xref: /openbmc/linux/drivers/md/raid1.c (revision 81d67439)
1 /*
2  * raid1.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5  *
6  * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7  *
8  * RAID-1 management functions.
9  *
10  * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11  *
12  * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
13  * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14  *
15  * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16  * bitmapped intelligence in resync:
17  *
18  *      - bitmap marked during normal i/o
19  *      - bitmap used to skip nondirty blocks during sync
20  *
21  * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22  * - persistent bitmap code
23  *
24  * This program is free software; you can redistribute it and/or modify
25  * it under the terms of the GNU General Public License as published by
26  * the Free Software Foundation; either version 2, or (at your option)
27  * any later version.
28  *
29  * You should have received a copy of the GNU General Public License
30  * (for example /usr/src/linux/COPYING); if not, write to the Free
31  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32  */
33 
34 #include <linux/slab.h>
35 #include <linux/delay.h>
36 #include <linux/blkdev.h>
37 #include <linux/seq_file.h>
38 #include "md.h"
39 #include "raid1.h"
40 #include "bitmap.h"
41 
42 #define DEBUG 0
43 #if DEBUG
44 #define PRINTK(x...) printk(x)
45 #else
46 #define PRINTK(x...)
47 #endif
48 
49 /*
50  * Number of guaranteed r1bios in case of extreme VM load:
51  */
52 #define	NR_RAID1_BIOS 256
53 
54 
55 static void allow_barrier(conf_t *conf);
56 static void lower_barrier(conf_t *conf);
57 
58 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
59 {
60 	struct pool_info *pi = data;
61 	int size = offsetof(r1bio_t, bios[pi->raid_disks]);
62 
63 	/* allocate a r1bio with room for raid_disks entries in the bios array */
64 	return kzalloc(size, gfp_flags);
65 }
66 
67 static void r1bio_pool_free(void *r1_bio, void *data)
68 {
69 	kfree(r1_bio);
70 }
71 
72 #define RESYNC_BLOCK_SIZE (64*1024)
73 //#define RESYNC_BLOCK_SIZE PAGE_SIZE
74 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
75 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
76 #define RESYNC_WINDOW (2048*1024)
77 
78 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
79 {
80 	struct pool_info *pi = data;
81 	struct page *page;
82 	r1bio_t *r1_bio;
83 	struct bio *bio;
84 	int i, j;
85 
86 	r1_bio = r1bio_pool_alloc(gfp_flags, pi);
87 	if (!r1_bio)
88 		return NULL;
89 
90 	/*
91 	 * Allocate bios : 1 for reading, n-1 for writing
92 	 */
93 	for (j = pi->raid_disks ; j-- ; ) {
94 		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
95 		if (!bio)
96 			goto out_free_bio;
97 		r1_bio->bios[j] = bio;
98 	}
99 	/*
100 	 * Allocate RESYNC_PAGES data pages and attach them to
101 	 * the first bio.
102 	 * If this is a user-requested check/repair, allocate
103 	 * RESYNC_PAGES for each bio.
104 	 */
105 	if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
106 		j = pi->raid_disks;
107 	else
108 		j = 1;
109 	while(j--) {
110 		bio = r1_bio->bios[j];
111 		for (i = 0; i < RESYNC_PAGES; i++) {
112 			page = alloc_page(gfp_flags);
113 			if (unlikely(!page))
114 				goto out_free_pages;
115 
116 			bio->bi_io_vec[i].bv_page = page;
117 			bio->bi_vcnt = i+1;
118 		}
119 	}
120 	/* If not user-requests, copy the page pointers to all bios */
121 	if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
122 		for (i=0; i<RESYNC_PAGES ; i++)
123 			for (j=1; j<pi->raid_disks; j++)
124 				r1_bio->bios[j]->bi_io_vec[i].bv_page =
125 					r1_bio->bios[0]->bi_io_vec[i].bv_page;
126 	}
127 
128 	r1_bio->master_bio = NULL;
129 
130 	return r1_bio;
131 
132 out_free_pages:
133 	for (j=0 ; j < pi->raid_disks; j++)
134 		for (i=0; i < r1_bio->bios[j]->bi_vcnt ; i++)
135 			put_page(r1_bio->bios[j]->bi_io_vec[i].bv_page);
136 	j = -1;
137 out_free_bio:
138 	while ( ++j < pi->raid_disks )
139 		bio_put(r1_bio->bios[j]);
140 	r1bio_pool_free(r1_bio, data);
141 	return NULL;
142 }
143 
144 static void r1buf_pool_free(void *__r1_bio, void *data)
145 {
146 	struct pool_info *pi = data;
147 	int i,j;
148 	r1bio_t *r1bio = __r1_bio;
149 
150 	for (i = 0; i < RESYNC_PAGES; i++)
151 		for (j = pi->raid_disks; j-- ;) {
152 			if (j == 0 ||
153 			    r1bio->bios[j]->bi_io_vec[i].bv_page !=
154 			    r1bio->bios[0]->bi_io_vec[i].bv_page)
155 				safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
156 		}
157 	for (i=0 ; i < pi->raid_disks; i++)
158 		bio_put(r1bio->bios[i]);
159 
160 	r1bio_pool_free(r1bio, data);
161 }
162 
163 static void put_all_bios(conf_t *conf, r1bio_t *r1_bio)
164 {
165 	int i;
166 
167 	for (i = 0; i < conf->raid_disks; i++) {
168 		struct bio **bio = r1_bio->bios + i;
169 		if (*bio && *bio != IO_BLOCKED)
170 			bio_put(*bio);
171 		*bio = NULL;
172 	}
173 }
174 
175 static void free_r1bio(r1bio_t *r1_bio)
176 {
177 	conf_t *conf = r1_bio->mddev->private;
178 
179 	/*
180 	 * Wake up any possible resync thread that waits for the device
181 	 * to go idle.
182 	 */
183 	allow_barrier(conf);
184 
185 	put_all_bios(conf, r1_bio);
186 	mempool_free(r1_bio, conf->r1bio_pool);
187 }
188 
189 static void put_buf(r1bio_t *r1_bio)
190 {
191 	conf_t *conf = r1_bio->mddev->private;
192 	int i;
193 
194 	for (i=0; i<conf->raid_disks; i++) {
195 		struct bio *bio = r1_bio->bios[i];
196 		if (bio->bi_end_io)
197 			rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
198 	}
199 
200 	mempool_free(r1_bio, conf->r1buf_pool);
201 
202 	lower_barrier(conf);
203 }
204 
205 static void reschedule_retry(r1bio_t *r1_bio)
206 {
207 	unsigned long flags;
208 	mddev_t *mddev = r1_bio->mddev;
209 	conf_t *conf = mddev->private;
210 
211 	spin_lock_irqsave(&conf->device_lock, flags);
212 	list_add(&r1_bio->retry_list, &conf->retry_list);
213 	conf->nr_queued ++;
214 	spin_unlock_irqrestore(&conf->device_lock, flags);
215 
216 	wake_up(&conf->wait_barrier);
217 	md_wakeup_thread(mddev->thread);
218 }
219 
220 /*
221  * raid_end_bio_io() is called when we have finished servicing a mirrored
222  * operation and are ready to return a success/failure code to the buffer
223  * cache layer.
224  */
225 static void raid_end_bio_io(r1bio_t *r1_bio)
226 {
227 	struct bio *bio = r1_bio->master_bio;
228 
229 	/* if nobody has done the final endio yet, do it now */
230 	if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
231 		PRINTK(KERN_DEBUG "raid1: sync end %s on sectors %llu-%llu\n",
232 			(bio_data_dir(bio) == WRITE) ? "write" : "read",
233 			(unsigned long long) bio->bi_sector,
234 			(unsigned long long) bio->bi_sector +
235 				(bio->bi_size >> 9) - 1);
236 
237 		bio_endio(bio,
238 			test_bit(R1BIO_Uptodate, &r1_bio->state) ? 0 : -EIO);
239 	}
240 	free_r1bio(r1_bio);
241 }
242 
243 /*
244  * Update disk head position estimator based on IRQ completion info.
245  */
246 static inline void update_head_pos(int disk, r1bio_t *r1_bio)
247 {
248 	conf_t *conf = r1_bio->mddev->private;
249 
250 	conf->mirrors[disk].head_position =
251 		r1_bio->sector + (r1_bio->sectors);
252 }
253 
254 static void raid1_end_read_request(struct bio *bio, int error)
255 {
256 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
257 	r1bio_t *r1_bio = bio->bi_private;
258 	int mirror;
259 	conf_t *conf = r1_bio->mddev->private;
260 
261 	mirror = r1_bio->read_disk;
262 	/*
263 	 * this branch is our 'one mirror IO has finished' event handler:
264 	 */
265 	update_head_pos(mirror, r1_bio);
266 
267 	if (uptodate)
268 		set_bit(R1BIO_Uptodate, &r1_bio->state);
269 	else {
270 		/* If all other devices have failed, we want to return
271 		 * the error upwards rather than fail the last device.
272 		 * Here we redefine "uptodate" to mean "Don't want to retry"
273 		 */
274 		unsigned long flags;
275 		spin_lock_irqsave(&conf->device_lock, flags);
276 		if (r1_bio->mddev->degraded == conf->raid_disks ||
277 		    (r1_bio->mddev->degraded == conf->raid_disks-1 &&
278 		     !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags)))
279 			uptodate = 1;
280 		spin_unlock_irqrestore(&conf->device_lock, flags);
281 	}
282 
283 	if (uptodate)
284 		raid_end_bio_io(r1_bio);
285 	else {
286 		/*
287 		 * oops, read error:
288 		 */
289 		char b[BDEVNAME_SIZE];
290 		if (printk_ratelimit())
291 			printk(KERN_ERR "md/raid1:%s: %s: rescheduling sector %llu\n",
292 			       mdname(conf->mddev),
293 			       bdevname(conf->mirrors[mirror].rdev->bdev,b), (unsigned long long)r1_bio->sector);
294 		reschedule_retry(r1_bio);
295 	}
296 
297 	rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
298 }
299 
300 static void r1_bio_write_done(r1bio_t *r1_bio)
301 {
302 	if (atomic_dec_and_test(&r1_bio->remaining))
303 	{
304 		/* it really is the end of this request */
305 		if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
306 			/* free extra copy of the data pages */
307 			int i = r1_bio->behind_page_count;
308 			while (i--)
309 				safe_put_page(r1_bio->behind_pages[i]);
310 			kfree(r1_bio->behind_pages);
311 			r1_bio->behind_pages = NULL;
312 		}
313 		/* clear the bitmap if all writes complete successfully */
314 		bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
315 				r1_bio->sectors,
316 				!test_bit(R1BIO_Degraded, &r1_bio->state),
317 				test_bit(R1BIO_BehindIO, &r1_bio->state));
318 		md_write_end(r1_bio->mddev);
319 		raid_end_bio_io(r1_bio);
320 	}
321 }
322 
323 static void raid1_end_write_request(struct bio *bio, int error)
324 {
325 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
326 	r1bio_t *r1_bio = bio->bi_private;
327 	int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
328 	conf_t *conf = r1_bio->mddev->private;
329 	struct bio *to_put = NULL;
330 
331 
332 	for (mirror = 0; mirror < conf->raid_disks; mirror++)
333 		if (r1_bio->bios[mirror] == bio)
334 			break;
335 
336 	/*
337 	 * 'one mirror IO has finished' event handler:
338 	 */
339 	r1_bio->bios[mirror] = NULL;
340 	to_put = bio;
341 	if (!uptodate) {
342 		md_error(r1_bio->mddev, conf->mirrors[mirror].rdev);
343 		/* an I/O failed, we can't clear the bitmap */
344 		set_bit(R1BIO_Degraded, &r1_bio->state);
345 	} else
346 		/*
347 		 * Set R1BIO_Uptodate in our master bio, so that we
348 		 * will return a good error code for to the higher
349 		 * levels even if IO on some other mirrored buffer
350 		 * fails.
351 		 *
352 		 * The 'master' represents the composite IO operation
353 		 * to user-side. So if something waits for IO, then it
354 		 * will wait for the 'master' bio.
355 		 */
356 		set_bit(R1BIO_Uptodate, &r1_bio->state);
357 
358 	update_head_pos(mirror, r1_bio);
359 
360 	if (behind) {
361 		if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
362 			atomic_dec(&r1_bio->behind_remaining);
363 
364 		/*
365 		 * In behind mode, we ACK the master bio once the I/O
366 		 * has safely reached all non-writemostly
367 		 * disks. Setting the Returned bit ensures that this
368 		 * gets done only once -- we don't ever want to return
369 		 * -EIO here, instead we'll wait
370 		 */
371 		if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
372 		    test_bit(R1BIO_Uptodate, &r1_bio->state)) {
373 			/* Maybe we can return now */
374 			if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
375 				struct bio *mbio = r1_bio->master_bio;
376 				PRINTK(KERN_DEBUG "raid1: behind end write sectors %llu-%llu\n",
377 				       (unsigned long long) mbio->bi_sector,
378 				       (unsigned long long) mbio->bi_sector +
379 				       (mbio->bi_size >> 9) - 1);
380 				bio_endio(mbio, 0);
381 			}
382 		}
383 	}
384 	rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
385 
386 	/*
387 	 * Let's see if all mirrored write operations have finished
388 	 * already.
389 	 */
390 	r1_bio_write_done(r1_bio);
391 
392 	if (to_put)
393 		bio_put(to_put);
394 }
395 
396 
397 /*
398  * This routine returns the disk from which the requested read should
399  * be done. There is a per-array 'next expected sequential IO' sector
400  * number - if this matches on the next IO then we use the last disk.
401  * There is also a per-disk 'last know head position' sector that is
402  * maintained from IRQ contexts, both the normal and the resync IO
403  * completion handlers update this position correctly. If there is no
404  * perfect sequential match then we pick the disk whose head is closest.
405  *
406  * If there are 2 mirrors in the same 2 devices, performance degrades
407  * because position is mirror, not device based.
408  *
409  * The rdev for the device selected will have nr_pending incremented.
410  */
411 static int read_balance(conf_t *conf, r1bio_t *r1_bio)
412 {
413 	const sector_t this_sector = r1_bio->sector;
414 	const int sectors = r1_bio->sectors;
415 	int start_disk;
416 	int best_disk;
417 	int i;
418 	sector_t best_dist;
419 	mdk_rdev_t *rdev;
420 	int choose_first;
421 
422 	rcu_read_lock();
423 	/*
424 	 * Check if we can balance. We can balance on the whole
425 	 * device if no resync is going on, or below the resync window.
426 	 * We take the first readable disk when above the resync window.
427 	 */
428  retry:
429 	best_disk = -1;
430 	best_dist = MaxSector;
431 	if (conf->mddev->recovery_cp < MaxSector &&
432 	    (this_sector + sectors >= conf->next_resync)) {
433 		choose_first = 1;
434 		start_disk = 0;
435 	} else {
436 		choose_first = 0;
437 		start_disk = conf->last_used;
438 	}
439 
440 	for (i = 0 ; i < conf->raid_disks ; i++) {
441 		sector_t dist;
442 		int disk = start_disk + i;
443 		if (disk >= conf->raid_disks)
444 			disk -= conf->raid_disks;
445 
446 		rdev = rcu_dereference(conf->mirrors[disk].rdev);
447 		if (r1_bio->bios[disk] == IO_BLOCKED
448 		    || rdev == NULL
449 		    || test_bit(Faulty, &rdev->flags))
450 			continue;
451 		if (!test_bit(In_sync, &rdev->flags) &&
452 		    rdev->recovery_offset < this_sector + sectors)
453 			continue;
454 		if (test_bit(WriteMostly, &rdev->flags)) {
455 			/* Don't balance among write-mostly, just
456 			 * use the first as a last resort */
457 			if (best_disk < 0)
458 				best_disk = disk;
459 			continue;
460 		}
461 		/* This is a reasonable device to use.  It might
462 		 * even be best.
463 		 */
464 		dist = abs(this_sector - conf->mirrors[disk].head_position);
465 		if (choose_first
466 		    /* Don't change to another disk for sequential reads */
467 		    || conf->next_seq_sect == this_sector
468 		    || dist == 0
469 		    /* If device is idle, use it */
470 		    || atomic_read(&rdev->nr_pending) == 0) {
471 			best_disk = disk;
472 			break;
473 		}
474 		if (dist < best_dist) {
475 			best_dist = dist;
476 			best_disk = disk;
477 		}
478 	}
479 
480 	if (best_disk >= 0) {
481 		rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
482 		if (!rdev)
483 			goto retry;
484 		atomic_inc(&rdev->nr_pending);
485 		if (test_bit(Faulty, &rdev->flags)) {
486 			/* cannot risk returning a device that failed
487 			 * before we inc'ed nr_pending
488 			 */
489 			rdev_dec_pending(rdev, conf->mddev);
490 			goto retry;
491 		}
492 		conf->next_seq_sect = this_sector + sectors;
493 		conf->last_used = best_disk;
494 	}
495 	rcu_read_unlock();
496 
497 	return best_disk;
498 }
499 
500 int md_raid1_congested(mddev_t *mddev, int bits)
501 {
502 	conf_t *conf = mddev->private;
503 	int i, ret = 0;
504 
505 	rcu_read_lock();
506 	for (i = 0; i < mddev->raid_disks; i++) {
507 		mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
508 		if (rdev && !test_bit(Faulty, &rdev->flags)) {
509 			struct request_queue *q = bdev_get_queue(rdev->bdev);
510 
511 			BUG_ON(!q);
512 
513 			/* Note the '|| 1' - when read_balance prefers
514 			 * non-congested targets, it can be removed
515 			 */
516 			if ((bits & (1<<BDI_async_congested)) || 1)
517 				ret |= bdi_congested(&q->backing_dev_info, bits);
518 			else
519 				ret &= bdi_congested(&q->backing_dev_info, bits);
520 		}
521 	}
522 	rcu_read_unlock();
523 	return ret;
524 }
525 EXPORT_SYMBOL_GPL(md_raid1_congested);
526 
527 static int raid1_congested(void *data, int bits)
528 {
529 	mddev_t *mddev = data;
530 
531 	return mddev_congested(mddev, bits) ||
532 		md_raid1_congested(mddev, bits);
533 }
534 
535 static void flush_pending_writes(conf_t *conf)
536 {
537 	/* Any writes that have been queued but are awaiting
538 	 * bitmap updates get flushed here.
539 	 */
540 	spin_lock_irq(&conf->device_lock);
541 
542 	if (conf->pending_bio_list.head) {
543 		struct bio *bio;
544 		bio = bio_list_get(&conf->pending_bio_list);
545 		spin_unlock_irq(&conf->device_lock);
546 		/* flush any pending bitmap writes to
547 		 * disk before proceeding w/ I/O */
548 		bitmap_unplug(conf->mddev->bitmap);
549 
550 		while (bio) { /* submit pending writes */
551 			struct bio *next = bio->bi_next;
552 			bio->bi_next = NULL;
553 			generic_make_request(bio);
554 			bio = next;
555 		}
556 	} else
557 		spin_unlock_irq(&conf->device_lock);
558 }
559 
560 /* Barriers....
561  * Sometimes we need to suspend IO while we do something else,
562  * either some resync/recovery, or reconfigure the array.
563  * To do this we raise a 'barrier'.
564  * The 'barrier' is a counter that can be raised multiple times
565  * to count how many activities are happening which preclude
566  * normal IO.
567  * We can only raise the barrier if there is no pending IO.
568  * i.e. if nr_pending == 0.
569  * We choose only to raise the barrier if no-one is waiting for the
570  * barrier to go down.  This means that as soon as an IO request
571  * is ready, no other operations which require a barrier will start
572  * until the IO request has had a chance.
573  *
574  * So: regular IO calls 'wait_barrier'.  When that returns there
575  *    is no backgroup IO happening,  It must arrange to call
576  *    allow_barrier when it has finished its IO.
577  * backgroup IO calls must call raise_barrier.  Once that returns
578  *    there is no normal IO happeing.  It must arrange to call
579  *    lower_barrier when the particular background IO completes.
580  */
581 #define RESYNC_DEPTH 32
582 
583 static void raise_barrier(conf_t *conf)
584 {
585 	spin_lock_irq(&conf->resync_lock);
586 
587 	/* Wait until no block IO is waiting */
588 	wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
589 			    conf->resync_lock, );
590 
591 	/* block any new IO from starting */
592 	conf->barrier++;
593 
594 	/* Now wait for all pending IO to complete */
595 	wait_event_lock_irq(conf->wait_barrier,
596 			    !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
597 			    conf->resync_lock, );
598 
599 	spin_unlock_irq(&conf->resync_lock);
600 }
601 
602 static void lower_barrier(conf_t *conf)
603 {
604 	unsigned long flags;
605 	BUG_ON(conf->barrier <= 0);
606 	spin_lock_irqsave(&conf->resync_lock, flags);
607 	conf->barrier--;
608 	spin_unlock_irqrestore(&conf->resync_lock, flags);
609 	wake_up(&conf->wait_barrier);
610 }
611 
612 static void wait_barrier(conf_t *conf)
613 {
614 	spin_lock_irq(&conf->resync_lock);
615 	if (conf->barrier) {
616 		conf->nr_waiting++;
617 		wait_event_lock_irq(conf->wait_barrier, !conf->barrier,
618 				    conf->resync_lock,
619 				    );
620 		conf->nr_waiting--;
621 	}
622 	conf->nr_pending++;
623 	spin_unlock_irq(&conf->resync_lock);
624 }
625 
626 static void allow_barrier(conf_t *conf)
627 {
628 	unsigned long flags;
629 	spin_lock_irqsave(&conf->resync_lock, flags);
630 	conf->nr_pending--;
631 	spin_unlock_irqrestore(&conf->resync_lock, flags);
632 	wake_up(&conf->wait_barrier);
633 }
634 
635 static void freeze_array(conf_t *conf)
636 {
637 	/* stop syncio and normal IO and wait for everything to
638 	 * go quite.
639 	 * We increment barrier and nr_waiting, and then
640 	 * wait until nr_pending match nr_queued+1
641 	 * This is called in the context of one normal IO request
642 	 * that has failed. Thus any sync request that might be pending
643 	 * will be blocked by nr_pending, and we need to wait for
644 	 * pending IO requests to complete or be queued for re-try.
645 	 * Thus the number queued (nr_queued) plus this request (1)
646 	 * must match the number of pending IOs (nr_pending) before
647 	 * we continue.
648 	 */
649 	spin_lock_irq(&conf->resync_lock);
650 	conf->barrier++;
651 	conf->nr_waiting++;
652 	wait_event_lock_irq(conf->wait_barrier,
653 			    conf->nr_pending == conf->nr_queued+1,
654 			    conf->resync_lock,
655 			    flush_pending_writes(conf));
656 	spin_unlock_irq(&conf->resync_lock);
657 }
658 static void unfreeze_array(conf_t *conf)
659 {
660 	/* reverse the effect of the freeze */
661 	spin_lock_irq(&conf->resync_lock);
662 	conf->barrier--;
663 	conf->nr_waiting--;
664 	wake_up(&conf->wait_barrier);
665 	spin_unlock_irq(&conf->resync_lock);
666 }
667 
668 
669 /* duplicate the data pages for behind I/O
670  */
671 static void alloc_behind_pages(struct bio *bio, r1bio_t *r1_bio)
672 {
673 	int i;
674 	struct bio_vec *bvec;
675 	struct page **pages = kzalloc(bio->bi_vcnt * sizeof(struct page*),
676 					GFP_NOIO);
677 	if (unlikely(!pages))
678 		return;
679 
680 	bio_for_each_segment(bvec, bio, i) {
681 		pages[i] = alloc_page(GFP_NOIO);
682 		if (unlikely(!pages[i]))
683 			goto do_sync_io;
684 		memcpy(kmap(pages[i]) + bvec->bv_offset,
685 			kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
686 		kunmap(pages[i]);
687 		kunmap(bvec->bv_page);
688 	}
689 	r1_bio->behind_pages = pages;
690 	r1_bio->behind_page_count = bio->bi_vcnt;
691 	set_bit(R1BIO_BehindIO, &r1_bio->state);
692 	return;
693 
694 do_sync_io:
695 	for (i = 0; i < bio->bi_vcnt; i++)
696 		if (pages[i])
697 			put_page(pages[i]);
698 	kfree(pages);
699 	PRINTK("%dB behind alloc failed, doing sync I/O\n", bio->bi_size);
700 }
701 
702 static int make_request(mddev_t *mddev, struct bio * bio)
703 {
704 	conf_t *conf = mddev->private;
705 	mirror_info_t *mirror;
706 	r1bio_t *r1_bio;
707 	struct bio *read_bio;
708 	int i, targets = 0, disks;
709 	struct bitmap *bitmap;
710 	unsigned long flags;
711 	const int rw = bio_data_dir(bio);
712 	const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
713 	const unsigned long do_flush_fua = (bio->bi_rw & (REQ_FLUSH | REQ_FUA));
714 	mdk_rdev_t *blocked_rdev;
715 	int plugged;
716 
717 	/*
718 	 * Register the new request and wait if the reconstruction
719 	 * thread has put up a bar for new requests.
720 	 * Continue immediately if no resync is active currently.
721 	 */
722 
723 	md_write_start(mddev, bio); /* wait on superblock update early */
724 
725 	if (bio_data_dir(bio) == WRITE &&
726 	    bio->bi_sector + bio->bi_size/512 > mddev->suspend_lo &&
727 	    bio->bi_sector < mddev->suspend_hi) {
728 		/* As the suspend_* range is controlled by
729 		 * userspace, we want an interruptible
730 		 * wait.
731 		 */
732 		DEFINE_WAIT(w);
733 		for (;;) {
734 			flush_signals(current);
735 			prepare_to_wait(&conf->wait_barrier,
736 					&w, TASK_INTERRUPTIBLE);
737 			if (bio->bi_sector + bio->bi_size/512 <= mddev->suspend_lo ||
738 			    bio->bi_sector >= mddev->suspend_hi)
739 				break;
740 			schedule();
741 		}
742 		finish_wait(&conf->wait_barrier, &w);
743 	}
744 
745 	wait_barrier(conf);
746 
747 	bitmap = mddev->bitmap;
748 
749 	/*
750 	 * make_request() can abort the operation when READA is being
751 	 * used and no empty request is available.
752 	 *
753 	 */
754 	r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
755 
756 	r1_bio->master_bio = bio;
757 	r1_bio->sectors = bio->bi_size >> 9;
758 	r1_bio->state = 0;
759 	r1_bio->mddev = mddev;
760 	r1_bio->sector = bio->bi_sector;
761 
762 	if (rw == READ) {
763 		/*
764 		 * read balancing logic:
765 		 */
766 		int rdisk = read_balance(conf, r1_bio);
767 
768 		if (rdisk < 0) {
769 			/* couldn't find anywhere to read from */
770 			raid_end_bio_io(r1_bio);
771 			return 0;
772 		}
773 		mirror = conf->mirrors + rdisk;
774 
775 		if (test_bit(WriteMostly, &mirror->rdev->flags) &&
776 		    bitmap) {
777 			/* Reading from a write-mostly device must
778 			 * take care not to over-take any writes
779 			 * that are 'behind'
780 			 */
781 			wait_event(bitmap->behind_wait,
782 				   atomic_read(&bitmap->behind_writes) == 0);
783 		}
784 		r1_bio->read_disk = rdisk;
785 
786 		read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
787 
788 		r1_bio->bios[rdisk] = read_bio;
789 
790 		read_bio->bi_sector = r1_bio->sector + mirror->rdev->data_offset;
791 		read_bio->bi_bdev = mirror->rdev->bdev;
792 		read_bio->bi_end_io = raid1_end_read_request;
793 		read_bio->bi_rw = READ | do_sync;
794 		read_bio->bi_private = r1_bio;
795 
796 		generic_make_request(read_bio);
797 		return 0;
798 	}
799 
800 	/*
801 	 * WRITE:
802 	 */
803 	/* first select target devices under spinlock and
804 	 * inc refcount on their rdev.  Record them by setting
805 	 * bios[x] to bio
806 	 */
807 	plugged = mddev_check_plugged(mddev);
808 
809 	disks = conf->raid_disks;
810  retry_write:
811 	blocked_rdev = NULL;
812 	rcu_read_lock();
813 	for (i = 0;  i < disks; i++) {
814 		mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
815 		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
816 			atomic_inc(&rdev->nr_pending);
817 			blocked_rdev = rdev;
818 			break;
819 		}
820 		if (rdev && !test_bit(Faulty, &rdev->flags)) {
821 			atomic_inc(&rdev->nr_pending);
822 			if (test_bit(Faulty, &rdev->flags)) {
823 				rdev_dec_pending(rdev, mddev);
824 				r1_bio->bios[i] = NULL;
825 			} else {
826 				r1_bio->bios[i] = bio;
827 				targets++;
828 			}
829 		} else
830 			r1_bio->bios[i] = NULL;
831 	}
832 	rcu_read_unlock();
833 
834 	if (unlikely(blocked_rdev)) {
835 		/* Wait for this device to become unblocked */
836 		int j;
837 
838 		for (j = 0; j < i; j++)
839 			if (r1_bio->bios[j])
840 				rdev_dec_pending(conf->mirrors[j].rdev, mddev);
841 
842 		allow_barrier(conf);
843 		md_wait_for_blocked_rdev(blocked_rdev, mddev);
844 		wait_barrier(conf);
845 		goto retry_write;
846 	}
847 
848 	BUG_ON(targets == 0); /* we never fail the last device */
849 
850 	if (targets < conf->raid_disks) {
851 		/* array is degraded, we will not clear the bitmap
852 		 * on I/O completion (see raid1_end_write_request) */
853 		set_bit(R1BIO_Degraded, &r1_bio->state);
854 	}
855 
856 	/* do behind I/O ?
857 	 * Not if there are too many, or cannot allocate memory,
858 	 * or a reader on WriteMostly is waiting for behind writes
859 	 * to flush */
860 	if (bitmap &&
861 	    (atomic_read(&bitmap->behind_writes)
862 	     < mddev->bitmap_info.max_write_behind) &&
863 	    !waitqueue_active(&bitmap->behind_wait))
864 		alloc_behind_pages(bio, r1_bio);
865 
866 	atomic_set(&r1_bio->remaining, 1);
867 	atomic_set(&r1_bio->behind_remaining, 0);
868 
869 	bitmap_startwrite(bitmap, bio->bi_sector, r1_bio->sectors,
870 				test_bit(R1BIO_BehindIO, &r1_bio->state));
871 	for (i = 0; i < disks; i++) {
872 		struct bio *mbio;
873 		if (!r1_bio->bios[i])
874 			continue;
875 
876 		mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
877 		r1_bio->bios[i] = mbio;
878 
879 		mbio->bi_sector	= r1_bio->sector + conf->mirrors[i].rdev->data_offset;
880 		mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
881 		mbio->bi_end_io	= raid1_end_write_request;
882 		mbio->bi_rw = WRITE | do_flush_fua | do_sync;
883 		mbio->bi_private = r1_bio;
884 
885 		if (r1_bio->behind_pages) {
886 			struct bio_vec *bvec;
887 			int j;
888 
889 			/* Yes, I really want the '__' version so that
890 			 * we clear any unused pointer in the io_vec, rather
891 			 * than leave them unchanged.  This is important
892 			 * because when we come to free the pages, we won't
893 			 * know the original bi_idx, so we just free
894 			 * them all
895 			 */
896 			__bio_for_each_segment(bvec, mbio, j, 0)
897 				bvec->bv_page = r1_bio->behind_pages[j];
898 			if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
899 				atomic_inc(&r1_bio->behind_remaining);
900 		}
901 
902 		atomic_inc(&r1_bio->remaining);
903 		spin_lock_irqsave(&conf->device_lock, flags);
904 		bio_list_add(&conf->pending_bio_list, mbio);
905 		spin_unlock_irqrestore(&conf->device_lock, flags);
906 	}
907 	r1_bio_write_done(r1_bio);
908 
909 	/* In case raid1d snuck in to freeze_array */
910 	wake_up(&conf->wait_barrier);
911 
912 	if (do_sync || !bitmap || !plugged)
913 		md_wakeup_thread(mddev->thread);
914 
915 	return 0;
916 }
917 
918 static void status(struct seq_file *seq, mddev_t *mddev)
919 {
920 	conf_t *conf = mddev->private;
921 	int i;
922 
923 	seq_printf(seq, " [%d/%d] [", conf->raid_disks,
924 		   conf->raid_disks - mddev->degraded);
925 	rcu_read_lock();
926 	for (i = 0; i < conf->raid_disks; i++) {
927 		mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
928 		seq_printf(seq, "%s",
929 			   rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
930 	}
931 	rcu_read_unlock();
932 	seq_printf(seq, "]");
933 }
934 
935 
936 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
937 {
938 	char b[BDEVNAME_SIZE];
939 	conf_t *conf = mddev->private;
940 
941 	/*
942 	 * If it is not operational, then we have already marked it as dead
943 	 * else if it is the last working disks, ignore the error, let the
944 	 * next level up know.
945 	 * else mark the drive as failed
946 	 */
947 	if (test_bit(In_sync, &rdev->flags)
948 	    && (conf->raid_disks - mddev->degraded) == 1) {
949 		/*
950 		 * Don't fail the drive, act as though we were just a
951 		 * normal single drive.
952 		 * However don't try a recovery from this drive as
953 		 * it is very likely to fail.
954 		 */
955 		mddev->recovery_disabled = 1;
956 		return;
957 	}
958 	if (test_and_clear_bit(In_sync, &rdev->flags)) {
959 		unsigned long flags;
960 		spin_lock_irqsave(&conf->device_lock, flags);
961 		mddev->degraded++;
962 		set_bit(Faulty, &rdev->flags);
963 		spin_unlock_irqrestore(&conf->device_lock, flags);
964 		/*
965 		 * if recovery is running, make sure it aborts.
966 		 */
967 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
968 	} else
969 		set_bit(Faulty, &rdev->flags);
970 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
971 	printk(KERN_ALERT
972 	       "md/raid1:%s: Disk failure on %s, disabling device.\n"
973 	       "md/raid1:%s: Operation continuing on %d devices.\n",
974 	       mdname(mddev), bdevname(rdev->bdev, b),
975 	       mdname(mddev), conf->raid_disks - mddev->degraded);
976 }
977 
978 static void print_conf(conf_t *conf)
979 {
980 	int i;
981 
982 	printk(KERN_DEBUG "RAID1 conf printout:\n");
983 	if (!conf) {
984 		printk(KERN_DEBUG "(!conf)\n");
985 		return;
986 	}
987 	printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
988 		conf->raid_disks);
989 
990 	rcu_read_lock();
991 	for (i = 0; i < conf->raid_disks; i++) {
992 		char b[BDEVNAME_SIZE];
993 		mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
994 		if (rdev)
995 			printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
996 			       i, !test_bit(In_sync, &rdev->flags),
997 			       !test_bit(Faulty, &rdev->flags),
998 			       bdevname(rdev->bdev,b));
999 	}
1000 	rcu_read_unlock();
1001 }
1002 
1003 static void close_sync(conf_t *conf)
1004 {
1005 	wait_barrier(conf);
1006 	allow_barrier(conf);
1007 
1008 	mempool_destroy(conf->r1buf_pool);
1009 	conf->r1buf_pool = NULL;
1010 }
1011 
1012 static int raid1_spare_active(mddev_t *mddev)
1013 {
1014 	int i;
1015 	conf_t *conf = mddev->private;
1016 	int count = 0;
1017 	unsigned long flags;
1018 
1019 	/*
1020 	 * Find all failed disks within the RAID1 configuration
1021 	 * and mark them readable.
1022 	 * Called under mddev lock, so rcu protection not needed.
1023 	 */
1024 	for (i = 0; i < conf->raid_disks; i++) {
1025 		mdk_rdev_t *rdev = conf->mirrors[i].rdev;
1026 		if (rdev
1027 		    && !test_bit(Faulty, &rdev->flags)
1028 		    && !test_and_set_bit(In_sync, &rdev->flags)) {
1029 			count++;
1030 			sysfs_notify_dirent(rdev->sysfs_state);
1031 		}
1032 	}
1033 	spin_lock_irqsave(&conf->device_lock, flags);
1034 	mddev->degraded -= count;
1035 	spin_unlock_irqrestore(&conf->device_lock, flags);
1036 
1037 	print_conf(conf);
1038 	return count;
1039 }
1040 
1041 
1042 static int raid1_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
1043 {
1044 	conf_t *conf = mddev->private;
1045 	int err = -EEXIST;
1046 	int mirror = 0;
1047 	mirror_info_t *p;
1048 	int first = 0;
1049 	int last = mddev->raid_disks - 1;
1050 
1051 	if (rdev->raid_disk >= 0)
1052 		first = last = rdev->raid_disk;
1053 
1054 	for (mirror = first; mirror <= last; mirror++)
1055 		if ( !(p=conf->mirrors+mirror)->rdev) {
1056 
1057 			disk_stack_limits(mddev->gendisk, rdev->bdev,
1058 					  rdev->data_offset << 9);
1059 			/* as we don't honour merge_bvec_fn, we must
1060 			 * never risk violating it, so limit
1061 			 * ->max_segments to one lying with a single
1062 			 * page, as a one page request is never in
1063 			 * violation.
1064 			 */
1065 			if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
1066 				blk_queue_max_segments(mddev->queue, 1);
1067 				blk_queue_segment_boundary(mddev->queue,
1068 							   PAGE_CACHE_SIZE - 1);
1069 			}
1070 
1071 			p->head_position = 0;
1072 			rdev->raid_disk = mirror;
1073 			err = 0;
1074 			/* As all devices are equivalent, we don't need a full recovery
1075 			 * if this was recently any drive of the array
1076 			 */
1077 			if (rdev->saved_raid_disk < 0)
1078 				conf->fullsync = 1;
1079 			rcu_assign_pointer(p->rdev, rdev);
1080 			break;
1081 		}
1082 	md_integrity_add_rdev(rdev, mddev);
1083 	print_conf(conf);
1084 	return err;
1085 }
1086 
1087 static int raid1_remove_disk(mddev_t *mddev, int number)
1088 {
1089 	conf_t *conf = mddev->private;
1090 	int err = 0;
1091 	mdk_rdev_t *rdev;
1092 	mirror_info_t *p = conf->mirrors+ number;
1093 
1094 	print_conf(conf);
1095 	rdev = p->rdev;
1096 	if (rdev) {
1097 		if (test_bit(In_sync, &rdev->flags) ||
1098 		    atomic_read(&rdev->nr_pending)) {
1099 			err = -EBUSY;
1100 			goto abort;
1101 		}
1102 		/* Only remove non-faulty devices if recovery
1103 		 * is not possible.
1104 		 */
1105 		if (!test_bit(Faulty, &rdev->flags) &&
1106 		    !mddev->recovery_disabled &&
1107 		    mddev->degraded < conf->raid_disks) {
1108 			err = -EBUSY;
1109 			goto abort;
1110 		}
1111 		p->rdev = NULL;
1112 		synchronize_rcu();
1113 		if (atomic_read(&rdev->nr_pending)) {
1114 			/* lost the race, try later */
1115 			err = -EBUSY;
1116 			p->rdev = rdev;
1117 			goto abort;
1118 		}
1119 		err = md_integrity_register(mddev);
1120 	}
1121 abort:
1122 
1123 	print_conf(conf);
1124 	return err;
1125 }
1126 
1127 
1128 static void end_sync_read(struct bio *bio, int error)
1129 {
1130 	r1bio_t *r1_bio = bio->bi_private;
1131 	int i;
1132 
1133 	for (i=r1_bio->mddev->raid_disks; i--; )
1134 		if (r1_bio->bios[i] == bio)
1135 			break;
1136 	BUG_ON(i < 0);
1137 	update_head_pos(i, r1_bio);
1138 	/*
1139 	 * we have read a block, now it needs to be re-written,
1140 	 * or re-read if the read failed.
1141 	 * We don't do much here, just schedule handling by raid1d
1142 	 */
1143 	if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1144 		set_bit(R1BIO_Uptodate, &r1_bio->state);
1145 
1146 	if (atomic_dec_and_test(&r1_bio->remaining))
1147 		reschedule_retry(r1_bio);
1148 }
1149 
1150 static void end_sync_write(struct bio *bio, int error)
1151 {
1152 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1153 	r1bio_t *r1_bio = bio->bi_private;
1154 	mddev_t *mddev = r1_bio->mddev;
1155 	conf_t *conf = mddev->private;
1156 	int i;
1157 	int mirror=0;
1158 
1159 	for (i = 0; i < conf->raid_disks; i++)
1160 		if (r1_bio->bios[i] == bio) {
1161 			mirror = i;
1162 			break;
1163 		}
1164 	if (!uptodate) {
1165 		sector_t sync_blocks = 0;
1166 		sector_t s = r1_bio->sector;
1167 		long sectors_to_go = r1_bio->sectors;
1168 		/* make sure these bits doesn't get cleared. */
1169 		do {
1170 			bitmap_end_sync(mddev->bitmap, s,
1171 					&sync_blocks, 1);
1172 			s += sync_blocks;
1173 			sectors_to_go -= sync_blocks;
1174 		} while (sectors_to_go > 0);
1175 		md_error(mddev, conf->mirrors[mirror].rdev);
1176 	}
1177 
1178 	update_head_pos(mirror, r1_bio);
1179 
1180 	if (atomic_dec_and_test(&r1_bio->remaining)) {
1181 		sector_t s = r1_bio->sectors;
1182 		put_buf(r1_bio);
1183 		md_done_sync(mddev, s, uptodate);
1184 	}
1185 }
1186 
1187 static int fix_sync_read_error(r1bio_t *r1_bio)
1188 {
1189 	/* Try some synchronous reads of other devices to get
1190 	 * good data, much like with normal read errors.  Only
1191 	 * read into the pages we already have so we don't
1192 	 * need to re-issue the read request.
1193 	 * We don't need to freeze the array, because being in an
1194 	 * active sync request, there is no normal IO, and
1195 	 * no overlapping syncs.
1196 	 */
1197 	mddev_t *mddev = r1_bio->mddev;
1198 	conf_t *conf = mddev->private;
1199 	struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1200 	sector_t sect = r1_bio->sector;
1201 	int sectors = r1_bio->sectors;
1202 	int idx = 0;
1203 
1204 	while(sectors) {
1205 		int s = sectors;
1206 		int d = r1_bio->read_disk;
1207 		int success = 0;
1208 		mdk_rdev_t *rdev;
1209 		int start;
1210 
1211 		if (s > (PAGE_SIZE>>9))
1212 			s = PAGE_SIZE >> 9;
1213 		do {
1214 			if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1215 				/* No rcu protection needed here devices
1216 				 * can only be removed when no resync is
1217 				 * active, and resync is currently active
1218 				 */
1219 				rdev = conf->mirrors[d].rdev;
1220 				if (sync_page_io(rdev,
1221 						 sect,
1222 						 s<<9,
1223 						 bio->bi_io_vec[idx].bv_page,
1224 						 READ, false)) {
1225 					success = 1;
1226 					break;
1227 				}
1228 			}
1229 			d++;
1230 			if (d == conf->raid_disks)
1231 				d = 0;
1232 		} while (!success && d != r1_bio->read_disk);
1233 
1234 		if (!success) {
1235 			char b[BDEVNAME_SIZE];
1236 			/* Cannot read from anywhere, array is toast */
1237 			md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
1238 			printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error"
1239 			       " for block %llu\n",
1240 			       mdname(mddev),
1241 			       bdevname(bio->bi_bdev, b),
1242 			       (unsigned long long)r1_bio->sector);
1243 			md_done_sync(mddev, r1_bio->sectors, 0);
1244 			put_buf(r1_bio);
1245 			return 0;
1246 		}
1247 
1248 		start = d;
1249 		/* write it back and re-read */
1250 		while (d != r1_bio->read_disk) {
1251 			if (d == 0)
1252 				d = conf->raid_disks;
1253 			d--;
1254 			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1255 				continue;
1256 			rdev = conf->mirrors[d].rdev;
1257 			if (sync_page_io(rdev,
1258 					 sect,
1259 					 s<<9,
1260 					 bio->bi_io_vec[idx].bv_page,
1261 					 WRITE, false) == 0) {
1262 				r1_bio->bios[d]->bi_end_io = NULL;
1263 				rdev_dec_pending(rdev, mddev);
1264 				md_error(mddev, rdev);
1265 			} else
1266 				atomic_add(s, &rdev->corrected_errors);
1267 		}
1268 		d = start;
1269 		while (d != r1_bio->read_disk) {
1270 			if (d == 0)
1271 				d = conf->raid_disks;
1272 			d--;
1273 			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1274 				continue;
1275 			rdev = conf->mirrors[d].rdev;
1276 			if (sync_page_io(rdev,
1277 					 sect,
1278 					 s<<9,
1279 					 bio->bi_io_vec[idx].bv_page,
1280 					 READ, false) == 0)
1281 				md_error(mddev, rdev);
1282 		}
1283 		sectors -= s;
1284 		sect += s;
1285 		idx ++;
1286 	}
1287 	set_bit(R1BIO_Uptodate, &r1_bio->state);
1288 	set_bit(BIO_UPTODATE, &bio->bi_flags);
1289 	return 1;
1290 }
1291 
1292 static int process_checks(r1bio_t *r1_bio)
1293 {
1294 	/* We have read all readable devices.  If we haven't
1295 	 * got the block, then there is no hope left.
1296 	 * If we have, then we want to do a comparison
1297 	 * and skip the write if everything is the same.
1298 	 * If any blocks failed to read, then we need to
1299 	 * attempt an over-write
1300 	 */
1301 	mddev_t *mddev = r1_bio->mddev;
1302 	conf_t *conf = mddev->private;
1303 	int primary;
1304 	int i;
1305 
1306 	for (primary = 0; primary < conf->raid_disks; primary++)
1307 		if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
1308 		    test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) {
1309 			r1_bio->bios[primary]->bi_end_io = NULL;
1310 			rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
1311 			break;
1312 		}
1313 	r1_bio->read_disk = primary;
1314 	for (i = 0; i < conf->raid_disks; i++) {
1315 		int j;
1316 		int vcnt = r1_bio->sectors >> (PAGE_SHIFT- 9);
1317 		struct bio *pbio = r1_bio->bios[primary];
1318 		struct bio *sbio = r1_bio->bios[i];
1319 		int size;
1320 
1321 		if (r1_bio->bios[i]->bi_end_io != end_sync_read)
1322 			continue;
1323 
1324 		if (test_bit(BIO_UPTODATE, &sbio->bi_flags)) {
1325 			for (j = vcnt; j-- ; ) {
1326 				struct page *p, *s;
1327 				p = pbio->bi_io_vec[j].bv_page;
1328 				s = sbio->bi_io_vec[j].bv_page;
1329 				if (memcmp(page_address(p),
1330 					   page_address(s),
1331 					   PAGE_SIZE))
1332 					break;
1333 			}
1334 		} else
1335 			j = 0;
1336 		if (j >= 0)
1337 			mddev->resync_mismatches += r1_bio->sectors;
1338 		if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
1339 			      && test_bit(BIO_UPTODATE, &sbio->bi_flags))) {
1340 			/* No need to write to this device. */
1341 			sbio->bi_end_io = NULL;
1342 			rdev_dec_pending(conf->mirrors[i].rdev, mddev);
1343 			continue;
1344 		}
1345 		/* fixup the bio for reuse */
1346 		sbio->bi_vcnt = vcnt;
1347 		sbio->bi_size = r1_bio->sectors << 9;
1348 		sbio->bi_idx = 0;
1349 		sbio->bi_phys_segments = 0;
1350 		sbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1351 		sbio->bi_flags |= 1 << BIO_UPTODATE;
1352 		sbio->bi_next = NULL;
1353 		sbio->bi_sector = r1_bio->sector +
1354 			conf->mirrors[i].rdev->data_offset;
1355 		sbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1356 		size = sbio->bi_size;
1357 		for (j = 0; j < vcnt ; j++) {
1358 			struct bio_vec *bi;
1359 			bi = &sbio->bi_io_vec[j];
1360 			bi->bv_offset = 0;
1361 			if (size > PAGE_SIZE)
1362 				bi->bv_len = PAGE_SIZE;
1363 			else
1364 				bi->bv_len = size;
1365 			size -= PAGE_SIZE;
1366 			memcpy(page_address(bi->bv_page),
1367 			       page_address(pbio->bi_io_vec[j].bv_page),
1368 			       PAGE_SIZE);
1369 		}
1370 	}
1371 	return 0;
1372 }
1373 
1374 static void sync_request_write(mddev_t *mddev, r1bio_t *r1_bio)
1375 {
1376 	conf_t *conf = mddev->private;
1377 	int i;
1378 	int disks = conf->raid_disks;
1379 	struct bio *bio, *wbio;
1380 
1381 	bio = r1_bio->bios[r1_bio->read_disk];
1382 
1383 	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
1384 		/* ouch - failed to read all of that. */
1385 		if (!fix_sync_read_error(r1_bio))
1386 			return;
1387 
1388 	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
1389 		if (process_checks(r1_bio) < 0)
1390 			return;
1391 	/*
1392 	 * schedule writes
1393 	 */
1394 	atomic_set(&r1_bio->remaining, 1);
1395 	for (i = 0; i < disks ; i++) {
1396 		wbio = r1_bio->bios[i];
1397 		if (wbio->bi_end_io == NULL ||
1398 		    (wbio->bi_end_io == end_sync_read &&
1399 		     (i == r1_bio->read_disk ||
1400 		      !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
1401 			continue;
1402 
1403 		wbio->bi_rw = WRITE;
1404 		wbio->bi_end_io = end_sync_write;
1405 		atomic_inc(&r1_bio->remaining);
1406 		md_sync_acct(conf->mirrors[i].rdev->bdev, wbio->bi_size >> 9);
1407 
1408 		generic_make_request(wbio);
1409 	}
1410 
1411 	if (atomic_dec_and_test(&r1_bio->remaining)) {
1412 		/* if we're here, all write(s) have completed, so clean up */
1413 		md_done_sync(mddev, r1_bio->sectors, 1);
1414 		put_buf(r1_bio);
1415 	}
1416 }
1417 
1418 /*
1419  * This is a kernel thread which:
1420  *
1421  *	1.	Retries failed read operations on working mirrors.
1422  *	2.	Updates the raid superblock when problems encounter.
1423  *	3.	Performs writes following reads for array syncronising.
1424  */
1425 
1426 static void fix_read_error(conf_t *conf, int read_disk,
1427 			   sector_t sect, int sectors)
1428 {
1429 	mddev_t *mddev = conf->mddev;
1430 	while(sectors) {
1431 		int s = sectors;
1432 		int d = read_disk;
1433 		int success = 0;
1434 		int start;
1435 		mdk_rdev_t *rdev;
1436 
1437 		if (s > (PAGE_SIZE>>9))
1438 			s = PAGE_SIZE >> 9;
1439 
1440 		do {
1441 			/* Note: no rcu protection needed here
1442 			 * as this is synchronous in the raid1d thread
1443 			 * which is the thread that might remove
1444 			 * a device.  If raid1d ever becomes multi-threaded....
1445 			 */
1446 			rdev = conf->mirrors[d].rdev;
1447 			if (rdev &&
1448 			    test_bit(In_sync, &rdev->flags) &&
1449 			    sync_page_io(rdev, sect, s<<9,
1450 					 conf->tmppage, READ, false))
1451 				success = 1;
1452 			else {
1453 				d++;
1454 				if (d == conf->raid_disks)
1455 					d = 0;
1456 			}
1457 		} while (!success && d != read_disk);
1458 
1459 		if (!success) {
1460 			/* Cannot read from anywhere -- bye bye array */
1461 			md_error(mddev, conf->mirrors[read_disk].rdev);
1462 			break;
1463 		}
1464 		/* write it back and re-read */
1465 		start = d;
1466 		while (d != read_disk) {
1467 			if (d==0)
1468 				d = conf->raid_disks;
1469 			d--;
1470 			rdev = conf->mirrors[d].rdev;
1471 			if (rdev &&
1472 			    test_bit(In_sync, &rdev->flags)) {
1473 				if (sync_page_io(rdev, sect, s<<9,
1474 						 conf->tmppage, WRITE, false)
1475 				    == 0)
1476 					/* Well, this device is dead */
1477 					md_error(mddev, rdev);
1478 			}
1479 		}
1480 		d = start;
1481 		while (d != read_disk) {
1482 			char b[BDEVNAME_SIZE];
1483 			if (d==0)
1484 				d = conf->raid_disks;
1485 			d--;
1486 			rdev = conf->mirrors[d].rdev;
1487 			if (rdev &&
1488 			    test_bit(In_sync, &rdev->flags)) {
1489 				if (sync_page_io(rdev, sect, s<<9,
1490 						 conf->tmppage, READ, false)
1491 				    == 0)
1492 					/* Well, this device is dead */
1493 					md_error(mddev, rdev);
1494 				else {
1495 					atomic_add(s, &rdev->corrected_errors);
1496 					printk(KERN_INFO
1497 					       "md/raid1:%s: read error corrected "
1498 					       "(%d sectors at %llu on %s)\n",
1499 					       mdname(mddev), s,
1500 					       (unsigned long long)(sect +
1501 					           rdev->data_offset),
1502 					       bdevname(rdev->bdev, b));
1503 				}
1504 			}
1505 		}
1506 		sectors -= s;
1507 		sect += s;
1508 	}
1509 }
1510 
1511 static void raid1d(mddev_t *mddev)
1512 {
1513 	r1bio_t *r1_bio;
1514 	struct bio *bio;
1515 	unsigned long flags;
1516 	conf_t *conf = mddev->private;
1517 	struct list_head *head = &conf->retry_list;
1518 	mdk_rdev_t *rdev;
1519 	struct blk_plug plug;
1520 
1521 	md_check_recovery(mddev);
1522 
1523 	blk_start_plug(&plug);
1524 	for (;;) {
1525 		char b[BDEVNAME_SIZE];
1526 
1527 		if (atomic_read(&mddev->plug_cnt) == 0)
1528 			flush_pending_writes(conf);
1529 
1530 		spin_lock_irqsave(&conf->device_lock, flags);
1531 		if (list_empty(head)) {
1532 			spin_unlock_irqrestore(&conf->device_lock, flags);
1533 			break;
1534 		}
1535 		r1_bio = list_entry(head->prev, r1bio_t, retry_list);
1536 		list_del(head->prev);
1537 		conf->nr_queued--;
1538 		spin_unlock_irqrestore(&conf->device_lock, flags);
1539 
1540 		mddev = r1_bio->mddev;
1541 		conf = mddev->private;
1542 		if (test_bit(R1BIO_IsSync, &r1_bio->state))
1543 			sync_request_write(mddev, r1_bio);
1544 		else {
1545 			int disk;
1546 
1547 			/* we got a read error. Maybe the drive is bad.  Maybe just
1548 			 * the block and we can fix it.
1549 			 * We freeze all other IO, and try reading the block from
1550 			 * other devices.  When we find one, we re-write
1551 			 * and check it that fixes the read error.
1552 			 * This is all done synchronously while the array is
1553 			 * frozen
1554 			 */
1555 			if (mddev->ro == 0) {
1556 				freeze_array(conf);
1557 				fix_read_error(conf, r1_bio->read_disk,
1558 					       r1_bio->sector,
1559 					       r1_bio->sectors);
1560 				unfreeze_array(conf);
1561 			} else
1562 				md_error(mddev,
1563 					 conf->mirrors[r1_bio->read_disk].rdev);
1564 
1565 			bio = r1_bio->bios[r1_bio->read_disk];
1566 			if ((disk=read_balance(conf, r1_bio)) == -1) {
1567 				printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O"
1568 				       " read error for block %llu\n",
1569 				       mdname(mddev),
1570 				       bdevname(bio->bi_bdev,b),
1571 				       (unsigned long long)r1_bio->sector);
1572 				raid_end_bio_io(r1_bio);
1573 			} else {
1574 				const unsigned long do_sync = r1_bio->master_bio->bi_rw & REQ_SYNC;
1575 				r1_bio->bios[r1_bio->read_disk] =
1576 					mddev->ro ? IO_BLOCKED : NULL;
1577 				r1_bio->read_disk = disk;
1578 				bio_put(bio);
1579 				bio = bio_clone_mddev(r1_bio->master_bio,
1580 						      GFP_NOIO, mddev);
1581 				r1_bio->bios[r1_bio->read_disk] = bio;
1582 				rdev = conf->mirrors[disk].rdev;
1583 				if (printk_ratelimit())
1584 					printk(KERN_ERR "md/raid1:%s: redirecting sector %llu to"
1585 					       " other mirror: %s\n",
1586 					       mdname(mddev),
1587 					       (unsigned long long)r1_bio->sector,
1588 					       bdevname(rdev->bdev,b));
1589 				bio->bi_sector = r1_bio->sector + rdev->data_offset;
1590 				bio->bi_bdev = rdev->bdev;
1591 				bio->bi_end_io = raid1_end_read_request;
1592 				bio->bi_rw = READ | do_sync;
1593 				bio->bi_private = r1_bio;
1594 				generic_make_request(bio);
1595 			}
1596 		}
1597 		cond_resched();
1598 	}
1599 	blk_finish_plug(&plug);
1600 }
1601 
1602 
1603 static int init_resync(conf_t *conf)
1604 {
1605 	int buffs;
1606 
1607 	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
1608 	BUG_ON(conf->r1buf_pool);
1609 	conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
1610 					  conf->poolinfo);
1611 	if (!conf->r1buf_pool)
1612 		return -ENOMEM;
1613 	conf->next_resync = 0;
1614 	return 0;
1615 }
1616 
1617 /*
1618  * perform a "sync" on one "block"
1619  *
1620  * We need to make sure that no normal I/O request - particularly write
1621  * requests - conflict with active sync requests.
1622  *
1623  * This is achieved by tracking pending requests and a 'barrier' concept
1624  * that can be installed to exclude normal IO requests.
1625  */
1626 
1627 static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
1628 {
1629 	conf_t *conf = mddev->private;
1630 	r1bio_t *r1_bio;
1631 	struct bio *bio;
1632 	sector_t max_sector, nr_sectors;
1633 	int disk = -1;
1634 	int i;
1635 	int wonly = -1;
1636 	int write_targets = 0, read_targets = 0;
1637 	sector_t sync_blocks;
1638 	int still_degraded = 0;
1639 
1640 	if (!conf->r1buf_pool)
1641 		if (init_resync(conf))
1642 			return 0;
1643 
1644 	max_sector = mddev->dev_sectors;
1645 	if (sector_nr >= max_sector) {
1646 		/* If we aborted, we need to abort the
1647 		 * sync on the 'current' bitmap chunk (there will
1648 		 * only be one in raid1 resync.
1649 		 * We can find the current addess in mddev->curr_resync
1650 		 */
1651 		if (mddev->curr_resync < max_sector) /* aborted */
1652 			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
1653 						&sync_blocks, 1);
1654 		else /* completed sync */
1655 			conf->fullsync = 0;
1656 
1657 		bitmap_close_sync(mddev->bitmap);
1658 		close_sync(conf);
1659 		return 0;
1660 	}
1661 
1662 	if (mddev->bitmap == NULL &&
1663 	    mddev->recovery_cp == MaxSector &&
1664 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
1665 	    conf->fullsync == 0) {
1666 		*skipped = 1;
1667 		return max_sector - sector_nr;
1668 	}
1669 	/* before building a request, check if we can skip these blocks..
1670 	 * This call the bitmap_start_sync doesn't actually record anything
1671 	 */
1672 	if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
1673 	    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
1674 		/* We can skip this block, and probably several more */
1675 		*skipped = 1;
1676 		return sync_blocks;
1677 	}
1678 	/*
1679 	 * If there is non-resync activity waiting for a turn,
1680 	 * and resync is going fast enough,
1681 	 * then let it though before starting on this new sync request.
1682 	 */
1683 	if (!go_faster && conf->nr_waiting)
1684 		msleep_interruptible(1000);
1685 
1686 	bitmap_cond_end_sync(mddev->bitmap, sector_nr);
1687 	r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
1688 	raise_barrier(conf);
1689 
1690 	conf->next_resync = sector_nr;
1691 
1692 	rcu_read_lock();
1693 	/*
1694 	 * If we get a correctably read error during resync or recovery,
1695 	 * we might want to read from a different device.  So we
1696 	 * flag all drives that could conceivably be read from for READ,
1697 	 * and any others (which will be non-In_sync devices) for WRITE.
1698 	 * If a read fails, we try reading from something else for which READ
1699 	 * is OK.
1700 	 */
1701 
1702 	r1_bio->mddev = mddev;
1703 	r1_bio->sector = sector_nr;
1704 	r1_bio->state = 0;
1705 	set_bit(R1BIO_IsSync, &r1_bio->state);
1706 
1707 	for (i=0; i < conf->raid_disks; i++) {
1708 		mdk_rdev_t *rdev;
1709 		bio = r1_bio->bios[i];
1710 
1711 		/* take from bio_init */
1712 		bio->bi_next = NULL;
1713 		bio->bi_flags &= ~(BIO_POOL_MASK-1);
1714 		bio->bi_flags |= 1 << BIO_UPTODATE;
1715 		bio->bi_comp_cpu = -1;
1716 		bio->bi_rw = READ;
1717 		bio->bi_vcnt = 0;
1718 		bio->bi_idx = 0;
1719 		bio->bi_phys_segments = 0;
1720 		bio->bi_size = 0;
1721 		bio->bi_end_io = NULL;
1722 		bio->bi_private = NULL;
1723 
1724 		rdev = rcu_dereference(conf->mirrors[i].rdev);
1725 		if (rdev == NULL ||
1726 			   test_bit(Faulty, &rdev->flags)) {
1727 			still_degraded = 1;
1728 			continue;
1729 		} else if (!test_bit(In_sync, &rdev->flags)) {
1730 			bio->bi_rw = WRITE;
1731 			bio->bi_end_io = end_sync_write;
1732 			write_targets ++;
1733 		} else {
1734 			/* may need to read from here */
1735 			bio->bi_rw = READ;
1736 			bio->bi_end_io = end_sync_read;
1737 			if (test_bit(WriteMostly, &rdev->flags)) {
1738 				if (wonly < 0)
1739 					wonly = i;
1740 			} else {
1741 				if (disk < 0)
1742 					disk = i;
1743 			}
1744 			read_targets++;
1745 		}
1746 		atomic_inc(&rdev->nr_pending);
1747 		bio->bi_sector = sector_nr + rdev->data_offset;
1748 		bio->bi_bdev = rdev->bdev;
1749 		bio->bi_private = r1_bio;
1750 	}
1751 	rcu_read_unlock();
1752 	if (disk < 0)
1753 		disk = wonly;
1754 	r1_bio->read_disk = disk;
1755 
1756 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
1757 		/* extra read targets are also write targets */
1758 		write_targets += read_targets-1;
1759 
1760 	if (write_targets == 0 || read_targets == 0) {
1761 		/* There is nowhere to write, so all non-sync
1762 		 * drives must be failed - so we are finished
1763 		 */
1764 		sector_t rv = max_sector - sector_nr;
1765 		*skipped = 1;
1766 		put_buf(r1_bio);
1767 		return rv;
1768 	}
1769 
1770 	if (max_sector > mddev->resync_max)
1771 		max_sector = mddev->resync_max; /* Don't do IO beyond here */
1772 	nr_sectors = 0;
1773 	sync_blocks = 0;
1774 	do {
1775 		struct page *page;
1776 		int len = PAGE_SIZE;
1777 		if (sector_nr + (len>>9) > max_sector)
1778 			len = (max_sector - sector_nr) << 9;
1779 		if (len == 0)
1780 			break;
1781 		if (sync_blocks == 0) {
1782 			if (!bitmap_start_sync(mddev->bitmap, sector_nr,
1783 					       &sync_blocks, still_degraded) &&
1784 			    !conf->fullsync &&
1785 			    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
1786 				break;
1787 			BUG_ON(sync_blocks < (PAGE_SIZE>>9));
1788 			if ((len >> 9) > sync_blocks)
1789 				len = sync_blocks<<9;
1790 		}
1791 
1792 		for (i=0 ; i < conf->raid_disks; i++) {
1793 			bio = r1_bio->bios[i];
1794 			if (bio->bi_end_io) {
1795 				page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
1796 				if (bio_add_page(bio, page, len, 0) == 0) {
1797 					/* stop here */
1798 					bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
1799 					while (i > 0) {
1800 						i--;
1801 						bio = r1_bio->bios[i];
1802 						if (bio->bi_end_io==NULL)
1803 							continue;
1804 						/* remove last page from this bio */
1805 						bio->bi_vcnt--;
1806 						bio->bi_size -= len;
1807 						bio->bi_flags &= ~(1<< BIO_SEG_VALID);
1808 					}
1809 					goto bio_full;
1810 				}
1811 			}
1812 		}
1813 		nr_sectors += len>>9;
1814 		sector_nr += len>>9;
1815 		sync_blocks -= (len>>9);
1816 	} while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
1817  bio_full:
1818 	r1_bio->sectors = nr_sectors;
1819 
1820 	/* For a user-requested sync, we read all readable devices and do a
1821 	 * compare
1822 	 */
1823 	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
1824 		atomic_set(&r1_bio->remaining, read_targets);
1825 		for (i=0; i<conf->raid_disks; i++) {
1826 			bio = r1_bio->bios[i];
1827 			if (bio->bi_end_io == end_sync_read) {
1828 				md_sync_acct(bio->bi_bdev, nr_sectors);
1829 				generic_make_request(bio);
1830 			}
1831 		}
1832 	} else {
1833 		atomic_set(&r1_bio->remaining, 1);
1834 		bio = r1_bio->bios[r1_bio->read_disk];
1835 		md_sync_acct(bio->bi_bdev, nr_sectors);
1836 		generic_make_request(bio);
1837 
1838 	}
1839 	return nr_sectors;
1840 }
1841 
1842 static sector_t raid1_size(mddev_t *mddev, sector_t sectors, int raid_disks)
1843 {
1844 	if (sectors)
1845 		return sectors;
1846 
1847 	return mddev->dev_sectors;
1848 }
1849 
1850 static conf_t *setup_conf(mddev_t *mddev)
1851 {
1852 	conf_t *conf;
1853 	int i;
1854 	mirror_info_t *disk;
1855 	mdk_rdev_t *rdev;
1856 	int err = -ENOMEM;
1857 
1858 	conf = kzalloc(sizeof(conf_t), GFP_KERNEL);
1859 	if (!conf)
1860 		goto abort;
1861 
1862 	conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks,
1863 				 GFP_KERNEL);
1864 	if (!conf->mirrors)
1865 		goto abort;
1866 
1867 	conf->tmppage = alloc_page(GFP_KERNEL);
1868 	if (!conf->tmppage)
1869 		goto abort;
1870 
1871 	conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
1872 	if (!conf->poolinfo)
1873 		goto abort;
1874 	conf->poolinfo->raid_disks = mddev->raid_disks;
1875 	conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
1876 					  r1bio_pool_free,
1877 					  conf->poolinfo);
1878 	if (!conf->r1bio_pool)
1879 		goto abort;
1880 
1881 	conf->poolinfo->mddev = mddev;
1882 
1883 	spin_lock_init(&conf->device_lock);
1884 	list_for_each_entry(rdev, &mddev->disks, same_set) {
1885 		int disk_idx = rdev->raid_disk;
1886 		if (disk_idx >= mddev->raid_disks
1887 		    || disk_idx < 0)
1888 			continue;
1889 		disk = conf->mirrors + disk_idx;
1890 
1891 		disk->rdev = rdev;
1892 
1893 		disk->head_position = 0;
1894 	}
1895 	conf->raid_disks = mddev->raid_disks;
1896 	conf->mddev = mddev;
1897 	INIT_LIST_HEAD(&conf->retry_list);
1898 
1899 	spin_lock_init(&conf->resync_lock);
1900 	init_waitqueue_head(&conf->wait_barrier);
1901 
1902 	bio_list_init(&conf->pending_bio_list);
1903 
1904 	conf->last_used = -1;
1905 	for (i = 0; i < conf->raid_disks; i++) {
1906 
1907 		disk = conf->mirrors + i;
1908 
1909 		if (!disk->rdev ||
1910 		    !test_bit(In_sync, &disk->rdev->flags)) {
1911 			disk->head_position = 0;
1912 			if (disk->rdev)
1913 				conf->fullsync = 1;
1914 		} else if (conf->last_used < 0)
1915 			/*
1916 			 * The first working device is used as a
1917 			 * starting point to read balancing.
1918 			 */
1919 			conf->last_used = i;
1920 	}
1921 
1922 	err = -EIO;
1923 	if (conf->last_used < 0) {
1924 		printk(KERN_ERR "md/raid1:%s: no operational mirrors\n",
1925 		       mdname(mddev));
1926 		goto abort;
1927 	}
1928 	err = -ENOMEM;
1929 	conf->thread = md_register_thread(raid1d, mddev, NULL);
1930 	if (!conf->thread) {
1931 		printk(KERN_ERR
1932 		       "md/raid1:%s: couldn't allocate thread\n",
1933 		       mdname(mddev));
1934 		goto abort;
1935 	}
1936 
1937 	return conf;
1938 
1939  abort:
1940 	if (conf) {
1941 		if (conf->r1bio_pool)
1942 			mempool_destroy(conf->r1bio_pool);
1943 		kfree(conf->mirrors);
1944 		safe_put_page(conf->tmppage);
1945 		kfree(conf->poolinfo);
1946 		kfree(conf);
1947 	}
1948 	return ERR_PTR(err);
1949 }
1950 
1951 static int run(mddev_t *mddev)
1952 {
1953 	conf_t *conf;
1954 	int i;
1955 	mdk_rdev_t *rdev;
1956 
1957 	if (mddev->level != 1) {
1958 		printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n",
1959 		       mdname(mddev), mddev->level);
1960 		return -EIO;
1961 	}
1962 	if (mddev->reshape_position != MaxSector) {
1963 		printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n",
1964 		       mdname(mddev));
1965 		return -EIO;
1966 	}
1967 	/*
1968 	 * copy the already verified devices into our private RAID1
1969 	 * bookkeeping area. [whatever we allocate in run(),
1970 	 * should be freed in stop()]
1971 	 */
1972 	if (mddev->private == NULL)
1973 		conf = setup_conf(mddev);
1974 	else
1975 		conf = mddev->private;
1976 
1977 	if (IS_ERR(conf))
1978 		return PTR_ERR(conf);
1979 
1980 	list_for_each_entry(rdev, &mddev->disks, same_set) {
1981 		if (!mddev->gendisk)
1982 			continue;
1983 		disk_stack_limits(mddev->gendisk, rdev->bdev,
1984 				  rdev->data_offset << 9);
1985 		/* as we don't honour merge_bvec_fn, we must never risk
1986 		 * violating it, so limit ->max_segments to 1 lying within
1987 		 * a single page, as a one page request is never in violation.
1988 		 */
1989 		if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
1990 			blk_queue_max_segments(mddev->queue, 1);
1991 			blk_queue_segment_boundary(mddev->queue,
1992 						   PAGE_CACHE_SIZE - 1);
1993 		}
1994 	}
1995 
1996 	mddev->degraded = 0;
1997 	for (i=0; i < conf->raid_disks; i++)
1998 		if (conf->mirrors[i].rdev == NULL ||
1999 		    !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
2000 		    test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2001 			mddev->degraded++;
2002 
2003 	if (conf->raid_disks - mddev->degraded == 1)
2004 		mddev->recovery_cp = MaxSector;
2005 
2006 	if (mddev->recovery_cp != MaxSector)
2007 		printk(KERN_NOTICE "md/raid1:%s: not clean"
2008 		       " -- starting background reconstruction\n",
2009 		       mdname(mddev));
2010 	printk(KERN_INFO
2011 		"md/raid1:%s: active with %d out of %d mirrors\n",
2012 		mdname(mddev), mddev->raid_disks - mddev->degraded,
2013 		mddev->raid_disks);
2014 
2015 	/*
2016 	 * Ok, everything is just fine now
2017 	 */
2018 	mddev->thread = conf->thread;
2019 	conf->thread = NULL;
2020 	mddev->private = conf;
2021 
2022 	md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
2023 
2024 	if (mddev->queue) {
2025 		mddev->queue->backing_dev_info.congested_fn = raid1_congested;
2026 		mddev->queue->backing_dev_info.congested_data = mddev;
2027 	}
2028 	return md_integrity_register(mddev);
2029 }
2030 
2031 static int stop(mddev_t *mddev)
2032 {
2033 	conf_t *conf = mddev->private;
2034 	struct bitmap *bitmap = mddev->bitmap;
2035 
2036 	/* wait for behind writes to complete */
2037 	if (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
2038 		printk(KERN_INFO "md/raid1:%s: behind writes in progress - waiting to stop.\n",
2039 		       mdname(mddev));
2040 		/* need to kick something here to make sure I/O goes? */
2041 		wait_event(bitmap->behind_wait,
2042 			   atomic_read(&bitmap->behind_writes) == 0);
2043 	}
2044 
2045 	raise_barrier(conf);
2046 	lower_barrier(conf);
2047 
2048 	md_unregister_thread(mddev->thread);
2049 	mddev->thread = NULL;
2050 	if (conf->r1bio_pool)
2051 		mempool_destroy(conf->r1bio_pool);
2052 	kfree(conf->mirrors);
2053 	kfree(conf->poolinfo);
2054 	kfree(conf);
2055 	mddev->private = NULL;
2056 	return 0;
2057 }
2058 
2059 static int raid1_resize(mddev_t *mddev, sector_t sectors)
2060 {
2061 	/* no resync is happening, and there is enough space
2062 	 * on all devices, so we can resize.
2063 	 * We need to make sure resync covers any new space.
2064 	 * If the array is shrinking we should possibly wait until
2065 	 * any io in the removed space completes, but it hardly seems
2066 	 * worth it.
2067 	 */
2068 	md_set_array_sectors(mddev, raid1_size(mddev, sectors, 0));
2069 	if (mddev->array_sectors > raid1_size(mddev, sectors, 0))
2070 		return -EINVAL;
2071 	set_capacity(mddev->gendisk, mddev->array_sectors);
2072 	revalidate_disk(mddev->gendisk);
2073 	if (sectors > mddev->dev_sectors &&
2074 	    mddev->recovery_cp > mddev->dev_sectors) {
2075 		mddev->recovery_cp = mddev->dev_sectors;
2076 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2077 	}
2078 	mddev->dev_sectors = sectors;
2079 	mddev->resync_max_sectors = sectors;
2080 	return 0;
2081 }
2082 
2083 static int raid1_reshape(mddev_t *mddev)
2084 {
2085 	/* We need to:
2086 	 * 1/ resize the r1bio_pool
2087 	 * 2/ resize conf->mirrors
2088 	 *
2089 	 * We allocate a new r1bio_pool if we can.
2090 	 * Then raise a device barrier and wait until all IO stops.
2091 	 * Then resize conf->mirrors and swap in the new r1bio pool.
2092 	 *
2093 	 * At the same time, we "pack" the devices so that all the missing
2094 	 * devices have the higher raid_disk numbers.
2095 	 */
2096 	mempool_t *newpool, *oldpool;
2097 	struct pool_info *newpoolinfo;
2098 	mirror_info_t *newmirrors;
2099 	conf_t *conf = mddev->private;
2100 	int cnt, raid_disks;
2101 	unsigned long flags;
2102 	int d, d2, err;
2103 
2104 	/* Cannot change chunk_size, layout, or level */
2105 	if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
2106 	    mddev->layout != mddev->new_layout ||
2107 	    mddev->level != mddev->new_level) {
2108 		mddev->new_chunk_sectors = mddev->chunk_sectors;
2109 		mddev->new_layout = mddev->layout;
2110 		mddev->new_level = mddev->level;
2111 		return -EINVAL;
2112 	}
2113 
2114 	err = md_allow_write(mddev);
2115 	if (err)
2116 		return err;
2117 
2118 	raid_disks = mddev->raid_disks + mddev->delta_disks;
2119 
2120 	if (raid_disks < conf->raid_disks) {
2121 		cnt=0;
2122 		for (d= 0; d < conf->raid_disks; d++)
2123 			if (conf->mirrors[d].rdev)
2124 				cnt++;
2125 		if (cnt > raid_disks)
2126 			return -EBUSY;
2127 	}
2128 
2129 	newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
2130 	if (!newpoolinfo)
2131 		return -ENOMEM;
2132 	newpoolinfo->mddev = mddev;
2133 	newpoolinfo->raid_disks = raid_disks;
2134 
2135 	newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2136 				 r1bio_pool_free, newpoolinfo);
2137 	if (!newpool) {
2138 		kfree(newpoolinfo);
2139 		return -ENOMEM;
2140 	}
2141 	newmirrors = kzalloc(sizeof(struct mirror_info) * raid_disks, GFP_KERNEL);
2142 	if (!newmirrors) {
2143 		kfree(newpoolinfo);
2144 		mempool_destroy(newpool);
2145 		return -ENOMEM;
2146 	}
2147 
2148 	raise_barrier(conf);
2149 
2150 	/* ok, everything is stopped */
2151 	oldpool = conf->r1bio_pool;
2152 	conf->r1bio_pool = newpool;
2153 
2154 	for (d = d2 = 0; d < conf->raid_disks; d++) {
2155 		mdk_rdev_t *rdev = conf->mirrors[d].rdev;
2156 		if (rdev && rdev->raid_disk != d2) {
2157 			char nm[20];
2158 			sprintf(nm, "rd%d", rdev->raid_disk);
2159 			sysfs_remove_link(&mddev->kobj, nm);
2160 			rdev->raid_disk = d2;
2161 			sprintf(nm, "rd%d", rdev->raid_disk);
2162 			sysfs_remove_link(&mddev->kobj, nm);
2163 			if (sysfs_create_link(&mddev->kobj,
2164 					      &rdev->kobj, nm))
2165 				printk(KERN_WARNING
2166 				       "md/raid1:%s: cannot register "
2167 				       "%s\n",
2168 				       mdname(mddev), nm);
2169 		}
2170 		if (rdev)
2171 			newmirrors[d2++].rdev = rdev;
2172 	}
2173 	kfree(conf->mirrors);
2174 	conf->mirrors = newmirrors;
2175 	kfree(conf->poolinfo);
2176 	conf->poolinfo = newpoolinfo;
2177 
2178 	spin_lock_irqsave(&conf->device_lock, flags);
2179 	mddev->degraded += (raid_disks - conf->raid_disks);
2180 	spin_unlock_irqrestore(&conf->device_lock, flags);
2181 	conf->raid_disks = mddev->raid_disks = raid_disks;
2182 	mddev->delta_disks = 0;
2183 
2184 	conf->last_used = 0; /* just make sure it is in-range */
2185 	lower_barrier(conf);
2186 
2187 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2188 	md_wakeup_thread(mddev->thread);
2189 
2190 	mempool_destroy(oldpool);
2191 	return 0;
2192 }
2193 
2194 static void raid1_quiesce(mddev_t *mddev, int state)
2195 {
2196 	conf_t *conf = mddev->private;
2197 
2198 	switch(state) {
2199 	case 2: /* wake for suspend */
2200 		wake_up(&conf->wait_barrier);
2201 		break;
2202 	case 1:
2203 		raise_barrier(conf);
2204 		break;
2205 	case 0:
2206 		lower_barrier(conf);
2207 		break;
2208 	}
2209 }
2210 
2211 static void *raid1_takeover(mddev_t *mddev)
2212 {
2213 	/* raid1 can take over:
2214 	 *  raid5 with 2 devices, any layout or chunk size
2215 	 */
2216 	if (mddev->level == 5 && mddev->raid_disks == 2) {
2217 		conf_t *conf;
2218 		mddev->new_level = 1;
2219 		mddev->new_layout = 0;
2220 		mddev->new_chunk_sectors = 0;
2221 		conf = setup_conf(mddev);
2222 		if (!IS_ERR(conf))
2223 			conf->barrier = 1;
2224 		return conf;
2225 	}
2226 	return ERR_PTR(-EINVAL);
2227 }
2228 
2229 static struct mdk_personality raid1_personality =
2230 {
2231 	.name		= "raid1",
2232 	.level		= 1,
2233 	.owner		= THIS_MODULE,
2234 	.make_request	= make_request,
2235 	.run		= run,
2236 	.stop		= stop,
2237 	.status		= status,
2238 	.error_handler	= error,
2239 	.hot_add_disk	= raid1_add_disk,
2240 	.hot_remove_disk= raid1_remove_disk,
2241 	.spare_active	= raid1_spare_active,
2242 	.sync_request	= sync_request,
2243 	.resize		= raid1_resize,
2244 	.size		= raid1_size,
2245 	.check_reshape	= raid1_reshape,
2246 	.quiesce	= raid1_quiesce,
2247 	.takeover	= raid1_takeover,
2248 };
2249 
2250 static int __init raid_init(void)
2251 {
2252 	return register_md_personality(&raid1_personality);
2253 }
2254 
2255 static void raid_exit(void)
2256 {
2257 	unregister_md_personality(&raid1_personality);
2258 }
2259 
2260 module_init(raid_init);
2261 module_exit(raid_exit);
2262 MODULE_LICENSE("GPL");
2263 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
2264 MODULE_ALIAS("md-personality-3"); /* RAID1 */
2265 MODULE_ALIAS("md-raid1");
2266 MODULE_ALIAS("md-level-1");
2267