xref: /openbmc/linux/drivers/md/raid1.c (revision 842ed298)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * raid1.c : Multiple Devices driver for Linux
4  *
5  * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
6  *
7  * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
8  *
9  * RAID-1 management functions.
10  *
11  * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
12  *
13  * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
14  * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
15  *
16  * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
17  * bitmapped intelligence in resync:
18  *
19  *      - bitmap marked during normal i/o
20  *      - bitmap used to skip nondirty blocks during sync
21  *
22  * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
23  * - persistent bitmap code
24  */
25 
26 #include <linux/slab.h>
27 #include <linux/delay.h>
28 #include <linux/blkdev.h>
29 #include <linux/module.h>
30 #include <linux/seq_file.h>
31 #include <linux/ratelimit.h>
32 #include <linux/interval_tree_generic.h>
33 
34 #include <trace/events/block.h>
35 
36 #include "md.h"
37 #include "raid1.h"
38 #include "md-bitmap.h"
39 
40 #define UNSUPPORTED_MDDEV_FLAGS		\
41 	((1L << MD_HAS_JOURNAL) |	\
42 	 (1L << MD_JOURNAL_CLEAN) |	\
43 	 (1L << MD_HAS_PPL) |		\
44 	 (1L << MD_HAS_MULTIPLE_PPLS))
45 
46 static void allow_barrier(struct r1conf *conf, sector_t sector_nr);
47 static void lower_barrier(struct r1conf *conf, sector_t sector_nr);
48 
49 #define raid1_log(md, fmt, args...)				\
50 	do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid1 " fmt, ##args); } while (0)
51 
52 #include "raid1-10.c"
53 
54 #define START(node) ((node)->start)
55 #define LAST(node) ((node)->last)
56 INTERVAL_TREE_DEFINE(struct serial_info, node, sector_t, _subtree_last,
57 		     START, LAST, static inline, raid1_rb);
58 
59 static int check_and_add_serial(struct md_rdev *rdev, struct r1bio *r1_bio,
60 				struct serial_info *si, int idx)
61 {
62 	unsigned long flags;
63 	int ret = 0;
64 	sector_t lo = r1_bio->sector;
65 	sector_t hi = lo + r1_bio->sectors;
66 	struct serial_in_rdev *serial = &rdev->serial[idx];
67 
68 	spin_lock_irqsave(&serial->serial_lock, flags);
69 	/* collision happened */
70 	if (raid1_rb_iter_first(&serial->serial_rb, lo, hi))
71 		ret = -EBUSY;
72 	else {
73 		si->start = lo;
74 		si->last = hi;
75 		raid1_rb_insert(si, &serial->serial_rb);
76 	}
77 	spin_unlock_irqrestore(&serial->serial_lock, flags);
78 
79 	return ret;
80 }
81 
82 static void wait_for_serialization(struct md_rdev *rdev, struct r1bio *r1_bio)
83 {
84 	struct mddev *mddev = rdev->mddev;
85 	struct serial_info *si;
86 	int idx = sector_to_idx(r1_bio->sector);
87 	struct serial_in_rdev *serial = &rdev->serial[idx];
88 
89 	if (WARN_ON(!mddev->serial_info_pool))
90 		return;
91 	si = mempool_alloc(mddev->serial_info_pool, GFP_NOIO);
92 	wait_event(serial->serial_io_wait,
93 		   check_and_add_serial(rdev, r1_bio, si, idx) == 0);
94 }
95 
96 static void remove_serial(struct md_rdev *rdev, sector_t lo, sector_t hi)
97 {
98 	struct serial_info *si;
99 	unsigned long flags;
100 	int found = 0;
101 	struct mddev *mddev = rdev->mddev;
102 	int idx = sector_to_idx(lo);
103 	struct serial_in_rdev *serial = &rdev->serial[idx];
104 
105 	spin_lock_irqsave(&serial->serial_lock, flags);
106 	for (si = raid1_rb_iter_first(&serial->serial_rb, lo, hi);
107 	     si; si = raid1_rb_iter_next(si, lo, hi)) {
108 		if (si->start == lo && si->last == hi) {
109 			raid1_rb_remove(si, &serial->serial_rb);
110 			mempool_free(si, mddev->serial_info_pool);
111 			found = 1;
112 			break;
113 		}
114 	}
115 	if (!found)
116 		WARN(1, "The write IO is not recorded for serialization\n");
117 	spin_unlock_irqrestore(&serial->serial_lock, flags);
118 	wake_up(&serial->serial_io_wait);
119 }
120 
121 /*
122  * for resync bio, r1bio pointer can be retrieved from the per-bio
123  * 'struct resync_pages'.
124  */
125 static inline struct r1bio *get_resync_r1bio(struct bio *bio)
126 {
127 	return get_resync_pages(bio)->raid_bio;
128 }
129 
130 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
131 {
132 	struct pool_info *pi = data;
133 	int size = offsetof(struct r1bio, bios[pi->raid_disks]);
134 
135 	/* allocate a r1bio with room for raid_disks entries in the bios array */
136 	return kzalloc(size, gfp_flags);
137 }
138 
139 #define RESYNC_DEPTH 32
140 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
141 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
142 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
143 #define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
144 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
145 
146 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
147 {
148 	struct pool_info *pi = data;
149 	struct r1bio *r1_bio;
150 	struct bio *bio;
151 	int need_pages;
152 	int j;
153 	struct resync_pages *rps;
154 
155 	r1_bio = r1bio_pool_alloc(gfp_flags, pi);
156 	if (!r1_bio)
157 		return NULL;
158 
159 	rps = kmalloc_array(pi->raid_disks, sizeof(struct resync_pages),
160 			    gfp_flags);
161 	if (!rps)
162 		goto out_free_r1bio;
163 
164 	/*
165 	 * Allocate bios : 1 for reading, n-1 for writing
166 	 */
167 	for (j = pi->raid_disks ; j-- ; ) {
168 		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
169 		if (!bio)
170 			goto out_free_bio;
171 		r1_bio->bios[j] = bio;
172 	}
173 	/*
174 	 * Allocate RESYNC_PAGES data pages and attach them to
175 	 * the first bio.
176 	 * If this is a user-requested check/repair, allocate
177 	 * RESYNC_PAGES for each bio.
178 	 */
179 	if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
180 		need_pages = pi->raid_disks;
181 	else
182 		need_pages = 1;
183 	for (j = 0; j < pi->raid_disks; j++) {
184 		struct resync_pages *rp = &rps[j];
185 
186 		bio = r1_bio->bios[j];
187 
188 		if (j < need_pages) {
189 			if (resync_alloc_pages(rp, gfp_flags))
190 				goto out_free_pages;
191 		} else {
192 			memcpy(rp, &rps[0], sizeof(*rp));
193 			resync_get_all_pages(rp);
194 		}
195 
196 		rp->raid_bio = r1_bio;
197 		bio->bi_private = rp;
198 	}
199 
200 	r1_bio->master_bio = NULL;
201 
202 	return r1_bio;
203 
204 out_free_pages:
205 	while (--j >= 0)
206 		resync_free_pages(&rps[j]);
207 
208 out_free_bio:
209 	while (++j < pi->raid_disks)
210 		bio_put(r1_bio->bios[j]);
211 	kfree(rps);
212 
213 out_free_r1bio:
214 	rbio_pool_free(r1_bio, data);
215 	return NULL;
216 }
217 
218 static void r1buf_pool_free(void *__r1_bio, void *data)
219 {
220 	struct pool_info *pi = data;
221 	int i;
222 	struct r1bio *r1bio = __r1_bio;
223 	struct resync_pages *rp = NULL;
224 
225 	for (i = pi->raid_disks; i--; ) {
226 		rp = get_resync_pages(r1bio->bios[i]);
227 		resync_free_pages(rp);
228 		bio_put(r1bio->bios[i]);
229 	}
230 
231 	/* resync pages array stored in the 1st bio's .bi_private */
232 	kfree(rp);
233 
234 	rbio_pool_free(r1bio, data);
235 }
236 
237 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
238 {
239 	int i;
240 
241 	for (i = 0; i < conf->raid_disks * 2; i++) {
242 		struct bio **bio = r1_bio->bios + i;
243 		if (!BIO_SPECIAL(*bio))
244 			bio_put(*bio);
245 		*bio = NULL;
246 	}
247 }
248 
249 static void free_r1bio(struct r1bio *r1_bio)
250 {
251 	struct r1conf *conf = r1_bio->mddev->private;
252 
253 	put_all_bios(conf, r1_bio);
254 	mempool_free(r1_bio, &conf->r1bio_pool);
255 }
256 
257 static void put_buf(struct r1bio *r1_bio)
258 {
259 	struct r1conf *conf = r1_bio->mddev->private;
260 	sector_t sect = r1_bio->sector;
261 	int i;
262 
263 	for (i = 0; i < conf->raid_disks * 2; i++) {
264 		struct bio *bio = r1_bio->bios[i];
265 		if (bio->bi_end_io)
266 			rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
267 	}
268 
269 	mempool_free(r1_bio, &conf->r1buf_pool);
270 
271 	lower_barrier(conf, sect);
272 }
273 
274 static void reschedule_retry(struct r1bio *r1_bio)
275 {
276 	unsigned long flags;
277 	struct mddev *mddev = r1_bio->mddev;
278 	struct r1conf *conf = mddev->private;
279 	int idx;
280 
281 	idx = sector_to_idx(r1_bio->sector);
282 	spin_lock_irqsave(&conf->device_lock, flags);
283 	list_add(&r1_bio->retry_list, &conf->retry_list);
284 	atomic_inc(&conf->nr_queued[idx]);
285 	spin_unlock_irqrestore(&conf->device_lock, flags);
286 
287 	wake_up(&conf->wait_barrier);
288 	md_wakeup_thread(mddev->thread);
289 }
290 
291 /*
292  * raid_end_bio_io() is called when we have finished servicing a mirrored
293  * operation and are ready to return a success/failure code to the buffer
294  * cache layer.
295  */
296 static void call_bio_endio(struct r1bio *r1_bio)
297 {
298 	struct bio *bio = r1_bio->master_bio;
299 
300 	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
301 		bio->bi_status = BLK_STS_IOERR;
302 
303 	bio_endio(bio);
304 }
305 
306 static void raid_end_bio_io(struct r1bio *r1_bio)
307 {
308 	struct bio *bio = r1_bio->master_bio;
309 	struct r1conf *conf = r1_bio->mddev->private;
310 
311 	/* if nobody has done the final endio yet, do it now */
312 	if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
313 		pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
314 			 (bio_data_dir(bio) == WRITE) ? "write" : "read",
315 			 (unsigned long long) bio->bi_iter.bi_sector,
316 			 (unsigned long long) bio_end_sector(bio) - 1);
317 
318 		call_bio_endio(r1_bio);
319 	}
320 	/*
321 	 * Wake up any possible resync thread that waits for the device
322 	 * to go idle.  All I/Os, even write-behind writes, are done.
323 	 */
324 	allow_barrier(conf, r1_bio->sector);
325 
326 	free_r1bio(r1_bio);
327 }
328 
329 /*
330  * Update disk head position estimator based on IRQ completion info.
331  */
332 static inline void update_head_pos(int disk, struct r1bio *r1_bio)
333 {
334 	struct r1conf *conf = r1_bio->mddev->private;
335 
336 	conf->mirrors[disk].head_position =
337 		r1_bio->sector + (r1_bio->sectors);
338 }
339 
340 /*
341  * Find the disk number which triggered given bio
342  */
343 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
344 {
345 	int mirror;
346 	struct r1conf *conf = r1_bio->mddev->private;
347 	int raid_disks = conf->raid_disks;
348 
349 	for (mirror = 0; mirror < raid_disks * 2; mirror++)
350 		if (r1_bio->bios[mirror] == bio)
351 			break;
352 
353 	BUG_ON(mirror == raid_disks * 2);
354 	update_head_pos(mirror, r1_bio);
355 
356 	return mirror;
357 }
358 
359 static void raid1_end_read_request(struct bio *bio)
360 {
361 	int uptodate = !bio->bi_status;
362 	struct r1bio *r1_bio = bio->bi_private;
363 	struct r1conf *conf = r1_bio->mddev->private;
364 	struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev;
365 
366 	/*
367 	 * this branch is our 'one mirror IO has finished' event handler:
368 	 */
369 	update_head_pos(r1_bio->read_disk, r1_bio);
370 
371 	if (uptodate)
372 		set_bit(R1BIO_Uptodate, &r1_bio->state);
373 	else if (test_bit(FailFast, &rdev->flags) &&
374 		 test_bit(R1BIO_FailFast, &r1_bio->state))
375 		/* This was a fail-fast read so we definitely
376 		 * want to retry */
377 		;
378 	else {
379 		/* If all other devices have failed, we want to return
380 		 * the error upwards rather than fail the last device.
381 		 * Here we redefine "uptodate" to mean "Don't want to retry"
382 		 */
383 		unsigned long flags;
384 		spin_lock_irqsave(&conf->device_lock, flags);
385 		if (r1_bio->mddev->degraded == conf->raid_disks ||
386 		    (r1_bio->mddev->degraded == conf->raid_disks-1 &&
387 		     test_bit(In_sync, &rdev->flags)))
388 			uptodate = 1;
389 		spin_unlock_irqrestore(&conf->device_lock, flags);
390 	}
391 
392 	if (uptodate) {
393 		raid_end_bio_io(r1_bio);
394 		rdev_dec_pending(rdev, conf->mddev);
395 	} else {
396 		/*
397 		 * oops, read error:
398 		 */
399 		char b[BDEVNAME_SIZE];
400 		pr_err_ratelimited("md/raid1:%s: %s: rescheduling sector %llu\n",
401 				   mdname(conf->mddev),
402 				   bdevname(rdev->bdev, b),
403 				   (unsigned long long)r1_bio->sector);
404 		set_bit(R1BIO_ReadError, &r1_bio->state);
405 		reschedule_retry(r1_bio);
406 		/* don't drop the reference on read_disk yet */
407 	}
408 }
409 
410 static void close_write(struct r1bio *r1_bio)
411 {
412 	/* it really is the end of this request */
413 	if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
414 		bio_free_pages(r1_bio->behind_master_bio);
415 		bio_put(r1_bio->behind_master_bio);
416 		r1_bio->behind_master_bio = NULL;
417 	}
418 	/* clear the bitmap if all writes complete successfully */
419 	md_bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
420 			   r1_bio->sectors,
421 			   !test_bit(R1BIO_Degraded, &r1_bio->state),
422 			   test_bit(R1BIO_BehindIO, &r1_bio->state));
423 	md_write_end(r1_bio->mddev);
424 }
425 
426 static void r1_bio_write_done(struct r1bio *r1_bio)
427 {
428 	if (!atomic_dec_and_test(&r1_bio->remaining))
429 		return;
430 
431 	if (test_bit(R1BIO_WriteError, &r1_bio->state))
432 		reschedule_retry(r1_bio);
433 	else {
434 		close_write(r1_bio);
435 		if (test_bit(R1BIO_MadeGood, &r1_bio->state))
436 			reschedule_retry(r1_bio);
437 		else
438 			raid_end_bio_io(r1_bio);
439 	}
440 }
441 
442 static void raid1_end_write_request(struct bio *bio)
443 {
444 	struct r1bio *r1_bio = bio->bi_private;
445 	int behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
446 	struct r1conf *conf = r1_bio->mddev->private;
447 	struct bio *to_put = NULL;
448 	int mirror = find_bio_disk(r1_bio, bio);
449 	struct md_rdev *rdev = conf->mirrors[mirror].rdev;
450 	bool discard_error;
451 	sector_t lo = r1_bio->sector;
452 	sector_t hi = r1_bio->sector + r1_bio->sectors;
453 
454 	discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
455 
456 	/*
457 	 * 'one mirror IO has finished' event handler:
458 	 */
459 	if (bio->bi_status && !discard_error) {
460 		set_bit(WriteErrorSeen,	&rdev->flags);
461 		if (!test_and_set_bit(WantReplacement, &rdev->flags))
462 			set_bit(MD_RECOVERY_NEEDED, &
463 				conf->mddev->recovery);
464 
465 		if (test_bit(FailFast, &rdev->flags) &&
466 		    (bio->bi_opf & MD_FAILFAST) &&
467 		    /* We never try FailFast to WriteMostly devices */
468 		    !test_bit(WriteMostly, &rdev->flags)) {
469 			md_error(r1_bio->mddev, rdev);
470 		}
471 
472 		/*
473 		 * When the device is faulty, it is not necessary to
474 		 * handle write error.
475 		 * For failfast, this is the only remaining device,
476 		 * We need to retry the write without FailFast.
477 		 */
478 		if (!test_bit(Faulty, &rdev->flags))
479 			set_bit(R1BIO_WriteError, &r1_bio->state);
480 		else {
481 			/* Finished with this branch */
482 			r1_bio->bios[mirror] = NULL;
483 			to_put = bio;
484 		}
485 	} else {
486 		/*
487 		 * Set R1BIO_Uptodate in our master bio, so that we
488 		 * will return a good error code for to the higher
489 		 * levels even if IO on some other mirrored buffer
490 		 * fails.
491 		 *
492 		 * The 'master' represents the composite IO operation
493 		 * to user-side. So if something waits for IO, then it
494 		 * will wait for the 'master' bio.
495 		 */
496 		sector_t first_bad;
497 		int bad_sectors;
498 
499 		r1_bio->bios[mirror] = NULL;
500 		to_put = bio;
501 		/*
502 		 * Do not set R1BIO_Uptodate if the current device is
503 		 * rebuilding or Faulty. This is because we cannot use
504 		 * such device for properly reading the data back (we could
505 		 * potentially use it, if the current write would have felt
506 		 * before rdev->recovery_offset, but for simplicity we don't
507 		 * check this here.
508 		 */
509 		if (test_bit(In_sync, &rdev->flags) &&
510 		    !test_bit(Faulty, &rdev->flags))
511 			set_bit(R1BIO_Uptodate, &r1_bio->state);
512 
513 		/* Maybe we can clear some bad blocks. */
514 		if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
515 				&first_bad, &bad_sectors) && !discard_error) {
516 			r1_bio->bios[mirror] = IO_MADE_GOOD;
517 			set_bit(R1BIO_MadeGood, &r1_bio->state);
518 		}
519 	}
520 
521 	if (behind) {
522 		if (test_bit(CollisionCheck, &rdev->flags))
523 			remove_serial(rdev, lo, hi);
524 		if (test_bit(WriteMostly, &rdev->flags))
525 			atomic_dec(&r1_bio->behind_remaining);
526 
527 		/*
528 		 * In behind mode, we ACK the master bio once the I/O
529 		 * has safely reached all non-writemostly
530 		 * disks. Setting the Returned bit ensures that this
531 		 * gets done only once -- we don't ever want to return
532 		 * -EIO here, instead we'll wait
533 		 */
534 		if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
535 		    test_bit(R1BIO_Uptodate, &r1_bio->state)) {
536 			/* Maybe we can return now */
537 			if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
538 				struct bio *mbio = r1_bio->master_bio;
539 				pr_debug("raid1: behind end write sectors"
540 					 " %llu-%llu\n",
541 					 (unsigned long long) mbio->bi_iter.bi_sector,
542 					 (unsigned long long) bio_end_sector(mbio) - 1);
543 				call_bio_endio(r1_bio);
544 			}
545 		}
546 	} else if (rdev->mddev->serialize_policy)
547 		remove_serial(rdev, lo, hi);
548 	if (r1_bio->bios[mirror] == NULL)
549 		rdev_dec_pending(rdev, conf->mddev);
550 
551 	/*
552 	 * Let's see if all mirrored write operations have finished
553 	 * already.
554 	 */
555 	r1_bio_write_done(r1_bio);
556 
557 	if (to_put)
558 		bio_put(to_put);
559 }
560 
561 static sector_t align_to_barrier_unit_end(sector_t start_sector,
562 					  sector_t sectors)
563 {
564 	sector_t len;
565 
566 	WARN_ON(sectors == 0);
567 	/*
568 	 * len is the number of sectors from start_sector to end of the
569 	 * barrier unit which start_sector belongs to.
570 	 */
571 	len = round_up(start_sector + 1, BARRIER_UNIT_SECTOR_SIZE) -
572 	      start_sector;
573 
574 	if (len > sectors)
575 		len = sectors;
576 
577 	return len;
578 }
579 
580 /*
581  * This routine returns the disk from which the requested read should
582  * be done. There is a per-array 'next expected sequential IO' sector
583  * number - if this matches on the next IO then we use the last disk.
584  * There is also a per-disk 'last know head position' sector that is
585  * maintained from IRQ contexts, both the normal and the resync IO
586  * completion handlers update this position correctly. If there is no
587  * perfect sequential match then we pick the disk whose head is closest.
588  *
589  * If there are 2 mirrors in the same 2 devices, performance degrades
590  * because position is mirror, not device based.
591  *
592  * The rdev for the device selected will have nr_pending incremented.
593  */
594 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
595 {
596 	const sector_t this_sector = r1_bio->sector;
597 	int sectors;
598 	int best_good_sectors;
599 	int best_disk, best_dist_disk, best_pending_disk;
600 	int has_nonrot_disk;
601 	int disk;
602 	sector_t best_dist;
603 	unsigned int min_pending;
604 	struct md_rdev *rdev;
605 	int choose_first;
606 	int choose_next_idle;
607 
608 	rcu_read_lock();
609 	/*
610 	 * Check if we can balance. We can balance on the whole
611 	 * device if no resync is going on, or below the resync window.
612 	 * We take the first readable disk when above the resync window.
613 	 */
614  retry:
615 	sectors = r1_bio->sectors;
616 	best_disk = -1;
617 	best_dist_disk = -1;
618 	best_dist = MaxSector;
619 	best_pending_disk = -1;
620 	min_pending = UINT_MAX;
621 	best_good_sectors = 0;
622 	has_nonrot_disk = 0;
623 	choose_next_idle = 0;
624 	clear_bit(R1BIO_FailFast, &r1_bio->state);
625 
626 	if ((conf->mddev->recovery_cp < this_sector + sectors) ||
627 	    (mddev_is_clustered(conf->mddev) &&
628 	    md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
629 		    this_sector + sectors)))
630 		choose_first = 1;
631 	else
632 		choose_first = 0;
633 
634 	for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
635 		sector_t dist;
636 		sector_t first_bad;
637 		int bad_sectors;
638 		unsigned int pending;
639 		bool nonrot;
640 
641 		rdev = rcu_dereference(conf->mirrors[disk].rdev);
642 		if (r1_bio->bios[disk] == IO_BLOCKED
643 		    || rdev == NULL
644 		    || test_bit(Faulty, &rdev->flags))
645 			continue;
646 		if (!test_bit(In_sync, &rdev->flags) &&
647 		    rdev->recovery_offset < this_sector + sectors)
648 			continue;
649 		if (test_bit(WriteMostly, &rdev->flags)) {
650 			/* Don't balance among write-mostly, just
651 			 * use the first as a last resort */
652 			if (best_dist_disk < 0) {
653 				if (is_badblock(rdev, this_sector, sectors,
654 						&first_bad, &bad_sectors)) {
655 					if (first_bad <= this_sector)
656 						/* Cannot use this */
657 						continue;
658 					best_good_sectors = first_bad - this_sector;
659 				} else
660 					best_good_sectors = sectors;
661 				best_dist_disk = disk;
662 				best_pending_disk = disk;
663 			}
664 			continue;
665 		}
666 		/* This is a reasonable device to use.  It might
667 		 * even be best.
668 		 */
669 		if (is_badblock(rdev, this_sector, sectors,
670 				&first_bad, &bad_sectors)) {
671 			if (best_dist < MaxSector)
672 				/* already have a better device */
673 				continue;
674 			if (first_bad <= this_sector) {
675 				/* cannot read here. If this is the 'primary'
676 				 * device, then we must not read beyond
677 				 * bad_sectors from another device..
678 				 */
679 				bad_sectors -= (this_sector - first_bad);
680 				if (choose_first && sectors > bad_sectors)
681 					sectors = bad_sectors;
682 				if (best_good_sectors > sectors)
683 					best_good_sectors = sectors;
684 
685 			} else {
686 				sector_t good_sectors = first_bad - this_sector;
687 				if (good_sectors > best_good_sectors) {
688 					best_good_sectors = good_sectors;
689 					best_disk = disk;
690 				}
691 				if (choose_first)
692 					break;
693 			}
694 			continue;
695 		} else {
696 			if ((sectors > best_good_sectors) && (best_disk >= 0))
697 				best_disk = -1;
698 			best_good_sectors = sectors;
699 		}
700 
701 		if (best_disk >= 0)
702 			/* At least two disks to choose from so failfast is OK */
703 			set_bit(R1BIO_FailFast, &r1_bio->state);
704 
705 		nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
706 		has_nonrot_disk |= nonrot;
707 		pending = atomic_read(&rdev->nr_pending);
708 		dist = abs(this_sector - conf->mirrors[disk].head_position);
709 		if (choose_first) {
710 			best_disk = disk;
711 			break;
712 		}
713 		/* Don't change to another disk for sequential reads */
714 		if (conf->mirrors[disk].next_seq_sect == this_sector
715 		    || dist == 0) {
716 			int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
717 			struct raid1_info *mirror = &conf->mirrors[disk];
718 
719 			best_disk = disk;
720 			/*
721 			 * If buffered sequential IO size exceeds optimal
722 			 * iosize, check if there is idle disk. If yes, choose
723 			 * the idle disk. read_balance could already choose an
724 			 * idle disk before noticing it's a sequential IO in
725 			 * this disk. This doesn't matter because this disk
726 			 * will idle, next time it will be utilized after the
727 			 * first disk has IO size exceeds optimal iosize. In
728 			 * this way, iosize of the first disk will be optimal
729 			 * iosize at least. iosize of the second disk might be
730 			 * small, but not a big deal since when the second disk
731 			 * starts IO, the first disk is likely still busy.
732 			 */
733 			if (nonrot && opt_iosize > 0 &&
734 			    mirror->seq_start != MaxSector &&
735 			    mirror->next_seq_sect > opt_iosize &&
736 			    mirror->next_seq_sect - opt_iosize >=
737 			    mirror->seq_start) {
738 				choose_next_idle = 1;
739 				continue;
740 			}
741 			break;
742 		}
743 
744 		if (choose_next_idle)
745 			continue;
746 
747 		if (min_pending > pending) {
748 			min_pending = pending;
749 			best_pending_disk = disk;
750 		}
751 
752 		if (dist < best_dist) {
753 			best_dist = dist;
754 			best_dist_disk = disk;
755 		}
756 	}
757 
758 	/*
759 	 * If all disks are rotational, choose the closest disk. If any disk is
760 	 * non-rotational, choose the disk with less pending request even the
761 	 * disk is rotational, which might/might not be optimal for raids with
762 	 * mixed ratation/non-rotational disks depending on workload.
763 	 */
764 	if (best_disk == -1) {
765 		if (has_nonrot_disk || min_pending == 0)
766 			best_disk = best_pending_disk;
767 		else
768 			best_disk = best_dist_disk;
769 	}
770 
771 	if (best_disk >= 0) {
772 		rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
773 		if (!rdev)
774 			goto retry;
775 		atomic_inc(&rdev->nr_pending);
776 		sectors = best_good_sectors;
777 
778 		if (conf->mirrors[best_disk].next_seq_sect != this_sector)
779 			conf->mirrors[best_disk].seq_start = this_sector;
780 
781 		conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
782 	}
783 	rcu_read_unlock();
784 	*max_sectors = sectors;
785 
786 	return best_disk;
787 }
788 
789 static void flush_bio_list(struct r1conf *conf, struct bio *bio)
790 {
791 	/* flush any pending bitmap writes to disk before proceeding w/ I/O */
792 	md_bitmap_unplug(conf->mddev->bitmap);
793 	wake_up(&conf->wait_barrier);
794 
795 	while (bio) { /* submit pending writes */
796 		struct bio *next = bio->bi_next;
797 		struct md_rdev *rdev = (void *)bio->bi_disk;
798 		bio->bi_next = NULL;
799 		bio_set_dev(bio, rdev->bdev);
800 		if (test_bit(Faulty, &rdev->flags)) {
801 			bio_io_error(bio);
802 		} else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
803 				    !blk_queue_discard(bio->bi_disk->queue)))
804 			/* Just ignore it */
805 			bio_endio(bio);
806 		else
807 			submit_bio_noacct(bio);
808 		bio = next;
809 		cond_resched();
810 	}
811 }
812 
813 static void flush_pending_writes(struct r1conf *conf)
814 {
815 	/* Any writes that have been queued but are awaiting
816 	 * bitmap updates get flushed here.
817 	 */
818 	spin_lock_irq(&conf->device_lock);
819 
820 	if (conf->pending_bio_list.head) {
821 		struct blk_plug plug;
822 		struct bio *bio;
823 
824 		bio = bio_list_get(&conf->pending_bio_list);
825 		conf->pending_count = 0;
826 		spin_unlock_irq(&conf->device_lock);
827 
828 		/*
829 		 * As this is called in a wait_event() loop (see freeze_array),
830 		 * current->state might be TASK_UNINTERRUPTIBLE which will
831 		 * cause a warning when we prepare to wait again.  As it is
832 		 * rare that this path is taken, it is perfectly safe to force
833 		 * us to go around the wait_event() loop again, so the warning
834 		 * is a false-positive.  Silence the warning by resetting
835 		 * thread state
836 		 */
837 		__set_current_state(TASK_RUNNING);
838 		blk_start_plug(&plug);
839 		flush_bio_list(conf, bio);
840 		blk_finish_plug(&plug);
841 	} else
842 		spin_unlock_irq(&conf->device_lock);
843 }
844 
845 /* Barriers....
846  * Sometimes we need to suspend IO while we do something else,
847  * either some resync/recovery, or reconfigure the array.
848  * To do this we raise a 'barrier'.
849  * The 'barrier' is a counter that can be raised multiple times
850  * to count how many activities are happening which preclude
851  * normal IO.
852  * We can only raise the barrier if there is no pending IO.
853  * i.e. if nr_pending == 0.
854  * We choose only to raise the barrier if no-one is waiting for the
855  * barrier to go down.  This means that as soon as an IO request
856  * is ready, no other operations which require a barrier will start
857  * until the IO request has had a chance.
858  *
859  * So: regular IO calls 'wait_barrier'.  When that returns there
860  *    is no backgroup IO happening,  It must arrange to call
861  *    allow_barrier when it has finished its IO.
862  * backgroup IO calls must call raise_barrier.  Once that returns
863  *    there is no normal IO happeing.  It must arrange to call
864  *    lower_barrier when the particular background IO completes.
865  *
866  * If resync/recovery is interrupted, returns -EINTR;
867  * Otherwise, returns 0.
868  */
869 static int raise_barrier(struct r1conf *conf, sector_t sector_nr)
870 {
871 	int idx = sector_to_idx(sector_nr);
872 
873 	spin_lock_irq(&conf->resync_lock);
874 
875 	/* Wait until no block IO is waiting */
876 	wait_event_lock_irq(conf->wait_barrier,
877 			    !atomic_read(&conf->nr_waiting[idx]),
878 			    conf->resync_lock);
879 
880 	/* block any new IO from starting */
881 	atomic_inc(&conf->barrier[idx]);
882 	/*
883 	 * In raise_barrier() we firstly increase conf->barrier[idx] then
884 	 * check conf->nr_pending[idx]. In _wait_barrier() we firstly
885 	 * increase conf->nr_pending[idx] then check conf->barrier[idx].
886 	 * A memory barrier here to make sure conf->nr_pending[idx] won't
887 	 * be fetched before conf->barrier[idx] is increased. Otherwise
888 	 * there will be a race between raise_barrier() and _wait_barrier().
889 	 */
890 	smp_mb__after_atomic();
891 
892 	/* For these conditions we must wait:
893 	 * A: while the array is in frozen state
894 	 * B: while conf->nr_pending[idx] is not 0, meaning regular I/O
895 	 *    existing in corresponding I/O barrier bucket.
896 	 * C: while conf->barrier[idx] >= RESYNC_DEPTH, meaning reaches
897 	 *    max resync count which allowed on current I/O barrier bucket.
898 	 */
899 	wait_event_lock_irq(conf->wait_barrier,
900 			    (!conf->array_frozen &&
901 			     !atomic_read(&conf->nr_pending[idx]) &&
902 			     atomic_read(&conf->barrier[idx]) < RESYNC_DEPTH) ||
903 				test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery),
904 			    conf->resync_lock);
905 
906 	if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
907 		atomic_dec(&conf->barrier[idx]);
908 		spin_unlock_irq(&conf->resync_lock);
909 		wake_up(&conf->wait_barrier);
910 		return -EINTR;
911 	}
912 
913 	atomic_inc(&conf->nr_sync_pending);
914 	spin_unlock_irq(&conf->resync_lock);
915 
916 	return 0;
917 }
918 
919 static void lower_barrier(struct r1conf *conf, sector_t sector_nr)
920 {
921 	int idx = sector_to_idx(sector_nr);
922 
923 	BUG_ON(atomic_read(&conf->barrier[idx]) <= 0);
924 
925 	atomic_dec(&conf->barrier[idx]);
926 	atomic_dec(&conf->nr_sync_pending);
927 	wake_up(&conf->wait_barrier);
928 }
929 
930 static void _wait_barrier(struct r1conf *conf, int idx)
931 {
932 	/*
933 	 * We need to increase conf->nr_pending[idx] very early here,
934 	 * then raise_barrier() can be blocked when it waits for
935 	 * conf->nr_pending[idx] to be 0. Then we can avoid holding
936 	 * conf->resync_lock when there is no barrier raised in same
937 	 * barrier unit bucket. Also if the array is frozen, I/O
938 	 * should be blocked until array is unfrozen.
939 	 */
940 	atomic_inc(&conf->nr_pending[idx]);
941 	/*
942 	 * In _wait_barrier() we firstly increase conf->nr_pending[idx], then
943 	 * check conf->barrier[idx]. In raise_barrier() we firstly increase
944 	 * conf->barrier[idx], then check conf->nr_pending[idx]. A memory
945 	 * barrier is necessary here to make sure conf->barrier[idx] won't be
946 	 * fetched before conf->nr_pending[idx] is increased. Otherwise there
947 	 * will be a race between _wait_barrier() and raise_barrier().
948 	 */
949 	smp_mb__after_atomic();
950 
951 	/*
952 	 * Don't worry about checking two atomic_t variables at same time
953 	 * here. If during we check conf->barrier[idx], the array is
954 	 * frozen (conf->array_frozen is 1), and chonf->barrier[idx] is
955 	 * 0, it is safe to return and make the I/O continue. Because the
956 	 * array is frozen, all I/O returned here will eventually complete
957 	 * or be queued, no race will happen. See code comment in
958 	 * frozen_array().
959 	 */
960 	if (!READ_ONCE(conf->array_frozen) &&
961 	    !atomic_read(&conf->barrier[idx]))
962 		return;
963 
964 	/*
965 	 * After holding conf->resync_lock, conf->nr_pending[idx]
966 	 * should be decreased before waiting for barrier to drop.
967 	 * Otherwise, we may encounter a race condition because
968 	 * raise_barrer() might be waiting for conf->nr_pending[idx]
969 	 * to be 0 at same time.
970 	 */
971 	spin_lock_irq(&conf->resync_lock);
972 	atomic_inc(&conf->nr_waiting[idx]);
973 	atomic_dec(&conf->nr_pending[idx]);
974 	/*
975 	 * In case freeze_array() is waiting for
976 	 * get_unqueued_pending() == extra
977 	 */
978 	wake_up(&conf->wait_barrier);
979 	/* Wait for the barrier in same barrier unit bucket to drop. */
980 	wait_event_lock_irq(conf->wait_barrier,
981 			    !conf->array_frozen &&
982 			     !atomic_read(&conf->barrier[idx]),
983 			    conf->resync_lock);
984 	atomic_inc(&conf->nr_pending[idx]);
985 	atomic_dec(&conf->nr_waiting[idx]);
986 	spin_unlock_irq(&conf->resync_lock);
987 }
988 
989 static void wait_read_barrier(struct r1conf *conf, sector_t sector_nr)
990 {
991 	int idx = sector_to_idx(sector_nr);
992 
993 	/*
994 	 * Very similar to _wait_barrier(). The difference is, for read
995 	 * I/O we don't need wait for sync I/O, but if the whole array
996 	 * is frozen, the read I/O still has to wait until the array is
997 	 * unfrozen. Since there is no ordering requirement with
998 	 * conf->barrier[idx] here, memory barrier is unnecessary as well.
999 	 */
1000 	atomic_inc(&conf->nr_pending[idx]);
1001 
1002 	if (!READ_ONCE(conf->array_frozen))
1003 		return;
1004 
1005 	spin_lock_irq(&conf->resync_lock);
1006 	atomic_inc(&conf->nr_waiting[idx]);
1007 	atomic_dec(&conf->nr_pending[idx]);
1008 	/*
1009 	 * In case freeze_array() is waiting for
1010 	 * get_unqueued_pending() == extra
1011 	 */
1012 	wake_up(&conf->wait_barrier);
1013 	/* Wait for array to be unfrozen */
1014 	wait_event_lock_irq(conf->wait_barrier,
1015 			    !conf->array_frozen,
1016 			    conf->resync_lock);
1017 	atomic_inc(&conf->nr_pending[idx]);
1018 	atomic_dec(&conf->nr_waiting[idx]);
1019 	spin_unlock_irq(&conf->resync_lock);
1020 }
1021 
1022 static void wait_barrier(struct r1conf *conf, sector_t sector_nr)
1023 {
1024 	int idx = sector_to_idx(sector_nr);
1025 
1026 	_wait_barrier(conf, idx);
1027 }
1028 
1029 static void _allow_barrier(struct r1conf *conf, int idx)
1030 {
1031 	atomic_dec(&conf->nr_pending[idx]);
1032 	wake_up(&conf->wait_barrier);
1033 }
1034 
1035 static void allow_barrier(struct r1conf *conf, sector_t sector_nr)
1036 {
1037 	int idx = sector_to_idx(sector_nr);
1038 
1039 	_allow_barrier(conf, idx);
1040 }
1041 
1042 /* conf->resync_lock should be held */
1043 static int get_unqueued_pending(struct r1conf *conf)
1044 {
1045 	int idx, ret;
1046 
1047 	ret = atomic_read(&conf->nr_sync_pending);
1048 	for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
1049 		ret += atomic_read(&conf->nr_pending[idx]) -
1050 			atomic_read(&conf->nr_queued[idx]);
1051 
1052 	return ret;
1053 }
1054 
1055 static void freeze_array(struct r1conf *conf, int extra)
1056 {
1057 	/* Stop sync I/O and normal I/O and wait for everything to
1058 	 * go quiet.
1059 	 * This is called in two situations:
1060 	 * 1) management command handlers (reshape, remove disk, quiesce).
1061 	 * 2) one normal I/O request failed.
1062 
1063 	 * After array_frozen is set to 1, new sync IO will be blocked at
1064 	 * raise_barrier(), and new normal I/O will blocked at _wait_barrier()
1065 	 * or wait_read_barrier(). The flying I/Os will either complete or be
1066 	 * queued. When everything goes quite, there are only queued I/Os left.
1067 
1068 	 * Every flying I/O contributes to a conf->nr_pending[idx], idx is the
1069 	 * barrier bucket index which this I/O request hits. When all sync and
1070 	 * normal I/O are queued, sum of all conf->nr_pending[] will match sum
1071 	 * of all conf->nr_queued[]. But normal I/O failure is an exception,
1072 	 * in handle_read_error(), we may call freeze_array() before trying to
1073 	 * fix the read error. In this case, the error read I/O is not queued,
1074 	 * so get_unqueued_pending() == 1.
1075 	 *
1076 	 * Therefore before this function returns, we need to wait until
1077 	 * get_unqueued_pendings(conf) gets equal to extra. For
1078 	 * normal I/O context, extra is 1, in rested situations extra is 0.
1079 	 */
1080 	spin_lock_irq(&conf->resync_lock);
1081 	conf->array_frozen = 1;
1082 	raid1_log(conf->mddev, "wait freeze");
1083 	wait_event_lock_irq_cmd(
1084 		conf->wait_barrier,
1085 		get_unqueued_pending(conf) == extra,
1086 		conf->resync_lock,
1087 		flush_pending_writes(conf));
1088 	spin_unlock_irq(&conf->resync_lock);
1089 }
1090 static void unfreeze_array(struct r1conf *conf)
1091 {
1092 	/* reverse the effect of the freeze */
1093 	spin_lock_irq(&conf->resync_lock);
1094 	conf->array_frozen = 0;
1095 	spin_unlock_irq(&conf->resync_lock);
1096 	wake_up(&conf->wait_barrier);
1097 }
1098 
1099 static void alloc_behind_master_bio(struct r1bio *r1_bio,
1100 					   struct bio *bio)
1101 {
1102 	int size = bio->bi_iter.bi_size;
1103 	unsigned vcnt = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1104 	int i = 0;
1105 	struct bio *behind_bio = NULL;
1106 
1107 	behind_bio = bio_alloc_mddev(GFP_NOIO, vcnt, r1_bio->mddev);
1108 	if (!behind_bio)
1109 		return;
1110 
1111 	/* discard op, we don't support writezero/writesame yet */
1112 	if (!bio_has_data(bio)) {
1113 		behind_bio->bi_iter.bi_size = size;
1114 		goto skip_copy;
1115 	}
1116 
1117 	behind_bio->bi_write_hint = bio->bi_write_hint;
1118 
1119 	while (i < vcnt && size) {
1120 		struct page *page;
1121 		int len = min_t(int, PAGE_SIZE, size);
1122 
1123 		page = alloc_page(GFP_NOIO);
1124 		if (unlikely(!page))
1125 			goto free_pages;
1126 
1127 		bio_add_page(behind_bio, page, len, 0);
1128 
1129 		size -= len;
1130 		i++;
1131 	}
1132 
1133 	bio_copy_data(behind_bio, bio);
1134 skip_copy:
1135 	r1_bio->behind_master_bio = behind_bio;
1136 	set_bit(R1BIO_BehindIO, &r1_bio->state);
1137 
1138 	return;
1139 
1140 free_pages:
1141 	pr_debug("%dB behind alloc failed, doing sync I/O\n",
1142 		 bio->bi_iter.bi_size);
1143 	bio_free_pages(behind_bio);
1144 	bio_put(behind_bio);
1145 }
1146 
1147 struct raid1_plug_cb {
1148 	struct blk_plug_cb	cb;
1149 	struct bio_list		pending;
1150 	int			pending_cnt;
1151 };
1152 
1153 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1154 {
1155 	struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1156 						  cb);
1157 	struct mddev *mddev = plug->cb.data;
1158 	struct r1conf *conf = mddev->private;
1159 	struct bio *bio;
1160 
1161 	if (from_schedule || current->bio_list) {
1162 		spin_lock_irq(&conf->device_lock);
1163 		bio_list_merge(&conf->pending_bio_list, &plug->pending);
1164 		conf->pending_count += plug->pending_cnt;
1165 		spin_unlock_irq(&conf->device_lock);
1166 		wake_up(&conf->wait_barrier);
1167 		md_wakeup_thread(mddev->thread);
1168 		kfree(plug);
1169 		return;
1170 	}
1171 
1172 	/* we aren't scheduling, so we can do the write-out directly. */
1173 	bio = bio_list_get(&plug->pending);
1174 	flush_bio_list(conf, bio);
1175 	kfree(plug);
1176 }
1177 
1178 static void init_r1bio(struct r1bio *r1_bio, struct mddev *mddev, struct bio *bio)
1179 {
1180 	r1_bio->master_bio = bio;
1181 	r1_bio->sectors = bio_sectors(bio);
1182 	r1_bio->state = 0;
1183 	r1_bio->mddev = mddev;
1184 	r1_bio->sector = bio->bi_iter.bi_sector;
1185 }
1186 
1187 static inline struct r1bio *
1188 alloc_r1bio(struct mddev *mddev, struct bio *bio)
1189 {
1190 	struct r1conf *conf = mddev->private;
1191 	struct r1bio *r1_bio;
1192 
1193 	r1_bio = mempool_alloc(&conf->r1bio_pool, GFP_NOIO);
1194 	/* Ensure no bio records IO_BLOCKED */
1195 	memset(r1_bio->bios, 0, conf->raid_disks * sizeof(r1_bio->bios[0]));
1196 	init_r1bio(r1_bio, mddev, bio);
1197 	return r1_bio;
1198 }
1199 
1200 static void raid1_read_request(struct mddev *mddev, struct bio *bio,
1201 			       int max_read_sectors, struct r1bio *r1_bio)
1202 {
1203 	struct r1conf *conf = mddev->private;
1204 	struct raid1_info *mirror;
1205 	struct bio *read_bio;
1206 	struct bitmap *bitmap = mddev->bitmap;
1207 	const int op = bio_op(bio);
1208 	const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1209 	int max_sectors;
1210 	int rdisk;
1211 	bool print_msg = !!r1_bio;
1212 	char b[BDEVNAME_SIZE];
1213 
1214 	/*
1215 	 * If r1_bio is set, we are blocking the raid1d thread
1216 	 * so there is a tiny risk of deadlock.  So ask for
1217 	 * emergency memory if needed.
1218 	 */
1219 	gfp_t gfp = r1_bio ? (GFP_NOIO | __GFP_HIGH) : GFP_NOIO;
1220 
1221 	if (print_msg) {
1222 		/* Need to get the block device name carefully */
1223 		struct md_rdev *rdev;
1224 		rcu_read_lock();
1225 		rdev = rcu_dereference(conf->mirrors[r1_bio->read_disk].rdev);
1226 		if (rdev)
1227 			bdevname(rdev->bdev, b);
1228 		else
1229 			strcpy(b, "???");
1230 		rcu_read_unlock();
1231 	}
1232 
1233 	/*
1234 	 * Still need barrier for READ in case that whole
1235 	 * array is frozen.
1236 	 */
1237 	wait_read_barrier(conf, bio->bi_iter.bi_sector);
1238 
1239 	if (!r1_bio)
1240 		r1_bio = alloc_r1bio(mddev, bio);
1241 	else
1242 		init_r1bio(r1_bio, mddev, bio);
1243 	r1_bio->sectors = max_read_sectors;
1244 
1245 	/*
1246 	 * make_request() can abort the operation when read-ahead is being
1247 	 * used and no empty request is available.
1248 	 */
1249 	rdisk = read_balance(conf, r1_bio, &max_sectors);
1250 
1251 	if (rdisk < 0) {
1252 		/* couldn't find anywhere to read from */
1253 		if (print_msg) {
1254 			pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
1255 					    mdname(mddev),
1256 					    b,
1257 					    (unsigned long long)r1_bio->sector);
1258 		}
1259 		raid_end_bio_io(r1_bio);
1260 		return;
1261 	}
1262 	mirror = conf->mirrors + rdisk;
1263 
1264 	if (print_msg)
1265 		pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %s\n",
1266 				    mdname(mddev),
1267 				    (unsigned long long)r1_bio->sector,
1268 				    bdevname(mirror->rdev->bdev, b));
1269 
1270 	if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1271 	    bitmap) {
1272 		/*
1273 		 * Reading from a write-mostly device must take care not to
1274 		 * over-take any writes that are 'behind'
1275 		 */
1276 		raid1_log(mddev, "wait behind writes");
1277 		wait_event(bitmap->behind_wait,
1278 			   atomic_read(&bitmap->behind_writes) == 0);
1279 	}
1280 
1281 	if (max_sectors < bio_sectors(bio)) {
1282 		struct bio *split = bio_split(bio, max_sectors,
1283 					      gfp, &conf->bio_split);
1284 		bio_chain(split, bio);
1285 		submit_bio_noacct(bio);
1286 		bio = split;
1287 		r1_bio->master_bio = bio;
1288 		r1_bio->sectors = max_sectors;
1289 	}
1290 
1291 	r1_bio->read_disk = rdisk;
1292 
1293 	read_bio = bio_clone_fast(bio, gfp, &mddev->bio_set);
1294 
1295 	r1_bio->bios[rdisk] = read_bio;
1296 
1297 	read_bio->bi_iter.bi_sector = r1_bio->sector +
1298 		mirror->rdev->data_offset;
1299 	bio_set_dev(read_bio, mirror->rdev->bdev);
1300 	read_bio->bi_end_io = raid1_end_read_request;
1301 	bio_set_op_attrs(read_bio, op, do_sync);
1302 	if (test_bit(FailFast, &mirror->rdev->flags) &&
1303 	    test_bit(R1BIO_FailFast, &r1_bio->state))
1304 	        read_bio->bi_opf |= MD_FAILFAST;
1305 	read_bio->bi_private = r1_bio;
1306 
1307 	if (mddev->gendisk)
1308 	        trace_block_bio_remap(read_bio, disk_devt(mddev->gendisk),
1309 				      r1_bio->sector);
1310 
1311 	submit_bio_noacct(read_bio);
1312 }
1313 
1314 static void raid1_write_request(struct mddev *mddev, struct bio *bio,
1315 				int max_write_sectors)
1316 {
1317 	struct r1conf *conf = mddev->private;
1318 	struct r1bio *r1_bio;
1319 	int i, disks;
1320 	struct bitmap *bitmap = mddev->bitmap;
1321 	unsigned long flags;
1322 	struct md_rdev *blocked_rdev;
1323 	struct blk_plug_cb *cb;
1324 	struct raid1_plug_cb *plug = NULL;
1325 	int first_clone;
1326 	int max_sectors;
1327 
1328 	if (mddev_is_clustered(mddev) &&
1329 	     md_cluster_ops->area_resyncing(mddev, WRITE,
1330 		     bio->bi_iter.bi_sector, bio_end_sector(bio))) {
1331 
1332 		DEFINE_WAIT(w);
1333 		for (;;) {
1334 			prepare_to_wait(&conf->wait_barrier,
1335 					&w, TASK_IDLE);
1336 			if (!md_cluster_ops->area_resyncing(mddev, WRITE,
1337 							bio->bi_iter.bi_sector,
1338 							bio_end_sector(bio)))
1339 				break;
1340 			schedule();
1341 		}
1342 		finish_wait(&conf->wait_barrier, &w);
1343 	}
1344 
1345 	/*
1346 	 * Register the new request and wait if the reconstruction
1347 	 * thread has put up a bar for new requests.
1348 	 * Continue immediately if no resync is active currently.
1349 	 */
1350 	wait_barrier(conf, bio->bi_iter.bi_sector);
1351 
1352 	r1_bio = alloc_r1bio(mddev, bio);
1353 	r1_bio->sectors = max_write_sectors;
1354 
1355 	if (conf->pending_count >= max_queued_requests) {
1356 		md_wakeup_thread(mddev->thread);
1357 		raid1_log(mddev, "wait queued");
1358 		wait_event(conf->wait_barrier,
1359 			   conf->pending_count < max_queued_requests);
1360 	}
1361 	/* first select target devices under rcu_lock and
1362 	 * inc refcount on their rdev.  Record them by setting
1363 	 * bios[x] to bio
1364 	 * If there are known/acknowledged bad blocks on any device on
1365 	 * which we have seen a write error, we want to avoid writing those
1366 	 * blocks.
1367 	 * This potentially requires several writes to write around
1368 	 * the bad blocks.  Each set of writes gets it's own r1bio
1369 	 * with a set of bios attached.
1370 	 */
1371 
1372 	disks = conf->raid_disks * 2;
1373  retry_write:
1374 	blocked_rdev = NULL;
1375 	rcu_read_lock();
1376 	max_sectors = r1_bio->sectors;
1377 	for (i = 0;  i < disks; i++) {
1378 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1379 		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1380 			atomic_inc(&rdev->nr_pending);
1381 			blocked_rdev = rdev;
1382 			break;
1383 		}
1384 		r1_bio->bios[i] = NULL;
1385 		if (!rdev || test_bit(Faulty, &rdev->flags)) {
1386 			if (i < conf->raid_disks)
1387 				set_bit(R1BIO_Degraded, &r1_bio->state);
1388 			continue;
1389 		}
1390 
1391 		atomic_inc(&rdev->nr_pending);
1392 		if (test_bit(WriteErrorSeen, &rdev->flags)) {
1393 			sector_t first_bad;
1394 			int bad_sectors;
1395 			int is_bad;
1396 
1397 			is_bad = is_badblock(rdev, r1_bio->sector, max_sectors,
1398 					     &first_bad, &bad_sectors);
1399 			if (is_bad < 0) {
1400 				/* mustn't write here until the bad block is
1401 				 * acknowledged*/
1402 				set_bit(BlockedBadBlocks, &rdev->flags);
1403 				blocked_rdev = rdev;
1404 				break;
1405 			}
1406 			if (is_bad && first_bad <= r1_bio->sector) {
1407 				/* Cannot write here at all */
1408 				bad_sectors -= (r1_bio->sector - first_bad);
1409 				if (bad_sectors < max_sectors)
1410 					/* mustn't write more than bad_sectors
1411 					 * to other devices yet
1412 					 */
1413 					max_sectors = bad_sectors;
1414 				rdev_dec_pending(rdev, mddev);
1415 				/* We don't set R1BIO_Degraded as that
1416 				 * only applies if the disk is
1417 				 * missing, so it might be re-added,
1418 				 * and we want to know to recover this
1419 				 * chunk.
1420 				 * In this case the device is here,
1421 				 * and the fact that this chunk is not
1422 				 * in-sync is recorded in the bad
1423 				 * block log
1424 				 */
1425 				continue;
1426 			}
1427 			if (is_bad) {
1428 				int good_sectors = first_bad - r1_bio->sector;
1429 				if (good_sectors < max_sectors)
1430 					max_sectors = good_sectors;
1431 			}
1432 		}
1433 		r1_bio->bios[i] = bio;
1434 	}
1435 	rcu_read_unlock();
1436 
1437 	if (unlikely(blocked_rdev)) {
1438 		/* Wait for this device to become unblocked */
1439 		int j;
1440 
1441 		for (j = 0; j < i; j++)
1442 			if (r1_bio->bios[j])
1443 				rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1444 		r1_bio->state = 0;
1445 		allow_barrier(conf, bio->bi_iter.bi_sector);
1446 		raid1_log(mddev, "wait rdev %d blocked", blocked_rdev->raid_disk);
1447 		md_wait_for_blocked_rdev(blocked_rdev, mddev);
1448 		wait_barrier(conf, bio->bi_iter.bi_sector);
1449 		goto retry_write;
1450 	}
1451 
1452 	if (max_sectors < bio_sectors(bio)) {
1453 		struct bio *split = bio_split(bio, max_sectors,
1454 					      GFP_NOIO, &conf->bio_split);
1455 		bio_chain(split, bio);
1456 		submit_bio_noacct(bio);
1457 		bio = split;
1458 		r1_bio->master_bio = bio;
1459 		r1_bio->sectors = max_sectors;
1460 	}
1461 
1462 	atomic_set(&r1_bio->remaining, 1);
1463 	atomic_set(&r1_bio->behind_remaining, 0);
1464 
1465 	first_clone = 1;
1466 
1467 	for (i = 0; i < disks; i++) {
1468 		struct bio *mbio = NULL;
1469 		struct md_rdev *rdev = conf->mirrors[i].rdev;
1470 		if (!r1_bio->bios[i])
1471 			continue;
1472 
1473 		if (first_clone) {
1474 			/* do behind I/O ?
1475 			 * Not if there are too many, or cannot
1476 			 * allocate memory, or a reader on WriteMostly
1477 			 * is waiting for behind writes to flush */
1478 			if (bitmap &&
1479 			    (atomic_read(&bitmap->behind_writes)
1480 			     < mddev->bitmap_info.max_write_behind) &&
1481 			    !waitqueue_active(&bitmap->behind_wait)) {
1482 				alloc_behind_master_bio(r1_bio, bio);
1483 			}
1484 
1485 			md_bitmap_startwrite(bitmap, r1_bio->sector, r1_bio->sectors,
1486 					     test_bit(R1BIO_BehindIO, &r1_bio->state));
1487 			first_clone = 0;
1488 		}
1489 
1490 		if (r1_bio->behind_master_bio)
1491 			mbio = bio_clone_fast(r1_bio->behind_master_bio,
1492 					      GFP_NOIO, &mddev->bio_set);
1493 		else
1494 			mbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set);
1495 
1496 		if (r1_bio->behind_master_bio) {
1497 			if (test_bit(CollisionCheck, &rdev->flags))
1498 				wait_for_serialization(rdev, r1_bio);
1499 			if (test_bit(WriteMostly, &rdev->flags))
1500 				atomic_inc(&r1_bio->behind_remaining);
1501 		} else if (mddev->serialize_policy)
1502 			wait_for_serialization(rdev, r1_bio);
1503 
1504 		r1_bio->bios[i] = mbio;
1505 
1506 		mbio->bi_iter.bi_sector	= (r1_bio->sector +
1507 				   conf->mirrors[i].rdev->data_offset);
1508 		bio_set_dev(mbio, conf->mirrors[i].rdev->bdev);
1509 		mbio->bi_end_io	= raid1_end_write_request;
1510 		mbio->bi_opf = bio_op(bio) | (bio->bi_opf & (REQ_SYNC | REQ_FUA));
1511 		if (test_bit(FailFast, &conf->mirrors[i].rdev->flags) &&
1512 		    !test_bit(WriteMostly, &conf->mirrors[i].rdev->flags) &&
1513 		    conf->raid_disks - mddev->degraded > 1)
1514 			mbio->bi_opf |= MD_FAILFAST;
1515 		mbio->bi_private = r1_bio;
1516 
1517 		atomic_inc(&r1_bio->remaining);
1518 
1519 		if (mddev->gendisk)
1520 			trace_block_bio_remap(mbio, disk_devt(mddev->gendisk),
1521 					      r1_bio->sector);
1522 		/* flush_pending_writes() needs access to the rdev so...*/
1523 		mbio->bi_disk = (void *)conf->mirrors[i].rdev;
1524 
1525 		cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1526 		if (cb)
1527 			plug = container_of(cb, struct raid1_plug_cb, cb);
1528 		else
1529 			plug = NULL;
1530 		if (plug) {
1531 			bio_list_add(&plug->pending, mbio);
1532 			plug->pending_cnt++;
1533 		} else {
1534 			spin_lock_irqsave(&conf->device_lock, flags);
1535 			bio_list_add(&conf->pending_bio_list, mbio);
1536 			conf->pending_count++;
1537 			spin_unlock_irqrestore(&conf->device_lock, flags);
1538 			md_wakeup_thread(mddev->thread);
1539 		}
1540 	}
1541 
1542 	r1_bio_write_done(r1_bio);
1543 
1544 	/* In case raid1d snuck in to freeze_array */
1545 	wake_up(&conf->wait_barrier);
1546 }
1547 
1548 static bool raid1_make_request(struct mddev *mddev, struct bio *bio)
1549 {
1550 	sector_t sectors;
1551 
1552 	if (unlikely(bio->bi_opf & REQ_PREFLUSH)
1553 	    && md_flush_request(mddev, bio))
1554 		return true;
1555 
1556 	/*
1557 	 * There is a limit to the maximum size, but
1558 	 * the read/write handler might find a lower limit
1559 	 * due to bad blocks.  To avoid multiple splits,
1560 	 * we pass the maximum number of sectors down
1561 	 * and let the lower level perform the split.
1562 	 */
1563 	sectors = align_to_barrier_unit_end(
1564 		bio->bi_iter.bi_sector, bio_sectors(bio));
1565 
1566 	if (bio_data_dir(bio) == READ)
1567 		raid1_read_request(mddev, bio, sectors, NULL);
1568 	else {
1569 		if (!md_write_start(mddev,bio))
1570 			return false;
1571 		raid1_write_request(mddev, bio, sectors);
1572 	}
1573 	return true;
1574 }
1575 
1576 static void raid1_status(struct seq_file *seq, struct mddev *mddev)
1577 {
1578 	struct r1conf *conf = mddev->private;
1579 	int i;
1580 
1581 	seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1582 		   conf->raid_disks - mddev->degraded);
1583 	rcu_read_lock();
1584 	for (i = 0; i < conf->raid_disks; i++) {
1585 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1586 		seq_printf(seq, "%s",
1587 			   rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1588 	}
1589 	rcu_read_unlock();
1590 	seq_printf(seq, "]");
1591 }
1592 
1593 static void raid1_error(struct mddev *mddev, struct md_rdev *rdev)
1594 {
1595 	char b[BDEVNAME_SIZE];
1596 	struct r1conf *conf = mddev->private;
1597 	unsigned long flags;
1598 
1599 	/*
1600 	 * If it is not operational, then we have already marked it as dead
1601 	 * else if it is the last working disks with "fail_last_dev == false",
1602 	 * ignore the error, let the next level up know.
1603 	 * else mark the drive as failed
1604 	 */
1605 	spin_lock_irqsave(&conf->device_lock, flags);
1606 	if (test_bit(In_sync, &rdev->flags) && !mddev->fail_last_dev
1607 	    && (conf->raid_disks - mddev->degraded) == 1) {
1608 		/*
1609 		 * Don't fail the drive, act as though we were just a
1610 		 * normal single drive.
1611 		 * However don't try a recovery from this drive as
1612 		 * it is very likely to fail.
1613 		 */
1614 		conf->recovery_disabled = mddev->recovery_disabled;
1615 		spin_unlock_irqrestore(&conf->device_lock, flags);
1616 		return;
1617 	}
1618 	set_bit(Blocked, &rdev->flags);
1619 	if (test_and_clear_bit(In_sync, &rdev->flags))
1620 		mddev->degraded++;
1621 	set_bit(Faulty, &rdev->flags);
1622 	spin_unlock_irqrestore(&conf->device_lock, flags);
1623 	/*
1624 	 * if recovery is running, make sure it aborts.
1625 	 */
1626 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1627 	set_mask_bits(&mddev->sb_flags, 0,
1628 		      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1629 	pr_crit("md/raid1:%s: Disk failure on %s, disabling device.\n"
1630 		"md/raid1:%s: Operation continuing on %d devices.\n",
1631 		mdname(mddev), bdevname(rdev->bdev, b),
1632 		mdname(mddev), conf->raid_disks - mddev->degraded);
1633 }
1634 
1635 static void print_conf(struct r1conf *conf)
1636 {
1637 	int i;
1638 
1639 	pr_debug("RAID1 conf printout:\n");
1640 	if (!conf) {
1641 		pr_debug("(!conf)\n");
1642 		return;
1643 	}
1644 	pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1645 		 conf->raid_disks);
1646 
1647 	rcu_read_lock();
1648 	for (i = 0; i < conf->raid_disks; i++) {
1649 		char b[BDEVNAME_SIZE];
1650 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1651 		if (rdev)
1652 			pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
1653 				 i, !test_bit(In_sync, &rdev->flags),
1654 				 !test_bit(Faulty, &rdev->flags),
1655 				 bdevname(rdev->bdev,b));
1656 	}
1657 	rcu_read_unlock();
1658 }
1659 
1660 static void close_sync(struct r1conf *conf)
1661 {
1662 	int idx;
1663 
1664 	for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++) {
1665 		_wait_barrier(conf, idx);
1666 		_allow_barrier(conf, idx);
1667 	}
1668 
1669 	mempool_exit(&conf->r1buf_pool);
1670 }
1671 
1672 static int raid1_spare_active(struct mddev *mddev)
1673 {
1674 	int i;
1675 	struct r1conf *conf = mddev->private;
1676 	int count = 0;
1677 	unsigned long flags;
1678 
1679 	/*
1680 	 * Find all failed disks within the RAID1 configuration
1681 	 * and mark them readable.
1682 	 * Called under mddev lock, so rcu protection not needed.
1683 	 * device_lock used to avoid races with raid1_end_read_request
1684 	 * which expects 'In_sync' flags and ->degraded to be consistent.
1685 	 */
1686 	spin_lock_irqsave(&conf->device_lock, flags);
1687 	for (i = 0; i < conf->raid_disks; i++) {
1688 		struct md_rdev *rdev = conf->mirrors[i].rdev;
1689 		struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1690 		if (repl
1691 		    && !test_bit(Candidate, &repl->flags)
1692 		    && repl->recovery_offset == MaxSector
1693 		    && !test_bit(Faulty, &repl->flags)
1694 		    && !test_and_set_bit(In_sync, &repl->flags)) {
1695 			/* replacement has just become active */
1696 			if (!rdev ||
1697 			    !test_and_clear_bit(In_sync, &rdev->flags))
1698 				count++;
1699 			if (rdev) {
1700 				/* Replaced device not technically
1701 				 * faulty, but we need to be sure
1702 				 * it gets removed and never re-added
1703 				 */
1704 				set_bit(Faulty, &rdev->flags);
1705 				sysfs_notify_dirent_safe(
1706 					rdev->sysfs_state);
1707 			}
1708 		}
1709 		if (rdev
1710 		    && rdev->recovery_offset == MaxSector
1711 		    && !test_bit(Faulty, &rdev->flags)
1712 		    && !test_and_set_bit(In_sync, &rdev->flags)) {
1713 			count++;
1714 			sysfs_notify_dirent_safe(rdev->sysfs_state);
1715 		}
1716 	}
1717 	mddev->degraded -= count;
1718 	spin_unlock_irqrestore(&conf->device_lock, flags);
1719 
1720 	print_conf(conf);
1721 	return count;
1722 }
1723 
1724 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1725 {
1726 	struct r1conf *conf = mddev->private;
1727 	int err = -EEXIST;
1728 	int mirror = 0;
1729 	struct raid1_info *p;
1730 	int first = 0;
1731 	int last = conf->raid_disks - 1;
1732 
1733 	if (mddev->recovery_disabled == conf->recovery_disabled)
1734 		return -EBUSY;
1735 
1736 	if (md_integrity_add_rdev(rdev, mddev))
1737 		return -ENXIO;
1738 
1739 	if (rdev->raid_disk >= 0)
1740 		first = last = rdev->raid_disk;
1741 
1742 	/*
1743 	 * find the disk ... but prefer rdev->saved_raid_disk
1744 	 * if possible.
1745 	 */
1746 	if (rdev->saved_raid_disk >= 0 &&
1747 	    rdev->saved_raid_disk >= first &&
1748 	    rdev->saved_raid_disk < conf->raid_disks &&
1749 	    conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1750 		first = last = rdev->saved_raid_disk;
1751 
1752 	for (mirror = first; mirror <= last; mirror++) {
1753 		p = conf->mirrors + mirror;
1754 		if (!p->rdev) {
1755 			if (mddev->gendisk)
1756 				disk_stack_limits(mddev->gendisk, rdev->bdev,
1757 						  rdev->data_offset << 9);
1758 
1759 			p->head_position = 0;
1760 			rdev->raid_disk = mirror;
1761 			err = 0;
1762 			/* As all devices are equivalent, we don't need a full recovery
1763 			 * if this was recently any drive of the array
1764 			 */
1765 			if (rdev->saved_raid_disk < 0)
1766 				conf->fullsync = 1;
1767 			rcu_assign_pointer(p->rdev, rdev);
1768 			break;
1769 		}
1770 		if (test_bit(WantReplacement, &p->rdev->flags) &&
1771 		    p[conf->raid_disks].rdev == NULL) {
1772 			/* Add this device as a replacement */
1773 			clear_bit(In_sync, &rdev->flags);
1774 			set_bit(Replacement, &rdev->flags);
1775 			rdev->raid_disk = mirror;
1776 			err = 0;
1777 			conf->fullsync = 1;
1778 			rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1779 			break;
1780 		}
1781 	}
1782 	if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1783 		blk_queue_flag_set(QUEUE_FLAG_DISCARD, mddev->queue);
1784 	print_conf(conf);
1785 	return err;
1786 }
1787 
1788 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1789 {
1790 	struct r1conf *conf = mddev->private;
1791 	int err = 0;
1792 	int number = rdev->raid_disk;
1793 	struct raid1_info *p = conf->mirrors + number;
1794 
1795 	if (rdev != p->rdev)
1796 		p = conf->mirrors + conf->raid_disks + number;
1797 
1798 	print_conf(conf);
1799 	if (rdev == p->rdev) {
1800 		if (test_bit(In_sync, &rdev->flags) ||
1801 		    atomic_read(&rdev->nr_pending)) {
1802 			err = -EBUSY;
1803 			goto abort;
1804 		}
1805 		/* Only remove non-faulty devices if recovery
1806 		 * is not possible.
1807 		 */
1808 		if (!test_bit(Faulty, &rdev->flags) &&
1809 		    mddev->recovery_disabled != conf->recovery_disabled &&
1810 		    mddev->degraded < conf->raid_disks) {
1811 			err = -EBUSY;
1812 			goto abort;
1813 		}
1814 		p->rdev = NULL;
1815 		if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1816 			synchronize_rcu();
1817 			if (atomic_read(&rdev->nr_pending)) {
1818 				/* lost the race, try later */
1819 				err = -EBUSY;
1820 				p->rdev = rdev;
1821 				goto abort;
1822 			}
1823 		}
1824 		if (conf->mirrors[conf->raid_disks + number].rdev) {
1825 			/* We just removed a device that is being replaced.
1826 			 * Move down the replacement.  We drain all IO before
1827 			 * doing this to avoid confusion.
1828 			 */
1829 			struct md_rdev *repl =
1830 				conf->mirrors[conf->raid_disks + number].rdev;
1831 			freeze_array(conf, 0);
1832 			if (atomic_read(&repl->nr_pending)) {
1833 				/* It means that some queued IO of retry_list
1834 				 * hold repl. Thus, we cannot set replacement
1835 				 * as NULL, avoiding rdev NULL pointer
1836 				 * dereference in sync_request_write and
1837 				 * handle_write_finished.
1838 				 */
1839 				err = -EBUSY;
1840 				unfreeze_array(conf);
1841 				goto abort;
1842 			}
1843 			clear_bit(Replacement, &repl->flags);
1844 			p->rdev = repl;
1845 			conf->mirrors[conf->raid_disks + number].rdev = NULL;
1846 			unfreeze_array(conf);
1847 		}
1848 
1849 		clear_bit(WantReplacement, &rdev->flags);
1850 		err = md_integrity_register(mddev);
1851 	}
1852 abort:
1853 
1854 	print_conf(conf);
1855 	return err;
1856 }
1857 
1858 static void end_sync_read(struct bio *bio)
1859 {
1860 	struct r1bio *r1_bio = get_resync_r1bio(bio);
1861 
1862 	update_head_pos(r1_bio->read_disk, r1_bio);
1863 
1864 	/*
1865 	 * we have read a block, now it needs to be re-written,
1866 	 * or re-read if the read failed.
1867 	 * We don't do much here, just schedule handling by raid1d
1868 	 */
1869 	if (!bio->bi_status)
1870 		set_bit(R1BIO_Uptodate, &r1_bio->state);
1871 
1872 	if (atomic_dec_and_test(&r1_bio->remaining))
1873 		reschedule_retry(r1_bio);
1874 }
1875 
1876 static void abort_sync_write(struct mddev *mddev, struct r1bio *r1_bio)
1877 {
1878 	sector_t sync_blocks = 0;
1879 	sector_t s = r1_bio->sector;
1880 	long sectors_to_go = r1_bio->sectors;
1881 
1882 	/* make sure these bits don't get cleared. */
1883 	do {
1884 		md_bitmap_end_sync(mddev->bitmap, s, &sync_blocks, 1);
1885 		s += sync_blocks;
1886 		sectors_to_go -= sync_blocks;
1887 	} while (sectors_to_go > 0);
1888 }
1889 
1890 static void put_sync_write_buf(struct r1bio *r1_bio, int uptodate)
1891 {
1892 	if (atomic_dec_and_test(&r1_bio->remaining)) {
1893 		struct mddev *mddev = r1_bio->mddev;
1894 		int s = r1_bio->sectors;
1895 
1896 		if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1897 		    test_bit(R1BIO_WriteError, &r1_bio->state))
1898 			reschedule_retry(r1_bio);
1899 		else {
1900 			put_buf(r1_bio);
1901 			md_done_sync(mddev, s, uptodate);
1902 		}
1903 	}
1904 }
1905 
1906 static void end_sync_write(struct bio *bio)
1907 {
1908 	int uptodate = !bio->bi_status;
1909 	struct r1bio *r1_bio = get_resync_r1bio(bio);
1910 	struct mddev *mddev = r1_bio->mddev;
1911 	struct r1conf *conf = mddev->private;
1912 	sector_t first_bad;
1913 	int bad_sectors;
1914 	struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev;
1915 
1916 	if (!uptodate) {
1917 		abort_sync_write(mddev, r1_bio);
1918 		set_bit(WriteErrorSeen, &rdev->flags);
1919 		if (!test_and_set_bit(WantReplacement, &rdev->flags))
1920 			set_bit(MD_RECOVERY_NEEDED, &
1921 				mddev->recovery);
1922 		set_bit(R1BIO_WriteError, &r1_bio->state);
1923 	} else if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
1924 			       &first_bad, &bad_sectors) &&
1925 		   !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1926 				r1_bio->sector,
1927 				r1_bio->sectors,
1928 				&first_bad, &bad_sectors)
1929 		)
1930 		set_bit(R1BIO_MadeGood, &r1_bio->state);
1931 
1932 	put_sync_write_buf(r1_bio, uptodate);
1933 }
1934 
1935 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1936 			    int sectors, struct page *page, int rw)
1937 {
1938 	if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
1939 		/* success */
1940 		return 1;
1941 	if (rw == WRITE) {
1942 		set_bit(WriteErrorSeen, &rdev->flags);
1943 		if (!test_and_set_bit(WantReplacement,
1944 				      &rdev->flags))
1945 			set_bit(MD_RECOVERY_NEEDED, &
1946 				rdev->mddev->recovery);
1947 	}
1948 	/* need to record an error - either for the block or the device */
1949 	if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1950 		md_error(rdev->mddev, rdev);
1951 	return 0;
1952 }
1953 
1954 static int fix_sync_read_error(struct r1bio *r1_bio)
1955 {
1956 	/* Try some synchronous reads of other devices to get
1957 	 * good data, much like with normal read errors.  Only
1958 	 * read into the pages we already have so we don't
1959 	 * need to re-issue the read request.
1960 	 * We don't need to freeze the array, because being in an
1961 	 * active sync request, there is no normal IO, and
1962 	 * no overlapping syncs.
1963 	 * We don't need to check is_badblock() again as we
1964 	 * made sure that anything with a bad block in range
1965 	 * will have bi_end_io clear.
1966 	 */
1967 	struct mddev *mddev = r1_bio->mddev;
1968 	struct r1conf *conf = mddev->private;
1969 	struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1970 	struct page **pages = get_resync_pages(bio)->pages;
1971 	sector_t sect = r1_bio->sector;
1972 	int sectors = r1_bio->sectors;
1973 	int idx = 0;
1974 	struct md_rdev *rdev;
1975 
1976 	rdev = conf->mirrors[r1_bio->read_disk].rdev;
1977 	if (test_bit(FailFast, &rdev->flags)) {
1978 		/* Don't try recovering from here - just fail it
1979 		 * ... unless it is the last working device of course */
1980 		md_error(mddev, rdev);
1981 		if (test_bit(Faulty, &rdev->flags))
1982 			/* Don't try to read from here, but make sure
1983 			 * put_buf does it's thing
1984 			 */
1985 			bio->bi_end_io = end_sync_write;
1986 	}
1987 
1988 	while(sectors) {
1989 		int s = sectors;
1990 		int d = r1_bio->read_disk;
1991 		int success = 0;
1992 		int start;
1993 
1994 		if (s > (PAGE_SIZE>>9))
1995 			s = PAGE_SIZE >> 9;
1996 		do {
1997 			if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1998 				/* No rcu protection needed here devices
1999 				 * can only be removed when no resync is
2000 				 * active, and resync is currently active
2001 				 */
2002 				rdev = conf->mirrors[d].rdev;
2003 				if (sync_page_io(rdev, sect, s<<9,
2004 						 pages[idx],
2005 						 REQ_OP_READ, 0, false)) {
2006 					success = 1;
2007 					break;
2008 				}
2009 			}
2010 			d++;
2011 			if (d == conf->raid_disks * 2)
2012 				d = 0;
2013 		} while (!success && d != r1_bio->read_disk);
2014 
2015 		if (!success) {
2016 			char b[BDEVNAME_SIZE];
2017 			int abort = 0;
2018 			/* Cannot read from anywhere, this block is lost.
2019 			 * Record a bad block on each device.  If that doesn't
2020 			 * work just disable and interrupt the recovery.
2021 			 * Don't fail devices as that won't really help.
2022 			 */
2023 			pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
2024 					    mdname(mddev), bio_devname(bio, b),
2025 					    (unsigned long long)r1_bio->sector);
2026 			for (d = 0; d < conf->raid_disks * 2; d++) {
2027 				rdev = conf->mirrors[d].rdev;
2028 				if (!rdev || test_bit(Faulty, &rdev->flags))
2029 					continue;
2030 				if (!rdev_set_badblocks(rdev, sect, s, 0))
2031 					abort = 1;
2032 			}
2033 			if (abort) {
2034 				conf->recovery_disabled =
2035 					mddev->recovery_disabled;
2036 				set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2037 				md_done_sync(mddev, r1_bio->sectors, 0);
2038 				put_buf(r1_bio);
2039 				return 0;
2040 			}
2041 			/* Try next page */
2042 			sectors -= s;
2043 			sect += s;
2044 			idx++;
2045 			continue;
2046 		}
2047 
2048 		start = d;
2049 		/* write it back and re-read */
2050 		while (d != r1_bio->read_disk) {
2051 			if (d == 0)
2052 				d = conf->raid_disks * 2;
2053 			d--;
2054 			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2055 				continue;
2056 			rdev = conf->mirrors[d].rdev;
2057 			if (r1_sync_page_io(rdev, sect, s,
2058 					    pages[idx],
2059 					    WRITE) == 0) {
2060 				r1_bio->bios[d]->bi_end_io = NULL;
2061 				rdev_dec_pending(rdev, mddev);
2062 			}
2063 		}
2064 		d = start;
2065 		while (d != r1_bio->read_disk) {
2066 			if (d == 0)
2067 				d = conf->raid_disks * 2;
2068 			d--;
2069 			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2070 				continue;
2071 			rdev = conf->mirrors[d].rdev;
2072 			if (r1_sync_page_io(rdev, sect, s,
2073 					    pages[idx],
2074 					    READ) != 0)
2075 				atomic_add(s, &rdev->corrected_errors);
2076 		}
2077 		sectors -= s;
2078 		sect += s;
2079 		idx ++;
2080 	}
2081 	set_bit(R1BIO_Uptodate, &r1_bio->state);
2082 	bio->bi_status = 0;
2083 	return 1;
2084 }
2085 
2086 static void process_checks(struct r1bio *r1_bio)
2087 {
2088 	/* We have read all readable devices.  If we haven't
2089 	 * got the block, then there is no hope left.
2090 	 * If we have, then we want to do a comparison
2091 	 * and skip the write if everything is the same.
2092 	 * If any blocks failed to read, then we need to
2093 	 * attempt an over-write
2094 	 */
2095 	struct mddev *mddev = r1_bio->mddev;
2096 	struct r1conf *conf = mddev->private;
2097 	int primary;
2098 	int i;
2099 	int vcnt;
2100 
2101 	/* Fix variable parts of all bios */
2102 	vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
2103 	for (i = 0; i < conf->raid_disks * 2; i++) {
2104 		blk_status_t status;
2105 		struct bio *b = r1_bio->bios[i];
2106 		struct resync_pages *rp = get_resync_pages(b);
2107 		if (b->bi_end_io != end_sync_read)
2108 			continue;
2109 		/* fixup the bio for reuse, but preserve errno */
2110 		status = b->bi_status;
2111 		bio_reset(b);
2112 		b->bi_status = status;
2113 		b->bi_iter.bi_sector = r1_bio->sector +
2114 			conf->mirrors[i].rdev->data_offset;
2115 		bio_set_dev(b, conf->mirrors[i].rdev->bdev);
2116 		b->bi_end_io = end_sync_read;
2117 		rp->raid_bio = r1_bio;
2118 		b->bi_private = rp;
2119 
2120 		/* initialize bvec table again */
2121 		md_bio_reset_resync_pages(b, rp, r1_bio->sectors << 9);
2122 	}
2123 	for (primary = 0; primary < conf->raid_disks * 2; primary++)
2124 		if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
2125 		    !r1_bio->bios[primary]->bi_status) {
2126 			r1_bio->bios[primary]->bi_end_io = NULL;
2127 			rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
2128 			break;
2129 		}
2130 	r1_bio->read_disk = primary;
2131 	for (i = 0; i < conf->raid_disks * 2; i++) {
2132 		int j = 0;
2133 		struct bio *pbio = r1_bio->bios[primary];
2134 		struct bio *sbio = r1_bio->bios[i];
2135 		blk_status_t status = sbio->bi_status;
2136 		struct page **ppages = get_resync_pages(pbio)->pages;
2137 		struct page **spages = get_resync_pages(sbio)->pages;
2138 		struct bio_vec *bi;
2139 		int page_len[RESYNC_PAGES] = { 0 };
2140 		struct bvec_iter_all iter_all;
2141 
2142 		if (sbio->bi_end_io != end_sync_read)
2143 			continue;
2144 		/* Now we can 'fixup' the error value */
2145 		sbio->bi_status = 0;
2146 
2147 		bio_for_each_segment_all(bi, sbio, iter_all)
2148 			page_len[j++] = bi->bv_len;
2149 
2150 		if (!status) {
2151 			for (j = vcnt; j-- ; ) {
2152 				if (memcmp(page_address(ppages[j]),
2153 					   page_address(spages[j]),
2154 					   page_len[j]))
2155 					break;
2156 			}
2157 		} else
2158 			j = 0;
2159 		if (j >= 0)
2160 			atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
2161 		if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
2162 			      && !status)) {
2163 			/* No need to write to this device. */
2164 			sbio->bi_end_io = NULL;
2165 			rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2166 			continue;
2167 		}
2168 
2169 		bio_copy_data(sbio, pbio);
2170 	}
2171 }
2172 
2173 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
2174 {
2175 	struct r1conf *conf = mddev->private;
2176 	int i;
2177 	int disks = conf->raid_disks * 2;
2178 	struct bio *wbio;
2179 
2180 	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2181 		/* ouch - failed to read all of that. */
2182 		if (!fix_sync_read_error(r1_bio))
2183 			return;
2184 
2185 	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2186 		process_checks(r1_bio);
2187 
2188 	/*
2189 	 * schedule writes
2190 	 */
2191 	atomic_set(&r1_bio->remaining, 1);
2192 	for (i = 0; i < disks ; i++) {
2193 		wbio = r1_bio->bios[i];
2194 		if (wbio->bi_end_io == NULL ||
2195 		    (wbio->bi_end_io == end_sync_read &&
2196 		     (i == r1_bio->read_disk ||
2197 		      !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2198 			continue;
2199 		if (test_bit(Faulty, &conf->mirrors[i].rdev->flags)) {
2200 			abort_sync_write(mddev, r1_bio);
2201 			continue;
2202 		}
2203 
2204 		bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2205 		if (test_bit(FailFast, &conf->mirrors[i].rdev->flags))
2206 			wbio->bi_opf |= MD_FAILFAST;
2207 
2208 		wbio->bi_end_io = end_sync_write;
2209 		atomic_inc(&r1_bio->remaining);
2210 		md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
2211 
2212 		submit_bio_noacct(wbio);
2213 	}
2214 
2215 	put_sync_write_buf(r1_bio, 1);
2216 }
2217 
2218 /*
2219  * This is a kernel thread which:
2220  *
2221  *	1.	Retries failed read operations on working mirrors.
2222  *	2.	Updates the raid superblock when problems encounter.
2223  *	3.	Performs writes following reads for array synchronising.
2224  */
2225 
2226 static void fix_read_error(struct r1conf *conf, int read_disk,
2227 			   sector_t sect, int sectors)
2228 {
2229 	struct mddev *mddev = conf->mddev;
2230 	while(sectors) {
2231 		int s = sectors;
2232 		int d = read_disk;
2233 		int success = 0;
2234 		int start;
2235 		struct md_rdev *rdev;
2236 
2237 		if (s > (PAGE_SIZE>>9))
2238 			s = PAGE_SIZE >> 9;
2239 
2240 		do {
2241 			sector_t first_bad;
2242 			int bad_sectors;
2243 
2244 			rcu_read_lock();
2245 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2246 			if (rdev &&
2247 			    (test_bit(In_sync, &rdev->flags) ||
2248 			     (!test_bit(Faulty, &rdev->flags) &&
2249 			      rdev->recovery_offset >= sect + s)) &&
2250 			    is_badblock(rdev, sect, s,
2251 					&first_bad, &bad_sectors) == 0) {
2252 				atomic_inc(&rdev->nr_pending);
2253 				rcu_read_unlock();
2254 				if (sync_page_io(rdev, sect, s<<9,
2255 					 conf->tmppage, REQ_OP_READ, 0, false))
2256 					success = 1;
2257 				rdev_dec_pending(rdev, mddev);
2258 				if (success)
2259 					break;
2260 			} else
2261 				rcu_read_unlock();
2262 			d++;
2263 			if (d == conf->raid_disks * 2)
2264 				d = 0;
2265 		} while (!success && d != read_disk);
2266 
2267 		if (!success) {
2268 			/* Cannot read from anywhere - mark it bad */
2269 			struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2270 			if (!rdev_set_badblocks(rdev, sect, s, 0))
2271 				md_error(mddev, rdev);
2272 			break;
2273 		}
2274 		/* write it back and re-read */
2275 		start = d;
2276 		while (d != read_disk) {
2277 			if (d==0)
2278 				d = conf->raid_disks * 2;
2279 			d--;
2280 			rcu_read_lock();
2281 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2282 			if (rdev &&
2283 			    !test_bit(Faulty, &rdev->flags)) {
2284 				atomic_inc(&rdev->nr_pending);
2285 				rcu_read_unlock();
2286 				r1_sync_page_io(rdev, sect, s,
2287 						conf->tmppage, WRITE);
2288 				rdev_dec_pending(rdev, mddev);
2289 			} else
2290 				rcu_read_unlock();
2291 		}
2292 		d = start;
2293 		while (d != read_disk) {
2294 			char b[BDEVNAME_SIZE];
2295 			if (d==0)
2296 				d = conf->raid_disks * 2;
2297 			d--;
2298 			rcu_read_lock();
2299 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2300 			if (rdev &&
2301 			    !test_bit(Faulty, &rdev->flags)) {
2302 				atomic_inc(&rdev->nr_pending);
2303 				rcu_read_unlock();
2304 				if (r1_sync_page_io(rdev, sect, s,
2305 						    conf->tmppage, READ)) {
2306 					atomic_add(s, &rdev->corrected_errors);
2307 					pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %s)\n",
2308 						mdname(mddev), s,
2309 						(unsigned long long)(sect +
2310 								     rdev->data_offset),
2311 						bdevname(rdev->bdev, b));
2312 				}
2313 				rdev_dec_pending(rdev, mddev);
2314 			} else
2315 				rcu_read_unlock();
2316 		}
2317 		sectors -= s;
2318 		sect += s;
2319 	}
2320 }
2321 
2322 static int narrow_write_error(struct r1bio *r1_bio, int i)
2323 {
2324 	struct mddev *mddev = r1_bio->mddev;
2325 	struct r1conf *conf = mddev->private;
2326 	struct md_rdev *rdev = conf->mirrors[i].rdev;
2327 
2328 	/* bio has the data to be written to device 'i' where
2329 	 * we just recently had a write error.
2330 	 * We repeatedly clone the bio and trim down to one block,
2331 	 * then try the write.  Where the write fails we record
2332 	 * a bad block.
2333 	 * It is conceivable that the bio doesn't exactly align with
2334 	 * blocks.  We must handle this somehow.
2335 	 *
2336 	 * We currently own a reference on the rdev.
2337 	 */
2338 
2339 	int block_sectors;
2340 	sector_t sector;
2341 	int sectors;
2342 	int sect_to_write = r1_bio->sectors;
2343 	int ok = 1;
2344 
2345 	if (rdev->badblocks.shift < 0)
2346 		return 0;
2347 
2348 	block_sectors = roundup(1 << rdev->badblocks.shift,
2349 				bdev_logical_block_size(rdev->bdev) >> 9);
2350 	sector = r1_bio->sector;
2351 	sectors = ((sector + block_sectors)
2352 		   & ~(sector_t)(block_sectors - 1))
2353 		- sector;
2354 
2355 	while (sect_to_write) {
2356 		struct bio *wbio;
2357 		if (sectors > sect_to_write)
2358 			sectors = sect_to_write;
2359 		/* Write at 'sector' for 'sectors'*/
2360 
2361 		if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2362 			wbio = bio_clone_fast(r1_bio->behind_master_bio,
2363 					      GFP_NOIO,
2364 					      &mddev->bio_set);
2365 		} else {
2366 			wbio = bio_clone_fast(r1_bio->master_bio, GFP_NOIO,
2367 					      &mddev->bio_set);
2368 		}
2369 
2370 		bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2371 		wbio->bi_iter.bi_sector = r1_bio->sector;
2372 		wbio->bi_iter.bi_size = r1_bio->sectors << 9;
2373 
2374 		bio_trim(wbio, sector - r1_bio->sector, sectors);
2375 		wbio->bi_iter.bi_sector += rdev->data_offset;
2376 		bio_set_dev(wbio, rdev->bdev);
2377 
2378 		if (submit_bio_wait(wbio) < 0)
2379 			/* failure! */
2380 			ok = rdev_set_badblocks(rdev, sector,
2381 						sectors, 0)
2382 				&& ok;
2383 
2384 		bio_put(wbio);
2385 		sect_to_write -= sectors;
2386 		sector += sectors;
2387 		sectors = block_sectors;
2388 	}
2389 	return ok;
2390 }
2391 
2392 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2393 {
2394 	int m;
2395 	int s = r1_bio->sectors;
2396 	for (m = 0; m < conf->raid_disks * 2 ; m++) {
2397 		struct md_rdev *rdev = conf->mirrors[m].rdev;
2398 		struct bio *bio = r1_bio->bios[m];
2399 		if (bio->bi_end_io == NULL)
2400 			continue;
2401 		if (!bio->bi_status &&
2402 		    test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2403 			rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2404 		}
2405 		if (bio->bi_status &&
2406 		    test_bit(R1BIO_WriteError, &r1_bio->state)) {
2407 			if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2408 				md_error(conf->mddev, rdev);
2409 		}
2410 	}
2411 	put_buf(r1_bio);
2412 	md_done_sync(conf->mddev, s, 1);
2413 }
2414 
2415 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2416 {
2417 	int m, idx;
2418 	bool fail = false;
2419 
2420 	for (m = 0; m < conf->raid_disks * 2 ; m++)
2421 		if (r1_bio->bios[m] == IO_MADE_GOOD) {
2422 			struct md_rdev *rdev = conf->mirrors[m].rdev;
2423 			rdev_clear_badblocks(rdev,
2424 					     r1_bio->sector,
2425 					     r1_bio->sectors, 0);
2426 			rdev_dec_pending(rdev, conf->mddev);
2427 		} else if (r1_bio->bios[m] != NULL) {
2428 			/* This drive got a write error.  We need to
2429 			 * narrow down and record precise write
2430 			 * errors.
2431 			 */
2432 			fail = true;
2433 			if (!narrow_write_error(r1_bio, m)) {
2434 				md_error(conf->mddev,
2435 					 conf->mirrors[m].rdev);
2436 				/* an I/O failed, we can't clear the bitmap */
2437 				set_bit(R1BIO_Degraded, &r1_bio->state);
2438 			}
2439 			rdev_dec_pending(conf->mirrors[m].rdev,
2440 					 conf->mddev);
2441 		}
2442 	if (fail) {
2443 		spin_lock_irq(&conf->device_lock);
2444 		list_add(&r1_bio->retry_list, &conf->bio_end_io_list);
2445 		idx = sector_to_idx(r1_bio->sector);
2446 		atomic_inc(&conf->nr_queued[idx]);
2447 		spin_unlock_irq(&conf->device_lock);
2448 		/*
2449 		 * In case freeze_array() is waiting for condition
2450 		 * get_unqueued_pending() == extra to be true.
2451 		 */
2452 		wake_up(&conf->wait_barrier);
2453 		md_wakeup_thread(conf->mddev->thread);
2454 	} else {
2455 		if (test_bit(R1BIO_WriteError, &r1_bio->state))
2456 			close_write(r1_bio);
2457 		raid_end_bio_io(r1_bio);
2458 	}
2459 }
2460 
2461 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2462 {
2463 	struct mddev *mddev = conf->mddev;
2464 	struct bio *bio;
2465 	struct md_rdev *rdev;
2466 
2467 	clear_bit(R1BIO_ReadError, &r1_bio->state);
2468 	/* we got a read error. Maybe the drive is bad.  Maybe just
2469 	 * the block and we can fix it.
2470 	 * We freeze all other IO, and try reading the block from
2471 	 * other devices.  When we find one, we re-write
2472 	 * and check it that fixes the read error.
2473 	 * This is all done synchronously while the array is
2474 	 * frozen
2475 	 */
2476 
2477 	bio = r1_bio->bios[r1_bio->read_disk];
2478 	bio_put(bio);
2479 	r1_bio->bios[r1_bio->read_disk] = NULL;
2480 
2481 	rdev = conf->mirrors[r1_bio->read_disk].rdev;
2482 	if (mddev->ro == 0
2483 	    && !test_bit(FailFast, &rdev->flags)) {
2484 		freeze_array(conf, 1);
2485 		fix_read_error(conf, r1_bio->read_disk,
2486 			       r1_bio->sector, r1_bio->sectors);
2487 		unfreeze_array(conf);
2488 	} else if (mddev->ro == 0 && test_bit(FailFast, &rdev->flags)) {
2489 		md_error(mddev, rdev);
2490 	} else {
2491 		r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED;
2492 	}
2493 
2494 	rdev_dec_pending(rdev, conf->mddev);
2495 	allow_barrier(conf, r1_bio->sector);
2496 	bio = r1_bio->master_bio;
2497 
2498 	/* Reuse the old r1_bio so that the IO_BLOCKED settings are preserved */
2499 	r1_bio->state = 0;
2500 	raid1_read_request(mddev, bio, r1_bio->sectors, r1_bio);
2501 }
2502 
2503 static void raid1d(struct md_thread *thread)
2504 {
2505 	struct mddev *mddev = thread->mddev;
2506 	struct r1bio *r1_bio;
2507 	unsigned long flags;
2508 	struct r1conf *conf = mddev->private;
2509 	struct list_head *head = &conf->retry_list;
2510 	struct blk_plug plug;
2511 	int idx;
2512 
2513 	md_check_recovery(mddev);
2514 
2515 	if (!list_empty_careful(&conf->bio_end_io_list) &&
2516 	    !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2517 		LIST_HEAD(tmp);
2518 		spin_lock_irqsave(&conf->device_lock, flags);
2519 		if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
2520 			list_splice_init(&conf->bio_end_io_list, &tmp);
2521 		spin_unlock_irqrestore(&conf->device_lock, flags);
2522 		while (!list_empty(&tmp)) {
2523 			r1_bio = list_first_entry(&tmp, struct r1bio,
2524 						  retry_list);
2525 			list_del(&r1_bio->retry_list);
2526 			idx = sector_to_idx(r1_bio->sector);
2527 			atomic_dec(&conf->nr_queued[idx]);
2528 			if (mddev->degraded)
2529 				set_bit(R1BIO_Degraded, &r1_bio->state);
2530 			if (test_bit(R1BIO_WriteError, &r1_bio->state))
2531 				close_write(r1_bio);
2532 			raid_end_bio_io(r1_bio);
2533 		}
2534 	}
2535 
2536 	blk_start_plug(&plug);
2537 	for (;;) {
2538 
2539 		flush_pending_writes(conf);
2540 
2541 		spin_lock_irqsave(&conf->device_lock, flags);
2542 		if (list_empty(head)) {
2543 			spin_unlock_irqrestore(&conf->device_lock, flags);
2544 			break;
2545 		}
2546 		r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2547 		list_del(head->prev);
2548 		idx = sector_to_idx(r1_bio->sector);
2549 		atomic_dec(&conf->nr_queued[idx]);
2550 		spin_unlock_irqrestore(&conf->device_lock, flags);
2551 
2552 		mddev = r1_bio->mddev;
2553 		conf = mddev->private;
2554 		if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2555 			if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2556 			    test_bit(R1BIO_WriteError, &r1_bio->state))
2557 				handle_sync_write_finished(conf, r1_bio);
2558 			else
2559 				sync_request_write(mddev, r1_bio);
2560 		} else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2561 			   test_bit(R1BIO_WriteError, &r1_bio->state))
2562 			handle_write_finished(conf, r1_bio);
2563 		else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2564 			handle_read_error(conf, r1_bio);
2565 		else
2566 			WARN_ON_ONCE(1);
2567 
2568 		cond_resched();
2569 		if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
2570 			md_check_recovery(mddev);
2571 	}
2572 	blk_finish_plug(&plug);
2573 }
2574 
2575 static int init_resync(struct r1conf *conf)
2576 {
2577 	int buffs;
2578 
2579 	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2580 	BUG_ON(mempool_initialized(&conf->r1buf_pool));
2581 
2582 	return mempool_init(&conf->r1buf_pool, buffs, r1buf_pool_alloc,
2583 			    r1buf_pool_free, conf->poolinfo);
2584 }
2585 
2586 static struct r1bio *raid1_alloc_init_r1buf(struct r1conf *conf)
2587 {
2588 	struct r1bio *r1bio = mempool_alloc(&conf->r1buf_pool, GFP_NOIO);
2589 	struct resync_pages *rps;
2590 	struct bio *bio;
2591 	int i;
2592 
2593 	for (i = conf->poolinfo->raid_disks; i--; ) {
2594 		bio = r1bio->bios[i];
2595 		rps = bio->bi_private;
2596 		bio_reset(bio);
2597 		bio->bi_private = rps;
2598 	}
2599 	r1bio->master_bio = NULL;
2600 	return r1bio;
2601 }
2602 
2603 /*
2604  * perform a "sync" on one "block"
2605  *
2606  * We need to make sure that no normal I/O request - particularly write
2607  * requests - conflict with active sync requests.
2608  *
2609  * This is achieved by tracking pending requests and a 'barrier' concept
2610  * that can be installed to exclude normal IO requests.
2611  */
2612 
2613 static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr,
2614 				   int *skipped)
2615 {
2616 	struct r1conf *conf = mddev->private;
2617 	struct r1bio *r1_bio;
2618 	struct bio *bio;
2619 	sector_t max_sector, nr_sectors;
2620 	int disk = -1;
2621 	int i;
2622 	int wonly = -1;
2623 	int write_targets = 0, read_targets = 0;
2624 	sector_t sync_blocks;
2625 	int still_degraded = 0;
2626 	int good_sectors = RESYNC_SECTORS;
2627 	int min_bad = 0; /* number of sectors that are bad in all devices */
2628 	int idx = sector_to_idx(sector_nr);
2629 	int page_idx = 0;
2630 
2631 	if (!mempool_initialized(&conf->r1buf_pool))
2632 		if (init_resync(conf))
2633 			return 0;
2634 
2635 	max_sector = mddev->dev_sectors;
2636 	if (sector_nr >= max_sector) {
2637 		/* If we aborted, we need to abort the
2638 		 * sync on the 'current' bitmap chunk (there will
2639 		 * only be one in raid1 resync.
2640 		 * We can find the current addess in mddev->curr_resync
2641 		 */
2642 		if (mddev->curr_resync < max_sector) /* aborted */
2643 			md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2644 					   &sync_blocks, 1);
2645 		else /* completed sync */
2646 			conf->fullsync = 0;
2647 
2648 		md_bitmap_close_sync(mddev->bitmap);
2649 		close_sync(conf);
2650 
2651 		if (mddev_is_clustered(mddev)) {
2652 			conf->cluster_sync_low = 0;
2653 			conf->cluster_sync_high = 0;
2654 		}
2655 		return 0;
2656 	}
2657 
2658 	if (mddev->bitmap == NULL &&
2659 	    mddev->recovery_cp == MaxSector &&
2660 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2661 	    conf->fullsync == 0) {
2662 		*skipped = 1;
2663 		return max_sector - sector_nr;
2664 	}
2665 	/* before building a request, check if we can skip these blocks..
2666 	 * This call the bitmap_start_sync doesn't actually record anything
2667 	 */
2668 	if (!md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2669 	    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2670 		/* We can skip this block, and probably several more */
2671 		*skipped = 1;
2672 		return sync_blocks;
2673 	}
2674 
2675 	/*
2676 	 * If there is non-resync activity waiting for a turn, then let it
2677 	 * though before starting on this new sync request.
2678 	 */
2679 	if (atomic_read(&conf->nr_waiting[idx]))
2680 		schedule_timeout_uninterruptible(1);
2681 
2682 	/* we are incrementing sector_nr below. To be safe, we check against
2683 	 * sector_nr + two times RESYNC_SECTORS
2684 	 */
2685 
2686 	md_bitmap_cond_end_sync(mddev->bitmap, sector_nr,
2687 		mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
2688 
2689 
2690 	if (raise_barrier(conf, sector_nr))
2691 		return 0;
2692 
2693 	r1_bio = raid1_alloc_init_r1buf(conf);
2694 
2695 	rcu_read_lock();
2696 	/*
2697 	 * If we get a correctably read error during resync or recovery,
2698 	 * we might want to read from a different device.  So we
2699 	 * flag all drives that could conceivably be read from for READ,
2700 	 * and any others (which will be non-In_sync devices) for WRITE.
2701 	 * If a read fails, we try reading from something else for which READ
2702 	 * is OK.
2703 	 */
2704 
2705 	r1_bio->mddev = mddev;
2706 	r1_bio->sector = sector_nr;
2707 	r1_bio->state = 0;
2708 	set_bit(R1BIO_IsSync, &r1_bio->state);
2709 	/* make sure good_sectors won't go across barrier unit boundary */
2710 	good_sectors = align_to_barrier_unit_end(sector_nr, good_sectors);
2711 
2712 	for (i = 0; i < conf->raid_disks * 2; i++) {
2713 		struct md_rdev *rdev;
2714 		bio = r1_bio->bios[i];
2715 
2716 		rdev = rcu_dereference(conf->mirrors[i].rdev);
2717 		if (rdev == NULL ||
2718 		    test_bit(Faulty, &rdev->flags)) {
2719 			if (i < conf->raid_disks)
2720 				still_degraded = 1;
2721 		} else if (!test_bit(In_sync, &rdev->flags)) {
2722 			bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2723 			bio->bi_end_io = end_sync_write;
2724 			write_targets ++;
2725 		} else {
2726 			/* may need to read from here */
2727 			sector_t first_bad = MaxSector;
2728 			int bad_sectors;
2729 
2730 			if (is_badblock(rdev, sector_nr, good_sectors,
2731 					&first_bad, &bad_sectors)) {
2732 				if (first_bad > sector_nr)
2733 					good_sectors = first_bad - sector_nr;
2734 				else {
2735 					bad_sectors -= (sector_nr - first_bad);
2736 					if (min_bad == 0 ||
2737 					    min_bad > bad_sectors)
2738 						min_bad = bad_sectors;
2739 				}
2740 			}
2741 			if (sector_nr < first_bad) {
2742 				if (test_bit(WriteMostly, &rdev->flags)) {
2743 					if (wonly < 0)
2744 						wonly = i;
2745 				} else {
2746 					if (disk < 0)
2747 						disk = i;
2748 				}
2749 				bio_set_op_attrs(bio, REQ_OP_READ, 0);
2750 				bio->bi_end_io = end_sync_read;
2751 				read_targets++;
2752 			} else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2753 				test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2754 				!test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2755 				/*
2756 				 * The device is suitable for reading (InSync),
2757 				 * but has bad block(s) here. Let's try to correct them,
2758 				 * if we are doing resync or repair. Otherwise, leave
2759 				 * this device alone for this sync request.
2760 				 */
2761 				bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2762 				bio->bi_end_io = end_sync_write;
2763 				write_targets++;
2764 			}
2765 		}
2766 		if (rdev && bio->bi_end_io) {
2767 			atomic_inc(&rdev->nr_pending);
2768 			bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
2769 			bio_set_dev(bio, rdev->bdev);
2770 			if (test_bit(FailFast, &rdev->flags))
2771 				bio->bi_opf |= MD_FAILFAST;
2772 		}
2773 	}
2774 	rcu_read_unlock();
2775 	if (disk < 0)
2776 		disk = wonly;
2777 	r1_bio->read_disk = disk;
2778 
2779 	if (read_targets == 0 && min_bad > 0) {
2780 		/* These sectors are bad on all InSync devices, so we
2781 		 * need to mark them bad on all write targets
2782 		 */
2783 		int ok = 1;
2784 		for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2785 			if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2786 				struct md_rdev *rdev = conf->mirrors[i].rdev;
2787 				ok = rdev_set_badblocks(rdev, sector_nr,
2788 							min_bad, 0
2789 					) && ok;
2790 			}
2791 		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2792 		*skipped = 1;
2793 		put_buf(r1_bio);
2794 
2795 		if (!ok) {
2796 			/* Cannot record the badblocks, so need to
2797 			 * abort the resync.
2798 			 * If there are multiple read targets, could just
2799 			 * fail the really bad ones ???
2800 			 */
2801 			conf->recovery_disabled = mddev->recovery_disabled;
2802 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2803 			return 0;
2804 		} else
2805 			return min_bad;
2806 
2807 	}
2808 	if (min_bad > 0 && min_bad < good_sectors) {
2809 		/* only resync enough to reach the next bad->good
2810 		 * transition */
2811 		good_sectors = min_bad;
2812 	}
2813 
2814 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2815 		/* extra read targets are also write targets */
2816 		write_targets += read_targets-1;
2817 
2818 	if (write_targets == 0 || read_targets == 0) {
2819 		/* There is nowhere to write, so all non-sync
2820 		 * drives must be failed - so we are finished
2821 		 */
2822 		sector_t rv;
2823 		if (min_bad > 0)
2824 			max_sector = sector_nr + min_bad;
2825 		rv = max_sector - sector_nr;
2826 		*skipped = 1;
2827 		put_buf(r1_bio);
2828 		return rv;
2829 	}
2830 
2831 	if (max_sector > mddev->resync_max)
2832 		max_sector = mddev->resync_max; /* Don't do IO beyond here */
2833 	if (max_sector > sector_nr + good_sectors)
2834 		max_sector = sector_nr + good_sectors;
2835 	nr_sectors = 0;
2836 	sync_blocks = 0;
2837 	do {
2838 		struct page *page;
2839 		int len = PAGE_SIZE;
2840 		if (sector_nr + (len>>9) > max_sector)
2841 			len = (max_sector - sector_nr) << 9;
2842 		if (len == 0)
2843 			break;
2844 		if (sync_blocks == 0) {
2845 			if (!md_bitmap_start_sync(mddev->bitmap, sector_nr,
2846 						  &sync_blocks, still_degraded) &&
2847 			    !conf->fullsync &&
2848 			    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2849 				break;
2850 			if ((len >> 9) > sync_blocks)
2851 				len = sync_blocks<<9;
2852 		}
2853 
2854 		for (i = 0 ; i < conf->raid_disks * 2; i++) {
2855 			struct resync_pages *rp;
2856 
2857 			bio = r1_bio->bios[i];
2858 			rp = get_resync_pages(bio);
2859 			if (bio->bi_end_io) {
2860 				page = resync_fetch_page(rp, page_idx);
2861 
2862 				/*
2863 				 * won't fail because the vec table is big
2864 				 * enough to hold all these pages
2865 				 */
2866 				bio_add_page(bio, page, len, 0);
2867 			}
2868 		}
2869 		nr_sectors += len>>9;
2870 		sector_nr += len>>9;
2871 		sync_blocks -= (len>>9);
2872 	} while (++page_idx < RESYNC_PAGES);
2873 
2874 	r1_bio->sectors = nr_sectors;
2875 
2876 	if (mddev_is_clustered(mddev) &&
2877 			conf->cluster_sync_high < sector_nr + nr_sectors) {
2878 		conf->cluster_sync_low = mddev->curr_resync_completed;
2879 		conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS;
2880 		/* Send resync message */
2881 		md_cluster_ops->resync_info_update(mddev,
2882 				conf->cluster_sync_low,
2883 				conf->cluster_sync_high);
2884 	}
2885 
2886 	/* For a user-requested sync, we read all readable devices and do a
2887 	 * compare
2888 	 */
2889 	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2890 		atomic_set(&r1_bio->remaining, read_targets);
2891 		for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2892 			bio = r1_bio->bios[i];
2893 			if (bio->bi_end_io == end_sync_read) {
2894 				read_targets--;
2895 				md_sync_acct_bio(bio, nr_sectors);
2896 				if (read_targets == 1)
2897 					bio->bi_opf &= ~MD_FAILFAST;
2898 				submit_bio_noacct(bio);
2899 			}
2900 		}
2901 	} else {
2902 		atomic_set(&r1_bio->remaining, 1);
2903 		bio = r1_bio->bios[r1_bio->read_disk];
2904 		md_sync_acct_bio(bio, nr_sectors);
2905 		if (read_targets == 1)
2906 			bio->bi_opf &= ~MD_FAILFAST;
2907 		submit_bio_noacct(bio);
2908 	}
2909 	return nr_sectors;
2910 }
2911 
2912 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2913 {
2914 	if (sectors)
2915 		return sectors;
2916 
2917 	return mddev->dev_sectors;
2918 }
2919 
2920 static struct r1conf *setup_conf(struct mddev *mddev)
2921 {
2922 	struct r1conf *conf;
2923 	int i;
2924 	struct raid1_info *disk;
2925 	struct md_rdev *rdev;
2926 	int err = -ENOMEM;
2927 
2928 	conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2929 	if (!conf)
2930 		goto abort;
2931 
2932 	conf->nr_pending = kcalloc(BARRIER_BUCKETS_NR,
2933 				   sizeof(atomic_t), GFP_KERNEL);
2934 	if (!conf->nr_pending)
2935 		goto abort;
2936 
2937 	conf->nr_waiting = kcalloc(BARRIER_BUCKETS_NR,
2938 				   sizeof(atomic_t), GFP_KERNEL);
2939 	if (!conf->nr_waiting)
2940 		goto abort;
2941 
2942 	conf->nr_queued = kcalloc(BARRIER_BUCKETS_NR,
2943 				  sizeof(atomic_t), GFP_KERNEL);
2944 	if (!conf->nr_queued)
2945 		goto abort;
2946 
2947 	conf->barrier = kcalloc(BARRIER_BUCKETS_NR,
2948 				sizeof(atomic_t), GFP_KERNEL);
2949 	if (!conf->barrier)
2950 		goto abort;
2951 
2952 	conf->mirrors = kzalloc(array3_size(sizeof(struct raid1_info),
2953 					    mddev->raid_disks, 2),
2954 				GFP_KERNEL);
2955 	if (!conf->mirrors)
2956 		goto abort;
2957 
2958 	conf->tmppage = alloc_page(GFP_KERNEL);
2959 	if (!conf->tmppage)
2960 		goto abort;
2961 
2962 	conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
2963 	if (!conf->poolinfo)
2964 		goto abort;
2965 	conf->poolinfo->raid_disks = mddev->raid_disks * 2;
2966 	err = mempool_init(&conf->r1bio_pool, NR_RAID_BIOS, r1bio_pool_alloc,
2967 			   rbio_pool_free, conf->poolinfo);
2968 	if (err)
2969 		goto abort;
2970 
2971 	err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
2972 	if (err)
2973 		goto abort;
2974 
2975 	conf->poolinfo->mddev = mddev;
2976 
2977 	err = -EINVAL;
2978 	spin_lock_init(&conf->device_lock);
2979 	rdev_for_each(rdev, mddev) {
2980 		int disk_idx = rdev->raid_disk;
2981 		if (disk_idx >= mddev->raid_disks
2982 		    || disk_idx < 0)
2983 			continue;
2984 		if (test_bit(Replacement, &rdev->flags))
2985 			disk = conf->mirrors + mddev->raid_disks + disk_idx;
2986 		else
2987 			disk = conf->mirrors + disk_idx;
2988 
2989 		if (disk->rdev)
2990 			goto abort;
2991 		disk->rdev = rdev;
2992 		disk->head_position = 0;
2993 		disk->seq_start = MaxSector;
2994 	}
2995 	conf->raid_disks = mddev->raid_disks;
2996 	conf->mddev = mddev;
2997 	INIT_LIST_HEAD(&conf->retry_list);
2998 	INIT_LIST_HEAD(&conf->bio_end_io_list);
2999 
3000 	spin_lock_init(&conf->resync_lock);
3001 	init_waitqueue_head(&conf->wait_barrier);
3002 
3003 	bio_list_init(&conf->pending_bio_list);
3004 	conf->pending_count = 0;
3005 	conf->recovery_disabled = mddev->recovery_disabled - 1;
3006 
3007 	err = -EIO;
3008 	for (i = 0; i < conf->raid_disks * 2; i++) {
3009 
3010 		disk = conf->mirrors + i;
3011 
3012 		if (i < conf->raid_disks &&
3013 		    disk[conf->raid_disks].rdev) {
3014 			/* This slot has a replacement. */
3015 			if (!disk->rdev) {
3016 				/* No original, just make the replacement
3017 				 * a recovering spare
3018 				 */
3019 				disk->rdev =
3020 					disk[conf->raid_disks].rdev;
3021 				disk[conf->raid_disks].rdev = NULL;
3022 			} else if (!test_bit(In_sync, &disk->rdev->flags))
3023 				/* Original is not in_sync - bad */
3024 				goto abort;
3025 		}
3026 
3027 		if (!disk->rdev ||
3028 		    !test_bit(In_sync, &disk->rdev->flags)) {
3029 			disk->head_position = 0;
3030 			if (disk->rdev &&
3031 			    (disk->rdev->saved_raid_disk < 0))
3032 				conf->fullsync = 1;
3033 		}
3034 	}
3035 
3036 	err = -ENOMEM;
3037 	conf->thread = md_register_thread(raid1d, mddev, "raid1");
3038 	if (!conf->thread)
3039 		goto abort;
3040 
3041 	return conf;
3042 
3043  abort:
3044 	if (conf) {
3045 		mempool_exit(&conf->r1bio_pool);
3046 		kfree(conf->mirrors);
3047 		safe_put_page(conf->tmppage);
3048 		kfree(conf->poolinfo);
3049 		kfree(conf->nr_pending);
3050 		kfree(conf->nr_waiting);
3051 		kfree(conf->nr_queued);
3052 		kfree(conf->barrier);
3053 		bioset_exit(&conf->bio_split);
3054 		kfree(conf);
3055 	}
3056 	return ERR_PTR(err);
3057 }
3058 
3059 static void raid1_free(struct mddev *mddev, void *priv);
3060 static int raid1_run(struct mddev *mddev)
3061 {
3062 	struct r1conf *conf;
3063 	int i;
3064 	struct md_rdev *rdev;
3065 	int ret;
3066 	bool discard_supported = false;
3067 
3068 	if (mddev->level != 1) {
3069 		pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n",
3070 			mdname(mddev), mddev->level);
3071 		return -EIO;
3072 	}
3073 	if (mddev->reshape_position != MaxSector) {
3074 		pr_warn("md/raid1:%s: reshape_position set but not supported\n",
3075 			mdname(mddev));
3076 		return -EIO;
3077 	}
3078 	if (mddev_init_writes_pending(mddev) < 0)
3079 		return -ENOMEM;
3080 	/*
3081 	 * copy the already verified devices into our private RAID1
3082 	 * bookkeeping area. [whatever we allocate in run(),
3083 	 * should be freed in raid1_free()]
3084 	 */
3085 	if (mddev->private == NULL)
3086 		conf = setup_conf(mddev);
3087 	else
3088 		conf = mddev->private;
3089 
3090 	if (IS_ERR(conf))
3091 		return PTR_ERR(conf);
3092 
3093 	if (mddev->queue) {
3094 		blk_queue_max_write_same_sectors(mddev->queue, 0);
3095 		blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
3096 	}
3097 
3098 	rdev_for_each(rdev, mddev) {
3099 		if (!mddev->gendisk)
3100 			continue;
3101 		disk_stack_limits(mddev->gendisk, rdev->bdev,
3102 				  rdev->data_offset << 9);
3103 		if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3104 			discard_supported = true;
3105 	}
3106 
3107 	mddev->degraded = 0;
3108 	for (i = 0; i < conf->raid_disks; i++)
3109 		if (conf->mirrors[i].rdev == NULL ||
3110 		    !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
3111 		    test_bit(Faulty, &conf->mirrors[i].rdev->flags))
3112 			mddev->degraded++;
3113 	/*
3114 	 * RAID1 needs at least one disk in active
3115 	 */
3116 	if (conf->raid_disks - mddev->degraded < 1) {
3117 		ret = -EINVAL;
3118 		goto abort;
3119 	}
3120 
3121 	if (conf->raid_disks - mddev->degraded == 1)
3122 		mddev->recovery_cp = MaxSector;
3123 
3124 	if (mddev->recovery_cp != MaxSector)
3125 		pr_info("md/raid1:%s: not clean -- starting background reconstruction\n",
3126 			mdname(mddev));
3127 	pr_info("md/raid1:%s: active with %d out of %d mirrors\n",
3128 		mdname(mddev), mddev->raid_disks - mddev->degraded,
3129 		mddev->raid_disks);
3130 
3131 	/*
3132 	 * Ok, everything is just fine now
3133 	 */
3134 	mddev->thread = conf->thread;
3135 	conf->thread = NULL;
3136 	mddev->private = conf;
3137 	set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
3138 
3139 	md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
3140 
3141 	if (mddev->queue) {
3142 		if (discard_supported)
3143 			blk_queue_flag_set(QUEUE_FLAG_DISCARD,
3144 						mddev->queue);
3145 		else
3146 			blk_queue_flag_clear(QUEUE_FLAG_DISCARD,
3147 						  mddev->queue);
3148 	}
3149 
3150 	ret = md_integrity_register(mddev);
3151 	if (ret) {
3152 		md_unregister_thread(&mddev->thread);
3153 		goto abort;
3154 	}
3155 	return 0;
3156 
3157 abort:
3158 	raid1_free(mddev, conf);
3159 	return ret;
3160 }
3161 
3162 static void raid1_free(struct mddev *mddev, void *priv)
3163 {
3164 	struct r1conf *conf = priv;
3165 
3166 	mempool_exit(&conf->r1bio_pool);
3167 	kfree(conf->mirrors);
3168 	safe_put_page(conf->tmppage);
3169 	kfree(conf->poolinfo);
3170 	kfree(conf->nr_pending);
3171 	kfree(conf->nr_waiting);
3172 	kfree(conf->nr_queued);
3173 	kfree(conf->barrier);
3174 	bioset_exit(&conf->bio_split);
3175 	kfree(conf);
3176 }
3177 
3178 static int raid1_resize(struct mddev *mddev, sector_t sectors)
3179 {
3180 	/* no resync is happening, and there is enough space
3181 	 * on all devices, so we can resize.
3182 	 * We need to make sure resync covers any new space.
3183 	 * If the array is shrinking we should possibly wait until
3184 	 * any io in the removed space completes, but it hardly seems
3185 	 * worth it.
3186 	 */
3187 	sector_t newsize = raid1_size(mddev, sectors, 0);
3188 	if (mddev->external_size &&
3189 	    mddev->array_sectors > newsize)
3190 		return -EINVAL;
3191 	if (mddev->bitmap) {
3192 		int ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
3193 		if (ret)
3194 			return ret;
3195 	}
3196 	md_set_array_sectors(mddev, newsize);
3197 	if (sectors > mddev->dev_sectors &&
3198 	    mddev->recovery_cp > mddev->dev_sectors) {
3199 		mddev->recovery_cp = mddev->dev_sectors;
3200 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3201 	}
3202 	mddev->dev_sectors = sectors;
3203 	mddev->resync_max_sectors = sectors;
3204 	return 0;
3205 }
3206 
3207 static int raid1_reshape(struct mddev *mddev)
3208 {
3209 	/* We need to:
3210 	 * 1/ resize the r1bio_pool
3211 	 * 2/ resize conf->mirrors
3212 	 *
3213 	 * We allocate a new r1bio_pool if we can.
3214 	 * Then raise a device barrier and wait until all IO stops.
3215 	 * Then resize conf->mirrors and swap in the new r1bio pool.
3216 	 *
3217 	 * At the same time, we "pack" the devices so that all the missing
3218 	 * devices have the higher raid_disk numbers.
3219 	 */
3220 	mempool_t newpool, oldpool;
3221 	struct pool_info *newpoolinfo;
3222 	struct raid1_info *newmirrors;
3223 	struct r1conf *conf = mddev->private;
3224 	int cnt, raid_disks;
3225 	unsigned long flags;
3226 	int d, d2;
3227 	int ret;
3228 
3229 	memset(&newpool, 0, sizeof(newpool));
3230 	memset(&oldpool, 0, sizeof(oldpool));
3231 
3232 	/* Cannot change chunk_size, layout, or level */
3233 	if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3234 	    mddev->layout != mddev->new_layout ||
3235 	    mddev->level != mddev->new_level) {
3236 		mddev->new_chunk_sectors = mddev->chunk_sectors;
3237 		mddev->new_layout = mddev->layout;
3238 		mddev->new_level = mddev->level;
3239 		return -EINVAL;
3240 	}
3241 
3242 	if (!mddev_is_clustered(mddev))
3243 		md_allow_write(mddev);
3244 
3245 	raid_disks = mddev->raid_disks + mddev->delta_disks;
3246 
3247 	if (raid_disks < conf->raid_disks) {
3248 		cnt=0;
3249 		for (d= 0; d < conf->raid_disks; d++)
3250 			if (conf->mirrors[d].rdev)
3251 				cnt++;
3252 		if (cnt > raid_disks)
3253 			return -EBUSY;
3254 	}
3255 
3256 	newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3257 	if (!newpoolinfo)
3258 		return -ENOMEM;
3259 	newpoolinfo->mddev = mddev;
3260 	newpoolinfo->raid_disks = raid_disks * 2;
3261 
3262 	ret = mempool_init(&newpool, NR_RAID_BIOS, r1bio_pool_alloc,
3263 			   rbio_pool_free, newpoolinfo);
3264 	if (ret) {
3265 		kfree(newpoolinfo);
3266 		return ret;
3267 	}
3268 	newmirrors = kzalloc(array3_size(sizeof(struct raid1_info),
3269 					 raid_disks, 2),
3270 			     GFP_KERNEL);
3271 	if (!newmirrors) {
3272 		kfree(newpoolinfo);
3273 		mempool_exit(&newpool);
3274 		return -ENOMEM;
3275 	}
3276 
3277 	freeze_array(conf, 0);
3278 
3279 	/* ok, everything is stopped */
3280 	oldpool = conf->r1bio_pool;
3281 	conf->r1bio_pool = newpool;
3282 
3283 	for (d = d2 = 0; d < conf->raid_disks; d++) {
3284 		struct md_rdev *rdev = conf->mirrors[d].rdev;
3285 		if (rdev && rdev->raid_disk != d2) {
3286 			sysfs_unlink_rdev(mddev, rdev);
3287 			rdev->raid_disk = d2;
3288 			sysfs_unlink_rdev(mddev, rdev);
3289 			if (sysfs_link_rdev(mddev, rdev))
3290 				pr_warn("md/raid1:%s: cannot register rd%d\n",
3291 					mdname(mddev), rdev->raid_disk);
3292 		}
3293 		if (rdev)
3294 			newmirrors[d2++].rdev = rdev;
3295 	}
3296 	kfree(conf->mirrors);
3297 	conf->mirrors = newmirrors;
3298 	kfree(conf->poolinfo);
3299 	conf->poolinfo = newpoolinfo;
3300 
3301 	spin_lock_irqsave(&conf->device_lock, flags);
3302 	mddev->degraded += (raid_disks - conf->raid_disks);
3303 	spin_unlock_irqrestore(&conf->device_lock, flags);
3304 	conf->raid_disks = mddev->raid_disks = raid_disks;
3305 	mddev->delta_disks = 0;
3306 
3307 	unfreeze_array(conf);
3308 
3309 	set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3310 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3311 	md_wakeup_thread(mddev->thread);
3312 
3313 	mempool_exit(&oldpool);
3314 	return 0;
3315 }
3316 
3317 static void raid1_quiesce(struct mddev *mddev, int quiesce)
3318 {
3319 	struct r1conf *conf = mddev->private;
3320 
3321 	if (quiesce)
3322 		freeze_array(conf, 0);
3323 	else
3324 		unfreeze_array(conf);
3325 }
3326 
3327 static void *raid1_takeover(struct mddev *mddev)
3328 {
3329 	/* raid1 can take over:
3330 	 *  raid5 with 2 devices, any layout or chunk size
3331 	 */
3332 	if (mddev->level == 5 && mddev->raid_disks == 2) {
3333 		struct r1conf *conf;
3334 		mddev->new_level = 1;
3335 		mddev->new_layout = 0;
3336 		mddev->new_chunk_sectors = 0;
3337 		conf = setup_conf(mddev);
3338 		if (!IS_ERR(conf)) {
3339 			/* Array must appear to be quiesced */
3340 			conf->array_frozen = 1;
3341 			mddev_clear_unsupported_flags(mddev,
3342 				UNSUPPORTED_MDDEV_FLAGS);
3343 		}
3344 		return conf;
3345 	}
3346 	return ERR_PTR(-EINVAL);
3347 }
3348 
3349 static struct md_personality raid1_personality =
3350 {
3351 	.name		= "raid1",
3352 	.level		= 1,
3353 	.owner		= THIS_MODULE,
3354 	.make_request	= raid1_make_request,
3355 	.run		= raid1_run,
3356 	.free		= raid1_free,
3357 	.status		= raid1_status,
3358 	.error_handler	= raid1_error,
3359 	.hot_add_disk	= raid1_add_disk,
3360 	.hot_remove_disk= raid1_remove_disk,
3361 	.spare_active	= raid1_spare_active,
3362 	.sync_request	= raid1_sync_request,
3363 	.resize		= raid1_resize,
3364 	.size		= raid1_size,
3365 	.check_reshape	= raid1_reshape,
3366 	.quiesce	= raid1_quiesce,
3367 	.takeover	= raid1_takeover,
3368 };
3369 
3370 static int __init raid_init(void)
3371 {
3372 	return register_md_personality(&raid1_personality);
3373 }
3374 
3375 static void raid_exit(void)
3376 {
3377 	unregister_md_personality(&raid1_personality);
3378 }
3379 
3380 module_init(raid_init);
3381 module_exit(raid_exit);
3382 MODULE_LICENSE("GPL");
3383 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3384 MODULE_ALIAS("md-personality-3"); /* RAID1 */
3385 MODULE_ALIAS("md-raid1");
3386 MODULE_ALIAS("md-level-1");
3387 
3388 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
3389