xref: /openbmc/linux/drivers/md/raid1.c (revision 7f2e85840871f199057e65232ebde846192ed989)
1 /*
2  * raid1.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5  *
6  * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7  *
8  * RAID-1 management functions.
9  *
10  * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11  *
12  * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
13  * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14  *
15  * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16  * bitmapped intelligence in resync:
17  *
18  *      - bitmap marked during normal i/o
19  *      - bitmap used to skip nondirty blocks during sync
20  *
21  * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22  * - persistent bitmap code
23  *
24  * This program is free software; you can redistribute it and/or modify
25  * it under the terms of the GNU General Public License as published by
26  * the Free Software Foundation; either version 2, or (at your option)
27  * any later version.
28  *
29  * You should have received a copy of the GNU General Public License
30  * (for example /usr/src/linux/COPYING); if not, write to the Free
31  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32  */
33 
34 #include <linux/slab.h>
35 #include <linux/delay.h>
36 #include <linux/blkdev.h>
37 #include <linux/module.h>
38 #include <linux/seq_file.h>
39 #include <linux/ratelimit.h>
40 
41 #include <trace/events/block.h>
42 
43 #include "md.h"
44 #include "raid1.h"
45 #include "md-bitmap.h"
46 
47 #define UNSUPPORTED_MDDEV_FLAGS		\
48 	((1L << MD_HAS_JOURNAL) |	\
49 	 (1L << MD_JOURNAL_CLEAN) |	\
50 	 (1L << MD_HAS_PPL) |		\
51 	 (1L << MD_HAS_MULTIPLE_PPLS))
52 
53 /*
54  * Number of guaranteed r1bios in case of extreme VM load:
55  */
56 #define	NR_RAID1_BIOS 256
57 
58 /* when we get a read error on a read-only array, we redirect to another
59  * device without failing the first device, or trying to over-write to
60  * correct the read error.  To keep track of bad blocks on a per-bio
61  * level, we store IO_BLOCKED in the appropriate 'bios' pointer
62  */
63 #define IO_BLOCKED ((struct bio *)1)
64 /* When we successfully write to a known bad-block, we need to remove the
65  * bad-block marking which must be done from process context.  So we record
66  * the success by setting devs[n].bio to IO_MADE_GOOD
67  */
68 #define IO_MADE_GOOD ((struct bio *)2)
69 
70 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
71 
72 /* When there are this many requests queue to be written by
73  * the raid1 thread, we become 'congested' to provide back-pressure
74  * for writeback.
75  */
76 static int max_queued_requests = 1024;
77 
78 static void allow_barrier(struct r1conf *conf, sector_t sector_nr);
79 static void lower_barrier(struct r1conf *conf, sector_t sector_nr);
80 
81 #define raid1_log(md, fmt, args...)				\
82 	do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid1 " fmt, ##args); } while (0)
83 
84 #include "raid1-10.c"
85 
86 /*
87  * for resync bio, r1bio pointer can be retrieved from the per-bio
88  * 'struct resync_pages'.
89  */
90 static inline struct r1bio *get_resync_r1bio(struct bio *bio)
91 {
92 	return get_resync_pages(bio)->raid_bio;
93 }
94 
95 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
96 {
97 	struct pool_info *pi = data;
98 	int size = offsetof(struct r1bio, bios[pi->raid_disks]);
99 
100 	/* allocate a r1bio with room for raid_disks entries in the bios array */
101 	return kzalloc(size, gfp_flags);
102 }
103 
104 static void r1bio_pool_free(void *r1_bio, void *data)
105 {
106 	kfree(r1_bio);
107 }
108 
109 #define RESYNC_DEPTH 32
110 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
111 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
112 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
113 #define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
114 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
115 
116 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
117 {
118 	struct pool_info *pi = data;
119 	struct r1bio *r1_bio;
120 	struct bio *bio;
121 	int need_pages;
122 	int j;
123 	struct resync_pages *rps;
124 
125 	r1_bio = r1bio_pool_alloc(gfp_flags, pi);
126 	if (!r1_bio)
127 		return NULL;
128 
129 	rps = kmalloc(sizeof(struct resync_pages) * pi->raid_disks,
130 		      gfp_flags);
131 	if (!rps)
132 		goto out_free_r1bio;
133 
134 	/*
135 	 * Allocate bios : 1 for reading, n-1 for writing
136 	 */
137 	for (j = pi->raid_disks ; j-- ; ) {
138 		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
139 		if (!bio)
140 			goto out_free_bio;
141 		r1_bio->bios[j] = bio;
142 	}
143 	/*
144 	 * Allocate RESYNC_PAGES data pages and attach them to
145 	 * the first bio.
146 	 * If this is a user-requested check/repair, allocate
147 	 * RESYNC_PAGES for each bio.
148 	 */
149 	if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
150 		need_pages = pi->raid_disks;
151 	else
152 		need_pages = 1;
153 	for (j = 0; j < pi->raid_disks; j++) {
154 		struct resync_pages *rp = &rps[j];
155 
156 		bio = r1_bio->bios[j];
157 
158 		if (j < need_pages) {
159 			if (resync_alloc_pages(rp, gfp_flags))
160 				goto out_free_pages;
161 		} else {
162 			memcpy(rp, &rps[0], sizeof(*rp));
163 			resync_get_all_pages(rp);
164 		}
165 
166 		rp->raid_bio = r1_bio;
167 		bio->bi_private = rp;
168 	}
169 
170 	r1_bio->master_bio = NULL;
171 
172 	return r1_bio;
173 
174 out_free_pages:
175 	while (--j >= 0)
176 		resync_free_pages(&rps[j]);
177 
178 out_free_bio:
179 	while (++j < pi->raid_disks)
180 		bio_put(r1_bio->bios[j]);
181 	kfree(rps);
182 
183 out_free_r1bio:
184 	r1bio_pool_free(r1_bio, data);
185 	return NULL;
186 }
187 
188 static void r1buf_pool_free(void *__r1_bio, void *data)
189 {
190 	struct pool_info *pi = data;
191 	int i;
192 	struct r1bio *r1bio = __r1_bio;
193 	struct resync_pages *rp = NULL;
194 
195 	for (i = pi->raid_disks; i--; ) {
196 		rp = get_resync_pages(r1bio->bios[i]);
197 		resync_free_pages(rp);
198 		bio_put(r1bio->bios[i]);
199 	}
200 
201 	/* resync pages array stored in the 1st bio's .bi_private */
202 	kfree(rp);
203 
204 	r1bio_pool_free(r1bio, data);
205 }
206 
207 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
208 {
209 	int i;
210 
211 	for (i = 0; i < conf->raid_disks * 2; i++) {
212 		struct bio **bio = r1_bio->bios + i;
213 		if (!BIO_SPECIAL(*bio))
214 			bio_put(*bio);
215 		*bio = NULL;
216 	}
217 }
218 
219 static void free_r1bio(struct r1bio *r1_bio)
220 {
221 	struct r1conf *conf = r1_bio->mddev->private;
222 
223 	put_all_bios(conf, r1_bio);
224 	mempool_free(r1_bio, conf->r1bio_pool);
225 }
226 
227 static void put_buf(struct r1bio *r1_bio)
228 {
229 	struct r1conf *conf = r1_bio->mddev->private;
230 	sector_t sect = r1_bio->sector;
231 	int i;
232 
233 	for (i = 0; i < conf->raid_disks * 2; i++) {
234 		struct bio *bio = r1_bio->bios[i];
235 		if (bio->bi_end_io)
236 			rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
237 	}
238 
239 	mempool_free(r1_bio, conf->r1buf_pool);
240 
241 	lower_barrier(conf, sect);
242 }
243 
244 static void reschedule_retry(struct r1bio *r1_bio)
245 {
246 	unsigned long flags;
247 	struct mddev *mddev = r1_bio->mddev;
248 	struct r1conf *conf = mddev->private;
249 	int idx;
250 
251 	idx = sector_to_idx(r1_bio->sector);
252 	spin_lock_irqsave(&conf->device_lock, flags);
253 	list_add(&r1_bio->retry_list, &conf->retry_list);
254 	atomic_inc(&conf->nr_queued[idx]);
255 	spin_unlock_irqrestore(&conf->device_lock, flags);
256 
257 	wake_up(&conf->wait_barrier);
258 	md_wakeup_thread(mddev->thread);
259 }
260 
261 /*
262  * raid_end_bio_io() is called when we have finished servicing a mirrored
263  * operation and are ready to return a success/failure code to the buffer
264  * cache layer.
265  */
266 static void call_bio_endio(struct r1bio *r1_bio)
267 {
268 	struct bio *bio = r1_bio->master_bio;
269 	struct r1conf *conf = r1_bio->mddev->private;
270 
271 	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
272 		bio->bi_status = BLK_STS_IOERR;
273 
274 	bio_endio(bio);
275 	/*
276 	 * Wake up any possible resync thread that waits for the device
277 	 * to go idle.
278 	 */
279 	allow_barrier(conf, r1_bio->sector);
280 }
281 
282 static void raid_end_bio_io(struct r1bio *r1_bio)
283 {
284 	struct bio *bio = r1_bio->master_bio;
285 
286 	/* if nobody has done the final endio yet, do it now */
287 	if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
288 		pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
289 			 (bio_data_dir(bio) == WRITE) ? "write" : "read",
290 			 (unsigned long long) bio->bi_iter.bi_sector,
291 			 (unsigned long long) bio_end_sector(bio) - 1);
292 
293 		call_bio_endio(r1_bio);
294 	}
295 	free_r1bio(r1_bio);
296 }
297 
298 /*
299  * Update disk head position estimator based on IRQ completion info.
300  */
301 static inline void update_head_pos(int disk, struct r1bio *r1_bio)
302 {
303 	struct r1conf *conf = r1_bio->mddev->private;
304 
305 	conf->mirrors[disk].head_position =
306 		r1_bio->sector + (r1_bio->sectors);
307 }
308 
309 /*
310  * Find the disk number which triggered given bio
311  */
312 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
313 {
314 	int mirror;
315 	struct r1conf *conf = r1_bio->mddev->private;
316 	int raid_disks = conf->raid_disks;
317 
318 	for (mirror = 0; mirror < raid_disks * 2; mirror++)
319 		if (r1_bio->bios[mirror] == bio)
320 			break;
321 
322 	BUG_ON(mirror == raid_disks * 2);
323 	update_head_pos(mirror, r1_bio);
324 
325 	return mirror;
326 }
327 
328 static void raid1_end_read_request(struct bio *bio)
329 {
330 	int uptodate = !bio->bi_status;
331 	struct r1bio *r1_bio = bio->bi_private;
332 	struct r1conf *conf = r1_bio->mddev->private;
333 	struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev;
334 
335 	/*
336 	 * this branch is our 'one mirror IO has finished' event handler:
337 	 */
338 	update_head_pos(r1_bio->read_disk, r1_bio);
339 
340 	if (uptodate)
341 		set_bit(R1BIO_Uptodate, &r1_bio->state);
342 	else if (test_bit(FailFast, &rdev->flags) &&
343 		 test_bit(R1BIO_FailFast, &r1_bio->state))
344 		/* This was a fail-fast read so we definitely
345 		 * want to retry */
346 		;
347 	else {
348 		/* If all other devices have failed, we want to return
349 		 * the error upwards rather than fail the last device.
350 		 * Here we redefine "uptodate" to mean "Don't want to retry"
351 		 */
352 		unsigned long flags;
353 		spin_lock_irqsave(&conf->device_lock, flags);
354 		if (r1_bio->mddev->degraded == conf->raid_disks ||
355 		    (r1_bio->mddev->degraded == conf->raid_disks-1 &&
356 		     test_bit(In_sync, &rdev->flags)))
357 			uptodate = 1;
358 		spin_unlock_irqrestore(&conf->device_lock, flags);
359 	}
360 
361 	if (uptodate) {
362 		raid_end_bio_io(r1_bio);
363 		rdev_dec_pending(rdev, conf->mddev);
364 	} else {
365 		/*
366 		 * oops, read error:
367 		 */
368 		char b[BDEVNAME_SIZE];
369 		pr_err_ratelimited("md/raid1:%s: %s: rescheduling sector %llu\n",
370 				   mdname(conf->mddev),
371 				   bdevname(rdev->bdev, b),
372 				   (unsigned long long)r1_bio->sector);
373 		set_bit(R1BIO_ReadError, &r1_bio->state);
374 		reschedule_retry(r1_bio);
375 		/* don't drop the reference on read_disk yet */
376 	}
377 }
378 
379 static void close_write(struct r1bio *r1_bio)
380 {
381 	/* it really is the end of this request */
382 	if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
383 		bio_free_pages(r1_bio->behind_master_bio);
384 		bio_put(r1_bio->behind_master_bio);
385 		r1_bio->behind_master_bio = NULL;
386 	}
387 	/* clear the bitmap if all writes complete successfully */
388 	bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
389 			r1_bio->sectors,
390 			!test_bit(R1BIO_Degraded, &r1_bio->state),
391 			test_bit(R1BIO_BehindIO, &r1_bio->state));
392 	md_write_end(r1_bio->mddev);
393 }
394 
395 static void r1_bio_write_done(struct r1bio *r1_bio)
396 {
397 	if (!atomic_dec_and_test(&r1_bio->remaining))
398 		return;
399 
400 	if (test_bit(R1BIO_WriteError, &r1_bio->state))
401 		reschedule_retry(r1_bio);
402 	else {
403 		close_write(r1_bio);
404 		if (test_bit(R1BIO_MadeGood, &r1_bio->state))
405 			reschedule_retry(r1_bio);
406 		else
407 			raid_end_bio_io(r1_bio);
408 	}
409 }
410 
411 static void raid1_end_write_request(struct bio *bio)
412 {
413 	struct r1bio *r1_bio = bio->bi_private;
414 	int behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
415 	struct r1conf *conf = r1_bio->mddev->private;
416 	struct bio *to_put = NULL;
417 	int mirror = find_bio_disk(r1_bio, bio);
418 	struct md_rdev *rdev = conf->mirrors[mirror].rdev;
419 	bool discard_error;
420 
421 	discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
422 
423 	/*
424 	 * 'one mirror IO has finished' event handler:
425 	 */
426 	if (bio->bi_status && !discard_error) {
427 		set_bit(WriteErrorSeen,	&rdev->flags);
428 		if (!test_and_set_bit(WantReplacement, &rdev->flags))
429 			set_bit(MD_RECOVERY_NEEDED, &
430 				conf->mddev->recovery);
431 
432 		if (test_bit(FailFast, &rdev->flags) &&
433 		    (bio->bi_opf & MD_FAILFAST) &&
434 		    /* We never try FailFast to WriteMostly devices */
435 		    !test_bit(WriteMostly, &rdev->flags)) {
436 			md_error(r1_bio->mddev, rdev);
437 			if (!test_bit(Faulty, &rdev->flags))
438 				/* This is the only remaining device,
439 				 * We need to retry the write without
440 				 * FailFast
441 				 */
442 				set_bit(R1BIO_WriteError, &r1_bio->state);
443 			else {
444 				/* Finished with this branch */
445 				r1_bio->bios[mirror] = NULL;
446 				to_put = bio;
447 			}
448 		} else
449 			set_bit(R1BIO_WriteError, &r1_bio->state);
450 	} else {
451 		/*
452 		 * Set R1BIO_Uptodate in our master bio, so that we
453 		 * will return a good error code for to the higher
454 		 * levels even if IO on some other mirrored buffer
455 		 * fails.
456 		 *
457 		 * The 'master' represents the composite IO operation
458 		 * to user-side. So if something waits for IO, then it
459 		 * will wait for the 'master' bio.
460 		 */
461 		sector_t first_bad;
462 		int bad_sectors;
463 
464 		r1_bio->bios[mirror] = NULL;
465 		to_put = bio;
466 		/*
467 		 * Do not set R1BIO_Uptodate if the current device is
468 		 * rebuilding or Faulty. This is because we cannot use
469 		 * such device for properly reading the data back (we could
470 		 * potentially use it, if the current write would have felt
471 		 * before rdev->recovery_offset, but for simplicity we don't
472 		 * check this here.
473 		 */
474 		if (test_bit(In_sync, &rdev->flags) &&
475 		    !test_bit(Faulty, &rdev->flags))
476 			set_bit(R1BIO_Uptodate, &r1_bio->state);
477 
478 		/* Maybe we can clear some bad blocks. */
479 		if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
480 				&first_bad, &bad_sectors) && !discard_error) {
481 			r1_bio->bios[mirror] = IO_MADE_GOOD;
482 			set_bit(R1BIO_MadeGood, &r1_bio->state);
483 		}
484 	}
485 
486 	if (behind) {
487 		if (test_bit(WriteMostly, &rdev->flags))
488 			atomic_dec(&r1_bio->behind_remaining);
489 
490 		/*
491 		 * In behind mode, we ACK the master bio once the I/O
492 		 * has safely reached all non-writemostly
493 		 * disks. Setting the Returned bit ensures that this
494 		 * gets done only once -- we don't ever want to return
495 		 * -EIO here, instead we'll wait
496 		 */
497 		if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
498 		    test_bit(R1BIO_Uptodate, &r1_bio->state)) {
499 			/* Maybe we can return now */
500 			if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
501 				struct bio *mbio = r1_bio->master_bio;
502 				pr_debug("raid1: behind end write sectors"
503 					 " %llu-%llu\n",
504 					 (unsigned long long) mbio->bi_iter.bi_sector,
505 					 (unsigned long long) bio_end_sector(mbio) - 1);
506 				call_bio_endio(r1_bio);
507 			}
508 		}
509 	}
510 	if (r1_bio->bios[mirror] == NULL)
511 		rdev_dec_pending(rdev, conf->mddev);
512 
513 	/*
514 	 * Let's see if all mirrored write operations have finished
515 	 * already.
516 	 */
517 	r1_bio_write_done(r1_bio);
518 
519 	if (to_put)
520 		bio_put(to_put);
521 }
522 
523 static sector_t align_to_barrier_unit_end(sector_t start_sector,
524 					  sector_t sectors)
525 {
526 	sector_t len;
527 
528 	WARN_ON(sectors == 0);
529 	/*
530 	 * len is the number of sectors from start_sector to end of the
531 	 * barrier unit which start_sector belongs to.
532 	 */
533 	len = round_up(start_sector + 1, BARRIER_UNIT_SECTOR_SIZE) -
534 	      start_sector;
535 
536 	if (len > sectors)
537 		len = sectors;
538 
539 	return len;
540 }
541 
542 /*
543  * This routine returns the disk from which the requested read should
544  * be done. There is a per-array 'next expected sequential IO' sector
545  * number - if this matches on the next IO then we use the last disk.
546  * There is also a per-disk 'last know head position' sector that is
547  * maintained from IRQ contexts, both the normal and the resync IO
548  * completion handlers update this position correctly. If there is no
549  * perfect sequential match then we pick the disk whose head is closest.
550  *
551  * If there are 2 mirrors in the same 2 devices, performance degrades
552  * because position is mirror, not device based.
553  *
554  * The rdev for the device selected will have nr_pending incremented.
555  */
556 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
557 {
558 	const sector_t this_sector = r1_bio->sector;
559 	int sectors;
560 	int best_good_sectors;
561 	int best_disk, best_dist_disk, best_pending_disk;
562 	int has_nonrot_disk;
563 	int disk;
564 	sector_t best_dist;
565 	unsigned int min_pending;
566 	struct md_rdev *rdev;
567 	int choose_first;
568 	int choose_next_idle;
569 
570 	rcu_read_lock();
571 	/*
572 	 * Check if we can balance. We can balance on the whole
573 	 * device if no resync is going on, or below the resync window.
574 	 * We take the first readable disk when above the resync window.
575 	 */
576  retry:
577 	sectors = r1_bio->sectors;
578 	best_disk = -1;
579 	best_dist_disk = -1;
580 	best_dist = MaxSector;
581 	best_pending_disk = -1;
582 	min_pending = UINT_MAX;
583 	best_good_sectors = 0;
584 	has_nonrot_disk = 0;
585 	choose_next_idle = 0;
586 	clear_bit(R1BIO_FailFast, &r1_bio->state);
587 
588 	if ((conf->mddev->recovery_cp < this_sector + sectors) ||
589 	    (mddev_is_clustered(conf->mddev) &&
590 	    md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
591 		    this_sector + sectors)))
592 		choose_first = 1;
593 	else
594 		choose_first = 0;
595 
596 	for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
597 		sector_t dist;
598 		sector_t first_bad;
599 		int bad_sectors;
600 		unsigned int pending;
601 		bool nonrot;
602 
603 		rdev = rcu_dereference(conf->mirrors[disk].rdev);
604 		if (r1_bio->bios[disk] == IO_BLOCKED
605 		    || rdev == NULL
606 		    || test_bit(Faulty, &rdev->flags))
607 			continue;
608 		if (!test_bit(In_sync, &rdev->flags) &&
609 		    rdev->recovery_offset < this_sector + sectors)
610 			continue;
611 		if (test_bit(WriteMostly, &rdev->flags)) {
612 			/* Don't balance among write-mostly, just
613 			 * use the first as a last resort */
614 			if (best_dist_disk < 0) {
615 				if (is_badblock(rdev, this_sector, sectors,
616 						&first_bad, &bad_sectors)) {
617 					if (first_bad <= this_sector)
618 						/* Cannot use this */
619 						continue;
620 					best_good_sectors = first_bad - this_sector;
621 				} else
622 					best_good_sectors = sectors;
623 				best_dist_disk = disk;
624 				best_pending_disk = disk;
625 			}
626 			continue;
627 		}
628 		/* This is a reasonable device to use.  It might
629 		 * even be best.
630 		 */
631 		if (is_badblock(rdev, this_sector, sectors,
632 				&first_bad, &bad_sectors)) {
633 			if (best_dist < MaxSector)
634 				/* already have a better device */
635 				continue;
636 			if (first_bad <= this_sector) {
637 				/* cannot read here. If this is the 'primary'
638 				 * device, then we must not read beyond
639 				 * bad_sectors from another device..
640 				 */
641 				bad_sectors -= (this_sector - first_bad);
642 				if (choose_first && sectors > bad_sectors)
643 					sectors = bad_sectors;
644 				if (best_good_sectors > sectors)
645 					best_good_sectors = sectors;
646 
647 			} else {
648 				sector_t good_sectors = first_bad - this_sector;
649 				if (good_sectors > best_good_sectors) {
650 					best_good_sectors = good_sectors;
651 					best_disk = disk;
652 				}
653 				if (choose_first)
654 					break;
655 			}
656 			continue;
657 		} else {
658 			if ((sectors > best_good_sectors) && (best_disk >= 0))
659 				best_disk = -1;
660 			best_good_sectors = sectors;
661 		}
662 
663 		if (best_disk >= 0)
664 			/* At least two disks to choose from so failfast is OK */
665 			set_bit(R1BIO_FailFast, &r1_bio->state);
666 
667 		nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
668 		has_nonrot_disk |= nonrot;
669 		pending = atomic_read(&rdev->nr_pending);
670 		dist = abs(this_sector - conf->mirrors[disk].head_position);
671 		if (choose_first) {
672 			best_disk = disk;
673 			break;
674 		}
675 		/* Don't change to another disk for sequential reads */
676 		if (conf->mirrors[disk].next_seq_sect == this_sector
677 		    || dist == 0) {
678 			int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
679 			struct raid1_info *mirror = &conf->mirrors[disk];
680 
681 			best_disk = disk;
682 			/*
683 			 * If buffered sequential IO size exceeds optimal
684 			 * iosize, check if there is idle disk. If yes, choose
685 			 * the idle disk. read_balance could already choose an
686 			 * idle disk before noticing it's a sequential IO in
687 			 * this disk. This doesn't matter because this disk
688 			 * will idle, next time it will be utilized after the
689 			 * first disk has IO size exceeds optimal iosize. In
690 			 * this way, iosize of the first disk will be optimal
691 			 * iosize at least. iosize of the second disk might be
692 			 * small, but not a big deal since when the second disk
693 			 * starts IO, the first disk is likely still busy.
694 			 */
695 			if (nonrot && opt_iosize > 0 &&
696 			    mirror->seq_start != MaxSector &&
697 			    mirror->next_seq_sect > opt_iosize &&
698 			    mirror->next_seq_sect - opt_iosize >=
699 			    mirror->seq_start) {
700 				choose_next_idle = 1;
701 				continue;
702 			}
703 			break;
704 		}
705 
706 		if (choose_next_idle)
707 			continue;
708 
709 		if (min_pending > pending) {
710 			min_pending = pending;
711 			best_pending_disk = disk;
712 		}
713 
714 		if (dist < best_dist) {
715 			best_dist = dist;
716 			best_dist_disk = disk;
717 		}
718 	}
719 
720 	/*
721 	 * If all disks are rotational, choose the closest disk. If any disk is
722 	 * non-rotational, choose the disk with less pending request even the
723 	 * disk is rotational, which might/might not be optimal for raids with
724 	 * mixed ratation/non-rotational disks depending on workload.
725 	 */
726 	if (best_disk == -1) {
727 		if (has_nonrot_disk || min_pending == 0)
728 			best_disk = best_pending_disk;
729 		else
730 			best_disk = best_dist_disk;
731 	}
732 
733 	if (best_disk >= 0) {
734 		rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
735 		if (!rdev)
736 			goto retry;
737 		atomic_inc(&rdev->nr_pending);
738 		sectors = best_good_sectors;
739 
740 		if (conf->mirrors[best_disk].next_seq_sect != this_sector)
741 			conf->mirrors[best_disk].seq_start = this_sector;
742 
743 		conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
744 	}
745 	rcu_read_unlock();
746 	*max_sectors = sectors;
747 
748 	return best_disk;
749 }
750 
751 static int raid1_congested(struct mddev *mddev, int bits)
752 {
753 	struct r1conf *conf = mddev->private;
754 	int i, ret = 0;
755 
756 	if ((bits & (1 << WB_async_congested)) &&
757 	    conf->pending_count >= max_queued_requests)
758 		return 1;
759 
760 	rcu_read_lock();
761 	for (i = 0; i < conf->raid_disks * 2; i++) {
762 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
763 		if (rdev && !test_bit(Faulty, &rdev->flags)) {
764 			struct request_queue *q = bdev_get_queue(rdev->bdev);
765 
766 			BUG_ON(!q);
767 
768 			/* Note the '|| 1' - when read_balance prefers
769 			 * non-congested targets, it can be removed
770 			 */
771 			if ((bits & (1 << WB_async_congested)) || 1)
772 				ret |= bdi_congested(q->backing_dev_info, bits);
773 			else
774 				ret &= bdi_congested(q->backing_dev_info, bits);
775 		}
776 	}
777 	rcu_read_unlock();
778 	return ret;
779 }
780 
781 static void flush_bio_list(struct r1conf *conf, struct bio *bio)
782 {
783 	/* flush any pending bitmap writes to disk before proceeding w/ I/O */
784 	bitmap_unplug(conf->mddev->bitmap);
785 	wake_up(&conf->wait_barrier);
786 
787 	while (bio) { /* submit pending writes */
788 		struct bio *next = bio->bi_next;
789 		struct md_rdev *rdev = (void *)bio->bi_disk;
790 		bio->bi_next = NULL;
791 		bio_set_dev(bio, rdev->bdev);
792 		if (test_bit(Faulty, &rdev->flags)) {
793 			bio_io_error(bio);
794 		} else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
795 				    !blk_queue_discard(bio->bi_disk->queue)))
796 			/* Just ignore it */
797 			bio_endio(bio);
798 		else
799 			generic_make_request(bio);
800 		bio = next;
801 	}
802 }
803 
804 static void flush_pending_writes(struct r1conf *conf)
805 {
806 	/* Any writes that have been queued but are awaiting
807 	 * bitmap updates get flushed here.
808 	 */
809 	spin_lock_irq(&conf->device_lock);
810 
811 	if (conf->pending_bio_list.head) {
812 		struct blk_plug plug;
813 		struct bio *bio;
814 
815 		bio = bio_list_get(&conf->pending_bio_list);
816 		conf->pending_count = 0;
817 		spin_unlock_irq(&conf->device_lock);
818 
819 		/*
820 		 * As this is called in a wait_event() loop (see freeze_array),
821 		 * current->state might be TASK_UNINTERRUPTIBLE which will
822 		 * cause a warning when we prepare to wait again.  As it is
823 		 * rare that this path is taken, it is perfectly safe to force
824 		 * us to go around the wait_event() loop again, so the warning
825 		 * is a false-positive.  Silence the warning by resetting
826 		 * thread state
827 		 */
828 		__set_current_state(TASK_RUNNING);
829 		blk_start_plug(&plug);
830 		flush_bio_list(conf, bio);
831 		blk_finish_plug(&plug);
832 	} else
833 		spin_unlock_irq(&conf->device_lock);
834 }
835 
836 /* Barriers....
837  * Sometimes we need to suspend IO while we do something else,
838  * either some resync/recovery, or reconfigure the array.
839  * To do this we raise a 'barrier'.
840  * The 'barrier' is a counter that can be raised multiple times
841  * to count how many activities are happening which preclude
842  * normal IO.
843  * We can only raise the barrier if there is no pending IO.
844  * i.e. if nr_pending == 0.
845  * We choose only to raise the barrier if no-one is waiting for the
846  * barrier to go down.  This means that as soon as an IO request
847  * is ready, no other operations which require a barrier will start
848  * until the IO request has had a chance.
849  *
850  * So: regular IO calls 'wait_barrier'.  When that returns there
851  *    is no backgroup IO happening,  It must arrange to call
852  *    allow_barrier when it has finished its IO.
853  * backgroup IO calls must call raise_barrier.  Once that returns
854  *    there is no normal IO happeing.  It must arrange to call
855  *    lower_barrier when the particular background IO completes.
856  */
857 static void raise_barrier(struct r1conf *conf, sector_t sector_nr)
858 {
859 	int idx = sector_to_idx(sector_nr);
860 
861 	spin_lock_irq(&conf->resync_lock);
862 
863 	/* Wait until no block IO is waiting */
864 	wait_event_lock_irq(conf->wait_barrier,
865 			    !atomic_read(&conf->nr_waiting[idx]),
866 			    conf->resync_lock);
867 
868 	/* block any new IO from starting */
869 	atomic_inc(&conf->barrier[idx]);
870 	/*
871 	 * In raise_barrier() we firstly increase conf->barrier[idx] then
872 	 * check conf->nr_pending[idx]. In _wait_barrier() we firstly
873 	 * increase conf->nr_pending[idx] then check conf->barrier[idx].
874 	 * A memory barrier here to make sure conf->nr_pending[idx] won't
875 	 * be fetched before conf->barrier[idx] is increased. Otherwise
876 	 * there will be a race between raise_barrier() and _wait_barrier().
877 	 */
878 	smp_mb__after_atomic();
879 
880 	/* For these conditions we must wait:
881 	 * A: while the array is in frozen state
882 	 * B: while conf->nr_pending[idx] is not 0, meaning regular I/O
883 	 *    existing in corresponding I/O barrier bucket.
884 	 * C: while conf->barrier[idx] >= RESYNC_DEPTH, meaning reaches
885 	 *    max resync count which allowed on current I/O barrier bucket.
886 	 */
887 	wait_event_lock_irq(conf->wait_barrier,
888 			    !conf->array_frozen &&
889 			     !atomic_read(&conf->nr_pending[idx]) &&
890 			     atomic_read(&conf->barrier[idx]) < RESYNC_DEPTH,
891 			    conf->resync_lock);
892 
893 	atomic_inc(&conf->nr_sync_pending);
894 	spin_unlock_irq(&conf->resync_lock);
895 }
896 
897 static void lower_barrier(struct r1conf *conf, sector_t sector_nr)
898 {
899 	int idx = sector_to_idx(sector_nr);
900 
901 	BUG_ON(atomic_read(&conf->barrier[idx]) <= 0);
902 
903 	atomic_dec(&conf->barrier[idx]);
904 	atomic_dec(&conf->nr_sync_pending);
905 	wake_up(&conf->wait_barrier);
906 }
907 
908 static void _wait_barrier(struct r1conf *conf, int idx)
909 {
910 	/*
911 	 * We need to increase conf->nr_pending[idx] very early here,
912 	 * then raise_barrier() can be blocked when it waits for
913 	 * conf->nr_pending[idx] to be 0. Then we can avoid holding
914 	 * conf->resync_lock when there is no barrier raised in same
915 	 * barrier unit bucket. Also if the array is frozen, I/O
916 	 * should be blocked until array is unfrozen.
917 	 */
918 	atomic_inc(&conf->nr_pending[idx]);
919 	/*
920 	 * In _wait_barrier() we firstly increase conf->nr_pending[idx], then
921 	 * check conf->barrier[idx]. In raise_barrier() we firstly increase
922 	 * conf->barrier[idx], then check conf->nr_pending[idx]. A memory
923 	 * barrier is necessary here to make sure conf->barrier[idx] won't be
924 	 * fetched before conf->nr_pending[idx] is increased. Otherwise there
925 	 * will be a race between _wait_barrier() and raise_barrier().
926 	 */
927 	smp_mb__after_atomic();
928 
929 	/*
930 	 * Don't worry about checking two atomic_t variables at same time
931 	 * here. If during we check conf->barrier[idx], the array is
932 	 * frozen (conf->array_frozen is 1), and chonf->barrier[idx] is
933 	 * 0, it is safe to return and make the I/O continue. Because the
934 	 * array is frozen, all I/O returned here will eventually complete
935 	 * or be queued, no race will happen. See code comment in
936 	 * frozen_array().
937 	 */
938 	if (!READ_ONCE(conf->array_frozen) &&
939 	    !atomic_read(&conf->barrier[idx]))
940 		return;
941 
942 	/*
943 	 * After holding conf->resync_lock, conf->nr_pending[idx]
944 	 * should be decreased before waiting for barrier to drop.
945 	 * Otherwise, we may encounter a race condition because
946 	 * raise_barrer() might be waiting for conf->nr_pending[idx]
947 	 * to be 0 at same time.
948 	 */
949 	spin_lock_irq(&conf->resync_lock);
950 	atomic_inc(&conf->nr_waiting[idx]);
951 	atomic_dec(&conf->nr_pending[idx]);
952 	/*
953 	 * In case freeze_array() is waiting for
954 	 * get_unqueued_pending() == extra
955 	 */
956 	wake_up(&conf->wait_barrier);
957 	/* Wait for the barrier in same barrier unit bucket to drop. */
958 	wait_event_lock_irq(conf->wait_barrier,
959 			    !conf->array_frozen &&
960 			     !atomic_read(&conf->barrier[idx]),
961 			    conf->resync_lock);
962 	atomic_inc(&conf->nr_pending[idx]);
963 	atomic_dec(&conf->nr_waiting[idx]);
964 	spin_unlock_irq(&conf->resync_lock);
965 }
966 
967 static void wait_read_barrier(struct r1conf *conf, sector_t sector_nr)
968 {
969 	int idx = sector_to_idx(sector_nr);
970 
971 	/*
972 	 * Very similar to _wait_barrier(). The difference is, for read
973 	 * I/O we don't need wait for sync I/O, but if the whole array
974 	 * is frozen, the read I/O still has to wait until the array is
975 	 * unfrozen. Since there is no ordering requirement with
976 	 * conf->barrier[idx] here, memory barrier is unnecessary as well.
977 	 */
978 	atomic_inc(&conf->nr_pending[idx]);
979 
980 	if (!READ_ONCE(conf->array_frozen))
981 		return;
982 
983 	spin_lock_irq(&conf->resync_lock);
984 	atomic_inc(&conf->nr_waiting[idx]);
985 	atomic_dec(&conf->nr_pending[idx]);
986 	/*
987 	 * In case freeze_array() is waiting for
988 	 * get_unqueued_pending() == extra
989 	 */
990 	wake_up(&conf->wait_barrier);
991 	/* Wait for array to be unfrozen */
992 	wait_event_lock_irq(conf->wait_barrier,
993 			    !conf->array_frozen,
994 			    conf->resync_lock);
995 	atomic_inc(&conf->nr_pending[idx]);
996 	atomic_dec(&conf->nr_waiting[idx]);
997 	spin_unlock_irq(&conf->resync_lock);
998 }
999 
1000 static void wait_barrier(struct r1conf *conf, sector_t sector_nr)
1001 {
1002 	int idx = sector_to_idx(sector_nr);
1003 
1004 	_wait_barrier(conf, idx);
1005 }
1006 
1007 static void _allow_barrier(struct r1conf *conf, int idx)
1008 {
1009 	atomic_dec(&conf->nr_pending[idx]);
1010 	wake_up(&conf->wait_barrier);
1011 }
1012 
1013 static void allow_barrier(struct r1conf *conf, sector_t sector_nr)
1014 {
1015 	int idx = sector_to_idx(sector_nr);
1016 
1017 	_allow_barrier(conf, idx);
1018 }
1019 
1020 /* conf->resync_lock should be held */
1021 static int get_unqueued_pending(struct r1conf *conf)
1022 {
1023 	int idx, ret;
1024 
1025 	ret = atomic_read(&conf->nr_sync_pending);
1026 	for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
1027 		ret += atomic_read(&conf->nr_pending[idx]) -
1028 			atomic_read(&conf->nr_queued[idx]);
1029 
1030 	return ret;
1031 }
1032 
1033 static void freeze_array(struct r1conf *conf, int extra)
1034 {
1035 	/* Stop sync I/O and normal I/O and wait for everything to
1036 	 * go quiet.
1037 	 * This is called in two situations:
1038 	 * 1) management command handlers (reshape, remove disk, quiesce).
1039 	 * 2) one normal I/O request failed.
1040 
1041 	 * After array_frozen is set to 1, new sync IO will be blocked at
1042 	 * raise_barrier(), and new normal I/O will blocked at _wait_barrier()
1043 	 * or wait_read_barrier(). The flying I/Os will either complete or be
1044 	 * queued. When everything goes quite, there are only queued I/Os left.
1045 
1046 	 * Every flying I/O contributes to a conf->nr_pending[idx], idx is the
1047 	 * barrier bucket index which this I/O request hits. When all sync and
1048 	 * normal I/O are queued, sum of all conf->nr_pending[] will match sum
1049 	 * of all conf->nr_queued[]. But normal I/O failure is an exception,
1050 	 * in handle_read_error(), we may call freeze_array() before trying to
1051 	 * fix the read error. In this case, the error read I/O is not queued,
1052 	 * so get_unqueued_pending() == 1.
1053 	 *
1054 	 * Therefore before this function returns, we need to wait until
1055 	 * get_unqueued_pendings(conf) gets equal to extra. For
1056 	 * normal I/O context, extra is 1, in rested situations extra is 0.
1057 	 */
1058 	spin_lock_irq(&conf->resync_lock);
1059 	conf->array_frozen = 1;
1060 	raid1_log(conf->mddev, "wait freeze");
1061 	wait_event_lock_irq_cmd(
1062 		conf->wait_barrier,
1063 		get_unqueued_pending(conf) == extra,
1064 		conf->resync_lock,
1065 		flush_pending_writes(conf));
1066 	spin_unlock_irq(&conf->resync_lock);
1067 }
1068 static void unfreeze_array(struct r1conf *conf)
1069 {
1070 	/* reverse the effect of the freeze */
1071 	spin_lock_irq(&conf->resync_lock);
1072 	conf->array_frozen = 0;
1073 	spin_unlock_irq(&conf->resync_lock);
1074 	wake_up(&conf->wait_barrier);
1075 }
1076 
1077 static void alloc_behind_master_bio(struct r1bio *r1_bio,
1078 					   struct bio *bio)
1079 {
1080 	int size = bio->bi_iter.bi_size;
1081 	unsigned vcnt = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1082 	int i = 0;
1083 	struct bio *behind_bio = NULL;
1084 
1085 	behind_bio = bio_alloc_mddev(GFP_NOIO, vcnt, r1_bio->mddev);
1086 	if (!behind_bio)
1087 		return;
1088 
1089 	/* discard op, we don't support writezero/writesame yet */
1090 	if (!bio_has_data(bio)) {
1091 		behind_bio->bi_iter.bi_size = size;
1092 		goto skip_copy;
1093 	}
1094 
1095 	while (i < vcnt && size) {
1096 		struct page *page;
1097 		int len = min_t(int, PAGE_SIZE, size);
1098 
1099 		page = alloc_page(GFP_NOIO);
1100 		if (unlikely(!page))
1101 			goto free_pages;
1102 
1103 		bio_add_page(behind_bio, page, len, 0);
1104 
1105 		size -= len;
1106 		i++;
1107 	}
1108 
1109 	bio_copy_data(behind_bio, bio);
1110 skip_copy:
1111 	r1_bio->behind_master_bio = behind_bio;;
1112 	set_bit(R1BIO_BehindIO, &r1_bio->state);
1113 
1114 	return;
1115 
1116 free_pages:
1117 	pr_debug("%dB behind alloc failed, doing sync I/O\n",
1118 		 bio->bi_iter.bi_size);
1119 	bio_free_pages(behind_bio);
1120 	bio_put(behind_bio);
1121 }
1122 
1123 struct raid1_plug_cb {
1124 	struct blk_plug_cb	cb;
1125 	struct bio_list		pending;
1126 	int			pending_cnt;
1127 };
1128 
1129 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1130 {
1131 	struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1132 						  cb);
1133 	struct mddev *mddev = plug->cb.data;
1134 	struct r1conf *conf = mddev->private;
1135 	struct bio *bio;
1136 
1137 	if (from_schedule || current->bio_list) {
1138 		spin_lock_irq(&conf->device_lock);
1139 		bio_list_merge(&conf->pending_bio_list, &plug->pending);
1140 		conf->pending_count += plug->pending_cnt;
1141 		spin_unlock_irq(&conf->device_lock);
1142 		wake_up(&conf->wait_barrier);
1143 		md_wakeup_thread(mddev->thread);
1144 		kfree(plug);
1145 		return;
1146 	}
1147 
1148 	/* we aren't scheduling, so we can do the write-out directly. */
1149 	bio = bio_list_get(&plug->pending);
1150 	flush_bio_list(conf, bio);
1151 	kfree(plug);
1152 }
1153 
1154 static void init_r1bio(struct r1bio *r1_bio, struct mddev *mddev, struct bio *bio)
1155 {
1156 	r1_bio->master_bio = bio;
1157 	r1_bio->sectors = bio_sectors(bio);
1158 	r1_bio->state = 0;
1159 	r1_bio->mddev = mddev;
1160 	r1_bio->sector = bio->bi_iter.bi_sector;
1161 }
1162 
1163 static inline struct r1bio *
1164 alloc_r1bio(struct mddev *mddev, struct bio *bio)
1165 {
1166 	struct r1conf *conf = mddev->private;
1167 	struct r1bio *r1_bio;
1168 
1169 	r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1170 	/* Ensure no bio records IO_BLOCKED */
1171 	memset(r1_bio->bios, 0, conf->raid_disks * sizeof(r1_bio->bios[0]));
1172 	init_r1bio(r1_bio, mddev, bio);
1173 	return r1_bio;
1174 }
1175 
1176 static void raid1_read_request(struct mddev *mddev, struct bio *bio,
1177 			       int max_read_sectors, struct r1bio *r1_bio)
1178 {
1179 	struct r1conf *conf = mddev->private;
1180 	struct raid1_info *mirror;
1181 	struct bio *read_bio;
1182 	struct bitmap *bitmap = mddev->bitmap;
1183 	const int op = bio_op(bio);
1184 	const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1185 	int max_sectors;
1186 	int rdisk;
1187 	bool print_msg = !!r1_bio;
1188 	char b[BDEVNAME_SIZE];
1189 
1190 	/*
1191 	 * If r1_bio is set, we are blocking the raid1d thread
1192 	 * so there is a tiny risk of deadlock.  So ask for
1193 	 * emergency memory if needed.
1194 	 */
1195 	gfp_t gfp = r1_bio ? (GFP_NOIO | __GFP_HIGH) : GFP_NOIO;
1196 
1197 	if (print_msg) {
1198 		/* Need to get the block device name carefully */
1199 		struct md_rdev *rdev;
1200 		rcu_read_lock();
1201 		rdev = rcu_dereference(conf->mirrors[r1_bio->read_disk].rdev);
1202 		if (rdev)
1203 			bdevname(rdev->bdev, b);
1204 		else
1205 			strcpy(b, "???");
1206 		rcu_read_unlock();
1207 	}
1208 
1209 	/*
1210 	 * Still need barrier for READ in case that whole
1211 	 * array is frozen.
1212 	 */
1213 	wait_read_barrier(conf, bio->bi_iter.bi_sector);
1214 
1215 	if (!r1_bio)
1216 		r1_bio = alloc_r1bio(mddev, bio);
1217 	else
1218 		init_r1bio(r1_bio, mddev, bio);
1219 	r1_bio->sectors = max_read_sectors;
1220 
1221 	/*
1222 	 * make_request() can abort the operation when read-ahead is being
1223 	 * used and no empty request is available.
1224 	 */
1225 	rdisk = read_balance(conf, r1_bio, &max_sectors);
1226 
1227 	if (rdisk < 0) {
1228 		/* couldn't find anywhere to read from */
1229 		if (print_msg) {
1230 			pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
1231 					    mdname(mddev),
1232 					    b,
1233 					    (unsigned long long)r1_bio->sector);
1234 		}
1235 		raid_end_bio_io(r1_bio);
1236 		return;
1237 	}
1238 	mirror = conf->mirrors + rdisk;
1239 
1240 	if (print_msg)
1241 		pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %s\n",
1242 				    mdname(mddev),
1243 				    (unsigned long long)r1_bio->sector,
1244 				    bdevname(mirror->rdev->bdev, b));
1245 
1246 	if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1247 	    bitmap) {
1248 		/*
1249 		 * Reading from a write-mostly device must take care not to
1250 		 * over-take any writes that are 'behind'
1251 		 */
1252 		raid1_log(mddev, "wait behind writes");
1253 		wait_event(bitmap->behind_wait,
1254 			   atomic_read(&bitmap->behind_writes) == 0);
1255 	}
1256 
1257 	if (max_sectors < bio_sectors(bio)) {
1258 		struct bio *split = bio_split(bio, max_sectors,
1259 					      gfp, conf->bio_split);
1260 		bio_chain(split, bio);
1261 		generic_make_request(bio);
1262 		bio = split;
1263 		r1_bio->master_bio = bio;
1264 		r1_bio->sectors = max_sectors;
1265 	}
1266 
1267 	r1_bio->read_disk = rdisk;
1268 
1269 	read_bio = bio_clone_fast(bio, gfp, mddev->bio_set);
1270 
1271 	r1_bio->bios[rdisk] = read_bio;
1272 
1273 	read_bio->bi_iter.bi_sector = r1_bio->sector +
1274 		mirror->rdev->data_offset;
1275 	bio_set_dev(read_bio, mirror->rdev->bdev);
1276 	read_bio->bi_end_io = raid1_end_read_request;
1277 	bio_set_op_attrs(read_bio, op, do_sync);
1278 	if (test_bit(FailFast, &mirror->rdev->flags) &&
1279 	    test_bit(R1BIO_FailFast, &r1_bio->state))
1280 	        read_bio->bi_opf |= MD_FAILFAST;
1281 	read_bio->bi_private = r1_bio;
1282 
1283 	if (mddev->gendisk)
1284 	        trace_block_bio_remap(read_bio->bi_disk->queue, read_bio,
1285 				disk_devt(mddev->gendisk), r1_bio->sector);
1286 
1287 	generic_make_request(read_bio);
1288 }
1289 
1290 static void raid1_write_request(struct mddev *mddev, struct bio *bio,
1291 				int max_write_sectors)
1292 {
1293 	struct r1conf *conf = mddev->private;
1294 	struct r1bio *r1_bio;
1295 	int i, disks;
1296 	struct bitmap *bitmap = mddev->bitmap;
1297 	unsigned long flags;
1298 	struct md_rdev *blocked_rdev;
1299 	struct blk_plug_cb *cb;
1300 	struct raid1_plug_cb *plug = NULL;
1301 	int first_clone;
1302 	int max_sectors;
1303 
1304 	if (mddev_is_clustered(mddev) &&
1305 	     md_cluster_ops->area_resyncing(mddev, WRITE,
1306 		     bio->bi_iter.bi_sector, bio_end_sector(bio))) {
1307 
1308 		DEFINE_WAIT(w);
1309 		for (;;) {
1310 			prepare_to_wait(&conf->wait_barrier,
1311 					&w, TASK_IDLE);
1312 			if (!md_cluster_ops->area_resyncing(mddev, WRITE,
1313 							bio->bi_iter.bi_sector,
1314 							bio_end_sector(bio)))
1315 				break;
1316 			schedule();
1317 		}
1318 		finish_wait(&conf->wait_barrier, &w);
1319 	}
1320 
1321 	/*
1322 	 * Register the new request and wait if the reconstruction
1323 	 * thread has put up a bar for new requests.
1324 	 * Continue immediately if no resync is active currently.
1325 	 */
1326 	wait_barrier(conf, bio->bi_iter.bi_sector);
1327 
1328 	r1_bio = alloc_r1bio(mddev, bio);
1329 	r1_bio->sectors = max_write_sectors;
1330 
1331 	if (conf->pending_count >= max_queued_requests) {
1332 		md_wakeup_thread(mddev->thread);
1333 		raid1_log(mddev, "wait queued");
1334 		wait_event(conf->wait_barrier,
1335 			   conf->pending_count < max_queued_requests);
1336 	}
1337 	/* first select target devices under rcu_lock and
1338 	 * inc refcount on their rdev.  Record them by setting
1339 	 * bios[x] to bio
1340 	 * If there are known/acknowledged bad blocks on any device on
1341 	 * which we have seen a write error, we want to avoid writing those
1342 	 * blocks.
1343 	 * This potentially requires several writes to write around
1344 	 * the bad blocks.  Each set of writes gets it's own r1bio
1345 	 * with a set of bios attached.
1346 	 */
1347 
1348 	disks = conf->raid_disks * 2;
1349  retry_write:
1350 	blocked_rdev = NULL;
1351 	rcu_read_lock();
1352 	max_sectors = r1_bio->sectors;
1353 	for (i = 0;  i < disks; i++) {
1354 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1355 		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1356 			atomic_inc(&rdev->nr_pending);
1357 			blocked_rdev = rdev;
1358 			break;
1359 		}
1360 		r1_bio->bios[i] = NULL;
1361 		if (!rdev || test_bit(Faulty, &rdev->flags)) {
1362 			if (i < conf->raid_disks)
1363 				set_bit(R1BIO_Degraded, &r1_bio->state);
1364 			continue;
1365 		}
1366 
1367 		atomic_inc(&rdev->nr_pending);
1368 		if (test_bit(WriteErrorSeen, &rdev->flags)) {
1369 			sector_t first_bad;
1370 			int bad_sectors;
1371 			int is_bad;
1372 
1373 			is_bad = is_badblock(rdev, r1_bio->sector, max_sectors,
1374 					     &first_bad, &bad_sectors);
1375 			if (is_bad < 0) {
1376 				/* mustn't write here until the bad block is
1377 				 * acknowledged*/
1378 				set_bit(BlockedBadBlocks, &rdev->flags);
1379 				blocked_rdev = rdev;
1380 				break;
1381 			}
1382 			if (is_bad && first_bad <= r1_bio->sector) {
1383 				/* Cannot write here at all */
1384 				bad_sectors -= (r1_bio->sector - first_bad);
1385 				if (bad_sectors < max_sectors)
1386 					/* mustn't write more than bad_sectors
1387 					 * to other devices yet
1388 					 */
1389 					max_sectors = bad_sectors;
1390 				rdev_dec_pending(rdev, mddev);
1391 				/* We don't set R1BIO_Degraded as that
1392 				 * only applies if the disk is
1393 				 * missing, so it might be re-added,
1394 				 * and we want to know to recover this
1395 				 * chunk.
1396 				 * In this case the device is here,
1397 				 * and the fact that this chunk is not
1398 				 * in-sync is recorded in the bad
1399 				 * block log
1400 				 */
1401 				continue;
1402 			}
1403 			if (is_bad) {
1404 				int good_sectors = first_bad - r1_bio->sector;
1405 				if (good_sectors < max_sectors)
1406 					max_sectors = good_sectors;
1407 			}
1408 		}
1409 		r1_bio->bios[i] = bio;
1410 	}
1411 	rcu_read_unlock();
1412 
1413 	if (unlikely(blocked_rdev)) {
1414 		/* Wait for this device to become unblocked */
1415 		int j;
1416 
1417 		for (j = 0; j < i; j++)
1418 			if (r1_bio->bios[j])
1419 				rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1420 		r1_bio->state = 0;
1421 		allow_barrier(conf, bio->bi_iter.bi_sector);
1422 		raid1_log(mddev, "wait rdev %d blocked", blocked_rdev->raid_disk);
1423 		md_wait_for_blocked_rdev(blocked_rdev, mddev);
1424 		wait_barrier(conf, bio->bi_iter.bi_sector);
1425 		goto retry_write;
1426 	}
1427 
1428 	if (max_sectors < bio_sectors(bio)) {
1429 		struct bio *split = bio_split(bio, max_sectors,
1430 					      GFP_NOIO, conf->bio_split);
1431 		bio_chain(split, bio);
1432 		generic_make_request(bio);
1433 		bio = split;
1434 		r1_bio->master_bio = bio;
1435 		r1_bio->sectors = max_sectors;
1436 	}
1437 
1438 	atomic_set(&r1_bio->remaining, 1);
1439 	atomic_set(&r1_bio->behind_remaining, 0);
1440 
1441 	first_clone = 1;
1442 
1443 	for (i = 0; i < disks; i++) {
1444 		struct bio *mbio = NULL;
1445 		if (!r1_bio->bios[i])
1446 			continue;
1447 
1448 
1449 		if (first_clone) {
1450 			/* do behind I/O ?
1451 			 * Not if there are too many, or cannot
1452 			 * allocate memory, or a reader on WriteMostly
1453 			 * is waiting for behind writes to flush */
1454 			if (bitmap &&
1455 			    (atomic_read(&bitmap->behind_writes)
1456 			     < mddev->bitmap_info.max_write_behind) &&
1457 			    !waitqueue_active(&bitmap->behind_wait)) {
1458 				alloc_behind_master_bio(r1_bio, bio);
1459 			}
1460 
1461 			bitmap_startwrite(bitmap, r1_bio->sector,
1462 					  r1_bio->sectors,
1463 					  test_bit(R1BIO_BehindIO,
1464 						   &r1_bio->state));
1465 			first_clone = 0;
1466 		}
1467 
1468 		if (r1_bio->behind_master_bio)
1469 			mbio = bio_clone_fast(r1_bio->behind_master_bio,
1470 					      GFP_NOIO, mddev->bio_set);
1471 		else
1472 			mbio = bio_clone_fast(bio, GFP_NOIO, mddev->bio_set);
1473 
1474 		if (r1_bio->behind_master_bio) {
1475 			if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1476 				atomic_inc(&r1_bio->behind_remaining);
1477 		}
1478 
1479 		r1_bio->bios[i] = mbio;
1480 
1481 		mbio->bi_iter.bi_sector	= (r1_bio->sector +
1482 				   conf->mirrors[i].rdev->data_offset);
1483 		bio_set_dev(mbio, conf->mirrors[i].rdev->bdev);
1484 		mbio->bi_end_io	= raid1_end_write_request;
1485 		mbio->bi_opf = bio_op(bio) | (bio->bi_opf & (REQ_SYNC | REQ_FUA));
1486 		if (test_bit(FailFast, &conf->mirrors[i].rdev->flags) &&
1487 		    !test_bit(WriteMostly, &conf->mirrors[i].rdev->flags) &&
1488 		    conf->raid_disks - mddev->degraded > 1)
1489 			mbio->bi_opf |= MD_FAILFAST;
1490 		mbio->bi_private = r1_bio;
1491 
1492 		atomic_inc(&r1_bio->remaining);
1493 
1494 		if (mddev->gendisk)
1495 			trace_block_bio_remap(mbio->bi_disk->queue,
1496 					      mbio, disk_devt(mddev->gendisk),
1497 					      r1_bio->sector);
1498 		/* flush_pending_writes() needs access to the rdev so...*/
1499 		mbio->bi_disk = (void *)conf->mirrors[i].rdev;
1500 
1501 		cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1502 		if (cb)
1503 			plug = container_of(cb, struct raid1_plug_cb, cb);
1504 		else
1505 			plug = NULL;
1506 		if (plug) {
1507 			bio_list_add(&plug->pending, mbio);
1508 			plug->pending_cnt++;
1509 		} else {
1510 			spin_lock_irqsave(&conf->device_lock, flags);
1511 			bio_list_add(&conf->pending_bio_list, mbio);
1512 			conf->pending_count++;
1513 			spin_unlock_irqrestore(&conf->device_lock, flags);
1514 			md_wakeup_thread(mddev->thread);
1515 		}
1516 	}
1517 
1518 	r1_bio_write_done(r1_bio);
1519 
1520 	/* In case raid1d snuck in to freeze_array */
1521 	wake_up(&conf->wait_barrier);
1522 }
1523 
1524 static bool raid1_make_request(struct mddev *mddev, struct bio *bio)
1525 {
1526 	sector_t sectors;
1527 
1528 	if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1529 		md_flush_request(mddev, bio);
1530 		return true;
1531 	}
1532 
1533 	/*
1534 	 * There is a limit to the maximum size, but
1535 	 * the read/write handler might find a lower limit
1536 	 * due to bad blocks.  To avoid multiple splits,
1537 	 * we pass the maximum number of sectors down
1538 	 * and let the lower level perform the split.
1539 	 */
1540 	sectors = align_to_barrier_unit_end(
1541 		bio->bi_iter.bi_sector, bio_sectors(bio));
1542 
1543 	if (bio_data_dir(bio) == READ)
1544 		raid1_read_request(mddev, bio, sectors, NULL);
1545 	else {
1546 		if (!md_write_start(mddev,bio))
1547 			return false;
1548 		raid1_write_request(mddev, bio, sectors);
1549 	}
1550 	return true;
1551 }
1552 
1553 static void raid1_status(struct seq_file *seq, struct mddev *mddev)
1554 {
1555 	struct r1conf *conf = mddev->private;
1556 	int i;
1557 
1558 	seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1559 		   conf->raid_disks - mddev->degraded);
1560 	rcu_read_lock();
1561 	for (i = 0; i < conf->raid_disks; i++) {
1562 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1563 		seq_printf(seq, "%s",
1564 			   rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1565 	}
1566 	rcu_read_unlock();
1567 	seq_printf(seq, "]");
1568 }
1569 
1570 static void raid1_error(struct mddev *mddev, struct md_rdev *rdev)
1571 {
1572 	char b[BDEVNAME_SIZE];
1573 	struct r1conf *conf = mddev->private;
1574 	unsigned long flags;
1575 
1576 	/*
1577 	 * If it is not operational, then we have already marked it as dead
1578 	 * else if it is the last working disks, ignore the error, let the
1579 	 * next level up know.
1580 	 * else mark the drive as failed
1581 	 */
1582 	spin_lock_irqsave(&conf->device_lock, flags);
1583 	if (test_bit(In_sync, &rdev->flags)
1584 	    && (conf->raid_disks - mddev->degraded) == 1) {
1585 		/*
1586 		 * Don't fail the drive, act as though we were just a
1587 		 * normal single drive.
1588 		 * However don't try a recovery from this drive as
1589 		 * it is very likely to fail.
1590 		 */
1591 		conf->recovery_disabled = mddev->recovery_disabled;
1592 		spin_unlock_irqrestore(&conf->device_lock, flags);
1593 		return;
1594 	}
1595 	set_bit(Blocked, &rdev->flags);
1596 	if (test_and_clear_bit(In_sync, &rdev->flags)) {
1597 		mddev->degraded++;
1598 		set_bit(Faulty, &rdev->flags);
1599 	} else
1600 		set_bit(Faulty, &rdev->flags);
1601 	spin_unlock_irqrestore(&conf->device_lock, flags);
1602 	/*
1603 	 * if recovery is running, make sure it aborts.
1604 	 */
1605 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1606 	set_mask_bits(&mddev->sb_flags, 0,
1607 		      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1608 	pr_crit("md/raid1:%s: Disk failure on %s, disabling device.\n"
1609 		"md/raid1:%s: Operation continuing on %d devices.\n",
1610 		mdname(mddev), bdevname(rdev->bdev, b),
1611 		mdname(mddev), conf->raid_disks - mddev->degraded);
1612 }
1613 
1614 static void print_conf(struct r1conf *conf)
1615 {
1616 	int i;
1617 
1618 	pr_debug("RAID1 conf printout:\n");
1619 	if (!conf) {
1620 		pr_debug("(!conf)\n");
1621 		return;
1622 	}
1623 	pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1624 		 conf->raid_disks);
1625 
1626 	rcu_read_lock();
1627 	for (i = 0; i < conf->raid_disks; i++) {
1628 		char b[BDEVNAME_SIZE];
1629 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1630 		if (rdev)
1631 			pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
1632 				 i, !test_bit(In_sync, &rdev->flags),
1633 				 !test_bit(Faulty, &rdev->flags),
1634 				 bdevname(rdev->bdev,b));
1635 	}
1636 	rcu_read_unlock();
1637 }
1638 
1639 static void close_sync(struct r1conf *conf)
1640 {
1641 	int idx;
1642 
1643 	for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++) {
1644 		_wait_barrier(conf, idx);
1645 		_allow_barrier(conf, idx);
1646 	}
1647 
1648 	mempool_destroy(conf->r1buf_pool);
1649 	conf->r1buf_pool = NULL;
1650 }
1651 
1652 static int raid1_spare_active(struct mddev *mddev)
1653 {
1654 	int i;
1655 	struct r1conf *conf = mddev->private;
1656 	int count = 0;
1657 	unsigned long flags;
1658 
1659 	/*
1660 	 * Find all failed disks within the RAID1 configuration
1661 	 * and mark them readable.
1662 	 * Called under mddev lock, so rcu protection not needed.
1663 	 * device_lock used to avoid races with raid1_end_read_request
1664 	 * which expects 'In_sync' flags and ->degraded to be consistent.
1665 	 */
1666 	spin_lock_irqsave(&conf->device_lock, flags);
1667 	for (i = 0; i < conf->raid_disks; i++) {
1668 		struct md_rdev *rdev = conf->mirrors[i].rdev;
1669 		struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1670 		if (repl
1671 		    && !test_bit(Candidate, &repl->flags)
1672 		    && repl->recovery_offset == MaxSector
1673 		    && !test_bit(Faulty, &repl->flags)
1674 		    && !test_and_set_bit(In_sync, &repl->flags)) {
1675 			/* replacement has just become active */
1676 			if (!rdev ||
1677 			    !test_and_clear_bit(In_sync, &rdev->flags))
1678 				count++;
1679 			if (rdev) {
1680 				/* Replaced device not technically
1681 				 * faulty, but we need to be sure
1682 				 * it gets removed and never re-added
1683 				 */
1684 				set_bit(Faulty, &rdev->flags);
1685 				sysfs_notify_dirent_safe(
1686 					rdev->sysfs_state);
1687 			}
1688 		}
1689 		if (rdev
1690 		    && rdev->recovery_offset == MaxSector
1691 		    && !test_bit(Faulty, &rdev->flags)
1692 		    && !test_and_set_bit(In_sync, &rdev->flags)) {
1693 			count++;
1694 			sysfs_notify_dirent_safe(rdev->sysfs_state);
1695 		}
1696 	}
1697 	mddev->degraded -= count;
1698 	spin_unlock_irqrestore(&conf->device_lock, flags);
1699 
1700 	print_conf(conf);
1701 	return count;
1702 }
1703 
1704 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1705 {
1706 	struct r1conf *conf = mddev->private;
1707 	int err = -EEXIST;
1708 	int mirror = 0;
1709 	struct raid1_info *p;
1710 	int first = 0;
1711 	int last = conf->raid_disks - 1;
1712 
1713 	if (mddev->recovery_disabled == conf->recovery_disabled)
1714 		return -EBUSY;
1715 
1716 	if (md_integrity_add_rdev(rdev, mddev))
1717 		return -ENXIO;
1718 
1719 	if (rdev->raid_disk >= 0)
1720 		first = last = rdev->raid_disk;
1721 
1722 	/*
1723 	 * find the disk ... but prefer rdev->saved_raid_disk
1724 	 * if possible.
1725 	 */
1726 	if (rdev->saved_raid_disk >= 0 &&
1727 	    rdev->saved_raid_disk >= first &&
1728 	    conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1729 		first = last = rdev->saved_raid_disk;
1730 
1731 	for (mirror = first; mirror <= last; mirror++) {
1732 		p = conf->mirrors+mirror;
1733 		if (!p->rdev) {
1734 
1735 			if (mddev->gendisk)
1736 				disk_stack_limits(mddev->gendisk, rdev->bdev,
1737 						  rdev->data_offset << 9);
1738 
1739 			p->head_position = 0;
1740 			rdev->raid_disk = mirror;
1741 			err = 0;
1742 			/* As all devices are equivalent, we don't need a full recovery
1743 			 * if this was recently any drive of the array
1744 			 */
1745 			if (rdev->saved_raid_disk < 0)
1746 				conf->fullsync = 1;
1747 			rcu_assign_pointer(p->rdev, rdev);
1748 			break;
1749 		}
1750 		if (test_bit(WantReplacement, &p->rdev->flags) &&
1751 		    p[conf->raid_disks].rdev == NULL) {
1752 			/* Add this device as a replacement */
1753 			clear_bit(In_sync, &rdev->flags);
1754 			set_bit(Replacement, &rdev->flags);
1755 			rdev->raid_disk = mirror;
1756 			err = 0;
1757 			conf->fullsync = 1;
1758 			rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1759 			break;
1760 		}
1761 	}
1762 	if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1763 		queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1764 	print_conf(conf);
1765 	return err;
1766 }
1767 
1768 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1769 {
1770 	struct r1conf *conf = mddev->private;
1771 	int err = 0;
1772 	int number = rdev->raid_disk;
1773 	struct raid1_info *p = conf->mirrors + number;
1774 
1775 	if (rdev != p->rdev)
1776 		p = conf->mirrors + conf->raid_disks + number;
1777 
1778 	print_conf(conf);
1779 	if (rdev == p->rdev) {
1780 		if (test_bit(In_sync, &rdev->flags) ||
1781 		    atomic_read(&rdev->nr_pending)) {
1782 			err = -EBUSY;
1783 			goto abort;
1784 		}
1785 		/* Only remove non-faulty devices if recovery
1786 		 * is not possible.
1787 		 */
1788 		if (!test_bit(Faulty, &rdev->flags) &&
1789 		    mddev->recovery_disabled != conf->recovery_disabled &&
1790 		    mddev->degraded < conf->raid_disks) {
1791 			err = -EBUSY;
1792 			goto abort;
1793 		}
1794 		p->rdev = NULL;
1795 		if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1796 			synchronize_rcu();
1797 			if (atomic_read(&rdev->nr_pending)) {
1798 				/* lost the race, try later */
1799 				err = -EBUSY;
1800 				p->rdev = rdev;
1801 				goto abort;
1802 			}
1803 		}
1804 		if (conf->mirrors[conf->raid_disks + number].rdev) {
1805 			/* We just removed a device that is being replaced.
1806 			 * Move down the replacement.  We drain all IO before
1807 			 * doing this to avoid confusion.
1808 			 */
1809 			struct md_rdev *repl =
1810 				conf->mirrors[conf->raid_disks + number].rdev;
1811 			freeze_array(conf, 0);
1812 			clear_bit(Replacement, &repl->flags);
1813 			p->rdev = repl;
1814 			conf->mirrors[conf->raid_disks + number].rdev = NULL;
1815 			unfreeze_array(conf);
1816 		}
1817 
1818 		clear_bit(WantReplacement, &rdev->flags);
1819 		err = md_integrity_register(mddev);
1820 	}
1821 abort:
1822 
1823 	print_conf(conf);
1824 	return err;
1825 }
1826 
1827 static void end_sync_read(struct bio *bio)
1828 {
1829 	struct r1bio *r1_bio = get_resync_r1bio(bio);
1830 
1831 	update_head_pos(r1_bio->read_disk, r1_bio);
1832 
1833 	/*
1834 	 * we have read a block, now it needs to be re-written,
1835 	 * or re-read if the read failed.
1836 	 * We don't do much here, just schedule handling by raid1d
1837 	 */
1838 	if (!bio->bi_status)
1839 		set_bit(R1BIO_Uptodate, &r1_bio->state);
1840 
1841 	if (atomic_dec_and_test(&r1_bio->remaining))
1842 		reschedule_retry(r1_bio);
1843 }
1844 
1845 static void end_sync_write(struct bio *bio)
1846 {
1847 	int uptodate = !bio->bi_status;
1848 	struct r1bio *r1_bio = get_resync_r1bio(bio);
1849 	struct mddev *mddev = r1_bio->mddev;
1850 	struct r1conf *conf = mddev->private;
1851 	sector_t first_bad;
1852 	int bad_sectors;
1853 	struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev;
1854 
1855 	if (!uptodate) {
1856 		sector_t sync_blocks = 0;
1857 		sector_t s = r1_bio->sector;
1858 		long sectors_to_go = r1_bio->sectors;
1859 		/* make sure these bits doesn't get cleared. */
1860 		do {
1861 			bitmap_end_sync(mddev->bitmap, s,
1862 					&sync_blocks, 1);
1863 			s += sync_blocks;
1864 			sectors_to_go -= sync_blocks;
1865 		} while (sectors_to_go > 0);
1866 		set_bit(WriteErrorSeen, &rdev->flags);
1867 		if (!test_and_set_bit(WantReplacement, &rdev->flags))
1868 			set_bit(MD_RECOVERY_NEEDED, &
1869 				mddev->recovery);
1870 		set_bit(R1BIO_WriteError, &r1_bio->state);
1871 	} else if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
1872 			       &first_bad, &bad_sectors) &&
1873 		   !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1874 				r1_bio->sector,
1875 				r1_bio->sectors,
1876 				&first_bad, &bad_sectors)
1877 		)
1878 		set_bit(R1BIO_MadeGood, &r1_bio->state);
1879 
1880 	if (atomic_dec_and_test(&r1_bio->remaining)) {
1881 		int s = r1_bio->sectors;
1882 		if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1883 		    test_bit(R1BIO_WriteError, &r1_bio->state))
1884 			reschedule_retry(r1_bio);
1885 		else {
1886 			put_buf(r1_bio);
1887 			md_done_sync(mddev, s, uptodate);
1888 		}
1889 	}
1890 }
1891 
1892 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1893 			    int sectors, struct page *page, int rw)
1894 {
1895 	if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
1896 		/* success */
1897 		return 1;
1898 	if (rw == WRITE) {
1899 		set_bit(WriteErrorSeen, &rdev->flags);
1900 		if (!test_and_set_bit(WantReplacement,
1901 				      &rdev->flags))
1902 			set_bit(MD_RECOVERY_NEEDED, &
1903 				rdev->mddev->recovery);
1904 	}
1905 	/* need to record an error - either for the block or the device */
1906 	if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1907 		md_error(rdev->mddev, rdev);
1908 	return 0;
1909 }
1910 
1911 static int fix_sync_read_error(struct r1bio *r1_bio)
1912 {
1913 	/* Try some synchronous reads of other devices to get
1914 	 * good data, much like with normal read errors.  Only
1915 	 * read into the pages we already have so we don't
1916 	 * need to re-issue the read request.
1917 	 * We don't need to freeze the array, because being in an
1918 	 * active sync request, there is no normal IO, and
1919 	 * no overlapping syncs.
1920 	 * We don't need to check is_badblock() again as we
1921 	 * made sure that anything with a bad block in range
1922 	 * will have bi_end_io clear.
1923 	 */
1924 	struct mddev *mddev = r1_bio->mddev;
1925 	struct r1conf *conf = mddev->private;
1926 	struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1927 	struct page **pages = get_resync_pages(bio)->pages;
1928 	sector_t sect = r1_bio->sector;
1929 	int sectors = r1_bio->sectors;
1930 	int idx = 0;
1931 	struct md_rdev *rdev;
1932 
1933 	rdev = conf->mirrors[r1_bio->read_disk].rdev;
1934 	if (test_bit(FailFast, &rdev->flags)) {
1935 		/* Don't try recovering from here - just fail it
1936 		 * ... unless it is the last working device of course */
1937 		md_error(mddev, rdev);
1938 		if (test_bit(Faulty, &rdev->flags))
1939 			/* Don't try to read from here, but make sure
1940 			 * put_buf does it's thing
1941 			 */
1942 			bio->bi_end_io = end_sync_write;
1943 	}
1944 
1945 	while(sectors) {
1946 		int s = sectors;
1947 		int d = r1_bio->read_disk;
1948 		int success = 0;
1949 		int start;
1950 
1951 		if (s > (PAGE_SIZE>>9))
1952 			s = PAGE_SIZE >> 9;
1953 		do {
1954 			if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1955 				/* No rcu protection needed here devices
1956 				 * can only be removed when no resync is
1957 				 * active, and resync is currently active
1958 				 */
1959 				rdev = conf->mirrors[d].rdev;
1960 				if (sync_page_io(rdev, sect, s<<9,
1961 						 pages[idx],
1962 						 REQ_OP_READ, 0, false)) {
1963 					success = 1;
1964 					break;
1965 				}
1966 			}
1967 			d++;
1968 			if (d == conf->raid_disks * 2)
1969 				d = 0;
1970 		} while (!success && d != r1_bio->read_disk);
1971 
1972 		if (!success) {
1973 			char b[BDEVNAME_SIZE];
1974 			int abort = 0;
1975 			/* Cannot read from anywhere, this block is lost.
1976 			 * Record a bad block on each device.  If that doesn't
1977 			 * work just disable and interrupt the recovery.
1978 			 * Don't fail devices as that won't really help.
1979 			 */
1980 			pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
1981 					    mdname(mddev), bio_devname(bio, b),
1982 					    (unsigned long long)r1_bio->sector);
1983 			for (d = 0; d < conf->raid_disks * 2; d++) {
1984 				rdev = conf->mirrors[d].rdev;
1985 				if (!rdev || test_bit(Faulty, &rdev->flags))
1986 					continue;
1987 				if (!rdev_set_badblocks(rdev, sect, s, 0))
1988 					abort = 1;
1989 			}
1990 			if (abort) {
1991 				conf->recovery_disabled =
1992 					mddev->recovery_disabled;
1993 				set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1994 				md_done_sync(mddev, r1_bio->sectors, 0);
1995 				put_buf(r1_bio);
1996 				return 0;
1997 			}
1998 			/* Try next page */
1999 			sectors -= s;
2000 			sect += s;
2001 			idx++;
2002 			continue;
2003 		}
2004 
2005 		start = d;
2006 		/* write it back and re-read */
2007 		while (d != r1_bio->read_disk) {
2008 			if (d == 0)
2009 				d = conf->raid_disks * 2;
2010 			d--;
2011 			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2012 				continue;
2013 			rdev = conf->mirrors[d].rdev;
2014 			if (r1_sync_page_io(rdev, sect, s,
2015 					    pages[idx],
2016 					    WRITE) == 0) {
2017 				r1_bio->bios[d]->bi_end_io = NULL;
2018 				rdev_dec_pending(rdev, mddev);
2019 			}
2020 		}
2021 		d = start;
2022 		while (d != r1_bio->read_disk) {
2023 			if (d == 0)
2024 				d = conf->raid_disks * 2;
2025 			d--;
2026 			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2027 				continue;
2028 			rdev = conf->mirrors[d].rdev;
2029 			if (r1_sync_page_io(rdev, sect, s,
2030 					    pages[idx],
2031 					    READ) != 0)
2032 				atomic_add(s, &rdev->corrected_errors);
2033 		}
2034 		sectors -= s;
2035 		sect += s;
2036 		idx ++;
2037 	}
2038 	set_bit(R1BIO_Uptodate, &r1_bio->state);
2039 	bio->bi_status = 0;
2040 	return 1;
2041 }
2042 
2043 static void process_checks(struct r1bio *r1_bio)
2044 {
2045 	/* We have read all readable devices.  If we haven't
2046 	 * got the block, then there is no hope left.
2047 	 * If we have, then we want to do a comparison
2048 	 * and skip the write if everything is the same.
2049 	 * If any blocks failed to read, then we need to
2050 	 * attempt an over-write
2051 	 */
2052 	struct mddev *mddev = r1_bio->mddev;
2053 	struct r1conf *conf = mddev->private;
2054 	int primary;
2055 	int i;
2056 	int vcnt;
2057 
2058 	/* Fix variable parts of all bios */
2059 	vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
2060 	for (i = 0; i < conf->raid_disks * 2; i++) {
2061 		blk_status_t status;
2062 		struct bio *b = r1_bio->bios[i];
2063 		struct resync_pages *rp = get_resync_pages(b);
2064 		if (b->bi_end_io != end_sync_read)
2065 			continue;
2066 		/* fixup the bio for reuse, but preserve errno */
2067 		status = b->bi_status;
2068 		bio_reset(b);
2069 		b->bi_status = status;
2070 		b->bi_iter.bi_sector = r1_bio->sector +
2071 			conf->mirrors[i].rdev->data_offset;
2072 		bio_set_dev(b, conf->mirrors[i].rdev->bdev);
2073 		b->bi_end_io = end_sync_read;
2074 		rp->raid_bio = r1_bio;
2075 		b->bi_private = rp;
2076 
2077 		/* initialize bvec table again */
2078 		md_bio_reset_resync_pages(b, rp, r1_bio->sectors << 9);
2079 	}
2080 	for (primary = 0; primary < conf->raid_disks * 2; primary++)
2081 		if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
2082 		    !r1_bio->bios[primary]->bi_status) {
2083 			r1_bio->bios[primary]->bi_end_io = NULL;
2084 			rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
2085 			break;
2086 		}
2087 	r1_bio->read_disk = primary;
2088 	for (i = 0; i < conf->raid_disks * 2; i++) {
2089 		int j;
2090 		struct bio *pbio = r1_bio->bios[primary];
2091 		struct bio *sbio = r1_bio->bios[i];
2092 		blk_status_t status = sbio->bi_status;
2093 		struct page **ppages = get_resync_pages(pbio)->pages;
2094 		struct page **spages = get_resync_pages(sbio)->pages;
2095 		struct bio_vec *bi;
2096 		int page_len[RESYNC_PAGES] = { 0 };
2097 
2098 		if (sbio->bi_end_io != end_sync_read)
2099 			continue;
2100 		/* Now we can 'fixup' the error value */
2101 		sbio->bi_status = 0;
2102 
2103 		bio_for_each_segment_all(bi, sbio, j)
2104 			page_len[j] = bi->bv_len;
2105 
2106 		if (!status) {
2107 			for (j = vcnt; j-- ; ) {
2108 				if (memcmp(page_address(ppages[j]),
2109 					   page_address(spages[j]),
2110 					   page_len[j]))
2111 					break;
2112 			}
2113 		} else
2114 			j = 0;
2115 		if (j >= 0)
2116 			atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
2117 		if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
2118 			      && !status)) {
2119 			/* No need to write to this device. */
2120 			sbio->bi_end_io = NULL;
2121 			rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2122 			continue;
2123 		}
2124 
2125 		bio_copy_data(sbio, pbio);
2126 	}
2127 }
2128 
2129 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
2130 {
2131 	struct r1conf *conf = mddev->private;
2132 	int i;
2133 	int disks = conf->raid_disks * 2;
2134 	struct bio *wbio;
2135 
2136 	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2137 		/* ouch - failed to read all of that. */
2138 		if (!fix_sync_read_error(r1_bio))
2139 			return;
2140 
2141 	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2142 		process_checks(r1_bio);
2143 
2144 	/*
2145 	 * schedule writes
2146 	 */
2147 	atomic_set(&r1_bio->remaining, 1);
2148 	for (i = 0; i < disks ; i++) {
2149 		wbio = r1_bio->bios[i];
2150 		if (wbio->bi_end_io == NULL ||
2151 		    (wbio->bi_end_io == end_sync_read &&
2152 		     (i == r1_bio->read_disk ||
2153 		      !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2154 			continue;
2155 		if (test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2156 			continue;
2157 
2158 		bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2159 		if (test_bit(FailFast, &conf->mirrors[i].rdev->flags))
2160 			wbio->bi_opf |= MD_FAILFAST;
2161 
2162 		wbio->bi_end_io = end_sync_write;
2163 		atomic_inc(&r1_bio->remaining);
2164 		md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
2165 
2166 		generic_make_request(wbio);
2167 	}
2168 
2169 	if (atomic_dec_and_test(&r1_bio->remaining)) {
2170 		/* if we're here, all write(s) have completed, so clean up */
2171 		int s = r1_bio->sectors;
2172 		if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2173 		    test_bit(R1BIO_WriteError, &r1_bio->state))
2174 			reschedule_retry(r1_bio);
2175 		else {
2176 			put_buf(r1_bio);
2177 			md_done_sync(mddev, s, 1);
2178 		}
2179 	}
2180 }
2181 
2182 /*
2183  * This is a kernel thread which:
2184  *
2185  *	1.	Retries failed read operations on working mirrors.
2186  *	2.	Updates the raid superblock when problems encounter.
2187  *	3.	Performs writes following reads for array synchronising.
2188  */
2189 
2190 static void fix_read_error(struct r1conf *conf, int read_disk,
2191 			   sector_t sect, int sectors)
2192 {
2193 	struct mddev *mddev = conf->mddev;
2194 	while(sectors) {
2195 		int s = sectors;
2196 		int d = read_disk;
2197 		int success = 0;
2198 		int start;
2199 		struct md_rdev *rdev;
2200 
2201 		if (s > (PAGE_SIZE>>9))
2202 			s = PAGE_SIZE >> 9;
2203 
2204 		do {
2205 			sector_t first_bad;
2206 			int bad_sectors;
2207 
2208 			rcu_read_lock();
2209 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2210 			if (rdev &&
2211 			    (test_bit(In_sync, &rdev->flags) ||
2212 			     (!test_bit(Faulty, &rdev->flags) &&
2213 			      rdev->recovery_offset >= sect + s)) &&
2214 			    is_badblock(rdev, sect, s,
2215 					&first_bad, &bad_sectors) == 0) {
2216 				atomic_inc(&rdev->nr_pending);
2217 				rcu_read_unlock();
2218 				if (sync_page_io(rdev, sect, s<<9,
2219 					 conf->tmppage, REQ_OP_READ, 0, false))
2220 					success = 1;
2221 				rdev_dec_pending(rdev, mddev);
2222 				if (success)
2223 					break;
2224 			} else
2225 				rcu_read_unlock();
2226 			d++;
2227 			if (d == conf->raid_disks * 2)
2228 				d = 0;
2229 		} while (!success && d != read_disk);
2230 
2231 		if (!success) {
2232 			/* Cannot read from anywhere - mark it bad */
2233 			struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2234 			if (!rdev_set_badblocks(rdev, sect, s, 0))
2235 				md_error(mddev, rdev);
2236 			break;
2237 		}
2238 		/* write it back and re-read */
2239 		start = d;
2240 		while (d != read_disk) {
2241 			if (d==0)
2242 				d = conf->raid_disks * 2;
2243 			d--;
2244 			rcu_read_lock();
2245 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2246 			if (rdev &&
2247 			    !test_bit(Faulty, &rdev->flags)) {
2248 				atomic_inc(&rdev->nr_pending);
2249 				rcu_read_unlock();
2250 				r1_sync_page_io(rdev, sect, s,
2251 						conf->tmppage, WRITE);
2252 				rdev_dec_pending(rdev, mddev);
2253 			} else
2254 				rcu_read_unlock();
2255 		}
2256 		d = start;
2257 		while (d != read_disk) {
2258 			char b[BDEVNAME_SIZE];
2259 			if (d==0)
2260 				d = conf->raid_disks * 2;
2261 			d--;
2262 			rcu_read_lock();
2263 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2264 			if (rdev &&
2265 			    !test_bit(Faulty, &rdev->flags)) {
2266 				atomic_inc(&rdev->nr_pending);
2267 				rcu_read_unlock();
2268 				if (r1_sync_page_io(rdev, sect, s,
2269 						    conf->tmppage, READ)) {
2270 					atomic_add(s, &rdev->corrected_errors);
2271 					pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %s)\n",
2272 						mdname(mddev), s,
2273 						(unsigned long long)(sect +
2274 								     rdev->data_offset),
2275 						bdevname(rdev->bdev, b));
2276 				}
2277 				rdev_dec_pending(rdev, mddev);
2278 			} else
2279 				rcu_read_unlock();
2280 		}
2281 		sectors -= s;
2282 		sect += s;
2283 	}
2284 }
2285 
2286 static int narrow_write_error(struct r1bio *r1_bio, int i)
2287 {
2288 	struct mddev *mddev = r1_bio->mddev;
2289 	struct r1conf *conf = mddev->private;
2290 	struct md_rdev *rdev = conf->mirrors[i].rdev;
2291 
2292 	/* bio has the data to be written to device 'i' where
2293 	 * we just recently had a write error.
2294 	 * We repeatedly clone the bio and trim down to one block,
2295 	 * then try the write.  Where the write fails we record
2296 	 * a bad block.
2297 	 * It is conceivable that the bio doesn't exactly align with
2298 	 * blocks.  We must handle this somehow.
2299 	 *
2300 	 * We currently own a reference on the rdev.
2301 	 */
2302 
2303 	int block_sectors;
2304 	sector_t sector;
2305 	int sectors;
2306 	int sect_to_write = r1_bio->sectors;
2307 	int ok = 1;
2308 
2309 	if (rdev->badblocks.shift < 0)
2310 		return 0;
2311 
2312 	block_sectors = roundup(1 << rdev->badblocks.shift,
2313 				bdev_logical_block_size(rdev->bdev) >> 9);
2314 	sector = r1_bio->sector;
2315 	sectors = ((sector + block_sectors)
2316 		   & ~(sector_t)(block_sectors - 1))
2317 		- sector;
2318 
2319 	while (sect_to_write) {
2320 		struct bio *wbio;
2321 		if (sectors > sect_to_write)
2322 			sectors = sect_to_write;
2323 		/* Write at 'sector' for 'sectors'*/
2324 
2325 		if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2326 			wbio = bio_clone_fast(r1_bio->behind_master_bio,
2327 					      GFP_NOIO,
2328 					      mddev->bio_set);
2329 		} else {
2330 			wbio = bio_clone_fast(r1_bio->master_bio, GFP_NOIO,
2331 					      mddev->bio_set);
2332 		}
2333 
2334 		bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2335 		wbio->bi_iter.bi_sector = r1_bio->sector;
2336 		wbio->bi_iter.bi_size = r1_bio->sectors << 9;
2337 
2338 		bio_trim(wbio, sector - r1_bio->sector, sectors);
2339 		wbio->bi_iter.bi_sector += rdev->data_offset;
2340 		bio_set_dev(wbio, rdev->bdev);
2341 
2342 		if (submit_bio_wait(wbio) < 0)
2343 			/* failure! */
2344 			ok = rdev_set_badblocks(rdev, sector,
2345 						sectors, 0)
2346 				&& ok;
2347 
2348 		bio_put(wbio);
2349 		sect_to_write -= sectors;
2350 		sector += sectors;
2351 		sectors = block_sectors;
2352 	}
2353 	return ok;
2354 }
2355 
2356 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2357 {
2358 	int m;
2359 	int s = r1_bio->sectors;
2360 	for (m = 0; m < conf->raid_disks * 2 ; m++) {
2361 		struct md_rdev *rdev = conf->mirrors[m].rdev;
2362 		struct bio *bio = r1_bio->bios[m];
2363 		if (bio->bi_end_io == NULL)
2364 			continue;
2365 		if (!bio->bi_status &&
2366 		    test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2367 			rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2368 		}
2369 		if (bio->bi_status &&
2370 		    test_bit(R1BIO_WriteError, &r1_bio->state)) {
2371 			if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2372 				md_error(conf->mddev, rdev);
2373 		}
2374 	}
2375 	put_buf(r1_bio);
2376 	md_done_sync(conf->mddev, s, 1);
2377 }
2378 
2379 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2380 {
2381 	int m, idx;
2382 	bool fail = false;
2383 
2384 	for (m = 0; m < conf->raid_disks * 2 ; m++)
2385 		if (r1_bio->bios[m] == IO_MADE_GOOD) {
2386 			struct md_rdev *rdev = conf->mirrors[m].rdev;
2387 			rdev_clear_badblocks(rdev,
2388 					     r1_bio->sector,
2389 					     r1_bio->sectors, 0);
2390 			rdev_dec_pending(rdev, conf->mddev);
2391 		} else if (r1_bio->bios[m] != NULL) {
2392 			/* This drive got a write error.  We need to
2393 			 * narrow down and record precise write
2394 			 * errors.
2395 			 */
2396 			fail = true;
2397 			if (!narrow_write_error(r1_bio, m)) {
2398 				md_error(conf->mddev,
2399 					 conf->mirrors[m].rdev);
2400 				/* an I/O failed, we can't clear the bitmap */
2401 				set_bit(R1BIO_Degraded, &r1_bio->state);
2402 			}
2403 			rdev_dec_pending(conf->mirrors[m].rdev,
2404 					 conf->mddev);
2405 		}
2406 	if (fail) {
2407 		spin_lock_irq(&conf->device_lock);
2408 		list_add(&r1_bio->retry_list, &conf->bio_end_io_list);
2409 		idx = sector_to_idx(r1_bio->sector);
2410 		atomic_inc(&conf->nr_queued[idx]);
2411 		spin_unlock_irq(&conf->device_lock);
2412 		/*
2413 		 * In case freeze_array() is waiting for condition
2414 		 * get_unqueued_pending() == extra to be true.
2415 		 */
2416 		wake_up(&conf->wait_barrier);
2417 		md_wakeup_thread(conf->mddev->thread);
2418 	} else {
2419 		if (test_bit(R1BIO_WriteError, &r1_bio->state))
2420 			close_write(r1_bio);
2421 		raid_end_bio_io(r1_bio);
2422 	}
2423 }
2424 
2425 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2426 {
2427 	struct mddev *mddev = conf->mddev;
2428 	struct bio *bio;
2429 	struct md_rdev *rdev;
2430 	sector_t bio_sector;
2431 
2432 	clear_bit(R1BIO_ReadError, &r1_bio->state);
2433 	/* we got a read error. Maybe the drive is bad.  Maybe just
2434 	 * the block and we can fix it.
2435 	 * We freeze all other IO, and try reading the block from
2436 	 * other devices.  When we find one, we re-write
2437 	 * and check it that fixes the read error.
2438 	 * This is all done synchronously while the array is
2439 	 * frozen
2440 	 */
2441 
2442 	bio = r1_bio->bios[r1_bio->read_disk];
2443 	bio_sector = conf->mirrors[r1_bio->read_disk].rdev->data_offset + r1_bio->sector;
2444 	bio_put(bio);
2445 	r1_bio->bios[r1_bio->read_disk] = NULL;
2446 
2447 	rdev = conf->mirrors[r1_bio->read_disk].rdev;
2448 	if (mddev->ro == 0
2449 	    && !test_bit(FailFast, &rdev->flags)) {
2450 		freeze_array(conf, 1);
2451 		fix_read_error(conf, r1_bio->read_disk,
2452 			       r1_bio->sector, r1_bio->sectors);
2453 		unfreeze_array(conf);
2454 	} else {
2455 		r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED;
2456 	}
2457 
2458 	rdev_dec_pending(rdev, conf->mddev);
2459 	allow_barrier(conf, r1_bio->sector);
2460 	bio = r1_bio->master_bio;
2461 
2462 	/* Reuse the old r1_bio so that the IO_BLOCKED settings are preserved */
2463 	r1_bio->state = 0;
2464 	raid1_read_request(mddev, bio, r1_bio->sectors, r1_bio);
2465 }
2466 
2467 static void raid1d(struct md_thread *thread)
2468 {
2469 	struct mddev *mddev = thread->mddev;
2470 	struct r1bio *r1_bio;
2471 	unsigned long flags;
2472 	struct r1conf *conf = mddev->private;
2473 	struct list_head *head = &conf->retry_list;
2474 	struct blk_plug plug;
2475 	int idx;
2476 
2477 	md_check_recovery(mddev);
2478 
2479 	if (!list_empty_careful(&conf->bio_end_io_list) &&
2480 	    !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2481 		LIST_HEAD(tmp);
2482 		spin_lock_irqsave(&conf->device_lock, flags);
2483 		if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
2484 			list_splice_init(&conf->bio_end_io_list, &tmp);
2485 		spin_unlock_irqrestore(&conf->device_lock, flags);
2486 		while (!list_empty(&tmp)) {
2487 			r1_bio = list_first_entry(&tmp, struct r1bio,
2488 						  retry_list);
2489 			list_del(&r1_bio->retry_list);
2490 			idx = sector_to_idx(r1_bio->sector);
2491 			atomic_dec(&conf->nr_queued[idx]);
2492 			if (mddev->degraded)
2493 				set_bit(R1BIO_Degraded, &r1_bio->state);
2494 			if (test_bit(R1BIO_WriteError, &r1_bio->state))
2495 				close_write(r1_bio);
2496 			raid_end_bio_io(r1_bio);
2497 		}
2498 	}
2499 
2500 	blk_start_plug(&plug);
2501 	for (;;) {
2502 
2503 		flush_pending_writes(conf);
2504 
2505 		spin_lock_irqsave(&conf->device_lock, flags);
2506 		if (list_empty(head)) {
2507 			spin_unlock_irqrestore(&conf->device_lock, flags);
2508 			break;
2509 		}
2510 		r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2511 		list_del(head->prev);
2512 		idx = sector_to_idx(r1_bio->sector);
2513 		atomic_dec(&conf->nr_queued[idx]);
2514 		spin_unlock_irqrestore(&conf->device_lock, flags);
2515 
2516 		mddev = r1_bio->mddev;
2517 		conf = mddev->private;
2518 		if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2519 			if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2520 			    test_bit(R1BIO_WriteError, &r1_bio->state))
2521 				handle_sync_write_finished(conf, r1_bio);
2522 			else
2523 				sync_request_write(mddev, r1_bio);
2524 		} else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2525 			   test_bit(R1BIO_WriteError, &r1_bio->state))
2526 			handle_write_finished(conf, r1_bio);
2527 		else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2528 			handle_read_error(conf, r1_bio);
2529 		else
2530 			WARN_ON_ONCE(1);
2531 
2532 		cond_resched();
2533 		if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
2534 			md_check_recovery(mddev);
2535 	}
2536 	blk_finish_plug(&plug);
2537 }
2538 
2539 static int init_resync(struct r1conf *conf)
2540 {
2541 	int buffs;
2542 
2543 	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2544 	BUG_ON(conf->r1buf_pool);
2545 	conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2546 					  conf->poolinfo);
2547 	if (!conf->r1buf_pool)
2548 		return -ENOMEM;
2549 	return 0;
2550 }
2551 
2552 static struct r1bio *raid1_alloc_init_r1buf(struct r1conf *conf)
2553 {
2554 	struct r1bio *r1bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
2555 	struct resync_pages *rps;
2556 	struct bio *bio;
2557 	int i;
2558 
2559 	for (i = conf->poolinfo->raid_disks; i--; ) {
2560 		bio = r1bio->bios[i];
2561 		rps = bio->bi_private;
2562 		bio_reset(bio);
2563 		bio->bi_private = rps;
2564 	}
2565 	r1bio->master_bio = NULL;
2566 	return r1bio;
2567 }
2568 
2569 /*
2570  * perform a "sync" on one "block"
2571  *
2572  * We need to make sure that no normal I/O request - particularly write
2573  * requests - conflict with active sync requests.
2574  *
2575  * This is achieved by tracking pending requests and a 'barrier' concept
2576  * that can be installed to exclude normal IO requests.
2577  */
2578 
2579 static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr,
2580 				   int *skipped)
2581 {
2582 	struct r1conf *conf = mddev->private;
2583 	struct r1bio *r1_bio;
2584 	struct bio *bio;
2585 	sector_t max_sector, nr_sectors;
2586 	int disk = -1;
2587 	int i;
2588 	int wonly = -1;
2589 	int write_targets = 0, read_targets = 0;
2590 	sector_t sync_blocks;
2591 	int still_degraded = 0;
2592 	int good_sectors = RESYNC_SECTORS;
2593 	int min_bad = 0; /* number of sectors that are bad in all devices */
2594 	int idx = sector_to_idx(sector_nr);
2595 	int page_idx = 0;
2596 
2597 	if (!conf->r1buf_pool)
2598 		if (init_resync(conf))
2599 			return 0;
2600 
2601 	max_sector = mddev->dev_sectors;
2602 	if (sector_nr >= max_sector) {
2603 		/* If we aborted, we need to abort the
2604 		 * sync on the 'current' bitmap chunk (there will
2605 		 * only be one in raid1 resync.
2606 		 * We can find the current addess in mddev->curr_resync
2607 		 */
2608 		if (mddev->curr_resync < max_sector) /* aborted */
2609 			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2610 						&sync_blocks, 1);
2611 		else /* completed sync */
2612 			conf->fullsync = 0;
2613 
2614 		bitmap_close_sync(mddev->bitmap);
2615 		close_sync(conf);
2616 
2617 		if (mddev_is_clustered(mddev)) {
2618 			conf->cluster_sync_low = 0;
2619 			conf->cluster_sync_high = 0;
2620 		}
2621 		return 0;
2622 	}
2623 
2624 	if (mddev->bitmap == NULL &&
2625 	    mddev->recovery_cp == MaxSector &&
2626 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2627 	    conf->fullsync == 0) {
2628 		*skipped = 1;
2629 		return max_sector - sector_nr;
2630 	}
2631 	/* before building a request, check if we can skip these blocks..
2632 	 * This call the bitmap_start_sync doesn't actually record anything
2633 	 */
2634 	if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2635 	    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2636 		/* We can skip this block, and probably several more */
2637 		*skipped = 1;
2638 		return sync_blocks;
2639 	}
2640 
2641 	/*
2642 	 * If there is non-resync activity waiting for a turn, then let it
2643 	 * though before starting on this new sync request.
2644 	 */
2645 	if (atomic_read(&conf->nr_waiting[idx]))
2646 		schedule_timeout_uninterruptible(1);
2647 
2648 	/* we are incrementing sector_nr below. To be safe, we check against
2649 	 * sector_nr + two times RESYNC_SECTORS
2650 	 */
2651 
2652 	bitmap_cond_end_sync(mddev->bitmap, sector_nr,
2653 		mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
2654 	r1_bio = raid1_alloc_init_r1buf(conf);
2655 
2656 	raise_barrier(conf, sector_nr);
2657 
2658 	rcu_read_lock();
2659 	/*
2660 	 * If we get a correctably read error during resync or recovery,
2661 	 * we might want to read from a different device.  So we
2662 	 * flag all drives that could conceivably be read from for READ,
2663 	 * and any others (which will be non-In_sync devices) for WRITE.
2664 	 * If a read fails, we try reading from something else for which READ
2665 	 * is OK.
2666 	 */
2667 
2668 	r1_bio->mddev = mddev;
2669 	r1_bio->sector = sector_nr;
2670 	r1_bio->state = 0;
2671 	set_bit(R1BIO_IsSync, &r1_bio->state);
2672 	/* make sure good_sectors won't go across barrier unit boundary */
2673 	good_sectors = align_to_barrier_unit_end(sector_nr, good_sectors);
2674 
2675 	for (i = 0; i < conf->raid_disks * 2; i++) {
2676 		struct md_rdev *rdev;
2677 		bio = r1_bio->bios[i];
2678 
2679 		rdev = rcu_dereference(conf->mirrors[i].rdev);
2680 		if (rdev == NULL ||
2681 		    test_bit(Faulty, &rdev->flags)) {
2682 			if (i < conf->raid_disks)
2683 				still_degraded = 1;
2684 		} else if (!test_bit(In_sync, &rdev->flags)) {
2685 			bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2686 			bio->bi_end_io = end_sync_write;
2687 			write_targets ++;
2688 		} else {
2689 			/* may need to read from here */
2690 			sector_t first_bad = MaxSector;
2691 			int bad_sectors;
2692 
2693 			if (is_badblock(rdev, sector_nr, good_sectors,
2694 					&first_bad, &bad_sectors)) {
2695 				if (first_bad > sector_nr)
2696 					good_sectors = first_bad - sector_nr;
2697 				else {
2698 					bad_sectors -= (sector_nr - first_bad);
2699 					if (min_bad == 0 ||
2700 					    min_bad > bad_sectors)
2701 						min_bad = bad_sectors;
2702 				}
2703 			}
2704 			if (sector_nr < first_bad) {
2705 				if (test_bit(WriteMostly, &rdev->flags)) {
2706 					if (wonly < 0)
2707 						wonly = i;
2708 				} else {
2709 					if (disk < 0)
2710 						disk = i;
2711 				}
2712 				bio_set_op_attrs(bio, REQ_OP_READ, 0);
2713 				bio->bi_end_io = end_sync_read;
2714 				read_targets++;
2715 			} else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2716 				test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2717 				!test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2718 				/*
2719 				 * The device is suitable for reading (InSync),
2720 				 * but has bad block(s) here. Let's try to correct them,
2721 				 * if we are doing resync or repair. Otherwise, leave
2722 				 * this device alone for this sync request.
2723 				 */
2724 				bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2725 				bio->bi_end_io = end_sync_write;
2726 				write_targets++;
2727 			}
2728 		}
2729 		if (bio->bi_end_io) {
2730 			atomic_inc(&rdev->nr_pending);
2731 			bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
2732 			bio_set_dev(bio, rdev->bdev);
2733 			if (test_bit(FailFast, &rdev->flags))
2734 				bio->bi_opf |= MD_FAILFAST;
2735 		}
2736 	}
2737 	rcu_read_unlock();
2738 	if (disk < 0)
2739 		disk = wonly;
2740 	r1_bio->read_disk = disk;
2741 
2742 	if (read_targets == 0 && min_bad > 0) {
2743 		/* These sectors are bad on all InSync devices, so we
2744 		 * need to mark them bad on all write targets
2745 		 */
2746 		int ok = 1;
2747 		for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2748 			if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2749 				struct md_rdev *rdev = conf->mirrors[i].rdev;
2750 				ok = rdev_set_badblocks(rdev, sector_nr,
2751 							min_bad, 0
2752 					) && ok;
2753 			}
2754 		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2755 		*skipped = 1;
2756 		put_buf(r1_bio);
2757 
2758 		if (!ok) {
2759 			/* Cannot record the badblocks, so need to
2760 			 * abort the resync.
2761 			 * If there are multiple read targets, could just
2762 			 * fail the really bad ones ???
2763 			 */
2764 			conf->recovery_disabled = mddev->recovery_disabled;
2765 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2766 			return 0;
2767 		} else
2768 			return min_bad;
2769 
2770 	}
2771 	if (min_bad > 0 && min_bad < good_sectors) {
2772 		/* only resync enough to reach the next bad->good
2773 		 * transition */
2774 		good_sectors = min_bad;
2775 	}
2776 
2777 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2778 		/* extra read targets are also write targets */
2779 		write_targets += read_targets-1;
2780 
2781 	if (write_targets == 0 || read_targets == 0) {
2782 		/* There is nowhere to write, so all non-sync
2783 		 * drives must be failed - so we are finished
2784 		 */
2785 		sector_t rv;
2786 		if (min_bad > 0)
2787 			max_sector = sector_nr + min_bad;
2788 		rv = max_sector - sector_nr;
2789 		*skipped = 1;
2790 		put_buf(r1_bio);
2791 		return rv;
2792 	}
2793 
2794 	if (max_sector > mddev->resync_max)
2795 		max_sector = mddev->resync_max; /* Don't do IO beyond here */
2796 	if (max_sector > sector_nr + good_sectors)
2797 		max_sector = sector_nr + good_sectors;
2798 	nr_sectors = 0;
2799 	sync_blocks = 0;
2800 	do {
2801 		struct page *page;
2802 		int len = PAGE_SIZE;
2803 		if (sector_nr + (len>>9) > max_sector)
2804 			len = (max_sector - sector_nr) << 9;
2805 		if (len == 0)
2806 			break;
2807 		if (sync_blocks == 0) {
2808 			if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2809 					       &sync_blocks, still_degraded) &&
2810 			    !conf->fullsync &&
2811 			    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2812 				break;
2813 			if ((len >> 9) > sync_blocks)
2814 				len = sync_blocks<<9;
2815 		}
2816 
2817 		for (i = 0 ; i < conf->raid_disks * 2; i++) {
2818 			struct resync_pages *rp;
2819 
2820 			bio = r1_bio->bios[i];
2821 			rp = get_resync_pages(bio);
2822 			if (bio->bi_end_io) {
2823 				page = resync_fetch_page(rp, page_idx);
2824 
2825 				/*
2826 				 * won't fail because the vec table is big
2827 				 * enough to hold all these pages
2828 				 */
2829 				bio_add_page(bio, page, len, 0);
2830 			}
2831 		}
2832 		nr_sectors += len>>9;
2833 		sector_nr += len>>9;
2834 		sync_blocks -= (len>>9);
2835 	} while (++page_idx < RESYNC_PAGES);
2836 
2837 	r1_bio->sectors = nr_sectors;
2838 
2839 	if (mddev_is_clustered(mddev) &&
2840 			conf->cluster_sync_high < sector_nr + nr_sectors) {
2841 		conf->cluster_sync_low = mddev->curr_resync_completed;
2842 		conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS;
2843 		/* Send resync message */
2844 		md_cluster_ops->resync_info_update(mddev,
2845 				conf->cluster_sync_low,
2846 				conf->cluster_sync_high);
2847 	}
2848 
2849 	/* For a user-requested sync, we read all readable devices and do a
2850 	 * compare
2851 	 */
2852 	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2853 		atomic_set(&r1_bio->remaining, read_targets);
2854 		for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2855 			bio = r1_bio->bios[i];
2856 			if (bio->bi_end_io == end_sync_read) {
2857 				read_targets--;
2858 				md_sync_acct_bio(bio, nr_sectors);
2859 				if (read_targets == 1)
2860 					bio->bi_opf &= ~MD_FAILFAST;
2861 				generic_make_request(bio);
2862 			}
2863 		}
2864 	} else {
2865 		atomic_set(&r1_bio->remaining, 1);
2866 		bio = r1_bio->bios[r1_bio->read_disk];
2867 		md_sync_acct_bio(bio, nr_sectors);
2868 		if (read_targets == 1)
2869 			bio->bi_opf &= ~MD_FAILFAST;
2870 		generic_make_request(bio);
2871 
2872 	}
2873 	return nr_sectors;
2874 }
2875 
2876 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2877 {
2878 	if (sectors)
2879 		return sectors;
2880 
2881 	return mddev->dev_sectors;
2882 }
2883 
2884 static struct r1conf *setup_conf(struct mddev *mddev)
2885 {
2886 	struct r1conf *conf;
2887 	int i;
2888 	struct raid1_info *disk;
2889 	struct md_rdev *rdev;
2890 	int err = -ENOMEM;
2891 
2892 	conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2893 	if (!conf)
2894 		goto abort;
2895 
2896 	conf->nr_pending = kcalloc(BARRIER_BUCKETS_NR,
2897 				   sizeof(atomic_t), GFP_KERNEL);
2898 	if (!conf->nr_pending)
2899 		goto abort;
2900 
2901 	conf->nr_waiting = kcalloc(BARRIER_BUCKETS_NR,
2902 				   sizeof(atomic_t), GFP_KERNEL);
2903 	if (!conf->nr_waiting)
2904 		goto abort;
2905 
2906 	conf->nr_queued = kcalloc(BARRIER_BUCKETS_NR,
2907 				  sizeof(atomic_t), GFP_KERNEL);
2908 	if (!conf->nr_queued)
2909 		goto abort;
2910 
2911 	conf->barrier = kcalloc(BARRIER_BUCKETS_NR,
2912 				sizeof(atomic_t), GFP_KERNEL);
2913 	if (!conf->barrier)
2914 		goto abort;
2915 
2916 	conf->mirrors = kzalloc(sizeof(struct raid1_info)
2917 				* mddev->raid_disks * 2,
2918 				 GFP_KERNEL);
2919 	if (!conf->mirrors)
2920 		goto abort;
2921 
2922 	conf->tmppage = alloc_page(GFP_KERNEL);
2923 	if (!conf->tmppage)
2924 		goto abort;
2925 
2926 	conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
2927 	if (!conf->poolinfo)
2928 		goto abort;
2929 	conf->poolinfo->raid_disks = mddev->raid_disks * 2;
2930 	conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2931 					  r1bio_pool_free,
2932 					  conf->poolinfo);
2933 	if (!conf->r1bio_pool)
2934 		goto abort;
2935 
2936 	conf->bio_split = bioset_create(BIO_POOL_SIZE, 0, 0);
2937 	if (!conf->bio_split)
2938 		goto abort;
2939 
2940 	conf->poolinfo->mddev = mddev;
2941 
2942 	err = -EINVAL;
2943 	spin_lock_init(&conf->device_lock);
2944 	rdev_for_each(rdev, mddev) {
2945 		int disk_idx = rdev->raid_disk;
2946 		if (disk_idx >= mddev->raid_disks
2947 		    || disk_idx < 0)
2948 			continue;
2949 		if (test_bit(Replacement, &rdev->flags))
2950 			disk = conf->mirrors + mddev->raid_disks + disk_idx;
2951 		else
2952 			disk = conf->mirrors + disk_idx;
2953 
2954 		if (disk->rdev)
2955 			goto abort;
2956 		disk->rdev = rdev;
2957 		disk->head_position = 0;
2958 		disk->seq_start = MaxSector;
2959 	}
2960 	conf->raid_disks = mddev->raid_disks;
2961 	conf->mddev = mddev;
2962 	INIT_LIST_HEAD(&conf->retry_list);
2963 	INIT_LIST_HEAD(&conf->bio_end_io_list);
2964 
2965 	spin_lock_init(&conf->resync_lock);
2966 	init_waitqueue_head(&conf->wait_barrier);
2967 
2968 	bio_list_init(&conf->pending_bio_list);
2969 	conf->pending_count = 0;
2970 	conf->recovery_disabled = mddev->recovery_disabled - 1;
2971 
2972 	err = -EIO;
2973 	for (i = 0; i < conf->raid_disks * 2; i++) {
2974 
2975 		disk = conf->mirrors + i;
2976 
2977 		if (i < conf->raid_disks &&
2978 		    disk[conf->raid_disks].rdev) {
2979 			/* This slot has a replacement. */
2980 			if (!disk->rdev) {
2981 				/* No original, just make the replacement
2982 				 * a recovering spare
2983 				 */
2984 				disk->rdev =
2985 					disk[conf->raid_disks].rdev;
2986 				disk[conf->raid_disks].rdev = NULL;
2987 			} else if (!test_bit(In_sync, &disk->rdev->flags))
2988 				/* Original is not in_sync - bad */
2989 				goto abort;
2990 		}
2991 
2992 		if (!disk->rdev ||
2993 		    !test_bit(In_sync, &disk->rdev->flags)) {
2994 			disk->head_position = 0;
2995 			if (disk->rdev &&
2996 			    (disk->rdev->saved_raid_disk < 0))
2997 				conf->fullsync = 1;
2998 		}
2999 	}
3000 
3001 	err = -ENOMEM;
3002 	conf->thread = md_register_thread(raid1d, mddev, "raid1");
3003 	if (!conf->thread)
3004 		goto abort;
3005 
3006 	return conf;
3007 
3008  abort:
3009 	if (conf) {
3010 		mempool_destroy(conf->r1bio_pool);
3011 		kfree(conf->mirrors);
3012 		safe_put_page(conf->tmppage);
3013 		kfree(conf->poolinfo);
3014 		kfree(conf->nr_pending);
3015 		kfree(conf->nr_waiting);
3016 		kfree(conf->nr_queued);
3017 		kfree(conf->barrier);
3018 		if (conf->bio_split)
3019 			bioset_free(conf->bio_split);
3020 		kfree(conf);
3021 	}
3022 	return ERR_PTR(err);
3023 }
3024 
3025 static void raid1_free(struct mddev *mddev, void *priv);
3026 static int raid1_run(struct mddev *mddev)
3027 {
3028 	struct r1conf *conf;
3029 	int i;
3030 	struct md_rdev *rdev;
3031 	int ret;
3032 	bool discard_supported = false;
3033 
3034 	if (mddev->level != 1) {
3035 		pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n",
3036 			mdname(mddev), mddev->level);
3037 		return -EIO;
3038 	}
3039 	if (mddev->reshape_position != MaxSector) {
3040 		pr_warn("md/raid1:%s: reshape_position set but not supported\n",
3041 			mdname(mddev));
3042 		return -EIO;
3043 	}
3044 	if (mddev_init_writes_pending(mddev) < 0)
3045 		return -ENOMEM;
3046 	/*
3047 	 * copy the already verified devices into our private RAID1
3048 	 * bookkeeping area. [whatever we allocate in run(),
3049 	 * should be freed in raid1_free()]
3050 	 */
3051 	if (mddev->private == NULL)
3052 		conf = setup_conf(mddev);
3053 	else
3054 		conf = mddev->private;
3055 
3056 	if (IS_ERR(conf))
3057 		return PTR_ERR(conf);
3058 
3059 	if (mddev->queue) {
3060 		blk_queue_max_write_same_sectors(mddev->queue, 0);
3061 		blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
3062 	}
3063 
3064 	rdev_for_each(rdev, mddev) {
3065 		if (!mddev->gendisk)
3066 			continue;
3067 		disk_stack_limits(mddev->gendisk, rdev->bdev,
3068 				  rdev->data_offset << 9);
3069 		if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3070 			discard_supported = true;
3071 	}
3072 
3073 	mddev->degraded = 0;
3074 	for (i=0; i < conf->raid_disks; i++)
3075 		if (conf->mirrors[i].rdev == NULL ||
3076 		    !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
3077 		    test_bit(Faulty, &conf->mirrors[i].rdev->flags))
3078 			mddev->degraded++;
3079 
3080 	if (conf->raid_disks - mddev->degraded == 1)
3081 		mddev->recovery_cp = MaxSector;
3082 
3083 	if (mddev->recovery_cp != MaxSector)
3084 		pr_info("md/raid1:%s: not clean -- starting background reconstruction\n",
3085 			mdname(mddev));
3086 	pr_info("md/raid1:%s: active with %d out of %d mirrors\n",
3087 		mdname(mddev), mddev->raid_disks - mddev->degraded,
3088 		mddev->raid_disks);
3089 
3090 	/*
3091 	 * Ok, everything is just fine now
3092 	 */
3093 	mddev->thread = conf->thread;
3094 	conf->thread = NULL;
3095 	mddev->private = conf;
3096 	set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
3097 
3098 	md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
3099 
3100 	if (mddev->queue) {
3101 		if (discard_supported)
3102 			queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
3103 						mddev->queue);
3104 		else
3105 			queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
3106 						  mddev->queue);
3107 	}
3108 
3109 	ret =  md_integrity_register(mddev);
3110 	if (ret) {
3111 		md_unregister_thread(&mddev->thread);
3112 		raid1_free(mddev, conf);
3113 	}
3114 	return ret;
3115 }
3116 
3117 static void raid1_free(struct mddev *mddev, void *priv)
3118 {
3119 	struct r1conf *conf = priv;
3120 
3121 	mempool_destroy(conf->r1bio_pool);
3122 	kfree(conf->mirrors);
3123 	safe_put_page(conf->tmppage);
3124 	kfree(conf->poolinfo);
3125 	kfree(conf->nr_pending);
3126 	kfree(conf->nr_waiting);
3127 	kfree(conf->nr_queued);
3128 	kfree(conf->barrier);
3129 	if (conf->bio_split)
3130 		bioset_free(conf->bio_split);
3131 	kfree(conf);
3132 }
3133 
3134 static int raid1_resize(struct mddev *mddev, sector_t sectors)
3135 {
3136 	/* no resync is happening, and there is enough space
3137 	 * on all devices, so we can resize.
3138 	 * We need to make sure resync covers any new space.
3139 	 * If the array is shrinking we should possibly wait until
3140 	 * any io in the removed space completes, but it hardly seems
3141 	 * worth it.
3142 	 */
3143 	sector_t newsize = raid1_size(mddev, sectors, 0);
3144 	if (mddev->external_size &&
3145 	    mddev->array_sectors > newsize)
3146 		return -EINVAL;
3147 	if (mddev->bitmap) {
3148 		int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0);
3149 		if (ret)
3150 			return ret;
3151 	}
3152 	md_set_array_sectors(mddev, newsize);
3153 	if (sectors > mddev->dev_sectors &&
3154 	    mddev->recovery_cp > mddev->dev_sectors) {
3155 		mddev->recovery_cp = mddev->dev_sectors;
3156 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3157 	}
3158 	mddev->dev_sectors = sectors;
3159 	mddev->resync_max_sectors = sectors;
3160 	return 0;
3161 }
3162 
3163 static int raid1_reshape(struct mddev *mddev)
3164 {
3165 	/* We need to:
3166 	 * 1/ resize the r1bio_pool
3167 	 * 2/ resize conf->mirrors
3168 	 *
3169 	 * We allocate a new r1bio_pool if we can.
3170 	 * Then raise a device barrier and wait until all IO stops.
3171 	 * Then resize conf->mirrors and swap in the new r1bio pool.
3172 	 *
3173 	 * At the same time, we "pack" the devices so that all the missing
3174 	 * devices have the higher raid_disk numbers.
3175 	 */
3176 	mempool_t *newpool, *oldpool;
3177 	struct pool_info *newpoolinfo;
3178 	struct raid1_info *newmirrors;
3179 	struct r1conf *conf = mddev->private;
3180 	int cnt, raid_disks;
3181 	unsigned long flags;
3182 	int d, d2;
3183 
3184 	/* Cannot change chunk_size, layout, or level */
3185 	if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3186 	    mddev->layout != mddev->new_layout ||
3187 	    mddev->level != mddev->new_level) {
3188 		mddev->new_chunk_sectors = mddev->chunk_sectors;
3189 		mddev->new_layout = mddev->layout;
3190 		mddev->new_level = mddev->level;
3191 		return -EINVAL;
3192 	}
3193 
3194 	if (!mddev_is_clustered(mddev))
3195 		md_allow_write(mddev);
3196 
3197 	raid_disks = mddev->raid_disks + mddev->delta_disks;
3198 
3199 	if (raid_disks < conf->raid_disks) {
3200 		cnt=0;
3201 		for (d= 0; d < conf->raid_disks; d++)
3202 			if (conf->mirrors[d].rdev)
3203 				cnt++;
3204 		if (cnt > raid_disks)
3205 			return -EBUSY;
3206 	}
3207 
3208 	newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3209 	if (!newpoolinfo)
3210 		return -ENOMEM;
3211 	newpoolinfo->mddev = mddev;
3212 	newpoolinfo->raid_disks = raid_disks * 2;
3213 
3214 	newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
3215 				 r1bio_pool_free, newpoolinfo);
3216 	if (!newpool) {
3217 		kfree(newpoolinfo);
3218 		return -ENOMEM;
3219 	}
3220 	newmirrors = kzalloc(sizeof(struct raid1_info) * raid_disks * 2,
3221 			     GFP_KERNEL);
3222 	if (!newmirrors) {
3223 		kfree(newpoolinfo);
3224 		mempool_destroy(newpool);
3225 		return -ENOMEM;
3226 	}
3227 
3228 	freeze_array(conf, 0);
3229 
3230 	/* ok, everything is stopped */
3231 	oldpool = conf->r1bio_pool;
3232 	conf->r1bio_pool = newpool;
3233 
3234 	for (d = d2 = 0; d < conf->raid_disks; d++) {
3235 		struct md_rdev *rdev = conf->mirrors[d].rdev;
3236 		if (rdev && rdev->raid_disk != d2) {
3237 			sysfs_unlink_rdev(mddev, rdev);
3238 			rdev->raid_disk = d2;
3239 			sysfs_unlink_rdev(mddev, rdev);
3240 			if (sysfs_link_rdev(mddev, rdev))
3241 				pr_warn("md/raid1:%s: cannot register rd%d\n",
3242 					mdname(mddev), rdev->raid_disk);
3243 		}
3244 		if (rdev)
3245 			newmirrors[d2++].rdev = rdev;
3246 	}
3247 	kfree(conf->mirrors);
3248 	conf->mirrors = newmirrors;
3249 	kfree(conf->poolinfo);
3250 	conf->poolinfo = newpoolinfo;
3251 
3252 	spin_lock_irqsave(&conf->device_lock, flags);
3253 	mddev->degraded += (raid_disks - conf->raid_disks);
3254 	spin_unlock_irqrestore(&conf->device_lock, flags);
3255 	conf->raid_disks = mddev->raid_disks = raid_disks;
3256 	mddev->delta_disks = 0;
3257 
3258 	unfreeze_array(conf);
3259 
3260 	set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3261 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3262 	md_wakeup_thread(mddev->thread);
3263 
3264 	mempool_destroy(oldpool);
3265 	return 0;
3266 }
3267 
3268 static void raid1_quiesce(struct mddev *mddev, int quiesce)
3269 {
3270 	struct r1conf *conf = mddev->private;
3271 
3272 	if (quiesce)
3273 		freeze_array(conf, 0);
3274 	else
3275 		unfreeze_array(conf);
3276 }
3277 
3278 static void *raid1_takeover(struct mddev *mddev)
3279 {
3280 	/* raid1 can take over:
3281 	 *  raid5 with 2 devices, any layout or chunk size
3282 	 */
3283 	if (mddev->level == 5 && mddev->raid_disks == 2) {
3284 		struct r1conf *conf;
3285 		mddev->new_level = 1;
3286 		mddev->new_layout = 0;
3287 		mddev->new_chunk_sectors = 0;
3288 		conf = setup_conf(mddev);
3289 		if (!IS_ERR(conf)) {
3290 			/* Array must appear to be quiesced */
3291 			conf->array_frozen = 1;
3292 			mddev_clear_unsupported_flags(mddev,
3293 				UNSUPPORTED_MDDEV_FLAGS);
3294 		}
3295 		return conf;
3296 	}
3297 	return ERR_PTR(-EINVAL);
3298 }
3299 
3300 static struct md_personality raid1_personality =
3301 {
3302 	.name		= "raid1",
3303 	.level		= 1,
3304 	.owner		= THIS_MODULE,
3305 	.make_request	= raid1_make_request,
3306 	.run		= raid1_run,
3307 	.free		= raid1_free,
3308 	.status		= raid1_status,
3309 	.error_handler	= raid1_error,
3310 	.hot_add_disk	= raid1_add_disk,
3311 	.hot_remove_disk= raid1_remove_disk,
3312 	.spare_active	= raid1_spare_active,
3313 	.sync_request	= raid1_sync_request,
3314 	.resize		= raid1_resize,
3315 	.size		= raid1_size,
3316 	.check_reshape	= raid1_reshape,
3317 	.quiesce	= raid1_quiesce,
3318 	.takeover	= raid1_takeover,
3319 	.congested	= raid1_congested,
3320 };
3321 
3322 static int __init raid_init(void)
3323 {
3324 	return register_md_personality(&raid1_personality);
3325 }
3326 
3327 static void raid_exit(void)
3328 {
3329 	unregister_md_personality(&raid1_personality);
3330 }
3331 
3332 module_init(raid_init);
3333 module_exit(raid_exit);
3334 MODULE_LICENSE("GPL");
3335 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3336 MODULE_ALIAS("md-personality-3"); /* RAID1 */
3337 MODULE_ALIAS("md-raid1");
3338 MODULE_ALIAS("md-level-1");
3339 
3340 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
3341