1 /* 2 * raid1.c : Multiple Devices driver for Linux 3 * 4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat 5 * 6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman 7 * 8 * RAID-1 management functions. 9 * 10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000 11 * 12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk> 13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au> 14 * 15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support 16 * bitmapped intelligence in resync: 17 * 18 * - bitmap marked during normal i/o 19 * - bitmap used to skip nondirty blocks during sync 20 * 21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology: 22 * - persistent bitmap code 23 * 24 * This program is free software; you can redistribute it and/or modify 25 * it under the terms of the GNU General Public License as published by 26 * the Free Software Foundation; either version 2, or (at your option) 27 * any later version. 28 * 29 * You should have received a copy of the GNU General Public License 30 * (for example /usr/src/linux/COPYING); if not, write to the Free 31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 32 */ 33 34 #include <linux/slab.h> 35 #include <linux/delay.h> 36 #include <linux/blkdev.h> 37 #include <linux/module.h> 38 #include <linux/seq_file.h> 39 #include <linux/ratelimit.h> 40 #include "md.h" 41 #include "raid1.h" 42 #include "bitmap.h" 43 44 /* 45 * Number of guaranteed r1bios in case of extreme VM load: 46 */ 47 #define NR_RAID1_BIOS 256 48 49 /* when we get a read error on a read-only array, we redirect to another 50 * device without failing the first device, or trying to over-write to 51 * correct the read error. To keep track of bad blocks on a per-bio 52 * level, we store IO_BLOCKED in the appropriate 'bios' pointer 53 */ 54 #define IO_BLOCKED ((struct bio *)1) 55 /* When we successfully write to a known bad-block, we need to remove the 56 * bad-block marking which must be done from process context. So we record 57 * the success by setting devs[n].bio to IO_MADE_GOOD 58 */ 59 #define IO_MADE_GOOD ((struct bio *)2) 60 61 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2) 62 63 /* When there are this many requests queue to be written by 64 * the raid1 thread, we become 'congested' to provide back-pressure 65 * for writeback. 66 */ 67 static int max_queued_requests = 1024; 68 69 static void allow_barrier(struct r1conf *conf, sector_t start_next_window, 70 sector_t bi_sector); 71 static void lower_barrier(struct r1conf *conf); 72 73 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data) 74 { 75 struct pool_info *pi = data; 76 int size = offsetof(struct r1bio, bios[pi->raid_disks]); 77 78 /* allocate a r1bio with room for raid_disks entries in the bios array */ 79 return kzalloc(size, gfp_flags); 80 } 81 82 static void r1bio_pool_free(void *r1_bio, void *data) 83 { 84 kfree(r1_bio); 85 } 86 87 #define RESYNC_BLOCK_SIZE (64*1024) 88 #define RESYNC_DEPTH 32 89 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9) 90 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE) 91 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH) 92 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9) 93 #define NEXT_NORMALIO_DISTANCE (3 * RESYNC_WINDOW_SECTORS) 94 95 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data) 96 { 97 struct pool_info *pi = data; 98 struct r1bio *r1_bio; 99 struct bio *bio; 100 int need_pages; 101 int i, j; 102 103 r1_bio = r1bio_pool_alloc(gfp_flags, pi); 104 if (!r1_bio) 105 return NULL; 106 107 /* 108 * Allocate bios : 1 for reading, n-1 for writing 109 */ 110 for (j = pi->raid_disks ; j-- ; ) { 111 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES); 112 if (!bio) 113 goto out_free_bio; 114 r1_bio->bios[j] = bio; 115 } 116 /* 117 * Allocate RESYNC_PAGES data pages and attach them to 118 * the first bio. 119 * If this is a user-requested check/repair, allocate 120 * RESYNC_PAGES for each bio. 121 */ 122 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) 123 need_pages = pi->raid_disks; 124 else 125 need_pages = 1; 126 for (j = 0; j < need_pages; j++) { 127 bio = r1_bio->bios[j]; 128 bio->bi_vcnt = RESYNC_PAGES; 129 130 if (bio_alloc_pages(bio, gfp_flags)) 131 goto out_free_pages; 132 } 133 /* If not user-requests, copy the page pointers to all bios */ 134 if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) { 135 for (i=0; i<RESYNC_PAGES ; i++) 136 for (j=1; j<pi->raid_disks; j++) 137 r1_bio->bios[j]->bi_io_vec[i].bv_page = 138 r1_bio->bios[0]->bi_io_vec[i].bv_page; 139 } 140 141 r1_bio->master_bio = NULL; 142 143 return r1_bio; 144 145 out_free_pages: 146 while (--j >= 0) { 147 struct bio_vec *bv; 148 149 bio_for_each_segment_all(bv, r1_bio->bios[j], i) 150 __free_page(bv->bv_page); 151 } 152 153 out_free_bio: 154 while (++j < pi->raid_disks) 155 bio_put(r1_bio->bios[j]); 156 r1bio_pool_free(r1_bio, data); 157 return NULL; 158 } 159 160 static void r1buf_pool_free(void *__r1_bio, void *data) 161 { 162 struct pool_info *pi = data; 163 int i,j; 164 struct r1bio *r1bio = __r1_bio; 165 166 for (i = 0; i < RESYNC_PAGES; i++) 167 for (j = pi->raid_disks; j-- ;) { 168 if (j == 0 || 169 r1bio->bios[j]->bi_io_vec[i].bv_page != 170 r1bio->bios[0]->bi_io_vec[i].bv_page) 171 safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page); 172 } 173 for (i=0 ; i < pi->raid_disks; i++) 174 bio_put(r1bio->bios[i]); 175 176 r1bio_pool_free(r1bio, data); 177 } 178 179 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio) 180 { 181 int i; 182 183 for (i = 0; i < conf->raid_disks * 2; i++) { 184 struct bio **bio = r1_bio->bios + i; 185 if (!BIO_SPECIAL(*bio)) 186 bio_put(*bio); 187 *bio = NULL; 188 } 189 } 190 191 static void free_r1bio(struct r1bio *r1_bio) 192 { 193 struct r1conf *conf = r1_bio->mddev->private; 194 195 put_all_bios(conf, r1_bio); 196 mempool_free(r1_bio, conf->r1bio_pool); 197 } 198 199 static void put_buf(struct r1bio *r1_bio) 200 { 201 struct r1conf *conf = r1_bio->mddev->private; 202 int i; 203 204 for (i = 0; i < conf->raid_disks * 2; i++) { 205 struct bio *bio = r1_bio->bios[i]; 206 if (bio->bi_end_io) 207 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev); 208 } 209 210 mempool_free(r1_bio, conf->r1buf_pool); 211 212 lower_barrier(conf); 213 } 214 215 static void reschedule_retry(struct r1bio *r1_bio) 216 { 217 unsigned long flags; 218 struct mddev *mddev = r1_bio->mddev; 219 struct r1conf *conf = mddev->private; 220 221 spin_lock_irqsave(&conf->device_lock, flags); 222 list_add(&r1_bio->retry_list, &conf->retry_list); 223 conf->nr_queued ++; 224 spin_unlock_irqrestore(&conf->device_lock, flags); 225 226 wake_up(&conf->wait_barrier); 227 md_wakeup_thread(mddev->thread); 228 } 229 230 /* 231 * raid_end_bio_io() is called when we have finished servicing a mirrored 232 * operation and are ready to return a success/failure code to the buffer 233 * cache layer. 234 */ 235 static void call_bio_endio(struct r1bio *r1_bio) 236 { 237 struct bio *bio = r1_bio->master_bio; 238 int done; 239 struct r1conf *conf = r1_bio->mddev->private; 240 sector_t start_next_window = r1_bio->start_next_window; 241 sector_t bi_sector = bio->bi_iter.bi_sector; 242 243 if (bio->bi_phys_segments) { 244 unsigned long flags; 245 spin_lock_irqsave(&conf->device_lock, flags); 246 bio->bi_phys_segments--; 247 done = (bio->bi_phys_segments == 0); 248 spin_unlock_irqrestore(&conf->device_lock, flags); 249 /* 250 * make_request() might be waiting for 251 * bi_phys_segments to decrease 252 */ 253 wake_up(&conf->wait_barrier); 254 } else 255 done = 1; 256 257 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) 258 clear_bit(BIO_UPTODATE, &bio->bi_flags); 259 if (done) { 260 bio_endio(bio, 0); 261 /* 262 * Wake up any possible resync thread that waits for the device 263 * to go idle. 264 */ 265 allow_barrier(conf, start_next_window, bi_sector); 266 } 267 } 268 269 static void raid_end_bio_io(struct r1bio *r1_bio) 270 { 271 struct bio *bio = r1_bio->master_bio; 272 273 /* if nobody has done the final endio yet, do it now */ 274 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) { 275 pr_debug("raid1: sync end %s on sectors %llu-%llu\n", 276 (bio_data_dir(bio) == WRITE) ? "write" : "read", 277 (unsigned long long) bio->bi_iter.bi_sector, 278 (unsigned long long) bio_end_sector(bio) - 1); 279 280 call_bio_endio(r1_bio); 281 } 282 free_r1bio(r1_bio); 283 } 284 285 /* 286 * Update disk head position estimator based on IRQ completion info. 287 */ 288 static inline void update_head_pos(int disk, struct r1bio *r1_bio) 289 { 290 struct r1conf *conf = r1_bio->mddev->private; 291 292 conf->mirrors[disk].head_position = 293 r1_bio->sector + (r1_bio->sectors); 294 } 295 296 /* 297 * Find the disk number which triggered given bio 298 */ 299 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio) 300 { 301 int mirror; 302 struct r1conf *conf = r1_bio->mddev->private; 303 int raid_disks = conf->raid_disks; 304 305 for (mirror = 0; mirror < raid_disks * 2; mirror++) 306 if (r1_bio->bios[mirror] == bio) 307 break; 308 309 BUG_ON(mirror == raid_disks * 2); 310 update_head_pos(mirror, r1_bio); 311 312 return mirror; 313 } 314 315 static void raid1_end_read_request(struct bio *bio, int error) 316 { 317 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 318 struct r1bio *r1_bio = bio->bi_private; 319 int mirror; 320 struct r1conf *conf = r1_bio->mddev->private; 321 322 mirror = r1_bio->read_disk; 323 /* 324 * this branch is our 'one mirror IO has finished' event handler: 325 */ 326 update_head_pos(mirror, r1_bio); 327 328 if (uptodate) 329 set_bit(R1BIO_Uptodate, &r1_bio->state); 330 else { 331 /* If all other devices have failed, we want to return 332 * the error upwards rather than fail the last device. 333 * Here we redefine "uptodate" to mean "Don't want to retry" 334 */ 335 unsigned long flags; 336 spin_lock_irqsave(&conf->device_lock, flags); 337 if (r1_bio->mddev->degraded == conf->raid_disks || 338 (r1_bio->mddev->degraded == conf->raid_disks-1 && 339 !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags))) 340 uptodate = 1; 341 spin_unlock_irqrestore(&conf->device_lock, flags); 342 } 343 344 if (uptodate) { 345 raid_end_bio_io(r1_bio); 346 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev); 347 } else { 348 /* 349 * oops, read error: 350 */ 351 char b[BDEVNAME_SIZE]; 352 printk_ratelimited( 353 KERN_ERR "md/raid1:%s: %s: " 354 "rescheduling sector %llu\n", 355 mdname(conf->mddev), 356 bdevname(conf->mirrors[mirror].rdev->bdev, 357 b), 358 (unsigned long long)r1_bio->sector); 359 set_bit(R1BIO_ReadError, &r1_bio->state); 360 reschedule_retry(r1_bio); 361 /* don't drop the reference on read_disk yet */ 362 } 363 } 364 365 static void close_write(struct r1bio *r1_bio) 366 { 367 /* it really is the end of this request */ 368 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) { 369 /* free extra copy of the data pages */ 370 int i = r1_bio->behind_page_count; 371 while (i--) 372 safe_put_page(r1_bio->behind_bvecs[i].bv_page); 373 kfree(r1_bio->behind_bvecs); 374 r1_bio->behind_bvecs = NULL; 375 } 376 /* clear the bitmap if all writes complete successfully */ 377 bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector, 378 r1_bio->sectors, 379 !test_bit(R1BIO_Degraded, &r1_bio->state), 380 test_bit(R1BIO_BehindIO, &r1_bio->state)); 381 md_write_end(r1_bio->mddev); 382 } 383 384 static void r1_bio_write_done(struct r1bio *r1_bio) 385 { 386 if (!atomic_dec_and_test(&r1_bio->remaining)) 387 return; 388 389 if (test_bit(R1BIO_WriteError, &r1_bio->state)) 390 reschedule_retry(r1_bio); 391 else { 392 close_write(r1_bio); 393 if (test_bit(R1BIO_MadeGood, &r1_bio->state)) 394 reschedule_retry(r1_bio); 395 else 396 raid_end_bio_io(r1_bio); 397 } 398 } 399 400 static void raid1_end_write_request(struct bio *bio, int error) 401 { 402 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 403 struct r1bio *r1_bio = bio->bi_private; 404 int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state); 405 struct r1conf *conf = r1_bio->mddev->private; 406 struct bio *to_put = NULL; 407 408 mirror = find_bio_disk(r1_bio, bio); 409 410 /* 411 * 'one mirror IO has finished' event handler: 412 */ 413 if (!uptodate) { 414 set_bit(WriteErrorSeen, 415 &conf->mirrors[mirror].rdev->flags); 416 if (!test_and_set_bit(WantReplacement, 417 &conf->mirrors[mirror].rdev->flags)) 418 set_bit(MD_RECOVERY_NEEDED, & 419 conf->mddev->recovery); 420 421 set_bit(R1BIO_WriteError, &r1_bio->state); 422 } else { 423 /* 424 * Set R1BIO_Uptodate in our master bio, so that we 425 * will return a good error code for to the higher 426 * levels even if IO on some other mirrored buffer 427 * fails. 428 * 429 * The 'master' represents the composite IO operation 430 * to user-side. So if something waits for IO, then it 431 * will wait for the 'master' bio. 432 */ 433 sector_t first_bad; 434 int bad_sectors; 435 436 r1_bio->bios[mirror] = NULL; 437 to_put = bio; 438 /* 439 * Do not set R1BIO_Uptodate if the current device is 440 * rebuilding or Faulty. This is because we cannot use 441 * such device for properly reading the data back (we could 442 * potentially use it, if the current write would have felt 443 * before rdev->recovery_offset, but for simplicity we don't 444 * check this here. 445 */ 446 if (test_bit(In_sync, &conf->mirrors[mirror].rdev->flags) && 447 !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags)) 448 set_bit(R1BIO_Uptodate, &r1_bio->state); 449 450 /* Maybe we can clear some bad blocks. */ 451 if (is_badblock(conf->mirrors[mirror].rdev, 452 r1_bio->sector, r1_bio->sectors, 453 &first_bad, &bad_sectors)) { 454 r1_bio->bios[mirror] = IO_MADE_GOOD; 455 set_bit(R1BIO_MadeGood, &r1_bio->state); 456 } 457 } 458 459 if (behind) { 460 if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags)) 461 atomic_dec(&r1_bio->behind_remaining); 462 463 /* 464 * In behind mode, we ACK the master bio once the I/O 465 * has safely reached all non-writemostly 466 * disks. Setting the Returned bit ensures that this 467 * gets done only once -- we don't ever want to return 468 * -EIO here, instead we'll wait 469 */ 470 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) && 471 test_bit(R1BIO_Uptodate, &r1_bio->state)) { 472 /* Maybe we can return now */ 473 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) { 474 struct bio *mbio = r1_bio->master_bio; 475 pr_debug("raid1: behind end write sectors" 476 " %llu-%llu\n", 477 (unsigned long long) mbio->bi_iter.bi_sector, 478 (unsigned long long) bio_end_sector(mbio) - 1); 479 call_bio_endio(r1_bio); 480 } 481 } 482 } 483 if (r1_bio->bios[mirror] == NULL) 484 rdev_dec_pending(conf->mirrors[mirror].rdev, 485 conf->mddev); 486 487 /* 488 * Let's see if all mirrored write operations have finished 489 * already. 490 */ 491 r1_bio_write_done(r1_bio); 492 493 if (to_put) 494 bio_put(to_put); 495 } 496 497 /* 498 * This routine returns the disk from which the requested read should 499 * be done. There is a per-array 'next expected sequential IO' sector 500 * number - if this matches on the next IO then we use the last disk. 501 * There is also a per-disk 'last know head position' sector that is 502 * maintained from IRQ contexts, both the normal and the resync IO 503 * completion handlers update this position correctly. If there is no 504 * perfect sequential match then we pick the disk whose head is closest. 505 * 506 * If there are 2 mirrors in the same 2 devices, performance degrades 507 * because position is mirror, not device based. 508 * 509 * The rdev for the device selected will have nr_pending incremented. 510 */ 511 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors) 512 { 513 const sector_t this_sector = r1_bio->sector; 514 int sectors; 515 int best_good_sectors; 516 int best_disk, best_dist_disk, best_pending_disk; 517 int has_nonrot_disk; 518 int disk; 519 sector_t best_dist; 520 unsigned int min_pending; 521 struct md_rdev *rdev; 522 int choose_first; 523 int choose_next_idle; 524 525 rcu_read_lock(); 526 /* 527 * Check if we can balance. We can balance on the whole 528 * device if no resync is going on, or below the resync window. 529 * We take the first readable disk when above the resync window. 530 */ 531 retry: 532 sectors = r1_bio->sectors; 533 best_disk = -1; 534 best_dist_disk = -1; 535 best_dist = MaxSector; 536 best_pending_disk = -1; 537 min_pending = UINT_MAX; 538 best_good_sectors = 0; 539 has_nonrot_disk = 0; 540 choose_next_idle = 0; 541 542 choose_first = (conf->mddev->recovery_cp < this_sector + sectors); 543 544 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) { 545 sector_t dist; 546 sector_t first_bad; 547 int bad_sectors; 548 unsigned int pending; 549 bool nonrot; 550 551 rdev = rcu_dereference(conf->mirrors[disk].rdev); 552 if (r1_bio->bios[disk] == IO_BLOCKED 553 || rdev == NULL 554 || test_bit(Unmerged, &rdev->flags) 555 || test_bit(Faulty, &rdev->flags)) 556 continue; 557 if (!test_bit(In_sync, &rdev->flags) && 558 rdev->recovery_offset < this_sector + sectors) 559 continue; 560 if (test_bit(WriteMostly, &rdev->flags)) { 561 /* Don't balance among write-mostly, just 562 * use the first as a last resort */ 563 if (best_disk < 0) { 564 if (is_badblock(rdev, this_sector, sectors, 565 &first_bad, &bad_sectors)) { 566 if (first_bad < this_sector) 567 /* Cannot use this */ 568 continue; 569 best_good_sectors = first_bad - this_sector; 570 } else 571 best_good_sectors = sectors; 572 best_disk = disk; 573 } 574 continue; 575 } 576 /* This is a reasonable device to use. It might 577 * even be best. 578 */ 579 if (is_badblock(rdev, this_sector, sectors, 580 &first_bad, &bad_sectors)) { 581 if (best_dist < MaxSector) 582 /* already have a better device */ 583 continue; 584 if (first_bad <= this_sector) { 585 /* cannot read here. If this is the 'primary' 586 * device, then we must not read beyond 587 * bad_sectors from another device.. 588 */ 589 bad_sectors -= (this_sector - first_bad); 590 if (choose_first && sectors > bad_sectors) 591 sectors = bad_sectors; 592 if (best_good_sectors > sectors) 593 best_good_sectors = sectors; 594 595 } else { 596 sector_t good_sectors = first_bad - this_sector; 597 if (good_sectors > best_good_sectors) { 598 best_good_sectors = good_sectors; 599 best_disk = disk; 600 } 601 if (choose_first) 602 break; 603 } 604 continue; 605 } else 606 best_good_sectors = sectors; 607 608 nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev)); 609 has_nonrot_disk |= nonrot; 610 pending = atomic_read(&rdev->nr_pending); 611 dist = abs(this_sector - conf->mirrors[disk].head_position); 612 if (choose_first) { 613 best_disk = disk; 614 break; 615 } 616 /* Don't change to another disk for sequential reads */ 617 if (conf->mirrors[disk].next_seq_sect == this_sector 618 || dist == 0) { 619 int opt_iosize = bdev_io_opt(rdev->bdev) >> 9; 620 struct raid1_info *mirror = &conf->mirrors[disk]; 621 622 best_disk = disk; 623 /* 624 * If buffered sequential IO size exceeds optimal 625 * iosize, check if there is idle disk. If yes, choose 626 * the idle disk. read_balance could already choose an 627 * idle disk before noticing it's a sequential IO in 628 * this disk. This doesn't matter because this disk 629 * will idle, next time it will be utilized after the 630 * first disk has IO size exceeds optimal iosize. In 631 * this way, iosize of the first disk will be optimal 632 * iosize at least. iosize of the second disk might be 633 * small, but not a big deal since when the second disk 634 * starts IO, the first disk is likely still busy. 635 */ 636 if (nonrot && opt_iosize > 0 && 637 mirror->seq_start != MaxSector && 638 mirror->next_seq_sect > opt_iosize && 639 mirror->next_seq_sect - opt_iosize >= 640 mirror->seq_start) { 641 choose_next_idle = 1; 642 continue; 643 } 644 break; 645 } 646 /* If device is idle, use it */ 647 if (pending == 0) { 648 best_disk = disk; 649 break; 650 } 651 652 if (choose_next_idle) 653 continue; 654 655 if (min_pending > pending) { 656 min_pending = pending; 657 best_pending_disk = disk; 658 } 659 660 if (dist < best_dist) { 661 best_dist = dist; 662 best_dist_disk = disk; 663 } 664 } 665 666 /* 667 * If all disks are rotational, choose the closest disk. If any disk is 668 * non-rotational, choose the disk with less pending request even the 669 * disk is rotational, which might/might not be optimal for raids with 670 * mixed ratation/non-rotational disks depending on workload. 671 */ 672 if (best_disk == -1) { 673 if (has_nonrot_disk) 674 best_disk = best_pending_disk; 675 else 676 best_disk = best_dist_disk; 677 } 678 679 if (best_disk >= 0) { 680 rdev = rcu_dereference(conf->mirrors[best_disk].rdev); 681 if (!rdev) 682 goto retry; 683 atomic_inc(&rdev->nr_pending); 684 if (test_bit(Faulty, &rdev->flags)) { 685 /* cannot risk returning a device that failed 686 * before we inc'ed nr_pending 687 */ 688 rdev_dec_pending(rdev, conf->mddev); 689 goto retry; 690 } 691 sectors = best_good_sectors; 692 693 if (conf->mirrors[best_disk].next_seq_sect != this_sector) 694 conf->mirrors[best_disk].seq_start = this_sector; 695 696 conf->mirrors[best_disk].next_seq_sect = this_sector + sectors; 697 } 698 rcu_read_unlock(); 699 *max_sectors = sectors; 700 701 return best_disk; 702 } 703 704 static int raid1_mergeable_bvec(struct request_queue *q, 705 struct bvec_merge_data *bvm, 706 struct bio_vec *biovec) 707 { 708 struct mddev *mddev = q->queuedata; 709 struct r1conf *conf = mddev->private; 710 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev); 711 int max = biovec->bv_len; 712 713 if (mddev->merge_check_needed) { 714 int disk; 715 rcu_read_lock(); 716 for (disk = 0; disk < conf->raid_disks * 2; disk++) { 717 struct md_rdev *rdev = rcu_dereference( 718 conf->mirrors[disk].rdev); 719 if (rdev && !test_bit(Faulty, &rdev->flags)) { 720 struct request_queue *q = 721 bdev_get_queue(rdev->bdev); 722 if (q->merge_bvec_fn) { 723 bvm->bi_sector = sector + 724 rdev->data_offset; 725 bvm->bi_bdev = rdev->bdev; 726 max = min(max, q->merge_bvec_fn( 727 q, bvm, biovec)); 728 } 729 } 730 } 731 rcu_read_unlock(); 732 } 733 return max; 734 735 } 736 737 int md_raid1_congested(struct mddev *mddev, int bits) 738 { 739 struct r1conf *conf = mddev->private; 740 int i, ret = 0; 741 742 if ((bits & (1 << BDI_async_congested)) && 743 conf->pending_count >= max_queued_requests) 744 return 1; 745 746 rcu_read_lock(); 747 for (i = 0; i < conf->raid_disks * 2; i++) { 748 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 749 if (rdev && !test_bit(Faulty, &rdev->flags)) { 750 struct request_queue *q = bdev_get_queue(rdev->bdev); 751 752 BUG_ON(!q); 753 754 /* Note the '|| 1' - when read_balance prefers 755 * non-congested targets, it can be removed 756 */ 757 if ((bits & (1<<BDI_async_congested)) || 1) 758 ret |= bdi_congested(&q->backing_dev_info, bits); 759 else 760 ret &= bdi_congested(&q->backing_dev_info, bits); 761 } 762 } 763 rcu_read_unlock(); 764 return ret; 765 } 766 EXPORT_SYMBOL_GPL(md_raid1_congested); 767 768 static int raid1_congested(void *data, int bits) 769 { 770 struct mddev *mddev = data; 771 772 return mddev_congested(mddev, bits) || 773 md_raid1_congested(mddev, bits); 774 } 775 776 static void flush_pending_writes(struct r1conf *conf) 777 { 778 /* Any writes that have been queued but are awaiting 779 * bitmap updates get flushed here. 780 */ 781 spin_lock_irq(&conf->device_lock); 782 783 if (conf->pending_bio_list.head) { 784 struct bio *bio; 785 bio = bio_list_get(&conf->pending_bio_list); 786 conf->pending_count = 0; 787 spin_unlock_irq(&conf->device_lock); 788 /* flush any pending bitmap writes to 789 * disk before proceeding w/ I/O */ 790 bitmap_unplug(conf->mddev->bitmap); 791 wake_up(&conf->wait_barrier); 792 793 while (bio) { /* submit pending writes */ 794 struct bio *next = bio->bi_next; 795 bio->bi_next = NULL; 796 if (unlikely((bio->bi_rw & REQ_DISCARD) && 797 !blk_queue_discard(bdev_get_queue(bio->bi_bdev)))) 798 /* Just ignore it */ 799 bio_endio(bio, 0); 800 else 801 generic_make_request(bio); 802 bio = next; 803 } 804 } else 805 spin_unlock_irq(&conf->device_lock); 806 } 807 808 /* Barriers.... 809 * Sometimes we need to suspend IO while we do something else, 810 * either some resync/recovery, or reconfigure the array. 811 * To do this we raise a 'barrier'. 812 * The 'barrier' is a counter that can be raised multiple times 813 * to count how many activities are happening which preclude 814 * normal IO. 815 * We can only raise the barrier if there is no pending IO. 816 * i.e. if nr_pending == 0. 817 * We choose only to raise the barrier if no-one is waiting for the 818 * barrier to go down. This means that as soon as an IO request 819 * is ready, no other operations which require a barrier will start 820 * until the IO request has had a chance. 821 * 822 * So: regular IO calls 'wait_barrier'. When that returns there 823 * is no backgroup IO happening, It must arrange to call 824 * allow_barrier when it has finished its IO. 825 * backgroup IO calls must call raise_barrier. Once that returns 826 * there is no normal IO happeing. It must arrange to call 827 * lower_barrier when the particular background IO completes. 828 */ 829 static void raise_barrier(struct r1conf *conf, sector_t sector_nr) 830 { 831 spin_lock_irq(&conf->resync_lock); 832 833 /* Wait until no block IO is waiting */ 834 wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting, 835 conf->resync_lock); 836 837 /* block any new IO from starting */ 838 conf->barrier++; 839 conf->next_resync = sector_nr; 840 841 /* For these conditions we must wait: 842 * A: while the array is in frozen state 843 * B: while barrier >= RESYNC_DEPTH, meaning resync reach 844 * the max count which allowed. 845 * C: next_resync + RESYNC_SECTORS > start_next_window, meaning 846 * next resync will reach to the window which normal bios are 847 * handling. 848 * D: while there are any active requests in the current window. 849 */ 850 wait_event_lock_irq(conf->wait_barrier, 851 !conf->array_frozen && 852 conf->barrier < RESYNC_DEPTH && 853 conf->current_window_requests == 0 && 854 (conf->start_next_window >= 855 conf->next_resync + RESYNC_SECTORS), 856 conf->resync_lock); 857 858 conf->nr_pending++; 859 spin_unlock_irq(&conf->resync_lock); 860 } 861 862 static void lower_barrier(struct r1conf *conf) 863 { 864 unsigned long flags; 865 BUG_ON(conf->barrier <= 0); 866 spin_lock_irqsave(&conf->resync_lock, flags); 867 conf->barrier--; 868 conf->nr_pending--; 869 spin_unlock_irqrestore(&conf->resync_lock, flags); 870 wake_up(&conf->wait_barrier); 871 } 872 873 static bool need_to_wait_for_sync(struct r1conf *conf, struct bio *bio) 874 { 875 bool wait = false; 876 877 if (conf->array_frozen || !bio) 878 wait = true; 879 else if (conf->barrier && bio_data_dir(bio) == WRITE) { 880 if ((conf->mddev->curr_resync_completed 881 >= bio_end_sector(bio)) || 882 (conf->next_resync + NEXT_NORMALIO_DISTANCE 883 <= bio->bi_iter.bi_sector)) 884 wait = false; 885 else 886 wait = true; 887 } 888 889 return wait; 890 } 891 892 static sector_t wait_barrier(struct r1conf *conf, struct bio *bio) 893 { 894 sector_t sector = 0; 895 896 spin_lock_irq(&conf->resync_lock); 897 if (need_to_wait_for_sync(conf, bio)) { 898 conf->nr_waiting++; 899 /* Wait for the barrier to drop. 900 * However if there are already pending 901 * requests (preventing the barrier from 902 * rising completely), and the 903 * per-process bio queue isn't empty, 904 * then don't wait, as we need to empty 905 * that queue to allow conf->start_next_window 906 * to increase. 907 */ 908 wait_event_lock_irq(conf->wait_barrier, 909 !conf->array_frozen && 910 (!conf->barrier || 911 ((conf->start_next_window < 912 conf->next_resync + RESYNC_SECTORS) && 913 current->bio_list && 914 !bio_list_empty(current->bio_list))), 915 conf->resync_lock); 916 conf->nr_waiting--; 917 } 918 919 if (bio && bio_data_dir(bio) == WRITE) { 920 if (bio->bi_iter.bi_sector >= 921 conf->mddev->curr_resync_completed) { 922 if (conf->start_next_window == MaxSector) 923 conf->start_next_window = 924 conf->next_resync + 925 NEXT_NORMALIO_DISTANCE; 926 927 if ((conf->start_next_window + NEXT_NORMALIO_DISTANCE) 928 <= bio->bi_iter.bi_sector) 929 conf->next_window_requests++; 930 else 931 conf->current_window_requests++; 932 sector = conf->start_next_window; 933 } 934 } 935 936 conf->nr_pending++; 937 spin_unlock_irq(&conf->resync_lock); 938 return sector; 939 } 940 941 static void allow_barrier(struct r1conf *conf, sector_t start_next_window, 942 sector_t bi_sector) 943 { 944 unsigned long flags; 945 946 spin_lock_irqsave(&conf->resync_lock, flags); 947 conf->nr_pending--; 948 if (start_next_window) { 949 if (start_next_window == conf->start_next_window) { 950 if (conf->start_next_window + NEXT_NORMALIO_DISTANCE 951 <= bi_sector) 952 conf->next_window_requests--; 953 else 954 conf->current_window_requests--; 955 } else 956 conf->current_window_requests--; 957 958 if (!conf->current_window_requests) { 959 if (conf->next_window_requests) { 960 conf->current_window_requests = 961 conf->next_window_requests; 962 conf->next_window_requests = 0; 963 conf->start_next_window += 964 NEXT_NORMALIO_DISTANCE; 965 } else 966 conf->start_next_window = MaxSector; 967 } 968 } 969 spin_unlock_irqrestore(&conf->resync_lock, flags); 970 wake_up(&conf->wait_barrier); 971 } 972 973 static void freeze_array(struct r1conf *conf, int extra) 974 { 975 /* stop syncio and normal IO and wait for everything to 976 * go quite. 977 * We wait until nr_pending match nr_queued+extra 978 * This is called in the context of one normal IO request 979 * that has failed. Thus any sync request that might be pending 980 * will be blocked by nr_pending, and we need to wait for 981 * pending IO requests to complete or be queued for re-try. 982 * Thus the number queued (nr_queued) plus this request (extra) 983 * must match the number of pending IOs (nr_pending) before 984 * we continue. 985 */ 986 spin_lock_irq(&conf->resync_lock); 987 conf->array_frozen = 1; 988 wait_event_lock_irq_cmd(conf->wait_barrier, 989 conf->nr_pending == conf->nr_queued+extra, 990 conf->resync_lock, 991 flush_pending_writes(conf)); 992 spin_unlock_irq(&conf->resync_lock); 993 } 994 static void unfreeze_array(struct r1conf *conf) 995 { 996 /* reverse the effect of the freeze */ 997 spin_lock_irq(&conf->resync_lock); 998 conf->array_frozen = 0; 999 wake_up(&conf->wait_barrier); 1000 spin_unlock_irq(&conf->resync_lock); 1001 } 1002 1003 /* duplicate the data pages for behind I/O 1004 */ 1005 static void alloc_behind_pages(struct bio *bio, struct r1bio *r1_bio) 1006 { 1007 int i; 1008 struct bio_vec *bvec; 1009 struct bio_vec *bvecs = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec), 1010 GFP_NOIO); 1011 if (unlikely(!bvecs)) 1012 return; 1013 1014 bio_for_each_segment_all(bvec, bio, i) { 1015 bvecs[i] = *bvec; 1016 bvecs[i].bv_page = alloc_page(GFP_NOIO); 1017 if (unlikely(!bvecs[i].bv_page)) 1018 goto do_sync_io; 1019 memcpy(kmap(bvecs[i].bv_page) + bvec->bv_offset, 1020 kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len); 1021 kunmap(bvecs[i].bv_page); 1022 kunmap(bvec->bv_page); 1023 } 1024 r1_bio->behind_bvecs = bvecs; 1025 r1_bio->behind_page_count = bio->bi_vcnt; 1026 set_bit(R1BIO_BehindIO, &r1_bio->state); 1027 return; 1028 1029 do_sync_io: 1030 for (i = 0; i < bio->bi_vcnt; i++) 1031 if (bvecs[i].bv_page) 1032 put_page(bvecs[i].bv_page); 1033 kfree(bvecs); 1034 pr_debug("%dB behind alloc failed, doing sync I/O\n", 1035 bio->bi_iter.bi_size); 1036 } 1037 1038 struct raid1_plug_cb { 1039 struct blk_plug_cb cb; 1040 struct bio_list pending; 1041 int pending_cnt; 1042 }; 1043 1044 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule) 1045 { 1046 struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb, 1047 cb); 1048 struct mddev *mddev = plug->cb.data; 1049 struct r1conf *conf = mddev->private; 1050 struct bio *bio; 1051 1052 if (from_schedule || current->bio_list) { 1053 spin_lock_irq(&conf->device_lock); 1054 bio_list_merge(&conf->pending_bio_list, &plug->pending); 1055 conf->pending_count += plug->pending_cnt; 1056 spin_unlock_irq(&conf->device_lock); 1057 wake_up(&conf->wait_barrier); 1058 md_wakeup_thread(mddev->thread); 1059 kfree(plug); 1060 return; 1061 } 1062 1063 /* we aren't scheduling, so we can do the write-out directly. */ 1064 bio = bio_list_get(&plug->pending); 1065 bitmap_unplug(mddev->bitmap); 1066 wake_up(&conf->wait_barrier); 1067 1068 while (bio) { /* submit pending writes */ 1069 struct bio *next = bio->bi_next; 1070 bio->bi_next = NULL; 1071 if (unlikely((bio->bi_rw & REQ_DISCARD) && 1072 !blk_queue_discard(bdev_get_queue(bio->bi_bdev)))) 1073 /* Just ignore it */ 1074 bio_endio(bio, 0); 1075 else 1076 generic_make_request(bio); 1077 bio = next; 1078 } 1079 kfree(plug); 1080 } 1081 1082 static void make_request(struct mddev *mddev, struct bio * bio) 1083 { 1084 struct r1conf *conf = mddev->private; 1085 struct raid1_info *mirror; 1086 struct r1bio *r1_bio; 1087 struct bio *read_bio; 1088 int i, disks; 1089 struct bitmap *bitmap; 1090 unsigned long flags; 1091 const int rw = bio_data_dir(bio); 1092 const unsigned long do_sync = (bio->bi_rw & REQ_SYNC); 1093 const unsigned long do_flush_fua = (bio->bi_rw & (REQ_FLUSH | REQ_FUA)); 1094 const unsigned long do_discard = (bio->bi_rw 1095 & (REQ_DISCARD | REQ_SECURE)); 1096 const unsigned long do_same = (bio->bi_rw & REQ_WRITE_SAME); 1097 struct md_rdev *blocked_rdev; 1098 struct blk_plug_cb *cb; 1099 struct raid1_plug_cb *plug = NULL; 1100 int first_clone; 1101 int sectors_handled; 1102 int max_sectors; 1103 sector_t start_next_window; 1104 1105 /* 1106 * Register the new request and wait if the reconstruction 1107 * thread has put up a bar for new requests. 1108 * Continue immediately if no resync is active currently. 1109 */ 1110 1111 md_write_start(mddev, bio); /* wait on superblock update early */ 1112 1113 if (bio_data_dir(bio) == WRITE && 1114 bio_end_sector(bio) > mddev->suspend_lo && 1115 bio->bi_iter.bi_sector < mddev->suspend_hi) { 1116 /* As the suspend_* range is controlled by 1117 * userspace, we want an interruptible 1118 * wait. 1119 */ 1120 DEFINE_WAIT(w); 1121 for (;;) { 1122 flush_signals(current); 1123 prepare_to_wait(&conf->wait_barrier, 1124 &w, TASK_INTERRUPTIBLE); 1125 if (bio_end_sector(bio) <= mddev->suspend_lo || 1126 bio->bi_iter.bi_sector >= mddev->suspend_hi) 1127 break; 1128 schedule(); 1129 } 1130 finish_wait(&conf->wait_barrier, &w); 1131 } 1132 1133 start_next_window = wait_barrier(conf, bio); 1134 1135 bitmap = mddev->bitmap; 1136 1137 /* 1138 * make_request() can abort the operation when READA is being 1139 * used and no empty request is available. 1140 * 1141 */ 1142 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO); 1143 1144 r1_bio->master_bio = bio; 1145 r1_bio->sectors = bio_sectors(bio); 1146 r1_bio->state = 0; 1147 r1_bio->mddev = mddev; 1148 r1_bio->sector = bio->bi_iter.bi_sector; 1149 1150 /* We might need to issue multiple reads to different 1151 * devices if there are bad blocks around, so we keep 1152 * track of the number of reads in bio->bi_phys_segments. 1153 * If this is 0, there is only one r1_bio and no locking 1154 * will be needed when requests complete. If it is 1155 * non-zero, then it is the number of not-completed requests. 1156 */ 1157 bio->bi_phys_segments = 0; 1158 clear_bit(BIO_SEG_VALID, &bio->bi_flags); 1159 1160 if (rw == READ) { 1161 /* 1162 * read balancing logic: 1163 */ 1164 int rdisk; 1165 1166 read_again: 1167 rdisk = read_balance(conf, r1_bio, &max_sectors); 1168 1169 if (rdisk < 0) { 1170 /* couldn't find anywhere to read from */ 1171 raid_end_bio_io(r1_bio); 1172 return; 1173 } 1174 mirror = conf->mirrors + rdisk; 1175 1176 if (test_bit(WriteMostly, &mirror->rdev->flags) && 1177 bitmap) { 1178 /* Reading from a write-mostly device must 1179 * take care not to over-take any writes 1180 * that are 'behind' 1181 */ 1182 wait_event(bitmap->behind_wait, 1183 atomic_read(&bitmap->behind_writes) == 0); 1184 } 1185 r1_bio->read_disk = rdisk; 1186 r1_bio->start_next_window = 0; 1187 1188 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev); 1189 bio_trim(read_bio, r1_bio->sector - bio->bi_iter.bi_sector, 1190 max_sectors); 1191 1192 r1_bio->bios[rdisk] = read_bio; 1193 1194 read_bio->bi_iter.bi_sector = r1_bio->sector + 1195 mirror->rdev->data_offset; 1196 read_bio->bi_bdev = mirror->rdev->bdev; 1197 read_bio->bi_end_io = raid1_end_read_request; 1198 read_bio->bi_rw = READ | do_sync; 1199 read_bio->bi_private = r1_bio; 1200 1201 if (max_sectors < r1_bio->sectors) { 1202 /* could not read all from this device, so we will 1203 * need another r1_bio. 1204 */ 1205 1206 sectors_handled = (r1_bio->sector + max_sectors 1207 - bio->bi_iter.bi_sector); 1208 r1_bio->sectors = max_sectors; 1209 spin_lock_irq(&conf->device_lock); 1210 if (bio->bi_phys_segments == 0) 1211 bio->bi_phys_segments = 2; 1212 else 1213 bio->bi_phys_segments++; 1214 spin_unlock_irq(&conf->device_lock); 1215 /* Cannot call generic_make_request directly 1216 * as that will be queued in __make_request 1217 * and subsequent mempool_alloc might block waiting 1218 * for it. So hand bio over to raid1d. 1219 */ 1220 reschedule_retry(r1_bio); 1221 1222 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO); 1223 1224 r1_bio->master_bio = bio; 1225 r1_bio->sectors = bio_sectors(bio) - sectors_handled; 1226 r1_bio->state = 0; 1227 r1_bio->mddev = mddev; 1228 r1_bio->sector = bio->bi_iter.bi_sector + 1229 sectors_handled; 1230 goto read_again; 1231 } else 1232 generic_make_request(read_bio); 1233 return; 1234 } 1235 1236 /* 1237 * WRITE: 1238 */ 1239 if (conf->pending_count >= max_queued_requests) { 1240 md_wakeup_thread(mddev->thread); 1241 wait_event(conf->wait_barrier, 1242 conf->pending_count < max_queued_requests); 1243 } 1244 /* first select target devices under rcu_lock and 1245 * inc refcount on their rdev. Record them by setting 1246 * bios[x] to bio 1247 * If there are known/acknowledged bad blocks on any device on 1248 * which we have seen a write error, we want to avoid writing those 1249 * blocks. 1250 * This potentially requires several writes to write around 1251 * the bad blocks. Each set of writes gets it's own r1bio 1252 * with a set of bios attached. 1253 */ 1254 1255 disks = conf->raid_disks * 2; 1256 retry_write: 1257 r1_bio->start_next_window = start_next_window; 1258 blocked_rdev = NULL; 1259 rcu_read_lock(); 1260 max_sectors = r1_bio->sectors; 1261 for (i = 0; i < disks; i++) { 1262 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 1263 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) { 1264 atomic_inc(&rdev->nr_pending); 1265 blocked_rdev = rdev; 1266 break; 1267 } 1268 r1_bio->bios[i] = NULL; 1269 if (!rdev || test_bit(Faulty, &rdev->flags) 1270 || test_bit(Unmerged, &rdev->flags)) { 1271 if (i < conf->raid_disks) 1272 set_bit(R1BIO_Degraded, &r1_bio->state); 1273 continue; 1274 } 1275 1276 atomic_inc(&rdev->nr_pending); 1277 if (test_bit(WriteErrorSeen, &rdev->flags)) { 1278 sector_t first_bad; 1279 int bad_sectors; 1280 int is_bad; 1281 1282 is_bad = is_badblock(rdev, r1_bio->sector, 1283 max_sectors, 1284 &first_bad, &bad_sectors); 1285 if (is_bad < 0) { 1286 /* mustn't write here until the bad block is 1287 * acknowledged*/ 1288 set_bit(BlockedBadBlocks, &rdev->flags); 1289 blocked_rdev = rdev; 1290 break; 1291 } 1292 if (is_bad && first_bad <= r1_bio->sector) { 1293 /* Cannot write here at all */ 1294 bad_sectors -= (r1_bio->sector - first_bad); 1295 if (bad_sectors < max_sectors) 1296 /* mustn't write more than bad_sectors 1297 * to other devices yet 1298 */ 1299 max_sectors = bad_sectors; 1300 rdev_dec_pending(rdev, mddev); 1301 /* We don't set R1BIO_Degraded as that 1302 * only applies if the disk is 1303 * missing, so it might be re-added, 1304 * and we want to know to recover this 1305 * chunk. 1306 * In this case the device is here, 1307 * and the fact that this chunk is not 1308 * in-sync is recorded in the bad 1309 * block log 1310 */ 1311 continue; 1312 } 1313 if (is_bad) { 1314 int good_sectors = first_bad - r1_bio->sector; 1315 if (good_sectors < max_sectors) 1316 max_sectors = good_sectors; 1317 } 1318 } 1319 r1_bio->bios[i] = bio; 1320 } 1321 rcu_read_unlock(); 1322 1323 if (unlikely(blocked_rdev)) { 1324 /* Wait for this device to become unblocked */ 1325 int j; 1326 sector_t old = start_next_window; 1327 1328 for (j = 0; j < i; j++) 1329 if (r1_bio->bios[j]) 1330 rdev_dec_pending(conf->mirrors[j].rdev, mddev); 1331 r1_bio->state = 0; 1332 allow_barrier(conf, start_next_window, bio->bi_iter.bi_sector); 1333 md_wait_for_blocked_rdev(blocked_rdev, mddev); 1334 start_next_window = wait_barrier(conf, bio); 1335 /* 1336 * We must make sure the multi r1bios of bio have 1337 * the same value of bi_phys_segments 1338 */ 1339 if (bio->bi_phys_segments && old && 1340 old != start_next_window) 1341 /* Wait for the former r1bio(s) to complete */ 1342 wait_event(conf->wait_barrier, 1343 bio->bi_phys_segments == 1); 1344 goto retry_write; 1345 } 1346 1347 if (max_sectors < r1_bio->sectors) { 1348 /* We are splitting this write into multiple parts, so 1349 * we need to prepare for allocating another r1_bio. 1350 */ 1351 r1_bio->sectors = max_sectors; 1352 spin_lock_irq(&conf->device_lock); 1353 if (bio->bi_phys_segments == 0) 1354 bio->bi_phys_segments = 2; 1355 else 1356 bio->bi_phys_segments++; 1357 spin_unlock_irq(&conf->device_lock); 1358 } 1359 sectors_handled = r1_bio->sector + max_sectors - bio->bi_iter.bi_sector; 1360 1361 atomic_set(&r1_bio->remaining, 1); 1362 atomic_set(&r1_bio->behind_remaining, 0); 1363 1364 first_clone = 1; 1365 for (i = 0; i < disks; i++) { 1366 struct bio *mbio; 1367 if (!r1_bio->bios[i]) 1368 continue; 1369 1370 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev); 1371 bio_trim(mbio, r1_bio->sector - bio->bi_iter.bi_sector, max_sectors); 1372 1373 if (first_clone) { 1374 /* do behind I/O ? 1375 * Not if there are too many, or cannot 1376 * allocate memory, or a reader on WriteMostly 1377 * is waiting for behind writes to flush */ 1378 if (bitmap && 1379 (atomic_read(&bitmap->behind_writes) 1380 < mddev->bitmap_info.max_write_behind) && 1381 !waitqueue_active(&bitmap->behind_wait)) 1382 alloc_behind_pages(mbio, r1_bio); 1383 1384 bitmap_startwrite(bitmap, r1_bio->sector, 1385 r1_bio->sectors, 1386 test_bit(R1BIO_BehindIO, 1387 &r1_bio->state)); 1388 first_clone = 0; 1389 } 1390 if (r1_bio->behind_bvecs) { 1391 struct bio_vec *bvec; 1392 int j; 1393 1394 /* 1395 * We trimmed the bio, so _all is legit 1396 */ 1397 bio_for_each_segment_all(bvec, mbio, j) 1398 bvec->bv_page = r1_bio->behind_bvecs[j].bv_page; 1399 if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags)) 1400 atomic_inc(&r1_bio->behind_remaining); 1401 } 1402 1403 r1_bio->bios[i] = mbio; 1404 1405 mbio->bi_iter.bi_sector = (r1_bio->sector + 1406 conf->mirrors[i].rdev->data_offset); 1407 mbio->bi_bdev = conf->mirrors[i].rdev->bdev; 1408 mbio->bi_end_io = raid1_end_write_request; 1409 mbio->bi_rw = 1410 WRITE | do_flush_fua | do_sync | do_discard | do_same; 1411 mbio->bi_private = r1_bio; 1412 1413 atomic_inc(&r1_bio->remaining); 1414 1415 cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug)); 1416 if (cb) 1417 plug = container_of(cb, struct raid1_plug_cb, cb); 1418 else 1419 plug = NULL; 1420 spin_lock_irqsave(&conf->device_lock, flags); 1421 if (plug) { 1422 bio_list_add(&plug->pending, mbio); 1423 plug->pending_cnt++; 1424 } else { 1425 bio_list_add(&conf->pending_bio_list, mbio); 1426 conf->pending_count++; 1427 } 1428 spin_unlock_irqrestore(&conf->device_lock, flags); 1429 if (!plug) 1430 md_wakeup_thread(mddev->thread); 1431 } 1432 /* Mustn't call r1_bio_write_done before this next test, 1433 * as it could result in the bio being freed. 1434 */ 1435 if (sectors_handled < bio_sectors(bio)) { 1436 r1_bio_write_done(r1_bio); 1437 /* We need another r1_bio. It has already been counted 1438 * in bio->bi_phys_segments 1439 */ 1440 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO); 1441 r1_bio->master_bio = bio; 1442 r1_bio->sectors = bio_sectors(bio) - sectors_handled; 1443 r1_bio->state = 0; 1444 r1_bio->mddev = mddev; 1445 r1_bio->sector = bio->bi_iter.bi_sector + sectors_handled; 1446 goto retry_write; 1447 } 1448 1449 r1_bio_write_done(r1_bio); 1450 1451 /* In case raid1d snuck in to freeze_array */ 1452 wake_up(&conf->wait_barrier); 1453 } 1454 1455 static void status(struct seq_file *seq, struct mddev *mddev) 1456 { 1457 struct r1conf *conf = mddev->private; 1458 int i; 1459 1460 seq_printf(seq, " [%d/%d] [", conf->raid_disks, 1461 conf->raid_disks - mddev->degraded); 1462 rcu_read_lock(); 1463 for (i = 0; i < conf->raid_disks; i++) { 1464 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 1465 seq_printf(seq, "%s", 1466 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_"); 1467 } 1468 rcu_read_unlock(); 1469 seq_printf(seq, "]"); 1470 } 1471 1472 static void error(struct mddev *mddev, struct md_rdev *rdev) 1473 { 1474 char b[BDEVNAME_SIZE]; 1475 struct r1conf *conf = mddev->private; 1476 1477 /* 1478 * If it is not operational, then we have already marked it as dead 1479 * else if it is the last working disks, ignore the error, let the 1480 * next level up know. 1481 * else mark the drive as failed 1482 */ 1483 if (test_bit(In_sync, &rdev->flags) 1484 && (conf->raid_disks - mddev->degraded) == 1) { 1485 /* 1486 * Don't fail the drive, act as though we were just a 1487 * normal single drive. 1488 * However don't try a recovery from this drive as 1489 * it is very likely to fail. 1490 */ 1491 conf->recovery_disabled = mddev->recovery_disabled; 1492 return; 1493 } 1494 set_bit(Blocked, &rdev->flags); 1495 if (test_and_clear_bit(In_sync, &rdev->flags)) { 1496 unsigned long flags; 1497 spin_lock_irqsave(&conf->device_lock, flags); 1498 mddev->degraded++; 1499 set_bit(Faulty, &rdev->flags); 1500 spin_unlock_irqrestore(&conf->device_lock, flags); 1501 } else 1502 set_bit(Faulty, &rdev->flags); 1503 /* 1504 * if recovery is running, make sure it aborts. 1505 */ 1506 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 1507 set_bit(MD_CHANGE_DEVS, &mddev->flags); 1508 printk(KERN_ALERT 1509 "md/raid1:%s: Disk failure on %s, disabling device.\n" 1510 "md/raid1:%s: Operation continuing on %d devices.\n", 1511 mdname(mddev), bdevname(rdev->bdev, b), 1512 mdname(mddev), conf->raid_disks - mddev->degraded); 1513 } 1514 1515 static void print_conf(struct r1conf *conf) 1516 { 1517 int i; 1518 1519 printk(KERN_DEBUG "RAID1 conf printout:\n"); 1520 if (!conf) { 1521 printk(KERN_DEBUG "(!conf)\n"); 1522 return; 1523 } 1524 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded, 1525 conf->raid_disks); 1526 1527 rcu_read_lock(); 1528 for (i = 0; i < conf->raid_disks; i++) { 1529 char b[BDEVNAME_SIZE]; 1530 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 1531 if (rdev) 1532 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n", 1533 i, !test_bit(In_sync, &rdev->flags), 1534 !test_bit(Faulty, &rdev->flags), 1535 bdevname(rdev->bdev,b)); 1536 } 1537 rcu_read_unlock(); 1538 } 1539 1540 static void close_sync(struct r1conf *conf) 1541 { 1542 wait_barrier(conf, NULL); 1543 allow_barrier(conf, 0, 0); 1544 1545 mempool_destroy(conf->r1buf_pool); 1546 conf->r1buf_pool = NULL; 1547 1548 spin_lock_irq(&conf->resync_lock); 1549 conf->next_resync = 0; 1550 conf->start_next_window = MaxSector; 1551 conf->current_window_requests += 1552 conf->next_window_requests; 1553 conf->next_window_requests = 0; 1554 spin_unlock_irq(&conf->resync_lock); 1555 } 1556 1557 static int raid1_spare_active(struct mddev *mddev) 1558 { 1559 int i; 1560 struct r1conf *conf = mddev->private; 1561 int count = 0; 1562 unsigned long flags; 1563 1564 /* 1565 * Find all failed disks within the RAID1 configuration 1566 * and mark them readable. 1567 * Called under mddev lock, so rcu protection not needed. 1568 */ 1569 for (i = 0; i < conf->raid_disks; i++) { 1570 struct md_rdev *rdev = conf->mirrors[i].rdev; 1571 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev; 1572 if (repl 1573 && repl->recovery_offset == MaxSector 1574 && !test_bit(Faulty, &repl->flags) 1575 && !test_and_set_bit(In_sync, &repl->flags)) { 1576 /* replacement has just become active */ 1577 if (!rdev || 1578 !test_and_clear_bit(In_sync, &rdev->flags)) 1579 count++; 1580 if (rdev) { 1581 /* Replaced device not technically 1582 * faulty, but we need to be sure 1583 * it gets removed and never re-added 1584 */ 1585 set_bit(Faulty, &rdev->flags); 1586 sysfs_notify_dirent_safe( 1587 rdev->sysfs_state); 1588 } 1589 } 1590 if (rdev 1591 && rdev->recovery_offset == MaxSector 1592 && !test_bit(Faulty, &rdev->flags) 1593 && !test_and_set_bit(In_sync, &rdev->flags)) { 1594 count++; 1595 sysfs_notify_dirent_safe(rdev->sysfs_state); 1596 } 1597 } 1598 spin_lock_irqsave(&conf->device_lock, flags); 1599 mddev->degraded -= count; 1600 spin_unlock_irqrestore(&conf->device_lock, flags); 1601 1602 print_conf(conf); 1603 return count; 1604 } 1605 1606 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev) 1607 { 1608 struct r1conf *conf = mddev->private; 1609 int err = -EEXIST; 1610 int mirror = 0; 1611 struct raid1_info *p; 1612 int first = 0; 1613 int last = conf->raid_disks - 1; 1614 struct request_queue *q = bdev_get_queue(rdev->bdev); 1615 1616 if (mddev->recovery_disabled == conf->recovery_disabled) 1617 return -EBUSY; 1618 1619 if (rdev->raid_disk >= 0) 1620 first = last = rdev->raid_disk; 1621 1622 if (q->merge_bvec_fn) { 1623 set_bit(Unmerged, &rdev->flags); 1624 mddev->merge_check_needed = 1; 1625 } 1626 1627 for (mirror = first; mirror <= last; mirror++) { 1628 p = conf->mirrors+mirror; 1629 if (!p->rdev) { 1630 1631 if (mddev->gendisk) 1632 disk_stack_limits(mddev->gendisk, rdev->bdev, 1633 rdev->data_offset << 9); 1634 1635 p->head_position = 0; 1636 rdev->raid_disk = mirror; 1637 err = 0; 1638 /* As all devices are equivalent, we don't need a full recovery 1639 * if this was recently any drive of the array 1640 */ 1641 if (rdev->saved_raid_disk < 0) 1642 conf->fullsync = 1; 1643 rcu_assign_pointer(p->rdev, rdev); 1644 break; 1645 } 1646 if (test_bit(WantReplacement, &p->rdev->flags) && 1647 p[conf->raid_disks].rdev == NULL) { 1648 /* Add this device as a replacement */ 1649 clear_bit(In_sync, &rdev->flags); 1650 set_bit(Replacement, &rdev->flags); 1651 rdev->raid_disk = mirror; 1652 err = 0; 1653 conf->fullsync = 1; 1654 rcu_assign_pointer(p[conf->raid_disks].rdev, rdev); 1655 break; 1656 } 1657 } 1658 if (err == 0 && test_bit(Unmerged, &rdev->flags)) { 1659 /* Some requests might not have seen this new 1660 * merge_bvec_fn. We must wait for them to complete 1661 * before merging the device fully. 1662 * First we make sure any code which has tested 1663 * our function has submitted the request, then 1664 * we wait for all outstanding requests to complete. 1665 */ 1666 synchronize_sched(); 1667 freeze_array(conf, 0); 1668 unfreeze_array(conf); 1669 clear_bit(Unmerged, &rdev->flags); 1670 } 1671 md_integrity_add_rdev(rdev, mddev); 1672 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev))) 1673 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue); 1674 print_conf(conf); 1675 return err; 1676 } 1677 1678 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev) 1679 { 1680 struct r1conf *conf = mddev->private; 1681 int err = 0; 1682 int number = rdev->raid_disk; 1683 struct raid1_info *p = conf->mirrors + number; 1684 1685 if (rdev != p->rdev) 1686 p = conf->mirrors + conf->raid_disks + number; 1687 1688 print_conf(conf); 1689 if (rdev == p->rdev) { 1690 if (test_bit(In_sync, &rdev->flags) || 1691 atomic_read(&rdev->nr_pending)) { 1692 err = -EBUSY; 1693 goto abort; 1694 } 1695 /* Only remove non-faulty devices if recovery 1696 * is not possible. 1697 */ 1698 if (!test_bit(Faulty, &rdev->flags) && 1699 mddev->recovery_disabled != conf->recovery_disabled && 1700 mddev->degraded < conf->raid_disks) { 1701 err = -EBUSY; 1702 goto abort; 1703 } 1704 p->rdev = NULL; 1705 synchronize_rcu(); 1706 if (atomic_read(&rdev->nr_pending)) { 1707 /* lost the race, try later */ 1708 err = -EBUSY; 1709 p->rdev = rdev; 1710 goto abort; 1711 } else if (conf->mirrors[conf->raid_disks + number].rdev) { 1712 /* We just removed a device that is being replaced. 1713 * Move down the replacement. We drain all IO before 1714 * doing this to avoid confusion. 1715 */ 1716 struct md_rdev *repl = 1717 conf->mirrors[conf->raid_disks + number].rdev; 1718 freeze_array(conf, 0); 1719 clear_bit(Replacement, &repl->flags); 1720 p->rdev = repl; 1721 conf->mirrors[conf->raid_disks + number].rdev = NULL; 1722 unfreeze_array(conf); 1723 clear_bit(WantReplacement, &rdev->flags); 1724 } else 1725 clear_bit(WantReplacement, &rdev->flags); 1726 err = md_integrity_register(mddev); 1727 } 1728 abort: 1729 1730 print_conf(conf); 1731 return err; 1732 } 1733 1734 static void end_sync_read(struct bio *bio, int error) 1735 { 1736 struct r1bio *r1_bio = bio->bi_private; 1737 1738 update_head_pos(r1_bio->read_disk, r1_bio); 1739 1740 /* 1741 * we have read a block, now it needs to be re-written, 1742 * or re-read if the read failed. 1743 * We don't do much here, just schedule handling by raid1d 1744 */ 1745 if (test_bit(BIO_UPTODATE, &bio->bi_flags)) 1746 set_bit(R1BIO_Uptodate, &r1_bio->state); 1747 1748 if (atomic_dec_and_test(&r1_bio->remaining)) 1749 reschedule_retry(r1_bio); 1750 } 1751 1752 static void end_sync_write(struct bio *bio, int error) 1753 { 1754 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 1755 struct r1bio *r1_bio = bio->bi_private; 1756 struct mddev *mddev = r1_bio->mddev; 1757 struct r1conf *conf = mddev->private; 1758 int mirror=0; 1759 sector_t first_bad; 1760 int bad_sectors; 1761 1762 mirror = find_bio_disk(r1_bio, bio); 1763 1764 if (!uptodate) { 1765 sector_t sync_blocks = 0; 1766 sector_t s = r1_bio->sector; 1767 long sectors_to_go = r1_bio->sectors; 1768 /* make sure these bits doesn't get cleared. */ 1769 do { 1770 bitmap_end_sync(mddev->bitmap, s, 1771 &sync_blocks, 1); 1772 s += sync_blocks; 1773 sectors_to_go -= sync_blocks; 1774 } while (sectors_to_go > 0); 1775 set_bit(WriteErrorSeen, 1776 &conf->mirrors[mirror].rdev->flags); 1777 if (!test_and_set_bit(WantReplacement, 1778 &conf->mirrors[mirror].rdev->flags)) 1779 set_bit(MD_RECOVERY_NEEDED, & 1780 mddev->recovery); 1781 set_bit(R1BIO_WriteError, &r1_bio->state); 1782 } else if (is_badblock(conf->mirrors[mirror].rdev, 1783 r1_bio->sector, 1784 r1_bio->sectors, 1785 &first_bad, &bad_sectors) && 1786 !is_badblock(conf->mirrors[r1_bio->read_disk].rdev, 1787 r1_bio->sector, 1788 r1_bio->sectors, 1789 &first_bad, &bad_sectors) 1790 ) 1791 set_bit(R1BIO_MadeGood, &r1_bio->state); 1792 1793 if (atomic_dec_and_test(&r1_bio->remaining)) { 1794 int s = r1_bio->sectors; 1795 if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 1796 test_bit(R1BIO_WriteError, &r1_bio->state)) 1797 reschedule_retry(r1_bio); 1798 else { 1799 put_buf(r1_bio); 1800 md_done_sync(mddev, s, uptodate); 1801 } 1802 } 1803 } 1804 1805 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector, 1806 int sectors, struct page *page, int rw) 1807 { 1808 if (sync_page_io(rdev, sector, sectors << 9, page, rw, false)) 1809 /* success */ 1810 return 1; 1811 if (rw == WRITE) { 1812 set_bit(WriteErrorSeen, &rdev->flags); 1813 if (!test_and_set_bit(WantReplacement, 1814 &rdev->flags)) 1815 set_bit(MD_RECOVERY_NEEDED, & 1816 rdev->mddev->recovery); 1817 } 1818 /* need to record an error - either for the block or the device */ 1819 if (!rdev_set_badblocks(rdev, sector, sectors, 0)) 1820 md_error(rdev->mddev, rdev); 1821 return 0; 1822 } 1823 1824 static int fix_sync_read_error(struct r1bio *r1_bio) 1825 { 1826 /* Try some synchronous reads of other devices to get 1827 * good data, much like with normal read errors. Only 1828 * read into the pages we already have so we don't 1829 * need to re-issue the read request. 1830 * We don't need to freeze the array, because being in an 1831 * active sync request, there is no normal IO, and 1832 * no overlapping syncs. 1833 * We don't need to check is_badblock() again as we 1834 * made sure that anything with a bad block in range 1835 * will have bi_end_io clear. 1836 */ 1837 struct mddev *mddev = r1_bio->mddev; 1838 struct r1conf *conf = mddev->private; 1839 struct bio *bio = r1_bio->bios[r1_bio->read_disk]; 1840 sector_t sect = r1_bio->sector; 1841 int sectors = r1_bio->sectors; 1842 int idx = 0; 1843 1844 while(sectors) { 1845 int s = sectors; 1846 int d = r1_bio->read_disk; 1847 int success = 0; 1848 struct md_rdev *rdev; 1849 int start; 1850 1851 if (s > (PAGE_SIZE>>9)) 1852 s = PAGE_SIZE >> 9; 1853 do { 1854 if (r1_bio->bios[d]->bi_end_io == end_sync_read) { 1855 /* No rcu protection needed here devices 1856 * can only be removed when no resync is 1857 * active, and resync is currently active 1858 */ 1859 rdev = conf->mirrors[d].rdev; 1860 if (sync_page_io(rdev, sect, s<<9, 1861 bio->bi_io_vec[idx].bv_page, 1862 READ, false)) { 1863 success = 1; 1864 break; 1865 } 1866 } 1867 d++; 1868 if (d == conf->raid_disks * 2) 1869 d = 0; 1870 } while (!success && d != r1_bio->read_disk); 1871 1872 if (!success) { 1873 char b[BDEVNAME_SIZE]; 1874 int abort = 0; 1875 /* Cannot read from anywhere, this block is lost. 1876 * Record a bad block on each device. If that doesn't 1877 * work just disable and interrupt the recovery. 1878 * Don't fail devices as that won't really help. 1879 */ 1880 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error" 1881 " for block %llu\n", 1882 mdname(mddev), 1883 bdevname(bio->bi_bdev, b), 1884 (unsigned long long)r1_bio->sector); 1885 for (d = 0; d < conf->raid_disks * 2; d++) { 1886 rdev = conf->mirrors[d].rdev; 1887 if (!rdev || test_bit(Faulty, &rdev->flags)) 1888 continue; 1889 if (!rdev_set_badblocks(rdev, sect, s, 0)) 1890 abort = 1; 1891 } 1892 if (abort) { 1893 conf->recovery_disabled = 1894 mddev->recovery_disabled; 1895 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 1896 md_done_sync(mddev, r1_bio->sectors, 0); 1897 put_buf(r1_bio); 1898 return 0; 1899 } 1900 /* Try next page */ 1901 sectors -= s; 1902 sect += s; 1903 idx++; 1904 continue; 1905 } 1906 1907 start = d; 1908 /* write it back and re-read */ 1909 while (d != r1_bio->read_disk) { 1910 if (d == 0) 1911 d = conf->raid_disks * 2; 1912 d--; 1913 if (r1_bio->bios[d]->bi_end_io != end_sync_read) 1914 continue; 1915 rdev = conf->mirrors[d].rdev; 1916 if (r1_sync_page_io(rdev, sect, s, 1917 bio->bi_io_vec[idx].bv_page, 1918 WRITE) == 0) { 1919 r1_bio->bios[d]->bi_end_io = NULL; 1920 rdev_dec_pending(rdev, mddev); 1921 } 1922 } 1923 d = start; 1924 while (d != r1_bio->read_disk) { 1925 if (d == 0) 1926 d = conf->raid_disks * 2; 1927 d--; 1928 if (r1_bio->bios[d]->bi_end_io != end_sync_read) 1929 continue; 1930 rdev = conf->mirrors[d].rdev; 1931 if (r1_sync_page_io(rdev, sect, s, 1932 bio->bi_io_vec[idx].bv_page, 1933 READ) != 0) 1934 atomic_add(s, &rdev->corrected_errors); 1935 } 1936 sectors -= s; 1937 sect += s; 1938 idx ++; 1939 } 1940 set_bit(R1BIO_Uptodate, &r1_bio->state); 1941 set_bit(BIO_UPTODATE, &bio->bi_flags); 1942 return 1; 1943 } 1944 1945 static void process_checks(struct r1bio *r1_bio) 1946 { 1947 /* We have read all readable devices. If we haven't 1948 * got the block, then there is no hope left. 1949 * If we have, then we want to do a comparison 1950 * and skip the write if everything is the same. 1951 * If any blocks failed to read, then we need to 1952 * attempt an over-write 1953 */ 1954 struct mddev *mddev = r1_bio->mddev; 1955 struct r1conf *conf = mddev->private; 1956 int primary; 1957 int i; 1958 int vcnt; 1959 1960 /* Fix variable parts of all bios */ 1961 vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9); 1962 for (i = 0; i < conf->raid_disks * 2; i++) { 1963 int j; 1964 int size; 1965 int uptodate; 1966 struct bio *b = r1_bio->bios[i]; 1967 if (b->bi_end_io != end_sync_read) 1968 continue; 1969 /* fixup the bio for reuse, but preserve BIO_UPTODATE */ 1970 uptodate = test_bit(BIO_UPTODATE, &b->bi_flags); 1971 bio_reset(b); 1972 if (!uptodate) 1973 clear_bit(BIO_UPTODATE, &b->bi_flags); 1974 b->bi_vcnt = vcnt; 1975 b->bi_iter.bi_size = r1_bio->sectors << 9; 1976 b->bi_iter.bi_sector = r1_bio->sector + 1977 conf->mirrors[i].rdev->data_offset; 1978 b->bi_bdev = conf->mirrors[i].rdev->bdev; 1979 b->bi_end_io = end_sync_read; 1980 b->bi_private = r1_bio; 1981 1982 size = b->bi_iter.bi_size; 1983 for (j = 0; j < vcnt ; j++) { 1984 struct bio_vec *bi; 1985 bi = &b->bi_io_vec[j]; 1986 bi->bv_offset = 0; 1987 if (size > PAGE_SIZE) 1988 bi->bv_len = PAGE_SIZE; 1989 else 1990 bi->bv_len = size; 1991 size -= PAGE_SIZE; 1992 } 1993 } 1994 for (primary = 0; primary < conf->raid_disks * 2; primary++) 1995 if (r1_bio->bios[primary]->bi_end_io == end_sync_read && 1996 test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) { 1997 r1_bio->bios[primary]->bi_end_io = NULL; 1998 rdev_dec_pending(conf->mirrors[primary].rdev, mddev); 1999 break; 2000 } 2001 r1_bio->read_disk = primary; 2002 for (i = 0; i < conf->raid_disks * 2; i++) { 2003 int j; 2004 struct bio *pbio = r1_bio->bios[primary]; 2005 struct bio *sbio = r1_bio->bios[i]; 2006 int uptodate = test_bit(BIO_UPTODATE, &sbio->bi_flags); 2007 2008 if (sbio->bi_end_io != end_sync_read) 2009 continue; 2010 /* Now we can 'fixup' the BIO_UPTODATE flag */ 2011 set_bit(BIO_UPTODATE, &sbio->bi_flags); 2012 2013 if (uptodate) { 2014 for (j = vcnt; j-- ; ) { 2015 struct page *p, *s; 2016 p = pbio->bi_io_vec[j].bv_page; 2017 s = sbio->bi_io_vec[j].bv_page; 2018 if (memcmp(page_address(p), 2019 page_address(s), 2020 sbio->bi_io_vec[j].bv_len)) 2021 break; 2022 } 2023 } else 2024 j = 0; 2025 if (j >= 0) 2026 atomic64_add(r1_bio->sectors, &mddev->resync_mismatches); 2027 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery) 2028 && uptodate)) { 2029 /* No need to write to this device. */ 2030 sbio->bi_end_io = NULL; 2031 rdev_dec_pending(conf->mirrors[i].rdev, mddev); 2032 continue; 2033 } 2034 2035 bio_copy_data(sbio, pbio); 2036 } 2037 } 2038 2039 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio) 2040 { 2041 struct r1conf *conf = mddev->private; 2042 int i; 2043 int disks = conf->raid_disks * 2; 2044 struct bio *bio, *wbio; 2045 2046 bio = r1_bio->bios[r1_bio->read_disk]; 2047 2048 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) 2049 /* ouch - failed to read all of that. */ 2050 if (!fix_sync_read_error(r1_bio)) 2051 return; 2052 2053 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 2054 process_checks(r1_bio); 2055 2056 /* 2057 * schedule writes 2058 */ 2059 atomic_set(&r1_bio->remaining, 1); 2060 for (i = 0; i < disks ; i++) { 2061 wbio = r1_bio->bios[i]; 2062 if (wbio->bi_end_io == NULL || 2063 (wbio->bi_end_io == end_sync_read && 2064 (i == r1_bio->read_disk || 2065 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery)))) 2066 continue; 2067 2068 wbio->bi_rw = WRITE; 2069 wbio->bi_end_io = end_sync_write; 2070 atomic_inc(&r1_bio->remaining); 2071 md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio)); 2072 2073 generic_make_request(wbio); 2074 } 2075 2076 if (atomic_dec_and_test(&r1_bio->remaining)) { 2077 /* if we're here, all write(s) have completed, so clean up */ 2078 int s = r1_bio->sectors; 2079 if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 2080 test_bit(R1BIO_WriteError, &r1_bio->state)) 2081 reschedule_retry(r1_bio); 2082 else { 2083 put_buf(r1_bio); 2084 md_done_sync(mddev, s, 1); 2085 } 2086 } 2087 } 2088 2089 /* 2090 * This is a kernel thread which: 2091 * 2092 * 1. Retries failed read operations on working mirrors. 2093 * 2. Updates the raid superblock when problems encounter. 2094 * 3. Performs writes following reads for array synchronising. 2095 */ 2096 2097 static void fix_read_error(struct r1conf *conf, int read_disk, 2098 sector_t sect, int sectors) 2099 { 2100 struct mddev *mddev = conf->mddev; 2101 while(sectors) { 2102 int s = sectors; 2103 int d = read_disk; 2104 int success = 0; 2105 int start; 2106 struct md_rdev *rdev; 2107 2108 if (s > (PAGE_SIZE>>9)) 2109 s = PAGE_SIZE >> 9; 2110 2111 do { 2112 /* Note: no rcu protection needed here 2113 * as this is synchronous in the raid1d thread 2114 * which is the thread that might remove 2115 * a device. If raid1d ever becomes multi-threaded.... 2116 */ 2117 sector_t first_bad; 2118 int bad_sectors; 2119 2120 rdev = conf->mirrors[d].rdev; 2121 if (rdev && 2122 (test_bit(In_sync, &rdev->flags) || 2123 (!test_bit(Faulty, &rdev->flags) && 2124 rdev->recovery_offset >= sect + s)) && 2125 is_badblock(rdev, sect, s, 2126 &first_bad, &bad_sectors) == 0 && 2127 sync_page_io(rdev, sect, s<<9, 2128 conf->tmppage, READ, false)) 2129 success = 1; 2130 else { 2131 d++; 2132 if (d == conf->raid_disks * 2) 2133 d = 0; 2134 } 2135 } while (!success && d != read_disk); 2136 2137 if (!success) { 2138 /* Cannot read from anywhere - mark it bad */ 2139 struct md_rdev *rdev = conf->mirrors[read_disk].rdev; 2140 if (!rdev_set_badblocks(rdev, sect, s, 0)) 2141 md_error(mddev, rdev); 2142 break; 2143 } 2144 /* write it back and re-read */ 2145 start = d; 2146 while (d != read_disk) { 2147 if (d==0) 2148 d = conf->raid_disks * 2; 2149 d--; 2150 rdev = conf->mirrors[d].rdev; 2151 if (rdev && 2152 !test_bit(Faulty, &rdev->flags)) 2153 r1_sync_page_io(rdev, sect, s, 2154 conf->tmppage, WRITE); 2155 } 2156 d = start; 2157 while (d != read_disk) { 2158 char b[BDEVNAME_SIZE]; 2159 if (d==0) 2160 d = conf->raid_disks * 2; 2161 d--; 2162 rdev = conf->mirrors[d].rdev; 2163 if (rdev && 2164 !test_bit(Faulty, &rdev->flags)) { 2165 if (r1_sync_page_io(rdev, sect, s, 2166 conf->tmppage, READ)) { 2167 atomic_add(s, &rdev->corrected_errors); 2168 printk(KERN_INFO 2169 "md/raid1:%s: read error corrected " 2170 "(%d sectors at %llu on %s)\n", 2171 mdname(mddev), s, 2172 (unsigned long long)(sect + 2173 rdev->data_offset), 2174 bdevname(rdev->bdev, b)); 2175 } 2176 } 2177 } 2178 sectors -= s; 2179 sect += s; 2180 } 2181 } 2182 2183 static int narrow_write_error(struct r1bio *r1_bio, int i) 2184 { 2185 struct mddev *mddev = r1_bio->mddev; 2186 struct r1conf *conf = mddev->private; 2187 struct md_rdev *rdev = conf->mirrors[i].rdev; 2188 2189 /* bio has the data to be written to device 'i' where 2190 * we just recently had a write error. 2191 * We repeatedly clone the bio and trim down to one block, 2192 * then try the write. Where the write fails we record 2193 * a bad block. 2194 * It is conceivable that the bio doesn't exactly align with 2195 * blocks. We must handle this somehow. 2196 * 2197 * We currently own a reference on the rdev. 2198 */ 2199 2200 int block_sectors; 2201 sector_t sector; 2202 int sectors; 2203 int sect_to_write = r1_bio->sectors; 2204 int ok = 1; 2205 2206 if (rdev->badblocks.shift < 0) 2207 return 0; 2208 2209 block_sectors = 1 << rdev->badblocks.shift; 2210 sector = r1_bio->sector; 2211 sectors = ((sector + block_sectors) 2212 & ~(sector_t)(block_sectors - 1)) 2213 - sector; 2214 2215 while (sect_to_write) { 2216 struct bio *wbio; 2217 if (sectors > sect_to_write) 2218 sectors = sect_to_write; 2219 /* Write at 'sector' for 'sectors'*/ 2220 2221 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) { 2222 unsigned vcnt = r1_bio->behind_page_count; 2223 struct bio_vec *vec = r1_bio->behind_bvecs; 2224 2225 while (!vec->bv_page) { 2226 vec++; 2227 vcnt--; 2228 } 2229 2230 wbio = bio_alloc_mddev(GFP_NOIO, vcnt, mddev); 2231 memcpy(wbio->bi_io_vec, vec, vcnt * sizeof(struct bio_vec)); 2232 2233 wbio->bi_vcnt = vcnt; 2234 } else { 2235 wbio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev); 2236 } 2237 2238 wbio->bi_rw = WRITE; 2239 wbio->bi_iter.bi_sector = r1_bio->sector; 2240 wbio->bi_iter.bi_size = r1_bio->sectors << 9; 2241 2242 bio_trim(wbio, sector - r1_bio->sector, sectors); 2243 wbio->bi_iter.bi_sector += rdev->data_offset; 2244 wbio->bi_bdev = rdev->bdev; 2245 if (submit_bio_wait(WRITE, wbio) == 0) 2246 /* failure! */ 2247 ok = rdev_set_badblocks(rdev, sector, 2248 sectors, 0) 2249 && ok; 2250 2251 bio_put(wbio); 2252 sect_to_write -= sectors; 2253 sector += sectors; 2254 sectors = block_sectors; 2255 } 2256 return ok; 2257 } 2258 2259 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio) 2260 { 2261 int m; 2262 int s = r1_bio->sectors; 2263 for (m = 0; m < conf->raid_disks * 2 ; m++) { 2264 struct md_rdev *rdev = conf->mirrors[m].rdev; 2265 struct bio *bio = r1_bio->bios[m]; 2266 if (bio->bi_end_io == NULL) 2267 continue; 2268 if (test_bit(BIO_UPTODATE, &bio->bi_flags) && 2269 test_bit(R1BIO_MadeGood, &r1_bio->state)) { 2270 rdev_clear_badblocks(rdev, r1_bio->sector, s, 0); 2271 } 2272 if (!test_bit(BIO_UPTODATE, &bio->bi_flags) && 2273 test_bit(R1BIO_WriteError, &r1_bio->state)) { 2274 if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0)) 2275 md_error(conf->mddev, rdev); 2276 } 2277 } 2278 put_buf(r1_bio); 2279 md_done_sync(conf->mddev, s, 1); 2280 } 2281 2282 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio) 2283 { 2284 int m; 2285 for (m = 0; m < conf->raid_disks * 2 ; m++) 2286 if (r1_bio->bios[m] == IO_MADE_GOOD) { 2287 struct md_rdev *rdev = conf->mirrors[m].rdev; 2288 rdev_clear_badblocks(rdev, 2289 r1_bio->sector, 2290 r1_bio->sectors, 0); 2291 rdev_dec_pending(rdev, conf->mddev); 2292 } else if (r1_bio->bios[m] != NULL) { 2293 /* This drive got a write error. We need to 2294 * narrow down and record precise write 2295 * errors. 2296 */ 2297 if (!narrow_write_error(r1_bio, m)) { 2298 md_error(conf->mddev, 2299 conf->mirrors[m].rdev); 2300 /* an I/O failed, we can't clear the bitmap */ 2301 set_bit(R1BIO_Degraded, &r1_bio->state); 2302 } 2303 rdev_dec_pending(conf->mirrors[m].rdev, 2304 conf->mddev); 2305 } 2306 if (test_bit(R1BIO_WriteError, &r1_bio->state)) 2307 close_write(r1_bio); 2308 raid_end_bio_io(r1_bio); 2309 } 2310 2311 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio) 2312 { 2313 int disk; 2314 int max_sectors; 2315 struct mddev *mddev = conf->mddev; 2316 struct bio *bio; 2317 char b[BDEVNAME_SIZE]; 2318 struct md_rdev *rdev; 2319 2320 clear_bit(R1BIO_ReadError, &r1_bio->state); 2321 /* we got a read error. Maybe the drive is bad. Maybe just 2322 * the block and we can fix it. 2323 * We freeze all other IO, and try reading the block from 2324 * other devices. When we find one, we re-write 2325 * and check it that fixes the read error. 2326 * This is all done synchronously while the array is 2327 * frozen 2328 */ 2329 if (mddev->ro == 0) { 2330 freeze_array(conf, 1); 2331 fix_read_error(conf, r1_bio->read_disk, 2332 r1_bio->sector, r1_bio->sectors); 2333 unfreeze_array(conf); 2334 } else 2335 md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev); 2336 rdev_dec_pending(conf->mirrors[r1_bio->read_disk].rdev, conf->mddev); 2337 2338 bio = r1_bio->bios[r1_bio->read_disk]; 2339 bdevname(bio->bi_bdev, b); 2340 read_more: 2341 disk = read_balance(conf, r1_bio, &max_sectors); 2342 if (disk == -1) { 2343 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O" 2344 " read error for block %llu\n", 2345 mdname(mddev), b, (unsigned long long)r1_bio->sector); 2346 raid_end_bio_io(r1_bio); 2347 } else { 2348 const unsigned long do_sync 2349 = r1_bio->master_bio->bi_rw & REQ_SYNC; 2350 if (bio) { 2351 r1_bio->bios[r1_bio->read_disk] = 2352 mddev->ro ? IO_BLOCKED : NULL; 2353 bio_put(bio); 2354 } 2355 r1_bio->read_disk = disk; 2356 bio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev); 2357 bio_trim(bio, r1_bio->sector - bio->bi_iter.bi_sector, 2358 max_sectors); 2359 r1_bio->bios[r1_bio->read_disk] = bio; 2360 rdev = conf->mirrors[disk].rdev; 2361 printk_ratelimited(KERN_ERR 2362 "md/raid1:%s: redirecting sector %llu" 2363 " to other mirror: %s\n", 2364 mdname(mddev), 2365 (unsigned long long)r1_bio->sector, 2366 bdevname(rdev->bdev, b)); 2367 bio->bi_iter.bi_sector = r1_bio->sector + rdev->data_offset; 2368 bio->bi_bdev = rdev->bdev; 2369 bio->bi_end_io = raid1_end_read_request; 2370 bio->bi_rw = READ | do_sync; 2371 bio->bi_private = r1_bio; 2372 if (max_sectors < r1_bio->sectors) { 2373 /* Drat - have to split this up more */ 2374 struct bio *mbio = r1_bio->master_bio; 2375 int sectors_handled = (r1_bio->sector + max_sectors 2376 - mbio->bi_iter.bi_sector); 2377 r1_bio->sectors = max_sectors; 2378 spin_lock_irq(&conf->device_lock); 2379 if (mbio->bi_phys_segments == 0) 2380 mbio->bi_phys_segments = 2; 2381 else 2382 mbio->bi_phys_segments++; 2383 spin_unlock_irq(&conf->device_lock); 2384 generic_make_request(bio); 2385 bio = NULL; 2386 2387 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO); 2388 2389 r1_bio->master_bio = mbio; 2390 r1_bio->sectors = bio_sectors(mbio) - sectors_handled; 2391 r1_bio->state = 0; 2392 set_bit(R1BIO_ReadError, &r1_bio->state); 2393 r1_bio->mddev = mddev; 2394 r1_bio->sector = mbio->bi_iter.bi_sector + 2395 sectors_handled; 2396 2397 goto read_more; 2398 } else 2399 generic_make_request(bio); 2400 } 2401 } 2402 2403 static void raid1d(struct md_thread *thread) 2404 { 2405 struct mddev *mddev = thread->mddev; 2406 struct r1bio *r1_bio; 2407 unsigned long flags; 2408 struct r1conf *conf = mddev->private; 2409 struct list_head *head = &conf->retry_list; 2410 struct blk_plug plug; 2411 2412 md_check_recovery(mddev); 2413 2414 blk_start_plug(&plug); 2415 for (;;) { 2416 2417 flush_pending_writes(conf); 2418 2419 spin_lock_irqsave(&conf->device_lock, flags); 2420 if (list_empty(head)) { 2421 spin_unlock_irqrestore(&conf->device_lock, flags); 2422 break; 2423 } 2424 r1_bio = list_entry(head->prev, struct r1bio, retry_list); 2425 list_del(head->prev); 2426 conf->nr_queued--; 2427 spin_unlock_irqrestore(&conf->device_lock, flags); 2428 2429 mddev = r1_bio->mddev; 2430 conf = mddev->private; 2431 if (test_bit(R1BIO_IsSync, &r1_bio->state)) { 2432 if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 2433 test_bit(R1BIO_WriteError, &r1_bio->state)) 2434 handle_sync_write_finished(conf, r1_bio); 2435 else 2436 sync_request_write(mddev, r1_bio); 2437 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 2438 test_bit(R1BIO_WriteError, &r1_bio->state)) 2439 handle_write_finished(conf, r1_bio); 2440 else if (test_bit(R1BIO_ReadError, &r1_bio->state)) 2441 handle_read_error(conf, r1_bio); 2442 else 2443 /* just a partial read to be scheduled from separate 2444 * context 2445 */ 2446 generic_make_request(r1_bio->bios[r1_bio->read_disk]); 2447 2448 cond_resched(); 2449 if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) 2450 md_check_recovery(mddev); 2451 } 2452 blk_finish_plug(&plug); 2453 } 2454 2455 static int init_resync(struct r1conf *conf) 2456 { 2457 int buffs; 2458 2459 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE; 2460 BUG_ON(conf->r1buf_pool); 2461 conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free, 2462 conf->poolinfo); 2463 if (!conf->r1buf_pool) 2464 return -ENOMEM; 2465 conf->next_resync = 0; 2466 return 0; 2467 } 2468 2469 /* 2470 * perform a "sync" on one "block" 2471 * 2472 * We need to make sure that no normal I/O request - particularly write 2473 * requests - conflict with active sync requests. 2474 * 2475 * This is achieved by tracking pending requests and a 'barrier' concept 2476 * that can be installed to exclude normal IO requests. 2477 */ 2478 2479 static sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster) 2480 { 2481 struct r1conf *conf = mddev->private; 2482 struct r1bio *r1_bio; 2483 struct bio *bio; 2484 sector_t max_sector, nr_sectors; 2485 int disk = -1; 2486 int i; 2487 int wonly = -1; 2488 int write_targets = 0, read_targets = 0; 2489 sector_t sync_blocks; 2490 int still_degraded = 0; 2491 int good_sectors = RESYNC_SECTORS; 2492 int min_bad = 0; /* number of sectors that are bad in all devices */ 2493 2494 if (!conf->r1buf_pool) 2495 if (init_resync(conf)) 2496 return 0; 2497 2498 max_sector = mddev->dev_sectors; 2499 if (sector_nr >= max_sector) { 2500 /* If we aborted, we need to abort the 2501 * sync on the 'current' bitmap chunk (there will 2502 * only be one in raid1 resync. 2503 * We can find the current addess in mddev->curr_resync 2504 */ 2505 if (mddev->curr_resync < max_sector) /* aborted */ 2506 bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 2507 &sync_blocks, 1); 2508 else /* completed sync */ 2509 conf->fullsync = 0; 2510 2511 bitmap_close_sync(mddev->bitmap); 2512 close_sync(conf); 2513 return 0; 2514 } 2515 2516 if (mddev->bitmap == NULL && 2517 mddev->recovery_cp == MaxSector && 2518 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 2519 conf->fullsync == 0) { 2520 *skipped = 1; 2521 return max_sector - sector_nr; 2522 } 2523 /* before building a request, check if we can skip these blocks.. 2524 * This call the bitmap_start_sync doesn't actually record anything 2525 */ 2526 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) && 2527 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 2528 /* We can skip this block, and probably several more */ 2529 *skipped = 1; 2530 return sync_blocks; 2531 } 2532 /* 2533 * If there is non-resync activity waiting for a turn, 2534 * and resync is going fast enough, 2535 * then let it though before starting on this new sync request. 2536 */ 2537 if (!go_faster && conf->nr_waiting) 2538 msleep_interruptible(1000); 2539 2540 bitmap_cond_end_sync(mddev->bitmap, sector_nr); 2541 r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO); 2542 2543 raise_barrier(conf, sector_nr); 2544 2545 rcu_read_lock(); 2546 /* 2547 * If we get a correctably read error during resync or recovery, 2548 * we might want to read from a different device. So we 2549 * flag all drives that could conceivably be read from for READ, 2550 * and any others (which will be non-In_sync devices) for WRITE. 2551 * If a read fails, we try reading from something else for which READ 2552 * is OK. 2553 */ 2554 2555 r1_bio->mddev = mddev; 2556 r1_bio->sector = sector_nr; 2557 r1_bio->state = 0; 2558 set_bit(R1BIO_IsSync, &r1_bio->state); 2559 2560 for (i = 0; i < conf->raid_disks * 2; i++) { 2561 struct md_rdev *rdev; 2562 bio = r1_bio->bios[i]; 2563 bio_reset(bio); 2564 2565 rdev = rcu_dereference(conf->mirrors[i].rdev); 2566 if (rdev == NULL || 2567 test_bit(Faulty, &rdev->flags)) { 2568 if (i < conf->raid_disks) 2569 still_degraded = 1; 2570 } else if (!test_bit(In_sync, &rdev->flags)) { 2571 bio->bi_rw = WRITE; 2572 bio->bi_end_io = end_sync_write; 2573 write_targets ++; 2574 } else { 2575 /* may need to read from here */ 2576 sector_t first_bad = MaxSector; 2577 int bad_sectors; 2578 2579 if (is_badblock(rdev, sector_nr, good_sectors, 2580 &first_bad, &bad_sectors)) { 2581 if (first_bad > sector_nr) 2582 good_sectors = first_bad - sector_nr; 2583 else { 2584 bad_sectors -= (sector_nr - first_bad); 2585 if (min_bad == 0 || 2586 min_bad > bad_sectors) 2587 min_bad = bad_sectors; 2588 } 2589 } 2590 if (sector_nr < first_bad) { 2591 if (test_bit(WriteMostly, &rdev->flags)) { 2592 if (wonly < 0) 2593 wonly = i; 2594 } else { 2595 if (disk < 0) 2596 disk = i; 2597 } 2598 bio->bi_rw = READ; 2599 bio->bi_end_io = end_sync_read; 2600 read_targets++; 2601 } else if (!test_bit(WriteErrorSeen, &rdev->flags) && 2602 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && 2603 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) { 2604 /* 2605 * The device is suitable for reading (InSync), 2606 * but has bad block(s) here. Let's try to correct them, 2607 * if we are doing resync or repair. Otherwise, leave 2608 * this device alone for this sync request. 2609 */ 2610 bio->bi_rw = WRITE; 2611 bio->bi_end_io = end_sync_write; 2612 write_targets++; 2613 } 2614 } 2615 if (bio->bi_end_io) { 2616 atomic_inc(&rdev->nr_pending); 2617 bio->bi_iter.bi_sector = sector_nr + rdev->data_offset; 2618 bio->bi_bdev = rdev->bdev; 2619 bio->bi_private = r1_bio; 2620 } 2621 } 2622 rcu_read_unlock(); 2623 if (disk < 0) 2624 disk = wonly; 2625 r1_bio->read_disk = disk; 2626 2627 if (read_targets == 0 && min_bad > 0) { 2628 /* These sectors are bad on all InSync devices, so we 2629 * need to mark them bad on all write targets 2630 */ 2631 int ok = 1; 2632 for (i = 0 ; i < conf->raid_disks * 2 ; i++) 2633 if (r1_bio->bios[i]->bi_end_io == end_sync_write) { 2634 struct md_rdev *rdev = conf->mirrors[i].rdev; 2635 ok = rdev_set_badblocks(rdev, sector_nr, 2636 min_bad, 0 2637 ) && ok; 2638 } 2639 set_bit(MD_CHANGE_DEVS, &mddev->flags); 2640 *skipped = 1; 2641 put_buf(r1_bio); 2642 2643 if (!ok) { 2644 /* Cannot record the badblocks, so need to 2645 * abort the resync. 2646 * If there are multiple read targets, could just 2647 * fail the really bad ones ??? 2648 */ 2649 conf->recovery_disabled = mddev->recovery_disabled; 2650 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 2651 return 0; 2652 } else 2653 return min_bad; 2654 2655 } 2656 if (min_bad > 0 && min_bad < good_sectors) { 2657 /* only resync enough to reach the next bad->good 2658 * transition */ 2659 good_sectors = min_bad; 2660 } 2661 2662 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0) 2663 /* extra read targets are also write targets */ 2664 write_targets += read_targets-1; 2665 2666 if (write_targets == 0 || read_targets == 0) { 2667 /* There is nowhere to write, so all non-sync 2668 * drives must be failed - so we are finished 2669 */ 2670 sector_t rv; 2671 if (min_bad > 0) 2672 max_sector = sector_nr + min_bad; 2673 rv = max_sector - sector_nr; 2674 *skipped = 1; 2675 put_buf(r1_bio); 2676 return rv; 2677 } 2678 2679 if (max_sector > mddev->resync_max) 2680 max_sector = mddev->resync_max; /* Don't do IO beyond here */ 2681 if (max_sector > sector_nr + good_sectors) 2682 max_sector = sector_nr + good_sectors; 2683 nr_sectors = 0; 2684 sync_blocks = 0; 2685 do { 2686 struct page *page; 2687 int len = PAGE_SIZE; 2688 if (sector_nr + (len>>9) > max_sector) 2689 len = (max_sector - sector_nr) << 9; 2690 if (len == 0) 2691 break; 2692 if (sync_blocks == 0) { 2693 if (!bitmap_start_sync(mddev->bitmap, sector_nr, 2694 &sync_blocks, still_degraded) && 2695 !conf->fullsync && 2696 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 2697 break; 2698 BUG_ON(sync_blocks < (PAGE_SIZE>>9)); 2699 if ((len >> 9) > sync_blocks) 2700 len = sync_blocks<<9; 2701 } 2702 2703 for (i = 0 ; i < conf->raid_disks * 2; i++) { 2704 bio = r1_bio->bios[i]; 2705 if (bio->bi_end_io) { 2706 page = bio->bi_io_vec[bio->bi_vcnt].bv_page; 2707 if (bio_add_page(bio, page, len, 0) == 0) { 2708 /* stop here */ 2709 bio->bi_io_vec[bio->bi_vcnt].bv_page = page; 2710 while (i > 0) { 2711 i--; 2712 bio = r1_bio->bios[i]; 2713 if (bio->bi_end_io==NULL) 2714 continue; 2715 /* remove last page from this bio */ 2716 bio->bi_vcnt--; 2717 bio->bi_iter.bi_size -= len; 2718 __clear_bit(BIO_SEG_VALID, &bio->bi_flags); 2719 } 2720 goto bio_full; 2721 } 2722 } 2723 } 2724 nr_sectors += len>>9; 2725 sector_nr += len>>9; 2726 sync_blocks -= (len>>9); 2727 } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES); 2728 bio_full: 2729 r1_bio->sectors = nr_sectors; 2730 2731 /* For a user-requested sync, we read all readable devices and do a 2732 * compare 2733 */ 2734 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 2735 atomic_set(&r1_bio->remaining, read_targets); 2736 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) { 2737 bio = r1_bio->bios[i]; 2738 if (bio->bi_end_io == end_sync_read) { 2739 read_targets--; 2740 md_sync_acct(bio->bi_bdev, nr_sectors); 2741 generic_make_request(bio); 2742 } 2743 } 2744 } else { 2745 atomic_set(&r1_bio->remaining, 1); 2746 bio = r1_bio->bios[r1_bio->read_disk]; 2747 md_sync_acct(bio->bi_bdev, nr_sectors); 2748 generic_make_request(bio); 2749 2750 } 2751 return nr_sectors; 2752 } 2753 2754 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks) 2755 { 2756 if (sectors) 2757 return sectors; 2758 2759 return mddev->dev_sectors; 2760 } 2761 2762 static struct r1conf *setup_conf(struct mddev *mddev) 2763 { 2764 struct r1conf *conf; 2765 int i; 2766 struct raid1_info *disk; 2767 struct md_rdev *rdev; 2768 int err = -ENOMEM; 2769 2770 conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL); 2771 if (!conf) 2772 goto abort; 2773 2774 conf->mirrors = kzalloc(sizeof(struct raid1_info) 2775 * mddev->raid_disks * 2, 2776 GFP_KERNEL); 2777 if (!conf->mirrors) 2778 goto abort; 2779 2780 conf->tmppage = alloc_page(GFP_KERNEL); 2781 if (!conf->tmppage) 2782 goto abort; 2783 2784 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL); 2785 if (!conf->poolinfo) 2786 goto abort; 2787 conf->poolinfo->raid_disks = mddev->raid_disks * 2; 2788 conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc, 2789 r1bio_pool_free, 2790 conf->poolinfo); 2791 if (!conf->r1bio_pool) 2792 goto abort; 2793 2794 conf->poolinfo->mddev = mddev; 2795 2796 err = -EINVAL; 2797 spin_lock_init(&conf->device_lock); 2798 rdev_for_each(rdev, mddev) { 2799 struct request_queue *q; 2800 int disk_idx = rdev->raid_disk; 2801 if (disk_idx >= mddev->raid_disks 2802 || disk_idx < 0) 2803 continue; 2804 if (test_bit(Replacement, &rdev->flags)) 2805 disk = conf->mirrors + mddev->raid_disks + disk_idx; 2806 else 2807 disk = conf->mirrors + disk_idx; 2808 2809 if (disk->rdev) 2810 goto abort; 2811 disk->rdev = rdev; 2812 q = bdev_get_queue(rdev->bdev); 2813 if (q->merge_bvec_fn) 2814 mddev->merge_check_needed = 1; 2815 2816 disk->head_position = 0; 2817 disk->seq_start = MaxSector; 2818 } 2819 conf->raid_disks = mddev->raid_disks; 2820 conf->mddev = mddev; 2821 INIT_LIST_HEAD(&conf->retry_list); 2822 2823 spin_lock_init(&conf->resync_lock); 2824 init_waitqueue_head(&conf->wait_barrier); 2825 2826 bio_list_init(&conf->pending_bio_list); 2827 conf->pending_count = 0; 2828 conf->recovery_disabled = mddev->recovery_disabled - 1; 2829 2830 conf->start_next_window = MaxSector; 2831 conf->current_window_requests = conf->next_window_requests = 0; 2832 2833 err = -EIO; 2834 for (i = 0; i < conf->raid_disks * 2; i++) { 2835 2836 disk = conf->mirrors + i; 2837 2838 if (i < conf->raid_disks && 2839 disk[conf->raid_disks].rdev) { 2840 /* This slot has a replacement. */ 2841 if (!disk->rdev) { 2842 /* No original, just make the replacement 2843 * a recovering spare 2844 */ 2845 disk->rdev = 2846 disk[conf->raid_disks].rdev; 2847 disk[conf->raid_disks].rdev = NULL; 2848 } else if (!test_bit(In_sync, &disk->rdev->flags)) 2849 /* Original is not in_sync - bad */ 2850 goto abort; 2851 } 2852 2853 if (!disk->rdev || 2854 !test_bit(In_sync, &disk->rdev->flags)) { 2855 disk->head_position = 0; 2856 if (disk->rdev && 2857 (disk->rdev->saved_raid_disk < 0)) 2858 conf->fullsync = 1; 2859 } 2860 } 2861 2862 err = -ENOMEM; 2863 conf->thread = md_register_thread(raid1d, mddev, "raid1"); 2864 if (!conf->thread) { 2865 printk(KERN_ERR 2866 "md/raid1:%s: couldn't allocate thread\n", 2867 mdname(mddev)); 2868 goto abort; 2869 } 2870 2871 return conf; 2872 2873 abort: 2874 if (conf) { 2875 if (conf->r1bio_pool) 2876 mempool_destroy(conf->r1bio_pool); 2877 kfree(conf->mirrors); 2878 safe_put_page(conf->tmppage); 2879 kfree(conf->poolinfo); 2880 kfree(conf); 2881 } 2882 return ERR_PTR(err); 2883 } 2884 2885 static int stop(struct mddev *mddev); 2886 static int run(struct mddev *mddev) 2887 { 2888 struct r1conf *conf; 2889 int i; 2890 struct md_rdev *rdev; 2891 int ret; 2892 bool discard_supported = false; 2893 2894 if (mddev->level != 1) { 2895 printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n", 2896 mdname(mddev), mddev->level); 2897 return -EIO; 2898 } 2899 if (mddev->reshape_position != MaxSector) { 2900 printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n", 2901 mdname(mddev)); 2902 return -EIO; 2903 } 2904 /* 2905 * copy the already verified devices into our private RAID1 2906 * bookkeeping area. [whatever we allocate in run(), 2907 * should be freed in stop()] 2908 */ 2909 if (mddev->private == NULL) 2910 conf = setup_conf(mddev); 2911 else 2912 conf = mddev->private; 2913 2914 if (IS_ERR(conf)) 2915 return PTR_ERR(conf); 2916 2917 if (mddev->queue) 2918 blk_queue_max_write_same_sectors(mddev->queue, 0); 2919 2920 rdev_for_each(rdev, mddev) { 2921 if (!mddev->gendisk) 2922 continue; 2923 disk_stack_limits(mddev->gendisk, rdev->bdev, 2924 rdev->data_offset << 9); 2925 if (blk_queue_discard(bdev_get_queue(rdev->bdev))) 2926 discard_supported = true; 2927 } 2928 2929 mddev->degraded = 0; 2930 for (i=0; i < conf->raid_disks; i++) 2931 if (conf->mirrors[i].rdev == NULL || 2932 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) || 2933 test_bit(Faulty, &conf->mirrors[i].rdev->flags)) 2934 mddev->degraded++; 2935 2936 if (conf->raid_disks - mddev->degraded == 1) 2937 mddev->recovery_cp = MaxSector; 2938 2939 if (mddev->recovery_cp != MaxSector) 2940 printk(KERN_NOTICE "md/raid1:%s: not clean" 2941 " -- starting background reconstruction\n", 2942 mdname(mddev)); 2943 printk(KERN_INFO 2944 "md/raid1:%s: active with %d out of %d mirrors\n", 2945 mdname(mddev), mddev->raid_disks - mddev->degraded, 2946 mddev->raid_disks); 2947 2948 /* 2949 * Ok, everything is just fine now 2950 */ 2951 mddev->thread = conf->thread; 2952 conf->thread = NULL; 2953 mddev->private = conf; 2954 2955 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0)); 2956 2957 if (mddev->queue) { 2958 mddev->queue->backing_dev_info.congested_fn = raid1_congested; 2959 mddev->queue->backing_dev_info.congested_data = mddev; 2960 blk_queue_merge_bvec(mddev->queue, raid1_mergeable_bvec); 2961 2962 if (discard_supported) 2963 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, 2964 mddev->queue); 2965 else 2966 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, 2967 mddev->queue); 2968 } 2969 2970 ret = md_integrity_register(mddev); 2971 if (ret) 2972 stop(mddev); 2973 return ret; 2974 } 2975 2976 static int stop(struct mddev *mddev) 2977 { 2978 struct r1conf *conf = mddev->private; 2979 struct bitmap *bitmap = mddev->bitmap; 2980 2981 /* wait for behind writes to complete */ 2982 if (bitmap && atomic_read(&bitmap->behind_writes) > 0) { 2983 printk(KERN_INFO "md/raid1:%s: behind writes in progress - waiting to stop.\n", 2984 mdname(mddev)); 2985 /* need to kick something here to make sure I/O goes? */ 2986 wait_event(bitmap->behind_wait, 2987 atomic_read(&bitmap->behind_writes) == 0); 2988 } 2989 2990 freeze_array(conf, 0); 2991 unfreeze_array(conf); 2992 2993 md_unregister_thread(&mddev->thread); 2994 if (conf->r1bio_pool) 2995 mempool_destroy(conf->r1bio_pool); 2996 kfree(conf->mirrors); 2997 safe_put_page(conf->tmppage); 2998 kfree(conf->poolinfo); 2999 kfree(conf); 3000 mddev->private = NULL; 3001 return 0; 3002 } 3003 3004 static int raid1_resize(struct mddev *mddev, sector_t sectors) 3005 { 3006 /* no resync is happening, and there is enough space 3007 * on all devices, so we can resize. 3008 * We need to make sure resync covers any new space. 3009 * If the array is shrinking we should possibly wait until 3010 * any io in the removed space completes, but it hardly seems 3011 * worth it. 3012 */ 3013 sector_t newsize = raid1_size(mddev, sectors, 0); 3014 if (mddev->external_size && 3015 mddev->array_sectors > newsize) 3016 return -EINVAL; 3017 if (mddev->bitmap) { 3018 int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0); 3019 if (ret) 3020 return ret; 3021 } 3022 md_set_array_sectors(mddev, newsize); 3023 set_capacity(mddev->gendisk, mddev->array_sectors); 3024 revalidate_disk(mddev->gendisk); 3025 if (sectors > mddev->dev_sectors && 3026 mddev->recovery_cp > mddev->dev_sectors) { 3027 mddev->recovery_cp = mddev->dev_sectors; 3028 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3029 } 3030 mddev->dev_sectors = sectors; 3031 mddev->resync_max_sectors = sectors; 3032 return 0; 3033 } 3034 3035 static int raid1_reshape(struct mddev *mddev) 3036 { 3037 /* We need to: 3038 * 1/ resize the r1bio_pool 3039 * 2/ resize conf->mirrors 3040 * 3041 * We allocate a new r1bio_pool if we can. 3042 * Then raise a device barrier and wait until all IO stops. 3043 * Then resize conf->mirrors and swap in the new r1bio pool. 3044 * 3045 * At the same time, we "pack" the devices so that all the missing 3046 * devices have the higher raid_disk numbers. 3047 */ 3048 mempool_t *newpool, *oldpool; 3049 struct pool_info *newpoolinfo; 3050 struct raid1_info *newmirrors; 3051 struct r1conf *conf = mddev->private; 3052 int cnt, raid_disks; 3053 unsigned long flags; 3054 int d, d2, err; 3055 3056 /* Cannot change chunk_size, layout, or level */ 3057 if (mddev->chunk_sectors != mddev->new_chunk_sectors || 3058 mddev->layout != mddev->new_layout || 3059 mddev->level != mddev->new_level) { 3060 mddev->new_chunk_sectors = mddev->chunk_sectors; 3061 mddev->new_layout = mddev->layout; 3062 mddev->new_level = mddev->level; 3063 return -EINVAL; 3064 } 3065 3066 err = md_allow_write(mddev); 3067 if (err) 3068 return err; 3069 3070 raid_disks = mddev->raid_disks + mddev->delta_disks; 3071 3072 if (raid_disks < conf->raid_disks) { 3073 cnt=0; 3074 for (d= 0; d < conf->raid_disks; d++) 3075 if (conf->mirrors[d].rdev) 3076 cnt++; 3077 if (cnt > raid_disks) 3078 return -EBUSY; 3079 } 3080 3081 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL); 3082 if (!newpoolinfo) 3083 return -ENOMEM; 3084 newpoolinfo->mddev = mddev; 3085 newpoolinfo->raid_disks = raid_disks * 2; 3086 3087 newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc, 3088 r1bio_pool_free, newpoolinfo); 3089 if (!newpool) { 3090 kfree(newpoolinfo); 3091 return -ENOMEM; 3092 } 3093 newmirrors = kzalloc(sizeof(struct raid1_info) * raid_disks * 2, 3094 GFP_KERNEL); 3095 if (!newmirrors) { 3096 kfree(newpoolinfo); 3097 mempool_destroy(newpool); 3098 return -ENOMEM; 3099 } 3100 3101 freeze_array(conf, 0); 3102 3103 /* ok, everything is stopped */ 3104 oldpool = conf->r1bio_pool; 3105 conf->r1bio_pool = newpool; 3106 3107 for (d = d2 = 0; d < conf->raid_disks; d++) { 3108 struct md_rdev *rdev = conf->mirrors[d].rdev; 3109 if (rdev && rdev->raid_disk != d2) { 3110 sysfs_unlink_rdev(mddev, rdev); 3111 rdev->raid_disk = d2; 3112 sysfs_unlink_rdev(mddev, rdev); 3113 if (sysfs_link_rdev(mddev, rdev)) 3114 printk(KERN_WARNING 3115 "md/raid1:%s: cannot register rd%d\n", 3116 mdname(mddev), rdev->raid_disk); 3117 } 3118 if (rdev) 3119 newmirrors[d2++].rdev = rdev; 3120 } 3121 kfree(conf->mirrors); 3122 conf->mirrors = newmirrors; 3123 kfree(conf->poolinfo); 3124 conf->poolinfo = newpoolinfo; 3125 3126 spin_lock_irqsave(&conf->device_lock, flags); 3127 mddev->degraded += (raid_disks - conf->raid_disks); 3128 spin_unlock_irqrestore(&conf->device_lock, flags); 3129 conf->raid_disks = mddev->raid_disks = raid_disks; 3130 mddev->delta_disks = 0; 3131 3132 unfreeze_array(conf); 3133 3134 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3135 md_wakeup_thread(mddev->thread); 3136 3137 mempool_destroy(oldpool); 3138 return 0; 3139 } 3140 3141 static void raid1_quiesce(struct mddev *mddev, int state) 3142 { 3143 struct r1conf *conf = mddev->private; 3144 3145 switch(state) { 3146 case 2: /* wake for suspend */ 3147 wake_up(&conf->wait_barrier); 3148 break; 3149 case 1: 3150 freeze_array(conf, 0); 3151 break; 3152 case 0: 3153 unfreeze_array(conf); 3154 break; 3155 } 3156 } 3157 3158 static void *raid1_takeover(struct mddev *mddev) 3159 { 3160 /* raid1 can take over: 3161 * raid5 with 2 devices, any layout or chunk size 3162 */ 3163 if (mddev->level == 5 && mddev->raid_disks == 2) { 3164 struct r1conf *conf; 3165 mddev->new_level = 1; 3166 mddev->new_layout = 0; 3167 mddev->new_chunk_sectors = 0; 3168 conf = setup_conf(mddev); 3169 if (!IS_ERR(conf)) 3170 /* Array must appear to be quiesced */ 3171 conf->array_frozen = 1; 3172 return conf; 3173 } 3174 return ERR_PTR(-EINVAL); 3175 } 3176 3177 static struct md_personality raid1_personality = 3178 { 3179 .name = "raid1", 3180 .level = 1, 3181 .owner = THIS_MODULE, 3182 .make_request = make_request, 3183 .run = run, 3184 .stop = stop, 3185 .status = status, 3186 .error_handler = error, 3187 .hot_add_disk = raid1_add_disk, 3188 .hot_remove_disk= raid1_remove_disk, 3189 .spare_active = raid1_spare_active, 3190 .sync_request = sync_request, 3191 .resize = raid1_resize, 3192 .size = raid1_size, 3193 .check_reshape = raid1_reshape, 3194 .quiesce = raid1_quiesce, 3195 .takeover = raid1_takeover, 3196 }; 3197 3198 static int __init raid_init(void) 3199 { 3200 return register_md_personality(&raid1_personality); 3201 } 3202 3203 static void raid_exit(void) 3204 { 3205 unregister_md_personality(&raid1_personality); 3206 } 3207 3208 module_init(raid_init); 3209 module_exit(raid_exit); 3210 MODULE_LICENSE("GPL"); 3211 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD"); 3212 MODULE_ALIAS("md-personality-3"); /* RAID1 */ 3213 MODULE_ALIAS("md-raid1"); 3214 MODULE_ALIAS("md-level-1"); 3215 3216 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR); 3217