2926 
2927 	conf->nr_waiting = kcalloc(BARRIER_BUCKETS_NR,
2928 				   sizeof(atomic_t), GFP_KERNEL);
2929 	if (!conf->nr_waiting)
2930 		goto abort;
2931 
2932 	conf->nr_queued = kcalloc(BARRIER_BUCKETS_NR,
2933 				  sizeof(atomic_t), GFP_KERNEL);
2934 	if (!conf->nr_queued)
2935 		goto abort;
2936 
2937 	conf->barrier = kcalloc(BARRIER_BUCKETS_NR,
2938 				sizeof(atomic_t), GFP_KERNEL);
2939 	if (!conf->barrier)
2940 		goto abort;
2941 
2942 	conf->mirrors = kzalloc(sizeof(struct raid1_info)
2943 				* mddev->raid_disks * 2,
2944 				 GFP_KERNEL);
2945 	if (!conf->mirrors)
2946 		goto abort;
2947 
2948 	conf->tmppage = alloc_page(GFP_KERNEL);
2949 	if (!conf->tmppage)
2950 		goto abort;
2951 
2952 	conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
2953 	if (!conf->poolinfo)
2954 		goto abort;
2955 	conf->poolinfo->raid_disks = mddev->raid_disks * 2;
2956 	conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2957 					  r1bio_pool_free,
2958 					  conf->poolinfo);
2959 	if (!conf->r1bio_pool)
2960 		goto abort;
2961 
2962 	conf->bio_split = bioset_create(BIO_POOL_SIZE, 0, 0);
2963 	if (!conf->bio_split)
2964 		goto abort;
2965 
2966 	conf->poolinfo->mddev = mddev;
2967 
2968 	err = -EINVAL;
2969 	spin_lock_init(&conf->device_lock);
2970 	rdev_for_each(rdev, mddev) {
2971 		int disk_idx = rdev->raid_disk;
2972 		if (disk_idx >= mddev->raid_disks
2973 		    || disk_idx < 0)
2974 			continue;
2975 		if (test_bit(Replacement, &rdev->flags))
2976 			disk = conf->mirrors + mddev->raid_disks + disk_idx;
2977 		else
2978 			disk = conf->mirrors + disk_idx;
2979 
2980 		if (disk->rdev)
2981 			goto abort;
2982 		disk->rdev = rdev;
2983 		disk->head_position = 0;
2984 		disk->seq_start = MaxSector;
2985 	}
2986 	conf->raid_disks = mddev->raid_disks;
2987 	conf->mddev = mddev;
2988 	INIT_LIST_HEAD(&conf->retry_list);
2989 	INIT_LIST_HEAD(&conf->bio_end_io_list);
2990 
2991 	spin_lock_init(&conf->resync_lock);
2992 	init_waitqueue_head(&conf->wait_barrier);
2993 
2994 	bio_list_init(&conf->pending_bio_list);
2995 	conf->pending_count = 0;
2996 	conf->recovery_disabled = mddev->recovery_disabled - 1;
2997 
2998 	err = -EIO;
2999 	for (i = 0; i < conf->raid_disks * 2; i++) {
3000 
3001 		disk = conf->mirrors + i;
3002 
3003 		if (i < conf->raid_disks &&
3004 		    disk[conf->raid_disks].rdev) {
3005 			/* This slot has a replacement. */
3006 			if (!disk->rdev) {
3007 				/* No original, just make the replacement
3008 				 * a recovering spare
3009 				 */
3010 				disk->rdev =
3011 					disk[conf->raid_disks].rdev;
3012 				disk[conf->raid_disks].rdev = NULL;
3013 			} else if (!test_bit(In_sync, &disk->rdev->flags))
3014 				/* Original is not in_sync - bad */
3015 				goto abort;
3016 		}
3017 
3018 		if (!disk->rdev ||
3019 		    !test_bit(In_sync, &disk->rdev->flags)) {
3020 			disk->head_position = 0;
3021 			if (disk->rdev &&
3022 			    (disk->rdev->saved_raid_disk < 0))
3023 				conf->fullsync = 1;
3024 		}
3025 	}
3026 
3027 	err = -ENOMEM;
3028 	conf->thread = md_register_thread(raid1d, mddev, "raid1");
3029 	if (!conf->thread)
3030 		goto abort;
3031 
3032 	return conf;
3033 
3034  abort:
3035 	if (conf) {
3036 		mempool_destroy(conf->r1bio_pool);
3037 		kfree(conf->mirrors);
3038 		safe_put_page(conf->tmppage);
3039 		kfree(conf->poolinfo);
3040 		kfree(conf->nr_pending);
3041 		kfree(conf->nr_waiting);
3042 		kfree(conf->nr_queued);
3043 		kfree(conf->barrier);
3044 		if (conf->bio_split)
3045 			bioset_free(conf->bio_split);
3046 		kfree(conf);
3047 	}
3048 	return ERR_PTR(err);
3049 }
3050 
3051 static void raid1_free(struct mddev *mddev, void *priv);
3052 static int raid1_run(struct mddev *mddev)
3053 {
3054 	struct r1conf *conf;
3055 	int i;
3056 	struct md_rdev *rdev;
3057 	int ret;
3058 	bool discard_supported = false;
3059 
3060 	if (mddev->level != 1) {
3061 		pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n",
3062 			mdname(mddev), mddev->level);
3063 		return -EIO;
3064 	}
3065 	if (mddev->reshape_position != MaxSector) {
3066 		pr_warn("md/raid1:%s: reshape_position set but not supported\n",
3067 			mdname(mddev));
3068 		return -EIO;
3069 	}
3070 	if (mddev_init_writes_pending(mddev) < 0)
3071 		return -ENOMEM;
3072 	/*
3073 	 * copy the already verified devices into our private RAID1
3074 	 * bookkeeping area. [whatever we allocate in run(),
3075 	 * should be freed in raid1_free()]
3076 	 */
3077 	if (mddev->private == NULL)
3078 		conf = setup_conf(mddev);
3079 	else
3080 		conf = mddev->private;
3081 
3082 	if (IS_ERR(conf))
3083 		return PTR_ERR(conf);
3084 
3085 	if (mddev->queue) {
3086 		blk_queue_max_write_same_sectors(mddev->queue, 0);
3087 		blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
3088 	}
3089 
3090 	rdev_for_each(rdev, mddev) {
3091 		if (!mddev->gendisk)
3092 			continue;
3093 		disk_stack_limits(mddev->gendisk, rdev->bdev,
3094 				  rdev->data_offset << 9);
3095 		if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3096 			discard_supported = true;
3097 	}
3098 
3099 	mddev->degraded = 0;
3100 	for (i=0; i < conf->raid_disks; i++)
3101 		if (conf->mirrors[i].rdev == NULL ||
3102 		    !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
3103 		    test_bit(Faulty, &conf->mirrors[i].rdev->flags))
3104 			mddev->degraded++;
3105 
3106 	if (conf->raid_disks - mddev->degraded == 1)
3107 		mddev->recovery_cp = MaxSector;
3108 
3109 	if (mddev->recovery_cp != MaxSector)
3110 		pr_info("md/raid1:%s: not clean -- starting background reconstruction\n",
3111 			mdname(mddev));
3112 	pr_info("md/raid1:%s: active with %d out of %d mirrors\n",
3113 		mdname(mddev), mddev->raid_disks - mddev->degraded,
3114 		mddev->raid_disks);
3115 
3116 	/*
3117 	 * Ok, everything is just fine now
3118 	 */
3119 	mddev->thread = conf->thread;
3120 	conf->thread = NULL;
3121 	mddev->private = conf;
3122 	set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
3123 
3124 	md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
3125 
3126 	if (mddev->queue) {
3127 		if (discard_supported)
3128 			queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
3129 						mddev->queue);
3130 		else
3131 			queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
3132 						  mddev->queue);
3133 	}
3134 
3135 	ret =  md_integrity_register(mddev);
3136 	if (ret) {
3137 		md_unregister_thread(&mddev->thread);
3138 		raid1_free(mddev, conf);
3139 	}
3140 	return ret;
3141 }
3142 
3143 static void raid1_free(struct mddev *mddev, void *priv)
3144 {
3145 	struct r1conf *conf = priv;
3146 
3147 	mempool_destroy(conf->r1bio_pool);
3148 	kfree(conf->mirrors);
3149 	safe_put_page(conf->tmppage);
3150 	kfree(conf->poolinfo);
3151 	kfree(conf->nr_pending);
3152 	kfree(conf->nr_waiting);
3153 	kfree(conf->nr_queued);
3154 	kfree(conf->barrier);
3155 	if (conf->bio_split)
3156 		bioset_free(conf->bio_split);
3157 	kfree(conf);
3158 }
3159 
3160 static int raid1_resize(struct mddev *mddev, sector_t sectors)
3161 {
3162 	/* no resync is happening, and there is enough space
3163 	 * on all devices, so we can resize.
3164 	 * We need to make sure resync covers any new space.
3165 	 * If the array is shrinking we should possibly wait until
3166 	 * any io in the removed space completes, but it hardly seems
3167 	 * worth it.
3168 	 */
3169 	sector_t newsize = raid1_size(mddev, sectors, 0);
3170 	if (mddev->external_size &&
3171 	    mddev->array_sectors > newsize)
3172 		return -EINVAL;
3173 	if (mddev->bitmap) {
3174 		int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0);
3175 		if (ret)
3176 			return ret;
3177 	}
3178 	md_set_array_sectors(mddev, newsize);
3179 	if (sectors > mddev->dev_sectors &&
3180 	    mddev->recovery_cp > mddev->dev_sectors) {
3181 		mddev->recovery_cp = mddev->dev_sectors;
3182 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3183 	}
3184 	mddev->dev_sectors = sectors;
3185 	mddev->resync_max_sectors = sectors;
3186 	return 0;
3187 }
3188 
3189 static int raid1_reshape(struct mddev *mddev)
3190 {
3191 	/* We need to:
3192 	 * 1/ resize the r1bio_pool
3193 	 * 2/ resize conf->mirrors
3194 	 *
3195 	 * We allocate a new r1bio_pool if we can.
3196 	 * Then raise a device barrier and wait until all IO stops.
3197 	 * Then resize conf->mirrors and swap in the new r1bio pool.
3198 	 *
3199 	 * At the same time, we "pack" the devices so that all the missing
3200 	 * devices have the higher raid_disk numbers.
3201 	 */
3202 	mempool_t *newpool, *oldpool;
3203 	struct pool_info *newpoolinfo;
3204 	struct raid1_info *newmirrors;
3205 	struct r1conf *conf = mddev->private;
3206 	int cnt, raid_disks;
3207 	unsigned long flags;
3208 	int d, d2;
3209 
3210 	/* Cannot change chunk_size, layout, or level */
3211 	if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3212 	    mddev->layout != mddev->new_layout ||
3213 	    mddev->level != mddev->new_level) {
3214 		mddev->new_chunk_sectors = mddev->chunk_sectors;
3215 		mddev->new_layout = mddev->layout;
3216 		mddev->new_level = mddev->level;
3217 		return -EINVAL;
3218 	}
3219 
3220 	if (!mddev_is_clustered(mddev))
3221 		md_allow_write(mddev);
3222 
3223 	raid_disks = mddev->raid_disks + mddev->delta_disks;
3224 
3225 	if (raid_disks < conf->raid_disks) {
3226 		cnt=0;
3227 		for (d= 0; d < conf->raid_disks; d++)
3228 			if (conf->mirrors[d].rdev)
3229 				cnt++;
3230 		if (cnt > raid_disks)
3231 			return -EBUSY;
3232 	}
3233 
3234 	newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3235 	if (!newpoolinfo)
3236 		return -ENOMEM;
3237 	newpoolinfo->mddev = mddev;
3238 	newpoolinfo->raid_disks = raid_disks * 2;
3239 
3240 	newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
3241 				 r1bio_pool_free, newpoolinfo);
3242 	if (!newpool) {
3243 		kfree(newpoolinfo);
3244 		return -ENOMEM;
3245 	}
3246 	newmirrors = kzalloc(sizeof(struct raid1_info) * raid_disks * 2,
3247 			     GFP_KERNEL);
3248 	if (!newmirrors) {
3249 		kfree(newpoolinfo);
3250 		mempool_destroy(newpool);
3251 		return -ENOMEM;
3252 	}
3253 
3254 	freeze_array(conf, 0);
3255 
3256 	/* ok, everything is stopped */
3257 	oldpool = conf->r1bio_pool;
3258 	conf->r1bio_pool = newpool;
3259 
3260 	for (d = d2 = 0; d < conf->raid_disks; d++) {
3261 		struct md_rdev *rdev = conf->mirrors[d].rdev;
3262 		if (rdev && rdev->raid_disk != d2) {
3263 			sysfs_unlink_rdev(mddev, rdev);
3264 			rdev->raid_disk = d2;
3265 			sysfs_unlink_rdev(mddev, rdev);
3266 			if (sysfs_link_rdev(mddev, rdev))
3267 				pr_warn("md/raid1:%s: cannot register rd%d\n",
3268 					mdname(mddev), rdev->raid_disk);
3269 		}
3270 		if (rdev)
3271 			newmirrors[d2++].rdev = rdev;
3272 	}
3273 	kfree(conf->mirrors);
3274 	conf->mirrors = newmirrors;
3275 	kfree(conf->poolinfo);
3276 	conf->poolinfo = newpoolinfo;
3277 
3278 	spin_lock_irqsave(&conf->device_lock, flags);
3279 	mddev->degraded += (raid_disks - conf->raid_disks);
3280 	spin_unlock_irqrestore(&conf->device_lock, flags);
3281 	conf->raid_disks = mddev->raid_disks = raid_disks;
3282 	mddev->delta_disks = 0;
3283 
3284 	unfreeze_array(conf);
3285 
3286 	set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3287 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3288 	md_wakeup_thread(mddev->thread);
3289 
3290 	mempool_destroy(oldpool);
3291 	return 0;
3292 }
3293 
3294 static void raid1_quiesce(struct mddev *mddev, int state)
3295 {
3296 	struct r1conf *conf = mddev->private;
3297 
3298 	switch(state) {
3299 	case 2: /* wake for suspend */
3300 		wake_up(&conf->wait_barrier);
3301 		break;
3302 	case 1:
3303 		freeze_array(conf, 0);
3304 		break;
3305 	case 0:
3306 		unfreeze_array(conf);
3307 		break;
3308 	}
3309 }
3310 
3311 static void *raid1_takeover(struct mddev *mddev)
3312 {
3313 	/* raid1 can take over:
3314 	 *  raid5 with 2 devices, any layout or chunk size
3315 	 */
3316 	if (mddev->level == 5 && mddev->raid_disks == 2) {
3317 		struct r1conf *conf;
3318 		mddev->new_level = 1;
3319 		mddev->new_layout = 0;
3320 		mddev->new_chunk_sectors = 0;
3321 		conf = setup_conf(mddev);
3322 		if (!IS_ERR(conf)) {
3323 			/* Array must appear to be quiesced */
3324 			conf->array_frozen = 1;
3325 			mddev_clear_unsupported_flags(mddev,
3326 				UNSUPPORTED_MDDEV_FLAGS);
3327 		}
3328 		return conf;
3329 	}
3330 	return ERR_PTR(-EINVAL);
3331 }
3332 
3333 static struct md_personality raid1_personality =
3334 {
3335 	.name		= "raid1",
3336 	.level		= 1,
3337 	.owner		= THIS_MODULE,
3338 	.make_request	= raid1_make_request,
3339 	.run		= raid1_run,
3340 	.free		= raid1_free,
3341 	.status		= raid1_status,
3342 	.error_handler	= raid1_error,
3343 	.hot_add_disk	= raid1_add_disk,
3344 	.hot_remove_disk= raid1_remove_disk,
3345 	.spare_active	= raid1_spare_active,
3346 	.sync_request	= raid1_sync_request,
3347 	.resize		= raid1_resize,
3348 	.size		= raid1_size,
3349 	.check_reshape	= raid1_reshape,
3350 	.quiesce	= raid1_quiesce,
3351 	.takeover	= raid1_takeover,
3352 	.congested	= raid1_congested,
3353 };
3354 
3355 static int __init raid_init(void)
3356 {
3357 	return register_md_personality(&raid1_personality);
3358 }
3359 
3360 static void raid_exit(void)
3361 {
3362 	unregister_md_personality(&raid1_personality);
3363 }
3364 
3365 module_init(raid_init);
3366 module_exit(raid_exit);
3367 MODULE_LICENSE("GPL");
3368 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3369 MODULE_ALIAS("md-personality-3"); /* RAID1 */
3370 MODULE_ALIAS("md-raid1");
3371 MODULE_ALIAS("md-level-1");
3372 
3373 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
3374