1 /* 2 * raid1.c : Multiple Devices driver for Linux 3 * 4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat 5 * 6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman 7 * 8 * RAID-1 management functions. 9 * 10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000 11 * 12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk> 13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au> 14 * 15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support 16 * bitmapped intelligence in resync: 17 * 18 * - bitmap marked during normal i/o 19 * - bitmap used to skip nondirty blocks during sync 20 * 21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology: 22 * - persistent bitmap code 23 * 24 * This program is free software; you can redistribute it and/or modify 25 * it under the terms of the GNU General Public License as published by 26 * the Free Software Foundation; either version 2, or (at your option) 27 * any later version. 28 * 29 * You should have received a copy of the GNU General Public License 30 * (for example /usr/src/linux/COPYING); if not, write to the Free 31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 32 */ 33 34 #include <linux/slab.h> 35 #include <linux/delay.h> 36 #include <linux/blkdev.h> 37 #include <linux/seq_file.h> 38 #include "md.h" 39 #include "raid1.h" 40 #include "bitmap.h" 41 42 #define DEBUG 0 43 #if DEBUG 44 #define PRINTK(x...) printk(x) 45 #else 46 #define PRINTK(x...) 47 #endif 48 49 /* 50 * Number of guaranteed r1bios in case of extreme VM load: 51 */ 52 #define NR_RAID1_BIOS 256 53 54 55 static void allow_barrier(conf_t *conf); 56 static void lower_barrier(conf_t *conf); 57 58 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data) 59 { 60 struct pool_info *pi = data; 61 int size = offsetof(r1bio_t, bios[pi->raid_disks]); 62 63 /* allocate a r1bio with room for raid_disks entries in the bios array */ 64 return kzalloc(size, gfp_flags); 65 } 66 67 static void r1bio_pool_free(void *r1_bio, void *data) 68 { 69 kfree(r1_bio); 70 } 71 72 #define RESYNC_BLOCK_SIZE (64*1024) 73 //#define RESYNC_BLOCK_SIZE PAGE_SIZE 74 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9) 75 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE) 76 #define RESYNC_WINDOW (2048*1024) 77 78 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data) 79 { 80 struct pool_info *pi = data; 81 struct page *page; 82 r1bio_t *r1_bio; 83 struct bio *bio; 84 int i, j; 85 86 r1_bio = r1bio_pool_alloc(gfp_flags, pi); 87 if (!r1_bio) 88 return NULL; 89 90 /* 91 * Allocate bios : 1 for reading, n-1 for writing 92 */ 93 for (j = pi->raid_disks ; j-- ; ) { 94 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES); 95 if (!bio) 96 goto out_free_bio; 97 r1_bio->bios[j] = bio; 98 } 99 /* 100 * Allocate RESYNC_PAGES data pages and attach them to 101 * the first bio. 102 * If this is a user-requested check/repair, allocate 103 * RESYNC_PAGES for each bio. 104 */ 105 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) 106 j = pi->raid_disks; 107 else 108 j = 1; 109 while(j--) { 110 bio = r1_bio->bios[j]; 111 for (i = 0; i < RESYNC_PAGES; i++) { 112 page = alloc_page(gfp_flags); 113 if (unlikely(!page)) 114 goto out_free_pages; 115 116 bio->bi_io_vec[i].bv_page = page; 117 bio->bi_vcnt = i+1; 118 } 119 } 120 /* If not user-requests, copy the page pointers to all bios */ 121 if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) { 122 for (i=0; i<RESYNC_PAGES ; i++) 123 for (j=1; j<pi->raid_disks; j++) 124 r1_bio->bios[j]->bi_io_vec[i].bv_page = 125 r1_bio->bios[0]->bi_io_vec[i].bv_page; 126 } 127 128 r1_bio->master_bio = NULL; 129 130 return r1_bio; 131 132 out_free_pages: 133 for (j=0 ; j < pi->raid_disks; j++) 134 for (i=0; i < r1_bio->bios[j]->bi_vcnt ; i++) 135 put_page(r1_bio->bios[j]->bi_io_vec[i].bv_page); 136 j = -1; 137 out_free_bio: 138 while ( ++j < pi->raid_disks ) 139 bio_put(r1_bio->bios[j]); 140 r1bio_pool_free(r1_bio, data); 141 return NULL; 142 } 143 144 static void r1buf_pool_free(void *__r1_bio, void *data) 145 { 146 struct pool_info *pi = data; 147 int i,j; 148 r1bio_t *r1bio = __r1_bio; 149 150 for (i = 0; i < RESYNC_PAGES; i++) 151 for (j = pi->raid_disks; j-- ;) { 152 if (j == 0 || 153 r1bio->bios[j]->bi_io_vec[i].bv_page != 154 r1bio->bios[0]->bi_io_vec[i].bv_page) 155 safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page); 156 } 157 for (i=0 ; i < pi->raid_disks; i++) 158 bio_put(r1bio->bios[i]); 159 160 r1bio_pool_free(r1bio, data); 161 } 162 163 static void put_all_bios(conf_t *conf, r1bio_t *r1_bio) 164 { 165 int i; 166 167 for (i = 0; i < conf->raid_disks; i++) { 168 struct bio **bio = r1_bio->bios + i; 169 if (*bio && *bio != IO_BLOCKED) 170 bio_put(*bio); 171 *bio = NULL; 172 } 173 } 174 175 static void free_r1bio(r1bio_t *r1_bio) 176 { 177 conf_t *conf = r1_bio->mddev->private; 178 179 /* 180 * Wake up any possible resync thread that waits for the device 181 * to go idle. 182 */ 183 allow_barrier(conf); 184 185 put_all_bios(conf, r1_bio); 186 mempool_free(r1_bio, conf->r1bio_pool); 187 } 188 189 static void put_buf(r1bio_t *r1_bio) 190 { 191 conf_t *conf = r1_bio->mddev->private; 192 int i; 193 194 for (i=0; i<conf->raid_disks; i++) { 195 struct bio *bio = r1_bio->bios[i]; 196 if (bio->bi_end_io) 197 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev); 198 } 199 200 mempool_free(r1_bio, conf->r1buf_pool); 201 202 lower_barrier(conf); 203 } 204 205 static void reschedule_retry(r1bio_t *r1_bio) 206 { 207 unsigned long flags; 208 mddev_t *mddev = r1_bio->mddev; 209 conf_t *conf = mddev->private; 210 211 spin_lock_irqsave(&conf->device_lock, flags); 212 list_add(&r1_bio->retry_list, &conf->retry_list); 213 conf->nr_queued ++; 214 spin_unlock_irqrestore(&conf->device_lock, flags); 215 216 wake_up(&conf->wait_barrier); 217 md_wakeup_thread(mddev->thread); 218 } 219 220 /* 221 * raid_end_bio_io() is called when we have finished servicing a mirrored 222 * operation and are ready to return a success/failure code to the buffer 223 * cache layer. 224 */ 225 static void raid_end_bio_io(r1bio_t *r1_bio) 226 { 227 struct bio *bio = r1_bio->master_bio; 228 229 /* if nobody has done the final endio yet, do it now */ 230 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) { 231 PRINTK(KERN_DEBUG "raid1: sync end %s on sectors %llu-%llu\n", 232 (bio_data_dir(bio) == WRITE) ? "write" : "read", 233 (unsigned long long) bio->bi_sector, 234 (unsigned long long) bio->bi_sector + 235 (bio->bi_size >> 9) - 1); 236 237 bio_endio(bio, 238 test_bit(R1BIO_Uptodate, &r1_bio->state) ? 0 : -EIO); 239 } 240 free_r1bio(r1_bio); 241 } 242 243 /* 244 * Update disk head position estimator based on IRQ completion info. 245 */ 246 static inline void update_head_pos(int disk, r1bio_t *r1_bio) 247 { 248 conf_t *conf = r1_bio->mddev->private; 249 250 conf->mirrors[disk].head_position = 251 r1_bio->sector + (r1_bio->sectors); 252 } 253 254 static void raid1_end_read_request(struct bio *bio, int error) 255 { 256 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 257 r1bio_t *r1_bio = bio->bi_private; 258 int mirror; 259 conf_t *conf = r1_bio->mddev->private; 260 261 mirror = r1_bio->read_disk; 262 /* 263 * this branch is our 'one mirror IO has finished' event handler: 264 */ 265 update_head_pos(mirror, r1_bio); 266 267 if (uptodate) 268 set_bit(R1BIO_Uptodate, &r1_bio->state); 269 else { 270 /* If all other devices have failed, we want to return 271 * the error upwards rather than fail the last device. 272 * Here we redefine "uptodate" to mean "Don't want to retry" 273 */ 274 unsigned long flags; 275 spin_lock_irqsave(&conf->device_lock, flags); 276 if (r1_bio->mddev->degraded == conf->raid_disks || 277 (r1_bio->mddev->degraded == conf->raid_disks-1 && 278 !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags))) 279 uptodate = 1; 280 spin_unlock_irqrestore(&conf->device_lock, flags); 281 } 282 283 if (uptodate) 284 raid_end_bio_io(r1_bio); 285 else { 286 /* 287 * oops, read error: 288 */ 289 char b[BDEVNAME_SIZE]; 290 if (printk_ratelimit()) 291 printk(KERN_ERR "md/raid1:%s: %s: rescheduling sector %llu\n", 292 mdname(conf->mddev), 293 bdevname(conf->mirrors[mirror].rdev->bdev,b), (unsigned long long)r1_bio->sector); 294 reschedule_retry(r1_bio); 295 } 296 297 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev); 298 } 299 300 static void r1_bio_write_done(r1bio_t *r1_bio) 301 { 302 if (atomic_dec_and_test(&r1_bio->remaining)) 303 { 304 /* it really is the end of this request */ 305 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) { 306 /* free extra copy of the data pages */ 307 int i = r1_bio->behind_page_count; 308 while (i--) 309 safe_put_page(r1_bio->behind_pages[i]); 310 kfree(r1_bio->behind_pages); 311 r1_bio->behind_pages = NULL; 312 } 313 /* clear the bitmap if all writes complete successfully */ 314 bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector, 315 r1_bio->sectors, 316 !test_bit(R1BIO_Degraded, &r1_bio->state), 317 test_bit(R1BIO_BehindIO, &r1_bio->state)); 318 md_write_end(r1_bio->mddev); 319 raid_end_bio_io(r1_bio); 320 } 321 } 322 323 static void raid1_end_write_request(struct bio *bio, int error) 324 { 325 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 326 r1bio_t *r1_bio = bio->bi_private; 327 int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state); 328 conf_t *conf = r1_bio->mddev->private; 329 struct bio *to_put = NULL; 330 331 332 for (mirror = 0; mirror < conf->raid_disks; mirror++) 333 if (r1_bio->bios[mirror] == bio) 334 break; 335 336 /* 337 * 'one mirror IO has finished' event handler: 338 */ 339 r1_bio->bios[mirror] = NULL; 340 to_put = bio; 341 if (!uptodate) { 342 md_error(r1_bio->mddev, conf->mirrors[mirror].rdev); 343 /* an I/O failed, we can't clear the bitmap */ 344 set_bit(R1BIO_Degraded, &r1_bio->state); 345 } else 346 /* 347 * Set R1BIO_Uptodate in our master bio, so that we 348 * will return a good error code for to the higher 349 * levels even if IO on some other mirrored buffer 350 * fails. 351 * 352 * The 'master' represents the composite IO operation 353 * to user-side. So if something waits for IO, then it 354 * will wait for the 'master' bio. 355 */ 356 set_bit(R1BIO_Uptodate, &r1_bio->state); 357 358 update_head_pos(mirror, r1_bio); 359 360 if (behind) { 361 if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags)) 362 atomic_dec(&r1_bio->behind_remaining); 363 364 /* 365 * In behind mode, we ACK the master bio once the I/O 366 * has safely reached all non-writemostly 367 * disks. Setting the Returned bit ensures that this 368 * gets done only once -- we don't ever want to return 369 * -EIO here, instead we'll wait 370 */ 371 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) && 372 test_bit(R1BIO_Uptodate, &r1_bio->state)) { 373 /* Maybe we can return now */ 374 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) { 375 struct bio *mbio = r1_bio->master_bio; 376 PRINTK(KERN_DEBUG "raid1: behind end write sectors %llu-%llu\n", 377 (unsigned long long) mbio->bi_sector, 378 (unsigned long long) mbio->bi_sector + 379 (mbio->bi_size >> 9) - 1); 380 bio_endio(mbio, 0); 381 } 382 } 383 } 384 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev); 385 386 /* 387 * Let's see if all mirrored write operations have finished 388 * already. 389 */ 390 r1_bio_write_done(r1_bio); 391 392 if (to_put) 393 bio_put(to_put); 394 } 395 396 397 /* 398 * This routine returns the disk from which the requested read should 399 * be done. There is a per-array 'next expected sequential IO' sector 400 * number - if this matches on the next IO then we use the last disk. 401 * There is also a per-disk 'last know head position' sector that is 402 * maintained from IRQ contexts, both the normal and the resync IO 403 * completion handlers update this position correctly. If there is no 404 * perfect sequential match then we pick the disk whose head is closest. 405 * 406 * If there are 2 mirrors in the same 2 devices, performance degrades 407 * because position is mirror, not device based. 408 * 409 * The rdev for the device selected will have nr_pending incremented. 410 */ 411 static int read_balance(conf_t *conf, r1bio_t *r1_bio) 412 { 413 const sector_t this_sector = r1_bio->sector; 414 const int sectors = r1_bio->sectors; 415 int start_disk; 416 int best_disk; 417 int i; 418 sector_t best_dist; 419 mdk_rdev_t *rdev; 420 int choose_first; 421 422 rcu_read_lock(); 423 /* 424 * Check if we can balance. We can balance on the whole 425 * device if no resync is going on, or below the resync window. 426 * We take the first readable disk when above the resync window. 427 */ 428 retry: 429 best_disk = -1; 430 best_dist = MaxSector; 431 if (conf->mddev->recovery_cp < MaxSector && 432 (this_sector + sectors >= conf->next_resync)) { 433 choose_first = 1; 434 start_disk = 0; 435 } else { 436 choose_first = 0; 437 start_disk = conf->last_used; 438 } 439 440 for (i = 0 ; i < conf->raid_disks ; i++) { 441 sector_t dist; 442 int disk = start_disk + i; 443 if (disk >= conf->raid_disks) 444 disk -= conf->raid_disks; 445 446 rdev = rcu_dereference(conf->mirrors[disk].rdev); 447 if (r1_bio->bios[disk] == IO_BLOCKED 448 || rdev == NULL 449 || test_bit(Faulty, &rdev->flags)) 450 continue; 451 if (!test_bit(In_sync, &rdev->flags) && 452 rdev->recovery_offset < this_sector + sectors) 453 continue; 454 if (test_bit(WriteMostly, &rdev->flags)) { 455 /* Don't balance among write-mostly, just 456 * use the first as a last resort */ 457 if (best_disk < 0) 458 best_disk = disk; 459 continue; 460 } 461 /* This is a reasonable device to use. It might 462 * even be best. 463 */ 464 dist = abs(this_sector - conf->mirrors[disk].head_position); 465 if (choose_first 466 /* Don't change to another disk for sequential reads */ 467 || conf->next_seq_sect == this_sector 468 || dist == 0 469 /* If device is idle, use it */ 470 || atomic_read(&rdev->nr_pending) == 0) { 471 best_disk = disk; 472 break; 473 } 474 if (dist < best_dist) { 475 best_dist = dist; 476 best_disk = disk; 477 } 478 } 479 480 if (best_disk >= 0) { 481 rdev = rcu_dereference(conf->mirrors[best_disk].rdev); 482 if (!rdev) 483 goto retry; 484 atomic_inc(&rdev->nr_pending); 485 if (test_bit(Faulty, &rdev->flags)) { 486 /* cannot risk returning a device that failed 487 * before we inc'ed nr_pending 488 */ 489 rdev_dec_pending(rdev, conf->mddev); 490 goto retry; 491 } 492 conf->next_seq_sect = this_sector + sectors; 493 conf->last_used = best_disk; 494 } 495 rcu_read_unlock(); 496 497 return best_disk; 498 } 499 500 int md_raid1_congested(mddev_t *mddev, int bits) 501 { 502 conf_t *conf = mddev->private; 503 int i, ret = 0; 504 505 rcu_read_lock(); 506 for (i = 0; i < mddev->raid_disks; i++) { 507 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev); 508 if (rdev && !test_bit(Faulty, &rdev->flags)) { 509 struct request_queue *q = bdev_get_queue(rdev->bdev); 510 511 BUG_ON(!q); 512 513 /* Note the '|| 1' - when read_balance prefers 514 * non-congested targets, it can be removed 515 */ 516 if ((bits & (1<<BDI_async_congested)) || 1) 517 ret |= bdi_congested(&q->backing_dev_info, bits); 518 else 519 ret &= bdi_congested(&q->backing_dev_info, bits); 520 } 521 } 522 rcu_read_unlock(); 523 return ret; 524 } 525 EXPORT_SYMBOL_GPL(md_raid1_congested); 526 527 static int raid1_congested(void *data, int bits) 528 { 529 mddev_t *mddev = data; 530 531 return mddev_congested(mddev, bits) || 532 md_raid1_congested(mddev, bits); 533 } 534 535 static void flush_pending_writes(conf_t *conf) 536 { 537 /* Any writes that have been queued but are awaiting 538 * bitmap updates get flushed here. 539 */ 540 spin_lock_irq(&conf->device_lock); 541 542 if (conf->pending_bio_list.head) { 543 struct bio *bio; 544 bio = bio_list_get(&conf->pending_bio_list); 545 spin_unlock_irq(&conf->device_lock); 546 /* flush any pending bitmap writes to 547 * disk before proceeding w/ I/O */ 548 bitmap_unplug(conf->mddev->bitmap); 549 550 while (bio) { /* submit pending writes */ 551 struct bio *next = bio->bi_next; 552 bio->bi_next = NULL; 553 generic_make_request(bio); 554 bio = next; 555 } 556 } else 557 spin_unlock_irq(&conf->device_lock); 558 } 559 560 /* Barriers.... 561 * Sometimes we need to suspend IO while we do something else, 562 * either some resync/recovery, or reconfigure the array. 563 * To do this we raise a 'barrier'. 564 * The 'barrier' is a counter that can be raised multiple times 565 * to count how many activities are happening which preclude 566 * normal IO. 567 * We can only raise the barrier if there is no pending IO. 568 * i.e. if nr_pending == 0. 569 * We choose only to raise the barrier if no-one is waiting for the 570 * barrier to go down. This means that as soon as an IO request 571 * is ready, no other operations which require a barrier will start 572 * until the IO request has had a chance. 573 * 574 * So: regular IO calls 'wait_barrier'. When that returns there 575 * is no backgroup IO happening, It must arrange to call 576 * allow_barrier when it has finished its IO. 577 * backgroup IO calls must call raise_barrier. Once that returns 578 * there is no normal IO happeing. It must arrange to call 579 * lower_barrier when the particular background IO completes. 580 */ 581 #define RESYNC_DEPTH 32 582 583 static void raise_barrier(conf_t *conf) 584 { 585 spin_lock_irq(&conf->resync_lock); 586 587 /* Wait until no block IO is waiting */ 588 wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting, 589 conf->resync_lock, ); 590 591 /* block any new IO from starting */ 592 conf->barrier++; 593 594 /* Now wait for all pending IO to complete */ 595 wait_event_lock_irq(conf->wait_barrier, 596 !conf->nr_pending && conf->barrier < RESYNC_DEPTH, 597 conf->resync_lock, ); 598 599 spin_unlock_irq(&conf->resync_lock); 600 } 601 602 static void lower_barrier(conf_t *conf) 603 { 604 unsigned long flags; 605 BUG_ON(conf->barrier <= 0); 606 spin_lock_irqsave(&conf->resync_lock, flags); 607 conf->barrier--; 608 spin_unlock_irqrestore(&conf->resync_lock, flags); 609 wake_up(&conf->wait_barrier); 610 } 611 612 static void wait_barrier(conf_t *conf) 613 { 614 spin_lock_irq(&conf->resync_lock); 615 if (conf->barrier) { 616 conf->nr_waiting++; 617 wait_event_lock_irq(conf->wait_barrier, !conf->barrier, 618 conf->resync_lock, 619 ); 620 conf->nr_waiting--; 621 } 622 conf->nr_pending++; 623 spin_unlock_irq(&conf->resync_lock); 624 } 625 626 static void allow_barrier(conf_t *conf) 627 { 628 unsigned long flags; 629 spin_lock_irqsave(&conf->resync_lock, flags); 630 conf->nr_pending--; 631 spin_unlock_irqrestore(&conf->resync_lock, flags); 632 wake_up(&conf->wait_barrier); 633 } 634 635 static void freeze_array(conf_t *conf) 636 { 637 /* stop syncio and normal IO and wait for everything to 638 * go quite. 639 * We increment barrier and nr_waiting, and then 640 * wait until nr_pending match nr_queued+1 641 * This is called in the context of one normal IO request 642 * that has failed. Thus any sync request that might be pending 643 * will be blocked by nr_pending, and we need to wait for 644 * pending IO requests to complete or be queued for re-try. 645 * Thus the number queued (nr_queued) plus this request (1) 646 * must match the number of pending IOs (nr_pending) before 647 * we continue. 648 */ 649 spin_lock_irq(&conf->resync_lock); 650 conf->barrier++; 651 conf->nr_waiting++; 652 wait_event_lock_irq(conf->wait_barrier, 653 conf->nr_pending == conf->nr_queued+1, 654 conf->resync_lock, 655 flush_pending_writes(conf)); 656 spin_unlock_irq(&conf->resync_lock); 657 } 658 static void unfreeze_array(conf_t *conf) 659 { 660 /* reverse the effect of the freeze */ 661 spin_lock_irq(&conf->resync_lock); 662 conf->barrier--; 663 conf->nr_waiting--; 664 wake_up(&conf->wait_barrier); 665 spin_unlock_irq(&conf->resync_lock); 666 } 667 668 669 /* duplicate the data pages for behind I/O 670 */ 671 static void alloc_behind_pages(struct bio *bio, r1bio_t *r1_bio) 672 { 673 int i; 674 struct bio_vec *bvec; 675 struct page **pages = kzalloc(bio->bi_vcnt * sizeof(struct page*), 676 GFP_NOIO); 677 if (unlikely(!pages)) 678 return; 679 680 bio_for_each_segment(bvec, bio, i) { 681 pages[i] = alloc_page(GFP_NOIO); 682 if (unlikely(!pages[i])) 683 goto do_sync_io; 684 memcpy(kmap(pages[i]) + bvec->bv_offset, 685 kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len); 686 kunmap(pages[i]); 687 kunmap(bvec->bv_page); 688 } 689 r1_bio->behind_pages = pages; 690 r1_bio->behind_page_count = bio->bi_vcnt; 691 set_bit(R1BIO_BehindIO, &r1_bio->state); 692 return; 693 694 do_sync_io: 695 for (i = 0; i < bio->bi_vcnt; i++) 696 if (pages[i]) 697 put_page(pages[i]); 698 kfree(pages); 699 PRINTK("%dB behind alloc failed, doing sync I/O\n", bio->bi_size); 700 } 701 702 static int make_request(mddev_t *mddev, struct bio * bio) 703 { 704 conf_t *conf = mddev->private; 705 mirror_info_t *mirror; 706 r1bio_t *r1_bio; 707 struct bio *read_bio; 708 int i, targets = 0, disks; 709 struct bitmap *bitmap; 710 unsigned long flags; 711 const int rw = bio_data_dir(bio); 712 const unsigned long do_sync = (bio->bi_rw & REQ_SYNC); 713 const unsigned long do_flush_fua = (bio->bi_rw & (REQ_FLUSH | REQ_FUA)); 714 mdk_rdev_t *blocked_rdev; 715 int plugged; 716 717 /* 718 * Register the new request and wait if the reconstruction 719 * thread has put up a bar for new requests. 720 * Continue immediately if no resync is active currently. 721 */ 722 723 md_write_start(mddev, bio); /* wait on superblock update early */ 724 725 if (bio_data_dir(bio) == WRITE && 726 bio->bi_sector + bio->bi_size/512 > mddev->suspend_lo && 727 bio->bi_sector < mddev->suspend_hi) { 728 /* As the suspend_* range is controlled by 729 * userspace, we want an interruptible 730 * wait. 731 */ 732 DEFINE_WAIT(w); 733 for (;;) { 734 flush_signals(current); 735 prepare_to_wait(&conf->wait_barrier, 736 &w, TASK_INTERRUPTIBLE); 737 if (bio->bi_sector + bio->bi_size/512 <= mddev->suspend_lo || 738 bio->bi_sector >= mddev->suspend_hi) 739 break; 740 schedule(); 741 } 742 finish_wait(&conf->wait_barrier, &w); 743 } 744 745 wait_barrier(conf); 746 747 bitmap = mddev->bitmap; 748 749 /* 750 * make_request() can abort the operation when READA is being 751 * used and no empty request is available. 752 * 753 */ 754 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO); 755 756 r1_bio->master_bio = bio; 757 r1_bio->sectors = bio->bi_size >> 9; 758 r1_bio->state = 0; 759 r1_bio->mddev = mddev; 760 r1_bio->sector = bio->bi_sector; 761 762 if (rw == READ) { 763 /* 764 * read balancing logic: 765 */ 766 int rdisk = read_balance(conf, r1_bio); 767 768 if (rdisk < 0) { 769 /* couldn't find anywhere to read from */ 770 raid_end_bio_io(r1_bio); 771 return 0; 772 } 773 mirror = conf->mirrors + rdisk; 774 775 if (test_bit(WriteMostly, &mirror->rdev->flags) && 776 bitmap) { 777 /* Reading from a write-mostly device must 778 * take care not to over-take any writes 779 * that are 'behind' 780 */ 781 wait_event(bitmap->behind_wait, 782 atomic_read(&bitmap->behind_writes) == 0); 783 } 784 r1_bio->read_disk = rdisk; 785 786 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev); 787 788 r1_bio->bios[rdisk] = read_bio; 789 790 read_bio->bi_sector = r1_bio->sector + mirror->rdev->data_offset; 791 read_bio->bi_bdev = mirror->rdev->bdev; 792 read_bio->bi_end_io = raid1_end_read_request; 793 read_bio->bi_rw = READ | do_sync; 794 read_bio->bi_private = r1_bio; 795 796 generic_make_request(read_bio); 797 return 0; 798 } 799 800 /* 801 * WRITE: 802 */ 803 /* first select target devices under spinlock and 804 * inc refcount on their rdev. Record them by setting 805 * bios[x] to bio 806 */ 807 plugged = mddev_check_plugged(mddev); 808 809 disks = conf->raid_disks; 810 retry_write: 811 blocked_rdev = NULL; 812 rcu_read_lock(); 813 for (i = 0; i < disks; i++) { 814 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev); 815 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) { 816 atomic_inc(&rdev->nr_pending); 817 blocked_rdev = rdev; 818 break; 819 } 820 if (rdev && !test_bit(Faulty, &rdev->flags)) { 821 atomic_inc(&rdev->nr_pending); 822 if (test_bit(Faulty, &rdev->flags)) { 823 rdev_dec_pending(rdev, mddev); 824 r1_bio->bios[i] = NULL; 825 } else { 826 r1_bio->bios[i] = bio; 827 targets++; 828 } 829 } else 830 r1_bio->bios[i] = NULL; 831 } 832 rcu_read_unlock(); 833 834 if (unlikely(blocked_rdev)) { 835 /* Wait for this device to become unblocked */ 836 int j; 837 838 for (j = 0; j < i; j++) 839 if (r1_bio->bios[j]) 840 rdev_dec_pending(conf->mirrors[j].rdev, mddev); 841 842 allow_barrier(conf); 843 md_wait_for_blocked_rdev(blocked_rdev, mddev); 844 wait_barrier(conf); 845 goto retry_write; 846 } 847 848 BUG_ON(targets == 0); /* we never fail the last device */ 849 850 if (targets < conf->raid_disks) { 851 /* array is degraded, we will not clear the bitmap 852 * on I/O completion (see raid1_end_write_request) */ 853 set_bit(R1BIO_Degraded, &r1_bio->state); 854 } 855 856 /* do behind I/O ? 857 * Not if there are too many, or cannot allocate memory, 858 * or a reader on WriteMostly is waiting for behind writes 859 * to flush */ 860 if (bitmap && 861 (atomic_read(&bitmap->behind_writes) 862 < mddev->bitmap_info.max_write_behind) && 863 !waitqueue_active(&bitmap->behind_wait)) 864 alloc_behind_pages(bio, r1_bio); 865 866 atomic_set(&r1_bio->remaining, 1); 867 atomic_set(&r1_bio->behind_remaining, 0); 868 869 bitmap_startwrite(bitmap, bio->bi_sector, r1_bio->sectors, 870 test_bit(R1BIO_BehindIO, &r1_bio->state)); 871 for (i = 0; i < disks; i++) { 872 struct bio *mbio; 873 if (!r1_bio->bios[i]) 874 continue; 875 876 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev); 877 r1_bio->bios[i] = mbio; 878 879 mbio->bi_sector = r1_bio->sector + conf->mirrors[i].rdev->data_offset; 880 mbio->bi_bdev = conf->mirrors[i].rdev->bdev; 881 mbio->bi_end_io = raid1_end_write_request; 882 mbio->bi_rw = WRITE | do_flush_fua | do_sync; 883 mbio->bi_private = r1_bio; 884 885 if (r1_bio->behind_pages) { 886 struct bio_vec *bvec; 887 int j; 888 889 /* Yes, I really want the '__' version so that 890 * we clear any unused pointer in the io_vec, rather 891 * than leave them unchanged. This is important 892 * because when we come to free the pages, we won't 893 * know the original bi_idx, so we just free 894 * them all 895 */ 896 __bio_for_each_segment(bvec, mbio, j, 0) 897 bvec->bv_page = r1_bio->behind_pages[j]; 898 if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags)) 899 atomic_inc(&r1_bio->behind_remaining); 900 } 901 902 atomic_inc(&r1_bio->remaining); 903 spin_lock_irqsave(&conf->device_lock, flags); 904 bio_list_add(&conf->pending_bio_list, mbio); 905 spin_unlock_irqrestore(&conf->device_lock, flags); 906 } 907 r1_bio_write_done(r1_bio); 908 909 /* In case raid1d snuck in to freeze_array */ 910 wake_up(&conf->wait_barrier); 911 912 if (do_sync || !bitmap || !plugged) 913 md_wakeup_thread(mddev->thread); 914 915 return 0; 916 } 917 918 static void status(struct seq_file *seq, mddev_t *mddev) 919 { 920 conf_t *conf = mddev->private; 921 int i; 922 923 seq_printf(seq, " [%d/%d] [", conf->raid_disks, 924 conf->raid_disks - mddev->degraded); 925 rcu_read_lock(); 926 for (i = 0; i < conf->raid_disks; i++) { 927 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev); 928 seq_printf(seq, "%s", 929 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_"); 930 } 931 rcu_read_unlock(); 932 seq_printf(seq, "]"); 933 } 934 935 936 static void error(mddev_t *mddev, mdk_rdev_t *rdev) 937 { 938 char b[BDEVNAME_SIZE]; 939 conf_t *conf = mddev->private; 940 941 /* 942 * If it is not operational, then we have already marked it as dead 943 * else if it is the last working disks, ignore the error, let the 944 * next level up know. 945 * else mark the drive as failed 946 */ 947 if (test_bit(In_sync, &rdev->flags) 948 && (conf->raid_disks - mddev->degraded) == 1) { 949 /* 950 * Don't fail the drive, act as though we were just a 951 * normal single drive. 952 * However don't try a recovery from this drive as 953 * it is very likely to fail. 954 */ 955 mddev->recovery_disabled = 1; 956 return; 957 } 958 if (test_and_clear_bit(In_sync, &rdev->flags)) { 959 unsigned long flags; 960 spin_lock_irqsave(&conf->device_lock, flags); 961 mddev->degraded++; 962 set_bit(Faulty, &rdev->flags); 963 spin_unlock_irqrestore(&conf->device_lock, flags); 964 /* 965 * if recovery is running, make sure it aborts. 966 */ 967 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 968 } else 969 set_bit(Faulty, &rdev->flags); 970 set_bit(MD_CHANGE_DEVS, &mddev->flags); 971 printk(KERN_ALERT 972 "md/raid1:%s: Disk failure on %s, disabling device.\n" 973 "md/raid1:%s: Operation continuing on %d devices.\n", 974 mdname(mddev), bdevname(rdev->bdev, b), 975 mdname(mddev), conf->raid_disks - mddev->degraded); 976 } 977 978 static void print_conf(conf_t *conf) 979 { 980 int i; 981 982 printk(KERN_DEBUG "RAID1 conf printout:\n"); 983 if (!conf) { 984 printk(KERN_DEBUG "(!conf)\n"); 985 return; 986 } 987 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded, 988 conf->raid_disks); 989 990 rcu_read_lock(); 991 for (i = 0; i < conf->raid_disks; i++) { 992 char b[BDEVNAME_SIZE]; 993 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev); 994 if (rdev) 995 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n", 996 i, !test_bit(In_sync, &rdev->flags), 997 !test_bit(Faulty, &rdev->flags), 998 bdevname(rdev->bdev,b)); 999 } 1000 rcu_read_unlock(); 1001 } 1002 1003 static void close_sync(conf_t *conf) 1004 { 1005 wait_barrier(conf); 1006 allow_barrier(conf); 1007 1008 mempool_destroy(conf->r1buf_pool); 1009 conf->r1buf_pool = NULL; 1010 } 1011 1012 static int raid1_spare_active(mddev_t *mddev) 1013 { 1014 int i; 1015 conf_t *conf = mddev->private; 1016 int count = 0; 1017 unsigned long flags; 1018 1019 /* 1020 * Find all failed disks within the RAID1 configuration 1021 * and mark them readable. 1022 * Called under mddev lock, so rcu protection not needed. 1023 */ 1024 for (i = 0; i < conf->raid_disks; i++) { 1025 mdk_rdev_t *rdev = conf->mirrors[i].rdev; 1026 if (rdev 1027 && !test_bit(Faulty, &rdev->flags) 1028 && !test_and_set_bit(In_sync, &rdev->flags)) { 1029 count++; 1030 sysfs_notify_dirent(rdev->sysfs_state); 1031 } 1032 } 1033 spin_lock_irqsave(&conf->device_lock, flags); 1034 mddev->degraded -= count; 1035 spin_unlock_irqrestore(&conf->device_lock, flags); 1036 1037 print_conf(conf); 1038 return count; 1039 } 1040 1041 1042 static int raid1_add_disk(mddev_t *mddev, mdk_rdev_t *rdev) 1043 { 1044 conf_t *conf = mddev->private; 1045 int err = -EEXIST; 1046 int mirror = 0; 1047 mirror_info_t *p; 1048 int first = 0; 1049 int last = mddev->raid_disks - 1; 1050 1051 if (rdev->raid_disk >= 0) 1052 first = last = rdev->raid_disk; 1053 1054 for (mirror = first; mirror <= last; mirror++) 1055 if ( !(p=conf->mirrors+mirror)->rdev) { 1056 1057 disk_stack_limits(mddev->gendisk, rdev->bdev, 1058 rdev->data_offset << 9); 1059 /* as we don't honour merge_bvec_fn, we must 1060 * never risk violating it, so limit 1061 * ->max_segments to one lying with a single 1062 * page, as a one page request is never in 1063 * violation. 1064 */ 1065 if (rdev->bdev->bd_disk->queue->merge_bvec_fn) { 1066 blk_queue_max_segments(mddev->queue, 1); 1067 blk_queue_segment_boundary(mddev->queue, 1068 PAGE_CACHE_SIZE - 1); 1069 } 1070 1071 p->head_position = 0; 1072 rdev->raid_disk = mirror; 1073 err = 0; 1074 /* As all devices are equivalent, we don't need a full recovery 1075 * if this was recently any drive of the array 1076 */ 1077 if (rdev->saved_raid_disk < 0) 1078 conf->fullsync = 1; 1079 rcu_assign_pointer(p->rdev, rdev); 1080 break; 1081 } 1082 md_integrity_add_rdev(rdev, mddev); 1083 print_conf(conf); 1084 return err; 1085 } 1086 1087 static int raid1_remove_disk(mddev_t *mddev, int number) 1088 { 1089 conf_t *conf = mddev->private; 1090 int err = 0; 1091 mdk_rdev_t *rdev; 1092 mirror_info_t *p = conf->mirrors+ number; 1093 1094 print_conf(conf); 1095 rdev = p->rdev; 1096 if (rdev) { 1097 if (test_bit(In_sync, &rdev->flags) || 1098 atomic_read(&rdev->nr_pending)) { 1099 err = -EBUSY; 1100 goto abort; 1101 } 1102 /* Only remove non-faulty devices if recovery 1103 * is not possible. 1104 */ 1105 if (!test_bit(Faulty, &rdev->flags) && 1106 !mddev->recovery_disabled && 1107 mddev->degraded < conf->raid_disks) { 1108 err = -EBUSY; 1109 goto abort; 1110 } 1111 p->rdev = NULL; 1112 synchronize_rcu(); 1113 if (atomic_read(&rdev->nr_pending)) { 1114 /* lost the race, try later */ 1115 err = -EBUSY; 1116 p->rdev = rdev; 1117 goto abort; 1118 } 1119 err = md_integrity_register(mddev); 1120 } 1121 abort: 1122 1123 print_conf(conf); 1124 return err; 1125 } 1126 1127 1128 static void end_sync_read(struct bio *bio, int error) 1129 { 1130 r1bio_t *r1_bio = bio->bi_private; 1131 int i; 1132 1133 for (i=r1_bio->mddev->raid_disks; i--; ) 1134 if (r1_bio->bios[i] == bio) 1135 break; 1136 BUG_ON(i < 0); 1137 update_head_pos(i, r1_bio); 1138 /* 1139 * we have read a block, now it needs to be re-written, 1140 * or re-read if the read failed. 1141 * We don't do much here, just schedule handling by raid1d 1142 */ 1143 if (test_bit(BIO_UPTODATE, &bio->bi_flags)) 1144 set_bit(R1BIO_Uptodate, &r1_bio->state); 1145 1146 if (atomic_dec_and_test(&r1_bio->remaining)) 1147 reschedule_retry(r1_bio); 1148 } 1149 1150 static void end_sync_write(struct bio *bio, int error) 1151 { 1152 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 1153 r1bio_t *r1_bio = bio->bi_private; 1154 mddev_t *mddev = r1_bio->mddev; 1155 conf_t *conf = mddev->private; 1156 int i; 1157 int mirror=0; 1158 1159 for (i = 0; i < conf->raid_disks; i++) 1160 if (r1_bio->bios[i] == bio) { 1161 mirror = i; 1162 break; 1163 } 1164 if (!uptodate) { 1165 sector_t sync_blocks = 0; 1166 sector_t s = r1_bio->sector; 1167 long sectors_to_go = r1_bio->sectors; 1168 /* make sure these bits doesn't get cleared. */ 1169 do { 1170 bitmap_end_sync(mddev->bitmap, s, 1171 &sync_blocks, 1); 1172 s += sync_blocks; 1173 sectors_to_go -= sync_blocks; 1174 } while (sectors_to_go > 0); 1175 md_error(mddev, conf->mirrors[mirror].rdev); 1176 } 1177 1178 update_head_pos(mirror, r1_bio); 1179 1180 if (atomic_dec_and_test(&r1_bio->remaining)) { 1181 sector_t s = r1_bio->sectors; 1182 put_buf(r1_bio); 1183 md_done_sync(mddev, s, uptodate); 1184 } 1185 } 1186 1187 static int fix_sync_read_error(r1bio_t *r1_bio) 1188 { 1189 /* Try some synchronous reads of other devices to get 1190 * good data, much like with normal read errors. Only 1191 * read into the pages we already have so we don't 1192 * need to re-issue the read request. 1193 * We don't need to freeze the array, because being in an 1194 * active sync request, there is no normal IO, and 1195 * no overlapping syncs. 1196 */ 1197 mddev_t *mddev = r1_bio->mddev; 1198 conf_t *conf = mddev->private; 1199 struct bio *bio = r1_bio->bios[r1_bio->read_disk]; 1200 sector_t sect = r1_bio->sector; 1201 int sectors = r1_bio->sectors; 1202 int idx = 0; 1203 1204 while(sectors) { 1205 int s = sectors; 1206 int d = r1_bio->read_disk; 1207 int success = 0; 1208 mdk_rdev_t *rdev; 1209 int start; 1210 1211 if (s > (PAGE_SIZE>>9)) 1212 s = PAGE_SIZE >> 9; 1213 do { 1214 if (r1_bio->bios[d]->bi_end_io == end_sync_read) { 1215 /* No rcu protection needed here devices 1216 * can only be removed when no resync is 1217 * active, and resync is currently active 1218 */ 1219 rdev = conf->mirrors[d].rdev; 1220 if (sync_page_io(rdev, 1221 sect, 1222 s<<9, 1223 bio->bi_io_vec[idx].bv_page, 1224 READ, false)) { 1225 success = 1; 1226 break; 1227 } 1228 } 1229 d++; 1230 if (d == conf->raid_disks) 1231 d = 0; 1232 } while (!success && d != r1_bio->read_disk); 1233 1234 if (!success) { 1235 char b[BDEVNAME_SIZE]; 1236 /* Cannot read from anywhere, array is toast */ 1237 md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev); 1238 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error" 1239 " for block %llu\n", 1240 mdname(mddev), 1241 bdevname(bio->bi_bdev, b), 1242 (unsigned long long)r1_bio->sector); 1243 md_done_sync(mddev, r1_bio->sectors, 0); 1244 put_buf(r1_bio); 1245 return 0; 1246 } 1247 1248 start = d; 1249 /* write it back and re-read */ 1250 while (d != r1_bio->read_disk) { 1251 if (d == 0) 1252 d = conf->raid_disks; 1253 d--; 1254 if (r1_bio->bios[d]->bi_end_io != end_sync_read) 1255 continue; 1256 rdev = conf->mirrors[d].rdev; 1257 if (sync_page_io(rdev, 1258 sect, 1259 s<<9, 1260 bio->bi_io_vec[idx].bv_page, 1261 WRITE, false) == 0) { 1262 r1_bio->bios[d]->bi_end_io = NULL; 1263 rdev_dec_pending(rdev, mddev); 1264 md_error(mddev, rdev); 1265 } else 1266 atomic_add(s, &rdev->corrected_errors); 1267 } 1268 d = start; 1269 while (d != r1_bio->read_disk) { 1270 if (d == 0) 1271 d = conf->raid_disks; 1272 d--; 1273 if (r1_bio->bios[d]->bi_end_io != end_sync_read) 1274 continue; 1275 rdev = conf->mirrors[d].rdev; 1276 if (sync_page_io(rdev, 1277 sect, 1278 s<<9, 1279 bio->bi_io_vec[idx].bv_page, 1280 READ, false) == 0) 1281 md_error(mddev, rdev); 1282 } 1283 sectors -= s; 1284 sect += s; 1285 idx ++; 1286 } 1287 set_bit(R1BIO_Uptodate, &r1_bio->state); 1288 set_bit(BIO_UPTODATE, &bio->bi_flags); 1289 return 1; 1290 } 1291 1292 static int process_checks(r1bio_t *r1_bio) 1293 { 1294 /* We have read all readable devices. If we haven't 1295 * got the block, then there is no hope left. 1296 * If we have, then we want to do a comparison 1297 * and skip the write if everything is the same. 1298 * If any blocks failed to read, then we need to 1299 * attempt an over-write 1300 */ 1301 mddev_t *mddev = r1_bio->mddev; 1302 conf_t *conf = mddev->private; 1303 int primary; 1304 int i; 1305 1306 for (primary = 0; primary < conf->raid_disks; primary++) 1307 if (r1_bio->bios[primary]->bi_end_io == end_sync_read && 1308 test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) { 1309 r1_bio->bios[primary]->bi_end_io = NULL; 1310 rdev_dec_pending(conf->mirrors[primary].rdev, mddev); 1311 break; 1312 } 1313 r1_bio->read_disk = primary; 1314 for (i = 0; i < conf->raid_disks; i++) { 1315 int j; 1316 int vcnt = r1_bio->sectors >> (PAGE_SHIFT- 9); 1317 struct bio *pbio = r1_bio->bios[primary]; 1318 struct bio *sbio = r1_bio->bios[i]; 1319 int size; 1320 1321 if (r1_bio->bios[i]->bi_end_io != end_sync_read) 1322 continue; 1323 1324 if (test_bit(BIO_UPTODATE, &sbio->bi_flags)) { 1325 for (j = vcnt; j-- ; ) { 1326 struct page *p, *s; 1327 p = pbio->bi_io_vec[j].bv_page; 1328 s = sbio->bi_io_vec[j].bv_page; 1329 if (memcmp(page_address(p), 1330 page_address(s), 1331 PAGE_SIZE)) 1332 break; 1333 } 1334 } else 1335 j = 0; 1336 if (j >= 0) 1337 mddev->resync_mismatches += r1_bio->sectors; 1338 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery) 1339 && test_bit(BIO_UPTODATE, &sbio->bi_flags))) { 1340 /* No need to write to this device. */ 1341 sbio->bi_end_io = NULL; 1342 rdev_dec_pending(conf->mirrors[i].rdev, mddev); 1343 continue; 1344 } 1345 /* fixup the bio for reuse */ 1346 sbio->bi_vcnt = vcnt; 1347 sbio->bi_size = r1_bio->sectors << 9; 1348 sbio->bi_idx = 0; 1349 sbio->bi_phys_segments = 0; 1350 sbio->bi_flags &= ~(BIO_POOL_MASK - 1); 1351 sbio->bi_flags |= 1 << BIO_UPTODATE; 1352 sbio->bi_next = NULL; 1353 sbio->bi_sector = r1_bio->sector + 1354 conf->mirrors[i].rdev->data_offset; 1355 sbio->bi_bdev = conf->mirrors[i].rdev->bdev; 1356 size = sbio->bi_size; 1357 for (j = 0; j < vcnt ; j++) { 1358 struct bio_vec *bi; 1359 bi = &sbio->bi_io_vec[j]; 1360 bi->bv_offset = 0; 1361 if (size > PAGE_SIZE) 1362 bi->bv_len = PAGE_SIZE; 1363 else 1364 bi->bv_len = size; 1365 size -= PAGE_SIZE; 1366 memcpy(page_address(bi->bv_page), 1367 page_address(pbio->bi_io_vec[j].bv_page), 1368 PAGE_SIZE); 1369 } 1370 } 1371 return 0; 1372 } 1373 1374 static void sync_request_write(mddev_t *mddev, r1bio_t *r1_bio) 1375 { 1376 conf_t *conf = mddev->private; 1377 int i; 1378 int disks = conf->raid_disks; 1379 struct bio *bio, *wbio; 1380 1381 bio = r1_bio->bios[r1_bio->read_disk]; 1382 1383 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) 1384 /* ouch - failed to read all of that. */ 1385 if (!fix_sync_read_error(r1_bio)) 1386 return; 1387 1388 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 1389 if (process_checks(r1_bio) < 0) 1390 return; 1391 /* 1392 * schedule writes 1393 */ 1394 atomic_set(&r1_bio->remaining, 1); 1395 for (i = 0; i < disks ; i++) { 1396 wbio = r1_bio->bios[i]; 1397 if (wbio->bi_end_io == NULL || 1398 (wbio->bi_end_io == end_sync_read && 1399 (i == r1_bio->read_disk || 1400 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery)))) 1401 continue; 1402 1403 wbio->bi_rw = WRITE; 1404 wbio->bi_end_io = end_sync_write; 1405 atomic_inc(&r1_bio->remaining); 1406 md_sync_acct(conf->mirrors[i].rdev->bdev, wbio->bi_size >> 9); 1407 1408 generic_make_request(wbio); 1409 } 1410 1411 if (atomic_dec_and_test(&r1_bio->remaining)) { 1412 /* if we're here, all write(s) have completed, so clean up */ 1413 md_done_sync(mddev, r1_bio->sectors, 1); 1414 put_buf(r1_bio); 1415 } 1416 } 1417 1418 /* 1419 * This is a kernel thread which: 1420 * 1421 * 1. Retries failed read operations on working mirrors. 1422 * 2. Updates the raid superblock when problems encounter. 1423 * 3. Performs writes following reads for array syncronising. 1424 */ 1425 1426 static void fix_read_error(conf_t *conf, int read_disk, 1427 sector_t sect, int sectors) 1428 { 1429 mddev_t *mddev = conf->mddev; 1430 while(sectors) { 1431 int s = sectors; 1432 int d = read_disk; 1433 int success = 0; 1434 int start; 1435 mdk_rdev_t *rdev; 1436 1437 if (s > (PAGE_SIZE>>9)) 1438 s = PAGE_SIZE >> 9; 1439 1440 do { 1441 /* Note: no rcu protection needed here 1442 * as this is synchronous in the raid1d thread 1443 * which is the thread that might remove 1444 * a device. If raid1d ever becomes multi-threaded.... 1445 */ 1446 rdev = conf->mirrors[d].rdev; 1447 if (rdev && 1448 test_bit(In_sync, &rdev->flags) && 1449 sync_page_io(rdev, sect, s<<9, 1450 conf->tmppage, READ, false)) 1451 success = 1; 1452 else { 1453 d++; 1454 if (d == conf->raid_disks) 1455 d = 0; 1456 } 1457 } while (!success && d != read_disk); 1458 1459 if (!success) { 1460 /* Cannot read from anywhere -- bye bye array */ 1461 md_error(mddev, conf->mirrors[read_disk].rdev); 1462 break; 1463 } 1464 /* write it back and re-read */ 1465 start = d; 1466 while (d != read_disk) { 1467 if (d==0) 1468 d = conf->raid_disks; 1469 d--; 1470 rdev = conf->mirrors[d].rdev; 1471 if (rdev && 1472 test_bit(In_sync, &rdev->flags)) { 1473 if (sync_page_io(rdev, sect, s<<9, 1474 conf->tmppage, WRITE, false) 1475 == 0) 1476 /* Well, this device is dead */ 1477 md_error(mddev, rdev); 1478 } 1479 } 1480 d = start; 1481 while (d != read_disk) { 1482 char b[BDEVNAME_SIZE]; 1483 if (d==0) 1484 d = conf->raid_disks; 1485 d--; 1486 rdev = conf->mirrors[d].rdev; 1487 if (rdev && 1488 test_bit(In_sync, &rdev->flags)) { 1489 if (sync_page_io(rdev, sect, s<<9, 1490 conf->tmppage, READ, false) 1491 == 0) 1492 /* Well, this device is dead */ 1493 md_error(mddev, rdev); 1494 else { 1495 atomic_add(s, &rdev->corrected_errors); 1496 printk(KERN_INFO 1497 "md/raid1:%s: read error corrected " 1498 "(%d sectors at %llu on %s)\n", 1499 mdname(mddev), s, 1500 (unsigned long long)(sect + 1501 rdev->data_offset), 1502 bdevname(rdev->bdev, b)); 1503 } 1504 } 1505 } 1506 sectors -= s; 1507 sect += s; 1508 } 1509 } 1510 1511 static void raid1d(mddev_t *mddev) 1512 { 1513 r1bio_t *r1_bio; 1514 struct bio *bio; 1515 unsigned long flags; 1516 conf_t *conf = mddev->private; 1517 struct list_head *head = &conf->retry_list; 1518 mdk_rdev_t *rdev; 1519 struct blk_plug plug; 1520 1521 md_check_recovery(mddev); 1522 1523 blk_start_plug(&plug); 1524 for (;;) { 1525 char b[BDEVNAME_SIZE]; 1526 1527 if (atomic_read(&mddev->plug_cnt) == 0) 1528 flush_pending_writes(conf); 1529 1530 spin_lock_irqsave(&conf->device_lock, flags); 1531 if (list_empty(head)) { 1532 spin_unlock_irqrestore(&conf->device_lock, flags); 1533 break; 1534 } 1535 r1_bio = list_entry(head->prev, r1bio_t, retry_list); 1536 list_del(head->prev); 1537 conf->nr_queued--; 1538 spin_unlock_irqrestore(&conf->device_lock, flags); 1539 1540 mddev = r1_bio->mddev; 1541 conf = mddev->private; 1542 if (test_bit(R1BIO_IsSync, &r1_bio->state)) 1543 sync_request_write(mddev, r1_bio); 1544 else { 1545 int disk; 1546 1547 /* we got a read error. Maybe the drive is bad. Maybe just 1548 * the block and we can fix it. 1549 * We freeze all other IO, and try reading the block from 1550 * other devices. When we find one, we re-write 1551 * and check it that fixes the read error. 1552 * This is all done synchronously while the array is 1553 * frozen 1554 */ 1555 if (mddev->ro == 0) { 1556 freeze_array(conf); 1557 fix_read_error(conf, r1_bio->read_disk, 1558 r1_bio->sector, 1559 r1_bio->sectors); 1560 unfreeze_array(conf); 1561 } else 1562 md_error(mddev, 1563 conf->mirrors[r1_bio->read_disk].rdev); 1564 1565 bio = r1_bio->bios[r1_bio->read_disk]; 1566 if ((disk=read_balance(conf, r1_bio)) == -1) { 1567 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O" 1568 " read error for block %llu\n", 1569 mdname(mddev), 1570 bdevname(bio->bi_bdev,b), 1571 (unsigned long long)r1_bio->sector); 1572 raid_end_bio_io(r1_bio); 1573 } else { 1574 const unsigned long do_sync = r1_bio->master_bio->bi_rw & REQ_SYNC; 1575 r1_bio->bios[r1_bio->read_disk] = 1576 mddev->ro ? IO_BLOCKED : NULL; 1577 r1_bio->read_disk = disk; 1578 bio_put(bio); 1579 bio = bio_clone_mddev(r1_bio->master_bio, 1580 GFP_NOIO, mddev); 1581 r1_bio->bios[r1_bio->read_disk] = bio; 1582 rdev = conf->mirrors[disk].rdev; 1583 if (printk_ratelimit()) 1584 printk(KERN_ERR "md/raid1:%s: redirecting sector %llu to" 1585 " other mirror: %s\n", 1586 mdname(mddev), 1587 (unsigned long long)r1_bio->sector, 1588 bdevname(rdev->bdev,b)); 1589 bio->bi_sector = r1_bio->sector + rdev->data_offset; 1590 bio->bi_bdev = rdev->bdev; 1591 bio->bi_end_io = raid1_end_read_request; 1592 bio->bi_rw = READ | do_sync; 1593 bio->bi_private = r1_bio; 1594 generic_make_request(bio); 1595 } 1596 } 1597 cond_resched(); 1598 } 1599 blk_finish_plug(&plug); 1600 } 1601 1602 1603 static int init_resync(conf_t *conf) 1604 { 1605 int buffs; 1606 1607 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE; 1608 BUG_ON(conf->r1buf_pool); 1609 conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free, 1610 conf->poolinfo); 1611 if (!conf->r1buf_pool) 1612 return -ENOMEM; 1613 conf->next_resync = 0; 1614 return 0; 1615 } 1616 1617 /* 1618 * perform a "sync" on one "block" 1619 * 1620 * We need to make sure that no normal I/O request - particularly write 1621 * requests - conflict with active sync requests. 1622 * 1623 * This is achieved by tracking pending requests and a 'barrier' concept 1624 * that can be installed to exclude normal IO requests. 1625 */ 1626 1627 static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster) 1628 { 1629 conf_t *conf = mddev->private; 1630 r1bio_t *r1_bio; 1631 struct bio *bio; 1632 sector_t max_sector, nr_sectors; 1633 int disk = -1; 1634 int i; 1635 int wonly = -1; 1636 int write_targets = 0, read_targets = 0; 1637 sector_t sync_blocks; 1638 int still_degraded = 0; 1639 1640 if (!conf->r1buf_pool) 1641 if (init_resync(conf)) 1642 return 0; 1643 1644 max_sector = mddev->dev_sectors; 1645 if (sector_nr >= max_sector) { 1646 /* If we aborted, we need to abort the 1647 * sync on the 'current' bitmap chunk (there will 1648 * only be one in raid1 resync. 1649 * We can find the current addess in mddev->curr_resync 1650 */ 1651 if (mddev->curr_resync < max_sector) /* aborted */ 1652 bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 1653 &sync_blocks, 1); 1654 else /* completed sync */ 1655 conf->fullsync = 0; 1656 1657 bitmap_close_sync(mddev->bitmap); 1658 close_sync(conf); 1659 return 0; 1660 } 1661 1662 if (mddev->bitmap == NULL && 1663 mddev->recovery_cp == MaxSector && 1664 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 1665 conf->fullsync == 0) { 1666 *skipped = 1; 1667 return max_sector - sector_nr; 1668 } 1669 /* before building a request, check if we can skip these blocks.. 1670 * This call the bitmap_start_sync doesn't actually record anything 1671 */ 1672 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) && 1673 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 1674 /* We can skip this block, and probably several more */ 1675 *skipped = 1; 1676 return sync_blocks; 1677 } 1678 /* 1679 * If there is non-resync activity waiting for a turn, 1680 * and resync is going fast enough, 1681 * then let it though before starting on this new sync request. 1682 */ 1683 if (!go_faster && conf->nr_waiting) 1684 msleep_interruptible(1000); 1685 1686 bitmap_cond_end_sync(mddev->bitmap, sector_nr); 1687 r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO); 1688 raise_barrier(conf); 1689 1690 conf->next_resync = sector_nr; 1691 1692 rcu_read_lock(); 1693 /* 1694 * If we get a correctably read error during resync or recovery, 1695 * we might want to read from a different device. So we 1696 * flag all drives that could conceivably be read from for READ, 1697 * and any others (which will be non-In_sync devices) for WRITE. 1698 * If a read fails, we try reading from something else for which READ 1699 * is OK. 1700 */ 1701 1702 r1_bio->mddev = mddev; 1703 r1_bio->sector = sector_nr; 1704 r1_bio->state = 0; 1705 set_bit(R1BIO_IsSync, &r1_bio->state); 1706 1707 for (i=0; i < conf->raid_disks; i++) { 1708 mdk_rdev_t *rdev; 1709 bio = r1_bio->bios[i]; 1710 1711 /* take from bio_init */ 1712 bio->bi_next = NULL; 1713 bio->bi_flags &= ~(BIO_POOL_MASK-1); 1714 bio->bi_flags |= 1 << BIO_UPTODATE; 1715 bio->bi_comp_cpu = -1; 1716 bio->bi_rw = READ; 1717 bio->bi_vcnt = 0; 1718 bio->bi_idx = 0; 1719 bio->bi_phys_segments = 0; 1720 bio->bi_size = 0; 1721 bio->bi_end_io = NULL; 1722 bio->bi_private = NULL; 1723 1724 rdev = rcu_dereference(conf->mirrors[i].rdev); 1725 if (rdev == NULL || 1726 test_bit(Faulty, &rdev->flags)) { 1727 still_degraded = 1; 1728 continue; 1729 } else if (!test_bit(In_sync, &rdev->flags)) { 1730 bio->bi_rw = WRITE; 1731 bio->bi_end_io = end_sync_write; 1732 write_targets ++; 1733 } else { 1734 /* may need to read from here */ 1735 bio->bi_rw = READ; 1736 bio->bi_end_io = end_sync_read; 1737 if (test_bit(WriteMostly, &rdev->flags)) { 1738 if (wonly < 0) 1739 wonly = i; 1740 } else { 1741 if (disk < 0) 1742 disk = i; 1743 } 1744 read_targets++; 1745 } 1746 atomic_inc(&rdev->nr_pending); 1747 bio->bi_sector = sector_nr + rdev->data_offset; 1748 bio->bi_bdev = rdev->bdev; 1749 bio->bi_private = r1_bio; 1750 } 1751 rcu_read_unlock(); 1752 if (disk < 0) 1753 disk = wonly; 1754 r1_bio->read_disk = disk; 1755 1756 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0) 1757 /* extra read targets are also write targets */ 1758 write_targets += read_targets-1; 1759 1760 if (write_targets == 0 || read_targets == 0) { 1761 /* There is nowhere to write, so all non-sync 1762 * drives must be failed - so we are finished 1763 */ 1764 sector_t rv = max_sector - sector_nr; 1765 *skipped = 1; 1766 put_buf(r1_bio); 1767 return rv; 1768 } 1769 1770 if (max_sector > mddev->resync_max) 1771 max_sector = mddev->resync_max; /* Don't do IO beyond here */ 1772 nr_sectors = 0; 1773 sync_blocks = 0; 1774 do { 1775 struct page *page; 1776 int len = PAGE_SIZE; 1777 if (sector_nr + (len>>9) > max_sector) 1778 len = (max_sector - sector_nr) << 9; 1779 if (len == 0) 1780 break; 1781 if (sync_blocks == 0) { 1782 if (!bitmap_start_sync(mddev->bitmap, sector_nr, 1783 &sync_blocks, still_degraded) && 1784 !conf->fullsync && 1785 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 1786 break; 1787 BUG_ON(sync_blocks < (PAGE_SIZE>>9)); 1788 if ((len >> 9) > sync_blocks) 1789 len = sync_blocks<<9; 1790 } 1791 1792 for (i=0 ; i < conf->raid_disks; i++) { 1793 bio = r1_bio->bios[i]; 1794 if (bio->bi_end_io) { 1795 page = bio->bi_io_vec[bio->bi_vcnt].bv_page; 1796 if (bio_add_page(bio, page, len, 0) == 0) { 1797 /* stop here */ 1798 bio->bi_io_vec[bio->bi_vcnt].bv_page = page; 1799 while (i > 0) { 1800 i--; 1801 bio = r1_bio->bios[i]; 1802 if (bio->bi_end_io==NULL) 1803 continue; 1804 /* remove last page from this bio */ 1805 bio->bi_vcnt--; 1806 bio->bi_size -= len; 1807 bio->bi_flags &= ~(1<< BIO_SEG_VALID); 1808 } 1809 goto bio_full; 1810 } 1811 } 1812 } 1813 nr_sectors += len>>9; 1814 sector_nr += len>>9; 1815 sync_blocks -= (len>>9); 1816 } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES); 1817 bio_full: 1818 r1_bio->sectors = nr_sectors; 1819 1820 /* For a user-requested sync, we read all readable devices and do a 1821 * compare 1822 */ 1823 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 1824 atomic_set(&r1_bio->remaining, read_targets); 1825 for (i=0; i<conf->raid_disks; i++) { 1826 bio = r1_bio->bios[i]; 1827 if (bio->bi_end_io == end_sync_read) { 1828 md_sync_acct(bio->bi_bdev, nr_sectors); 1829 generic_make_request(bio); 1830 } 1831 } 1832 } else { 1833 atomic_set(&r1_bio->remaining, 1); 1834 bio = r1_bio->bios[r1_bio->read_disk]; 1835 md_sync_acct(bio->bi_bdev, nr_sectors); 1836 generic_make_request(bio); 1837 1838 } 1839 return nr_sectors; 1840 } 1841 1842 static sector_t raid1_size(mddev_t *mddev, sector_t sectors, int raid_disks) 1843 { 1844 if (sectors) 1845 return sectors; 1846 1847 return mddev->dev_sectors; 1848 } 1849 1850 static conf_t *setup_conf(mddev_t *mddev) 1851 { 1852 conf_t *conf; 1853 int i; 1854 mirror_info_t *disk; 1855 mdk_rdev_t *rdev; 1856 int err = -ENOMEM; 1857 1858 conf = kzalloc(sizeof(conf_t), GFP_KERNEL); 1859 if (!conf) 1860 goto abort; 1861 1862 conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks, 1863 GFP_KERNEL); 1864 if (!conf->mirrors) 1865 goto abort; 1866 1867 conf->tmppage = alloc_page(GFP_KERNEL); 1868 if (!conf->tmppage) 1869 goto abort; 1870 1871 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL); 1872 if (!conf->poolinfo) 1873 goto abort; 1874 conf->poolinfo->raid_disks = mddev->raid_disks; 1875 conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc, 1876 r1bio_pool_free, 1877 conf->poolinfo); 1878 if (!conf->r1bio_pool) 1879 goto abort; 1880 1881 conf->poolinfo->mddev = mddev; 1882 1883 spin_lock_init(&conf->device_lock); 1884 list_for_each_entry(rdev, &mddev->disks, same_set) { 1885 int disk_idx = rdev->raid_disk; 1886 if (disk_idx >= mddev->raid_disks 1887 || disk_idx < 0) 1888 continue; 1889 disk = conf->mirrors + disk_idx; 1890 1891 disk->rdev = rdev; 1892 1893 disk->head_position = 0; 1894 } 1895 conf->raid_disks = mddev->raid_disks; 1896 conf->mddev = mddev; 1897 INIT_LIST_HEAD(&conf->retry_list); 1898 1899 spin_lock_init(&conf->resync_lock); 1900 init_waitqueue_head(&conf->wait_barrier); 1901 1902 bio_list_init(&conf->pending_bio_list); 1903 1904 conf->last_used = -1; 1905 for (i = 0; i < conf->raid_disks; i++) { 1906 1907 disk = conf->mirrors + i; 1908 1909 if (!disk->rdev || 1910 !test_bit(In_sync, &disk->rdev->flags)) { 1911 disk->head_position = 0; 1912 if (disk->rdev) 1913 conf->fullsync = 1; 1914 } else if (conf->last_used < 0) 1915 /* 1916 * The first working device is used as a 1917 * starting point to read balancing. 1918 */ 1919 conf->last_used = i; 1920 } 1921 1922 err = -EIO; 1923 if (conf->last_used < 0) { 1924 printk(KERN_ERR "md/raid1:%s: no operational mirrors\n", 1925 mdname(mddev)); 1926 goto abort; 1927 } 1928 err = -ENOMEM; 1929 conf->thread = md_register_thread(raid1d, mddev, NULL); 1930 if (!conf->thread) { 1931 printk(KERN_ERR 1932 "md/raid1:%s: couldn't allocate thread\n", 1933 mdname(mddev)); 1934 goto abort; 1935 } 1936 1937 return conf; 1938 1939 abort: 1940 if (conf) { 1941 if (conf->r1bio_pool) 1942 mempool_destroy(conf->r1bio_pool); 1943 kfree(conf->mirrors); 1944 safe_put_page(conf->tmppage); 1945 kfree(conf->poolinfo); 1946 kfree(conf); 1947 } 1948 return ERR_PTR(err); 1949 } 1950 1951 static int run(mddev_t *mddev) 1952 { 1953 conf_t *conf; 1954 int i; 1955 mdk_rdev_t *rdev; 1956 1957 if (mddev->level != 1) { 1958 printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n", 1959 mdname(mddev), mddev->level); 1960 return -EIO; 1961 } 1962 if (mddev->reshape_position != MaxSector) { 1963 printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n", 1964 mdname(mddev)); 1965 return -EIO; 1966 } 1967 /* 1968 * copy the already verified devices into our private RAID1 1969 * bookkeeping area. [whatever we allocate in run(), 1970 * should be freed in stop()] 1971 */ 1972 if (mddev->private == NULL) 1973 conf = setup_conf(mddev); 1974 else 1975 conf = mddev->private; 1976 1977 if (IS_ERR(conf)) 1978 return PTR_ERR(conf); 1979 1980 list_for_each_entry(rdev, &mddev->disks, same_set) { 1981 if (!mddev->gendisk) 1982 continue; 1983 disk_stack_limits(mddev->gendisk, rdev->bdev, 1984 rdev->data_offset << 9); 1985 /* as we don't honour merge_bvec_fn, we must never risk 1986 * violating it, so limit ->max_segments to 1 lying within 1987 * a single page, as a one page request is never in violation. 1988 */ 1989 if (rdev->bdev->bd_disk->queue->merge_bvec_fn) { 1990 blk_queue_max_segments(mddev->queue, 1); 1991 blk_queue_segment_boundary(mddev->queue, 1992 PAGE_CACHE_SIZE - 1); 1993 } 1994 } 1995 1996 mddev->degraded = 0; 1997 for (i=0; i < conf->raid_disks; i++) 1998 if (conf->mirrors[i].rdev == NULL || 1999 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) || 2000 test_bit(Faulty, &conf->mirrors[i].rdev->flags)) 2001 mddev->degraded++; 2002 2003 if (conf->raid_disks - mddev->degraded == 1) 2004 mddev->recovery_cp = MaxSector; 2005 2006 if (mddev->recovery_cp != MaxSector) 2007 printk(KERN_NOTICE "md/raid1:%s: not clean" 2008 " -- starting background reconstruction\n", 2009 mdname(mddev)); 2010 printk(KERN_INFO 2011 "md/raid1:%s: active with %d out of %d mirrors\n", 2012 mdname(mddev), mddev->raid_disks - mddev->degraded, 2013 mddev->raid_disks); 2014 2015 /* 2016 * Ok, everything is just fine now 2017 */ 2018 mddev->thread = conf->thread; 2019 conf->thread = NULL; 2020 mddev->private = conf; 2021 2022 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0)); 2023 2024 if (mddev->queue) { 2025 mddev->queue->backing_dev_info.congested_fn = raid1_congested; 2026 mddev->queue->backing_dev_info.congested_data = mddev; 2027 } 2028 return md_integrity_register(mddev); 2029 } 2030 2031 static int stop(mddev_t *mddev) 2032 { 2033 conf_t *conf = mddev->private; 2034 struct bitmap *bitmap = mddev->bitmap; 2035 2036 /* wait for behind writes to complete */ 2037 if (bitmap && atomic_read(&bitmap->behind_writes) > 0) { 2038 printk(KERN_INFO "md/raid1:%s: behind writes in progress - waiting to stop.\n", 2039 mdname(mddev)); 2040 /* need to kick something here to make sure I/O goes? */ 2041 wait_event(bitmap->behind_wait, 2042 atomic_read(&bitmap->behind_writes) == 0); 2043 } 2044 2045 raise_barrier(conf); 2046 lower_barrier(conf); 2047 2048 md_unregister_thread(mddev->thread); 2049 mddev->thread = NULL; 2050 if (conf->r1bio_pool) 2051 mempool_destroy(conf->r1bio_pool); 2052 kfree(conf->mirrors); 2053 kfree(conf->poolinfo); 2054 kfree(conf); 2055 mddev->private = NULL; 2056 return 0; 2057 } 2058 2059 static int raid1_resize(mddev_t *mddev, sector_t sectors) 2060 { 2061 /* no resync is happening, and there is enough space 2062 * on all devices, so we can resize. 2063 * We need to make sure resync covers any new space. 2064 * If the array is shrinking we should possibly wait until 2065 * any io in the removed space completes, but it hardly seems 2066 * worth it. 2067 */ 2068 md_set_array_sectors(mddev, raid1_size(mddev, sectors, 0)); 2069 if (mddev->array_sectors > raid1_size(mddev, sectors, 0)) 2070 return -EINVAL; 2071 set_capacity(mddev->gendisk, mddev->array_sectors); 2072 revalidate_disk(mddev->gendisk); 2073 if (sectors > mddev->dev_sectors && 2074 mddev->recovery_cp > mddev->dev_sectors) { 2075 mddev->recovery_cp = mddev->dev_sectors; 2076 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 2077 } 2078 mddev->dev_sectors = sectors; 2079 mddev->resync_max_sectors = sectors; 2080 return 0; 2081 } 2082 2083 static int raid1_reshape(mddev_t *mddev) 2084 { 2085 /* We need to: 2086 * 1/ resize the r1bio_pool 2087 * 2/ resize conf->mirrors 2088 * 2089 * We allocate a new r1bio_pool if we can. 2090 * Then raise a device barrier and wait until all IO stops. 2091 * Then resize conf->mirrors and swap in the new r1bio pool. 2092 * 2093 * At the same time, we "pack" the devices so that all the missing 2094 * devices have the higher raid_disk numbers. 2095 */ 2096 mempool_t *newpool, *oldpool; 2097 struct pool_info *newpoolinfo; 2098 mirror_info_t *newmirrors; 2099 conf_t *conf = mddev->private; 2100 int cnt, raid_disks; 2101 unsigned long flags; 2102 int d, d2, err; 2103 2104 /* Cannot change chunk_size, layout, or level */ 2105 if (mddev->chunk_sectors != mddev->new_chunk_sectors || 2106 mddev->layout != mddev->new_layout || 2107 mddev->level != mddev->new_level) { 2108 mddev->new_chunk_sectors = mddev->chunk_sectors; 2109 mddev->new_layout = mddev->layout; 2110 mddev->new_level = mddev->level; 2111 return -EINVAL; 2112 } 2113 2114 err = md_allow_write(mddev); 2115 if (err) 2116 return err; 2117 2118 raid_disks = mddev->raid_disks + mddev->delta_disks; 2119 2120 if (raid_disks < conf->raid_disks) { 2121 cnt=0; 2122 for (d= 0; d < conf->raid_disks; d++) 2123 if (conf->mirrors[d].rdev) 2124 cnt++; 2125 if (cnt > raid_disks) 2126 return -EBUSY; 2127 } 2128 2129 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL); 2130 if (!newpoolinfo) 2131 return -ENOMEM; 2132 newpoolinfo->mddev = mddev; 2133 newpoolinfo->raid_disks = raid_disks; 2134 2135 newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc, 2136 r1bio_pool_free, newpoolinfo); 2137 if (!newpool) { 2138 kfree(newpoolinfo); 2139 return -ENOMEM; 2140 } 2141 newmirrors = kzalloc(sizeof(struct mirror_info) * raid_disks, GFP_KERNEL); 2142 if (!newmirrors) { 2143 kfree(newpoolinfo); 2144 mempool_destroy(newpool); 2145 return -ENOMEM; 2146 } 2147 2148 raise_barrier(conf); 2149 2150 /* ok, everything is stopped */ 2151 oldpool = conf->r1bio_pool; 2152 conf->r1bio_pool = newpool; 2153 2154 for (d = d2 = 0; d < conf->raid_disks; d++) { 2155 mdk_rdev_t *rdev = conf->mirrors[d].rdev; 2156 if (rdev && rdev->raid_disk != d2) { 2157 char nm[20]; 2158 sprintf(nm, "rd%d", rdev->raid_disk); 2159 sysfs_remove_link(&mddev->kobj, nm); 2160 rdev->raid_disk = d2; 2161 sprintf(nm, "rd%d", rdev->raid_disk); 2162 sysfs_remove_link(&mddev->kobj, nm); 2163 if (sysfs_create_link(&mddev->kobj, 2164 &rdev->kobj, nm)) 2165 printk(KERN_WARNING 2166 "md/raid1:%s: cannot register " 2167 "%s\n", 2168 mdname(mddev), nm); 2169 } 2170 if (rdev) 2171 newmirrors[d2++].rdev = rdev; 2172 } 2173 kfree(conf->mirrors); 2174 conf->mirrors = newmirrors; 2175 kfree(conf->poolinfo); 2176 conf->poolinfo = newpoolinfo; 2177 2178 spin_lock_irqsave(&conf->device_lock, flags); 2179 mddev->degraded += (raid_disks - conf->raid_disks); 2180 spin_unlock_irqrestore(&conf->device_lock, flags); 2181 conf->raid_disks = mddev->raid_disks = raid_disks; 2182 mddev->delta_disks = 0; 2183 2184 conf->last_used = 0; /* just make sure it is in-range */ 2185 lower_barrier(conf); 2186 2187 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 2188 md_wakeup_thread(mddev->thread); 2189 2190 mempool_destroy(oldpool); 2191 return 0; 2192 } 2193 2194 static void raid1_quiesce(mddev_t *mddev, int state) 2195 { 2196 conf_t *conf = mddev->private; 2197 2198 switch(state) { 2199 case 2: /* wake for suspend */ 2200 wake_up(&conf->wait_barrier); 2201 break; 2202 case 1: 2203 raise_barrier(conf); 2204 break; 2205 case 0: 2206 lower_barrier(conf); 2207 break; 2208 } 2209 } 2210 2211 static void *raid1_takeover(mddev_t *mddev) 2212 { 2213 /* raid1 can take over: 2214 * raid5 with 2 devices, any layout or chunk size 2215 */ 2216 if (mddev->level == 5 && mddev->raid_disks == 2) { 2217 conf_t *conf; 2218 mddev->new_level = 1; 2219 mddev->new_layout = 0; 2220 mddev->new_chunk_sectors = 0; 2221 conf = setup_conf(mddev); 2222 if (!IS_ERR(conf)) 2223 conf->barrier = 1; 2224 return conf; 2225 } 2226 return ERR_PTR(-EINVAL); 2227 } 2228 2229 static struct mdk_personality raid1_personality = 2230 { 2231 .name = "raid1", 2232 .level = 1, 2233 .owner = THIS_MODULE, 2234 .make_request = make_request, 2235 .run = run, 2236 .stop = stop, 2237 .status = status, 2238 .error_handler = error, 2239 .hot_add_disk = raid1_add_disk, 2240 .hot_remove_disk= raid1_remove_disk, 2241 .spare_active = raid1_spare_active, 2242 .sync_request = sync_request, 2243 .resize = raid1_resize, 2244 .size = raid1_size, 2245 .check_reshape = raid1_reshape, 2246 .quiesce = raid1_quiesce, 2247 .takeover = raid1_takeover, 2248 }; 2249 2250 static int __init raid_init(void) 2251 { 2252 return register_md_personality(&raid1_personality); 2253 } 2254 2255 static void raid_exit(void) 2256 { 2257 unregister_md_personality(&raid1_personality); 2258 } 2259 2260 module_init(raid_init); 2261 module_exit(raid_exit); 2262 MODULE_LICENSE("GPL"); 2263 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD"); 2264 MODULE_ALIAS("md-personality-3"); /* RAID1 */ 2265 MODULE_ALIAS("md-raid1"); 2266 MODULE_ALIAS("md-level-1"); 2267