xref: /openbmc/linux/drivers/md/raid1.c (revision 8295efbe)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * raid1.c : Multiple Devices driver for Linux
4  *
5  * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
6  *
7  * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
8  *
9  * RAID-1 management functions.
10  *
11  * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
12  *
13  * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
14  * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
15  *
16  * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
17  * bitmapped intelligence in resync:
18  *
19  *      - bitmap marked during normal i/o
20  *      - bitmap used to skip nondirty blocks during sync
21  *
22  * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
23  * - persistent bitmap code
24  */
25 
26 #include <linux/slab.h>
27 #include <linux/delay.h>
28 #include <linux/blkdev.h>
29 #include <linux/module.h>
30 #include <linux/seq_file.h>
31 #include <linux/ratelimit.h>
32 #include <linux/interval_tree_generic.h>
33 
34 #include <trace/events/block.h>
35 
36 #include "md.h"
37 #include "raid1.h"
38 #include "md-bitmap.h"
39 
40 #define UNSUPPORTED_MDDEV_FLAGS		\
41 	((1L << MD_HAS_JOURNAL) |	\
42 	 (1L << MD_JOURNAL_CLEAN) |	\
43 	 (1L << MD_HAS_PPL) |		\
44 	 (1L << MD_HAS_MULTIPLE_PPLS))
45 
46 static void allow_barrier(struct r1conf *conf, sector_t sector_nr);
47 static void lower_barrier(struct r1conf *conf, sector_t sector_nr);
48 
49 #define raid1_log(md, fmt, args...)				\
50 	do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid1 " fmt, ##args); } while (0)
51 
52 #include "raid1-10.c"
53 
54 #define START(node) ((node)->start)
55 #define LAST(node) ((node)->last)
56 INTERVAL_TREE_DEFINE(struct serial_info, node, sector_t, _subtree_last,
57 		     START, LAST, static inline, raid1_rb);
58 
59 static int check_and_add_serial(struct md_rdev *rdev, struct r1bio *r1_bio,
60 				struct serial_info *si, int idx)
61 {
62 	unsigned long flags;
63 	int ret = 0;
64 	sector_t lo = r1_bio->sector;
65 	sector_t hi = lo + r1_bio->sectors;
66 	struct serial_in_rdev *serial = &rdev->serial[idx];
67 
68 	spin_lock_irqsave(&serial->serial_lock, flags);
69 	/* collision happened */
70 	if (raid1_rb_iter_first(&serial->serial_rb, lo, hi))
71 		ret = -EBUSY;
72 	else {
73 		si->start = lo;
74 		si->last = hi;
75 		raid1_rb_insert(si, &serial->serial_rb);
76 	}
77 	spin_unlock_irqrestore(&serial->serial_lock, flags);
78 
79 	return ret;
80 }
81 
82 static void wait_for_serialization(struct md_rdev *rdev, struct r1bio *r1_bio)
83 {
84 	struct mddev *mddev = rdev->mddev;
85 	struct serial_info *si;
86 	int idx = sector_to_idx(r1_bio->sector);
87 	struct serial_in_rdev *serial = &rdev->serial[idx];
88 
89 	if (WARN_ON(!mddev->serial_info_pool))
90 		return;
91 	si = mempool_alloc(mddev->serial_info_pool, GFP_NOIO);
92 	wait_event(serial->serial_io_wait,
93 		   check_and_add_serial(rdev, r1_bio, si, idx) == 0);
94 }
95 
96 static void remove_serial(struct md_rdev *rdev, sector_t lo, sector_t hi)
97 {
98 	struct serial_info *si;
99 	unsigned long flags;
100 	int found = 0;
101 	struct mddev *mddev = rdev->mddev;
102 	int idx = sector_to_idx(lo);
103 	struct serial_in_rdev *serial = &rdev->serial[idx];
104 
105 	spin_lock_irqsave(&serial->serial_lock, flags);
106 	for (si = raid1_rb_iter_first(&serial->serial_rb, lo, hi);
107 	     si; si = raid1_rb_iter_next(si, lo, hi)) {
108 		if (si->start == lo && si->last == hi) {
109 			raid1_rb_remove(si, &serial->serial_rb);
110 			mempool_free(si, mddev->serial_info_pool);
111 			found = 1;
112 			break;
113 		}
114 	}
115 	if (!found)
116 		WARN(1, "The write IO is not recorded for serialization\n");
117 	spin_unlock_irqrestore(&serial->serial_lock, flags);
118 	wake_up(&serial->serial_io_wait);
119 }
120 
121 /*
122  * for resync bio, r1bio pointer can be retrieved from the per-bio
123  * 'struct resync_pages'.
124  */
125 static inline struct r1bio *get_resync_r1bio(struct bio *bio)
126 {
127 	return get_resync_pages(bio)->raid_bio;
128 }
129 
130 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
131 {
132 	struct pool_info *pi = data;
133 	int size = offsetof(struct r1bio, bios[pi->raid_disks]);
134 
135 	/* allocate a r1bio with room for raid_disks entries in the bios array */
136 	return kzalloc(size, gfp_flags);
137 }
138 
139 #define RESYNC_DEPTH 32
140 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
141 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
142 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
143 #define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
144 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
145 
146 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
147 {
148 	struct pool_info *pi = data;
149 	struct r1bio *r1_bio;
150 	struct bio *bio;
151 	int need_pages;
152 	int j;
153 	struct resync_pages *rps;
154 
155 	r1_bio = r1bio_pool_alloc(gfp_flags, pi);
156 	if (!r1_bio)
157 		return NULL;
158 
159 	rps = kmalloc_array(pi->raid_disks, sizeof(struct resync_pages),
160 			    gfp_flags);
161 	if (!rps)
162 		goto out_free_r1bio;
163 
164 	/*
165 	 * Allocate bios : 1 for reading, n-1 for writing
166 	 */
167 	for (j = pi->raid_disks ; j-- ; ) {
168 		bio = bio_kmalloc(RESYNC_PAGES, gfp_flags);
169 		if (!bio)
170 			goto out_free_bio;
171 		bio_init(bio, NULL, bio->bi_inline_vecs, RESYNC_PAGES, 0);
172 		r1_bio->bios[j] = bio;
173 	}
174 	/*
175 	 * Allocate RESYNC_PAGES data pages and attach them to
176 	 * the first bio.
177 	 * If this is a user-requested check/repair, allocate
178 	 * RESYNC_PAGES for each bio.
179 	 */
180 	if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
181 		need_pages = pi->raid_disks;
182 	else
183 		need_pages = 1;
184 	for (j = 0; j < pi->raid_disks; j++) {
185 		struct resync_pages *rp = &rps[j];
186 
187 		bio = r1_bio->bios[j];
188 
189 		if (j < need_pages) {
190 			if (resync_alloc_pages(rp, gfp_flags))
191 				goto out_free_pages;
192 		} else {
193 			memcpy(rp, &rps[0], sizeof(*rp));
194 			resync_get_all_pages(rp);
195 		}
196 
197 		rp->raid_bio = r1_bio;
198 		bio->bi_private = rp;
199 	}
200 
201 	r1_bio->master_bio = NULL;
202 
203 	return r1_bio;
204 
205 out_free_pages:
206 	while (--j >= 0)
207 		resync_free_pages(&rps[j]);
208 
209 out_free_bio:
210 	while (++j < pi->raid_disks) {
211 		bio_uninit(r1_bio->bios[j]);
212 		kfree(r1_bio->bios[j]);
213 	}
214 	kfree(rps);
215 
216 out_free_r1bio:
217 	rbio_pool_free(r1_bio, data);
218 	return NULL;
219 }
220 
221 static void r1buf_pool_free(void *__r1_bio, void *data)
222 {
223 	struct pool_info *pi = data;
224 	int i;
225 	struct r1bio *r1bio = __r1_bio;
226 	struct resync_pages *rp = NULL;
227 
228 	for (i = pi->raid_disks; i--; ) {
229 		rp = get_resync_pages(r1bio->bios[i]);
230 		resync_free_pages(rp);
231 		bio_uninit(r1bio->bios[i]);
232 		kfree(r1bio->bios[i]);
233 	}
234 
235 	/* resync pages array stored in the 1st bio's .bi_private */
236 	kfree(rp);
237 
238 	rbio_pool_free(r1bio, data);
239 }
240 
241 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
242 {
243 	int i;
244 
245 	for (i = 0; i < conf->raid_disks * 2; i++) {
246 		struct bio **bio = r1_bio->bios + i;
247 		if (!BIO_SPECIAL(*bio))
248 			bio_put(*bio);
249 		*bio = NULL;
250 	}
251 }
252 
253 static void free_r1bio(struct r1bio *r1_bio)
254 {
255 	struct r1conf *conf = r1_bio->mddev->private;
256 
257 	put_all_bios(conf, r1_bio);
258 	mempool_free(r1_bio, &conf->r1bio_pool);
259 }
260 
261 static void put_buf(struct r1bio *r1_bio)
262 {
263 	struct r1conf *conf = r1_bio->mddev->private;
264 	sector_t sect = r1_bio->sector;
265 	int i;
266 
267 	for (i = 0; i < conf->raid_disks * 2; i++) {
268 		struct bio *bio = r1_bio->bios[i];
269 		if (bio->bi_end_io)
270 			rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
271 	}
272 
273 	mempool_free(r1_bio, &conf->r1buf_pool);
274 
275 	lower_barrier(conf, sect);
276 }
277 
278 static void reschedule_retry(struct r1bio *r1_bio)
279 {
280 	unsigned long flags;
281 	struct mddev *mddev = r1_bio->mddev;
282 	struct r1conf *conf = mddev->private;
283 	int idx;
284 
285 	idx = sector_to_idx(r1_bio->sector);
286 	spin_lock_irqsave(&conf->device_lock, flags);
287 	list_add(&r1_bio->retry_list, &conf->retry_list);
288 	atomic_inc(&conf->nr_queued[idx]);
289 	spin_unlock_irqrestore(&conf->device_lock, flags);
290 
291 	wake_up(&conf->wait_barrier);
292 	md_wakeup_thread(mddev->thread);
293 }
294 
295 /*
296  * raid_end_bio_io() is called when we have finished servicing a mirrored
297  * operation and are ready to return a success/failure code to the buffer
298  * cache layer.
299  */
300 static void call_bio_endio(struct r1bio *r1_bio)
301 {
302 	struct bio *bio = r1_bio->master_bio;
303 
304 	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
305 		bio->bi_status = BLK_STS_IOERR;
306 
307 	if (blk_queue_io_stat(bio->bi_bdev->bd_disk->queue))
308 		bio_end_io_acct(bio, r1_bio->start_time);
309 	bio_endio(bio);
310 }
311 
312 static void raid_end_bio_io(struct r1bio *r1_bio)
313 {
314 	struct bio *bio = r1_bio->master_bio;
315 	struct r1conf *conf = r1_bio->mddev->private;
316 
317 	/* if nobody has done the final endio yet, do it now */
318 	if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
319 		pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
320 			 (bio_data_dir(bio) == WRITE) ? "write" : "read",
321 			 (unsigned long long) bio->bi_iter.bi_sector,
322 			 (unsigned long long) bio_end_sector(bio) - 1);
323 
324 		call_bio_endio(r1_bio);
325 	}
326 	/*
327 	 * Wake up any possible resync thread that waits for the device
328 	 * to go idle.  All I/Os, even write-behind writes, are done.
329 	 */
330 	allow_barrier(conf, r1_bio->sector);
331 
332 	free_r1bio(r1_bio);
333 }
334 
335 /*
336  * Update disk head position estimator based on IRQ completion info.
337  */
338 static inline void update_head_pos(int disk, struct r1bio *r1_bio)
339 {
340 	struct r1conf *conf = r1_bio->mddev->private;
341 
342 	conf->mirrors[disk].head_position =
343 		r1_bio->sector + (r1_bio->sectors);
344 }
345 
346 /*
347  * Find the disk number which triggered given bio
348  */
349 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
350 {
351 	int mirror;
352 	struct r1conf *conf = r1_bio->mddev->private;
353 	int raid_disks = conf->raid_disks;
354 
355 	for (mirror = 0; mirror < raid_disks * 2; mirror++)
356 		if (r1_bio->bios[mirror] == bio)
357 			break;
358 
359 	BUG_ON(mirror == raid_disks * 2);
360 	update_head_pos(mirror, r1_bio);
361 
362 	return mirror;
363 }
364 
365 static void raid1_end_read_request(struct bio *bio)
366 {
367 	int uptodate = !bio->bi_status;
368 	struct r1bio *r1_bio = bio->bi_private;
369 	struct r1conf *conf = r1_bio->mddev->private;
370 	struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev;
371 
372 	/*
373 	 * this branch is our 'one mirror IO has finished' event handler:
374 	 */
375 	update_head_pos(r1_bio->read_disk, r1_bio);
376 
377 	if (uptodate)
378 		set_bit(R1BIO_Uptodate, &r1_bio->state);
379 	else if (test_bit(FailFast, &rdev->flags) &&
380 		 test_bit(R1BIO_FailFast, &r1_bio->state))
381 		/* This was a fail-fast read so we definitely
382 		 * want to retry */
383 		;
384 	else {
385 		/* If all other devices have failed, we want to return
386 		 * the error upwards rather than fail the last device.
387 		 * Here we redefine "uptodate" to mean "Don't want to retry"
388 		 */
389 		unsigned long flags;
390 		spin_lock_irqsave(&conf->device_lock, flags);
391 		if (r1_bio->mddev->degraded == conf->raid_disks ||
392 		    (r1_bio->mddev->degraded == conf->raid_disks-1 &&
393 		     test_bit(In_sync, &rdev->flags)))
394 			uptodate = 1;
395 		spin_unlock_irqrestore(&conf->device_lock, flags);
396 	}
397 
398 	if (uptodate) {
399 		raid_end_bio_io(r1_bio);
400 		rdev_dec_pending(rdev, conf->mddev);
401 	} else {
402 		/*
403 		 * oops, read error:
404 		 */
405 		pr_err_ratelimited("md/raid1:%s: %pg: rescheduling sector %llu\n",
406 				   mdname(conf->mddev),
407 				   rdev->bdev,
408 				   (unsigned long long)r1_bio->sector);
409 		set_bit(R1BIO_ReadError, &r1_bio->state);
410 		reschedule_retry(r1_bio);
411 		/* don't drop the reference on read_disk yet */
412 	}
413 }
414 
415 static void close_write(struct r1bio *r1_bio)
416 {
417 	/* it really is the end of this request */
418 	if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
419 		bio_free_pages(r1_bio->behind_master_bio);
420 		bio_put(r1_bio->behind_master_bio);
421 		r1_bio->behind_master_bio = NULL;
422 	}
423 	/* clear the bitmap if all writes complete successfully */
424 	md_bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
425 			   r1_bio->sectors,
426 			   !test_bit(R1BIO_Degraded, &r1_bio->state),
427 			   test_bit(R1BIO_BehindIO, &r1_bio->state));
428 	md_write_end(r1_bio->mddev);
429 }
430 
431 static void r1_bio_write_done(struct r1bio *r1_bio)
432 {
433 	if (!atomic_dec_and_test(&r1_bio->remaining))
434 		return;
435 
436 	if (test_bit(R1BIO_WriteError, &r1_bio->state))
437 		reschedule_retry(r1_bio);
438 	else {
439 		close_write(r1_bio);
440 		if (test_bit(R1BIO_MadeGood, &r1_bio->state))
441 			reschedule_retry(r1_bio);
442 		else
443 			raid_end_bio_io(r1_bio);
444 	}
445 }
446 
447 static void raid1_end_write_request(struct bio *bio)
448 {
449 	struct r1bio *r1_bio = bio->bi_private;
450 	int behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
451 	struct r1conf *conf = r1_bio->mddev->private;
452 	struct bio *to_put = NULL;
453 	int mirror = find_bio_disk(r1_bio, bio);
454 	struct md_rdev *rdev = conf->mirrors[mirror].rdev;
455 	bool discard_error;
456 	sector_t lo = r1_bio->sector;
457 	sector_t hi = r1_bio->sector + r1_bio->sectors;
458 
459 	discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
460 
461 	/*
462 	 * 'one mirror IO has finished' event handler:
463 	 */
464 	if (bio->bi_status && !discard_error) {
465 		set_bit(WriteErrorSeen,	&rdev->flags);
466 		if (!test_and_set_bit(WantReplacement, &rdev->flags))
467 			set_bit(MD_RECOVERY_NEEDED, &
468 				conf->mddev->recovery);
469 
470 		if (test_bit(FailFast, &rdev->flags) &&
471 		    (bio->bi_opf & MD_FAILFAST) &&
472 		    /* We never try FailFast to WriteMostly devices */
473 		    !test_bit(WriteMostly, &rdev->flags)) {
474 			md_error(r1_bio->mddev, rdev);
475 		}
476 
477 		/*
478 		 * When the device is faulty, it is not necessary to
479 		 * handle write error.
480 		 */
481 		if (!test_bit(Faulty, &rdev->flags))
482 			set_bit(R1BIO_WriteError, &r1_bio->state);
483 		else {
484 			/* Fail the request */
485 			set_bit(R1BIO_Degraded, &r1_bio->state);
486 			/* Finished with this branch */
487 			r1_bio->bios[mirror] = NULL;
488 			to_put = bio;
489 		}
490 	} else {
491 		/*
492 		 * Set R1BIO_Uptodate in our master bio, so that we
493 		 * will return a good error code for to the higher
494 		 * levels even if IO on some other mirrored buffer
495 		 * fails.
496 		 *
497 		 * The 'master' represents the composite IO operation
498 		 * to user-side. So if something waits for IO, then it
499 		 * will wait for the 'master' bio.
500 		 */
501 		sector_t first_bad;
502 		int bad_sectors;
503 
504 		r1_bio->bios[mirror] = NULL;
505 		to_put = bio;
506 		/*
507 		 * Do not set R1BIO_Uptodate if the current device is
508 		 * rebuilding or Faulty. This is because we cannot use
509 		 * such device for properly reading the data back (we could
510 		 * potentially use it, if the current write would have felt
511 		 * before rdev->recovery_offset, but for simplicity we don't
512 		 * check this here.
513 		 */
514 		if (test_bit(In_sync, &rdev->flags) &&
515 		    !test_bit(Faulty, &rdev->flags))
516 			set_bit(R1BIO_Uptodate, &r1_bio->state);
517 
518 		/* Maybe we can clear some bad blocks. */
519 		if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
520 				&first_bad, &bad_sectors) && !discard_error) {
521 			r1_bio->bios[mirror] = IO_MADE_GOOD;
522 			set_bit(R1BIO_MadeGood, &r1_bio->state);
523 		}
524 	}
525 
526 	if (behind) {
527 		if (test_bit(CollisionCheck, &rdev->flags))
528 			remove_serial(rdev, lo, hi);
529 		if (test_bit(WriteMostly, &rdev->flags))
530 			atomic_dec(&r1_bio->behind_remaining);
531 
532 		/*
533 		 * In behind mode, we ACK the master bio once the I/O
534 		 * has safely reached all non-writemostly
535 		 * disks. Setting the Returned bit ensures that this
536 		 * gets done only once -- we don't ever want to return
537 		 * -EIO here, instead we'll wait
538 		 */
539 		if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
540 		    test_bit(R1BIO_Uptodate, &r1_bio->state)) {
541 			/* Maybe we can return now */
542 			if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
543 				struct bio *mbio = r1_bio->master_bio;
544 				pr_debug("raid1: behind end write sectors"
545 					 " %llu-%llu\n",
546 					 (unsigned long long) mbio->bi_iter.bi_sector,
547 					 (unsigned long long) bio_end_sector(mbio) - 1);
548 				call_bio_endio(r1_bio);
549 			}
550 		}
551 	} else if (rdev->mddev->serialize_policy)
552 		remove_serial(rdev, lo, hi);
553 	if (r1_bio->bios[mirror] == NULL)
554 		rdev_dec_pending(rdev, conf->mddev);
555 
556 	/*
557 	 * Let's see if all mirrored write operations have finished
558 	 * already.
559 	 */
560 	r1_bio_write_done(r1_bio);
561 
562 	if (to_put)
563 		bio_put(to_put);
564 }
565 
566 static sector_t align_to_barrier_unit_end(sector_t start_sector,
567 					  sector_t sectors)
568 {
569 	sector_t len;
570 
571 	WARN_ON(sectors == 0);
572 	/*
573 	 * len is the number of sectors from start_sector to end of the
574 	 * barrier unit which start_sector belongs to.
575 	 */
576 	len = round_up(start_sector + 1, BARRIER_UNIT_SECTOR_SIZE) -
577 	      start_sector;
578 
579 	if (len > sectors)
580 		len = sectors;
581 
582 	return len;
583 }
584 
585 /*
586  * This routine returns the disk from which the requested read should
587  * be done. There is a per-array 'next expected sequential IO' sector
588  * number - if this matches on the next IO then we use the last disk.
589  * There is also a per-disk 'last know head position' sector that is
590  * maintained from IRQ contexts, both the normal and the resync IO
591  * completion handlers update this position correctly. If there is no
592  * perfect sequential match then we pick the disk whose head is closest.
593  *
594  * If there are 2 mirrors in the same 2 devices, performance degrades
595  * because position is mirror, not device based.
596  *
597  * The rdev for the device selected will have nr_pending incremented.
598  */
599 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
600 {
601 	const sector_t this_sector = r1_bio->sector;
602 	int sectors;
603 	int best_good_sectors;
604 	int best_disk, best_dist_disk, best_pending_disk;
605 	int has_nonrot_disk;
606 	int disk;
607 	sector_t best_dist;
608 	unsigned int min_pending;
609 	struct md_rdev *rdev;
610 	int choose_first;
611 	int choose_next_idle;
612 
613 	rcu_read_lock();
614 	/*
615 	 * Check if we can balance. We can balance on the whole
616 	 * device if no resync is going on, or below the resync window.
617 	 * We take the first readable disk when above the resync window.
618 	 */
619  retry:
620 	sectors = r1_bio->sectors;
621 	best_disk = -1;
622 	best_dist_disk = -1;
623 	best_dist = MaxSector;
624 	best_pending_disk = -1;
625 	min_pending = UINT_MAX;
626 	best_good_sectors = 0;
627 	has_nonrot_disk = 0;
628 	choose_next_idle = 0;
629 	clear_bit(R1BIO_FailFast, &r1_bio->state);
630 
631 	if ((conf->mddev->recovery_cp < this_sector + sectors) ||
632 	    (mddev_is_clustered(conf->mddev) &&
633 	    md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
634 		    this_sector + sectors)))
635 		choose_first = 1;
636 	else
637 		choose_first = 0;
638 
639 	for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
640 		sector_t dist;
641 		sector_t first_bad;
642 		int bad_sectors;
643 		unsigned int pending;
644 		bool nonrot;
645 
646 		rdev = rcu_dereference(conf->mirrors[disk].rdev);
647 		if (r1_bio->bios[disk] == IO_BLOCKED
648 		    || rdev == NULL
649 		    || test_bit(Faulty, &rdev->flags))
650 			continue;
651 		if (!test_bit(In_sync, &rdev->flags) &&
652 		    rdev->recovery_offset < this_sector + sectors)
653 			continue;
654 		if (test_bit(WriteMostly, &rdev->flags)) {
655 			/* Don't balance among write-mostly, just
656 			 * use the first as a last resort */
657 			if (best_dist_disk < 0) {
658 				if (is_badblock(rdev, this_sector, sectors,
659 						&first_bad, &bad_sectors)) {
660 					if (first_bad <= this_sector)
661 						/* Cannot use this */
662 						continue;
663 					best_good_sectors = first_bad - this_sector;
664 				} else
665 					best_good_sectors = sectors;
666 				best_dist_disk = disk;
667 				best_pending_disk = disk;
668 			}
669 			continue;
670 		}
671 		/* This is a reasonable device to use.  It might
672 		 * even be best.
673 		 */
674 		if (is_badblock(rdev, this_sector, sectors,
675 				&first_bad, &bad_sectors)) {
676 			if (best_dist < MaxSector)
677 				/* already have a better device */
678 				continue;
679 			if (first_bad <= this_sector) {
680 				/* cannot read here. If this is the 'primary'
681 				 * device, then we must not read beyond
682 				 * bad_sectors from another device..
683 				 */
684 				bad_sectors -= (this_sector - first_bad);
685 				if (choose_first && sectors > bad_sectors)
686 					sectors = bad_sectors;
687 				if (best_good_sectors > sectors)
688 					best_good_sectors = sectors;
689 
690 			} else {
691 				sector_t good_sectors = first_bad - this_sector;
692 				if (good_sectors > best_good_sectors) {
693 					best_good_sectors = good_sectors;
694 					best_disk = disk;
695 				}
696 				if (choose_first)
697 					break;
698 			}
699 			continue;
700 		} else {
701 			if ((sectors > best_good_sectors) && (best_disk >= 0))
702 				best_disk = -1;
703 			best_good_sectors = sectors;
704 		}
705 
706 		if (best_disk >= 0)
707 			/* At least two disks to choose from so failfast is OK */
708 			set_bit(R1BIO_FailFast, &r1_bio->state);
709 
710 		nonrot = bdev_nonrot(rdev->bdev);
711 		has_nonrot_disk |= nonrot;
712 		pending = atomic_read(&rdev->nr_pending);
713 		dist = abs(this_sector - conf->mirrors[disk].head_position);
714 		if (choose_first) {
715 			best_disk = disk;
716 			break;
717 		}
718 		/* Don't change to another disk for sequential reads */
719 		if (conf->mirrors[disk].next_seq_sect == this_sector
720 		    || dist == 0) {
721 			int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
722 			struct raid1_info *mirror = &conf->mirrors[disk];
723 
724 			best_disk = disk;
725 			/*
726 			 * If buffered sequential IO size exceeds optimal
727 			 * iosize, check if there is idle disk. If yes, choose
728 			 * the idle disk. read_balance could already choose an
729 			 * idle disk before noticing it's a sequential IO in
730 			 * this disk. This doesn't matter because this disk
731 			 * will idle, next time it will be utilized after the
732 			 * first disk has IO size exceeds optimal iosize. In
733 			 * this way, iosize of the first disk will be optimal
734 			 * iosize at least. iosize of the second disk might be
735 			 * small, but not a big deal since when the second disk
736 			 * starts IO, the first disk is likely still busy.
737 			 */
738 			if (nonrot && opt_iosize > 0 &&
739 			    mirror->seq_start != MaxSector &&
740 			    mirror->next_seq_sect > opt_iosize &&
741 			    mirror->next_seq_sect - opt_iosize >=
742 			    mirror->seq_start) {
743 				choose_next_idle = 1;
744 				continue;
745 			}
746 			break;
747 		}
748 
749 		if (choose_next_idle)
750 			continue;
751 
752 		if (min_pending > pending) {
753 			min_pending = pending;
754 			best_pending_disk = disk;
755 		}
756 
757 		if (dist < best_dist) {
758 			best_dist = dist;
759 			best_dist_disk = disk;
760 		}
761 	}
762 
763 	/*
764 	 * If all disks are rotational, choose the closest disk. If any disk is
765 	 * non-rotational, choose the disk with less pending request even the
766 	 * disk is rotational, which might/might not be optimal for raids with
767 	 * mixed ratation/non-rotational disks depending on workload.
768 	 */
769 	if (best_disk == -1) {
770 		if (has_nonrot_disk || min_pending == 0)
771 			best_disk = best_pending_disk;
772 		else
773 			best_disk = best_dist_disk;
774 	}
775 
776 	if (best_disk >= 0) {
777 		rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
778 		if (!rdev)
779 			goto retry;
780 		atomic_inc(&rdev->nr_pending);
781 		sectors = best_good_sectors;
782 
783 		if (conf->mirrors[best_disk].next_seq_sect != this_sector)
784 			conf->mirrors[best_disk].seq_start = this_sector;
785 
786 		conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
787 	}
788 	rcu_read_unlock();
789 	*max_sectors = sectors;
790 
791 	return best_disk;
792 }
793 
794 static void flush_bio_list(struct r1conf *conf, struct bio *bio)
795 {
796 	/* flush any pending bitmap writes to disk before proceeding w/ I/O */
797 	md_bitmap_unplug(conf->mddev->bitmap);
798 	wake_up(&conf->wait_barrier);
799 
800 	while (bio) { /* submit pending writes */
801 		struct bio *next = bio->bi_next;
802 
803 		raid1_submit_write(bio);
804 		bio = next;
805 		cond_resched();
806 	}
807 }
808 
809 static void flush_pending_writes(struct r1conf *conf)
810 {
811 	/* Any writes that have been queued but are awaiting
812 	 * bitmap updates get flushed here.
813 	 */
814 	spin_lock_irq(&conf->device_lock);
815 
816 	if (conf->pending_bio_list.head) {
817 		struct blk_plug plug;
818 		struct bio *bio;
819 
820 		bio = bio_list_get(&conf->pending_bio_list);
821 		spin_unlock_irq(&conf->device_lock);
822 
823 		/*
824 		 * As this is called in a wait_event() loop (see freeze_array),
825 		 * current->state might be TASK_UNINTERRUPTIBLE which will
826 		 * cause a warning when we prepare to wait again.  As it is
827 		 * rare that this path is taken, it is perfectly safe to force
828 		 * us to go around the wait_event() loop again, so the warning
829 		 * is a false-positive.  Silence the warning by resetting
830 		 * thread state
831 		 */
832 		__set_current_state(TASK_RUNNING);
833 		blk_start_plug(&plug);
834 		flush_bio_list(conf, bio);
835 		blk_finish_plug(&plug);
836 	} else
837 		spin_unlock_irq(&conf->device_lock);
838 }
839 
840 /* Barriers....
841  * Sometimes we need to suspend IO while we do something else,
842  * either some resync/recovery, or reconfigure the array.
843  * To do this we raise a 'barrier'.
844  * The 'barrier' is a counter that can be raised multiple times
845  * to count how many activities are happening which preclude
846  * normal IO.
847  * We can only raise the barrier if there is no pending IO.
848  * i.e. if nr_pending == 0.
849  * We choose only to raise the barrier if no-one is waiting for the
850  * barrier to go down.  This means that as soon as an IO request
851  * is ready, no other operations which require a barrier will start
852  * until the IO request has had a chance.
853  *
854  * So: regular IO calls 'wait_barrier'.  When that returns there
855  *    is no backgroup IO happening,  It must arrange to call
856  *    allow_barrier when it has finished its IO.
857  * backgroup IO calls must call raise_barrier.  Once that returns
858  *    there is no normal IO happeing.  It must arrange to call
859  *    lower_barrier when the particular background IO completes.
860  *
861  * If resync/recovery is interrupted, returns -EINTR;
862  * Otherwise, returns 0.
863  */
864 static int raise_barrier(struct r1conf *conf, sector_t sector_nr)
865 {
866 	int idx = sector_to_idx(sector_nr);
867 
868 	spin_lock_irq(&conf->resync_lock);
869 
870 	/* Wait until no block IO is waiting */
871 	wait_event_lock_irq(conf->wait_barrier,
872 			    !atomic_read(&conf->nr_waiting[idx]),
873 			    conf->resync_lock);
874 
875 	/* block any new IO from starting */
876 	atomic_inc(&conf->barrier[idx]);
877 	/*
878 	 * In raise_barrier() we firstly increase conf->barrier[idx] then
879 	 * check conf->nr_pending[idx]. In _wait_barrier() we firstly
880 	 * increase conf->nr_pending[idx] then check conf->barrier[idx].
881 	 * A memory barrier here to make sure conf->nr_pending[idx] won't
882 	 * be fetched before conf->barrier[idx] is increased. Otherwise
883 	 * there will be a race between raise_barrier() and _wait_barrier().
884 	 */
885 	smp_mb__after_atomic();
886 
887 	/* For these conditions we must wait:
888 	 * A: while the array is in frozen state
889 	 * B: while conf->nr_pending[idx] is not 0, meaning regular I/O
890 	 *    existing in corresponding I/O barrier bucket.
891 	 * C: while conf->barrier[idx] >= RESYNC_DEPTH, meaning reaches
892 	 *    max resync count which allowed on current I/O barrier bucket.
893 	 */
894 	wait_event_lock_irq(conf->wait_barrier,
895 			    (!conf->array_frozen &&
896 			     !atomic_read(&conf->nr_pending[idx]) &&
897 			     atomic_read(&conf->barrier[idx]) < RESYNC_DEPTH) ||
898 				test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery),
899 			    conf->resync_lock);
900 
901 	if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
902 		atomic_dec(&conf->barrier[idx]);
903 		spin_unlock_irq(&conf->resync_lock);
904 		wake_up(&conf->wait_barrier);
905 		return -EINTR;
906 	}
907 
908 	atomic_inc(&conf->nr_sync_pending);
909 	spin_unlock_irq(&conf->resync_lock);
910 
911 	return 0;
912 }
913 
914 static void lower_barrier(struct r1conf *conf, sector_t sector_nr)
915 {
916 	int idx = sector_to_idx(sector_nr);
917 
918 	BUG_ON(atomic_read(&conf->barrier[idx]) <= 0);
919 
920 	atomic_dec(&conf->barrier[idx]);
921 	atomic_dec(&conf->nr_sync_pending);
922 	wake_up(&conf->wait_barrier);
923 }
924 
925 static bool _wait_barrier(struct r1conf *conf, int idx, bool nowait)
926 {
927 	bool ret = true;
928 
929 	/*
930 	 * We need to increase conf->nr_pending[idx] very early here,
931 	 * then raise_barrier() can be blocked when it waits for
932 	 * conf->nr_pending[idx] to be 0. Then we can avoid holding
933 	 * conf->resync_lock when there is no barrier raised in same
934 	 * barrier unit bucket. Also if the array is frozen, I/O
935 	 * should be blocked until array is unfrozen.
936 	 */
937 	atomic_inc(&conf->nr_pending[idx]);
938 	/*
939 	 * In _wait_barrier() we firstly increase conf->nr_pending[idx], then
940 	 * check conf->barrier[idx]. In raise_barrier() we firstly increase
941 	 * conf->barrier[idx], then check conf->nr_pending[idx]. A memory
942 	 * barrier is necessary here to make sure conf->barrier[idx] won't be
943 	 * fetched before conf->nr_pending[idx] is increased. Otherwise there
944 	 * will be a race between _wait_barrier() and raise_barrier().
945 	 */
946 	smp_mb__after_atomic();
947 
948 	/*
949 	 * Don't worry about checking two atomic_t variables at same time
950 	 * here. If during we check conf->barrier[idx], the array is
951 	 * frozen (conf->array_frozen is 1), and chonf->barrier[idx] is
952 	 * 0, it is safe to return and make the I/O continue. Because the
953 	 * array is frozen, all I/O returned here will eventually complete
954 	 * or be queued, no race will happen. See code comment in
955 	 * frozen_array().
956 	 */
957 	if (!READ_ONCE(conf->array_frozen) &&
958 	    !atomic_read(&conf->barrier[idx]))
959 		return ret;
960 
961 	/*
962 	 * After holding conf->resync_lock, conf->nr_pending[idx]
963 	 * should be decreased before waiting for barrier to drop.
964 	 * Otherwise, we may encounter a race condition because
965 	 * raise_barrer() might be waiting for conf->nr_pending[idx]
966 	 * to be 0 at same time.
967 	 */
968 	spin_lock_irq(&conf->resync_lock);
969 	atomic_inc(&conf->nr_waiting[idx]);
970 	atomic_dec(&conf->nr_pending[idx]);
971 	/*
972 	 * In case freeze_array() is waiting for
973 	 * get_unqueued_pending() == extra
974 	 */
975 	wake_up(&conf->wait_barrier);
976 	/* Wait for the barrier in same barrier unit bucket to drop. */
977 
978 	/* Return false when nowait flag is set */
979 	if (nowait) {
980 		ret = false;
981 	} else {
982 		wait_event_lock_irq(conf->wait_barrier,
983 				!conf->array_frozen &&
984 				!atomic_read(&conf->barrier[idx]),
985 				conf->resync_lock);
986 		atomic_inc(&conf->nr_pending[idx]);
987 	}
988 
989 	atomic_dec(&conf->nr_waiting[idx]);
990 	spin_unlock_irq(&conf->resync_lock);
991 	return ret;
992 }
993 
994 static bool wait_read_barrier(struct r1conf *conf, sector_t sector_nr, bool nowait)
995 {
996 	int idx = sector_to_idx(sector_nr);
997 	bool ret = true;
998 
999 	/*
1000 	 * Very similar to _wait_barrier(). The difference is, for read
1001 	 * I/O we don't need wait for sync I/O, but if the whole array
1002 	 * is frozen, the read I/O still has to wait until the array is
1003 	 * unfrozen. Since there is no ordering requirement with
1004 	 * conf->barrier[idx] here, memory barrier is unnecessary as well.
1005 	 */
1006 	atomic_inc(&conf->nr_pending[idx]);
1007 
1008 	if (!READ_ONCE(conf->array_frozen))
1009 		return ret;
1010 
1011 	spin_lock_irq(&conf->resync_lock);
1012 	atomic_inc(&conf->nr_waiting[idx]);
1013 	atomic_dec(&conf->nr_pending[idx]);
1014 	/*
1015 	 * In case freeze_array() is waiting for
1016 	 * get_unqueued_pending() == extra
1017 	 */
1018 	wake_up(&conf->wait_barrier);
1019 	/* Wait for array to be unfrozen */
1020 
1021 	/* Return false when nowait flag is set */
1022 	if (nowait) {
1023 		/* Return false when nowait flag is set */
1024 		ret = false;
1025 	} else {
1026 		wait_event_lock_irq(conf->wait_barrier,
1027 				!conf->array_frozen,
1028 				conf->resync_lock);
1029 		atomic_inc(&conf->nr_pending[idx]);
1030 	}
1031 
1032 	atomic_dec(&conf->nr_waiting[idx]);
1033 	spin_unlock_irq(&conf->resync_lock);
1034 	return ret;
1035 }
1036 
1037 static bool wait_barrier(struct r1conf *conf, sector_t sector_nr, bool nowait)
1038 {
1039 	int idx = sector_to_idx(sector_nr);
1040 
1041 	return _wait_barrier(conf, idx, nowait);
1042 }
1043 
1044 static void _allow_barrier(struct r1conf *conf, int idx)
1045 {
1046 	atomic_dec(&conf->nr_pending[idx]);
1047 	wake_up(&conf->wait_barrier);
1048 }
1049 
1050 static void allow_barrier(struct r1conf *conf, sector_t sector_nr)
1051 {
1052 	int idx = sector_to_idx(sector_nr);
1053 
1054 	_allow_barrier(conf, idx);
1055 }
1056 
1057 /* conf->resync_lock should be held */
1058 static int get_unqueued_pending(struct r1conf *conf)
1059 {
1060 	int idx, ret;
1061 
1062 	ret = atomic_read(&conf->nr_sync_pending);
1063 	for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
1064 		ret += atomic_read(&conf->nr_pending[idx]) -
1065 			atomic_read(&conf->nr_queued[idx]);
1066 
1067 	return ret;
1068 }
1069 
1070 static void freeze_array(struct r1conf *conf, int extra)
1071 {
1072 	/* Stop sync I/O and normal I/O and wait for everything to
1073 	 * go quiet.
1074 	 * This is called in two situations:
1075 	 * 1) management command handlers (reshape, remove disk, quiesce).
1076 	 * 2) one normal I/O request failed.
1077 
1078 	 * After array_frozen is set to 1, new sync IO will be blocked at
1079 	 * raise_barrier(), and new normal I/O will blocked at _wait_barrier()
1080 	 * or wait_read_barrier(). The flying I/Os will either complete or be
1081 	 * queued. When everything goes quite, there are only queued I/Os left.
1082 
1083 	 * Every flying I/O contributes to a conf->nr_pending[idx], idx is the
1084 	 * barrier bucket index which this I/O request hits. When all sync and
1085 	 * normal I/O are queued, sum of all conf->nr_pending[] will match sum
1086 	 * of all conf->nr_queued[]. But normal I/O failure is an exception,
1087 	 * in handle_read_error(), we may call freeze_array() before trying to
1088 	 * fix the read error. In this case, the error read I/O is not queued,
1089 	 * so get_unqueued_pending() == 1.
1090 	 *
1091 	 * Therefore before this function returns, we need to wait until
1092 	 * get_unqueued_pendings(conf) gets equal to extra. For
1093 	 * normal I/O context, extra is 1, in rested situations extra is 0.
1094 	 */
1095 	spin_lock_irq(&conf->resync_lock);
1096 	conf->array_frozen = 1;
1097 	raid1_log(conf->mddev, "wait freeze");
1098 	wait_event_lock_irq_cmd(
1099 		conf->wait_barrier,
1100 		get_unqueued_pending(conf) == extra,
1101 		conf->resync_lock,
1102 		flush_pending_writes(conf));
1103 	spin_unlock_irq(&conf->resync_lock);
1104 }
1105 static void unfreeze_array(struct r1conf *conf)
1106 {
1107 	/* reverse the effect of the freeze */
1108 	spin_lock_irq(&conf->resync_lock);
1109 	conf->array_frozen = 0;
1110 	spin_unlock_irq(&conf->resync_lock);
1111 	wake_up(&conf->wait_barrier);
1112 }
1113 
1114 static void alloc_behind_master_bio(struct r1bio *r1_bio,
1115 					   struct bio *bio)
1116 {
1117 	int size = bio->bi_iter.bi_size;
1118 	unsigned vcnt = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1119 	int i = 0;
1120 	struct bio *behind_bio = NULL;
1121 
1122 	behind_bio = bio_alloc_bioset(NULL, vcnt, 0, GFP_NOIO,
1123 				      &r1_bio->mddev->bio_set);
1124 	if (!behind_bio)
1125 		return;
1126 
1127 	/* discard op, we don't support writezero/writesame yet */
1128 	if (!bio_has_data(bio)) {
1129 		behind_bio->bi_iter.bi_size = size;
1130 		goto skip_copy;
1131 	}
1132 
1133 	while (i < vcnt && size) {
1134 		struct page *page;
1135 		int len = min_t(int, PAGE_SIZE, size);
1136 
1137 		page = alloc_page(GFP_NOIO);
1138 		if (unlikely(!page))
1139 			goto free_pages;
1140 
1141 		if (!bio_add_page(behind_bio, page, len, 0)) {
1142 			put_page(page);
1143 			goto free_pages;
1144 		}
1145 
1146 		size -= len;
1147 		i++;
1148 	}
1149 
1150 	bio_copy_data(behind_bio, bio);
1151 skip_copy:
1152 	r1_bio->behind_master_bio = behind_bio;
1153 	set_bit(R1BIO_BehindIO, &r1_bio->state);
1154 
1155 	return;
1156 
1157 free_pages:
1158 	pr_debug("%dB behind alloc failed, doing sync I/O\n",
1159 		 bio->bi_iter.bi_size);
1160 	bio_free_pages(behind_bio);
1161 	bio_put(behind_bio);
1162 }
1163 
1164 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1165 {
1166 	struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1167 						  cb);
1168 	struct mddev *mddev = plug->cb.data;
1169 	struct r1conf *conf = mddev->private;
1170 	struct bio *bio;
1171 
1172 	if (from_schedule || current->bio_list) {
1173 		spin_lock_irq(&conf->device_lock);
1174 		bio_list_merge(&conf->pending_bio_list, &plug->pending);
1175 		spin_unlock_irq(&conf->device_lock);
1176 		wake_up(&conf->wait_barrier);
1177 		md_wakeup_thread(mddev->thread);
1178 		kfree(plug);
1179 		return;
1180 	}
1181 
1182 	/* we aren't scheduling, so we can do the write-out directly. */
1183 	bio = bio_list_get(&plug->pending);
1184 	flush_bio_list(conf, bio);
1185 	kfree(plug);
1186 }
1187 
1188 static void init_r1bio(struct r1bio *r1_bio, struct mddev *mddev, struct bio *bio)
1189 {
1190 	r1_bio->master_bio = bio;
1191 	r1_bio->sectors = bio_sectors(bio);
1192 	r1_bio->state = 0;
1193 	r1_bio->mddev = mddev;
1194 	r1_bio->sector = bio->bi_iter.bi_sector;
1195 }
1196 
1197 static inline struct r1bio *
1198 alloc_r1bio(struct mddev *mddev, struct bio *bio)
1199 {
1200 	struct r1conf *conf = mddev->private;
1201 	struct r1bio *r1_bio;
1202 
1203 	r1_bio = mempool_alloc(&conf->r1bio_pool, GFP_NOIO);
1204 	/* Ensure no bio records IO_BLOCKED */
1205 	memset(r1_bio->bios, 0, conf->raid_disks * sizeof(r1_bio->bios[0]));
1206 	init_r1bio(r1_bio, mddev, bio);
1207 	return r1_bio;
1208 }
1209 
1210 static void raid1_read_request(struct mddev *mddev, struct bio *bio,
1211 			       int max_read_sectors, struct r1bio *r1_bio)
1212 {
1213 	struct r1conf *conf = mddev->private;
1214 	struct raid1_info *mirror;
1215 	struct bio *read_bio;
1216 	struct bitmap *bitmap = mddev->bitmap;
1217 	const enum req_op op = bio_op(bio);
1218 	const blk_opf_t do_sync = bio->bi_opf & REQ_SYNC;
1219 	int max_sectors;
1220 	int rdisk;
1221 	bool r1bio_existed = !!r1_bio;
1222 	char b[BDEVNAME_SIZE];
1223 
1224 	/*
1225 	 * If r1_bio is set, we are blocking the raid1d thread
1226 	 * so there is a tiny risk of deadlock.  So ask for
1227 	 * emergency memory if needed.
1228 	 */
1229 	gfp_t gfp = r1_bio ? (GFP_NOIO | __GFP_HIGH) : GFP_NOIO;
1230 
1231 	if (r1bio_existed) {
1232 		/* Need to get the block device name carefully */
1233 		struct md_rdev *rdev;
1234 		rcu_read_lock();
1235 		rdev = rcu_dereference(conf->mirrors[r1_bio->read_disk].rdev);
1236 		if (rdev)
1237 			snprintf(b, sizeof(b), "%pg", rdev->bdev);
1238 		else
1239 			strcpy(b, "???");
1240 		rcu_read_unlock();
1241 	}
1242 
1243 	/*
1244 	 * Still need barrier for READ in case that whole
1245 	 * array is frozen.
1246 	 */
1247 	if (!wait_read_barrier(conf, bio->bi_iter.bi_sector,
1248 				bio->bi_opf & REQ_NOWAIT)) {
1249 		bio_wouldblock_error(bio);
1250 		return;
1251 	}
1252 
1253 	if (!r1_bio)
1254 		r1_bio = alloc_r1bio(mddev, bio);
1255 	else
1256 		init_r1bio(r1_bio, mddev, bio);
1257 	r1_bio->sectors = max_read_sectors;
1258 
1259 	/*
1260 	 * make_request() can abort the operation when read-ahead is being
1261 	 * used and no empty request is available.
1262 	 */
1263 	rdisk = read_balance(conf, r1_bio, &max_sectors);
1264 
1265 	if (rdisk < 0) {
1266 		/* couldn't find anywhere to read from */
1267 		if (r1bio_existed) {
1268 			pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
1269 					    mdname(mddev),
1270 					    b,
1271 					    (unsigned long long)r1_bio->sector);
1272 		}
1273 		raid_end_bio_io(r1_bio);
1274 		return;
1275 	}
1276 	mirror = conf->mirrors + rdisk;
1277 
1278 	if (r1bio_existed)
1279 		pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %pg\n",
1280 				    mdname(mddev),
1281 				    (unsigned long long)r1_bio->sector,
1282 				    mirror->rdev->bdev);
1283 
1284 	if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1285 	    bitmap) {
1286 		/*
1287 		 * Reading from a write-mostly device must take care not to
1288 		 * over-take any writes that are 'behind'
1289 		 */
1290 		raid1_log(mddev, "wait behind writes");
1291 		wait_event(bitmap->behind_wait,
1292 			   atomic_read(&bitmap->behind_writes) == 0);
1293 	}
1294 
1295 	if (max_sectors < bio_sectors(bio)) {
1296 		struct bio *split = bio_split(bio, max_sectors,
1297 					      gfp, &conf->bio_split);
1298 		bio_chain(split, bio);
1299 		submit_bio_noacct(bio);
1300 		bio = split;
1301 		r1_bio->master_bio = bio;
1302 		r1_bio->sectors = max_sectors;
1303 	}
1304 
1305 	r1_bio->read_disk = rdisk;
1306 
1307 	if (!r1bio_existed && blk_queue_io_stat(bio->bi_bdev->bd_disk->queue))
1308 		r1_bio->start_time = bio_start_io_acct(bio);
1309 
1310 	read_bio = bio_alloc_clone(mirror->rdev->bdev, bio, gfp,
1311 				   &mddev->bio_set);
1312 
1313 	r1_bio->bios[rdisk] = read_bio;
1314 
1315 	read_bio->bi_iter.bi_sector = r1_bio->sector +
1316 		mirror->rdev->data_offset;
1317 	read_bio->bi_end_io = raid1_end_read_request;
1318 	read_bio->bi_opf = op | do_sync;
1319 	if (test_bit(FailFast, &mirror->rdev->flags) &&
1320 	    test_bit(R1BIO_FailFast, &r1_bio->state))
1321 	        read_bio->bi_opf |= MD_FAILFAST;
1322 	read_bio->bi_private = r1_bio;
1323 
1324 	if (mddev->gendisk)
1325 	        trace_block_bio_remap(read_bio, disk_devt(mddev->gendisk),
1326 				      r1_bio->sector);
1327 
1328 	submit_bio_noacct(read_bio);
1329 }
1330 
1331 static void raid1_write_request(struct mddev *mddev, struct bio *bio,
1332 				int max_write_sectors)
1333 {
1334 	struct r1conf *conf = mddev->private;
1335 	struct r1bio *r1_bio;
1336 	int i, disks;
1337 	struct bitmap *bitmap = mddev->bitmap;
1338 	unsigned long flags;
1339 	struct md_rdev *blocked_rdev;
1340 	int first_clone;
1341 	int max_sectors;
1342 	bool write_behind = false;
1343 
1344 	if (mddev_is_clustered(mddev) &&
1345 	     md_cluster_ops->area_resyncing(mddev, WRITE,
1346 		     bio->bi_iter.bi_sector, bio_end_sector(bio))) {
1347 
1348 		DEFINE_WAIT(w);
1349 		if (bio->bi_opf & REQ_NOWAIT) {
1350 			bio_wouldblock_error(bio);
1351 			return;
1352 		}
1353 		for (;;) {
1354 			prepare_to_wait(&conf->wait_barrier,
1355 					&w, TASK_IDLE);
1356 			if (!md_cluster_ops->area_resyncing(mddev, WRITE,
1357 							bio->bi_iter.bi_sector,
1358 							bio_end_sector(bio)))
1359 				break;
1360 			schedule();
1361 		}
1362 		finish_wait(&conf->wait_barrier, &w);
1363 	}
1364 
1365 	/*
1366 	 * Register the new request and wait if the reconstruction
1367 	 * thread has put up a bar for new requests.
1368 	 * Continue immediately if no resync is active currently.
1369 	 */
1370 	if (!wait_barrier(conf, bio->bi_iter.bi_sector,
1371 				bio->bi_opf & REQ_NOWAIT)) {
1372 		bio_wouldblock_error(bio);
1373 		return;
1374 	}
1375 
1376 	r1_bio = alloc_r1bio(mddev, bio);
1377 	r1_bio->sectors = max_write_sectors;
1378 
1379 	/* first select target devices under rcu_lock and
1380 	 * inc refcount on their rdev.  Record them by setting
1381 	 * bios[x] to bio
1382 	 * If there are known/acknowledged bad blocks on any device on
1383 	 * which we have seen a write error, we want to avoid writing those
1384 	 * blocks.
1385 	 * This potentially requires several writes to write around
1386 	 * the bad blocks.  Each set of writes gets it's own r1bio
1387 	 * with a set of bios attached.
1388 	 */
1389 
1390 	disks = conf->raid_disks * 2;
1391  retry_write:
1392 	blocked_rdev = NULL;
1393 	rcu_read_lock();
1394 	max_sectors = r1_bio->sectors;
1395 	for (i = 0;  i < disks; i++) {
1396 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1397 
1398 		/*
1399 		 * The write-behind io is only attempted on drives marked as
1400 		 * write-mostly, which means we could allocate write behind
1401 		 * bio later.
1402 		 */
1403 		if (rdev && test_bit(WriteMostly, &rdev->flags))
1404 			write_behind = true;
1405 
1406 		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1407 			atomic_inc(&rdev->nr_pending);
1408 			blocked_rdev = rdev;
1409 			break;
1410 		}
1411 		r1_bio->bios[i] = NULL;
1412 		if (!rdev || test_bit(Faulty, &rdev->flags)) {
1413 			if (i < conf->raid_disks)
1414 				set_bit(R1BIO_Degraded, &r1_bio->state);
1415 			continue;
1416 		}
1417 
1418 		atomic_inc(&rdev->nr_pending);
1419 		if (test_bit(WriteErrorSeen, &rdev->flags)) {
1420 			sector_t first_bad;
1421 			int bad_sectors;
1422 			int is_bad;
1423 
1424 			is_bad = is_badblock(rdev, r1_bio->sector, max_sectors,
1425 					     &first_bad, &bad_sectors);
1426 			if (is_bad < 0) {
1427 				/* mustn't write here until the bad block is
1428 				 * acknowledged*/
1429 				set_bit(BlockedBadBlocks, &rdev->flags);
1430 				blocked_rdev = rdev;
1431 				break;
1432 			}
1433 			if (is_bad && first_bad <= r1_bio->sector) {
1434 				/* Cannot write here at all */
1435 				bad_sectors -= (r1_bio->sector - first_bad);
1436 				if (bad_sectors < max_sectors)
1437 					/* mustn't write more than bad_sectors
1438 					 * to other devices yet
1439 					 */
1440 					max_sectors = bad_sectors;
1441 				rdev_dec_pending(rdev, mddev);
1442 				/* We don't set R1BIO_Degraded as that
1443 				 * only applies if the disk is
1444 				 * missing, so it might be re-added,
1445 				 * and we want to know to recover this
1446 				 * chunk.
1447 				 * In this case the device is here,
1448 				 * and the fact that this chunk is not
1449 				 * in-sync is recorded in the bad
1450 				 * block log
1451 				 */
1452 				continue;
1453 			}
1454 			if (is_bad) {
1455 				int good_sectors = first_bad - r1_bio->sector;
1456 				if (good_sectors < max_sectors)
1457 					max_sectors = good_sectors;
1458 			}
1459 		}
1460 		r1_bio->bios[i] = bio;
1461 	}
1462 	rcu_read_unlock();
1463 
1464 	if (unlikely(blocked_rdev)) {
1465 		/* Wait for this device to become unblocked */
1466 		int j;
1467 
1468 		for (j = 0; j < i; j++)
1469 			if (r1_bio->bios[j])
1470 				rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1471 		r1_bio->state = 0;
1472 		allow_barrier(conf, bio->bi_iter.bi_sector);
1473 
1474 		if (bio->bi_opf & REQ_NOWAIT) {
1475 			bio_wouldblock_error(bio);
1476 			return;
1477 		}
1478 		raid1_log(mddev, "wait rdev %d blocked", blocked_rdev->raid_disk);
1479 		md_wait_for_blocked_rdev(blocked_rdev, mddev);
1480 		wait_barrier(conf, bio->bi_iter.bi_sector, false);
1481 		goto retry_write;
1482 	}
1483 
1484 	/*
1485 	 * When using a bitmap, we may call alloc_behind_master_bio below.
1486 	 * alloc_behind_master_bio allocates a copy of the data payload a page
1487 	 * at a time and thus needs a new bio that can fit the whole payload
1488 	 * this bio in page sized chunks.
1489 	 */
1490 	if (write_behind && bitmap)
1491 		max_sectors = min_t(int, max_sectors,
1492 				    BIO_MAX_VECS * (PAGE_SIZE >> 9));
1493 	if (max_sectors < bio_sectors(bio)) {
1494 		struct bio *split = bio_split(bio, max_sectors,
1495 					      GFP_NOIO, &conf->bio_split);
1496 		bio_chain(split, bio);
1497 		submit_bio_noacct(bio);
1498 		bio = split;
1499 		r1_bio->master_bio = bio;
1500 		r1_bio->sectors = max_sectors;
1501 	}
1502 
1503 	if (blk_queue_io_stat(bio->bi_bdev->bd_disk->queue))
1504 		r1_bio->start_time = bio_start_io_acct(bio);
1505 	atomic_set(&r1_bio->remaining, 1);
1506 	atomic_set(&r1_bio->behind_remaining, 0);
1507 
1508 	first_clone = 1;
1509 
1510 	for (i = 0; i < disks; i++) {
1511 		struct bio *mbio = NULL;
1512 		struct md_rdev *rdev = conf->mirrors[i].rdev;
1513 		if (!r1_bio->bios[i])
1514 			continue;
1515 
1516 		if (first_clone) {
1517 			/* do behind I/O ?
1518 			 * Not if there are too many, or cannot
1519 			 * allocate memory, or a reader on WriteMostly
1520 			 * is waiting for behind writes to flush */
1521 			if (bitmap &&
1522 			    test_bit(WriteMostly, &rdev->flags) &&
1523 			    (atomic_read(&bitmap->behind_writes)
1524 			     < mddev->bitmap_info.max_write_behind) &&
1525 			    !waitqueue_active(&bitmap->behind_wait)) {
1526 				alloc_behind_master_bio(r1_bio, bio);
1527 			}
1528 
1529 			md_bitmap_startwrite(bitmap, r1_bio->sector, r1_bio->sectors,
1530 					     test_bit(R1BIO_BehindIO, &r1_bio->state));
1531 			first_clone = 0;
1532 		}
1533 
1534 		if (r1_bio->behind_master_bio) {
1535 			mbio = bio_alloc_clone(rdev->bdev,
1536 					       r1_bio->behind_master_bio,
1537 					       GFP_NOIO, &mddev->bio_set);
1538 			if (test_bit(CollisionCheck, &rdev->flags))
1539 				wait_for_serialization(rdev, r1_bio);
1540 			if (test_bit(WriteMostly, &rdev->flags))
1541 				atomic_inc(&r1_bio->behind_remaining);
1542 		} else {
1543 			mbio = bio_alloc_clone(rdev->bdev, bio, GFP_NOIO,
1544 					       &mddev->bio_set);
1545 
1546 			if (mddev->serialize_policy)
1547 				wait_for_serialization(rdev, r1_bio);
1548 		}
1549 
1550 		r1_bio->bios[i] = mbio;
1551 
1552 		mbio->bi_iter.bi_sector	= (r1_bio->sector + rdev->data_offset);
1553 		mbio->bi_end_io	= raid1_end_write_request;
1554 		mbio->bi_opf = bio_op(bio) | (bio->bi_opf & (REQ_SYNC | REQ_FUA));
1555 		if (test_bit(FailFast, &rdev->flags) &&
1556 		    !test_bit(WriteMostly, &rdev->flags) &&
1557 		    conf->raid_disks - mddev->degraded > 1)
1558 			mbio->bi_opf |= MD_FAILFAST;
1559 		mbio->bi_private = r1_bio;
1560 
1561 		atomic_inc(&r1_bio->remaining);
1562 
1563 		if (mddev->gendisk)
1564 			trace_block_bio_remap(mbio, disk_devt(mddev->gendisk),
1565 					      r1_bio->sector);
1566 		/* flush_pending_writes() needs access to the rdev so...*/
1567 		mbio->bi_bdev = (void *)rdev;
1568 		if (!raid1_add_bio_to_plug(mddev, mbio, raid1_unplug)) {
1569 			spin_lock_irqsave(&conf->device_lock, flags);
1570 			bio_list_add(&conf->pending_bio_list, mbio);
1571 			spin_unlock_irqrestore(&conf->device_lock, flags);
1572 			md_wakeup_thread(mddev->thread);
1573 		}
1574 	}
1575 
1576 	r1_bio_write_done(r1_bio);
1577 
1578 	/* In case raid1d snuck in to freeze_array */
1579 	wake_up(&conf->wait_barrier);
1580 }
1581 
1582 static bool raid1_make_request(struct mddev *mddev, struct bio *bio)
1583 {
1584 	sector_t sectors;
1585 
1586 	if (unlikely(bio->bi_opf & REQ_PREFLUSH)
1587 	    && md_flush_request(mddev, bio))
1588 		return true;
1589 
1590 	/*
1591 	 * There is a limit to the maximum size, but
1592 	 * the read/write handler might find a lower limit
1593 	 * due to bad blocks.  To avoid multiple splits,
1594 	 * we pass the maximum number of sectors down
1595 	 * and let the lower level perform the split.
1596 	 */
1597 	sectors = align_to_barrier_unit_end(
1598 		bio->bi_iter.bi_sector, bio_sectors(bio));
1599 
1600 	if (bio_data_dir(bio) == READ)
1601 		raid1_read_request(mddev, bio, sectors, NULL);
1602 	else {
1603 		if (!md_write_start(mddev,bio))
1604 			return false;
1605 		raid1_write_request(mddev, bio, sectors);
1606 	}
1607 	return true;
1608 }
1609 
1610 static void raid1_status(struct seq_file *seq, struct mddev *mddev)
1611 {
1612 	struct r1conf *conf = mddev->private;
1613 	int i;
1614 
1615 	seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1616 		   conf->raid_disks - mddev->degraded);
1617 	rcu_read_lock();
1618 	for (i = 0; i < conf->raid_disks; i++) {
1619 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1620 		seq_printf(seq, "%s",
1621 			   rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1622 	}
1623 	rcu_read_unlock();
1624 	seq_printf(seq, "]");
1625 }
1626 
1627 /**
1628  * raid1_error() - RAID1 error handler.
1629  * @mddev: affected md device.
1630  * @rdev: member device to fail.
1631  *
1632  * The routine acknowledges &rdev failure and determines new @mddev state.
1633  * If it failed, then:
1634  *	- &MD_BROKEN flag is set in &mddev->flags.
1635  *	- recovery is disabled.
1636  * Otherwise, it must be degraded:
1637  *	- recovery is interrupted.
1638  *	- &mddev->degraded is bumped.
1639  *
1640  * @rdev is marked as &Faulty excluding case when array is failed and
1641  * &mddev->fail_last_dev is off.
1642  */
1643 static void raid1_error(struct mddev *mddev, struct md_rdev *rdev)
1644 {
1645 	struct r1conf *conf = mddev->private;
1646 	unsigned long flags;
1647 
1648 	spin_lock_irqsave(&conf->device_lock, flags);
1649 
1650 	if (test_bit(In_sync, &rdev->flags) &&
1651 	    (conf->raid_disks - mddev->degraded) == 1) {
1652 		set_bit(MD_BROKEN, &mddev->flags);
1653 
1654 		if (!mddev->fail_last_dev) {
1655 			conf->recovery_disabled = mddev->recovery_disabled;
1656 			spin_unlock_irqrestore(&conf->device_lock, flags);
1657 			return;
1658 		}
1659 	}
1660 	set_bit(Blocked, &rdev->flags);
1661 	if (test_and_clear_bit(In_sync, &rdev->flags))
1662 		mddev->degraded++;
1663 	set_bit(Faulty, &rdev->flags);
1664 	spin_unlock_irqrestore(&conf->device_lock, flags);
1665 	/*
1666 	 * if recovery is running, make sure it aborts.
1667 	 */
1668 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1669 	set_mask_bits(&mddev->sb_flags, 0,
1670 		      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1671 	pr_crit("md/raid1:%s: Disk failure on %pg, disabling device.\n"
1672 		"md/raid1:%s: Operation continuing on %d devices.\n",
1673 		mdname(mddev), rdev->bdev,
1674 		mdname(mddev), conf->raid_disks - mddev->degraded);
1675 }
1676 
1677 static void print_conf(struct r1conf *conf)
1678 {
1679 	int i;
1680 
1681 	pr_debug("RAID1 conf printout:\n");
1682 	if (!conf) {
1683 		pr_debug("(!conf)\n");
1684 		return;
1685 	}
1686 	pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1687 		 conf->raid_disks);
1688 
1689 	rcu_read_lock();
1690 	for (i = 0; i < conf->raid_disks; i++) {
1691 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1692 		if (rdev)
1693 			pr_debug(" disk %d, wo:%d, o:%d, dev:%pg\n",
1694 				 i, !test_bit(In_sync, &rdev->flags),
1695 				 !test_bit(Faulty, &rdev->flags),
1696 				 rdev->bdev);
1697 	}
1698 	rcu_read_unlock();
1699 }
1700 
1701 static void close_sync(struct r1conf *conf)
1702 {
1703 	int idx;
1704 
1705 	for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++) {
1706 		_wait_barrier(conf, idx, false);
1707 		_allow_barrier(conf, idx);
1708 	}
1709 
1710 	mempool_exit(&conf->r1buf_pool);
1711 }
1712 
1713 static int raid1_spare_active(struct mddev *mddev)
1714 {
1715 	int i;
1716 	struct r1conf *conf = mddev->private;
1717 	int count = 0;
1718 	unsigned long flags;
1719 
1720 	/*
1721 	 * Find all failed disks within the RAID1 configuration
1722 	 * and mark them readable.
1723 	 * Called under mddev lock, so rcu protection not needed.
1724 	 * device_lock used to avoid races with raid1_end_read_request
1725 	 * which expects 'In_sync' flags and ->degraded to be consistent.
1726 	 */
1727 	spin_lock_irqsave(&conf->device_lock, flags);
1728 	for (i = 0; i < conf->raid_disks; i++) {
1729 		struct md_rdev *rdev = conf->mirrors[i].rdev;
1730 		struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1731 		if (repl
1732 		    && !test_bit(Candidate, &repl->flags)
1733 		    && repl->recovery_offset == MaxSector
1734 		    && !test_bit(Faulty, &repl->flags)
1735 		    && !test_and_set_bit(In_sync, &repl->flags)) {
1736 			/* replacement has just become active */
1737 			if (!rdev ||
1738 			    !test_and_clear_bit(In_sync, &rdev->flags))
1739 				count++;
1740 			if (rdev) {
1741 				/* Replaced device not technically
1742 				 * faulty, but we need to be sure
1743 				 * it gets removed and never re-added
1744 				 */
1745 				set_bit(Faulty, &rdev->flags);
1746 				sysfs_notify_dirent_safe(
1747 					rdev->sysfs_state);
1748 			}
1749 		}
1750 		if (rdev
1751 		    && rdev->recovery_offset == MaxSector
1752 		    && !test_bit(Faulty, &rdev->flags)
1753 		    && !test_and_set_bit(In_sync, &rdev->flags)) {
1754 			count++;
1755 			sysfs_notify_dirent_safe(rdev->sysfs_state);
1756 		}
1757 	}
1758 	mddev->degraded -= count;
1759 	spin_unlock_irqrestore(&conf->device_lock, flags);
1760 
1761 	print_conf(conf);
1762 	return count;
1763 }
1764 
1765 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1766 {
1767 	struct r1conf *conf = mddev->private;
1768 	int err = -EEXIST;
1769 	int mirror = 0;
1770 	struct raid1_info *p;
1771 	int first = 0;
1772 	int last = conf->raid_disks - 1;
1773 
1774 	if (mddev->recovery_disabled == conf->recovery_disabled)
1775 		return -EBUSY;
1776 
1777 	if (md_integrity_add_rdev(rdev, mddev))
1778 		return -ENXIO;
1779 
1780 	if (rdev->raid_disk >= 0)
1781 		first = last = rdev->raid_disk;
1782 
1783 	/*
1784 	 * find the disk ... but prefer rdev->saved_raid_disk
1785 	 * if possible.
1786 	 */
1787 	if (rdev->saved_raid_disk >= 0 &&
1788 	    rdev->saved_raid_disk >= first &&
1789 	    rdev->saved_raid_disk < conf->raid_disks &&
1790 	    conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1791 		first = last = rdev->saved_raid_disk;
1792 
1793 	for (mirror = first; mirror <= last; mirror++) {
1794 		p = conf->mirrors + mirror;
1795 		if (!p->rdev) {
1796 			if (mddev->gendisk)
1797 				disk_stack_limits(mddev->gendisk, rdev->bdev,
1798 						  rdev->data_offset << 9);
1799 
1800 			p->head_position = 0;
1801 			rdev->raid_disk = mirror;
1802 			err = 0;
1803 			/* As all devices are equivalent, we don't need a full recovery
1804 			 * if this was recently any drive of the array
1805 			 */
1806 			if (rdev->saved_raid_disk < 0)
1807 				conf->fullsync = 1;
1808 			rcu_assign_pointer(p->rdev, rdev);
1809 			break;
1810 		}
1811 		if (test_bit(WantReplacement, &p->rdev->flags) &&
1812 		    p[conf->raid_disks].rdev == NULL) {
1813 			/* Add this device as a replacement */
1814 			clear_bit(In_sync, &rdev->flags);
1815 			set_bit(Replacement, &rdev->flags);
1816 			rdev->raid_disk = mirror;
1817 			err = 0;
1818 			conf->fullsync = 1;
1819 			rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1820 			break;
1821 		}
1822 	}
1823 	print_conf(conf);
1824 	return err;
1825 }
1826 
1827 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1828 {
1829 	struct r1conf *conf = mddev->private;
1830 	int err = 0;
1831 	int number = rdev->raid_disk;
1832 	struct raid1_info *p = conf->mirrors + number;
1833 
1834 	if (rdev != p->rdev)
1835 		p = conf->mirrors + conf->raid_disks + number;
1836 
1837 	print_conf(conf);
1838 	if (rdev == p->rdev) {
1839 		if (test_bit(In_sync, &rdev->flags) ||
1840 		    atomic_read(&rdev->nr_pending)) {
1841 			err = -EBUSY;
1842 			goto abort;
1843 		}
1844 		/* Only remove non-faulty devices if recovery
1845 		 * is not possible.
1846 		 */
1847 		if (!test_bit(Faulty, &rdev->flags) &&
1848 		    mddev->recovery_disabled != conf->recovery_disabled &&
1849 		    mddev->degraded < conf->raid_disks) {
1850 			err = -EBUSY;
1851 			goto abort;
1852 		}
1853 		p->rdev = NULL;
1854 		if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1855 			synchronize_rcu();
1856 			if (atomic_read(&rdev->nr_pending)) {
1857 				/* lost the race, try later */
1858 				err = -EBUSY;
1859 				p->rdev = rdev;
1860 				goto abort;
1861 			}
1862 		}
1863 		if (conf->mirrors[conf->raid_disks + number].rdev) {
1864 			/* We just removed a device that is being replaced.
1865 			 * Move down the replacement.  We drain all IO before
1866 			 * doing this to avoid confusion.
1867 			 */
1868 			struct md_rdev *repl =
1869 				conf->mirrors[conf->raid_disks + number].rdev;
1870 			freeze_array(conf, 0);
1871 			if (atomic_read(&repl->nr_pending)) {
1872 				/* It means that some queued IO of retry_list
1873 				 * hold repl. Thus, we cannot set replacement
1874 				 * as NULL, avoiding rdev NULL pointer
1875 				 * dereference in sync_request_write and
1876 				 * handle_write_finished.
1877 				 */
1878 				err = -EBUSY;
1879 				unfreeze_array(conf);
1880 				goto abort;
1881 			}
1882 			clear_bit(Replacement, &repl->flags);
1883 			p->rdev = repl;
1884 			conf->mirrors[conf->raid_disks + number].rdev = NULL;
1885 			unfreeze_array(conf);
1886 		}
1887 
1888 		clear_bit(WantReplacement, &rdev->flags);
1889 		err = md_integrity_register(mddev);
1890 	}
1891 abort:
1892 
1893 	print_conf(conf);
1894 	return err;
1895 }
1896 
1897 static void end_sync_read(struct bio *bio)
1898 {
1899 	struct r1bio *r1_bio = get_resync_r1bio(bio);
1900 
1901 	update_head_pos(r1_bio->read_disk, r1_bio);
1902 
1903 	/*
1904 	 * we have read a block, now it needs to be re-written,
1905 	 * or re-read if the read failed.
1906 	 * We don't do much here, just schedule handling by raid1d
1907 	 */
1908 	if (!bio->bi_status)
1909 		set_bit(R1BIO_Uptodate, &r1_bio->state);
1910 
1911 	if (atomic_dec_and_test(&r1_bio->remaining))
1912 		reschedule_retry(r1_bio);
1913 }
1914 
1915 static void abort_sync_write(struct mddev *mddev, struct r1bio *r1_bio)
1916 {
1917 	sector_t sync_blocks = 0;
1918 	sector_t s = r1_bio->sector;
1919 	long sectors_to_go = r1_bio->sectors;
1920 
1921 	/* make sure these bits don't get cleared. */
1922 	do {
1923 		md_bitmap_end_sync(mddev->bitmap, s, &sync_blocks, 1);
1924 		s += sync_blocks;
1925 		sectors_to_go -= sync_blocks;
1926 	} while (sectors_to_go > 0);
1927 }
1928 
1929 static void put_sync_write_buf(struct r1bio *r1_bio, int uptodate)
1930 {
1931 	if (atomic_dec_and_test(&r1_bio->remaining)) {
1932 		struct mddev *mddev = r1_bio->mddev;
1933 		int s = r1_bio->sectors;
1934 
1935 		if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1936 		    test_bit(R1BIO_WriteError, &r1_bio->state))
1937 			reschedule_retry(r1_bio);
1938 		else {
1939 			put_buf(r1_bio);
1940 			md_done_sync(mddev, s, uptodate);
1941 		}
1942 	}
1943 }
1944 
1945 static void end_sync_write(struct bio *bio)
1946 {
1947 	int uptodate = !bio->bi_status;
1948 	struct r1bio *r1_bio = get_resync_r1bio(bio);
1949 	struct mddev *mddev = r1_bio->mddev;
1950 	struct r1conf *conf = mddev->private;
1951 	sector_t first_bad;
1952 	int bad_sectors;
1953 	struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev;
1954 
1955 	if (!uptodate) {
1956 		abort_sync_write(mddev, r1_bio);
1957 		set_bit(WriteErrorSeen, &rdev->flags);
1958 		if (!test_and_set_bit(WantReplacement, &rdev->flags))
1959 			set_bit(MD_RECOVERY_NEEDED, &
1960 				mddev->recovery);
1961 		set_bit(R1BIO_WriteError, &r1_bio->state);
1962 	} else if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
1963 			       &first_bad, &bad_sectors) &&
1964 		   !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1965 				r1_bio->sector,
1966 				r1_bio->sectors,
1967 				&first_bad, &bad_sectors)
1968 		)
1969 		set_bit(R1BIO_MadeGood, &r1_bio->state);
1970 
1971 	put_sync_write_buf(r1_bio, uptodate);
1972 }
1973 
1974 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1975 			   int sectors, struct page *page, int rw)
1976 {
1977 	if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
1978 		/* success */
1979 		return 1;
1980 	if (rw == WRITE) {
1981 		set_bit(WriteErrorSeen, &rdev->flags);
1982 		if (!test_and_set_bit(WantReplacement,
1983 				      &rdev->flags))
1984 			set_bit(MD_RECOVERY_NEEDED, &
1985 				rdev->mddev->recovery);
1986 	}
1987 	/* need to record an error - either for the block or the device */
1988 	if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1989 		md_error(rdev->mddev, rdev);
1990 	return 0;
1991 }
1992 
1993 static int fix_sync_read_error(struct r1bio *r1_bio)
1994 {
1995 	/* Try some synchronous reads of other devices to get
1996 	 * good data, much like with normal read errors.  Only
1997 	 * read into the pages we already have so we don't
1998 	 * need to re-issue the read request.
1999 	 * We don't need to freeze the array, because being in an
2000 	 * active sync request, there is no normal IO, and
2001 	 * no overlapping syncs.
2002 	 * We don't need to check is_badblock() again as we
2003 	 * made sure that anything with a bad block in range
2004 	 * will have bi_end_io clear.
2005 	 */
2006 	struct mddev *mddev = r1_bio->mddev;
2007 	struct r1conf *conf = mddev->private;
2008 	struct bio *bio = r1_bio->bios[r1_bio->read_disk];
2009 	struct page **pages = get_resync_pages(bio)->pages;
2010 	sector_t sect = r1_bio->sector;
2011 	int sectors = r1_bio->sectors;
2012 	int idx = 0;
2013 	struct md_rdev *rdev;
2014 
2015 	rdev = conf->mirrors[r1_bio->read_disk].rdev;
2016 	if (test_bit(FailFast, &rdev->flags)) {
2017 		/* Don't try recovering from here - just fail it
2018 		 * ... unless it is the last working device of course */
2019 		md_error(mddev, rdev);
2020 		if (test_bit(Faulty, &rdev->flags))
2021 			/* Don't try to read from here, but make sure
2022 			 * put_buf does it's thing
2023 			 */
2024 			bio->bi_end_io = end_sync_write;
2025 	}
2026 
2027 	while(sectors) {
2028 		int s = sectors;
2029 		int d = r1_bio->read_disk;
2030 		int success = 0;
2031 		int start;
2032 
2033 		if (s > (PAGE_SIZE>>9))
2034 			s = PAGE_SIZE >> 9;
2035 		do {
2036 			if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
2037 				/* No rcu protection needed here devices
2038 				 * can only be removed when no resync is
2039 				 * active, and resync is currently active
2040 				 */
2041 				rdev = conf->mirrors[d].rdev;
2042 				if (sync_page_io(rdev, sect, s<<9,
2043 						 pages[idx],
2044 						 REQ_OP_READ, false)) {
2045 					success = 1;
2046 					break;
2047 				}
2048 			}
2049 			d++;
2050 			if (d == conf->raid_disks * 2)
2051 				d = 0;
2052 		} while (!success && d != r1_bio->read_disk);
2053 
2054 		if (!success) {
2055 			int abort = 0;
2056 			/* Cannot read from anywhere, this block is lost.
2057 			 * Record a bad block on each device.  If that doesn't
2058 			 * work just disable and interrupt the recovery.
2059 			 * Don't fail devices as that won't really help.
2060 			 */
2061 			pr_crit_ratelimited("md/raid1:%s: %pg: unrecoverable I/O read error for block %llu\n",
2062 					    mdname(mddev), bio->bi_bdev,
2063 					    (unsigned long long)r1_bio->sector);
2064 			for (d = 0; d < conf->raid_disks * 2; d++) {
2065 				rdev = conf->mirrors[d].rdev;
2066 				if (!rdev || test_bit(Faulty, &rdev->flags))
2067 					continue;
2068 				if (!rdev_set_badblocks(rdev, sect, s, 0))
2069 					abort = 1;
2070 			}
2071 			if (abort) {
2072 				conf->recovery_disabled =
2073 					mddev->recovery_disabled;
2074 				set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2075 				md_done_sync(mddev, r1_bio->sectors, 0);
2076 				put_buf(r1_bio);
2077 				return 0;
2078 			}
2079 			/* Try next page */
2080 			sectors -= s;
2081 			sect += s;
2082 			idx++;
2083 			continue;
2084 		}
2085 
2086 		start = d;
2087 		/* write it back and re-read */
2088 		while (d != r1_bio->read_disk) {
2089 			if (d == 0)
2090 				d = conf->raid_disks * 2;
2091 			d--;
2092 			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2093 				continue;
2094 			rdev = conf->mirrors[d].rdev;
2095 			if (r1_sync_page_io(rdev, sect, s,
2096 					    pages[idx],
2097 					    WRITE) == 0) {
2098 				r1_bio->bios[d]->bi_end_io = NULL;
2099 				rdev_dec_pending(rdev, mddev);
2100 			}
2101 		}
2102 		d = start;
2103 		while (d != r1_bio->read_disk) {
2104 			if (d == 0)
2105 				d = conf->raid_disks * 2;
2106 			d--;
2107 			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2108 				continue;
2109 			rdev = conf->mirrors[d].rdev;
2110 			if (r1_sync_page_io(rdev, sect, s,
2111 					    pages[idx],
2112 					    READ) != 0)
2113 				atomic_add(s, &rdev->corrected_errors);
2114 		}
2115 		sectors -= s;
2116 		sect += s;
2117 		idx ++;
2118 	}
2119 	set_bit(R1BIO_Uptodate, &r1_bio->state);
2120 	bio->bi_status = 0;
2121 	return 1;
2122 }
2123 
2124 static void process_checks(struct r1bio *r1_bio)
2125 {
2126 	/* We have read all readable devices.  If we haven't
2127 	 * got the block, then there is no hope left.
2128 	 * If we have, then we want to do a comparison
2129 	 * and skip the write if everything is the same.
2130 	 * If any blocks failed to read, then we need to
2131 	 * attempt an over-write
2132 	 */
2133 	struct mddev *mddev = r1_bio->mddev;
2134 	struct r1conf *conf = mddev->private;
2135 	int primary;
2136 	int i;
2137 	int vcnt;
2138 
2139 	/* Fix variable parts of all bios */
2140 	vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
2141 	for (i = 0; i < conf->raid_disks * 2; i++) {
2142 		blk_status_t status;
2143 		struct bio *b = r1_bio->bios[i];
2144 		struct resync_pages *rp = get_resync_pages(b);
2145 		if (b->bi_end_io != end_sync_read)
2146 			continue;
2147 		/* fixup the bio for reuse, but preserve errno */
2148 		status = b->bi_status;
2149 		bio_reset(b, conf->mirrors[i].rdev->bdev, REQ_OP_READ);
2150 		b->bi_status = status;
2151 		b->bi_iter.bi_sector = r1_bio->sector +
2152 			conf->mirrors[i].rdev->data_offset;
2153 		b->bi_end_io = end_sync_read;
2154 		rp->raid_bio = r1_bio;
2155 		b->bi_private = rp;
2156 
2157 		/* initialize bvec table again */
2158 		md_bio_reset_resync_pages(b, rp, r1_bio->sectors << 9);
2159 	}
2160 	for (primary = 0; primary < conf->raid_disks * 2; primary++)
2161 		if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
2162 		    !r1_bio->bios[primary]->bi_status) {
2163 			r1_bio->bios[primary]->bi_end_io = NULL;
2164 			rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
2165 			break;
2166 		}
2167 	r1_bio->read_disk = primary;
2168 	for (i = 0; i < conf->raid_disks * 2; i++) {
2169 		int j = 0;
2170 		struct bio *pbio = r1_bio->bios[primary];
2171 		struct bio *sbio = r1_bio->bios[i];
2172 		blk_status_t status = sbio->bi_status;
2173 		struct page **ppages = get_resync_pages(pbio)->pages;
2174 		struct page **spages = get_resync_pages(sbio)->pages;
2175 		struct bio_vec *bi;
2176 		int page_len[RESYNC_PAGES] = { 0 };
2177 		struct bvec_iter_all iter_all;
2178 
2179 		if (sbio->bi_end_io != end_sync_read)
2180 			continue;
2181 		/* Now we can 'fixup' the error value */
2182 		sbio->bi_status = 0;
2183 
2184 		bio_for_each_segment_all(bi, sbio, iter_all)
2185 			page_len[j++] = bi->bv_len;
2186 
2187 		if (!status) {
2188 			for (j = vcnt; j-- ; ) {
2189 				if (memcmp(page_address(ppages[j]),
2190 					   page_address(spages[j]),
2191 					   page_len[j]))
2192 					break;
2193 			}
2194 		} else
2195 			j = 0;
2196 		if (j >= 0)
2197 			atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
2198 		if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
2199 			      && !status)) {
2200 			/* No need to write to this device. */
2201 			sbio->bi_end_io = NULL;
2202 			rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2203 			continue;
2204 		}
2205 
2206 		bio_copy_data(sbio, pbio);
2207 	}
2208 }
2209 
2210 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
2211 {
2212 	struct r1conf *conf = mddev->private;
2213 	int i;
2214 	int disks = conf->raid_disks * 2;
2215 	struct bio *wbio;
2216 
2217 	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2218 		/* ouch - failed to read all of that. */
2219 		if (!fix_sync_read_error(r1_bio))
2220 			return;
2221 
2222 	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2223 		process_checks(r1_bio);
2224 
2225 	/*
2226 	 * schedule writes
2227 	 */
2228 	atomic_set(&r1_bio->remaining, 1);
2229 	for (i = 0; i < disks ; i++) {
2230 		wbio = r1_bio->bios[i];
2231 		if (wbio->bi_end_io == NULL ||
2232 		    (wbio->bi_end_io == end_sync_read &&
2233 		     (i == r1_bio->read_disk ||
2234 		      !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2235 			continue;
2236 		if (test_bit(Faulty, &conf->mirrors[i].rdev->flags)) {
2237 			abort_sync_write(mddev, r1_bio);
2238 			continue;
2239 		}
2240 
2241 		wbio->bi_opf = REQ_OP_WRITE;
2242 		if (test_bit(FailFast, &conf->mirrors[i].rdev->flags))
2243 			wbio->bi_opf |= MD_FAILFAST;
2244 
2245 		wbio->bi_end_io = end_sync_write;
2246 		atomic_inc(&r1_bio->remaining);
2247 		md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
2248 
2249 		submit_bio_noacct(wbio);
2250 	}
2251 
2252 	put_sync_write_buf(r1_bio, 1);
2253 }
2254 
2255 /*
2256  * This is a kernel thread which:
2257  *
2258  *	1.	Retries failed read operations on working mirrors.
2259  *	2.	Updates the raid superblock when problems encounter.
2260  *	3.	Performs writes following reads for array synchronising.
2261  */
2262 
2263 static void fix_read_error(struct r1conf *conf, int read_disk,
2264 			   sector_t sect, int sectors)
2265 {
2266 	struct mddev *mddev = conf->mddev;
2267 	while(sectors) {
2268 		int s = sectors;
2269 		int d = read_disk;
2270 		int success = 0;
2271 		int start;
2272 		struct md_rdev *rdev;
2273 
2274 		if (s > (PAGE_SIZE>>9))
2275 			s = PAGE_SIZE >> 9;
2276 
2277 		do {
2278 			sector_t first_bad;
2279 			int bad_sectors;
2280 
2281 			rcu_read_lock();
2282 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2283 			if (rdev &&
2284 			    (test_bit(In_sync, &rdev->flags) ||
2285 			     (!test_bit(Faulty, &rdev->flags) &&
2286 			      rdev->recovery_offset >= sect + s)) &&
2287 			    is_badblock(rdev, sect, s,
2288 					&first_bad, &bad_sectors) == 0) {
2289 				atomic_inc(&rdev->nr_pending);
2290 				rcu_read_unlock();
2291 				if (sync_page_io(rdev, sect, s<<9,
2292 					 conf->tmppage, REQ_OP_READ, false))
2293 					success = 1;
2294 				rdev_dec_pending(rdev, mddev);
2295 				if (success)
2296 					break;
2297 			} else
2298 				rcu_read_unlock();
2299 			d++;
2300 			if (d == conf->raid_disks * 2)
2301 				d = 0;
2302 		} while (!success && d != read_disk);
2303 
2304 		if (!success) {
2305 			/* Cannot read from anywhere - mark it bad */
2306 			struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2307 			if (!rdev_set_badblocks(rdev, sect, s, 0))
2308 				md_error(mddev, rdev);
2309 			break;
2310 		}
2311 		/* write it back and re-read */
2312 		start = d;
2313 		while (d != read_disk) {
2314 			if (d==0)
2315 				d = conf->raid_disks * 2;
2316 			d--;
2317 			rcu_read_lock();
2318 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2319 			if (rdev &&
2320 			    !test_bit(Faulty, &rdev->flags)) {
2321 				atomic_inc(&rdev->nr_pending);
2322 				rcu_read_unlock();
2323 				r1_sync_page_io(rdev, sect, s,
2324 						conf->tmppage, WRITE);
2325 				rdev_dec_pending(rdev, mddev);
2326 			} else
2327 				rcu_read_unlock();
2328 		}
2329 		d = start;
2330 		while (d != read_disk) {
2331 			if (d==0)
2332 				d = conf->raid_disks * 2;
2333 			d--;
2334 			rcu_read_lock();
2335 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2336 			if (rdev &&
2337 			    !test_bit(Faulty, &rdev->flags)) {
2338 				atomic_inc(&rdev->nr_pending);
2339 				rcu_read_unlock();
2340 				if (r1_sync_page_io(rdev, sect, s,
2341 						    conf->tmppage, READ)) {
2342 					atomic_add(s, &rdev->corrected_errors);
2343 					pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %pg)\n",
2344 						mdname(mddev), s,
2345 						(unsigned long long)(sect +
2346 								     rdev->data_offset),
2347 						rdev->bdev);
2348 				}
2349 				rdev_dec_pending(rdev, mddev);
2350 			} else
2351 				rcu_read_unlock();
2352 		}
2353 		sectors -= s;
2354 		sect += s;
2355 	}
2356 }
2357 
2358 static int narrow_write_error(struct r1bio *r1_bio, int i)
2359 {
2360 	struct mddev *mddev = r1_bio->mddev;
2361 	struct r1conf *conf = mddev->private;
2362 	struct md_rdev *rdev = conf->mirrors[i].rdev;
2363 
2364 	/* bio has the data to be written to device 'i' where
2365 	 * we just recently had a write error.
2366 	 * We repeatedly clone the bio and trim down to one block,
2367 	 * then try the write.  Where the write fails we record
2368 	 * a bad block.
2369 	 * It is conceivable that the bio doesn't exactly align with
2370 	 * blocks.  We must handle this somehow.
2371 	 *
2372 	 * We currently own a reference on the rdev.
2373 	 */
2374 
2375 	int block_sectors;
2376 	sector_t sector;
2377 	int sectors;
2378 	int sect_to_write = r1_bio->sectors;
2379 	int ok = 1;
2380 
2381 	if (rdev->badblocks.shift < 0)
2382 		return 0;
2383 
2384 	block_sectors = roundup(1 << rdev->badblocks.shift,
2385 				bdev_logical_block_size(rdev->bdev) >> 9);
2386 	sector = r1_bio->sector;
2387 	sectors = ((sector + block_sectors)
2388 		   & ~(sector_t)(block_sectors - 1))
2389 		- sector;
2390 
2391 	while (sect_to_write) {
2392 		struct bio *wbio;
2393 		if (sectors > sect_to_write)
2394 			sectors = sect_to_write;
2395 		/* Write at 'sector' for 'sectors'*/
2396 
2397 		if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2398 			wbio = bio_alloc_clone(rdev->bdev,
2399 					       r1_bio->behind_master_bio,
2400 					       GFP_NOIO, &mddev->bio_set);
2401 		} else {
2402 			wbio = bio_alloc_clone(rdev->bdev, r1_bio->master_bio,
2403 					       GFP_NOIO, &mddev->bio_set);
2404 		}
2405 
2406 		wbio->bi_opf = REQ_OP_WRITE;
2407 		wbio->bi_iter.bi_sector = r1_bio->sector;
2408 		wbio->bi_iter.bi_size = r1_bio->sectors << 9;
2409 
2410 		bio_trim(wbio, sector - r1_bio->sector, sectors);
2411 		wbio->bi_iter.bi_sector += rdev->data_offset;
2412 
2413 		if (submit_bio_wait(wbio) < 0)
2414 			/* failure! */
2415 			ok = rdev_set_badblocks(rdev, sector,
2416 						sectors, 0)
2417 				&& ok;
2418 
2419 		bio_put(wbio);
2420 		sect_to_write -= sectors;
2421 		sector += sectors;
2422 		sectors = block_sectors;
2423 	}
2424 	return ok;
2425 }
2426 
2427 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2428 {
2429 	int m;
2430 	int s = r1_bio->sectors;
2431 	for (m = 0; m < conf->raid_disks * 2 ; m++) {
2432 		struct md_rdev *rdev = conf->mirrors[m].rdev;
2433 		struct bio *bio = r1_bio->bios[m];
2434 		if (bio->bi_end_io == NULL)
2435 			continue;
2436 		if (!bio->bi_status &&
2437 		    test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2438 			rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2439 		}
2440 		if (bio->bi_status &&
2441 		    test_bit(R1BIO_WriteError, &r1_bio->state)) {
2442 			if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2443 				md_error(conf->mddev, rdev);
2444 		}
2445 	}
2446 	put_buf(r1_bio);
2447 	md_done_sync(conf->mddev, s, 1);
2448 }
2449 
2450 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2451 {
2452 	int m, idx;
2453 	bool fail = false;
2454 
2455 	for (m = 0; m < conf->raid_disks * 2 ; m++)
2456 		if (r1_bio->bios[m] == IO_MADE_GOOD) {
2457 			struct md_rdev *rdev = conf->mirrors[m].rdev;
2458 			rdev_clear_badblocks(rdev,
2459 					     r1_bio->sector,
2460 					     r1_bio->sectors, 0);
2461 			rdev_dec_pending(rdev, conf->mddev);
2462 		} else if (r1_bio->bios[m] != NULL) {
2463 			/* This drive got a write error.  We need to
2464 			 * narrow down and record precise write
2465 			 * errors.
2466 			 */
2467 			fail = true;
2468 			if (!narrow_write_error(r1_bio, m)) {
2469 				md_error(conf->mddev,
2470 					 conf->mirrors[m].rdev);
2471 				/* an I/O failed, we can't clear the bitmap */
2472 				set_bit(R1BIO_Degraded, &r1_bio->state);
2473 			}
2474 			rdev_dec_pending(conf->mirrors[m].rdev,
2475 					 conf->mddev);
2476 		}
2477 	if (fail) {
2478 		spin_lock_irq(&conf->device_lock);
2479 		list_add(&r1_bio->retry_list, &conf->bio_end_io_list);
2480 		idx = sector_to_idx(r1_bio->sector);
2481 		atomic_inc(&conf->nr_queued[idx]);
2482 		spin_unlock_irq(&conf->device_lock);
2483 		/*
2484 		 * In case freeze_array() is waiting for condition
2485 		 * get_unqueued_pending() == extra to be true.
2486 		 */
2487 		wake_up(&conf->wait_barrier);
2488 		md_wakeup_thread(conf->mddev->thread);
2489 	} else {
2490 		if (test_bit(R1BIO_WriteError, &r1_bio->state))
2491 			close_write(r1_bio);
2492 		raid_end_bio_io(r1_bio);
2493 	}
2494 }
2495 
2496 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2497 {
2498 	struct mddev *mddev = conf->mddev;
2499 	struct bio *bio;
2500 	struct md_rdev *rdev;
2501 
2502 	clear_bit(R1BIO_ReadError, &r1_bio->state);
2503 	/* we got a read error. Maybe the drive is bad.  Maybe just
2504 	 * the block and we can fix it.
2505 	 * We freeze all other IO, and try reading the block from
2506 	 * other devices.  When we find one, we re-write
2507 	 * and check it that fixes the read error.
2508 	 * This is all done synchronously while the array is
2509 	 * frozen
2510 	 */
2511 
2512 	bio = r1_bio->bios[r1_bio->read_disk];
2513 	bio_put(bio);
2514 	r1_bio->bios[r1_bio->read_disk] = NULL;
2515 
2516 	rdev = conf->mirrors[r1_bio->read_disk].rdev;
2517 	if (mddev->ro == 0
2518 	    && !test_bit(FailFast, &rdev->flags)) {
2519 		freeze_array(conf, 1);
2520 		fix_read_error(conf, r1_bio->read_disk,
2521 			       r1_bio->sector, r1_bio->sectors);
2522 		unfreeze_array(conf);
2523 	} else if (mddev->ro == 0 && test_bit(FailFast, &rdev->flags)) {
2524 		md_error(mddev, rdev);
2525 	} else {
2526 		r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED;
2527 	}
2528 
2529 	rdev_dec_pending(rdev, conf->mddev);
2530 	allow_barrier(conf, r1_bio->sector);
2531 	bio = r1_bio->master_bio;
2532 
2533 	/* Reuse the old r1_bio so that the IO_BLOCKED settings are preserved */
2534 	r1_bio->state = 0;
2535 	raid1_read_request(mddev, bio, r1_bio->sectors, r1_bio);
2536 }
2537 
2538 static void raid1d(struct md_thread *thread)
2539 {
2540 	struct mddev *mddev = thread->mddev;
2541 	struct r1bio *r1_bio;
2542 	unsigned long flags;
2543 	struct r1conf *conf = mddev->private;
2544 	struct list_head *head = &conf->retry_list;
2545 	struct blk_plug plug;
2546 	int idx;
2547 
2548 	md_check_recovery(mddev);
2549 
2550 	if (!list_empty_careful(&conf->bio_end_io_list) &&
2551 	    !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2552 		LIST_HEAD(tmp);
2553 		spin_lock_irqsave(&conf->device_lock, flags);
2554 		if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
2555 			list_splice_init(&conf->bio_end_io_list, &tmp);
2556 		spin_unlock_irqrestore(&conf->device_lock, flags);
2557 		while (!list_empty(&tmp)) {
2558 			r1_bio = list_first_entry(&tmp, struct r1bio,
2559 						  retry_list);
2560 			list_del(&r1_bio->retry_list);
2561 			idx = sector_to_idx(r1_bio->sector);
2562 			atomic_dec(&conf->nr_queued[idx]);
2563 			if (mddev->degraded)
2564 				set_bit(R1BIO_Degraded, &r1_bio->state);
2565 			if (test_bit(R1BIO_WriteError, &r1_bio->state))
2566 				close_write(r1_bio);
2567 			raid_end_bio_io(r1_bio);
2568 		}
2569 	}
2570 
2571 	blk_start_plug(&plug);
2572 	for (;;) {
2573 
2574 		flush_pending_writes(conf);
2575 
2576 		spin_lock_irqsave(&conf->device_lock, flags);
2577 		if (list_empty(head)) {
2578 			spin_unlock_irqrestore(&conf->device_lock, flags);
2579 			break;
2580 		}
2581 		r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2582 		list_del(head->prev);
2583 		idx = sector_to_idx(r1_bio->sector);
2584 		atomic_dec(&conf->nr_queued[idx]);
2585 		spin_unlock_irqrestore(&conf->device_lock, flags);
2586 
2587 		mddev = r1_bio->mddev;
2588 		conf = mddev->private;
2589 		if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2590 			if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2591 			    test_bit(R1BIO_WriteError, &r1_bio->state))
2592 				handle_sync_write_finished(conf, r1_bio);
2593 			else
2594 				sync_request_write(mddev, r1_bio);
2595 		} else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2596 			   test_bit(R1BIO_WriteError, &r1_bio->state))
2597 			handle_write_finished(conf, r1_bio);
2598 		else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2599 			handle_read_error(conf, r1_bio);
2600 		else
2601 			WARN_ON_ONCE(1);
2602 
2603 		cond_resched();
2604 		if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
2605 			md_check_recovery(mddev);
2606 	}
2607 	blk_finish_plug(&plug);
2608 }
2609 
2610 static int init_resync(struct r1conf *conf)
2611 {
2612 	int buffs;
2613 
2614 	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2615 	BUG_ON(mempool_initialized(&conf->r1buf_pool));
2616 
2617 	return mempool_init(&conf->r1buf_pool, buffs, r1buf_pool_alloc,
2618 			    r1buf_pool_free, conf->poolinfo);
2619 }
2620 
2621 static struct r1bio *raid1_alloc_init_r1buf(struct r1conf *conf)
2622 {
2623 	struct r1bio *r1bio = mempool_alloc(&conf->r1buf_pool, GFP_NOIO);
2624 	struct resync_pages *rps;
2625 	struct bio *bio;
2626 	int i;
2627 
2628 	for (i = conf->poolinfo->raid_disks; i--; ) {
2629 		bio = r1bio->bios[i];
2630 		rps = bio->bi_private;
2631 		bio_reset(bio, NULL, 0);
2632 		bio->bi_private = rps;
2633 	}
2634 	r1bio->master_bio = NULL;
2635 	return r1bio;
2636 }
2637 
2638 /*
2639  * perform a "sync" on one "block"
2640  *
2641  * We need to make sure that no normal I/O request - particularly write
2642  * requests - conflict with active sync requests.
2643  *
2644  * This is achieved by tracking pending requests and a 'barrier' concept
2645  * that can be installed to exclude normal IO requests.
2646  */
2647 
2648 static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr,
2649 				   int *skipped)
2650 {
2651 	struct r1conf *conf = mddev->private;
2652 	struct r1bio *r1_bio;
2653 	struct bio *bio;
2654 	sector_t max_sector, nr_sectors;
2655 	int disk = -1;
2656 	int i;
2657 	int wonly = -1;
2658 	int write_targets = 0, read_targets = 0;
2659 	sector_t sync_blocks;
2660 	int still_degraded = 0;
2661 	int good_sectors = RESYNC_SECTORS;
2662 	int min_bad = 0; /* number of sectors that are bad in all devices */
2663 	int idx = sector_to_idx(sector_nr);
2664 	int page_idx = 0;
2665 
2666 	if (!mempool_initialized(&conf->r1buf_pool))
2667 		if (init_resync(conf))
2668 			return 0;
2669 
2670 	max_sector = mddev->dev_sectors;
2671 	if (sector_nr >= max_sector) {
2672 		/* If we aborted, we need to abort the
2673 		 * sync on the 'current' bitmap chunk (there will
2674 		 * only be one in raid1 resync.
2675 		 * We can find the current addess in mddev->curr_resync
2676 		 */
2677 		if (mddev->curr_resync < max_sector) /* aborted */
2678 			md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2679 					   &sync_blocks, 1);
2680 		else /* completed sync */
2681 			conf->fullsync = 0;
2682 
2683 		md_bitmap_close_sync(mddev->bitmap);
2684 		close_sync(conf);
2685 
2686 		if (mddev_is_clustered(mddev)) {
2687 			conf->cluster_sync_low = 0;
2688 			conf->cluster_sync_high = 0;
2689 		}
2690 		return 0;
2691 	}
2692 
2693 	if (mddev->bitmap == NULL &&
2694 	    mddev->recovery_cp == MaxSector &&
2695 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2696 	    conf->fullsync == 0) {
2697 		*skipped = 1;
2698 		return max_sector - sector_nr;
2699 	}
2700 	/* before building a request, check if we can skip these blocks..
2701 	 * This call the bitmap_start_sync doesn't actually record anything
2702 	 */
2703 	if (!md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2704 	    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2705 		/* We can skip this block, and probably several more */
2706 		*skipped = 1;
2707 		return sync_blocks;
2708 	}
2709 
2710 	/*
2711 	 * If there is non-resync activity waiting for a turn, then let it
2712 	 * though before starting on this new sync request.
2713 	 */
2714 	if (atomic_read(&conf->nr_waiting[idx]))
2715 		schedule_timeout_uninterruptible(1);
2716 
2717 	/* we are incrementing sector_nr below. To be safe, we check against
2718 	 * sector_nr + two times RESYNC_SECTORS
2719 	 */
2720 
2721 	md_bitmap_cond_end_sync(mddev->bitmap, sector_nr,
2722 		mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
2723 
2724 
2725 	if (raise_barrier(conf, sector_nr))
2726 		return 0;
2727 
2728 	r1_bio = raid1_alloc_init_r1buf(conf);
2729 
2730 	rcu_read_lock();
2731 	/*
2732 	 * If we get a correctably read error during resync or recovery,
2733 	 * we might want to read from a different device.  So we
2734 	 * flag all drives that could conceivably be read from for READ,
2735 	 * and any others (which will be non-In_sync devices) for WRITE.
2736 	 * If a read fails, we try reading from something else for which READ
2737 	 * is OK.
2738 	 */
2739 
2740 	r1_bio->mddev = mddev;
2741 	r1_bio->sector = sector_nr;
2742 	r1_bio->state = 0;
2743 	set_bit(R1BIO_IsSync, &r1_bio->state);
2744 	/* make sure good_sectors won't go across barrier unit boundary */
2745 	good_sectors = align_to_barrier_unit_end(sector_nr, good_sectors);
2746 
2747 	for (i = 0; i < conf->raid_disks * 2; i++) {
2748 		struct md_rdev *rdev;
2749 		bio = r1_bio->bios[i];
2750 
2751 		rdev = rcu_dereference(conf->mirrors[i].rdev);
2752 		if (rdev == NULL ||
2753 		    test_bit(Faulty, &rdev->flags)) {
2754 			if (i < conf->raid_disks)
2755 				still_degraded = 1;
2756 		} else if (!test_bit(In_sync, &rdev->flags)) {
2757 			bio->bi_opf = REQ_OP_WRITE;
2758 			bio->bi_end_io = end_sync_write;
2759 			write_targets ++;
2760 		} else {
2761 			/* may need to read from here */
2762 			sector_t first_bad = MaxSector;
2763 			int bad_sectors;
2764 
2765 			if (is_badblock(rdev, sector_nr, good_sectors,
2766 					&first_bad, &bad_sectors)) {
2767 				if (first_bad > sector_nr)
2768 					good_sectors = first_bad - sector_nr;
2769 				else {
2770 					bad_sectors -= (sector_nr - first_bad);
2771 					if (min_bad == 0 ||
2772 					    min_bad > bad_sectors)
2773 						min_bad = bad_sectors;
2774 				}
2775 			}
2776 			if (sector_nr < first_bad) {
2777 				if (test_bit(WriteMostly, &rdev->flags)) {
2778 					if (wonly < 0)
2779 						wonly = i;
2780 				} else {
2781 					if (disk < 0)
2782 						disk = i;
2783 				}
2784 				bio->bi_opf = REQ_OP_READ;
2785 				bio->bi_end_io = end_sync_read;
2786 				read_targets++;
2787 			} else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2788 				test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2789 				!test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2790 				/*
2791 				 * The device is suitable for reading (InSync),
2792 				 * but has bad block(s) here. Let's try to correct them,
2793 				 * if we are doing resync or repair. Otherwise, leave
2794 				 * this device alone for this sync request.
2795 				 */
2796 				bio->bi_opf = REQ_OP_WRITE;
2797 				bio->bi_end_io = end_sync_write;
2798 				write_targets++;
2799 			}
2800 		}
2801 		if (rdev && bio->bi_end_io) {
2802 			atomic_inc(&rdev->nr_pending);
2803 			bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
2804 			bio_set_dev(bio, rdev->bdev);
2805 			if (test_bit(FailFast, &rdev->flags))
2806 				bio->bi_opf |= MD_FAILFAST;
2807 		}
2808 	}
2809 	rcu_read_unlock();
2810 	if (disk < 0)
2811 		disk = wonly;
2812 	r1_bio->read_disk = disk;
2813 
2814 	if (read_targets == 0 && min_bad > 0) {
2815 		/* These sectors are bad on all InSync devices, so we
2816 		 * need to mark them bad on all write targets
2817 		 */
2818 		int ok = 1;
2819 		for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2820 			if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2821 				struct md_rdev *rdev = conf->mirrors[i].rdev;
2822 				ok = rdev_set_badblocks(rdev, sector_nr,
2823 							min_bad, 0
2824 					) && ok;
2825 			}
2826 		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2827 		*skipped = 1;
2828 		put_buf(r1_bio);
2829 
2830 		if (!ok) {
2831 			/* Cannot record the badblocks, so need to
2832 			 * abort the resync.
2833 			 * If there are multiple read targets, could just
2834 			 * fail the really bad ones ???
2835 			 */
2836 			conf->recovery_disabled = mddev->recovery_disabled;
2837 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2838 			return 0;
2839 		} else
2840 			return min_bad;
2841 
2842 	}
2843 	if (min_bad > 0 && min_bad < good_sectors) {
2844 		/* only resync enough to reach the next bad->good
2845 		 * transition */
2846 		good_sectors = min_bad;
2847 	}
2848 
2849 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2850 		/* extra read targets are also write targets */
2851 		write_targets += read_targets-1;
2852 
2853 	if (write_targets == 0 || read_targets == 0) {
2854 		/* There is nowhere to write, so all non-sync
2855 		 * drives must be failed - so we are finished
2856 		 */
2857 		sector_t rv;
2858 		if (min_bad > 0)
2859 			max_sector = sector_nr + min_bad;
2860 		rv = max_sector - sector_nr;
2861 		*skipped = 1;
2862 		put_buf(r1_bio);
2863 		return rv;
2864 	}
2865 
2866 	if (max_sector > mddev->resync_max)
2867 		max_sector = mddev->resync_max; /* Don't do IO beyond here */
2868 	if (max_sector > sector_nr + good_sectors)
2869 		max_sector = sector_nr + good_sectors;
2870 	nr_sectors = 0;
2871 	sync_blocks = 0;
2872 	do {
2873 		struct page *page;
2874 		int len = PAGE_SIZE;
2875 		if (sector_nr + (len>>9) > max_sector)
2876 			len = (max_sector - sector_nr) << 9;
2877 		if (len == 0)
2878 			break;
2879 		if (sync_blocks == 0) {
2880 			if (!md_bitmap_start_sync(mddev->bitmap, sector_nr,
2881 						  &sync_blocks, still_degraded) &&
2882 			    !conf->fullsync &&
2883 			    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2884 				break;
2885 			if ((len >> 9) > sync_blocks)
2886 				len = sync_blocks<<9;
2887 		}
2888 
2889 		for (i = 0 ; i < conf->raid_disks * 2; i++) {
2890 			struct resync_pages *rp;
2891 
2892 			bio = r1_bio->bios[i];
2893 			rp = get_resync_pages(bio);
2894 			if (bio->bi_end_io) {
2895 				page = resync_fetch_page(rp, page_idx);
2896 
2897 				/*
2898 				 * won't fail because the vec table is big
2899 				 * enough to hold all these pages
2900 				 */
2901 				__bio_add_page(bio, page, len, 0);
2902 			}
2903 		}
2904 		nr_sectors += len>>9;
2905 		sector_nr += len>>9;
2906 		sync_blocks -= (len>>9);
2907 	} while (++page_idx < RESYNC_PAGES);
2908 
2909 	r1_bio->sectors = nr_sectors;
2910 
2911 	if (mddev_is_clustered(mddev) &&
2912 			conf->cluster_sync_high < sector_nr + nr_sectors) {
2913 		conf->cluster_sync_low = mddev->curr_resync_completed;
2914 		conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS;
2915 		/* Send resync message */
2916 		md_cluster_ops->resync_info_update(mddev,
2917 				conf->cluster_sync_low,
2918 				conf->cluster_sync_high);
2919 	}
2920 
2921 	/* For a user-requested sync, we read all readable devices and do a
2922 	 * compare
2923 	 */
2924 	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2925 		atomic_set(&r1_bio->remaining, read_targets);
2926 		for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2927 			bio = r1_bio->bios[i];
2928 			if (bio->bi_end_io == end_sync_read) {
2929 				read_targets--;
2930 				md_sync_acct_bio(bio, nr_sectors);
2931 				if (read_targets == 1)
2932 					bio->bi_opf &= ~MD_FAILFAST;
2933 				submit_bio_noacct(bio);
2934 			}
2935 		}
2936 	} else {
2937 		atomic_set(&r1_bio->remaining, 1);
2938 		bio = r1_bio->bios[r1_bio->read_disk];
2939 		md_sync_acct_bio(bio, nr_sectors);
2940 		if (read_targets == 1)
2941 			bio->bi_opf &= ~MD_FAILFAST;
2942 		submit_bio_noacct(bio);
2943 	}
2944 	return nr_sectors;
2945 }
2946 
2947 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2948 {
2949 	if (sectors)
2950 		return sectors;
2951 
2952 	return mddev->dev_sectors;
2953 }
2954 
2955 static struct r1conf *setup_conf(struct mddev *mddev)
2956 {
2957 	struct r1conf *conf;
2958 	int i;
2959 	struct raid1_info *disk;
2960 	struct md_rdev *rdev;
2961 	int err = -ENOMEM;
2962 
2963 	conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2964 	if (!conf)
2965 		goto abort;
2966 
2967 	conf->nr_pending = kcalloc(BARRIER_BUCKETS_NR,
2968 				   sizeof(atomic_t), GFP_KERNEL);
2969 	if (!conf->nr_pending)
2970 		goto abort;
2971 
2972 	conf->nr_waiting = kcalloc(BARRIER_BUCKETS_NR,
2973 				   sizeof(atomic_t), GFP_KERNEL);
2974 	if (!conf->nr_waiting)
2975 		goto abort;
2976 
2977 	conf->nr_queued = kcalloc(BARRIER_BUCKETS_NR,
2978 				  sizeof(atomic_t), GFP_KERNEL);
2979 	if (!conf->nr_queued)
2980 		goto abort;
2981 
2982 	conf->barrier = kcalloc(BARRIER_BUCKETS_NR,
2983 				sizeof(atomic_t), GFP_KERNEL);
2984 	if (!conf->barrier)
2985 		goto abort;
2986 
2987 	conf->mirrors = kzalloc(array3_size(sizeof(struct raid1_info),
2988 					    mddev->raid_disks, 2),
2989 				GFP_KERNEL);
2990 	if (!conf->mirrors)
2991 		goto abort;
2992 
2993 	conf->tmppage = alloc_page(GFP_KERNEL);
2994 	if (!conf->tmppage)
2995 		goto abort;
2996 
2997 	conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
2998 	if (!conf->poolinfo)
2999 		goto abort;
3000 	conf->poolinfo->raid_disks = mddev->raid_disks * 2;
3001 	err = mempool_init(&conf->r1bio_pool, NR_RAID_BIOS, r1bio_pool_alloc,
3002 			   rbio_pool_free, conf->poolinfo);
3003 	if (err)
3004 		goto abort;
3005 
3006 	err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
3007 	if (err)
3008 		goto abort;
3009 
3010 	conf->poolinfo->mddev = mddev;
3011 
3012 	err = -EINVAL;
3013 	spin_lock_init(&conf->device_lock);
3014 	rdev_for_each(rdev, mddev) {
3015 		int disk_idx = rdev->raid_disk;
3016 		if (disk_idx >= mddev->raid_disks
3017 		    || disk_idx < 0)
3018 			continue;
3019 		if (test_bit(Replacement, &rdev->flags))
3020 			disk = conf->mirrors + mddev->raid_disks + disk_idx;
3021 		else
3022 			disk = conf->mirrors + disk_idx;
3023 
3024 		if (disk->rdev)
3025 			goto abort;
3026 		disk->rdev = rdev;
3027 		disk->head_position = 0;
3028 		disk->seq_start = MaxSector;
3029 	}
3030 	conf->raid_disks = mddev->raid_disks;
3031 	conf->mddev = mddev;
3032 	INIT_LIST_HEAD(&conf->retry_list);
3033 	INIT_LIST_HEAD(&conf->bio_end_io_list);
3034 
3035 	spin_lock_init(&conf->resync_lock);
3036 	init_waitqueue_head(&conf->wait_barrier);
3037 
3038 	bio_list_init(&conf->pending_bio_list);
3039 	conf->recovery_disabled = mddev->recovery_disabled - 1;
3040 
3041 	err = -EIO;
3042 	for (i = 0; i < conf->raid_disks * 2; i++) {
3043 
3044 		disk = conf->mirrors + i;
3045 
3046 		if (i < conf->raid_disks &&
3047 		    disk[conf->raid_disks].rdev) {
3048 			/* This slot has a replacement. */
3049 			if (!disk->rdev) {
3050 				/* No original, just make the replacement
3051 				 * a recovering spare
3052 				 */
3053 				disk->rdev =
3054 					disk[conf->raid_disks].rdev;
3055 				disk[conf->raid_disks].rdev = NULL;
3056 			} else if (!test_bit(In_sync, &disk->rdev->flags))
3057 				/* Original is not in_sync - bad */
3058 				goto abort;
3059 		}
3060 
3061 		if (!disk->rdev ||
3062 		    !test_bit(In_sync, &disk->rdev->flags)) {
3063 			disk->head_position = 0;
3064 			if (disk->rdev &&
3065 			    (disk->rdev->saved_raid_disk < 0))
3066 				conf->fullsync = 1;
3067 		}
3068 	}
3069 
3070 	err = -ENOMEM;
3071 	rcu_assign_pointer(conf->thread,
3072 			   md_register_thread(raid1d, mddev, "raid1"));
3073 	if (!conf->thread)
3074 		goto abort;
3075 
3076 	return conf;
3077 
3078  abort:
3079 	if (conf) {
3080 		mempool_exit(&conf->r1bio_pool);
3081 		kfree(conf->mirrors);
3082 		safe_put_page(conf->tmppage);
3083 		kfree(conf->poolinfo);
3084 		kfree(conf->nr_pending);
3085 		kfree(conf->nr_waiting);
3086 		kfree(conf->nr_queued);
3087 		kfree(conf->barrier);
3088 		bioset_exit(&conf->bio_split);
3089 		kfree(conf);
3090 	}
3091 	return ERR_PTR(err);
3092 }
3093 
3094 static void raid1_free(struct mddev *mddev, void *priv);
3095 static int raid1_run(struct mddev *mddev)
3096 {
3097 	struct r1conf *conf;
3098 	int i;
3099 	struct md_rdev *rdev;
3100 	int ret;
3101 
3102 	if (mddev->level != 1) {
3103 		pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n",
3104 			mdname(mddev), mddev->level);
3105 		return -EIO;
3106 	}
3107 	if (mddev->reshape_position != MaxSector) {
3108 		pr_warn("md/raid1:%s: reshape_position set but not supported\n",
3109 			mdname(mddev));
3110 		return -EIO;
3111 	}
3112 	if (mddev_init_writes_pending(mddev) < 0)
3113 		return -ENOMEM;
3114 	/*
3115 	 * copy the already verified devices into our private RAID1
3116 	 * bookkeeping area. [whatever we allocate in run(),
3117 	 * should be freed in raid1_free()]
3118 	 */
3119 	if (mddev->private == NULL)
3120 		conf = setup_conf(mddev);
3121 	else
3122 		conf = mddev->private;
3123 
3124 	if (IS_ERR(conf))
3125 		return PTR_ERR(conf);
3126 
3127 	if (mddev->queue)
3128 		blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
3129 
3130 	rdev_for_each(rdev, mddev) {
3131 		if (!mddev->gendisk)
3132 			continue;
3133 		disk_stack_limits(mddev->gendisk, rdev->bdev,
3134 				  rdev->data_offset << 9);
3135 	}
3136 
3137 	mddev->degraded = 0;
3138 	for (i = 0; i < conf->raid_disks; i++)
3139 		if (conf->mirrors[i].rdev == NULL ||
3140 		    !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
3141 		    test_bit(Faulty, &conf->mirrors[i].rdev->flags))
3142 			mddev->degraded++;
3143 	/*
3144 	 * RAID1 needs at least one disk in active
3145 	 */
3146 	if (conf->raid_disks - mddev->degraded < 1) {
3147 		md_unregister_thread(&conf->thread);
3148 		ret = -EINVAL;
3149 		goto abort;
3150 	}
3151 
3152 	if (conf->raid_disks - mddev->degraded == 1)
3153 		mddev->recovery_cp = MaxSector;
3154 
3155 	if (mddev->recovery_cp != MaxSector)
3156 		pr_info("md/raid1:%s: not clean -- starting background reconstruction\n",
3157 			mdname(mddev));
3158 	pr_info("md/raid1:%s: active with %d out of %d mirrors\n",
3159 		mdname(mddev), mddev->raid_disks - mddev->degraded,
3160 		mddev->raid_disks);
3161 
3162 	/*
3163 	 * Ok, everything is just fine now
3164 	 */
3165 	rcu_assign_pointer(mddev->thread, conf->thread);
3166 	rcu_assign_pointer(conf->thread, NULL);
3167 	mddev->private = conf;
3168 	set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
3169 
3170 	md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
3171 
3172 	ret = md_integrity_register(mddev);
3173 	if (ret) {
3174 		md_unregister_thread(&mddev->thread);
3175 		goto abort;
3176 	}
3177 	return 0;
3178 
3179 abort:
3180 	raid1_free(mddev, conf);
3181 	return ret;
3182 }
3183 
3184 static void raid1_free(struct mddev *mddev, void *priv)
3185 {
3186 	struct r1conf *conf = priv;
3187 
3188 	mempool_exit(&conf->r1bio_pool);
3189 	kfree(conf->mirrors);
3190 	safe_put_page(conf->tmppage);
3191 	kfree(conf->poolinfo);
3192 	kfree(conf->nr_pending);
3193 	kfree(conf->nr_waiting);
3194 	kfree(conf->nr_queued);
3195 	kfree(conf->barrier);
3196 	bioset_exit(&conf->bio_split);
3197 	kfree(conf);
3198 }
3199 
3200 static int raid1_resize(struct mddev *mddev, sector_t sectors)
3201 {
3202 	/* no resync is happening, and there is enough space
3203 	 * on all devices, so we can resize.
3204 	 * We need to make sure resync covers any new space.
3205 	 * If the array is shrinking we should possibly wait until
3206 	 * any io in the removed space completes, but it hardly seems
3207 	 * worth it.
3208 	 */
3209 	sector_t newsize = raid1_size(mddev, sectors, 0);
3210 	if (mddev->external_size &&
3211 	    mddev->array_sectors > newsize)
3212 		return -EINVAL;
3213 	if (mddev->bitmap) {
3214 		int ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
3215 		if (ret)
3216 			return ret;
3217 	}
3218 	md_set_array_sectors(mddev, newsize);
3219 	if (sectors > mddev->dev_sectors &&
3220 	    mddev->recovery_cp > mddev->dev_sectors) {
3221 		mddev->recovery_cp = mddev->dev_sectors;
3222 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3223 	}
3224 	mddev->dev_sectors = sectors;
3225 	mddev->resync_max_sectors = sectors;
3226 	return 0;
3227 }
3228 
3229 static int raid1_reshape(struct mddev *mddev)
3230 {
3231 	/* We need to:
3232 	 * 1/ resize the r1bio_pool
3233 	 * 2/ resize conf->mirrors
3234 	 *
3235 	 * We allocate a new r1bio_pool if we can.
3236 	 * Then raise a device barrier and wait until all IO stops.
3237 	 * Then resize conf->mirrors and swap in the new r1bio pool.
3238 	 *
3239 	 * At the same time, we "pack" the devices so that all the missing
3240 	 * devices have the higher raid_disk numbers.
3241 	 */
3242 	mempool_t newpool, oldpool;
3243 	struct pool_info *newpoolinfo;
3244 	struct raid1_info *newmirrors;
3245 	struct r1conf *conf = mddev->private;
3246 	int cnt, raid_disks;
3247 	unsigned long flags;
3248 	int d, d2;
3249 	int ret;
3250 
3251 	memset(&newpool, 0, sizeof(newpool));
3252 	memset(&oldpool, 0, sizeof(oldpool));
3253 
3254 	/* Cannot change chunk_size, layout, or level */
3255 	if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3256 	    mddev->layout != mddev->new_layout ||
3257 	    mddev->level != mddev->new_level) {
3258 		mddev->new_chunk_sectors = mddev->chunk_sectors;
3259 		mddev->new_layout = mddev->layout;
3260 		mddev->new_level = mddev->level;
3261 		return -EINVAL;
3262 	}
3263 
3264 	if (!mddev_is_clustered(mddev))
3265 		md_allow_write(mddev);
3266 
3267 	raid_disks = mddev->raid_disks + mddev->delta_disks;
3268 
3269 	if (raid_disks < conf->raid_disks) {
3270 		cnt=0;
3271 		for (d= 0; d < conf->raid_disks; d++)
3272 			if (conf->mirrors[d].rdev)
3273 				cnt++;
3274 		if (cnt > raid_disks)
3275 			return -EBUSY;
3276 	}
3277 
3278 	newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3279 	if (!newpoolinfo)
3280 		return -ENOMEM;
3281 	newpoolinfo->mddev = mddev;
3282 	newpoolinfo->raid_disks = raid_disks * 2;
3283 
3284 	ret = mempool_init(&newpool, NR_RAID_BIOS, r1bio_pool_alloc,
3285 			   rbio_pool_free, newpoolinfo);
3286 	if (ret) {
3287 		kfree(newpoolinfo);
3288 		return ret;
3289 	}
3290 	newmirrors = kzalloc(array3_size(sizeof(struct raid1_info),
3291 					 raid_disks, 2),
3292 			     GFP_KERNEL);
3293 	if (!newmirrors) {
3294 		kfree(newpoolinfo);
3295 		mempool_exit(&newpool);
3296 		return -ENOMEM;
3297 	}
3298 
3299 	freeze_array(conf, 0);
3300 
3301 	/* ok, everything is stopped */
3302 	oldpool = conf->r1bio_pool;
3303 	conf->r1bio_pool = newpool;
3304 
3305 	for (d = d2 = 0; d < conf->raid_disks; d++) {
3306 		struct md_rdev *rdev = conf->mirrors[d].rdev;
3307 		if (rdev && rdev->raid_disk != d2) {
3308 			sysfs_unlink_rdev(mddev, rdev);
3309 			rdev->raid_disk = d2;
3310 			sysfs_unlink_rdev(mddev, rdev);
3311 			if (sysfs_link_rdev(mddev, rdev))
3312 				pr_warn("md/raid1:%s: cannot register rd%d\n",
3313 					mdname(mddev), rdev->raid_disk);
3314 		}
3315 		if (rdev)
3316 			newmirrors[d2++].rdev = rdev;
3317 	}
3318 	kfree(conf->mirrors);
3319 	conf->mirrors = newmirrors;
3320 	kfree(conf->poolinfo);
3321 	conf->poolinfo = newpoolinfo;
3322 
3323 	spin_lock_irqsave(&conf->device_lock, flags);
3324 	mddev->degraded += (raid_disks - conf->raid_disks);
3325 	spin_unlock_irqrestore(&conf->device_lock, flags);
3326 	conf->raid_disks = mddev->raid_disks = raid_disks;
3327 	mddev->delta_disks = 0;
3328 
3329 	unfreeze_array(conf);
3330 
3331 	set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3332 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3333 	md_wakeup_thread(mddev->thread);
3334 
3335 	mempool_exit(&oldpool);
3336 	return 0;
3337 }
3338 
3339 static void raid1_quiesce(struct mddev *mddev, int quiesce)
3340 {
3341 	struct r1conf *conf = mddev->private;
3342 
3343 	if (quiesce)
3344 		freeze_array(conf, 0);
3345 	else
3346 		unfreeze_array(conf);
3347 }
3348 
3349 static void *raid1_takeover(struct mddev *mddev)
3350 {
3351 	/* raid1 can take over:
3352 	 *  raid5 with 2 devices, any layout or chunk size
3353 	 */
3354 	if (mddev->level == 5 && mddev->raid_disks == 2) {
3355 		struct r1conf *conf;
3356 		mddev->new_level = 1;
3357 		mddev->new_layout = 0;
3358 		mddev->new_chunk_sectors = 0;
3359 		conf = setup_conf(mddev);
3360 		if (!IS_ERR(conf)) {
3361 			/* Array must appear to be quiesced */
3362 			conf->array_frozen = 1;
3363 			mddev_clear_unsupported_flags(mddev,
3364 				UNSUPPORTED_MDDEV_FLAGS);
3365 		}
3366 		return conf;
3367 	}
3368 	return ERR_PTR(-EINVAL);
3369 }
3370 
3371 static struct md_personality raid1_personality =
3372 {
3373 	.name		= "raid1",
3374 	.level		= 1,
3375 	.owner		= THIS_MODULE,
3376 	.make_request	= raid1_make_request,
3377 	.run		= raid1_run,
3378 	.free		= raid1_free,
3379 	.status		= raid1_status,
3380 	.error_handler	= raid1_error,
3381 	.hot_add_disk	= raid1_add_disk,
3382 	.hot_remove_disk= raid1_remove_disk,
3383 	.spare_active	= raid1_spare_active,
3384 	.sync_request	= raid1_sync_request,
3385 	.resize		= raid1_resize,
3386 	.size		= raid1_size,
3387 	.check_reshape	= raid1_reshape,
3388 	.quiesce	= raid1_quiesce,
3389 	.takeover	= raid1_takeover,
3390 };
3391 
3392 static int __init raid_init(void)
3393 {
3394 	return register_md_personality(&raid1_personality);
3395 }
3396 
3397 static void raid_exit(void)
3398 {
3399 	unregister_md_personality(&raid1_personality);
3400 }
3401 
3402 module_init(raid_init);
3403 module_exit(raid_exit);
3404 MODULE_LICENSE("GPL");
3405 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3406 MODULE_ALIAS("md-personality-3"); /* RAID1 */
3407 MODULE_ALIAS("md-raid1");
3408 MODULE_ALIAS("md-level-1");
3409