1 /* 2 * raid1.c : Multiple Devices driver for Linux 3 * 4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat 5 * 6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman 7 * 8 * RAID-1 management functions. 9 * 10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000 11 * 12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk> 13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au> 14 * 15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support 16 * bitmapped intelligence in resync: 17 * 18 * - bitmap marked during normal i/o 19 * - bitmap used to skip nondirty blocks during sync 20 * 21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology: 22 * - persistent bitmap code 23 * 24 * This program is free software; you can redistribute it and/or modify 25 * it under the terms of the GNU General Public License as published by 26 * the Free Software Foundation; either version 2, or (at your option) 27 * any later version. 28 * 29 * You should have received a copy of the GNU General Public License 30 * (for example /usr/src/linux/COPYING); if not, write to the Free 31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 32 */ 33 34 #include <linux/slab.h> 35 #include <linux/delay.h> 36 #include <linux/blkdev.h> 37 #include <linux/module.h> 38 #include <linux/seq_file.h> 39 #include <linux/ratelimit.h> 40 41 #include <trace/events/block.h> 42 43 #include "md.h" 44 #include "raid1.h" 45 #include "md-bitmap.h" 46 47 #define UNSUPPORTED_MDDEV_FLAGS \ 48 ((1L << MD_HAS_JOURNAL) | \ 49 (1L << MD_JOURNAL_CLEAN) | \ 50 (1L << MD_HAS_PPL) | \ 51 (1L << MD_HAS_MULTIPLE_PPLS)) 52 53 /* 54 * Number of guaranteed r1bios in case of extreme VM load: 55 */ 56 #define NR_RAID1_BIOS 256 57 58 /* when we get a read error on a read-only array, we redirect to another 59 * device without failing the first device, or trying to over-write to 60 * correct the read error. To keep track of bad blocks on a per-bio 61 * level, we store IO_BLOCKED in the appropriate 'bios' pointer 62 */ 63 #define IO_BLOCKED ((struct bio *)1) 64 /* When we successfully write to a known bad-block, we need to remove the 65 * bad-block marking which must be done from process context. So we record 66 * the success by setting devs[n].bio to IO_MADE_GOOD 67 */ 68 #define IO_MADE_GOOD ((struct bio *)2) 69 70 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2) 71 72 /* When there are this many requests queue to be written by 73 * the raid1 thread, we become 'congested' to provide back-pressure 74 * for writeback. 75 */ 76 static int max_queued_requests = 1024; 77 78 static void allow_barrier(struct r1conf *conf, sector_t sector_nr); 79 static void lower_barrier(struct r1conf *conf, sector_t sector_nr); 80 81 #define raid1_log(md, fmt, args...) \ 82 do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid1 " fmt, ##args); } while (0) 83 84 #include "raid1-10.c" 85 86 /* 87 * for resync bio, r1bio pointer can be retrieved from the per-bio 88 * 'struct resync_pages'. 89 */ 90 static inline struct r1bio *get_resync_r1bio(struct bio *bio) 91 { 92 return get_resync_pages(bio)->raid_bio; 93 } 94 95 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data) 96 { 97 struct pool_info *pi = data; 98 int size = offsetof(struct r1bio, bios[pi->raid_disks]); 99 100 /* allocate a r1bio with room for raid_disks entries in the bios array */ 101 return kzalloc(size, gfp_flags); 102 } 103 104 static void r1bio_pool_free(void *r1_bio, void *data) 105 { 106 kfree(r1_bio); 107 } 108 109 #define RESYNC_DEPTH 32 110 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9) 111 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH) 112 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9) 113 #define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW) 114 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9) 115 116 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data) 117 { 118 struct pool_info *pi = data; 119 struct r1bio *r1_bio; 120 struct bio *bio; 121 int need_pages; 122 int j; 123 struct resync_pages *rps; 124 125 r1_bio = r1bio_pool_alloc(gfp_flags, pi); 126 if (!r1_bio) 127 return NULL; 128 129 rps = kmalloc(sizeof(struct resync_pages) * pi->raid_disks, 130 gfp_flags); 131 if (!rps) 132 goto out_free_r1bio; 133 134 /* 135 * Allocate bios : 1 for reading, n-1 for writing 136 */ 137 for (j = pi->raid_disks ; j-- ; ) { 138 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES); 139 if (!bio) 140 goto out_free_bio; 141 r1_bio->bios[j] = bio; 142 } 143 /* 144 * Allocate RESYNC_PAGES data pages and attach them to 145 * the first bio. 146 * If this is a user-requested check/repair, allocate 147 * RESYNC_PAGES for each bio. 148 */ 149 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) 150 need_pages = pi->raid_disks; 151 else 152 need_pages = 1; 153 for (j = 0; j < pi->raid_disks; j++) { 154 struct resync_pages *rp = &rps[j]; 155 156 bio = r1_bio->bios[j]; 157 158 if (j < need_pages) { 159 if (resync_alloc_pages(rp, gfp_flags)) 160 goto out_free_pages; 161 } else { 162 memcpy(rp, &rps[0], sizeof(*rp)); 163 resync_get_all_pages(rp); 164 } 165 166 rp->raid_bio = r1_bio; 167 bio->bi_private = rp; 168 } 169 170 r1_bio->master_bio = NULL; 171 172 return r1_bio; 173 174 out_free_pages: 175 while (--j >= 0) 176 resync_free_pages(&rps[j]); 177 178 out_free_bio: 179 while (++j < pi->raid_disks) 180 bio_put(r1_bio->bios[j]); 181 kfree(rps); 182 183 out_free_r1bio: 184 r1bio_pool_free(r1_bio, data); 185 return NULL; 186 } 187 188 static void r1buf_pool_free(void *__r1_bio, void *data) 189 { 190 struct pool_info *pi = data; 191 int i; 192 struct r1bio *r1bio = __r1_bio; 193 struct resync_pages *rp = NULL; 194 195 for (i = pi->raid_disks; i--; ) { 196 rp = get_resync_pages(r1bio->bios[i]); 197 resync_free_pages(rp); 198 bio_put(r1bio->bios[i]); 199 } 200 201 /* resync pages array stored in the 1st bio's .bi_private */ 202 kfree(rp); 203 204 r1bio_pool_free(r1bio, data); 205 } 206 207 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio) 208 { 209 int i; 210 211 for (i = 0; i < conf->raid_disks * 2; i++) { 212 struct bio **bio = r1_bio->bios + i; 213 if (!BIO_SPECIAL(*bio)) 214 bio_put(*bio); 215 *bio = NULL; 216 } 217 } 218 219 static void free_r1bio(struct r1bio *r1_bio) 220 { 221 struct r1conf *conf = r1_bio->mddev->private; 222 223 put_all_bios(conf, r1_bio); 224 mempool_free(r1_bio, conf->r1bio_pool); 225 } 226 227 static void put_buf(struct r1bio *r1_bio) 228 { 229 struct r1conf *conf = r1_bio->mddev->private; 230 sector_t sect = r1_bio->sector; 231 int i; 232 233 for (i = 0; i < conf->raid_disks * 2; i++) { 234 struct bio *bio = r1_bio->bios[i]; 235 if (bio->bi_end_io) 236 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev); 237 } 238 239 mempool_free(r1_bio, conf->r1buf_pool); 240 241 lower_barrier(conf, sect); 242 } 243 244 static void reschedule_retry(struct r1bio *r1_bio) 245 { 246 unsigned long flags; 247 struct mddev *mddev = r1_bio->mddev; 248 struct r1conf *conf = mddev->private; 249 int idx; 250 251 idx = sector_to_idx(r1_bio->sector); 252 spin_lock_irqsave(&conf->device_lock, flags); 253 list_add(&r1_bio->retry_list, &conf->retry_list); 254 atomic_inc(&conf->nr_queued[idx]); 255 spin_unlock_irqrestore(&conf->device_lock, flags); 256 257 wake_up(&conf->wait_barrier); 258 md_wakeup_thread(mddev->thread); 259 } 260 261 /* 262 * raid_end_bio_io() is called when we have finished servicing a mirrored 263 * operation and are ready to return a success/failure code to the buffer 264 * cache layer. 265 */ 266 static void call_bio_endio(struct r1bio *r1_bio) 267 { 268 struct bio *bio = r1_bio->master_bio; 269 struct r1conf *conf = r1_bio->mddev->private; 270 271 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) 272 bio->bi_status = BLK_STS_IOERR; 273 274 bio_endio(bio); 275 /* 276 * Wake up any possible resync thread that waits for the device 277 * to go idle. 278 */ 279 allow_barrier(conf, r1_bio->sector); 280 } 281 282 static void raid_end_bio_io(struct r1bio *r1_bio) 283 { 284 struct bio *bio = r1_bio->master_bio; 285 286 /* if nobody has done the final endio yet, do it now */ 287 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) { 288 pr_debug("raid1: sync end %s on sectors %llu-%llu\n", 289 (bio_data_dir(bio) == WRITE) ? "write" : "read", 290 (unsigned long long) bio->bi_iter.bi_sector, 291 (unsigned long long) bio_end_sector(bio) - 1); 292 293 call_bio_endio(r1_bio); 294 } 295 free_r1bio(r1_bio); 296 } 297 298 /* 299 * Update disk head position estimator based on IRQ completion info. 300 */ 301 static inline void update_head_pos(int disk, struct r1bio *r1_bio) 302 { 303 struct r1conf *conf = r1_bio->mddev->private; 304 305 conf->mirrors[disk].head_position = 306 r1_bio->sector + (r1_bio->sectors); 307 } 308 309 /* 310 * Find the disk number which triggered given bio 311 */ 312 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio) 313 { 314 int mirror; 315 struct r1conf *conf = r1_bio->mddev->private; 316 int raid_disks = conf->raid_disks; 317 318 for (mirror = 0; mirror < raid_disks * 2; mirror++) 319 if (r1_bio->bios[mirror] == bio) 320 break; 321 322 BUG_ON(mirror == raid_disks * 2); 323 update_head_pos(mirror, r1_bio); 324 325 return mirror; 326 } 327 328 static void raid1_end_read_request(struct bio *bio) 329 { 330 int uptodate = !bio->bi_status; 331 struct r1bio *r1_bio = bio->bi_private; 332 struct r1conf *conf = r1_bio->mddev->private; 333 struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev; 334 335 /* 336 * this branch is our 'one mirror IO has finished' event handler: 337 */ 338 update_head_pos(r1_bio->read_disk, r1_bio); 339 340 if (uptodate) 341 set_bit(R1BIO_Uptodate, &r1_bio->state); 342 else if (test_bit(FailFast, &rdev->flags) && 343 test_bit(R1BIO_FailFast, &r1_bio->state)) 344 /* This was a fail-fast read so we definitely 345 * want to retry */ 346 ; 347 else { 348 /* If all other devices have failed, we want to return 349 * the error upwards rather than fail the last device. 350 * Here we redefine "uptodate" to mean "Don't want to retry" 351 */ 352 unsigned long flags; 353 spin_lock_irqsave(&conf->device_lock, flags); 354 if (r1_bio->mddev->degraded == conf->raid_disks || 355 (r1_bio->mddev->degraded == conf->raid_disks-1 && 356 test_bit(In_sync, &rdev->flags))) 357 uptodate = 1; 358 spin_unlock_irqrestore(&conf->device_lock, flags); 359 } 360 361 if (uptodate) { 362 raid_end_bio_io(r1_bio); 363 rdev_dec_pending(rdev, conf->mddev); 364 } else { 365 /* 366 * oops, read error: 367 */ 368 char b[BDEVNAME_SIZE]; 369 pr_err_ratelimited("md/raid1:%s: %s: rescheduling sector %llu\n", 370 mdname(conf->mddev), 371 bdevname(rdev->bdev, b), 372 (unsigned long long)r1_bio->sector); 373 set_bit(R1BIO_ReadError, &r1_bio->state); 374 reschedule_retry(r1_bio); 375 /* don't drop the reference on read_disk yet */ 376 } 377 } 378 379 static void close_write(struct r1bio *r1_bio) 380 { 381 /* it really is the end of this request */ 382 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) { 383 bio_free_pages(r1_bio->behind_master_bio); 384 bio_put(r1_bio->behind_master_bio); 385 r1_bio->behind_master_bio = NULL; 386 } 387 /* clear the bitmap if all writes complete successfully */ 388 bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector, 389 r1_bio->sectors, 390 !test_bit(R1BIO_Degraded, &r1_bio->state), 391 test_bit(R1BIO_BehindIO, &r1_bio->state)); 392 md_write_end(r1_bio->mddev); 393 } 394 395 static void r1_bio_write_done(struct r1bio *r1_bio) 396 { 397 if (!atomic_dec_and_test(&r1_bio->remaining)) 398 return; 399 400 if (test_bit(R1BIO_WriteError, &r1_bio->state)) 401 reschedule_retry(r1_bio); 402 else { 403 close_write(r1_bio); 404 if (test_bit(R1BIO_MadeGood, &r1_bio->state)) 405 reschedule_retry(r1_bio); 406 else 407 raid_end_bio_io(r1_bio); 408 } 409 } 410 411 static void raid1_end_write_request(struct bio *bio) 412 { 413 struct r1bio *r1_bio = bio->bi_private; 414 int behind = test_bit(R1BIO_BehindIO, &r1_bio->state); 415 struct r1conf *conf = r1_bio->mddev->private; 416 struct bio *to_put = NULL; 417 int mirror = find_bio_disk(r1_bio, bio); 418 struct md_rdev *rdev = conf->mirrors[mirror].rdev; 419 bool discard_error; 420 421 discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD; 422 423 /* 424 * 'one mirror IO has finished' event handler: 425 */ 426 if (bio->bi_status && !discard_error) { 427 set_bit(WriteErrorSeen, &rdev->flags); 428 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 429 set_bit(MD_RECOVERY_NEEDED, & 430 conf->mddev->recovery); 431 432 if (test_bit(FailFast, &rdev->flags) && 433 (bio->bi_opf & MD_FAILFAST) && 434 /* We never try FailFast to WriteMostly devices */ 435 !test_bit(WriteMostly, &rdev->flags)) { 436 md_error(r1_bio->mddev, rdev); 437 if (!test_bit(Faulty, &rdev->flags)) 438 /* This is the only remaining device, 439 * We need to retry the write without 440 * FailFast 441 */ 442 set_bit(R1BIO_WriteError, &r1_bio->state); 443 else { 444 /* Finished with this branch */ 445 r1_bio->bios[mirror] = NULL; 446 to_put = bio; 447 } 448 } else 449 set_bit(R1BIO_WriteError, &r1_bio->state); 450 } else { 451 /* 452 * Set R1BIO_Uptodate in our master bio, so that we 453 * will return a good error code for to the higher 454 * levels even if IO on some other mirrored buffer 455 * fails. 456 * 457 * The 'master' represents the composite IO operation 458 * to user-side. So if something waits for IO, then it 459 * will wait for the 'master' bio. 460 */ 461 sector_t first_bad; 462 int bad_sectors; 463 464 r1_bio->bios[mirror] = NULL; 465 to_put = bio; 466 /* 467 * Do not set R1BIO_Uptodate if the current device is 468 * rebuilding or Faulty. This is because we cannot use 469 * such device for properly reading the data back (we could 470 * potentially use it, if the current write would have felt 471 * before rdev->recovery_offset, but for simplicity we don't 472 * check this here. 473 */ 474 if (test_bit(In_sync, &rdev->flags) && 475 !test_bit(Faulty, &rdev->flags)) 476 set_bit(R1BIO_Uptodate, &r1_bio->state); 477 478 /* Maybe we can clear some bad blocks. */ 479 if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors, 480 &first_bad, &bad_sectors) && !discard_error) { 481 r1_bio->bios[mirror] = IO_MADE_GOOD; 482 set_bit(R1BIO_MadeGood, &r1_bio->state); 483 } 484 } 485 486 if (behind) { 487 if (test_bit(WriteMostly, &rdev->flags)) 488 atomic_dec(&r1_bio->behind_remaining); 489 490 /* 491 * In behind mode, we ACK the master bio once the I/O 492 * has safely reached all non-writemostly 493 * disks. Setting the Returned bit ensures that this 494 * gets done only once -- we don't ever want to return 495 * -EIO here, instead we'll wait 496 */ 497 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) && 498 test_bit(R1BIO_Uptodate, &r1_bio->state)) { 499 /* Maybe we can return now */ 500 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) { 501 struct bio *mbio = r1_bio->master_bio; 502 pr_debug("raid1: behind end write sectors" 503 " %llu-%llu\n", 504 (unsigned long long) mbio->bi_iter.bi_sector, 505 (unsigned long long) bio_end_sector(mbio) - 1); 506 call_bio_endio(r1_bio); 507 } 508 } 509 } 510 if (r1_bio->bios[mirror] == NULL) 511 rdev_dec_pending(rdev, conf->mddev); 512 513 /* 514 * Let's see if all mirrored write operations have finished 515 * already. 516 */ 517 r1_bio_write_done(r1_bio); 518 519 if (to_put) 520 bio_put(to_put); 521 } 522 523 static sector_t align_to_barrier_unit_end(sector_t start_sector, 524 sector_t sectors) 525 { 526 sector_t len; 527 528 WARN_ON(sectors == 0); 529 /* 530 * len is the number of sectors from start_sector to end of the 531 * barrier unit which start_sector belongs to. 532 */ 533 len = round_up(start_sector + 1, BARRIER_UNIT_SECTOR_SIZE) - 534 start_sector; 535 536 if (len > sectors) 537 len = sectors; 538 539 return len; 540 } 541 542 /* 543 * This routine returns the disk from which the requested read should 544 * be done. There is a per-array 'next expected sequential IO' sector 545 * number - if this matches on the next IO then we use the last disk. 546 * There is also a per-disk 'last know head position' sector that is 547 * maintained from IRQ contexts, both the normal and the resync IO 548 * completion handlers update this position correctly. If there is no 549 * perfect sequential match then we pick the disk whose head is closest. 550 * 551 * If there are 2 mirrors in the same 2 devices, performance degrades 552 * because position is mirror, not device based. 553 * 554 * The rdev for the device selected will have nr_pending incremented. 555 */ 556 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors) 557 { 558 const sector_t this_sector = r1_bio->sector; 559 int sectors; 560 int best_good_sectors; 561 int best_disk, best_dist_disk, best_pending_disk; 562 int has_nonrot_disk; 563 int disk; 564 sector_t best_dist; 565 unsigned int min_pending; 566 struct md_rdev *rdev; 567 int choose_first; 568 int choose_next_idle; 569 570 rcu_read_lock(); 571 /* 572 * Check if we can balance. We can balance on the whole 573 * device if no resync is going on, or below the resync window. 574 * We take the first readable disk when above the resync window. 575 */ 576 retry: 577 sectors = r1_bio->sectors; 578 best_disk = -1; 579 best_dist_disk = -1; 580 best_dist = MaxSector; 581 best_pending_disk = -1; 582 min_pending = UINT_MAX; 583 best_good_sectors = 0; 584 has_nonrot_disk = 0; 585 choose_next_idle = 0; 586 clear_bit(R1BIO_FailFast, &r1_bio->state); 587 588 if ((conf->mddev->recovery_cp < this_sector + sectors) || 589 (mddev_is_clustered(conf->mddev) && 590 md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector, 591 this_sector + sectors))) 592 choose_first = 1; 593 else 594 choose_first = 0; 595 596 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) { 597 sector_t dist; 598 sector_t first_bad; 599 int bad_sectors; 600 unsigned int pending; 601 bool nonrot; 602 603 rdev = rcu_dereference(conf->mirrors[disk].rdev); 604 if (r1_bio->bios[disk] == IO_BLOCKED 605 || rdev == NULL 606 || test_bit(Faulty, &rdev->flags)) 607 continue; 608 if (!test_bit(In_sync, &rdev->flags) && 609 rdev->recovery_offset < this_sector + sectors) 610 continue; 611 if (test_bit(WriteMostly, &rdev->flags)) { 612 /* Don't balance among write-mostly, just 613 * use the first as a last resort */ 614 if (best_dist_disk < 0) { 615 if (is_badblock(rdev, this_sector, sectors, 616 &first_bad, &bad_sectors)) { 617 if (first_bad <= this_sector) 618 /* Cannot use this */ 619 continue; 620 best_good_sectors = first_bad - this_sector; 621 } else 622 best_good_sectors = sectors; 623 best_dist_disk = disk; 624 best_pending_disk = disk; 625 } 626 continue; 627 } 628 /* This is a reasonable device to use. It might 629 * even be best. 630 */ 631 if (is_badblock(rdev, this_sector, sectors, 632 &first_bad, &bad_sectors)) { 633 if (best_dist < MaxSector) 634 /* already have a better device */ 635 continue; 636 if (first_bad <= this_sector) { 637 /* cannot read here. If this is the 'primary' 638 * device, then we must not read beyond 639 * bad_sectors from another device.. 640 */ 641 bad_sectors -= (this_sector - first_bad); 642 if (choose_first && sectors > bad_sectors) 643 sectors = bad_sectors; 644 if (best_good_sectors > sectors) 645 best_good_sectors = sectors; 646 647 } else { 648 sector_t good_sectors = first_bad - this_sector; 649 if (good_sectors > best_good_sectors) { 650 best_good_sectors = good_sectors; 651 best_disk = disk; 652 } 653 if (choose_first) 654 break; 655 } 656 continue; 657 } else { 658 if ((sectors > best_good_sectors) && (best_disk >= 0)) 659 best_disk = -1; 660 best_good_sectors = sectors; 661 } 662 663 if (best_disk >= 0) 664 /* At least two disks to choose from so failfast is OK */ 665 set_bit(R1BIO_FailFast, &r1_bio->state); 666 667 nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev)); 668 has_nonrot_disk |= nonrot; 669 pending = atomic_read(&rdev->nr_pending); 670 dist = abs(this_sector - conf->mirrors[disk].head_position); 671 if (choose_first) { 672 best_disk = disk; 673 break; 674 } 675 /* Don't change to another disk for sequential reads */ 676 if (conf->mirrors[disk].next_seq_sect == this_sector 677 || dist == 0) { 678 int opt_iosize = bdev_io_opt(rdev->bdev) >> 9; 679 struct raid1_info *mirror = &conf->mirrors[disk]; 680 681 best_disk = disk; 682 /* 683 * If buffered sequential IO size exceeds optimal 684 * iosize, check if there is idle disk. If yes, choose 685 * the idle disk. read_balance could already choose an 686 * idle disk before noticing it's a sequential IO in 687 * this disk. This doesn't matter because this disk 688 * will idle, next time it will be utilized after the 689 * first disk has IO size exceeds optimal iosize. In 690 * this way, iosize of the first disk will be optimal 691 * iosize at least. iosize of the second disk might be 692 * small, but not a big deal since when the second disk 693 * starts IO, the first disk is likely still busy. 694 */ 695 if (nonrot && opt_iosize > 0 && 696 mirror->seq_start != MaxSector && 697 mirror->next_seq_sect > opt_iosize && 698 mirror->next_seq_sect - opt_iosize >= 699 mirror->seq_start) { 700 choose_next_idle = 1; 701 continue; 702 } 703 break; 704 } 705 706 if (choose_next_idle) 707 continue; 708 709 if (min_pending > pending) { 710 min_pending = pending; 711 best_pending_disk = disk; 712 } 713 714 if (dist < best_dist) { 715 best_dist = dist; 716 best_dist_disk = disk; 717 } 718 } 719 720 /* 721 * If all disks are rotational, choose the closest disk. If any disk is 722 * non-rotational, choose the disk with less pending request even the 723 * disk is rotational, which might/might not be optimal for raids with 724 * mixed ratation/non-rotational disks depending on workload. 725 */ 726 if (best_disk == -1) { 727 if (has_nonrot_disk || min_pending == 0) 728 best_disk = best_pending_disk; 729 else 730 best_disk = best_dist_disk; 731 } 732 733 if (best_disk >= 0) { 734 rdev = rcu_dereference(conf->mirrors[best_disk].rdev); 735 if (!rdev) 736 goto retry; 737 atomic_inc(&rdev->nr_pending); 738 sectors = best_good_sectors; 739 740 if (conf->mirrors[best_disk].next_seq_sect != this_sector) 741 conf->mirrors[best_disk].seq_start = this_sector; 742 743 conf->mirrors[best_disk].next_seq_sect = this_sector + sectors; 744 } 745 rcu_read_unlock(); 746 *max_sectors = sectors; 747 748 return best_disk; 749 } 750 751 static int raid1_congested(struct mddev *mddev, int bits) 752 { 753 struct r1conf *conf = mddev->private; 754 int i, ret = 0; 755 756 if ((bits & (1 << WB_async_congested)) && 757 conf->pending_count >= max_queued_requests) 758 return 1; 759 760 rcu_read_lock(); 761 for (i = 0; i < conf->raid_disks * 2; i++) { 762 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 763 if (rdev && !test_bit(Faulty, &rdev->flags)) { 764 struct request_queue *q = bdev_get_queue(rdev->bdev); 765 766 BUG_ON(!q); 767 768 /* Note the '|| 1' - when read_balance prefers 769 * non-congested targets, it can be removed 770 */ 771 if ((bits & (1 << WB_async_congested)) || 1) 772 ret |= bdi_congested(q->backing_dev_info, bits); 773 else 774 ret &= bdi_congested(q->backing_dev_info, bits); 775 } 776 } 777 rcu_read_unlock(); 778 return ret; 779 } 780 781 static void flush_bio_list(struct r1conf *conf, struct bio *bio) 782 { 783 /* flush any pending bitmap writes to disk before proceeding w/ I/O */ 784 bitmap_unplug(conf->mddev->bitmap); 785 wake_up(&conf->wait_barrier); 786 787 while (bio) { /* submit pending writes */ 788 struct bio *next = bio->bi_next; 789 struct md_rdev *rdev = (void *)bio->bi_disk; 790 bio->bi_next = NULL; 791 bio_set_dev(bio, rdev->bdev); 792 if (test_bit(Faulty, &rdev->flags)) { 793 bio_io_error(bio); 794 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) && 795 !blk_queue_discard(bio->bi_disk->queue))) 796 /* Just ignore it */ 797 bio_endio(bio); 798 else 799 generic_make_request(bio); 800 bio = next; 801 } 802 } 803 804 static void flush_pending_writes(struct r1conf *conf) 805 { 806 /* Any writes that have been queued but are awaiting 807 * bitmap updates get flushed here. 808 */ 809 spin_lock_irq(&conf->device_lock); 810 811 if (conf->pending_bio_list.head) { 812 struct blk_plug plug; 813 struct bio *bio; 814 815 bio = bio_list_get(&conf->pending_bio_list); 816 conf->pending_count = 0; 817 spin_unlock_irq(&conf->device_lock); 818 819 /* 820 * As this is called in a wait_event() loop (see freeze_array), 821 * current->state might be TASK_UNINTERRUPTIBLE which will 822 * cause a warning when we prepare to wait again. As it is 823 * rare that this path is taken, it is perfectly safe to force 824 * us to go around the wait_event() loop again, so the warning 825 * is a false-positive. Silence the warning by resetting 826 * thread state 827 */ 828 __set_current_state(TASK_RUNNING); 829 blk_start_plug(&plug); 830 flush_bio_list(conf, bio); 831 blk_finish_plug(&plug); 832 } else 833 spin_unlock_irq(&conf->device_lock); 834 } 835 836 /* Barriers.... 837 * Sometimes we need to suspend IO while we do something else, 838 * either some resync/recovery, or reconfigure the array. 839 * To do this we raise a 'barrier'. 840 * The 'barrier' is a counter that can be raised multiple times 841 * to count how many activities are happening which preclude 842 * normal IO. 843 * We can only raise the barrier if there is no pending IO. 844 * i.e. if nr_pending == 0. 845 * We choose only to raise the barrier if no-one is waiting for the 846 * barrier to go down. This means that as soon as an IO request 847 * is ready, no other operations which require a barrier will start 848 * until the IO request has had a chance. 849 * 850 * So: regular IO calls 'wait_barrier'. When that returns there 851 * is no backgroup IO happening, It must arrange to call 852 * allow_barrier when it has finished its IO. 853 * backgroup IO calls must call raise_barrier. Once that returns 854 * there is no normal IO happeing. It must arrange to call 855 * lower_barrier when the particular background IO completes. 856 */ 857 static void raise_barrier(struct r1conf *conf, sector_t sector_nr) 858 { 859 int idx = sector_to_idx(sector_nr); 860 861 spin_lock_irq(&conf->resync_lock); 862 863 /* Wait until no block IO is waiting */ 864 wait_event_lock_irq(conf->wait_barrier, 865 !atomic_read(&conf->nr_waiting[idx]), 866 conf->resync_lock); 867 868 /* block any new IO from starting */ 869 atomic_inc(&conf->barrier[idx]); 870 /* 871 * In raise_barrier() we firstly increase conf->barrier[idx] then 872 * check conf->nr_pending[idx]. In _wait_barrier() we firstly 873 * increase conf->nr_pending[idx] then check conf->barrier[idx]. 874 * A memory barrier here to make sure conf->nr_pending[idx] won't 875 * be fetched before conf->barrier[idx] is increased. Otherwise 876 * there will be a race between raise_barrier() and _wait_barrier(). 877 */ 878 smp_mb__after_atomic(); 879 880 /* For these conditions we must wait: 881 * A: while the array is in frozen state 882 * B: while conf->nr_pending[idx] is not 0, meaning regular I/O 883 * existing in corresponding I/O barrier bucket. 884 * C: while conf->barrier[idx] >= RESYNC_DEPTH, meaning reaches 885 * max resync count which allowed on current I/O barrier bucket. 886 */ 887 wait_event_lock_irq(conf->wait_barrier, 888 !conf->array_frozen && 889 !atomic_read(&conf->nr_pending[idx]) && 890 atomic_read(&conf->barrier[idx]) < RESYNC_DEPTH, 891 conf->resync_lock); 892 893 atomic_inc(&conf->nr_sync_pending); 894 spin_unlock_irq(&conf->resync_lock); 895 } 896 897 static void lower_barrier(struct r1conf *conf, sector_t sector_nr) 898 { 899 int idx = sector_to_idx(sector_nr); 900 901 BUG_ON(atomic_read(&conf->barrier[idx]) <= 0); 902 903 atomic_dec(&conf->barrier[idx]); 904 atomic_dec(&conf->nr_sync_pending); 905 wake_up(&conf->wait_barrier); 906 } 907 908 static void _wait_barrier(struct r1conf *conf, int idx) 909 { 910 /* 911 * We need to increase conf->nr_pending[idx] very early here, 912 * then raise_barrier() can be blocked when it waits for 913 * conf->nr_pending[idx] to be 0. Then we can avoid holding 914 * conf->resync_lock when there is no barrier raised in same 915 * barrier unit bucket. Also if the array is frozen, I/O 916 * should be blocked until array is unfrozen. 917 */ 918 atomic_inc(&conf->nr_pending[idx]); 919 /* 920 * In _wait_barrier() we firstly increase conf->nr_pending[idx], then 921 * check conf->barrier[idx]. In raise_barrier() we firstly increase 922 * conf->barrier[idx], then check conf->nr_pending[idx]. A memory 923 * barrier is necessary here to make sure conf->barrier[idx] won't be 924 * fetched before conf->nr_pending[idx] is increased. Otherwise there 925 * will be a race between _wait_barrier() and raise_barrier(). 926 */ 927 smp_mb__after_atomic(); 928 929 /* 930 * Don't worry about checking two atomic_t variables at same time 931 * here. If during we check conf->barrier[idx], the array is 932 * frozen (conf->array_frozen is 1), and chonf->barrier[idx] is 933 * 0, it is safe to return and make the I/O continue. Because the 934 * array is frozen, all I/O returned here will eventually complete 935 * or be queued, no race will happen. See code comment in 936 * frozen_array(). 937 */ 938 if (!READ_ONCE(conf->array_frozen) && 939 !atomic_read(&conf->barrier[idx])) 940 return; 941 942 /* 943 * After holding conf->resync_lock, conf->nr_pending[idx] 944 * should be decreased before waiting for barrier to drop. 945 * Otherwise, we may encounter a race condition because 946 * raise_barrer() might be waiting for conf->nr_pending[idx] 947 * to be 0 at same time. 948 */ 949 spin_lock_irq(&conf->resync_lock); 950 atomic_inc(&conf->nr_waiting[idx]); 951 atomic_dec(&conf->nr_pending[idx]); 952 /* 953 * In case freeze_array() is waiting for 954 * get_unqueued_pending() == extra 955 */ 956 wake_up(&conf->wait_barrier); 957 /* Wait for the barrier in same barrier unit bucket to drop. */ 958 wait_event_lock_irq(conf->wait_barrier, 959 !conf->array_frozen && 960 !atomic_read(&conf->barrier[idx]), 961 conf->resync_lock); 962 atomic_inc(&conf->nr_pending[idx]); 963 atomic_dec(&conf->nr_waiting[idx]); 964 spin_unlock_irq(&conf->resync_lock); 965 } 966 967 static void wait_read_barrier(struct r1conf *conf, sector_t sector_nr) 968 { 969 int idx = sector_to_idx(sector_nr); 970 971 /* 972 * Very similar to _wait_barrier(). The difference is, for read 973 * I/O we don't need wait for sync I/O, but if the whole array 974 * is frozen, the read I/O still has to wait until the array is 975 * unfrozen. Since there is no ordering requirement with 976 * conf->barrier[idx] here, memory barrier is unnecessary as well. 977 */ 978 atomic_inc(&conf->nr_pending[idx]); 979 980 if (!READ_ONCE(conf->array_frozen)) 981 return; 982 983 spin_lock_irq(&conf->resync_lock); 984 atomic_inc(&conf->nr_waiting[idx]); 985 atomic_dec(&conf->nr_pending[idx]); 986 /* 987 * In case freeze_array() is waiting for 988 * get_unqueued_pending() == extra 989 */ 990 wake_up(&conf->wait_barrier); 991 /* Wait for array to be unfrozen */ 992 wait_event_lock_irq(conf->wait_barrier, 993 !conf->array_frozen, 994 conf->resync_lock); 995 atomic_inc(&conf->nr_pending[idx]); 996 atomic_dec(&conf->nr_waiting[idx]); 997 spin_unlock_irq(&conf->resync_lock); 998 } 999 1000 static void wait_barrier(struct r1conf *conf, sector_t sector_nr) 1001 { 1002 int idx = sector_to_idx(sector_nr); 1003 1004 _wait_barrier(conf, idx); 1005 } 1006 1007 static void _allow_barrier(struct r1conf *conf, int idx) 1008 { 1009 atomic_dec(&conf->nr_pending[idx]); 1010 wake_up(&conf->wait_barrier); 1011 } 1012 1013 static void allow_barrier(struct r1conf *conf, sector_t sector_nr) 1014 { 1015 int idx = sector_to_idx(sector_nr); 1016 1017 _allow_barrier(conf, idx); 1018 } 1019 1020 /* conf->resync_lock should be held */ 1021 static int get_unqueued_pending(struct r1conf *conf) 1022 { 1023 int idx, ret; 1024 1025 ret = atomic_read(&conf->nr_sync_pending); 1026 for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++) 1027 ret += atomic_read(&conf->nr_pending[idx]) - 1028 atomic_read(&conf->nr_queued[idx]); 1029 1030 return ret; 1031 } 1032 1033 static void freeze_array(struct r1conf *conf, int extra) 1034 { 1035 /* Stop sync I/O and normal I/O and wait for everything to 1036 * go quiet. 1037 * This is called in two situations: 1038 * 1) management command handlers (reshape, remove disk, quiesce). 1039 * 2) one normal I/O request failed. 1040 1041 * After array_frozen is set to 1, new sync IO will be blocked at 1042 * raise_barrier(), and new normal I/O will blocked at _wait_barrier() 1043 * or wait_read_barrier(). The flying I/Os will either complete or be 1044 * queued. When everything goes quite, there are only queued I/Os left. 1045 1046 * Every flying I/O contributes to a conf->nr_pending[idx], idx is the 1047 * barrier bucket index which this I/O request hits. When all sync and 1048 * normal I/O are queued, sum of all conf->nr_pending[] will match sum 1049 * of all conf->nr_queued[]. But normal I/O failure is an exception, 1050 * in handle_read_error(), we may call freeze_array() before trying to 1051 * fix the read error. In this case, the error read I/O is not queued, 1052 * so get_unqueued_pending() == 1. 1053 * 1054 * Therefore before this function returns, we need to wait until 1055 * get_unqueued_pendings(conf) gets equal to extra. For 1056 * normal I/O context, extra is 1, in rested situations extra is 0. 1057 */ 1058 spin_lock_irq(&conf->resync_lock); 1059 conf->array_frozen = 1; 1060 raid1_log(conf->mddev, "wait freeze"); 1061 wait_event_lock_irq_cmd( 1062 conf->wait_barrier, 1063 get_unqueued_pending(conf) == extra, 1064 conf->resync_lock, 1065 flush_pending_writes(conf)); 1066 spin_unlock_irq(&conf->resync_lock); 1067 } 1068 static void unfreeze_array(struct r1conf *conf) 1069 { 1070 /* reverse the effect of the freeze */ 1071 spin_lock_irq(&conf->resync_lock); 1072 conf->array_frozen = 0; 1073 spin_unlock_irq(&conf->resync_lock); 1074 wake_up(&conf->wait_barrier); 1075 } 1076 1077 static void alloc_behind_master_bio(struct r1bio *r1_bio, 1078 struct bio *bio) 1079 { 1080 int size = bio->bi_iter.bi_size; 1081 unsigned vcnt = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; 1082 int i = 0; 1083 struct bio *behind_bio = NULL; 1084 1085 behind_bio = bio_alloc_mddev(GFP_NOIO, vcnt, r1_bio->mddev); 1086 if (!behind_bio) 1087 return; 1088 1089 /* discard op, we don't support writezero/writesame yet */ 1090 if (!bio_has_data(bio)) { 1091 behind_bio->bi_iter.bi_size = size; 1092 goto skip_copy; 1093 } 1094 1095 while (i < vcnt && size) { 1096 struct page *page; 1097 int len = min_t(int, PAGE_SIZE, size); 1098 1099 page = alloc_page(GFP_NOIO); 1100 if (unlikely(!page)) 1101 goto free_pages; 1102 1103 bio_add_page(behind_bio, page, len, 0); 1104 1105 size -= len; 1106 i++; 1107 } 1108 1109 bio_copy_data(behind_bio, bio); 1110 skip_copy: 1111 r1_bio->behind_master_bio = behind_bio; 1112 set_bit(R1BIO_BehindIO, &r1_bio->state); 1113 1114 return; 1115 1116 free_pages: 1117 pr_debug("%dB behind alloc failed, doing sync I/O\n", 1118 bio->bi_iter.bi_size); 1119 bio_free_pages(behind_bio); 1120 bio_put(behind_bio); 1121 } 1122 1123 struct raid1_plug_cb { 1124 struct blk_plug_cb cb; 1125 struct bio_list pending; 1126 int pending_cnt; 1127 }; 1128 1129 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule) 1130 { 1131 struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb, 1132 cb); 1133 struct mddev *mddev = plug->cb.data; 1134 struct r1conf *conf = mddev->private; 1135 struct bio *bio; 1136 1137 if (from_schedule || current->bio_list) { 1138 spin_lock_irq(&conf->device_lock); 1139 bio_list_merge(&conf->pending_bio_list, &plug->pending); 1140 conf->pending_count += plug->pending_cnt; 1141 spin_unlock_irq(&conf->device_lock); 1142 wake_up(&conf->wait_barrier); 1143 md_wakeup_thread(mddev->thread); 1144 kfree(plug); 1145 return; 1146 } 1147 1148 /* we aren't scheduling, so we can do the write-out directly. */ 1149 bio = bio_list_get(&plug->pending); 1150 flush_bio_list(conf, bio); 1151 kfree(plug); 1152 } 1153 1154 static void init_r1bio(struct r1bio *r1_bio, struct mddev *mddev, struct bio *bio) 1155 { 1156 r1_bio->master_bio = bio; 1157 r1_bio->sectors = bio_sectors(bio); 1158 r1_bio->state = 0; 1159 r1_bio->mddev = mddev; 1160 r1_bio->sector = bio->bi_iter.bi_sector; 1161 } 1162 1163 static inline struct r1bio * 1164 alloc_r1bio(struct mddev *mddev, struct bio *bio) 1165 { 1166 struct r1conf *conf = mddev->private; 1167 struct r1bio *r1_bio; 1168 1169 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO); 1170 /* Ensure no bio records IO_BLOCKED */ 1171 memset(r1_bio->bios, 0, conf->raid_disks * sizeof(r1_bio->bios[0])); 1172 init_r1bio(r1_bio, mddev, bio); 1173 return r1_bio; 1174 } 1175 1176 static void raid1_read_request(struct mddev *mddev, struct bio *bio, 1177 int max_read_sectors, struct r1bio *r1_bio) 1178 { 1179 struct r1conf *conf = mddev->private; 1180 struct raid1_info *mirror; 1181 struct bio *read_bio; 1182 struct bitmap *bitmap = mddev->bitmap; 1183 const int op = bio_op(bio); 1184 const unsigned long do_sync = (bio->bi_opf & REQ_SYNC); 1185 int max_sectors; 1186 int rdisk; 1187 bool print_msg = !!r1_bio; 1188 char b[BDEVNAME_SIZE]; 1189 1190 /* 1191 * If r1_bio is set, we are blocking the raid1d thread 1192 * so there is a tiny risk of deadlock. So ask for 1193 * emergency memory if needed. 1194 */ 1195 gfp_t gfp = r1_bio ? (GFP_NOIO | __GFP_HIGH) : GFP_NOIO; 1196 1197 if (print_msg) { 1198 /* Need to get the block device name carefully */ 1199 struct md_rdev *rdev; 1200 rcu_read_lock(); 1201 rdev = rcu_dereference(conf->mirrors[r1_bio->read_disk].rdev); 1202 if (rdev) 1203 bdevname(rdev->bdev, b); 1204 else 1205 strcpy(b, "???"); 1206 rcu_read_unlock(); 1207 } 1208 1209 /* 1210 * Still need barrier for READ in case that whole 1211 * array is frozen. 1212 */ 1213 wait_read_barrier(conf, bio->bi_iter.bi_sector); 1214 1215 if (!r1_bio) 1216 r1_bio = alloc_r1bio(mddev, bio); 1217 else 1218 init_r1bio(r1_bio, mddev, bio); 1219 r1_bio->sectors = max_read_sectors; 1220 1221 /* 1222 * make_request() can abort the operation when read-ahead is being 1223 * used and no empty request is available. 1224 */ 1225 rdisk = read_balance(conf, r1_bio, &max_sectors); 1226 1227 if (rdisk < 0) { 1228 /* couldn't find anywhere to read from */ 1229 if (print_msg) { 1230 pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n", 1231 mdname(mddev), 1232 b, 1233 (unsigned long long)r1_bio->sector); 1234 } 1235 raid_end_bio_io(r1_bio); 1236 return; 1237 } 1238 mirror = conf->mirrors + rdisk; 1239 1240 if (print_msg) 1241 pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %s\n", 1242 mdname(mddev), 1243 (unsigned long long)r1_bio->sector, 1244 bdevname(mirror->rdev->bdev, b)); 1245 1246 if (test_bit(WriteMostly, &mirror->rdev->flags) && 1247 bitmap) { 1248 /* 1249 * Reading from a write-mostly device must take care not to 1250 * over-take any writes that are 'behind' 1251 */ 1252 raid1_log(mddev, "wait behind writes"); 1253 wait_event(bitmap->behind_wait, 1254 atomic_read(&bitmap->behind_writes) == 0); 1255 } 1256 1257 if (max_sectors < bio_sectors(bio)) { 1258 struct bio *split = bio_split(bio, max_sectors, 1259 gfp, conf->bio_split); 1260 bio_chain(split, bio); 1261 generic_make_request(bio); 1262 bio = split; 1263 r1_bio->master_bio = bio; 1264 r1_bio->sectors = max_sectors; 1265 } 1266 1267 r1_bio->read_disk = rdisk; 1268 1269 read_bio = bio_clone_fast(bio, gfp, mddev->bio_set); 1270 1271 r1_bio->bios[rdisk] = read_bio; 1272 1273 read_bio->bi_iter.bi_sector = r1_bio->sector + 1274 mirror->rdev->data_offset; 1275 bio_set_dev(read_bio, mirror->rdev->bdev); 1276 read_bio->bi_end_io = raid1_end_read_request; 1277 bio_set_op_attrs(read_bio, op, do_sync); 1278 if (test_bit(FailFast, &mirror->rdev->flags) && 1279 test_bit(R1BIO_FailFast, &r1_bio->state)) 1280 read_bio->bi_opf |= MD_FAILFAST; 1281 read_bio->bi_private = r1_bio; 1282 1283 if (mddev->gendisk) 1284 trace_block_bio_remap(read_bio->bi_disk->queue, read_bio, 1285 disk_devt(mddev->gendisk), r1_bio->sector); 1286 1287 generic_make_request(read_bio); 1288 } 1289 1290 static void raid1_write_request(struct mddev *mddev, struct bio *bio, 1291 int max_write_sectors) 1292 { 1293 struct r1conf *conf = mddev->private; 1294 struct r1bio *r1_bio; 1295 int i, disks; 1296 struct bitmap *bitmap = mddev->bitmap; 1297 unsigned long flags; 1298 struct md_rdev *blocked_rdev; 1299 struct blk_plug_cb *cb; 1300 struct raid1_plug_cb *plug = NULL; 1301 int first_clone; 1302 int max_sectors; 1303 1304 if (mddev_is_clustered(mddev) && 1305 md_cluster_ops->area_resyncing(mddev, WRITE, 1306 bio->bi_iter.bi_sector, bio_end_sector(bio))) { 1307 1308 DEFINE_WAIT(w); 1309 for (;;) { 1310 prepare_to_wait(&conf->wait_barrier, 1311 &w, TASK_IDLE); 1312 if (!md_cluster_ops->area_resyncing(mddev, WRITE, 1313 bio->bi_iter.bi_sector, 1314 bio_end_sector(bio))) 1315 break; 1316 schedule(); 1317 } 1318 finish_wait(&conf->wait_barrier, &w); 1319 } 1320 1321 /* 1322 * Register the new request and wait if the reconstruction 1323 * thread has put up a bar for new requests. 1324 * Continue immediately if no resync is active currently. 1325 */ 1326 wait_barrier(conf, bio->bi_iter.bi_sector); 1327 1328 r1_bio = alloc_r1bio(mddev, bio); 1329 r1_bio->sectors = max_write_sectors; 1330 1331 if (conf->pending_count >= max_queued_requests) { 1332 md_wakeup_thread(mddev->thread); 1333 raid1_log(mddev, "wait queued"); 1334 wait_event(conf->wait_barrier, 1335 conf->pending_count < max_queued_requests); 1336 } 1337 /* first select target devices under rcu_lock and 1338 * inc refcount on their rdev. Record them by setting 1339 * bios[x] to bio 1340 * If there are known/acknowledged bad blocks on any device on 1341 * which we have seen a write error, we want to avoid writing those 1342 * blocks. 1343 * This potentially requires several writes to write around 1344 * the bad blocks. Each set of writes gets it's own r1bio 1345 * with a set of bios attached. 1346 */ 1347 1348 disks = conf->raid_disks * 2; 1349 retry_write: 1350 blocked_rdev = NULL; 1351 rcu_read_lock(); 1352 max_sectors = r1_bio->sectors; 1353 for (i = 0; i < disks; i++) { 1354 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 1355 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) { 1356 atomic_inc(&rdev->nr_pending); 1357 blocked_rdev = rdev; 1358 break; 1359 } 1360 r1_bio->bios[i] = NULL; 1361 if (!rdev || test_bit(Faulty, &rdev->flags)) { 1362 if (i < conf->raid_disks) 1363 set_bit(R1BIO_Degraded, &r1_bio->state); 1364 continue; 1365 } 1366 1367 atomic_inc(&rdev->nr_pending); 1368 if (test_bit(WriteErrorSeen, &rdev->flags)) { 1369 sector_t first_bad; 1370 int bad_sectors; 1371 int is_bad; 1372 1373 is_bad = is_badblock(rdev, r1_bio->sector, max_sectors, 1374 &first_bad, &bad_sectors); 1375 if (is_bad < 0) { 1376 /* mustn't write here until the bad block is 1377 * acknowledged*/ 1378 set_bit(BlockedBadBlocks, &rdev->flags); 1379 blocked_rdev = rdev; 1380 break; 1381 } 1382 if (is_bad && first_bad <= r1_bio->sector) { 1383 /* Cannot write here at all */ 1384 bad_sectors -= (r1_bio->sector - first_bad); 1385 if (bad_sectors < max_sectors) 1386 /* mustn't write more than bad_sectors 1387 * to other devices yet 1388 */ 1389 max_sectors = bad_sectors; 1390 rdev_dec_pending(rdev, mddev); 1391 /* We don't set R1BIO_Degraded as that 1392 * only applies if the disk is 1393 * missing, so it might be re-added, 1394 * and we want to know to recover this 1395 * chunk. 1396 * In this case the device is here, 1397 * and the fact that this chunk is not 1398 * in-sync is recorded in the bad 1399 * block log 1400 */ 1401 continue; 1402 } 1403 if (is_bad) { 1404 int good_sectors = first_bad - r1_bio->sector; 1405 if (good_sectors < max_sectors) 1406 max_sectors = good_sectors; 1407 } 1408 } 1409 r1_bio->bios[i] = bio; 1410 } 1411 rcu_read_unlock(); 1412 1413 if (unlikely(blocked_rdev)) { 1414 /* Wait for this device to become unblocked */ 1415 int j; 1416 1417 for (j = 0; j < i; j++) 1418 if (r1_bio->bios[j]) 1419 rdev_dec_pending(conf->mirrors[j].rdev, mddev); 1420 r1_bio->state = 0; 1421 allow_barrier(conf, bio->bi_iter.bi_sector); 1422 raid1_log(mddev, "wait rdev %d blocked", blocked_rdev->raid_disk); 1423 md_wait_for_blocked_rdev(blocked_rdev, mddev); 1424 wait_barrier(conf, bio->bi_iter.bi_sector); 1425 goto retry_write; 1426 } 1427 1428 if (max_sectors < bio_sectors(bio)) { 1429 struct bio *split = bio_split(bio, max_sectors, 1430 GFP_NOIO, conf->bio_split); 1431 bio_chain(split, bio); 1432 generic_make_request(bio); 1433 bio = split; 1434 r1_bio->master_bio = bio; 1435 r1_bio->sectors = max_sectors; 1436 } 1437 1438 atomic_set(&r1_bio->remaining, 1); 1439 atomic_set(&r1_bio->behind_remaining, 0); 1440 1441 first_clone = 1; 1442 1443 for (i = 0; i < disks; i++) { 1444 struct bio *mbio = NULL; 1445 if (!r1_bio->bios[i]) 1446 continue; 1447 1448 1449 if (first_clone) { 1450 /* do behind I/O ? 1451 * Not if there are too many, or cannot 1452 * allocate memory, or a reader on WriteMostly 1453 * is waiting for behind writes to flush */ 1454 if (bitmap && 1455 (atomic_read(&bitmap->behind_writes) 1456 < mddev->bitmap_info.max_write_behind) && 1457 !waitqueue_active(&bitmap->behind_wait)) { 1458 alloc_behind_master_bio(r1_bio, bio); 1459 } 1460 1461 bitmap_startwrite(bitmap, r1_bio->sector, 1462 r1_bio->sectors, 1463 test_bit(R1BIO_BehindIO, 1464 &r1_bio->state)); 1465 first_clone = 0; 1466 } 1467 1468 if (r1_bio->behind_master_bio) 1469 mbio = bio_clone_fast(r1_bio->behind_master_bio, 1470 GFP_NOIO, mddev->bio_set); 1471 else 1472 mbio = bio_clone_fast(bio, GFP_NOIO, mddev->bio_set); 1473 1474 if (r1_bio->behind_master_bio) { 1475 if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags)) 1476 atomic_inc(&r1_bio->behind_remaining); 1477 } 1478 1479 r1_bio->bios[i] = mbio; 1480 1481 mbio->bi_iter.bi_sector = (r1_bio->sector + 1482 conf->mirrors[i].rdev->data_offset); 1483 bio_set_dev(mbio, conf->mirrors[i].rdev->bdev); 1484 mbio->bi_end_io = raid1_end_write_request; 1485 mbio->bi_opf = bio_op(bio) | (bio->bi_opf & (REQ_SYNC | REQ_FUA)); 1486 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags) && 1487 !test_bit(WriteMostly, &conf->mirrors[i].rdev->flags) && 1488 conf->raid_disks - mddev->degraded > 1) 1489 mbio->bi_opf |= MD_FAILFAST; 1490 mbio->bi_private = r1_bio; 1491 1492 atomic_inc(&r1_bio->remaining); 1493 1494 if (mddev->gendisk) 1495 trace_block_bio_remap(mbio->bi_disk->queue, 1496 mbio, disk_devt(mddev->gendisk), 1497 r1_bio->sector); 1498 /* flush_pending_writes() needs access to the rdev so...*/ 1499 mbio->bi_disk = (void *)conf->mirrors[i].rdev; 1500 1501 cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug)); 1502 if (cb) 1503 plug = container_of(cb, struct raid1_plug_cb, cb); 1504 else 1505 plug = NULL; 1506 if (plug) { 1507 bio_list_add(&plug->pending, mbio); 1508 plug->pending_cnt++; 1509 } else { 1510 spin_lock_irqsave(&conf->device_lock, flags); 1511 bio_list_add(&conf->pending_bio_list, mbio); 1512 conf->pending_count++; 1513 spin_unlock_irqrestore(&conf->device_lock, flags); 1514 md_wakeup_thread(mddev->thread); 1515 } 1516 } 1517 1518 r1_bio_write_done(r1_bio); 1519 1520 /* In case raid1d snuck in to freeze_array */ 1521 wake_up(&conf->wait_barrier); 1522 } 1523 1524 static bool raid1_make_request(struct mddev *mddev, struct bio *bio) 1525 { 1526 sector_t sectors; 1527 1528 if (unlikely(bio->bi_opf & REQ_PREFLUSH)) { 1529 md_flush_request(mddev, bio); 1530 return true; 1531 } 1532 1533 /* 1534 * There is a limit to the maximum size, but 1535 * the read/write handler might find a lower limit 1536 * due to bad blocks. To avoid multiple splits, 1537 * we pass the maximum number of sectors down 1538 * and let the lower level perform the split. 1539 */ 1540 sectors = align_to_barrier_unit_end( 1541 bio->bi_iter.bi_sector, bio_sectors(bio)); 1542 1543 if (bio_data_dir(bio) == READ) 1544 raid1_read_request(mddev, bio, sectors, NULL); 1545 else { 1546 if (!md_write_start(mddev,bio)) 1547 return false; 1548 raid1_write_request(mddev, bio, sectors); 1549 } 1550 return true; 1551 } 1552 1553 static void raid1_status(struct seq_file *seq, struct mddev *mddev) 1554 { 1555 struct r1conf *conf = mddev->private; 1556 int i; 1557 1558 seq_printf(seq, " [%d/%d] [", conf->raid_disks, 1559 conf->raid_disks - mddev->degraded); 1560 rcu_read_lock(); 1561 for (i = 0; i < conf->raid_disks; i++) { 1562 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 1563 seq_printf(seq, "%s", 1564 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_"); 1565 } 1566 rcu_read_unlock(); 1567 seq_printf(seq, "]"); 1568 } 1569 1570 static void raid1_error(struct mddev *mddev, struct md_rdev *rdev) 1571 { 1572 char b[BDEVNAME_SIZE]; 1573 struct r1conf *conf = mddev->private; 1574 unsigned long flags; 1575 1576 /* 1577 * If it is not operational, then we have already marked it as dead 1578 * else if it is the last working disks, ignore the error, let the 1579 * next level up know. 1580 * else mark the drive as failed 1581 */ 1582 spin_lock_irqsave(&conf->device_lock, flags); 1583 if (test_bit(In_sync, &rdev->flags) 1584 && (conf->raid_disks - mddev->degraded) == 1) { 1585 /* 1586 * Don't fail the drive, act as though we were just a 1587 * normal single drive. 1588 * However don't try a recovery from this drive as 1589 * it is very likely to fail. 1590 */ 1591 conf->recovery_disabled = mddev->recovery_disabled; 1592 spin_unlock_irqrestore(&conf->device_lock, flags); 1593 return; 1594 } 1595 set_bit(Blocked, &rdev->flags); 1596 if (test_and_clear_bit(In_sync, &rdev->flags)) { 1597 mddev->degraded++; 1598 set_bit(Faulty, &rdev->flags); 1599 } else 1600 set_bit(Faulty, &rdev->flags); 1601 spin_unlock_irqrestore(&conf->device_lock, flags); 1602 /* 1603 * if recovery is running, make sure it aborts. 1604 */ 1605 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 1606 set_mask_bits(&mddev->sb_flags, 0, 1607 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING)); 1608 pr_crit("md/raid1:%s: Disk failure on %s, disabling device.\n" 1609 "md/raid1:%s: Operation continuing on %d devices.\n", 1610 mdname(mddev), bdevname(rdev->bdev, b), 1611 mdname(mddev), conf->raid_disks - mddev->degraded); 1612 } 1613 1614 static void print_conf(struct r1conf *conf) 1615 { 1616 int i; 1617 1618 pr_debug("RAID1 conf printout:\n"); 1619 if (!conf) { 1620 pr_debug("(!conf)\n"); 1621 return; 1622 } 1623 pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded, 1624 conf->raid_disks); 1625 1626 rcu_read_lock(); 1627 for (i = 0; i < conf->raid_disks; i++) { 1628 char b[BDEVNAME_SIZE]; 1629 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 1630 if (rdev) 1631 pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n", 1632 i, !test_bit(In_sync, &rdev->flags), 1633 !test_bit(Faulty, &rdev->flags), 1634 bdevname(rdev->bdev,b)); 1635 } 1636 rcu_read_unlock(); 1637 } 1638 1639 static void close_sync(struct r1conf *conf) 1640 { 1641 int idx; 1642 1643 for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++) { 1644 _wait_barrier(conf, idx); 1645 _allow_barrier(conf, idx); 1646 } 1647 1648 mempool_destroy(conf->r1buf_pool); 1649 conf->r1buf_pool = NULL; 1650 } 1651 1652 static int raid1_spare_active(struct mddev *mddev) 1653 { 1654 int i; 1655 struct r1conf *conf = mddev->private; 1656 int count = 0; 1657 unsigned long flags; 1658 1659 /* 1660 * Find all failed disks within the RAID1 configuration 1661 * and mark them readable. 1662 * Called under mddev lock, so rcu protection not needed. 1663 * device_lock used to avoid races with raid1_end_read_request 1664 * which expects 'In_sync' flags and ->degraded to be consistent. 1665 */ 1666 spin_lock_irqsave(&conf->device_lock, flags); 1667 for (i = 0; i < conf->raid_disks; i++) { 1668 struct md_rdev *rdev = conf->mirrors[i].rdev; 1669 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev; 1670 if (repl 1671 && !test_bit(Candidate, &repl->flags) 1672 && repl->recovery_offset == MaxSector 1673 && !test_bit(Faulty, &repl->flags) 1674 && !test_and_set_bit(In_sync, &repl->flags)) { 1675 /* replacement has just become active */ 1676 if (!rdev || 1677 !test_and_clear_bit(In_sync, &rdev->flags)) 1678 count++; 1679 if (rdev) { 1680 /* Replaced device not technically 1681 * faulty, but we need to be sure 1682 * it gets removed and never re-added 1683 */ 1684 set_bit(Faulty, &rdev->flags); 1685 sysfs_notify_dirent_safe( 1686 rdev->sysfs_state); 1687 } 1688 } 1689 if (rdev 1690 && rdev->recovery_offset == MaxSector 1691 && !test_bit(Faulty, &rdev->flags) 1692 && !test_and_set_bit(In_sync, &rdev->flags)) { 1693 count++; 1694 sysfs_notify_dirent_safe(rdev->sysfs_state); 1695 } 1696 } 1697 mddev->degraded -= count; 1698 spin_unlock_irqrestore(&conf->device_lock, flags); 1699 1700 print_conf(conf); 1701 return count; 1702 } 1703 1704 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev) 1705 { 1706 struct r1conf *conf = mddev->private; 1707 int err = -EEXIST; 1708 int mirror = 0; 1709 struct raid1_info *p; 1710 int first = 0; 1711 int last = conf->raid_disks - 1; 1712 1713 if (mddev->recovery_disabled == conf->recovery_disabled) 1714 return -EBUSY; 1715 1716 if (md_integrity_add_rdev(rdev, mddev)) 1717 return -ENXIO; 1718 1719 if (rdev->raid_disk >= 0) 1720 first = last = rdev->raid_disk; 1721 1722 /* 1723 * find the disk ... but prefer rdev->saved_raid_disk 1724 * if possible. 1725 */ 1726 if (rdev->saved_raid_disk >= 0 && 1727 rdev->saved_raid_disk >= first && 1728 conf->mirrors[rdev->saved_raid_disk].rdev == NULL) 1729 first = last = rdev->saved_raid_disk; 1730 1731 for (mirror = first; mirror <= last; mirror++) { 1732 p = conf->mirrors+mirror; 1733 if (!p->rdev) { 1734 1735 if (mddev->gendisk) 1736 disk_stack_limits(mddev->gendisk, rdev->bdev, 1737 rdev->data_offset << 9); 1738 1739 p->head_position = 0; 1740 rdev->raid_disk = mirror; 1741 err = 0; 1742 /* As all devices are equivalent, we don't need a full recovery 1743 * if this was recently any drive of the array 1744 */ 1745 if (rdev->saved_raid_disk < 0) 1746 conf->fullsync = 1; 1747 rcu_assign_pointer(p->rdev, rdev); 1748 break; 1749 } 1750 if (test_bit(WantReplacement, &p->rdev->flags) && 1751 p[conf->raid_disks].rdev == NULL) { 1752 /* Add this device as a replacement */ 1753 clear_bit(In_sync, &rdev->flags); 1754 set_bit(Replacement, &rdev->flags); 1755 rdev->raid_disk = mirror; 1756 err = 0; 1757 conf->fullsync = 1; 1758 rcu_assign_pointer(p[conf->raid_disks].rdev, rdev); 1759 break; 1760 } 1761 } 1762 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev))) 1763 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue); 1764 print_conf(conf); 1765 return err; 1766 } 1767 1768 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev) 1769 { 1770 struct r1conf *conf = mddev->private; 1771 int err = 0; 1772 int number = rdev->raid_disk; 1773 struct raid1_info *p = conf->mirrors + number; 1774 1775 if (rdev != p->rdev) 1776 p = conf->mirrors + conf->raid_disks + number; 1777 1778 print_conf(conf); 1779 if (rdev == p->rdev) { 1780 if (test_bit(In_sync, &rdev->flags) || 1781 atomic_read(&rdev->nr_pending)) { 1782 err = -EBUSY; 1783 goto abort; 1784 } 1785 /* Only remove non-faulty devices if recovery 1786 * is not possible. 1787 */ 1788 if (!test_bit(Faulty, &rdev->flags) && 1789 mddev->recovery_disabled != conf->recovery_disabled && 1790 mddev->degraded < conf->raid_disks) { 1791 err = -EBUSY; 1792 goto abort; 1793 } 1794 p->rdev = NULL; 1795 if (!test_bit(RemoveSynchronized, &rdev->flags)) { 1796 synchronize_rcu(); 1797 if (atomic_read(&rdev->nr_pending)) { 1798 /* lost the race, try later */ 1799 err = -EBUSY; 1800 p->rdev = rdev; 1801 goto abort; 1802 } 1803 } 1804 if (conf->mirrors[conf->raid_disks + number].rdev) { 1805 /* We just removed a device that is being replaced. 1806 * Move down the replacement. We drain all IO before 1807 * doing this to avoid confusion. 1808 */ 1809 struct md_rdev *repl = 1810 conf->mirrors[conf->raid_disks + number].rdev; 1811 freeze_array(conf, 0); 1812 if (atomic_read(&repl->nr_pending)) { 1813 /* It means that some queued IO of retry_list 1814 * hold repl. Thus, we cannot set replacement 1815 * as NULL, avoiding rdev NULL pointer 1816 * dereference in sync_request_write and 1817 * handle_write_finished. 1818 */ 1819 err = -EBUSY; 1820 unfreeze_array(conf); 1821 goto abort; 1822 } 1823 clear_bit(Replacement, &repl->flags); 1824 p->rdev = repl; 1825 conf->mirrors[conf->raid_disks + number].rdev = NULL; 1826 unfreeze_array(conf); 1827 } 1828 1829 clear_bit(WantReplacement, &rdev->flags); 1830 err = md_integrity_register(mddev); 1831 } 1832 abort: 1833 1834 print_conf(conf); 1835 return err; 1836 } 1837 1838 static void end_sync_read(struct bio *bio) 1839 { 1840 struct r1bio *r1_bio = get_resync_r1bio(bio); 1841 1842 update_head_pos(r1_bio->read_disk, r1_bio); 1843 1844 /* 1845 * we have read a block, now it needs to be re-written, 1846 * or re-read if the read failed. 1847 * We don't do much here, just schedule handling by raid1d 1848 */ 1849 if (!bio->bi_status) 1850 set_bit(R1BIO_Uptodate, &r1_bio->state); 1851 1852 if (atomic_dec_and_test(&r1_bio->remaining)) 1853 reschedule_retry(r1_bio); 1854 } 1855 1856 static void end_sync_write(struct bio *bio) 1857 { 1858 int uptodate = !bio->bi_status; 1859 struct r1bio *r1_bio = get_resync_r1bio(bio); 1860 struct mddev *mddev = r1_bio->mddev; 1861 struct r1conf *conf = mddev->private; 1862 sector_t first_bad; 1863 int bad_sectors; 1864 struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev; 1865 1866 if (!uptodate) { 1867 sector_t sync_blocks = 0; 1868 sector_t s = r1_bio->sector; 1869 long sectors_to_go = r1_bio->sectors; 1870 /* make sure these bits doesn't get cleared. */ 1871 do { 1872 bitmap_end_sync(mddev->bitmap, s, 1873 &sync_blocks, 1); 1874 s += sync_blocks; 1875 sectors_to_go -= sync_blocks; 1876 } while (sectors_to_go > 0); 1877 set_bit(WriteErrorSeen, &rdev->flags); 1878 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 1879 set_bit(MD_RECOVERY_NEEDED, & 1880 mddev->recovery); 1881 set_bit(R1BIO_WriteError, &r1_bio->state); 1882 } else if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors, 1883 &first_bad, &bad_sectors) && 1884 !is_badblock(conf->mirrors[r1_bio->read_disk].rdev, 1885 r1_bio->sector, 1886 r1_bio->sectors, 1887 &first_bad, &bad_sectors) 1888 ) 1889 set_bit(R1BIO_MadeGood, &r1_bio->state); 1890 1891 if (atomic_dec_and_test(&r1_bio->remaining)) { 1892 int s = r1_bio->sectors; 1893 if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 1894 test_bit(R1BIO_WriteError, &r1_bio->state)) 1895 reschedule_retry(r1_bio); 1896 else { 1897 put_buf(r1_bio); 1898 md_done_sync(mddev, s, uptodate); 1899 } 1900 } 1901 } 1902 1903 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector, 1904 int sectors, struct page *page, int rw) 1905 { 1906 if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false)) 1907 /* success */ 1908 return 1; 1909 if (rw == WRITE) { 1910 set_bit(WriteErrorSeen, &rdev->flags); 1911 if (!test_and_set_bit(WantReplacement, 1912 &rdev->flags)) 1913 set_bit(MD_RECOVERY_NEEDED, & 1914 rdev->mddev->recovery); 1915 } 1916 /* need to record an error - either for the block or the device */ 1917 if (!rdev_set_badblocks(rdev, sector, sectors, 0)) 1918 md_error(rdev->mddev, rdev); 1919 return 0; 1920 } 1921 1922 static int fix_sync_read_error(struct r1bio *r1_bio) 1923 { 1924 /* Try some synchronous reads of other devices to get 1925 * good data, much like with normal read errors. Only 1926 * read into the pages we already have so we don't 1927 * need to re-issue the read request. 1928 * We don't need to freeze the array, because being in an 1929 * active sync request, there is no normal IO, and 1930 * no overlapping syncs. 1931 * We don't need to check is_badblock() again as we 1932 * made sure that anything with a bad block in range 1933 * will have bi_end_io clear. 1934 */ 1935 struct mddev *mddev = r1_bio->mddev; 1936 struct r1conf *conf = mddev->private; 1937 struct bio *bio = r1_bio->bios[r1_bio->read_disk]; 1938 struct page **pages = get_resync_pages(bio)->pages; 1939 sector_t sect = r1_bio->sector; 1940 int sectors = r1_bio->sectors; 1941 int idx = 0; 1942 struct md_rdev *rdev; 1943 1944 rdev = conf->mirrors[r1_bio->read_disk].rdev; 1945 if (test_bit(FailFast, &rdev->flags)) { 1946 /* Don't try recovering from here - just fail it 1947 * ... unless it is the last working device of course */ 1948 md_error(mddev, rdev); 1949 if (test_bit(Faulty, &rdev->flags)) 1950 /* Don't try to read from here, but make sure 1951 * put_buf does it's thing 1952 */ 1953 bio->bi_end_io = end_sync_write; 1954 } 1955 1956 while(sectors) { 1957 int s = sectors; 1958 int d = r1_bio->read_disk; 1959 int success = 0; 1960 int start; 1961 1962 if (s > (PAGE_SIZE>>9)) 1963 s = PAGE_SIZE >> 9; 1964 do { 1965 if (r1_bio->bios[d]->bi_end_io == end_sync_read) { 1966 /* No rcu protection needed here devices 1967 * can only be removed when no resync is 1968 * active, and resync is currently active 1969 */ 1970 rdev = conf->mirrors[d].rdev; 1971 if (sync_page_io(rdev, sect, s<<9, 1972 pages[idx], 1973 REQ_OP_READ, 0, false)) { 1974 success = 1; 1975 break; 1976 } 1977 } 1978 d++; 1979 if (d == conf->raid_disks * 2) 1980 d = 0; 1981 } while (!success && d != r1_bio->read_disk); 1982 1983 if (!success) { 1984 char b[BDEVNAME_SIZE]; 1985 int abort = 0; 1986 /* Cannot read from anywhere, this block is lost. 1987 * Record a bad block on each device. If that doesn't 1988 * work just disable and interrupt the recovery. 1989 * Don't fail devices as that won't really help. 1990 */ 1991 pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n", 1992 mdname(mddev), bio_devname(bio, b), 1993 (unsigned long long)r1_bio->sector); 1994 for (d = 0; d < conf->raid_disks * 2; d++) { 1995 rdev = conf->mirrors[d].rdev; 1996 if (!rdev || test_bit(Faulty, &rdev->flags)) 1997 continue; 1998 if (!rdev_set_badblocks(rdev, sect, s, 0)) 1999 abort = 1; 2000 } 2001 if (abort) { 2002 conf->recovery_disabled = 2003 mddev->recovery_disabled; 2004 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 2005 md_done_sync(mddev, r1_bio->sectors, 0); 2006 put_buf(r1_bio); 2007 return 0; 2008 } 2009 /* Try next page */ 2010 sectors -= s; 2011 sect += s; 2012 idx++; 2013 continue; 2014 } 2015 2016 start = d; 2017 /* write it back and re-read */ 2018 while (d != r1_bio->read_disk) { 2019 if (d == 0) 2020 d = conf->raid_disks * 2; 2021 d--; 2022 if (r1_bio->bios[d]->bi_end_io != end_sync_read) 2023 continue; 2024 rdev = conf->mirrors[d].rdev; 2025 if (r1_sync_page_io(rdev, sect, s, 2026 pages[idx], 2027 WRITE) == 0) { 2028 r1_bio->bios[d]->bi_end_io = NULL; 2029 rdev_dec_pending(rdev, mddev); 2030 } 2031 } 2032 d = start; 2033 while (d != r1_bio->read_disk) { 2034 if (d == 0) 2035 d = conf->raid_disks * 2; 2036 d--; 2037 if (r1_bio->bios[d]->bi_end_io != end_sync_read) 2038 continue; 2039 rdev = conf->mirrors[d].rdev; 2040 if (r1_sync_page_io(rdev, sect, s, 2041 pages[idx], 2042 READ) != 0) 2043 atomic_add(s, &rdev->corrected_errors); 2044 } 2045 sectors -= s; 2046 sect += s; 2047 idx ++; 2048 } 2049 set_bit(R1BIO_Uptodate, &r1_bio->state); 2050 bio->bi_status = 0; 2051 return 1; 2052 } 2053 2054 static void process_checks(struct r1bio *r1_bio) 2055 { 2056 /* We have read all readable devices. If we haven't 2057 * got the block, then there is no hope left. 2058 * If we have, then we want to do a comparison 2059 * and skip the write if everything is the same. 2060 * If any blocks failed to read, then we need to 2061 * attempt an over-write 2062 */ 2063 struct mddev *mddev = r1_bio->mddev; 2064 struct r1conf *conf = mddev->private; 2065 int primary; 2066 int i; 2067 int vcnt; 2068 2069 /* Fix variable parts of all bios */ 2070 vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9); 2071 for (i = 0; i < conf->raid_disks * 2; i++) { 2072 blk_status_t status; 2073 struct bio *b = r1_bio->bios[i]; 2074 struct resync_pages *rp = get_resync_pages(b); 2075 if (b->bi_end_io != end_sync_read) 2076 continue; 2077 /* fixup the bio for reuse, but preserve errno */ 2078 status = b->bi_status; 2079 bio_reset(b); 2080 b->bi_status = status; 2081 b->bi_iter.bi_sector = r1_bio->sector + 2082 conf->mirrors[i].rdev->data_offset; 2083 bio_set_dev(b, conf->mirrors[i].rdev->bdev); 2084 b->bi_end_io = end_sync_read; 2085 rp->raid_bio = r1_bio; 2086 b->bi_private = rp; 2087 2088 /* initialize bvec table again */ 2089 md_bio_reset_resync_pages(b, rp, r1_bio->sectors << 9); 2090 } 2091 for (primary = 0; primary < conf->raid_disks * 2; primary++) 2092 if (r1_bio->bios[primary]->bi_end_io == end_sync_read && 2093 !r1_bio->bios[primary]->bi_status) { 2094 r1_bio->bios[primary]->bi_end_io = NULL; 2095 rdev_dec_pending(conf->mirrors[primary].rdev, mddev); 2096 break; 2097 } 2098 r1_bio->read_disk = primary; 2099 for (i = 0; i < conf->raid_disks * 2; i++) { 2100 int j; 2101 struct bio *pbio = r1_bio->bios[primary]; 2102 struct bio *sbio = r1_bio->bios[i]; 2103 blk_status_t status = sbio->bi_status; 2104 struct page **ppages = get_resync_pages(pbio)->pages; 2105 struct page **spages = get_resync_pages(sbio)->pages; 2106 struct bio_vec *bi; 2107 int page_len[RESYNC_PAGES] = { 0 }; 2108 2109 if (sbio->bi_end_io != end_sync_read) 2110 continue; 2111 /* Now we can 'fixup' the error value */ 2112 sbio->bi_status = 0; 2113 2114 bio_for_each_segment_all(bi, sbio, j) 2115 page_len[j] = bi->bv_len; 2116 2117 if (!status) { 2118 for (j = vcnt; j-- ; ) { 2119 if (memcmp(page_address(ppages[j]), 2120 page_address(spages[j]), 2121 page_len[j])) 2122 break; 2123 } 2124 } else 2125 j = 0; 2126 if (j >= 0) 2127 atomic64_add(r1_bio->sectors, &mddev->resync_mismatches); 2128 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery) 2129 && !status)) { 2130 /* No need to write to this device. */ 2131 sbio->bi_end_io = NULL; 2132 rdev_dec_pending(conf->mirrors[i].rdev, mddev); 2133 continue; 2134 } 2135 2136 bio_copy_data(sbio, pbio); 2137 } 2138 } 2139 2140 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio) 2141 { 2142 struct r1conf *conf = mddev->private; 2143 int i; 2144 int disks = conf->raid_disks * 2; 2145 struct bio *wbio; 2146 2147 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) 2148 /* ouch - failed to read all of that. */ 2149 if (!fix_sync_read_error(r1_bio)) 2150 return; 2151 2152 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 2153 process_checks(r1_bio); 2154 2155 /* 2156 * schedule writes 2157 */ 2158 atomic_set(&r1_bio->remaining, 1); 2159 for (i = 0; i < disks ; i++) { 2160 wbio = r1_bio->bios[i]; 2161 if (wbio->bi_end_io == NULL || 2162 (wbio->bi_end_io == end_sync_read && 2163 (i == r1_bio->read_disk || 2164 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery)))) 2165 continue; 2166 if (test_bit(Faulty, &conf->mirrors[i].rdev->flags)) 2167 continue; 2168 2169 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0); 2170 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags)) 2171 wbio->bi_opf |= MD_FAILFAST; 2172 2173 wbio->bi_end_io = end_sync_write; 2174 atomic_inc(&r1_bio->remaining); 2175 md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio)); 2176 2177 generic_make_request(wbio); 2178 } 2179 2180 if (atomic_dec_and_test(&r1_bio->remaining)) { 2181 /* if we're here, all write(s) have completed, so clean up */ 2182 int s = r1_bio->sectors; 2183 if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 2184 test_bit(R1BIO_WriteError, &r1_bio->state)) 2185 reschedule_retry(r1_bio); 2186 else { 2187 put_buf(r1_bio); 2188 md_done_sync(mddev, s, 1); 2189 } 2190 } 2191 } 2192 2193 /* 2194 * This is a kernel thread which: 2195 * 2196 * 1. Retries failed read operations on working mirrors. 2197 * 2. Updates the raid superblock when problems encounter. 2198 * 3. Performs writes following reads for array synchronising. 2199 */ 2200 2201 static void fix_read_error(struct r1conf *conf, int read_disk, 2202 sector_t sect, int sectors) 2203 { 2204 struct mddev *mddev = conf->mddev; 2205 while(sectors) { 2206 int s = sectors; 2207 int d = read_disk; 2208 int success = 0; 2209 int start; 2210 struct md_rdev *rdev; 2211 2212 if (s > (PAGE_SIZE>>9)) 2213 s = PAGE_SIZE >> 9; 2214 2215 do { 2216 sector_t first_bad; 2217 int bad_sectors; 2218 2219 rcu_read_lock(); 2220 rdev = rcu_dereference(conf->mirrors[d].rdev); 2221 if (rdev && 2222 (test_bit(In_sync, &rdev->flags) || 2223 (!test_bit(Faulty, &rdev->flags) && 2224 rdev->recovery_offset >= sect + s)) && 2225 is_badblock(rdev, sect, s, 2226 &first_bad, &bad_sectors) == 0) { 2227 atomic_inc(&rdev->nr_pending); 2228 rcu_read_unlock(); 2229 if (sync_page_io(rdev, sect, s<<9, 2230 conf->tmppage, REQ_OP_READ, 0, false)) 2231 success = 1; 2232 rdev_dec_pending(rdev, mddev); 2233 if (success) 2234 break; 2235 } else 2236 rcu_read_unlock(); 2237 d++; 2238 if (d == conf->raid_disks * 2) 2239 d = 0; 2240 } while (!success && d != read_disk); 2241 2242 if (!success) { 2243 /* Cannot read from anywhere - mark it bad */ 2244 struct md_rdev *rdev = conf->mirrors[read_disk].rdev; 2245 if (!rdev_set_badblocks(rdev, sect, s, 0)) 2246 md_error(mddev, rdev); 2247 break; 2248 } 2249 /* write it back and re-read */ 2250 start = d; 2251 while (d != read_disk) { 2252 if (d==0) 2253 d = conf->raid_disks * 2; 2254 d--; 2255 rcu_read_lock(); 2256 rdev = rcu_dereference(conf->mirrors[d].rdev); 2257 if (rdev && 2258 !test_bit(Faulty, &rdev->flags)) { 2259 atomic_inc(&rdev->nr_pending); 2260 rcu_read_unlock(); 2261 r1_sync_page_io(rdev, sect, s, 2262 conf->tmppage, WRITE); 2263 rdev_dec_pending(rdev, mddev); 2264 } else 2265 rcu_read_unlock(); 2266 } 2267 d = start; 2268 while (d != read_disk) { 2269 char b[BDEVNAME_SIZE]; 2270 if (d==0) 2271 d = conf->raid_disks * 2; 2272 d--; 2273 rcu_read_lock(); 2274 rdev = rcu_dereference(conf->mirrors[d].rdev); 2275 if (rdev && 2276 !test_bit(Faulty, &rdev->flags)) { 2277 atomic_inc(&rdev->nr_pending); 2278 rcu_read_unlock(); 2279 if (r1_sync_page_io(rdev, sect, s, 2280 conf->tmppage, READ)) { 2281 atomic_add(s, &rdev->corrected_errors); 2282 pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %s)\n", 2283 mdname(mddev), s, 2284 (unsigned long long)(sect + 2285 rdev->data_offset), 2286 bdevname(rdev->bdev, b)); 2287 } 2288 rdev_dec_pending(rdev, mddev); 2289 } else 2290 rcu_read_unlock(); 2291 } 2292 sectors -= s; 2293 sect += s; 2294 } 2295 } 2296 2297 static int narrow_write_error(struct r1bio *r1_bio, int i) 2298 { 2299 struct mddev *mddev = r1_bio->mddev; 2300 struct r1conf *conf = mddev->private; 2301 struct md_rdev *rdev = conf->mirrors[i].rdev; 2302 2303 /* bio has the data to be written to device 'i' where 2304 * we just recently had a write error. 2305 * We repeatedly clone the bio and trim down to one block, 2306 * then try the write. Where the write fails we record 2307 * a bad block. 2308 * It is conceivable that the bio doesn't exactly align with 2309 * blocks. We must handle this somehow. 2310 * 2311 * We currently own a reference on the rdev. 2312 */ 2313 2314 int block_sectors; 2315 sector_t sector; 2316 int sectors; 2317 int sect_to_write = r1_bio->sectors; 2318 int ok = 1; 2319 2320 if (rdev->badblocks.shift < 0) 2321 return 0; 2322 2323 block_sectors = roundup(1 << rdev->badblocks.shift, 2324 bdev_logical_block_size(rdev->bdev) >> 9); 2325 sector = r1_bio->sector; 2326 sectors = ((sector + block_sectors) 2327 & ~(sector_t)(block_sectors - 1)) 2328 - sector; 2329 2330 while (sect_to_write) { 2331 struct bio *wbio; 2332 if (sectors > sect_to_write) 2333 sectors = sect_to_write; 2334 /* Write at 'sector' for 'sectors'*/ 2335 2336 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) { 2337 wbio = bio_clone_fast(r1_bio->behind_master_bio, 2338 GFP_NOIO, 2339 mddev->bio_set); 2340 } else { 2341 wbio = bio_clone_fast(r1_bio->master_bio, GFP_NOIO, 2342 mddev->bio_set); 2343 } 2344 2345 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0); 2346 wbio->bi_iter.bi_sector = r1_bio->sector; 2347 wbio->bi_iter.bi_size = r1_bio->sectors << 9; 2348 2349 bio_trim(wbio, sector - r1_bio->sector, sectors); 2350 wbio->bi_iter.bi_sector += rdev->data_offset; 2351 bio_set_dev(wbio, rdev->bdev); 2352 2353 if (submit_bio_wait(wbio) < 0) 2354 /* failure! */ 2355 ok = rdev_set_badblocks(rdev, sector, 2356 sectors, 0) 2357 && ok; 2358 2359 bio_put(wbio); 2360 sect_to_write -= sectors; 2361 sector += sectors; 2362 sectors = block_sectors; 2363 } 2364 return ok; 2365 } 2366 2367 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio) 2368 { 2369 int m; 2370 int s = r1_bio->sectors; 2371 for (m = 0; m < conf->raid_disks * 2 ; m++) { 2372 struct md_rdev *rdev = conf->mirrors[m].rdev; 2373 struct bio *bio = r1_bio->bios[m]; 2374 if (bio->bi_end_io == NULL) 2375 continue; 2376 if (!bio->bi_status && 2377 test_bit(R1BIO_MadeGood, &r1_bio->state)) { 2378 rdev_clear_badblocks(rdev, r1_bio->sector, s, 0); 2379 } 2380 if (bio->bi_status && 2381 test_bit(R1BIO_WriteError, &r1_bio->state)) { 2382 if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0)) 2383 md_error(conf->mddev, rdev); 2384 } 2385 } 2386 put_buf(r1_bio); 2387 md_done_sync(conf->mddev, s, 1); 2388 } 2389 2390 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio) 2391 { 2392 int m, idx; 2393 bool fail = false; 2394 2395 for (m = 0; m < conf->raid_disks * 2 ; m++) 2396 if (r1_bio->bios[m] == IO_MADE_GOOD) { 2397 struct md_rdev *rdev = conf->mirrors[m].rdev; 2398 rdev_clear_badblocks(rdev, 2399 r1_bio->sector, 2400 r1_bio->sectors, 0); 2401 rdev_dec_pending(rdev, conf->mddev); 2402 } else if (r1_bio->bios[m] != NULL) { 2403 /* This drive got a write error. We need to 2404 * narrow down and record precise write 2405 * errors. 2406 */ 2407 fail = true; 2408 if (!narrow_write_error(r1_bio, m)) { 2409 md_error(conf->mddev, 2410 conf->mirrors[m].rdev); 2411 /* an I/O failed, we can't clear the bitmap */ 2412 set_bit(R1BIO_Degraded, &r1_bio->state); 2413 } 2414 rdev_dec_pending(conf->mirrors[m].rdev, 2415 conf->mddev); 2416 } 2417 if (fail) { 2418 spin_lock_irq(&conf->device_lock); 2419 list_add(&r1_bio->retry_list, &conf->bio_end_io_list); 2420 idx = sector_to_idx(r1_bio->sector); 2421 atomic_inc(&conf->nr_queued[idx]); 2422 spin_unlock_irq(&conf->device_lock); 2423 /* 2424 * In case freeze_array() is waiting for condition 2425 * get_unqueued_pending() == extra to be true. 2426 */ 2427 wake_up(&conf->wait_barrier); 2428 md_wakeup_thread(conf->mddev->thread); 2429 } else { 2430 if (test_bit(R1BIO_WriteError, &r1_bio->state)) 2431 close_write(r1_bio); 2432 raid_end_bio_io(r1_bio); 2433 } 2434 } 2435 2436 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio) 2437 { 2438 struct mddev *mddev = conf->mddev; 2439 struct bio *bio; 2440 struct md_rdev *rdev; 2441 sector_t bio_sector; 2442 2443 clear_bit(R1BIO_ReadError, &r1_bio->state); 2444 /* we got a read error. Maybe the drive is bad. Maybe just 2445 * the block and we can fix it. 2446 * We freeze all other IO, and try reading the block from 2447 * other devices. When we find one, we re-write 2448 * and check it that fixes the read error. 2449 * This is all done synchronously while the array is 2450 * frozen 2451 */ 2452 2453 bio = r1_bio->bios[r1_bio->read_disk]; 2454 bio_sector = conf->mirrors[r1_bio->read_disk].rdev->data_offset + r1_bio->sector; 2455 bio_put(bio); 2456 r1_bio->bios[r1_bio->read_disk] = NULL; 2457 2458 rdev = conf->mirrors[r1_bio->read_disk].rdev; 2459 if (mddev->ro == 0 2460 && !test_bit(FailFast, &rdev->flags)) { 2461 freeze_array(conf, 1); 2462 fix_read_error(conf, r1_bio->read_disk, 2463 r1_bio->sector, r1_bio->sectors); 2464 unfreeze_array(conf); 2465 } else { 2466 r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED; 2467 } 2468 2469 rdev_dec_pending(rdev, conf->mddev); 2470 allow_barrier(conf, r1_bio->sector); 2471 bio = r1_bio->master_bio; 2472 2473 /* Reuse the old r1_bio so that the IO_BLOCKED settings are preserved */ 2474 r1_bio->state = 0; 2475 raid1_read_request(mddev, bio, r1_bio->sectors, r1_bio); 2476 } 2477 2478 static void raid1d(struct md_thread *thread) 2479 { 2480 struct mddev *mddev = thread->mddev; 2481 struct r1bio *r1_bio; 2482 unsigned long flags; 2483 struct r1conf *conf = mddev->private; 2484 struct list_head *head = &conf->retry_list; 2485 struct blk_plug plug; 2486 int idx; 2487 2488 md_check_recovery(mddev); 2489 2490 if (!list_empty_careful(&conf->bio_end_io_list) && 2491 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) { 2492 LIST_HEAD(tmp); 2493 spin_lock_irqsave(&conf->device_lock, flags); 2494 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) 2495 list_splice_init(&conf->bio_end_io_list, &tmp); 2496 spin_unlock_irqrestore(&conf->device_lock, flags); 2497 while (!list_empty(&tmp)) { 2498 r1_bio = list_first_entry(&tmp, struct r1bio, 2499 retry_list); 2500 list_del(&r1_bio->retry_list); 2501 idx = sector_to_idx(r1_bio->sector); 2502 atomic_dec(&conf->nr_queued[idx]); 2503 if (mddev->degraded) 2504 set_bit(R1BIO_Degraded, &r1_bio->state); 2505 if (test_bit(R1BIO_WriteError, &r1_bio->state)) 2506 close_write(r1_bio); 2507 raid_end_bio_io(r1_bio); 2508 } 2509 } 2510 2511 blk_start_plug(&plug); 2512 for (;;) { 2513 2514 flush_pending_writes(conf); 2515 2516 spin_lock_irqsave(&conf->device_lock, flags); 2517 if (list_empty(head)) { 2518 spin_unlock_irqrestore(&conf->device_lock, flags); 2519 break; 2520 } 2521 r1_bio = list_entry(head->prev, struct r1bio, retry_list); 2522 list_del(head->prev); 2523 idx = sector_to_idx(r1_bio->sector); 2524 atomic_dec(&conf->nr_queued[idx]); 2525 spin_unlock_irqrestore(&conf->device_lock, flags); 2526 2527 mddev = r1_bio->mddev; 2528 conf = mddev->private; 2529 if (test_bit(R1BIO_IsSync, &r1_bio->state)) { 2530 if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 2531 test_bit(R1BIO_WriteError, &r1_bio->state)) 2532 handle_sync_write_finished(conf, r1_bio); 2533 else 2534 sync_request_write(mddev, r1_bio); 2535 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 2536 test_bit(R1BIO_WriteError, &r1_bio->state)) 2537 handle_write_finished(conf, r1_bio); 2538 else if (test_bit(R1BIO_ReadError, &r1_bio->state)) 2539 handle_read_error(conf, r1_bio); 2540 else 2541 WARN_ON_ONCE(1); 2542 2543 cond_resched(); 2544 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING)) 2545 md_check_recovery(mddev); 2546 } 2547 blk_finish_plug(&plug); 2548 } 2549 2550 static int init_resync(struct r1conf *conf) 2551 { 2552 int buffs; 2553 2554 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE; 2555 BUG_ON(conf->r1buf_pool); 2556 conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free, 2557 conf->poolinfo); 2558 if (!conf->r1buf_pool) 2559 return -ENOMEM; 2560 return 0; 2561 } 2562 2563 static struct r1bio *raid1_alloc_init_r1buf(struct r1conf *conf) 2564 { 2565 struct r1bio *r1bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO); 2566 struct resync_pages *rps; 2567 struct bio *bio; 2568 int i; 2569 2570 for (i = conf->poolinfo->raid_disks; i--; ) { 2571 bio = r1bio->bios[i]; 2572 rps = bio->bi_private; 2573 bio_reset(bio); 2574 bio->bi_private = rps; 2575 } 2576 r1bio->master_bio = NULL; 2577 return r1bio; 2578 } 2579 2580 /* 2581 * perform a "sync" on one "block" 2582 * 2583 * We need to make sure that no normal I/O request - particularly write 2584 * requests - conflict with active sync requests. 2585 * 2586 * This is achieved by tracking pending requests and a 'barrier' concept 2587 * that can be installed to exclude normal IO requests. 2588 */ 2589 2590 static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr, 2591 int *skipped) 2592 { 2593 struct r1conf *conf = mddev->private; 2594 struct r1bio *r1_bio; 2595 struct bio *bio; 2596 sector_t max_sector, nr_sectors; 2597 int disk = -1; 2598 int i; 2599 int wonly = -1; 2600 int write_targets = 0, read_targets = 0; 2601 sector_t sync_blocks; 2602 int still_degraded = 0; 2603 int good_sectors = RESYNC_SECTORS; 2604 int min_bad = 0; /* number of sectors that are bad in all devices */ 2605 int idx = sector_to_idx(sector_nr); 2606 int page_idx = 0; 2607 2608 if (!conf->r1buf_pool) 2609 if (init_resync(conf)) 2610 return 0; 2611 2612 max_sector = mddev->dev_sectors; 2613 if (sector_nr >= max_sector) { 2614 /* If we aborted, we need to abort the 2615 * sync on the 'current' bitmap chunk (there will 2616 * only be one in raid1 resync. 2617 * We can find the current addess in mddev->curr_resync 2618 */ 2619 if (mddev->curr_resync < max_sector) /* aborted */ 2620 bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 2621 &sync_blocks, 1); 2622 else /* completed sync */ 2623 conf->fullsync = 0; 2624 2625 bitmap_close_sync(mddev->bitmap); 2626 close_sync(conf); 2627 2628 if (mddev_is_clustered(mddev)) { 2629 conf->cluster_sync_low = 0; 2630 conf->cluster_sync_high = 0; 2631 } 2632 return 0; 2633 } 2634 2635 if (mddev->bitmap == NULL && 2636 mddev->recovery_cp == MaxSector && 2637 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 2638 conf->fullsync == 0) { 2639 *skipped = 1; 2640 return max_sector - sector_nr; 2641 } 2642 /* before building a request, check if we can skip these blocks.. 2643 * This call the bitmap_start_sync doesn't actually record anything 2644 */ 2645 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) && 2646 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 2647 /* We can skip this block, and probably several more */ 2648 *skipped = 1; 2649 return sync_blocks; 2650 } 2651 2652 /* 2653 * If there is non-resync activity waiting for a turn, then let it 2654 * though before starting on this new sync request. 2655 */ 2656 if (atomic_read(&conf->nr_waiting[idx])) 2657 schedule_timeout_uninterruptible(1); 2658 2659 /* we are incrementing sector_nr below. To be safe, we check against 2660 * sector_nr + two times RESYNC_SECTORS 2661 */ 2662 2663 bitmap_cond_end_sync(mddev->bitmap, sector_nr, 2664 mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high)); 2665 r1_bio = raid1_alloc_init_r1buf(conf); 2666 2667 raise_barrier(conf, sector_nr); 2668 2669 rcu_read_lock(); 2670 /* 2671 * If we get a correctably read error during resync or recovery, 2672 * we might want to read from a different device. So we 2673 * flag all drives that could conceivably be read from for READ, 2674 * and any others (which will be non-In_sync devices) for WRITE. 2675 * If a read fails, we try reading from something else for which READ 2676 * is OK. 2677 */ 2678 2679 r1_bio->mddev = mddev; 2680 r1_bio->sector = sector_nr; 2681 r1_bio->state = 0; 2682 set_bit(R1BIO_IsSync, &r1_bio->state); 2683 /* make sure good_sectors won't go across barrier unit boundary */ 2684 good_sectors = align_to_barrier_unit_end(sector_nr, good_sectors); 2685 2686 for (i = 0; i < conf->raid_disks * 2; i++) { 2687 struct md_rdev *rdev; 2688 bio = r1_bio->bios[i]; 2689 2690 rdev = rcu_dereference(conf->mirrors[i].rdev); 2691 if (rdev == NULL || 2692 test_bit(Faulty, &rdev->flags)) { 2693 if (i < conf->raid_disks) 2694 still_degraded = 1; 2695 } else if (!test_bit(In_sync, &rdev->flags)) { 2696 bio_set_op_attrs(bio, REQ_OP_WRITE, 0); 2697 bio->bi_end_io = end_sync_write; 2698 write_targets ++; 2699 } else { 2700 /* may need to read from here */ 2701 sector_t first_bad = MaxSector; 2702 int bad_sectors; 2703 2704 if (is_badblock(rdev, sector_nr, good_sectors, 2705 &first_bad, &bad_sectors)) { 2706 if (first_bad > sector_nr) 2707 good_sectors = first_bad - sector_nr; 2708 else { 2709 bad_sectors -= (sector_nr - first_bad); 2710 if (min_bad == 0 || 2711 min_bad > bad_sectors) 2712 min_bad = bad_sectors; 2713 } 2714 } 2715 if (sector_nr < first_bad) { 2716 if (test_bit(WriteMostly, &rdev->flags)) { 2717 if (wonly < 0) 2718 wonly = i; 2719 } else { 2720 if (disk < 0) 2721 disk = i; 2722 } 2723 bio_set_op_attrs(bio, REQ_OP_READ, 0); 2724 bio->bi_end_io = end_sync_read; 2725 read_targets++; 2726 } else if (!test_bit(WriteErrorSeen, &rdev->flags) && 2727 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && 2728 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) { 2729 /* 2730 * The device is suitable for reading (InSync), 2731 * but has bad block(s) here. Let's try to correct them, 2732 * if we are doing resync or repair. Otherwise, leave 2733 * this device alone for this sync request. 2734 */ 2735 bio_set_op_attrs(bio, REQ_OP_WRITE, 0); 2736 bio->bi_end_io = end_sync_write; 2737 write_targets++; 2738 } 2739 } 2740 if (bio->bi_end_io) { 2741 atomic_inc(&rdev->nr_pending); 2742 bio->bi_iter.bi_sector = sector_nr + rdev->data_offset; 2743 bio_set_dev(bio, rdev->bdev); 2744 if (test_bit(FailFast, &rdev->flags)) 2745 bio->bi_opf |= MD_FAILFAST; 2746 } 2747 } 2748 rcu_read_unlock(); 2749 if (disk < 0) 2750 disk = wonly; 2751 r1_bio->read_disk = disk; 2752 2753 if (read_targets == 0 && min_bad > 0) { 2754 /* These sectors are bad on all InSync devices, so we 2755 * need to mark them bad on all write targets 2756 */ 2757 int ok = 1; 2758 for (i = 0 ; i < conf->raid_disks * 2 ; i++) 2759 if (r1_bio->bios[i]->bi_end_io == end_sync_write) { 2760 struct md_rdev *rdev = conf->mirrors[i].rdev; 2761 ok = rdev_set_badblocks(rdev, sector_nr, 2762 min_bad, 0 2763 ) && ok; 2764 } 2765 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2766 *skipped = 1; 2767 put_buf(r1_bio); 2768 2769 if (!ok) { 2770 /* Cannot record the badblocks, so need to 2771 * abort the resync. 2772 * If there are multiple read targets, could just 2773 * fail the really bad ones ??? 2774 */ 2775 conf->recovery_disabled = mddev->recovery_disabled; 2776 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 2777 return 0; 2778 } else 2779 return min_bad; 2780 2781 } 2782 if (min_bad > 0 && min_bad < good_sectors) { 2783 /* only resync enough to reach the next bad->good 2784 * transition */ 2785 good_sectors = min_bad; 2786 } 2787 2788 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0) 2789 /* extra read targets are also write targets */ 2790 write_targets += read_targets-1; 2791 2792 if (write_targets == 0 || read_targets == 0) { 2793 /* There is nowhere to write, so all non-sync 2794 * drives must be failed - so we are finished 2795 */ 2796 sector_t rv; 2797 if (min_bad > 0) 2798 max_sector = sector_nr + min_bad; 2799 rv = max_sector - sector_nr; 2800 *skipped = 1; 2801 put_buf(r1_bio); 2802 return rv; 2803 } 2804 2805 if (max_sector > mddev->resync_max) 2806 max_sector = mddev->resync_max; /* Don't do IO beyond here */ 2807 if (max_sector > sector_nr + good_sectors) 2808 max_sector = sector_nr + good_sectors; 2809 nr_sectors = 0; 2810 sync_blocks = 0; 2811 do { 2812 struct page *page; 2813 int len = PAGE_SIZE; 2814 if (sector_nr + (len>>9) > max_sector) 2815 len = (max_sector - sector_nr) << 9; 2816 if (len == 0) 2817 break; 2818 if (sync_blocks == 0) { 2819 if (!bitmap_start_sync(mddev->bitmap, sector_nr, 2820 &sync_blocks, still_degraded) && 2821 !conf->fullsync && 2822 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 2823 break; 2824 if ((len >> 9) > sync_blocks) 2825 len = sync_blocks<<9; 2826 } 2827 2828 for (i = 0 ; i < conf->raid_disks * 2; i++) { 2829 struct resync_pages *rp; 2830 2831 bio = r1_bio->bios[i]; 2832 rp = get_resync_pages(bio); 2833 if (bio->bi_end_io) { 2834 page = resync_fetch_page(rp, page_idx); 2835 2836 /* 2837 * won't fail because the vec table is big 2838 * enough to hold all these pages 2839 */ 2840 bio_add_page(bio, page, len, 0); 2841 } 2842 } 2843 nr_sectors += len>>9; 2844 sector_nr += len>>9; 2845 sync_blocks -= (len>>9); 2846 } while (++page_idx < RESYNC_PAGES); 2847 2848 r1_bio->sectors = nr_sectors; 2849 2850 if (mddev_is_clustered(mddev) && 2851 conf->cluster_sync_high < sector_nr + nr_sectors) { 2852 conf->cluster_sync_low = mddev->curr_resync_completed; 2853 conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS; 2854 /* Send resync message */ 2855 md_cluster_ops->resync_info_update(mddev, 2856 conf->cluster_sync_low, 2857 conf->cluster_sync_high); 2858 } 2859 2860 /* For a user-requested sync, we read all readable devices and do a 2861 * compare 2862 */ 2863 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 2864 atomic_set(&r1_bio->remaining, read_targets); 2865 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) { 2866 bio = r1_bio->bios[i]; 2867 if (bio->bi_end_io == end_sync_read) { 2868 read_targets--; 2869 md_sync_acct_bio(bio, nr_sectors); 2870 if (read_targets == 1) 2871 bio->bi_opf &= ~MD_FAILFAST; 2872 generic_make_request(bio); 2873 } 2874 } 2875 } else { 2876 atomic_set(&r1_bio->remaining, 1); 2877 bio = r1_bio->bios[r1_bio->read_disk]; 2878 md_sync_acct_bio(bio, nr_sectors); 2879 if (read_targets == 1) 2880 bio->bi_opf &= ~MD_FAILFAST; 2881 generic_make_request(bio); 2882 2883 } 2884 return nr_sectors; 2885 } 2886 2887 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks) 2888 { 2889 if (sectors) 2890 return sectors; 2891 2892 return mddev->dev_sectors; 2893 } 2894 2895 static struct r1conf *setup_conf(struct mddev *mddev) 2896 { 2897 struct r1conf *conf; 2898 int i; 2899 struct raid1_info *disk; 2900 struct md_rdev *rdev; 2901 int err = -ENOMEM; 2902 2903 conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL); 2904 if (!conf) 2905 goto abort; 2906 2907 conf->nr_pending = kcalloc(BARRIER_BUCKETS_NR, 2908 sizeof(atomic_t), GFP_KERNEL); 2909 if (!conf->nr_pending) 2910 goto abort; 2911 2912 conf->nr_waiting = kcalloc(BARRIER_BUCKETS_NR, 2913 sizeof(atomic_t), GFP_KERNEL); 2914 if (!conf->nr_waiting) 2915 goto abort; 2916 2917 conf->nr_queued = kcalloc(BARRIER_BUCKETS_NR, 2918 sizeof(atomic_t), GFP_KERNEL); 2919 if (!conf->nr_queued) 2920 goto abort; 2921 2922 conf->barrier = kcalloc(BARRIER_BUCKETS_NR, 2923 sizeof(atomic_t), GFP_KERNEL); 2924 if (!conf->barrier) 2925 goto abort; 2926 2927 conf->mirrors = kzalloc(sizeof(struct raid1_info) 2928 * mddev->raid_disks * 2, 2929 GFP_KERNEL); 2930 if (!conf->mirrors) 2931 goto abort; 2932 2933 conf->tmppage = alloc_page(GFP_KERNEL); 2934 if (!conf->tmppage) 2935 goto abort; 2936 2937 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL); 2938 if (!conf->poolinfo) 2939 goto abort; 2940 conf->poolinfo->raid_disks = mddev->raid_disks * 2; 2941 conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc, 2942 r1bio_pool_free, 2943 conf->poolinfo); 2944 if (!conf->r1bio_pool) 2945 goto abort; 2946 2947 conf->bio_split = bioset_create(BIO_POOL_SIZE, 0, 0); 2948 if (!conf->bio_split) 2949 goto abort; 2950 2951 conf->poolinfo->mddev = mddev; 2952 2953 err = -EINVAL; 2954 spin_lock_init(&conf->device_lock); 2955 rdev_for_each(rdev, mddev) { 2956 int disk_idx = rdev->raid_disk; 2957 if (disk_idx >= mddev->raid_disks 2958 || disk_idx < 0) 2959 continue; 2960 if (test_bit(Replacement, &rdev->flags)) 2961 disk = conf->mirrors + mddev->raid_disks + disk_idx; 2962 else 2963 disk = conf->mirrors + disk_idx; 2964 2965 if (disk->rdev) 2966 goto abort; 2967 disk->rdev = rdev; 2968 disk->head_position = 0; 2969 disk->seq_start = MaxSector; 2970 } 2971 conf->raid_disks = mddev->raid_disks; 2972 conf->mddev = mddev; 2973 INIT_LIST_HEAD(&conf->retry_list); 2974 INIT_LIST_HEAD(&conf->bio_end_io_list); 2975 2976 spin_lock_init(&conf->resync_lock); 2977 init_waitqueue_head(&conf->wait_barrier); 2978 2979 bio_list_init(&conf->pending_bio_list); 2980 conf->pending_count = 0; 2981 conf->recovery_disabled = mddev->recovery_disabled - 1; 2982 2983 err = -EIO; 2984 for (i = 0; i < conf->raid_disks * 2; i++) { 2985 2986 disk = conf->mirrors + i; 2987 2988 if (i < conf->raid_disks && 2989 disk[conf->raid_disks].rdev) { 2990 /* This slot has a replacement. */ 2991 if (!disk->rdev) { 2992 /* No original, just make the replacement 2993 * a recovering spare 2994 */ 2995 disk->rdev = 2996 disk[conf->raid_disks].rdev; 2997 disk[conf->raid_disks].rdev = NULL; 2998 } else if (!test_bit(In_sync, &disk->rdev->flags)) 2999 /* Original is not in_sync - bad */ 3000 goto abort; 3001 } 3002 3003 if (!disk->rdev || 3004 !test_bit(In_sync, &disk->rdev->flags)) { 3005 disk->head_position = 0; 3006 if (disk->rdev && 3007 (disk->rdev->saved_raid_disk < 0)) 3008 conf->fullsync = 1; 3009 } 3010 } 3011 3012 err = -ENOMEM; 3013 conf->thread = md_register_thread(raid1d, mddev, "raid1"); 3014 if (!conf->thread) 3015 goto abort; 3016 3017 return conf; 3018 3019 abort: 3020 if (conf) { 3021 mempool_destroy(conf->r1bio_pool); 3022 kfree(conf->mirrors); 3023 safe_put_page(conf->tmppage); 3024 kfree(conf->poolinfo); 3025 kfree(conf->nr_pending); 3026 kfree(conf->nr_waiting); 3027 kfree(conf->nr_queued); 3028 kfree(conf->barrier); 3029 if (conf->bio_split) 3030 bioset_free(conf->bio_split); 3031 kfree(conf); 3032 } 3033 return ERR_PTR(err); 3034 } 3035 3036 static void raid1_free(struct mddev *mddev, void *priv); 3037 static int raid1_run(struct mddev *mddev) 3038 { 3039 struct r1conf *conf; 3040 int i; 3041 struct md_rdev *rdev; 3042 int ret; 3043 bool discard_supported = false; 3044 3045 if (mddev->level != 1) { 3046 pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n", 3047 mdname(mddev), mddev->level); 3048 return -EIO; 3049 } 3050 if (mddev->reshape_position != MaxSector) { 3051 pr_warn("md/raid1:%s: reshape_position set but not supported\n", 3052 mdname(mddev)); 3053 return -EIO; 3054 } 3055 if (mddev_init_writes_pending(mddev) < 0) 3056 return -ENOMEM; 3057 /* 3058 * copy the already verified devices into our private RAID1 3059 * bookkeeping area. [whatever we allocate in run(), 3060 * should be freed in raid1_free()] 3061 */ 3062 if (mddev->private == NULL) 3063 conf = setup_conf(mddev); 3064 else 3065 conf = mddev->private; 3066 3067 if (IS_ERR(conf)) 3068 return PTR_ERR(conf); 3069 3070 if (mddev->queue) { 3071 blk_queue_max_write_same_sectors(mddev->queue, 0); 3072 blk_queue_max_write_zeroes_sectors(mddev->queue, 0); 3073 } 3074 3075 rdev_for_each(rdev, mddev) { 3076 if (!mddev->gendisk) 3077 continue; 3078 disk_stack_limits(mddev->gendisk, rdev->bdev, 3079 rdev->data_offset << 9); 3080 if (blk_queue_discard(bdev_get_queue(rdev->bdev))) 3081 discard_supported = true; 3082 } 3083 3084 mddev->degraded = 0; 3085 for (i=0; i < conf->raid_disks; i++) 3086 if (conf->mirrors[i].rdev == NULL || 3087 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) || 3088 test_bit(Faulty, &conf->mirrors[i].rdev->flags)) 3089 mddev->degraded++; 3090 3091 if (conf->raid_disks - mddev->degraded == 1) 3092 mddev->recovery_cp = MaxSector; 3093 3094 if (mddev->recovery_cp != MaxSector) 3095 pr_info("md/raid1:%s: not clean -- starting background reconstruction\n", 3096 mdname(mddev)); 3097 pr_info("md/raid1:%s: active with %d out of %d mirrors\n", 3098 mdname(mddev), mddev->raid_disks - mddev->degraded, 3099 mddev->raid_disks); 3100 3101 /* 3102 * Ok, everything is just fine now 3103 */ 3104 mddev->thread = conf->thread; 3105 conf->thread = NULL; 3106 mddev->private = conf; 3107 set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags); 3108 3109 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0)); 3110 3111 if (mddev->queue) { 3112 if (discard_supported) 3113 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, 3114 mddev->queue); 3115 else 3116 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, 3117 mddev->queue); 3118 } 3119 3120 ret = md_integrity_register(mddev); 3121 if (ret) { 3122 md_unregister_thread(&mddev->thread); 3123 raid1_free(mddev, conf); 3124 } 3125 return ret; 3126 } 3127 3128 static void raid1_free(struct mddev *mddev, void *priv) 3129 { 3130 struct r1conf *conf = priv; 3131 3132 mempool_destroy(conf->r1bio_pool); 3133 kfree(conf->mirrors); 3134 safe_put_page(conf->tmppage); 3135 kfree(conf->poolinfo); 3136 kfree(conf->nr_pending); 3137 kfree(conf->nr_waiting); 3138 kfree(conf->nr_queued); 3139 kfree(conf->barrier); 3140 if (conf->bio_split) 3141 bioset_free(conf->bio_split); 3142 kfree(conf); 3143 } 3144 3145 static int raid1_resize(struct mddev *mddev, sector_t sectors) 3146 { 3147 /* no resync is happening, and there is enough space 3148 * on all devices, so we can resize. 3149 * We need to make sure resync covers any new space. 3150 * If the array is shrinking we should possibly wait until 3151 * any io in the removed space completes, but it hardly seems 3152 * worth it. 3153 */ 3154 sector_t newsize = raid1_size(mddev, sectors, 0); 3155 if (mddev->external_size && 3156 mddev->array_sectors > newsize) 3157 return -EINVAL; 3158 if (mddev->bitmap) { 3159 int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0); 3160 if (ret) 3161 return ret; 3162 } 3163 md_set_array_sectors(mddev, newsize); 3164 if (sectors > mddev->dev_sectors && 3165 mddev->recovery_cp > mddev->dev_sectors) { 3166 mddev->recovery_cp = mddev->dev_sectors; 3167 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3168 } 3169 mddev->dev_sectors = sectors; 3170 mddev->resync_max_sectors = sectors; 3171 return 0; 3172 } 3173 3174 static int raid1_reshape(struct mddev *mddev) 3175 { 3176 /* We need to: 3177 * 1/ resize the r1bio_pool 3178 * 2/ resize conf->mirrors 3179 * 3180 * We allocate a new r1bio_pool if we can. 3181 * Then raise a device barrier and wait until all IO stops. 3182 * Then resize conf->mirrors and swap in the new r1bio pool. 3183 * 3184 * At the same time, we "pack" the devices so that all the missing 3185 * devices have the higher raid_disk numbers. 3186 */ 3187 mempool_t *newpool, *oldpool; 3188 struct pool_info *newpoolinfo; 3189 struct raid1_info *newmirrors; 3190 struct r1conf *conf = mddev->private; 3191 int cnt, raid_disks; 3192 unsigned long flags; 3193 int d, d2; 3194 3195 /* Cannot change chunk_size, layout, or level */ 3196 if (mddev->chunk_sectors != mddev->new_chunk_sectors || 3197 mddev->layout != mddev->new_layout || 3198 mddev->level != mddev->new_level) { 3199 mddev->new_chunk_sectors = mddev->chunk_sectors; 3200 mddev->new_layout = mddev->layout; 3201 mddev->new_level = mddev->level; 3202 return -EINVAL; 3203 } 3204 3205 if (!mddev_is_clustered(mddev)) 3206 md_allow_write(mddev); 3207 3208 raid_disks = mddev->raid_disks + mddev->delta_disks; 3209 3210 if (raid_disks < conf->raid_disks) { 3211 cnt=0; 3212 for (d= 0; d < conf->raid_disks; d++) 3213 if (conf->mirrors[d].rdev) 3214 cnt++; 3215 if (cnt > raid_disks) 3216 return -EBUSY; 3217 } 3218 3219 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL); 3220 if (!newpoolinfo) 3221 return -ENOMEM; 3222 newpoolinfo->mddev = mddev; 3223 newpoolinfo->raid_disks = raid_disks * 2; 3224 3225 newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc, 3226 r1bio_pool_free, newpoolinfo); 3227 if (!newpool) { 3228 kfree(newpoolinfo); 3229 return -ENOMEM; 3230 } 3231 newmirrors = kzalloc(sizeof(struct raid1_info) * raid_disks * 2, 3232 GFP_KERNEL); 3233 if (!newmirrors) { 3234 kfree(newpoolinfo); 3235 mempool_destroy(newpool); 3236 return -ENOMEM; 3237 } 3238 3239 freeze_array(conf, 0); 3240 3241 /* ok, everything is stopped */ 3242 oldpool = conf->r1bio_pool; 3243 conf->r1bio_pool = newpool; 3244 3245 for (d = d2 = 0; d < conf->raid_disks; d++) { 3246 struct md_rdev *rdev = conf->mirrors[d].rdev; 3247 if (rdev && rdev->raid_disk != d2) { 3248 sysfs_unlink_rdev(mddev, rdev); 3249 rdev->raid_disk = d2; 3250 sysfs_unlink_rdev(mddev, rdev); 3251 if (sysfs_link_rdev(mddev, rdev)) 3252 pr_warn("md/raid1:%s: cannot register rd%d\n", 3253 mdname(mddev), rdev->raid_disk); 3254 } 3255 if (rdev) 3256 newmirrors[d2++].rdev = rdev; 3257 } 3258 kfree(conf->mirrors); 3259 conf->mirrors = newmirrors; 3260 kfree(conf->poolinfo); 3261 conf->poolinfo = newpoolinfo; 3262 3263 spin_lock_irqsave(&conf->device_lock, flags); 3264 mddev->degraded += (raid_disks - conf->raid_disks); 3265 spin_unlock_irqrestore(&conf->device_lock, flags); 3266 conf->raid_disks = mddev->raid_disks = raid_disks; 3267 mddev->delta_disks = 0; 3268 3269 unfreeze_array(conf); 3270 3271 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 3272 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3273 md_wakeup_thread(mddev->thread); 3274 3275 mempool_destroy(oldpool); 3276 return 0; 3277 } 3278 3279 static void raid1_quiesce(struct mddev *mddev, int quiesce) 3280 { 3281 struct r1conf *conf = mddev->private; 3282 3283 if (quiesce) 3284 freeze_array(conf, 0); 3285 else 3286 unfreeze_array(conf); 3287 } 3288 3289 static void *raid1_takeover(struct mddev *mddev) 3290 { 3291 /* raid1 can take over: 3292 * raid5 with 2 devices, any layout or chunk size 3293 */ 3294 if (mddev->level == 5 && mddev->raid_disks == 2) { 3295 struct r1conf *conf; 3296 mddev->new_level = 1; 3297 mddev->new_layout = 0; 3298 mddev->new_chunk_sectors = 0; 3299 conf = setup_conf(mddev); 3300 if (!IS_ERR(conf)) { 3301 /* Array must appear to be quiesced */ 3302 conf->array_frozen = 1; 3303 mddev_clear_unsupported_flags(mddev, 3304 UNSUPPORTED_MDDEV_FLAGS); 3305 } 3306 return conf; 3307 } 3308 return ERR_PTR(-EINVAL); 3309 } 3310 3311 static struct md_personality raid1_personality = 3312 { 3313 .name = "raid1", 3314 .level = 1, 3315 .owner = THIS_MODULE, 3316 .make_request = raid1_make_request, 3317 .run = raid1_run, 3318 .free = raid1_free, 3319 .status = raid1_status, 3320 .error_handler = raid1_error, 3321 .hot_add_disk = raid1_add_disk, 3322 .hot_remove_disk= raid1_remove_disk, 3323 .spare_active = raid1_spare_active, 3324 .sync_request = raid1_sync_request, 3325 .resize = raid1_resize, 3326 .size = raid1_size, 3327 .check_reshape = raid1_reshape, 3328 .quiesce = raid1_quiesce, 3329 .takeover = raid1_takeover, 3330 .congested = raid1_congested, 3331 }; 3332 3333 static int __init raid_init(void) 3334 { 3335 return register_md_personality(&raid1_personality); 3336 } 3337 3338 static void raid_exit(void) 3339 { 3340 unregister_md_personality(&raid1_personality); 3341 } 3342 3343 module_init(raid_init); 3344 module_exit(raid_exit); 3345 MODULE_LICENSE("GPL"); 3346 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD"); 3347 MODULE_ALIAS("md-personality-3"); /* RAID1 */ 3348 MODULE_ALIAS("md-raid1"); 3349 MODULE_ALIAS("md-level-1"); 3350 3351 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR); 3352