xref: /openbmc/linux/drivers/md/raid1.c (revision 7bcae826)
1 /*
2  * raid1.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5  *
6  * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7  *
8  * RAID-1 management functions.
9  *
10  * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11  *
12  * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
13  * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14  *
15  * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16  * bitmapped intelligence in resync:
17  *
18  *      - bitmap marked during normal i/o
19  *      - bitmap used to skip nondirty blocks during sync
20  *
21  * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22  * - persistent bitmap code
23  *
24  * This program is free software; you can redistribute it and/or modify
25  * it under the terms of the GNU General Public License as published by
26  * the Free Software Foundation; either version 2, or (at your option)
27  * any later version.
28  *
29  * You should have received a copy of the GNU General Public License
30  * (for example /usr/src/linux/COPYING); if not, write to the Free
31  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32  */
33 
34 #include <linux/slab.h>
35 #include <linux/delay.h>
36 #include <linux/blkdev.h>
37 #include <linux/module.h>
38 #include <linux/seq_file.h>
39 #include <linux/ratelimit.h>
40 #include <trace/events/block.h>
41 #include "md.h"
42 #include "raid1.h"
43 #include "bitmap.h"
44 
45 #define UNSUPPORTED_MDDEV_FLAGS		\
46 	((1L << MD_HAS_JOURNAL) |	\
47 	 (1L << MD_JOURNAL_CLEAN))
48 
49 /*
50  * Number of guaranteed r1bios in case of extreme VM load:
51  */
52 #define	NR_RAID1_BIOS 256
53 
54 /* when we get a read error on a read-only array, we redirect to another
55  * device without failing the first device, or trying to over-write to
56  * correct the read error.  To keep track of bad blocks on a per-bio
57  * level, we store IO_BLOCKED in the appropriate 'bios' pointer
58  */
59 #define IO_BLOCKED ((struct bio *)1)
60 /* When we successfully write to a known bad-block, we need to remove the
61  * bad-block marking which must be done from process context.  So we record
62  * the success by setting devs[n].bio to IO_MADE_GOOD
63  */
64 #define IO_MADE_GOOD ((struct bio *)2)
65 
66 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
67 
68 /* When there are this many requests queue to be written by
69  * the raid1 thread, we become 'congested' to provide back-pressure
70  * for writeback.
71  */
72 static int max_queued_requests = 1024;
73 
74 static void allow_barrier(struct r1conf *conf, sector_t sector_nr);
75 static void lower_barrier(struct r1conf *conf, sector_t sector_nr);
76 
77 #define raid1_log(md, fmt, args...)				\
78 	do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid1 " fmt, ##args); } while (0)
79 
80 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
81 {
82 	struct pool_info *pi = data;
83 	int size = offsetof(struct r1bio, bios[pi->raid_disks]);
84 
85 	/* allocate a r1bio with room for raid_disks entries in the bios array */
86 	return kzalloc(size, gfp_flags);
87 }
88 
89 static void r1bio_pool_free(void *r1_bio, void *data)
90 {
91 	kfree(r1_bio);
92 }
93 
94 #define RESYNC_BLOCK_SIZE (64*1024)
95 #define RESYNC_DEPTH 32
96 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
97 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
98 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
99 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
100 #define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
101 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
102 
103 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
104 {
105 	struct pool_info *pi = data;
106 	struct r1bio *r1_bio;
107 	struct bio *bio;
108 	int need_pages;
109 	int i, j;
110 
111 	r1_bio = r1bio_pool_alloc(gfp_flags, pi);
112 	if (!r1_bio)
113 		return NULL;
114 
115 	/*
116 	 * Allocate bios : 1 for reading, n-1 for writing
117 	 */
118 	for (j = pi->raid_disks ; j-- ; ) {
119 		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
120 		if (!bio)
121 			goto out_free_bio;
122 		r1_bio->bios[j] = bio;
123 	}
124 	/*
125 	 * Allocate RESYNC_PAGES data pages and attach them to
126 	 * the first bio.
127 	 * If this is a user-requested check/repair, allocate
128 	 * RESYNC_PAGES for each bio.
129 	 */
130 	if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
131 		need_pages = pi->raid_disks;
132 	else
133 		need_pages = 1;
134 	for (j = 0; j < need_pages; j++) {
135 		bio = r1_bio->bios[j];
136 		bio->bi_vcnt = RESYNC_PAGES;
137 
138 		if (bio_alloc_pages(bio, gfp_flags))
139 			goto out_free_pages;
140 	}
141 	/* If not user-requests, copy the page pointers to all bios */
142 	if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
143 		for (i=0; i<RESYNC_PAGES ; i++)
144 			for (j=1; j<pi->raid_disks; j++)
145 				r1_bio->bios[j]->bi_io_vec[i].bv_page =
146 					r1_bio->bios[0]->bi_io_vec[i].bv_page;
147 	}
148 
149 	r1_bio->master_bio = NULL;
150 
151 	return r1_bio;
152 
153 out_free_pages:
154 	while (--j >= 0)
155 		bio_free_pages(r1_bio->bios[j]);
156 
157 out_free_bio:
158 	while (++j < pi->raid_disks)
159 		bio_put(r1_bio->bios[j]);
160 	r1bio_pool_free(r1_bio, data);
161 	return NULL;
162 }
163 
164 static void r1buf_pool_free(void *__r1_bio, void *data)
165 {
166 	struct pool_info *pi = data;
167 	int i,j;
168 	struct r1bio *r1bio = __r1_bio;
169 
170 	for (i = 0; i < RESYNC_PAGES; i++)
171 		for (j = pi->raid_disks; j-- ;) {
172 			if (j == 0 ||
173 			    r1bio->bios[j]->bi_io_vec[i].bv_page !=
174 			    r1bio->bios[0]->bi_io_vec[i].bv_page)
175 				safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
176 		}
177 	for (i=0 ; i < pi->raid_disks; i++)
178 		bio_put(r1bio->bios[i]);
179 
180 	r1bio_pool_free(r1bio, data);
181 }
182 
183 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
184 {
185 	int i;
186 
187 	for (i = 0; i < conf->raid_disks * 2; i++) {
188 		struct bio **bio = r1_bio->bios + i;
189 		if (!BIO_SPECIAL(*bio))
190 			bio_put(*bio);
191 		*bio = NULL;
192 	}
193 }
194 
195 static void free_r1bio(struct r1bio *r1_bio)
196 {
197 	struct r1conf *conf = r1_bio->mddev->private;
198 
199 	put_all_bios(conf, r1_bio);
200 	mempool_free(r1_bio, conf->r1bio_pool);
201 }
202 
203 static void put_buf(struct r1bio *r1_bio)
204 {
205 	struct r1conf *conf = r1_bio->mddev->private;
206 	sector_t sect = r1_bio->sector;
207 	int i;
208 
209 	for (i = 0; i < conf->raid_disks * 2; i++) {
210 		struct bio *bio = r1_bio->bios[i];
211 		if (bio->bi_end_io)
212 			rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
213 	}
214 
215 	mempool_free(r1_bio, conf->r1buf_pool);
216 
217 	lower_barrier(conf, sect);
218 }
219 
220 static void reschedule_retry(struct r1bio *r1_bio)
221 {
222 	unsigned long flags;
223 	struct mddev *mddev = r1_bio->mddev;
224 	struct r1conf *conf = mddev->private;
225 	int idx;
226 
227 	idx = sector_to_idx(r1_bio->sector);
228 	spin_lock_irqsave(&conf->device_lock, flags);
229 	list_add(&r1_bio->retry_list, &conf->retry_list);
230 	atomic_inc(&conf->nr_queued[idx]);
231 	spin_unlock_irqrestore(&conf->device_lock, flags);
232 
233 	wake_up(&conf->wait_barrier);
234 	md_wakeup_thread(mddev->thread);
235 }
236 
237 /*
238  * raid_end_bio_io() is called when we have finished servicing a mirrored
239  * operation and are ready to return a success/failure code to the buffer
240  * cache layer.
241  */
242 static void call_bio_endio(struct r1bio *r1_bio)
243 {
244 	struct bio *bio = r1_bio->master_bio;
245 	int done;
246 	struct r1conf *conf = r1_bio->mddev->private;
247 	sector_t bi_sector = bio->bi_iter.bi_sector;
248 
249 	if (bio->bi_phys_segments) {
250 		unsigned long flags;
251 		spin_lock_irqsave(&conf->device_lock, flags);
252 		bio->bi_phys_segments--;
253 		done = (bio->bi_phys_segments == 0);
254 		spin_unlock_irqrestore(&conf->device_lock, flags);
255 		/*
256 		 * make_request() might be waiting for
257 		 * bi_phys_segments to decrease
258 		 */
259 		wake_up(&conf->wait_barrier);
260 	} else
261 		done = 1;
262 
263 	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
264 		bio->bi_error = -EIO;
265 
266 	if (done) {
267 		bio_endio(bio);
268 		/*
269 		 * Wake up any possible resync thread that waits for the device
270 		 * to go idle.
271 		 */
272 		allow_barrier(conf, bi_sector);
273 	}
274 }
275 
276 static void raid_end_bio_io(struct r1bio *r1_bio)
277 {
278 	struct bio *bio = r1_bio->master_bio;
279 
280 	/* if nobody has done the final endio yet, do it now */
281 	if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
282 		pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
283 			 (bio_data_dir(bio) == WRITE) ? "write" : "read",
284 			 (unsigned long long) bio->bi_iter.bi_sector,
285 			 (unsigned long long) bio_end_sector(bio) - 1);
286 
287 		call_bio_endio(r1_bio);
288 	}
289 	free_r1bio(r1_bio);
290 }
291 
292 /*
293  * Update disk head position estimator based on IRQ completion info.
294  */
295 static inline void update_head_pos(int disk, struct r1bio *r1_bio)
296 {
297 	struct r1conf *conf = r1_bio->mddev->private;
298 
299 	conf->mirrors[disk].head_position =
300 		r1_bio->sector + (r1_bio->sectors);
301 }
302 
303 /*
304  * Find the disk number which triggered given bio
305  */
306 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
307 {
308 	int mirror;
309 	struct r1conf *conf = r1_bio->mddev->private;
310 	int raid_disks = conf->raid_disks;
311 
312 	for (mirror = 0; mirror < raid_disks * 2; mirror++)
313 		if (r1_bio->bios[mirror] == bio)
314 			break;
315 
316 	BUG_ON(mirror == raid_disks * 2);
317 	update_head_pos(mirror, r1_bio);
318 
319 	return mirror;
320 }
321 
322 static void raid1_end_read_request(struct bio *bio)
323 {
324 	int uptodate = !bio->bi_error;
325 	struct r1bio *r1_bio = bio->bi_private;
326 	struct r1conf *conf = r1_bio->mddev->private;
327 	struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev;
328 
329 	/*
330 	 * this branch is our 'one mirror IO has finished' event handler:
331 	 */
332 	update_head_pos(r1_bio->read_disk, r1_bio);
333 
334 	if (uptodate)
335 		set_bit(R1BIO_Uptodate, &r1_bio->state);
336 	else if (test_bit(FailFast, &rdev->flags) &&
337 		 test_bit(R1BIO_FailFast, &r1_bio->state))
338 		/* This was a fail-fast read so we definitely
339 		 * want to retry */
340 		;
341 	else {
342 		/* If all other devices have failed, we want to return
343 		 * the error upwards rather than fail the last device.
344 		 * Here we redefine "uptodate" to mean "Don't want to retry"
345 		 */
346 		unsigned long flags;
347 		spin_lock_irqsave(&conf->device_lock, flags);
348 		if (r1_bio->mddev->degraded == conf->raid_disks ||
349 		    (r1_bio->mddev->degraded == conf->raid_disks-1 &&
350 		     test_bit(In_sync, &rdev->flags)))
351 			uptodate = 1;
352 		spin_unlock_irqrestore(&conf->device_lock, flags);
353 	}
354 
355 	if (uptodate) {
356 		raid_end_bio_io(r1_bio);
357 		rdev_dec_pending(rdev, conf->mddev);
358 	} else {
359 		/*
360 		 * oops, read error:
361 		 */
362 		char b[BDEVNAME_SIZE];
363 		pr_err_ratelimited("md/raid1:%s: %s: rescheduling sector %llu\n",
364 				   mdname(conf->mddev),
365 				   bdevname(rdev->bdev, b),
366 				   (unsigned long long)r1_bio->sector);
367 		set_bit(R1BIO_ReadError, &r1_bio->state);
368 		reschedule_retry(r1_bio);
369 		/* don't drop the reference on read_disk yet */
370 	}
371 }
372 
373 static void close_write(struct r1bio *r1_bio)
374 {
375 	/* it really is the end of this request */
376 	if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
377 		/* free extra copy of the data pages */
378 		int i = r1_bio->behind_page_count;
379 		while (i--)
380 			safe_put_page(r1_bio->behind_bvecs[i].bv_page);
381 		kfree(r1_bio->behind_bvecs);
382 		r1_bio->behind_bvecs = NULL;
383 	}
384 	/* clear the bitmap if all writes complete successfully */
385 	bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
386 			r1_bio->sectors,
387 			!test_bit(R1BIO_Degraded, &r1_bio->state),
388 			test_bit(R1BIO_BehindIO, &r1_bio->state));
389 	md_write_end(r1_bio->mddev);
390 }
391 
392 static void r1_bio_write_done(struct r1bio *r1_bio)
393 {
394 	if (!atomic_dec_and_test(&r1_bio->remaining))
395 		return;
396 
397 	if (test_bit(R1BIO_WriteError, &r1_bio->state))
398 		reschedule_retry(r1_bio);
399 	else {
400 		close_write(r1_bio);
401 		if (test_bit(R1BIO_MadeGood, &r1_bio->state))
402 			reschedule_retry(r1_bio);
403 		else
404 			raid_end_bio_io(r1_bio);
405 	}
406 }
407 
408 static void raid1_end_write_request(struct bio *bio)
409 {
410 	struct r1bio *r1_bio = bio->bi_private;
411 	int behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
412 	struct r1conf *conf = r1_bio->mddev->private;
413 	struct bio *to_put = NULL;
414 	int mirror = find_bio_disk(r1_bio, bio);
415 	struct md_rdev *rdev = conf->mirrors[mirror].rdev;
416 	bool discard_error;
417 
418 	discard_error = bio->bi_error && bio_op(bio) == REQ_OP_DISCARD;
419 
420 	/*
421 	 * 'one mirror IO has finished' event handler:
422 	 */
423 	if (bio->bi_error && !discard_error) {
424 		set_bit(WriteErrorSeen,	&rdev->flags);
425 		if (!test_and_set_bit(WantReplacement, &rdev->flags))
426 			set_bit(MD_RECOVERY_NEEDED, &
427 				conf->mddev->recovery);
428 
429 		if (test_bit(FailFast, &rdev->flags) &&
430 		    (bio->bi_opf & MD_FAILFAST) &&
431 		    /* We never try FailFast to WriteMostly devices */
432 		    !test_bit(WriteMostly, &rdev->flags)) {
433 			md_error(r1_bio->mddev, rdev);
434 			if (!test_bit(Faulty, &rdev->flags))
435 				/* This is the only remaining device,
436 				 * We need to retry the write without
437 				 * FailFast
438 				 */
439 				set_bit(R1BIO_WriteError, &r1_bio->state);
440 			else {
441 				/* Finished with this branch */
442 				r1_bio->bios[mirror] = NULL;
443 				to_put = bio;
444 			}
445 		} else
446 			set_bit(R1BIO_WriteError, &r1_bio->state);
447 	} else {
448 		/*
449 		 * Set R1BIO_Uptodate in our master bio, so that we
450 		 * will return a good error code for to the higher
451 		 * levels even if IO on some other mirrored buffer
452 		 * fails.
453 		 *
454 		 * The 'master' represents the composite IO operation
455 		 * to user-side. So if something waits for IO, then it
456 		 * will wait for the 'master' bio.
457 		 */
458 		sector_t first_bad;
459 		int bad_sectors;
460 
461 		r1_bio->bios[mirror] = NULL;
462 		to_put = bio;
463 		/*
464 		 * Do not set R1BIO_Uptodate if the current device is
465 		 * rebuilding or Faulty. This is because we cannot use
466 		 * such device for properly reading the data back (we could
467 		 * potentially use it, if the current write would have felt
468 		 * before rdev->recovery_offset, but for simplicity we don't
469 		 * check this here.
470 		 */
471 		if (test_bit(In_sync, &rdev->flags) &&
472 		    !test_bit(Faulty, &rdev->flags))
473 			set_bit(R1BIO_Uptodate, &r1_bio->state);
474 
475 		/* Maybe we can clear some bad blocks. */
476 		if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
477 				&first_bad, &bad_sectors) && !discard_error) {
478 			r1_bio->bios[mirror] = IO_MADE_GOOD;
479 			set_bit(R1BIO_MadeGood, &r1_bio->state);
480 		}
481 	}
482 
483 	if (behind) {
484 		if (test_bit(WriteMostly, &rdev->flags))
485 			atomic_dec(&r1_bio->behind_remaining);
486 
487 		/*
488 		 * In behind mode, we ACK the master bio once the I/O
489 		 * has safely reached all non-writemostly
490 		 * disks. Setting the Returned bit ensures that this
491 		 * gets done only once -- we don't ever want to return
492 		 * -EIO here, instead we'll wait
493 		 */
494 		if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
495 		    test_bit(R1BIO_Uptodate, &r1_bio->state)) {
496 			/* Maybe we can return now */
497 			if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
498 				struct bio *mbio = r1_bio->master_bio;
499 				pr_debug("raid1: behind end write sectors"
500 					 " %llu-%llu\n",
501 					 (unsigned long long) mbio->bi_iter.bi_sector,
502 					 (unsigned long long) bio_end_sector(mbio) - 1);
503 				call_bio_endio(r1_bio);
504 			}
505 		}
506 	}
507 	if (r1_bio->bios[mirror] == NULL)
508 		rdev_dec_pending(rdev, conf->mddev);
509 
510 	/*
511 	 * Let's see if all mirrored write operations have finished
512 	 * already.
513 	 */
514 	r1_bio_write_done(r1_bio);
515 
516 	if (to_put)
517 		bio_put(to_put);
518 }
519 
520 static sector_t align_to_barrier_unit_end(sector_t start_sector,
521 					  sector_t sectors)
522 {
523 	sector_t len;
524 
525 	WARN_ON(sectors == 0);
526 	/*
527 	 * len is the number of sectors from start_sector to end of the
528 	 * barrier unit which start_sector belongs to.
529 	 */
530 	len = round_up(start_sector + 1, BARRIER_UNIT_SECTOR_SIZE) -
531 	      start_sector;
532 
533 	if (len > sectors)
534 		len = sectors;
535 
536 	return len;
537 }
538 
539 /*
540  * This routine returns the disk from which the requested read should
541  * be done. There is a per-array 'next expected sequential IO' sector
542  * number - if this matches on the next IO then we use the last disk.
543  * There is also a per-disk 'last know head position' sector that is
544  * maintained from IRQ contexts, both the normal and the resync IO
545  * completion handlers update this position correctly. If there is no
546  * perfect sequential match then we pick the disk whose head is closest.
547  *
548  * If there are 2 mirrors in the same 2 devices, performance degrades
549  * because position is mirror, not device based.
550  *
551  * The rdev for the device selected will have nr_pending incremented.
552  */
553 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
554 {
555 	const sector_t this_sector = r1_bio->sector;
556 	int sectors;
557 	int best_good_sectors;
558 	int best_disk, best_dist_disk, best_pending_disk;
559 	int has_nonrot_disk;
560 	int disk;
561 	sector_t best_dist;
562 	unsigned int min_pending;
563 	struct md_rdev *rdev;
564 	int choose_first;
565 	int choose_next_idle;
566 
567 	rcu_read_lock();
568 	/*
569 	 * Check if we can balance. We can balance on the whole
570 	 * device if no resync is going on, or below the resync window.
571 	 * We take the first readable disk when above the resync window.
572 	 */
573  retry:
574 	sectors = r1_bio->sectors;
575 	best_disk = -1;
576 	best_dist_disk = -1;
577 	best_dist = MaxSector;
578 	best_pending_disk = -1;
579 	min_pending = UINT_MAX;
580 	best_good_sectors = 0;
581 	has_nonrot_disk = 0;
582 	choose_next_idle = 0;
583 	clear_bit(R1BIO_FailFast, &r1_bio->state);
584 
585 	if ((conf->mddev->recovery_cp < this_sector + sectors) ||
586 	    (mddev_is_clustered(conf->mddev) &&
587 	    md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
588 		    this_sector + sectors)))
589 		choose_first = 1;
590 	else
591 		choose_first = 0;
592 
593 	for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
594 		sector_t dist;
595 		sector_t first_bad;
596 		int bad_sectors;
597 		unsigned int pending;
598 		bool nonrot;
599 
600 		rdev = rcu_dereference(conf->mirrors[disk].rdev);
601 		if (r1_bio->bios[disk] == IO_BLOCKED
602 		    || rdev == NULL
603 		    || test_bit(Faulty, &rdev->flags))
604 			continue;
605 		if (!test_bit(In_sync, &rdev->flags) &&
606 		    rdev->recovery_offset < this_sector + sectors)
607 			continue;
608 		if (test_bit(WriteMostly, &rdev->flags)) {
609 			/* Don't balance among write-mostly, just
610 			 * use the first as a last resort */
611 			if (best_dist_disk < 0) {
612 				if (is_badblock(rdev, this_sector, sectors,
613 						&first_bad, &bad_sectors)) {
614 					if (first_bad <= this_sector)
615 						/* Cannot use this */
616 						continue;
617 					best_good_sectors = first_bad - this_sector;
618 				} else
619 					best_good_sectors = sectors;
620 				best_dist_disk = disk;
621 				best_pending_disk = disk;
622 			}
623 			continue;
624 		}
625 		/* This is a reasonable device to use.  It might
626 		 * even be best.
627 		 */
628 		if (is_badblock(rdev, this_sector, sectors,
629 				&first_bad, &bad_sectors)) {
630 			if (best_dist < MaxSector)
631 				/* already have a better device */
632 				continue;
633 			if (first_bad <= this_sector) {
634 				/* cannot read here. If this is the 'primary'
635 				 * device, then we must not read beyond
636 				 * bad_sectors from another device..
637 				 */
638 				bad_sectors -= (this_sector - first_bad);
639 				if (choose_first && sectors > bad_sectors)
640 					sectors = bad_sectors;
641 				if (best_good_sectors > sectors)
642 					best_good_sectors = sectors;
643 
644 			} else {
645 				sector_t good_sectors = first_bad - this_sector;
646 				if (good_sectors > best_good_sectors) {
647 					best_good_sectors = good_sectors;
648 					best_disk = disk;
649 				}
650 				if (choose_first)
651 					break;
652 			}
653 			continue;
654 		} else
655 			best_good_sectors = sectors;
656 
657 		if (best_disk >= 0)
658 			/* At least two disks to choose from so failfast is OK */
659 			set_bit(R1BIO_FailFast, &r1_bio->state);
660 
661 		nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
662 		has_nonrot_disk |= nonrot;
663 		pending = atomic_read(&rdev->nr_pending);
664 		dist = abs(this_sector - conf->mirrors[disk].head_position);
665 		if (choose_first) {
666 			best_disk = disk;
667 			break;
668 		}
669 		/* Don't change to another disk for sequential reads */
670 		if (conf->mirrors[disk].next_seq_sect == this_sector
671 		    || dist == 0) {
672 			int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
673 			struct raid1_info *mirror = &conf->mirrors[disk];
674 
675 			best_disk = disk;
676 			/*
677 			 * If buffered sequential IO size exceeds optimal
678 			 * iosize, check if there is idle disk. If yes, choose
679 			 * the idle disk. read_balance could already choose an
680 			 * idle disk before noticing it's a sequential IO in
681 			 * this disk. This doesn't matter because this disk
682 			 * will idle, next time it will be utilized after the
683 			 * first disk has IO size exceeds optimal iosize. In
684 			 * this way, iosize of the first disk will be optimal
685 			 * iosize at least. iosize of the second disk might be
686 			 * small, but not a big deal since when the second disk
687 			 * starts IO, the first disk is likely still busy.
688 			 */
689 			if (nonrot && opt_iosize > 0 &&
690 			    mirror->seq_start != MaxSector &&
691 			    mirror->next_seq_sect > opt_iosize &&
692 			    mirror->next_seq_sect - opt_iosize >=
693 			    mirror->seq_start) {
694 				choose_next_idle = 1;
695 				continue;
696 			}
697 			break;
698 		}
699 
700 		if (choose_next_idle)
701 			continue;
702 
703 		if (min_pending > pending) {
704 			min_pending = pending;
705 			best_pending_disk = disk;
706 		}
707 
708 		if (dist < best_dist) {
709 			best_dist = dist;
710 			best_dist_disk = disk;
711 		}
712 	}
713 
714 	/*
715 	 * If all disks are rotational, choose the closest disk. If any disk is
716 	 * non-rotational, choose the disk with less pending request even the
717 	 * disk is rotational, which might/might not be optimal for raids with
718 	 * mixed ratation/non-rotational disks depending on workload.
719 	 */
720 	if (best_disk == -1) {
721 		if (has_nonrot_disk || min_pending == 0)
722 			best_disk = best_pending_disk;
723 		else
724 			best_disk = best_dist_disk;
725 	}
726 
727 	if (best_disk >= 0) {
728 		rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
729 		if (!rdev)
730 			goto retry;
731 		atomic_inc(&rdev->nr_pending);
732 		sectors = best_good_sectors;
733 
734 		if (conf->mirrors[best_disk].next_seq_sect != this_sector)
735 			conf->mirrors[best_disk].seq_start = this_sector;
736 
737 		conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
738 	}
739 	rcu_read_unlock();
740 	*max_sectors = sectors;
741 
742 	return best_disk;
743 }
744 
745 static int raid1_congested(struct mddev *mddev, int bits)
746 {
747 	struct r1conf *conf = mddev->private;
748 	int i, ret = 0;
749 
750 	if ((bits & (1 << WB_async_congested)) &&
751 	    conf->pending_count >= max_queued_requests)
752 		return 1;
753 
754 	rcu_read_lock();
755 	for (i = 0; i < conf->raid_disks * 2; i++) {
756 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
757 		if (rdev && !test_bit(Faulty, &rdev->flags)) {
758 			struct request_queue *q = bdev_get_queue(rdev->bdev);
759 
760 			BUG_ON(!q);
761 
762 			/* Note the '|| 1' - when read_balance prefers
763 			 * non-congested targets, it can be removed
764 			 */
765 			if ((bits & (1 << WB_async_congested)) || 1)
766 				ret |= bdi_congested(q->backing_dev_info, bits);
767 			else
768 				ret &= bdi_congested(q->backing_dev_info, bits);
769 		}
770 	}
771 	rcu_read_unlock();
772 	return ret;
773 }
774 
775 static void flush_pending_writes(struct r1conf *conf)
776 {
777 	/* Any writes that have been queued but are awaiting
778 	 * bitmap updates get flushed here.
779 	 */
780 	spin_lock_irq(&conf->device_lock);
781 
782 	if (conf->pending_bio_list.head) {
783 		struct bio *bio;
784 		bio = bio_list_get(&conf->pending_bio_list);
785 		conf->pending_count = 0;
786 		spin_unlock_irq(&conf->device_lock);
787 		/* flush any pending bitmap writes to
788 		 * disk before proceeding w/ I/O */
789 		bitmap_unplug(conf->mddev->bitmap);
790 		wake_up(&conf->wait_barrier);
791 
792 		while (bio) { /* submit pending writes */
793 			struct bio *next = bio->bi_next;
794 			struct md_rdev *rdev = (void*)bio->bi_bdev;
795 			bio->bi_next = NULL;
796 			bio->bi_bdev = rdev->bdev;
797 			if (test_bit(Faulty, &rdev->flags)) {
798 				bio->bi_error = -EIO;
799 				bio_endio(bio);
800 			} else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
801 					    !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
802 				/* Just ignore it */
803 				bio_endio(bio);
804 			else
805 				generic_make_request(bio);
806 			bio = next;
807 		}
808 	} else
809 		spin_unlock_irq(&conf->device_lock);
810 }
811 
812 /* Barriers....
813  * Sometimes we need to suspend IO while we do something else,
814  * either some resync/recovery, or reconfigure the array.
815  * To do this we raise a 'barrier'.
816  * The 'barrier' is a counter that can be raised multiple times
817  * to count how many activities are happening which preclude
818  * normal IO.
819  * We can only raise the barrier if there is no pending IO.
820  * i.e. if nr_pending == 0.
821  * We choose only to raise the barrier if no-one is waiting for the
822  * barrier to go down.  This means that as soon as an IO request
823  * is ready, no other operations which require a barrier will start
824  * until the IO request has had a chance.
825  *
826  * So: regular IO calls 'wait_barrier'.  When that returns there
827  *    is no backgroup IO happening,  It must arrange to call
828  *    allow_barrier when it has finished its IO.
829  * backgroup IO calls must call raise_barrier.  Once that returns
830  *    there is no normal IO happeing.  It must arrange to call
831  *    lower_barrier when the particular background IO completes.
832  */
833 static void raise_barrier(struct r1conf *conf, sector_t sector_nr)
834 {
835 	int idx = sector_to_idx(sector_nr);
836 
837 	spin_lock_irq(&conf->resync_lock);
838 
839 	/* Wait until no block IO is waiting */
840 	wait_event_lock_irq(conf->wait_barrier,
841 			    !atomic_read(&conf->nr_waiting[idx]),
842 			    conf->resync_lock);
843 
844 	/* block any new IO from starting */
845 	atomic_inc(&conf->barrier[idx]);
846 	/*
847 	 * In raise_barrier() we firstly increase conf->barrier[idx] then
848 	 * check conf->nr_pending[idx]. In _wait_barrier() we firstly
849 	 * increase conf->nr_pending[idx] then check conf->barrier[idx].
850 	 * A memory barrier here to make sure conf->nr_pending[idx] won't
851 	 * be fetched before conf->barrier[idx] is increased. Otherwise
852 	 * there will be a race between raise_barrier() and _wait_barrier().
853 	 */
854 	smp_mb__after_atomic();
855 
856 	/* For these conditions we must wait:
857 	 * A: while the array is in frozen state
858 	 * B: while conf->nr_pending[idx] is not 0, meaning regular I/O
859 	 *    existing in corresponding I/O barrier bucket.
860 	 * C: while conf->barrier[idx] >= RESYNC_DEPTH, meaning reaches
861 	 *    max resync count which allowed on current I/O barrier bucket.
862 	 */
863 	wait_event_lock_irq(conf->wait_barrier,
864 			    !conf->array_frozen &&
865 			     !atomic_read(&conf->nr_pending[idx]) &&
866 			     atomic_read(&conf->barrier[idx]) < RESYNC_DEPTH,
867 			    conf->resync_lock);
868 
869 	atomic_inc(&conf->nr_pending[idx]);
870 	spin_unlock_irq(&conf->resync_lock);
871 }
872 
873 static void lower_barrier(struct r1conf *conf, sector_t sector_nr)
874 {
875 	int idx = sector_to_idx(sector_nr);
876 
877 	BUG_ON(atomic_read(&conf->barrier[idx]) <= 0);
878 
879 	atomic_dec(&conf->barrier[idx]);
880 	atomic_dec(&conf->nr_pending[idx]);
881 	wake_up(&conf->wait_barrier);
882 }
883 
884 static void _wait_barrier(struct r1conf *conf, int idx)
885 {
886 	/*
887 	 * We need to increase conf->nr_pending[idx] very early here,
888 	 * then raise_barrier() can be blocked when it waits for
889 	 * conf->nr_pending[idx] to be 0. Then we can avoid holding
890 	 * conf->resync_lock when there is no barrier raised in same
891 	 * barrier unit bucket. Also if the array is frozen, I/O
892 	 * should be blocked until array is unfrozen.
893 	 */
894 	atomic_inc(&conf->nr_pending[idx]);
895 	/*
896 	 * In _wait_barrier() we firstly increase conf->nr_pending[idx], then
897 	 * check conf->barrier[idx]. In raise_barrier() we firstly increase
898 	 * conf->barrier[idx], then check conf->nr_pending[idx]. A memory
899 	 * barrier is necessary here to make sure conf->barrier[idx] won't be
900 	 * fetched before conf->nr_pending[idx] is increased. Otherwise there
901 	 * will be a race between _wait_barrier() and raise_barrier().
902 	 */
903 	smp_mb__after_atomic();
904 
905 	/*
906 	 * Don't worry about checking two atomic_t variables at same time
907 	 * here. If during we check conf->barrier[idx], the array is
908 	 * frozen (conf->array_frozen is 1), and chonf->barrier[idx] is
909 	 * 0, it is safe to return and make the I/O continue. Because the
910 	 * array is frozen, all I/O returned here will eventually complete
911 	 * or be queued, no race will happen. See code comment in
912 	 * frozen_array().
913 	 */
914 	if (!READ_ONCE(conf->array_frozen) &&
915 	    !atomic_read(&conf->barrier[idx]))
916 		return;
917 
918 	/*
919 	 * After holding conf->resync_lock, conf->nr_pending[idx]
920 	 * should be decreased before waiting for barrier to drop.
921 	 * Otherwise, we may encounter a race condition because
922 	 * raise_barrer() might be waiting for conf->nr_pending[idx]
923 	 * to be 0 at same time.
924 	 */
925 	spin_lock_irq(&conf->resync_lock);
926 	atomic_inc(&conf->nr_waiting[idx]);
927 	atomic_dec(&conf->nr_pending[idx]);
928 	/*
929 	 * In case freeze_array() is waiting for
930 	 * get_unqueued_pending() == extra
931 	 */
932 	wake_up(&conf->wait_barrier);
933 	/* Wait for the barrier in same barrier unit bucket to drop. */
934 	wait_event_lock_irq(conf->wait_barrier,
935 			    !conf->array_frozen &&
936 			     !atomic_read(&conf->barrier[idx]),
937 			    conf->resync_lock);
938 	atomic_inc(&conf->nr_pending[idx]);
939 	atomic_dec(&conf->nr_waiting[idx]);
940 	spin_unlock_irq(&conf->resync_lock);
941 }
942 
943 static void wait_read_barrier(struct r1conf *conf, sector_t sector_nr)
944 {
945 	int idx = sector_to_idx(sector_nr);
946 
947 	/*
948 	 * Very similar to _wait_barrier(). The difference is, for read
949 	 * I/O we don't need wait for sync I/O, but if the whole array
950 	 * is frozen, the read I/O still has to wait until the array is
951 	 * unfrozen. Since there is no ordering requirement with
952 	 * conf->barrier[idx] here, memory barrier is unnecessary as well.
953 	 */
954 	atomic_inc(&conf->nr_pending[idx]);
955 
956 	if (!READ_ONCE(conf->array_frozen))
957 		return;
958 
959 	spin_lock_irq(&conf->resync_lock);
960 	atomic_inc(&conf->nr_waiting[idx]);
961 	atomic_dec(&conf->nr_pending[idx]);
962 	/*
963 	 * In case freeze_array() is waiting for
964 	 * get_unqueued_pending() == extra
965 	 */
966 	wake_up(&conf->wait_barrier);
967 	/* Wait for array to be unfrozen */
968 	wait_event_lock_irq(conf->wait_barrier,
969 			    !conf->array_frozen,
970 			    conf->resync_lock);
971 	atomic_inc(&conf->nr_pending[idx]);
972 	atomic_dec(&conf->nr_waiting[idx]);
973 	spin_unlock_irq(&conf->resync_lock);
974 }
975 
976 static void wait_barrier(struct r1conf *conf, sector_t sector_nr)
977 {
978 	int idx = sector_to_idx(sector_nr);
979 
980 	_wait_barrier(conf, idx);
981 }
982 
983 static void wait_all_barriers(struct r1conf *conf)
984 {
985 	int idx;
986 
987 	for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
988 		_wait_barrier(conf, idx);
989 }
990 
991 static void _allow_barrier(struct r1conf *conf, int idx)
992 {
993 	atomic_dec(&conf->nr_pending[idx]);
994 	wake_up(&conf->wait_barrier);
995 }
996 
997 static void allow_barrier(struct r1conf *conf, sector_t sector_nr)
998 {
999 	int idx = sector_to_idx(sector_nr);
1000 
1001 	_allow_barrier(conf, idx);
1002 }
1003 
1004 static void allow_all_barriers(struct r1conf *conf)
1005 {
1006 	int idx;
1007 
1008 	for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
1009 		_allow_barrier(conf, idx);
1010 }
1011 
1012 /* conf->resync_lock should be held */
1013 static int get_unqueued_pending(struct r1conf *conf)
1014 {
1015 	int idx, ret;
1016 
1017 	for (ret = 0, idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
1018 		ret += atomic_read(&conf->nr_pending[idx]) -
1019 			atomic_read(&conf->nr_queued[idx]);
1020 
1021 	return ret;
1022 }
1023 
1024 static void freeze_array(struct r1conf *conf, int extra)
1025 {
1026 	/* Stop sync I/O and normal I/O and wait for everything to
1027 	 * go quite.
1028 	 * This is called in two situations:
1029 	 * 1) management command handlers (reshape, remove disk, quiesce).
1030 	 * 2) one normal I/O request failed.
1031 
1032 	 * After array_frozen is set to 1, new sync IO will be blocked at
1033 	 * raise_barrier(), and new normal I/O will blocked at _wait_barrier()
1034 	 * or wait_read_barrier(). The flying I/Os will either complete or be
1035 	 * queued. When everything goes quite, there are only queued I/Os left.
1036 
1037 	 * Every flying I/O contributes to a conf->nr_pending[idx], idx is the
1038 	 * barrier bucket index which this I/O request hits. When all sync and
1039 	 * normal I/O are queued, sum of all conf->nr_pending[] will match sum
1040 	 * of all conf->nr_queued[]. But normal I/O failure is an exception,
1041 	 * in handle_read_error(), we may call freeze_array() before trying to
1042 	 * fix the read error. In this case, the error read I/O is not queued,
1043 	 * so get_unqueued_pending() == 1.
1044 	 *
1045 	 * Therefore before this function returns, we need to wait until
1046 	 * get_unqueued_pendings(conf) gets equal to extra. For
1047 	 * normal I/O context, extra is 1, in rested situations extra is 0.
1048 	 */
1049 	spin_lock_irq(&conf->resync_lock);
1050 	conf->array_frozen = 1;
1051 	raid1_log(conf->mddev, "wait freeze");
1052 	wait_event_lock_irq_cmd(
1053 		conf->wait_barrier,
1054 		get_unqueued_pending(conf) == extra,
1055 		conf->resync_lock,
1056 		flush_pending_writes(conf));
1057 	spin_unlock_irq(&conf->resync_lock);
1058 }
1059 static void unfreeze_array(struct r1conf *conf)
1060 {
1061 	/* reverse the effect of the freeze */
1062 	spin_lock_irq(&conf->resync_lock);
1063 	conf->array_frozen = 0;
1064 	spin_unlock_irq(&conf->resync_lock);
1065 	wake_up(&conf->wait_barrier);
1066 }
1067 
1068 /* duplicate the data pages for behind I/O
1069  */
1070 static void alloc_behind_pages(struct bio *bio, struct r1bio *r1_bio)
1071 {
1072 	int i;
1073 	struct bio_vec *bvec;
1074 	struct bio_vec *bvecs = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec),
1075 					GFP_NOIO);
1076 	if (unlikely(!bvecs))
1077 		return;
1078 
1079 	bio_for_each_segment_all(bvec, bio, i) {
1080 		bvecs[i] = *bvec;
1081 		bvecs[i].bv_page = alloc_page(GFP_NOIO);
1082 		if (unlikely(!bvecs[i].bv_page))
1083 			goto do_sync_io;
1084 		memcpy(kmap(bvecs[i].bv_page) + bvec->bv_offset,
1085 		       kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
1086 		kunmap(bvecs[i].bv_page);
1087 		kunmap(bvec->bv_page);
1088 	}
1089 	r1_bio->behind_bvecs = bvecs;
1090 	r1_bio->behind_page_count = bio->bi_vcnt;
1091 	set_bit(R1BIO_BehindIO, &r1_bio->state);
1092 	return;
1093 
1094 do_sync_io:
1095 	for (i = 0; i < bio->bi_vcnt; i++)
1096 		if (bvecs[i].bv_page)
1097 			put_page(bvecs[i].bv_page);
1098 	kfree(bvecs);
1099 	pr_debug("%dB behind alloc failed, doing sync I/O\n",
1100 		 bio->bi_iter.bi_size);
1101 }
1102 
1103 struct raid1_plug_cb {
1104 	struct blk_plug_cb	cb;
1105 	struct bio_list		pending;
1106 	int			pending_cnt;
1107 };
1108 
1109 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1110 {
1111 	struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1112 						  cb);
1113 	struct mddev *mddev = plug->cb.data;
1114 	struct r1conf *conf = mddev->private;
1115 	struct bio *bio;
1116 
1117 	if (from_schedule || current->bio_list) {
1118 		spin_lock_irq(&conf->device_lock);
1119 		bio_list_merge(&conf->pending_bio_list, &plug->pending);
1120 		conf->pending_count += plug->pending_cnt;
1121 		spin_unlock_irq(&conf->device_lock);
1122 		wake_up(&conf->wait_barrier);
1123 		md_wakeup_thread(mddev->thread);
1124 		kfree(plug);
1125 		return;
1126 	}
1127 
1128 	/* we aren't scheduling, so we can do the write-out directly. */
1129 	bio = bio_list_get(&plug->pending);
1130 	bitmap_unplug(mddev->bitmap);
1131 	wake_up(&conf->wait_barrier);
1132 
1133 	while (bio) { /* submit pending writes */
1134 		struct bio *next = bio->bi_next;
1135 		struct md_rdev *rdev = (void*)bio->bi_bdev;
1136 		bio->bi_next = NULL;
1137 		bio->bi_bdev = rdev->bdev;
1138 		if (test_bit(Faulty, &rdev->flags)) {
1139 			bio->bi_error = -EIO;
1140 			bio_endio(bio);
1141 		} else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
1142 				    !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
1143 			/* Just ignore it */
1144 			bio_endio(bio);
1145 		else
1146 			generic_make_request(bio);
1147 		bio = next;
1148 	}
1149 	kfree(plug);
1150 }
1151 
1152 static inline struct r1bio *
1153 alloc_r1bio(struct mddev *mddev, struct bio *bio, sector_t sectors_handled)
1154 {
1155 	struct r1conf *conf = mddev->private;
1156 	struct r1bio *r1_bio;
1157 
1158 	r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1159 
1160 	r1_bio->master_bio = bio;
1161 	r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1162 	r1_bio->state = 0;
1163 	r1_bio->mddev = mddev;
1164 	r1_bio->sector = bio->bi_iter.bi_sector + sectors_handled;
1165 
1166 	return r1_bio;
1167 }
1168 
1169 static void raid1_read_request(struct mddev *mddev, struct bio *bio)
1170 {
1171 	struct r1conf *conf = mddev->private;
1172 	struct raid1_info *mirror;
1173 	struct r1bio *r1_bio;
1174 	struct bio *read_bio;
1175 	struct bitmap *bitmap = mddev->bitmap;
1176 	const int op = bio_op(bio);
1177 	const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1178 	int sectors_handled;
1179 	int max_sectors;
1180 	int rdisk;
1181 
1182 	/*
1183 	 * Still need barrier for READ in case that whole
1184 	 * array is frozen.
1185 	 */
1186 	wait_read_barrier(conf, bio->bi_iter.bi_sector);
1187 
1188 	r1_bio = alloc_r1bio(mddev, bio, 0);
1189 
1190 	/*
1191 	 * We might need to issue multiple reads to different
1192 	 * devices if there are bad blocks around, so we keep
1193 	 * track of the number of reads in bio->bi_phys_segments.
1194 	 * If this is 0, there is only one r1_bio and no locking
1195 	 * will be needed when requests complete.  If it is
1196 	 * non-zero, then it is the number of not-completed requests.
1197 	 */
1198 	bio->bi_phys_segments = 0;
1199 	bio_clear_flag(bio, BIO_SEG_VALID);
1200 
1201 	/*
1202 	 * make_request() can abort the operation when read-ahead is being
1203 	 * used and no empty request is available.
1204 	 */
1205 read_again:
1206 	rdisk = read_balance(conf, r1_bio, &max_sectors);
1207 
1208 	if (rdisk < 0) {
1209 		/* couldn't find anywhere to read from */
1210 		raid_end_bio_io(r1_bio);
1211 		return;
1212 	}
1213 	mirror = conf->mirrors + rdisk;
1214 
1215 	if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1216 	    bitmap) {
1217 		/*
1218 		 * Reading from a write-mostly device must take care not to
1219 		 * over-take any writes that are 'behind'
1220 		 */
1221 		raid1_log(mddev, "wait behind writes");
1222 		wait_event(bitmap->behind_wait,
1223 			   atomic_read(&bitmap->behind_writes) == 0);
1224 	}
1225 	r1_bio->read_disk = rdisk;
1226 
1227 	read_bio = bio_clone_fast(bio, GFP_NOIO, mddev->bio_set);
1228 	bio_trim(read_bio, r1_bio->sector - bio->bi_iter.bi_sector,
1229 		 max_sectors);
1230 
1231 	r1_bio->bios[rdisk] = read_bio;
1232 
1233 	read_bio->bi_iter.bi_sector = r1_bio->sector +
1234 		mirror->rdev->data_offset;
1235 	read_bio->bi_bdev = mirror->rdev->bdev;
1236 	read_bio->bi_end_io = raid1_end_read_request;
1237 	bio_set_op_attrs(read_bio, op, do_sync);
1238 	if (test_bit(FailFast, &mirror->rdev->flags) &&
1239 	    test_bit(R1BIO_FailFast, &r1_bio->state))
1240 	        read_bio->bi_opf |= MD_FAILFAST;
1241 	read_bio->bi_private = r1_bio;
1242 
1243 	if (mddev->gendisk)
1244 	        trace_block_bio_remap(bdev_get_queue(read_bio->bi_bdev),
1245 	                              read_bio, disk_devt(mddev->gendisk),
1246 	                              r1_bio->sector);
1247 
1248 	if (max_sectors < r1_bio->sectors) {
1249 		/*
1250 		 * could not read all from this device, so we will need another
1251 		 * r1_bio.
1252 		 */
1253 		sectors_handled = (r1_bio->sector + max_sectors
1254 				   - bio->bi_iter.bi_sector);
1255 		r1_bio->sectors = max_sectors;
1256 		spin_lock_irq(&conf->device_lock);
1257 		if (bio->bi_phys_segments == 0)
1258 			bio->bi_phys_segments = 2;
1259 		else
1260 			bio->bi_phys_segments++;
1261 		spin_unlock_irq(&conf->device_lock);
1262 
1263 		/*
1264 		 * Cannot call generic_make_request directly as that will be
1265 		 * queued in __make_request and subsequent mempool_alloc might
1266 		 * block waiting for it.  So hand bio over to raid1d.
1267 		 */
1268 		reschedule_retry(r1_bio);
1269 
1270 		r1_bio = alloc_r1bio(mddev, bio, sectors_handled);
1271 		goto read_again;
1272 	} else
1273 		generic_make_request(read_bio);
1274 }
1275 
1276 static void raid1_write_request(struct mddev *mddev, struct bio *bio)
1277 {
1278 	struct r1conf *conf = mddev->private;
1279 	struct r1bio *r1_bio;
1280 	int i, disks;
1281 	struct bitmap *bitmap = mddev->bitmap;
1282 	unsigned long flags;
1283 	struct md_rdev *blocked_rdev;
1284 	struct blk_plug_cb *cb;
1285 	struct raid1_plug_cb *plug = NULL;
1286 	int first_clone;
1287 	int sectors_handled;
1288 	int max_sectors;
1289 
1290 	/*
1291 	 * Register the new request and wait if the reconstruction
1292 	 * thread has put up a bar for new requests.
1293 	 * Continue immediately if no resync is active currently.
1294 	 */
1295 
1296 	md_write_start(mddev, bio); /* wait on superblock update early */
1297 
1298 	if ((bio_end_sector(bio) > mddev->suspend_lo &&
1299 	    bio->bi_iter.bi_sector < mddev->suspend_hi) ||
1300 	    (mddev_is_clustered(mddev) &&
1301 	     md_cluster_ops->area_resyncing(mddev, WRITE,
1302 		     bio->bi_iter.bi_sector, bio_end_sector(bio)))) {
1303 
1304 		/*
1305 		 * As the suspend_* range is controlled by userspace, we want
1306 		 * an interruptible wait.
1307 		 */
1308 		DEFINE_WAIT(w);
1309 		for (;;) {
1310 			flush_signals(current);
1311 			prepare_to_wait(&conf->wait_barrier,
1312 					&w, TASK_INTERRUPTIBLE);
1313 			if (bio_end_sector(bio) <= mddev->suspend_lo ||
1314 			    bio->bi_iter.bi_sector >= mddev->suspend_hi ||
1315 			    (mddev_is_clustered(mddev) &&
1316 			     !md_cluster_ops->area_resyncing(mddev, WRITE,
1317 				     bio->bi_iter.bi_sector,
1318 				     bio_end_sector(bio))))
1319 				break;
1320 			schedule();
1321 		}
1322 		finish_wait(&conf->wait_barrier, &w);
1323 	}
1324 	wait_barrier(conf, bio->bi_iter.bi_sector);
1325 
1326 	r1_bio = alloc_r1bio(mddev, bio, 0);
1327 
1328 	/* We might need to issue multiple writes to different
1329 	 * devices if there are bad blocks around, so we keep
1330 	 * track of the number of writes in bio->bi_phys_segments.
1331 	 * If this is 0, there is only one r1_bio and no locking
1332 	 * will be needed when requests complete.  If it is
1333 	 * non-zero, then it is the number of not-completed requests.
1334 	 */
1335 	bio->bi_phys_segments = 0;
1336 	bio_clear_flag(bio, BIO_SEG_VALID);
1337 
1338 	if (conf->pending_count >= max_queued_requests) {
1339 		md_wakeup_thread(mddev->thread);
1340 		raid1_log(mddev, "wait queued");
1341 		wait_event(conf->wait_barrier,
1342 			   conf->pending_count < max_queued_requests);
1343 	}
1344 	/* first select target devices under rcu_lock and
1345 	 * inc refcount on their rdev.  Record them by setting
1346 	 * bios[x] to bio
1347 	 * If there are known/acknowledged bad blocks on any device on
1348 	 * which we have seen a write error, we want to avoid writing those
1349 	 * blocks.
1350 	 * This potentially requires several writes to write around
1351 	 * the bad blocks.  Each set of writes gets it's own r1bio
1352 	 * with a set of bios attached.
1353 	 */
1354 
1355 	disks = conf->raid_disks * 2;
1356  retry_write:
1357 	blocked_rdev = NULL;
1358 	rcu_read_lock();
1359 	max_sectors = r1_bio->sectors;
1360 	for (i = 0;  i < disks; i++) {
1361 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1362 		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1363 			atomic_inc(&rdev->nr_pending);
1364 			blocked_rdev = rdev;
1365 			break;
1366 		}
1367 		r1_bio->bios[i] = NULL;
1368 		if (!rdev || test_bit(Faulty, &rdev->flags)) {
1369 			if (i < conf->raid_disks)
1370 				set_bit(R1BIO_Degraded, &r1_bio->state);
1371 			continue;
1372 		}
1373 
1374 		atomic_inc(&rdev->nr_pending);
1375 		if (test_bit(WriteErrorSeen, &rdev->flags)) {
1376 			sector_t first_bad;
1377 			int bad_sectors;
1378 			int is_bad;
1379 
1380 			is_bad = is_badblock(rdev, r1_bio->sector, max_sectors,
1381 					     &first_bad, &bad_sectors);
1382 			if (is_bad < 0) {
1383 				/* mustn't write here until the bad block is
1384 				 * acknowledged*/
1385 				set_bit(BlockedBadBlocks, &rdev->flags);
1386 				blocked_rdev = rdev;
1387 				break;
1388 			}
1389 			if (is_bad && first_bad <= r1_bio->sector) {
1390 				/* Cannot write here at all */
1391 				bad_sectors -= (r1_bio->sector - first_bad);
1392 				if (bad_sectors < max_sectors)
1393 					/* mustn't write more than bad_sectors
1394 					 * to other devices yet
1395 					 */
1396 					max_sectors = bad_sectors;
1397 				rdev_dec_pending(rdev, mddev);
1398 				/* We don't set R1BIO_Degraded as that
1399 				 * only applies if the disk is
1400 				 * missing, so it might be re-added,
1401 				 * and we want to know to recover this
1402 				 * chunk.
1403 				 * In this case the device is here,
1404 				 * and the fact that this chunk is not
1405 				 * in-sync is recorded in the bad
1406 				 * block log
1407 				 */
1408 				continue;
1409 			}
1410 			if (is_bad) {
1411 				int good_sectors = first_bad - r1_bio->sector;
1412 				if (good_sectors < max_sectors)
1413 					max_sectors = good_sectors;
1414 			}
1415 		}
1416 		r1_bio->bios[i] = bio;
1417 	}
1418 	rcu_read_unlock();
1419 
1420 	if (unlikely(blocked_rdev)) {
1421 		/* Wait for this device to become unblocked */
1422 		int j;
1423 
1424 		for (j = 0; j < i; j++)
1425 			if (r1_bio->bios[j])
1426 				rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1427 		r1_bio->state = 0;
1428 		allow_barrier(conf, bio->bi_iter.bi_sector);
1429 		raid1_log(mddev, "wait rdev %d blocked", blocked_rdev->raid_disk);
1430 		md_wait_for_blocked_rdev(blocked_rdev, mddev);
1431 		wait_barrier(conf, bio->bi_iter.bi_sector);
1432 		goto retry_write;
1433 	}
1434 
1435 	if (max_sectors < r1_bio->sectors) {
1436 		/* We are splitting this write into multiple parts, so
1437 		 * we need to prepare for allocating another r1_bio.
1438 		 */
1439 		r1_bio->sectors = max_sectors;
1440 		spin_lock_irq(&conf->device_lock);
1441 		if (bio->bi_phys_segments == 0)
1442 			bio->bi_phys_segments = 2;
1443 		else
1444 			bio->bi_phys_segments++;
1445 		spin_unlock_irq(&conf->device_lock);
1446 	}
1447 	sectors_handled = r1_bio->sector + max_sectors - bio->bi_iter.bi_sector;
1448 
1449 	atomic_set(&r1_bio->remaining, 1);
1450 	atomic_set(&r1_bio->behind_remaining, 0);
1451 
1452 	first_clone = 1;
1453 	for (i = 0; i < disks; i++) {
1454 		struct bio *mbio = NULL;
1455 		sector_t offset;
1456 		if (!r1_bio->bios[i])
1457 			continue;
1458 
1459 		offset = r1_bio->sector - bio->bi_iter.bi_sector;
1460 
1461 		if (first_clone) {
1462 			/* do behind I/O ?
1463 			 * Not if there are too many, or cannot
1464 			 * allocate memory, or a reader on WriteMostly
1465 			 * is waiting for behind writes to flush */
1466 			if (bitmap &&
1467 			    (atomic_read(&bitmap->behind_writes)
1468 			     < mddev->bitmap_info.max_write_behind) &&
1469 			    !waitqueue_active(&bitmap->behind_wait)) {
1470 				mbio = bio_clone_bioset_partial(bio, GFP_NOIO,
1471 								mddev->bio_set,
1472 								offset << 9,
1473 								max_sectors << 9);
1474 				alloc_behind_pages(mbio, r1_bio);
1475 			}
1476 
1477 			bitmap_startwrite(bitmap, r1_bio->sector,
1478 					  r1_bio->sectors,
1479 					  test_bit(R1BIO_BehindIO,
1480 						   &r1_bio->state));
1481 			first_clone = 0;
1482 		}
1483 
1484 		if (!mbio) {
1485 			if (r1_bio->behind_bvecs)
1486 				mbio = bio_clone_bioset_partial(bio, GFP_NOIO,
1487 								mddev->bio_set,
1488 								offset << 9,
1489 								max_sectors << 9);
1490 			else {
1491 				mbio = bio_clone_fast(bio, GFP_NOIO, mddev->bio_set);
1492 				bio_trim(mbio, offset, max_sectors);
1493 			}
1494 		}
1495 
1496 		if (r1_bio->behind_bvecs) {
1497 			struct bio_vec *bvec;
1498 			int j;
1499 
1500 			/*
1501 			 * We trimmed the bio, so _all is legit
1502 			 */
1503 			bio_for_each_segment_all(bvec, mbio, j)
1504 				bvec->bv_page = r1_bio->behind_bvecs[j].bv_page;
1505 			if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1506 				atomic_inc(&r1_bio->behind_remaining);
1507 		}
1508 
1509 		r1_bio->bios[i] = mbio;
1510 
1511 		mbio->bi_iter.bi_sector	= (r1_bio->sector +
1512 				   conf->mirrors[i].rdev->data_offset);
1513 		mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1514 		mbio->bi_end_io	= raid1_end_write_request;
1515 		mbio->bi_opf = bio_op(bio) | (bio->bi_opf & (REQ_SYNC | REQ_FUA));
1516 		if (test_bit(FailFast, &conf->mirrors[i].rdev->flags) &&
1517 		    !test_bit(WriteMostly, &conf->mirrors[i].rdev->flags) &&
1518 		    conf->raid_disks - mddev->degraded > 1)
1519 			mbio->bi_opf |= MD_FAILFAST;
1520 		mbio->bi_private = r1_bio;
1521 
1522 		atomic_inc(&r1_bio->remaining);
1523 
1524 		if (mddev->gendisk)
1525 			trace_block_bio_remap(bdev_get_queue(mbio->bi_bdev),
1526 					      mbio, disk_devt(mddev->gendisk),
1527 					      r1_bio->sector);
1528 		/* flush_pending_writes() needs access to the rdev so...*/
1529 		mbio->bi_bdev = (void*)conf->mirrors[i].rdev;
1530 
1531 		cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1532 		if (cb)
1533 			plug = container_of(cb, struct raid1_plug_cb, cb);
1534 		else
1535 			plug = NULL;
1536 		spin_lock_irqsave(&conf->device_lock, flags);
1537 		if (plug) {
1538 			bio_list_add(&plug->pending, mbio);
1539 			plug->pending_cnt++;
1540 		} else {
1541 			bio_list_add(&conf->pending_bio_list, mbio);
1542 			conf->pending_count++;
1543 		}
1544 		spin_unlock_irqrestore(&conf->device_lock, flags);
1545 		if (!plug)
1546 			md_wakeup_thread(mddev->thread);
1547 	}
1548 	/* Mustn't call r1_bio_write_done before this next test,
1549 	 * as it could result in the bio being freed.
1550 	 */
1551 	if (sectors_handled < bio_sectors(bio)) {
1552 		r1_bio_write_done(r1_bio);
1553 		/* We need another r1_bio.  It has already been counted
1554 		 * in bio->bi_phys_segments
1555 		 */
1556 		r1_bio = alloc_r1bio(mddev, bio, sectors_handled);
1557 		goto retry_write;
1558 	}
1559 
1560 	r1_bio_write_done(r1_bio);
1561 
1562 	/* In case raid1d snuck in to freeze_array */
1563 	wake_up(&conf->wait_barrier);
1564 }
1565 
1566 static void raid1_make_request(struct mddev *mddev, struct bio *bio)
1567 {
1568 	struct bio *split;
1569 	sector_t sectors;
1570 
1571 	if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1572 		md_flush_request(mddev, bio);
1573 		return;
1574 	}
1575 
1576 	/* if bio exceeds barrier unit boundary, split it */
1577 	do {
1578 		sectors = align_to_barrier_unit_end(
1579 				bio->bi_iter.bi_sector, bio_sectors(bio));
1580 		if (sectors < bio_sectors(bio)) {
1581 			split = bio_split(bio, sectors, GFP_NOIO, fs_bio_set);
1582 			bio_chain(split, bio);
1583 		} else {
1584 			split = bio;
1585 		}
1586 
1587 		if (bio_data_dir(split) == READ)
1588 			raid1_read_request(mddev, split);
1589 		else
1590 			raid1_write_request(mddev, split);
1591 	} while (split != bio);
1592 }
1593 
1594 static void raid1_status(struct seq_file *seq, struct mddev *mddev)
1595 {
1596 	struct r1conf *conf = mddev->private;
1597 	int i;
1598 
1599 	seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1600 		   conf->raid_disks - mddev->degraded);
1601 	rcu_read_lock();
1602 	for (i = 0; i < conf->raid_disks; i++) {
1603 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1604 		seq_printf(seq, "%s",
1605 			   rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1606 	}
1607 	rcu_read_unlock();
1608 	seq_printf(seq, "]");
1609 }
1610 
1611 static void raid1_error(struct mddev *mddev, struct md_rdev *rdev)
1612 {
1613 	char b[BDEVNAME_SIZE];
1614 	struct r1conf *conf = mddev->private;
1615 	unsigned long flags;
1616 
1617 	/*
1618 	 * If it is not operational, then we have already marked it as dead
1619 	 * else if it is the last working disks, ignore the error, let the
1620 	 * next level up know.
1621 	 * else mark the drive as failed
1622 	 */
1623 	spin_lock_irqsave(&conf->device_lock, flags);
1624 	if (test_bit(In_sync, &rdev->flags)
1625 	    && (conf->raid_disks - mddev->degraded) == 1) {
1626 		/*
1627 		 * Don't fail the drive, act as though we were just a
1628 		 * normal single drive.
1629 		 * However don't try a recovery from this drive as
1630 		 * it is very likely to fail.
1631 		 */
1632 		conf->recovery_disabled = mddev->recovery_disabled;
1633 		spin_unlock_irqrestore(&conf->device_lock, flags);
1634 		return;
1635 	}
1636 	set_bit(Blocked, &rdev->flags);
1637 	if (test_and_clear_bit(In_sync, &rdev->flags)) {
1638 		mddev->degraded++;
1639 		set_bit(Faulty, &rdev->flags);
1640 	} else
1641 		set_bit(Faulty, &rdev->flags);
1642 	spin_unlock_irqrestore(&conf->device_lock, flags);
1643 	/*
1644 	 * if recovery is running, make sure it aborts.
1645 	 */
1646 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1647 	set_mask_bits(&mddev->sb_flags, 0,
1648 		      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1649 	pr_crit("md/raid1:%s: Disk failure on %s, disabling device.\n"
1650 		"md/raid1:%s: Operation continuing on %d devices.\n",
1651 		mdname(mddev), bdevname(rdev->bdev, b),
1652 		mdname(mddev), conf->raid_disks - mddev->degraded);
1653 }
1654 
1655 static void print_conf(struct r1conf *conf)
1656 {
1657 	int i;
1658 
1659 	pr_debug("RAID1 conf printout:\n");
1660 	if (!conf) {
1661 		pr_debug("(!conf)\n");
1662 		return;
1663 	}
1664 	pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1665 		 conf->raid_disks);
1666 
1667 	rcu_read_lock();
1668 	for (i = 0; i < conf->raid_disks; i++) {
1669 		char b[BDEVNAME_SIZE];
1670 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1671 		if (rdev)
1672 			pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
1673 				 i, !test_bit(In_sync, &rdev->flags),
1674 				 !test_bit(Faulty, &rdev->flags),
1675 				 bdevname(rdev->bdev,b));
1676 	}
1677 	rcu_read_unlock();
1678 }
1679 
1680 static void close_sync(struct r1conf *conf)
1681 {
1682 	wait_all_barriers(conf);
1683 	allow_all_barriers(conf);
1684 
1685 	mempool_destroy(conf->r1buf_pool);
1686 	conf->r1buf_pool = NULL;
1687 }
1688 
1689 static int raid1_spare_active(struct mddev *mddev)
1690 {
1691 	int i;
1692 	struct r1conf *conf = mddev->private;
1693 	int count = 0;
1694 	unsigned long flags;
1695 
1696 	/*
1697 	 * Find all failed disks within the RAID1 configuration
1698 	 * and mark them readable.
1699 	 * Called under mddev lock, so rcu protection not needed.
1700 	 * device_lock used to avoid races with raid1_end_read_request
1701 	 * which expects 'In_sync' flags and ->degraded to be consistent.
1702 	 */
1703 	spin_lock_irqsave(&conf->device_lock, flags);
1704 	for (i = 0; i < conf->raid_disks; i++) {
1705 		struct md_rdev *rdev = conf->mirrors[i].rdev;
1706 		struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1707 		if (repl
1708 		    && !test_bit(Candidate, &repl->flags)
1709 		    && repl->recovery_offset == MaxSector
1710 		    && !test_bit(Faulty, &repl->flags)
1711 		    && !test_and_set_bit(In_sync, &repl->flags)) {
1712 			/* replacement has just become active */
1713 			if (!rdev ||
1714 			    !test_and_clear_bit(In_sync, &rdev->flags))
1715 				count++;
1716 			if (rdev) {
1717 				/* Replaced device not technically
1718 				 * faulty, but we need to be sure
1719 				 * it gets removed and never re-added
1720 				 */
1721 				set_bit(Faulty, &rdev->flags);
1722 				sysfs_notify_dirent_safe(
1723 					rdev->sysfs_state);
1724 			}
1725 		}
1726 		if (rdev
1727 		    && rdev->recovery_offset == MaxSector
1728 		    && !test_bit(Faulty, &rdev->flags)
1729 		    && !test_and_set_bit(In_sync, &rdev->flags)) {
1730 			count++;
1731 			sysfs_notify_dirent_safe(rdev->sysfs_state);
1732 		}
1733 	}
1734 	mddev->degraded -= count;
1735 	spin_unlock_irqrestore(&conf->device_lock, flags);
1736 
1737 	print_conf(conf);
1738 	return count;
1739 }
1740 
1741 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1742 {
1743 	struct r1conf *conf = mddev->private;
1744 	int err = -EEXIST;
1745 	int mirror = 0;
1746 	struct raid1_info *p;
1747 	int first = 0;
1748 	int last = conf->raid_disks - 1;
1749 
1750 	if (mddev->recovery_disabled == conf->recovery_disabled)
1751 		return -EBUSY;
1752 
1753 	if (md_integrity_add_rdev(rdev, mddev))
1754 		return -ENXIO;
1755 
1756 	if (rdev->raid_disk >= 0)
1757 		first = last = rdev->raid_disk;
1758 
1759 	/*
1760 	 * find the disk ... but prefer rdev->saved_raid_disk
1761 	 * if possible.
1762 	 */
1763 	if (rdev->saved_raid_disk >= 0 &&
1764 	    rdev->saved_raid_disk >= first &&
1765 	    conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1766 		first = last = rdev->saved_raid_disk;
1767 
1768 	for (mirror = first; mirror <= last; mirror++) {
1769 		p = conf->mirrors+mirror;
1770 		if (!p->rdev) {
1771 
1772 			if (mddev->gendisk)
1773 				disk_stack_limits(mddev->gendisk, rdev->bdev,
1774 						  rdev->data_offset << 9);
1775 
1776 			p->head_position = 0;
1777 			rdev->raid_disk = mirror;
1778 			err = 0;
1779 			/* As all devices are equivalent, we don't need a full recovery
1780 			 * if this was recently any drive of the array
1781 			 */
1782 			if (rdev->saved_raid_disk < 0)
1783 				conf->fullsync = 1;
1784 			rcu_assign_pointer(p->rdev, rdev);
1785 			break;
1786 		}
1787 		if (test_bit(WantReplacement, &p->rdev->flags) &&
1788 		    p[conf->raid_disks].rdev == NULL) {
1789 			/* Add this device as a replacement */
1790 			clear_bit(In_sync, &rdev->flags);
1791 			set_bit(Replacement, &rdev->flags);
1792 			rdev->raid_disk = mirror;
1793 			err = 0;
1794 			conf->fullsync = 1;
1795 			rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1796 			break;
1797 		}
1798 	}
1799 	if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1800 		queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1801 	print_conf(conf);
1802 	return err;
1803 }
1804 
1805 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1806 {
1807 	struct r1conf *conf = mddev->private;
1808 	int err = 0;
1809 	int number = rdev->raid_disk;
1810 	struct raid1_info *p = conf->mirrors + number;
1811 
1812 	if (rdev != p->rdev)
1813 		p = conf->mirrors + conf->raid_disks + number;
1814 
1815 	print_conf(conf);
1816 	if (rdev == p->rdev) {
1817 		if (test_bit(In_sync, &rdev->flags) ||
1818 		    atomic_read(&rdev->nr_pending)) {
1819 			err = -EBUSY;
1820 			goto abort;
1821 		}
1822 		/* Only remove non-faulty devices if recovery
1823 		 * is not possible.
1824 		 */
1825 		if (!test_bit(Faulty, &rdev->flags) &&
1826 		    mddev->recovery_disabled != conf->recovery_disabled &&
1827 		    mddev->degraded < conf->raid_disks) {
1828 			err = -EBUSY;
1829 			goto abort;
1830 		}
1831 		p->rdev = NULL;
1832 		if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1833 			synchronize_rcu();
1834 			if (atomic_read(&rdev->nr_pending)) {
1835 				/* lost the race, try later */
1836 				err = -EBUSY;
1837 				p->rdev = rdev;
1838 				goto abort;
1839 			}
1840 		}
1841 		if (conf->mirrors[conf->raid_disks + number].rdev) {
1842 			/* We just removed a device that is being replaced.
1843 			 * Move down the replacement.  We drain all IO before
1844 			 * doing this to avoid confusion.
1845 			 */
1846 			struct md_rdev *repl =
1847 				conf->mirrors[conf->raid_disks + number].rdev;
1848 			freeze_array(conf, 0);
1849 			clear_bit(Replacement, &repl->flags);
1850 			p->rdev = repl;
1851 			conf->mirrors[conf->raid_disks + number].rdev = NULL;
1852 			unfreeze_array(conf);
1853 			clear_bit(WantReplacement, &rdev->flags);
1854 		} else
1855 			clear_bit(WantReplacement, &rdev->flags);
1856 		err = md_integrity_register(mddev);
1857 	}
1858 abort:
1859 
1860 	print_conf(conf);
1861 	return err;
1862 }
1863 
1864 static void end_sync_read(struct bio *bio)
1865 {
1866 	struct r1bio *r1_bio = bio->bi_private;
1867 
1868 	update_head_pos(r1_bio->read_disk, r1_bio);
1869 
1870 	/*
1871 	 * we have read a block, now it needs to be re-written,
1872 	 * or re-read if the read failed.
1873 	 * We don't do much here, just schedule handling by raid1d
1874 	 */
1875 	if (!bio->bi_error)
1876 		set_bit(R1BIO_Uptodate, &r1_bio->state);
1877 
1878 	if (atomic_dec_and_test(&r1_bio->remaining))
1879 		reschedule_retry(r1_bio);
1880 }
1881 
1882 static void end_sync_write(struct bio *bio)
1883 {
1884 	int uptodate = !bio->bi_error;
1885 	struct r1bio *r1_bio = bio->bi_private;
1886 	struct mddev *mddev = r1_bio->mddev;
1887 	struct r1conf *conf = mddev->private;
1888 	sector_t first_bad;
1889 	int bad_sectors;
1890 	struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev;
1891 
1892 	if (!uptodate) {
1893 		sector_t sync_blocks = 0;
1894 		sector_t s = r1_bio->sector;
1895 		long sectors_to_go = r1_bio->sectors;
1896 		/* make sure these bits doesn't get cleared. */
1897 		do {
1898 			bitmap_end_sync(mddev->bitmap, s,
1899 					&sync_blocks, 1);
1900 			s += sync_blocks;
1901 			sectors_to_go -= sync_blocks;
1902 		} while (sectors_to_go > 0);
1903 		set_bit(WriteErrorSeen, &rdev->flags);
1904 		if (!test_and_set_bit(WantReplacement, &rdev->flags))
1905 			set_bit(MD_RECOVERY_NEEDED, &
1906 				mddev->recovery);
1907 		set_bit(R1BIO_WriteError, &r1_bio->state);
1908 	} else if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
1909 			       &first_bad, &bad_sectors) &&
1910 		   !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1911 				r1_bio->sector,
1912 				r1_bio->sectors,
1913 				&first_bad, &bad_sectors)
1914 		)
1915 		set_bit(R1BIO_MadeGood, &r1_bio->state);
1916 
1917 	if (atomic_dec_and_test(&r1_bio->remaining)) {
1918 		int s = r1_bio->sectors;
1919 		if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1920 		    test_bit(R1BIO_WriteError, &r1_bio->state))
1921 			reschedule_retry(r1_bio);
1922 		else {
1923 			put_buf(r1_bio);
1924 			md_done_sync(mddev, s, uptodate);
1925 		}
1926 	}
1927 }
1928 
1929 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1930 			    int sectors, struct page *page, int rw)
1931 {
1932 	if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
1933 		/* success */
1934 		return 1;
1935 	if (rw == WRITE) {
1936 		set_bit(WriteErrorSeen, &rdev->flags);
1937 		if (!test_and_set_bit(WantReplacement,
1938 				      &rdev->flags))
1939 			set_bit(MD_RECOVERY_NEEDED, &
1940 				rdev->mddev->recovery);
1941 	}
1942 	/* need to record an error - either for the block or the device */
1943 	if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1944 		md_error(rdev->mddev, rdev);
1945 	return 0;
1946 }
1947 
1948 static int fix_sync_read_error(struct r1bio *r1_bio)
1949 {
1950 	/* Try some synchronous reads of other devices to get
1951 	 * good data, much like with normal read errors.  Only
1952 	 * read into the pages we already have so we don't
1953 	 * need to re-issue the read request.
1954 	 * We don't need to freeze the array, because being in an
1955 	 * active sync request, there is no normal IO, and
1956 	 * no overlapping syncs.
1957 	 * We don't need to check is_badblock() again as we
1958 	 * made sure that anything with a bad block in range
1959 	 * will have bi_end_io clear.
1960 	 */
1961 	struct mddev *mddev = r1_bio->mddev;
1962 	struct r1conf *conf = mddev->private;
1963 	struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1964 	sector_t sect = r1_bio->sector;
1965 	int sectors = r1_bio->sectors;
1966 	int idx = 0;
1967 	struct md_rdev *rdev;
1968 
1969 	rdev = conf->mirrors[r1_bio->read_disk].rdev;
1970 	if (test_bit(FailFast, &rdev->flags)) {
1971 		/* Don't try recovering from here - just fail it
1972 		 * ... unless it is the last working device of course */
1973 		md_error(mddev, rdev);
1974 		if (test_bit(Faulty, &rdev->flags))
1975 			/* Don't try to read from here, but make sure
1976 			 * put_buf does it's thing
1977 			 */
1978 			bio->bi_end_io = end_sync_write;
1979 	}
1980 
1981 	while(sectors) {
1982 		int s = sectors;
1983 		int d = r1_bio->read_disk;
1984 		int success = 0;
1985 		int start;
1986 
1987 		if (s > (PAGE_SIZE>>9))
1988 			s = PAGE_SIZE >> 9;
1989 		do {
1990 			if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1991 				/* No rcu protection needed here devices
1992 				 * can only be removed when no resync is
1993 				 * active, and resync is currently active
1994 				 */
1995 				rdev = conf->mirrors[d].rdev;
1996 				if (sync_page_io(rdev, sect, s<<9,
1997 						 bio->bi_io_vec[idx].bv_page,
1998 						 REQ_OP_READ, 0, false)) {
1999 					success = 1;
2000 					break;
2001 				}
2002 			}
2003 			d++;
2004 			if (d == conf->raid_disks * 2)
2005 				d = 0;
2006 		} while (!success && d != r1_bio->read_disk);
2007 
2008 		if (!success) {
2009 			char b[BDEVNAME_SIZE];
2010 			int abort = 0;
2011 			/* Cannot read from anywhere, this block is lost.
2012 			 * Record a bad block on each device.  If that doesn't
2013 			 * work just disable and interrupt the recovery.
2014 			 * Don't fail devices as that won't really help.
2015 			 */
2016 			pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
2017 					    mdname(mddev),
2018 					    bdevname(bio->bi_bdev, b),
2019 					    (unsigned long long)r1_bio->sector);
2020 			for (d = 0; d < conf->raid_disks * 2; d++) {
2021 				rdev = conf->mirrors[d].rdev;
2022 				if (!rdev || test_bit(Faulty, &rdev->flags))
2023 					continue;
2024 				if (!rdev_set_badblocks(rdev, sect, s, 0))
2025 					abort = 1;
2026 			}
2027 			if (abort) {
2028 				conf->recovery_disabled =
2029 					mddev->recovery_disabled;
2030 				set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2031 				md_done_sync(mddev, r1_bio->sectors, 0);
2032 				put_buf(r1_bio);
2033 				return 0;
2034 			}
2035 			/* Try next page */
2036 			sectors -= s;
2037 			sect += s;
2038 			idx++;
2039 			continue;
2040 		}
2041 
2042 		start = d;
2043 		/* write it back and re-read */
2044 		while (d != r1_bio->read_disk) {
2045 			if (d == 0)
2046 				d = conf->raid_disks * 2;
2047 			d--;
2048 			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2049 				continue;
2050 			rdev = conf->mirrors[d].rdev;
2051 			if (r1_sync_page_io(rdev, sect, s,
2052 					    bio->bi_io_vec[idx].bv_page,
2053 					    WRITE) == 0) {
2054 				r1_bio->bios[d]->bi_end_io = NULL;
2055 				rdev_dec_pending(rdev, mddev);
2056 			}
2057 		}
2058 		d = start;
2059 		while (d != r1_bio->read_disk) {
2060 			if (d == 0)
2061 				d = conf->raid_disks * 2;
2062 			d--;
2063 			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2064 				continue;
2065 			rdev = conf->mirrors[d].rdev;
2066 			if (r1_sync_page_io(rdev, sect, s,
2067 					    bio->bi_io_vec[idx].bv_page,
2068 					    READ) != 0)
2069 				atomic_add(s, &rdev->corrected_errors);
2070 		}
2071 		sectors -= s;
2072 		sect += s;
2073 		idx ++;
2074 	}
2075 	set_bit(R1BIO_Uptodate, &r1_bio->state);
2076 	bio->bi_error = 0;
2077 	return 1;
2078 }
2079 
2080 static void process_checks(struct r1bio *r1_bio)
2081 {
2082 	/* We have read all readable devices.  If we haven't
2083 	 * got the block, then there is no hope left.
2084 	 * If we have, then we want to do a comparison
2085 	 * and skip the write if everything is the same.
2086 	 * If any blocks failed to read, then we need to
2087 	 * attempt an over-write
2088 	 */
2089 	struct mddev *mddev = r1_bio->mddev;
2090 	struct r1conf *conf = mddev->private;
2091 	int primary;
2092 	int i;
2093 	int vcnt;
2094 
2095 	/* Fix variable parts of all bios */
2096 	vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
2097 	for (i = 0; i < conf->raid_disks * 2; i++) {
2098 		int j;
2099 		int size;
2100 		int error;
2101 		struct bio *b = r1_bio->bios[i];
2102 		if (b->bi_end_io != end_sync_read)
2103 			continue;
2104 		/* fixup the bio for reuse, but preserve errno */
2105 		error = b->bi_error;
2106 		bio_reset(b);
2107 		b->bi_error = error;
2108 		b->bi_vcnt = vcnt;
2109 		b->bi_iter.bi_size = r1_bio->sectors << 9;
2110 		b->bi_iter.bi_sector = r1_bio->sector +
2111 			conf->mirrors[i].rdev->data_offset;
2112 		b->bi_bdev = conf->mirrors[i].rdev->bdev;
2113 		b->bi_end_io = end_sync_read;
2114 		b->bi_private = r1_bio;
2115 
2116 		size = b->bi_iter.bi_size;
2117 		for (j = 0; j < vcnt ; j++) {
2118 			struct bio_vec *bi;
2119 			bi = &b->bi_io_vec[j];
2120 			bi->bv_offset = 0;
2121 			if (size > PAGE_SIZE)
2122 				bi->bv_len = PAGE_SIZE;
2123 			else
2124 				bi->bv_len = size;
2125 			size -= PAGE_SIZE;
2126 		}
2127 	}
2128 	for (primary = 0; primary < conf->raid_disks * 2; primary++)
2129 		if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
2130 		    !r1_bio->bios[primary]->bi_error) {
2131 			r1_bio->bios[primary]->bi_end_io = NULL;
2132 			rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
2133 			break;
2134 		}
2135 	r1_bio->read_disk = primary;
2136 	for (i = 0; i < conf->raid_disks * 2; i++) {
2137 		int j;
2138 		struct bio *pbio = r1_bio->bios[primary];
2139 		struct bio *sbio = r1_bio->bios[i];
2140 		int error = sbio->bi_error;
2141 
2142 		if (sbio->bi_end_io != end_sync_read)
2143 			continue;
2144 		/* Now we can 'fixup' the error value */
2145 		sbio->bi_error = 0;
2146 
2147 		if (!error) {
2148 			for (j = vcnt; j-- ; ) {
2149 				struct page *p, *s;
2150 				p = pbio->bi_io_vec[j].bv_page;
2151 				s = sbio->bi_io_vec[j].bv_page;
2152 				if (memcmp(page_address(p),
2153 					   page_address(s),
2154 					   sbio->bi_io_vec[j].bv_len))
2155 					break;
2156 			}
2157 		} else
2158 			j = 0;
2159 		if (j >= 0)
2160 			atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
2161 		if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
2162 			      && !error)) {
2163 			/* No need to write to this device. */
2164 			sbio->bi_end_io = NULL;
2165 			rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2166 			continue;
2167 		}
2168 
2169 		bio_copy_data(sbio, pbio);
2170 	}
2171 }
2172 
2173 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
2174 {
2175 	struct r1conf *conf = mddev->private;
2176 	int i;
2177 	int disks = conf->raid_disks * 2;
2178 	struct bio *bio, *wbio;
2179 
2180 	bio = r1_bio->bios[r1_bio->read_disk];
2181 
2182 	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2183 		/* ouch - failed to read all of that. */
2184 		if (!fix_sync_read_error(r1_bio))
2185 			return;
2186 
2187 	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2188 		process_checks(r1_bio);
2189 
2190 	/*
2191 	 * schedule writes
2192 	 */
2193 	atomic_set(&r1_bio->remaining, 1);
2194 	for (i = 0; i < disks ; i++) {
2195 		wbio = r1_bio->bios[i];
2196 		if (wbio->bi_end_io == NULL ||
2197 		    (wbio->bi_end_io == end_sync_read &&
2198 		     (i == r1_bio->read_disk ||
2199 		      !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2200 			continue;
2201 
2202 		bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2203 		if (test_bit(FailFast, &conf->mirrors[i].rdev->flags))
2204 			wbio->bi_opf |= MD_FAILFAST;
2205 
2206 		wbio->bi_end_io = end_sync_write;
2207 		atomic_inc(&r1_bio->remaining);
2208 		md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
2209 
2210 		generic_make_request(wbio);
2211 	}
2212 
2213 	if (atomic_dec_and_test(&r1_bio->remaining)) {
2214 		/* if we're here, all write(s) have completed, so clean up */
2215 		int s = r1_bio->sectors;
2216 		if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2217 		    test_bit(R1BIO_WriteError, &r1_bio->state))
2218 			reschedule_retry(r1_bio);
2219 		else {
2220 			put_buf(r1_bio);
2221 			md_done_sync(mddev, s, 1);
2222 		}
2223 	}
2224 }
2225 
2226 /*
2227  * This is a kernel thread which:
2228  *
2229  *	1.	Retries failed read operations on working mirrors.
2230  *	2.	Updates the raid superblock when problems encounter.
2231  *	3.	Performs writes following reads for array synchronising.
2232  */
2233 
2234 static void fix_read_error(struct r1conf *conf, int read_disk,
2235 			   sector_t sect, int sectors)
2236 {
2237 	struct mddev *mddev = conf->mddev;
2238 	while(sectors) {
2239 		int s = sectors;
2240 		int d = read_disk;
2241 		int success = 0;
2242 		int start;
2243 		struct md_rdev *rdev;
2244 
2245 		if (s > (PAGE_SIZE>>9))
2246 			s = PAGE_SIZE >> 9;
2247 
2248 		do {
2249 			sector_t first_bad;
2250 			int bad_sectors;
2251 
2252 			rcu_read_lock();
2253 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2254 			if (rdev &&
2255 			    (test_bit(In_sync, &rdev->flags) ||
2256 			     (!test_bit(Faulty, &rdev->flags) &&
2257 			      rdev->recovery_offset >= sect + s)) &&
2258 			    is_badblock(rdev, sect, s,
2259 					&first_bad, &bad_sectors) == 0) {
2260 				atomic_inc(&rdev->nr_pending);
2261 				rcu_read_unlock();
2262 				if (sync_page_io(rdev, sect, s<<9,
2263 					 conf->tmppage, REQ_OP_READ, 0, false))
2264 					success = 1;
2265 				rdev_dec_pending(rdev, mddev);
2266 				if (success)
2267 					break;
2268 			} else
2269 				rcu_read_unlock();
2270 			d++;
2271 			if (d == conf->raid_disks * 2)
2272 				d = 0;
2273 		} while (!success && d != read_disk);
2274 
2275 		if (!success) {
2276 			/* Cannot read from anywhere - mark it bad */
2277 			struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2278 			if (!rdev_set_badblocks(rdev, sect, s, 0))
2279 				md_error(mddev, rdev);
2280 			break;
2281 		}
2282 		/* write it back and re-read */
2283 		start = d;
2284 		while (d != read_disk) {
2285 			if (d==0)
2286 				d = conf->raid_disks * 2;
2287 			d--;
2288 			rcu_read_lock();
2289 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2290 			if (rdev &&
2291 			    !test_bit(Faulty, &rdev->flags)) {
2292 				atomic_inc(&rdev->nr_pending);
2293 				rcu_read_unlock();
2294 				r1_sync_page_io(rdev, sect, s,
2295 						conf->tmppage, WRITE);
2296 				rdev_dec_pending(rdev, mddev);
2297 			} else
2298 				rcu_read_unlock();
2299 		}
2300 		d = start;
2301 		while (d != read_disk) {
2302 			char b[BDEVNAME_SIZE];
2303 			if (d==0)
2304 				d = conf->raid_disks * 2;
2305 			d--;
2306 			rcu_read_lock();
2307 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2308 			if (rdev &&
2309 			    !test_bit(Faulty, &rdev->flags)) {
2310 				atomic_inc(&rdev->nr_pending);
2311 				rcu_read_unlock();
2312 				if (r1_sync_page_io(rdev, sect, s,
2313 						    conf->tmppage, READ)) {
2314 					atomic_add(s, &rdev->corrected_errors);
2315 					pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %s)\n",
2316 						mdname(mddev), s,
2317 						(unsigned long long)(sect +
2318 								     rdev->data_offset),
2319 						bdevname(rdev->bdev, b));
2320 				}
2321 				rdev_dec_pending(rdev, mddev);
2322 			} else
2323 				rcu_read_unlock();
2324 		}
2325 		sectors -= s;
2326 		sect += s;
2327 	}
2328 }
2329 
2330 static int narrow_write_error(struct r1bio *r1_bio, int i)
2331 {
2332 	struct mddev *mddev = r1_bio->mddev;
2333 	struct r1conf *conf = mddev->private;
2334 	struct md_rdev *rdev = conf->mirrors[i].rdev;
2335 
2336 	/* bio has the data to be written to device 'i' where
2337 	 * we just recently had a write error.
2338 	 * We repeatedly clone the bio and trim down to one block,
2339 	 * then try the write.  Where the write fails we record
2340 	 * a bad block.
2341 	 * It is conceivable that the bio doesn't exactly align with
2342 	 * blocks.  We must handle this somehow.
2343 	 *
2344 	 * We currently own a reference on the rdev.
2345 	 */
2346 
2347 	int block_sectors;
2348 	sector_t sector;
2349 	int sectors;
2350 	int sect_to_write = r1_bio->sectors;
2351 	int ok = 1;
2352 
2353 	if (rdev->badblocks.shift < 0)
2354 		return 0;
2355 
2356 	block_sectors = roundup(1 << rdev->badblocks.shift,
2357 				bdev_logical_block_size(rdev->bdev) >> 9);
2358 	sector = r1_bio->sector;
2359 	sectors = ((sector + block_sectors)
2360 		   & ~(sector_t)(block_sectors - 1))
2361 		- sector;
2362 
2363 	while (sect_to_write) {
2364 		struct bio *wbio;
2365 		if (sectors > sect_to_write)
2366 			sectors = sect_to_write;
2367 		/* Write at 'sector' for 'sectors'*/
2368 
2369 		if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2370 			unsigned vcnt = r1_bio->behind_page_count;
2371 			struct bio_vec *vec = r1_bio->behind_bvecs;
2372 
2373 			while (!vec->bv_page) {
2374 				vec++;
2375 				vcnt--;
2376 			}
2377 
2378 			wbio = bio_alloc_mddev(GFP_NOIO, vcnt, mddev);
2379 			memcpy(wbio->bi_io_vec, vec, vcnt * sizeof(struct bio_vec));
2380 
2381 			wbio->bi_vcnt = vcnt;
2382 		} else {
2383 			wbio = bio_clone_fast(r1_bio->master_bio, GFP_NOIO,
2384 					      mddev->bio_set);
2385 		}
2386 
2387 		bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2388 		wbio->bi_iter.bi_sector = r1_bio->sector;
2389 		wbio->bi_iter.bi_size = r1_bio->sectors << 9;
2390 
2391 		bio_trim(wbio, sector - r1_bio->sector, sectors);
2392 		wbio->bi_iter.bi_sector += rdev->data_offset;
2393 		wbio->bi_bdev = rdev->bdev;
2394 
2395 		if (submit_bio_wait(wbio) < 0)
2396 			/* failure! */
2397 			ok = rdev_set_badblocks(rdev, sector,
2398 						sectors, 0)
2399 				&& ok;
2400 
2401 		bio_put(wbio);
2402 		sect_to_write -= sectors;
2403 		sector += sectors;
2404 		sectors = block_sectors;
2405 	}
2406 	return ok;
2407 }
2408 
2409 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2410 {
2411 	int m;
2412 	int s = r1_bio->sectors;
2413 	for (m = 0; m < conf->raid_disks * 2 ; m++) {
2414 		struct md_rdev *rdev = conf->mirrors[m].rdev;
2415 		struct bio *bio = r1_bio->bios[m];
2416 		if (bio->bi_end_io == NULL)
2417 			continue;
2418 		if (!bio->bi_error &&
2419 		    test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2420 			rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2421 		}
2422 		if (bio->bi_error &&
2423 		    test_bit(R1BIO_WriteError, &r1_bio->state)) {
2424 			if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2425 				md_error(conf->mddev, rdev);
2426 		}
2427 	}
2428 	put_buf(r1_bio);
2429 	md_done_sync(conf->mddev, s, 1);
2430 }
2431 
2432 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2433 {
2434 	int m, idx;
2435 	bool fail = false;
2436 
2437 	for (m = 0; m < conf->raid_disks * 2 ; m++)
2438 		if (r1_bio->bios[m] == IO_MADE_GOOD) {
2439 			struct md_rdev *rdev = conf->mirrors[m].rdev;
2440 			rdev_clear_badblocks(rdev,
2441 					     r1_bio->sector,
2442 					     r1_bio->sectors, 0);
2443 			rdev_dec_pending(rdev, conf->mddev);
2444 		} else if (r1_bio->bios[m] != NULL) {
2445 			/* This drive got a write error.  We need to
2446 			 * narrow down and record precise write
2447 			 * errors.
2448 			 */
2449 			fail = true;
2450 			if (!narrow_write_error(r1_bio, m)) {
2451 				md_error(conf->mddev,
2452 					 conf->mirrors[m].rdev);
2453 				/* an I/O failed, we can't clear the bitmap */
2454 				set_bit(R1BIO_Degraded, &r1_bio->state);
2455 			}
2456 			rdev_dec_pending(conf->mirrors[m].rdev,
2457 					 conf->mddev);
2458 		}
2459 	if (fail) {
2460 		spin_lock_irq(&conf->device_lock);
2461 		list_add(&r1_bio->retry_list, &conf->bio_end_io_list);
2462 		idx = sector_to_idx(r1_bio->sector);
2463 		atomic_inc(&conf->nr_queued[idx]);
2464 		spin_unlock_irq(&conf->device_lock);
2465 		/*
2466 		 * In case freeze_array() is waiting for condition
2467 		 * get_unqueued_pending() == extra to be true.
2468 		 */
2469 		wake_up(&conf->wait_barrier);
2470 		md_wakeup_thread(conf->mddev->thread);
2471 	} else {
2472 		if (test_bit(R1BIO_WriteError, &r1_bio->state))
2473 			close_write(r1_bio);
2474 		raid_end_bio_io(r1_bio);
2475 	}
2476 }
2477 
2478 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2479 {
2480 	int disk;
2481 	int max_sectors;
2482 	struct mddev *mddev = conf->mddev;
2483 	struct bio *bio;
2484 	char b[BDEVNAME_SIZE];
2485 	struct md_rdev *rdev;
2486 	dev_t bio_dev;
2487 	sector_t bio_sector;
2488 
2489 	clear_bit(R1BIO_ReadError, &r1_bio->state);
2490 	/* we got a read error. Maybe the drive is bad.  Maybe just
2491 	 * the block and we can fix it.
2492 	 * We freeze all other IO, and try reading the block from
2493 	 * other devices.  When we find one, we re-write
2494 	 * and check it that fixes the read error.
2495 	 * This is all done synchronously while the array is
2496 	 * frozen
2497 	 */
2498 
2499 	bio = r1_bio->bios[r1_bio->read_disk];
2500 	bdevname(bio->bi_bdev, b);
2501 	bio_dev = bio->bi_bdev->bd_dev;
2502 	bio_sector = conf->mirrors[r1_bio->read_disk].rdev->data_offset + r1_bio->sector;
2503 	bio_put(bio);
2504 	r1_bio->bios[r1_bio->read_disk] = NULL;
2505 
2506 	rdev = conf->mirrors[r1_bio->read_disk].rdev;
2507 	if (mddev->ro == 0
2508 	    && !test_bit(FailFast, &rdev->flags)) {
2509 		freeze_array(conf, 1);
2510 		fix_read_error(conf, r1_bio->read_disk,
2511 			       r1_bio->sector, r1_bio->sectors);
2512 		unfreeze_array(conf);
2513 	} else {
2514 		r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED;
2515 	}
2516 
2517 	rdev_dec_pending(rdev, conf->mddev);
2518 
2519 read_more:
2520 	disk = read_balance(conf, r1_bio, &max_sectors);
2521 	if (disk == -1) {
2522 		pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
2523 				    mdname(mddev), b, (unsigned long long)r1_bio->sector);
2524 		raid_end_bio_io(r1_bio);
2525 	} else {
2526 		const unsigned long do_sync
2527 			= r1_bio->master_bio->bi_opf & REQ_SYNC;
2528 		r1_bio->read_disk = disk;
2529 		bio = bio_clone_fast(r1_bio->master_bio, GFP_NOIO,
2530 				     mddev->bio_set);
2531 		bio_trim(bio, r1_bio->sector - bio->bi_iter.bi_sector,
2532 			 max_sectors);
2533 		r1_bio->bios[r1_bio->read_disk] = bio;
2534 		rdev = conf->mirrors[disk].rdev;
2535 		pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %s\n",
2536 				    mdname(mddev),
2537 				    (unsigned long long)r1_bio->sector,
2538 				    bdevname(rdev->bdev, b));
2539 		bio->bi_iter.bi_sector = r1_bio->sector + rdev->data_offset;
2540 		bio->bi_bdev = rdev->bdev;
2541 		bio->bi_end_io = raid1_end_read_request;
2542 		bio_set_op_attrs(bio, REQ_OP_READ, do_sync);
2543 		if (test_bit(FailFast, &rdev->flags) &&
2544 		    test_bit(R1BIO_FailFast, &r1_bio->state))
2545 			bio->bi_opf |= MD_FAILFAST;
2546 		bio->bi_private = r1_bio;
2547 		if (max_sectors < r1_bio->sectors) {
2548 			/* Drat - have to split this up more */
2549 			struct bio *mbio = r1_bio->master_bio;
2550 			int sectors_handled = (r1_bio->sector + max_sectors
2551 					       - mbio->bi_iter.bi_sector);
2552 			r1_bio->sectors = max_sectors;
2553 			spin_lock_irq(&conf->device_lock);
2554 			if (mbio->bi_phys_segments == 0)
2555 				mbio->bi_phys_segments = 2;
2556 			else
2557 				mbio->bi_phys_segments++;
2558 			spin_unlock_irq(&conf->device_lock);
2559 			trace_block_bio_remap(bdev_get_queue(bio->bi_bdev),
2560 					      bio, bio_dev, bio_sector);
2561 			generic_make_request(bio);
2562 			bio = NULL;
2563 
2564 			r1_bio = alloc_r1bio(mddev, mbio, sectors_handled);
2565 			set_bit(R1BIO_ReadError, &r1_bio->state);
2566 
2567 			goto read_more;
2568 		} else {
2569 			trace_block_bio_remap(bdev_get_queue(bio->bi_bdev),
2570 					      bio, bio_dev, bio_sector);
2571 			generic_make_request(bio);
2572 		}
2573 	}
2574 }
2575 
2576 static void raid1d(struct md_thread *thread)
2577 {
2578 	struct mddev *mddev = thread->mddev;
2579 	struct r1bio *r1_bio;
2580 	unsigned long flags;
2581 	struct r1conf *conf = mddev->private;
2582 	struct list_head *head = &conf->retry_list;
2583 	struct blk_plug plug;
2584 	int idx;
2585 
2586 	md_check_recovery(mddev);
2587 
2588 	if (!list_empty_careful(&conf->bio_end_io_list) &&
2589 	    !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2590 		LIST_HEAD(tmp);
2591 		spin_lock_irqsave(&conf->device_lock, flags);
2592 		if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
2593 			list_splice_init(&conf->bio_end_io_list, &tmp);
2594 		spin_unlock_irqrestore(&conf->device_lock, flags);
2595 		while (!list_empty(&tmp)) {
2596 			r1_bio = list_first_entry(&tmp, struct r1bio,
2597 						  retry_list);
2598 			list_del(&r1_bio->retry_list);
2599 			idx = sector_to_idx(r1_bio->sector);
2600 			atomic_dec(&conf->nr_queued[idx]);
2601 			if (mddev->degraded)
2602 				set_bit(R1BIO_Degraded, &r1_bio->state);
2603 			if (test_bit(R1BIO_WriteError, &r1_bio->state))
2604 				close_write(r1_bio);
2605 			raid_end_bio_io(r1_bio);
2606 		}
2607 	}
2608 
2609 	blk_start_plug(&plug);
2610 	for (;;) {
2611 
2612 		flush_pending_writes(conf);
2613 
2614 		spin_lock_irqsave(&conf->device_lock, flags);
2615 		if (list_empty(head)) {
2616 			spin_unlock_irqrestore(&conf->device_lock, flags);
2617 			break;
2618 		}
2619 		r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2620 		list_del(head->prev);
2621 		idx = sector_to_idx(r1_bio->sector);
2622 		atomic_dec(&conf->nr_queued[idx]);
2623 		spin_unlock_irqrestore(&conf->device_lock, flags);
2624 
2625 		mddev = r1_bio->mddev;
2626 		conf = mddev->private;
2627 		if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2628 			if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2629 			    test_bit(R1BIO_WriteError, &r1_bio->state))
2630 				handle_sync_write_finished(conf, r1_bio);
2631 			else
2632 				sync_request_write(mddev, r1_bio);
2633 		} else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2634 			   test_bit(R1BIO_WriteError, &r1_bio->state))
2635 			handle_write_finished(conf, r1_bio);
2636 		else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2637 			handle_read_error(conf, r1_bio);
2638 		else
2639 			/* just a partial read to be scheduled from separate
2640 			 * context
2641 			 */
2642 			generic_make_request(r1_bio->bios[r1_bio->read_disk]);
2643 
2644 		cond_resched();
2645 		if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
2646 			md_check_recovery(mddev);
2647 	}
2648 	blk_finish_plug(&plug);
2649 }
2650 
2651 static int init_resync(struct r1conf *conf)
2652 {
2653 	int buffs;
2654 
2655 	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2656 	BUG_ON(conf->r1buf_pool);
2657 	conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2658 					  conf->poolinfo);
2659 	if (!conf->r1buf_pool)
2660 		return -ENOMEM;
2661 	return 0;
2662 }
2663 
2664 /*
2665  * perform a "sync" on one "block"
2666  *
2667  * We need to make sure that no normal I/O request - particularly write
2668  * requests - conflict with active sync requests.
2669  *
2670  * This is achieved by tracking pending requests and a 'barrier' concept
2671  * that can be installed to exclude normal IO requests.
2672  */
2673 
2674 static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr,
2675 				   int *skipped)
2676 {
2677 	struct r1conf *conf = mddev->private;
2678 	struct r1bio *r1_bio;
2679 	struct bio *bio;
2680 	sector_t max_sector, nr_sectors;
2681 	int disk = -1;
2682 	int i;
2683 	int wonly = -1;
2684 	int write_targets = 0, read_targets = 0;
2685 	sector_t sync_blocks;
2686 	int still_degraded = 0;
2687 	int good_sectors = RESYNC_SECTORS;
2688 	int min_bad = 0; /* number of sectors that are bad in all devices */
2689 	int idx = sector_to_idx(sector_nr);
2690 
2691 	if (!conf->r1buf_pool)
2692 		if (init_resync(conf))
2693 			return 0;
2694 
2695 	max_sector = mddev->dev_sectors;
2696 	if (sector_nr >= max_sector) {
2697 		/* If we aborted, we need to abort the
2698 		 * sync on the 'current' bitmap chunk (there will
2699 		 * only be one in raid1 resync.
2700 		 * We can find the current addess in mddev->curr_resync
2701 		 */
2702 		if (mddev->curr_resync < max_sector) /* aborted */
2703 			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2704 						&sync_blocks, 1);
2705 		else /* completed sync */
2706 			conf->fullsync = 0;
2707 
2708 		bitmap_close_sync(mddev->bitmap);
2709 		close_sync(conf);
2710 
2711 		if (mddev_is_clustered(mddev)) {
2712 			conf->cluster_sync_low = 0;
2713 			conf->cluster_sync_high = 0;
2714 		}
2715 		return 0;
2716 	}
2717 
2718 	if (mddev->bitmap == NULL &&
2719 	    mddev->recovery_cp == MaxSector &&
2720 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2721 	    conf->fullsync == 0) {
2722 		*skipped = 1;
2723 		return max_sector - sector_nr;
2724 	}
2725 	/* before building a request, check if we can skip these blocks..
2726 	 * This call the bitmap_start_sync doesn't actually record anything
2727 	 */
2728 	if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2729 	    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2730 		/* We can skip this block, and probably several more */
2731 		*skipped = 1;
2732 		return sync_blocks;
2733 	}
2734 
2735 	/*
2736 	 * If there is non-resync activity waiting for a turn, then let it
2737 	 * though before starting on this new sync request.
2738 	 */
2739 	if (atomic_read(&conf->nr_waiting[idx]))
2740 		schedule_timeout_uninterruptible(1);
2741 
2742 	/* we are incrementing sector_nr below. To be safe, we check against
2743 	 * sector_nr + two times RESYNC_SECTORS
2744 	 */
2745 
2746 	bitmap_cond_end_sync(mddev->bitmap, sector_nr,
2747 		mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
2748 	r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
2749 
2750 	raise_barrier(conf, sector_nr);
2751 
2752 	rcu_read_lock();
2753 	/*
2754 	 * If we get a correctably read error during resync or recovery,
2755 	 * we might want to read from a different device.  So we
2756 	 * flag all drives that could conceivably be read from for READ,
2757 	 * and any others (which will be non-In_sync devices) for WRITE.
2758 	 * If a read fails, we try reading from something else for which READ
2759 	 * is OK.
2760 	 */
2761 
2762 	r1_bio->mddev = mddev;
2763 	r1_bio->sector = sector_nr;
2764 	r1_bio->state = 0;
2765 	set_bit(R1BIO_IsSync, &r1_bio->state);
2766 	/* make sure good_sectors won't go across barrier unit boundary */
2767 	good_sectors = align_to_barrier_unit_end(sector_nr, good_sectors);
2768 
2769 	for (i = 0; i < conf->raid_disks * 2; i++) {
2770 		struct md_rdev *rdev;
2771 		bio = r1_bio->bios[i];
2772 		bio_reset(bio);
2773 
2774 		rdev = rcu_dereference(conf->mirrors[i].rdev);
2775 		if (rdev == NULL ||
2776 		    test_bit(Faulty, &rdev->flags)) {
2777 			if (i < conf->raid_disks)
2778 				still_degraded = 1;
2779 		} else if (!test_bit(In_sync, &rdev->flags)) {
2780 			bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2781 			bio->bi_end_io = end_sync_write;
2782 			write_targets ++;
2783 		} else {
2784 			/* may need to read from here */
2785 			sector_t first_bad = MaxSector;
2786 			int bad_sectors;
2787 
2788 			if (is_badblock(rdev, sector_nr, good_sectors,
2789 					&first_bad, &bad_sectors)) {
2790 				if (first_bad > sector_nr)
2791 					good_sectors = first_bad - sector_nr;
2792 				else {
2793 					bad_sectors -= (sector_nr - first_bad);
2794 					if (min_bad == 0 ||
2795 					    min_bad > bad_sectors)
2796 						min_bad = bad_sectors;
2797 				}
2798 			}
2799 			if (sector_nr < first_bad) {
2800 				if (test_bit(WriteMostly, &rdev->flags)) {
2801 					if (wonly < 0)
2802 						wonly = i;
2803 				} else {
2804 					if (disk < 0)
2805 						disk = i;
2806 				}
2807 				bio_set_op_attrs(bio, REQ_OP_READ, 0);
2808 				bio->bi_end_io = end_sync_read;
2809 				read_targets++;
2810 			} else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2811 				test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2812 				!test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2813 				/*
2814 				 * The device is suitable for reading (InSync),
2815 				 * but has bad block(s) here. Let's try to correct them,
2816 				 * if we are doing resync or repair. Otherwise, leave
2817 				 * this device alone for this sync request.
2818 				 */
2819 				bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2820 				bio->bi_end_io = end_sync_write;
2821 				write_targets++;
2822 			}
2823 		}
2824 		if (bio->bi_end_io) {
2825 			atomic_inc(&rdev->nr_pending);
2826 			bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
2827 			bio->bi_bdev = rdev->bdev;
2828 			bio->bi_private = r1_bio;
2829 			if (test_bit(FailFast, &rdev->flags))
2830 				bio->bi_opf |= MD_FAILFAST;
2831 		}
2832 	}
2833 	rcu_read_unlock();
2834 	if (disk < 0)
2835 		disk = wonly;
2836 	r1_bio->read_disk = disk;
2837 
2838 	if (read_targets == 0 && min_bad > 0) {
2839 		/* These sectors are bad on all InSync devices, so we
2840 		 * need to mark them bad on all write targets
2841 		 */
2842 		int ok = 1;
2843 		for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2844 			if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2845 				struct md_rdev *rdev = conf->mirrors[i].rdev;
2846 				ok = rdev_set_badblocks(rdev, sector_nr,
2847 							min_bad, 0
2848 					) && ok;
2849 			}
2850 		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2851 		*skipped = 1;
2852 		put_buf(r1_bio);
2853 
2854 		if (!ok) {
2855 			/* Cannot record the badblocks, so need to
2856 			 * abort the resync.
2857 			 * If there are multiple read targets, could just
2858 			 * fail the really bad ones ???
2859 			 */
2860 			conf->recovery_disabled = mddev->recovery_disabled;
2861 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2862 			return 0;
2863 		} else
2864 			return min_bad;
2865 
2866 	}
2867 	if (min_bad > 0 && min_bad < good_sectors) {
2868 		/* only resync enough to reach the next bad->good
2869 		 * transition */
2870 		good_sectors = min_bad;
2871 	}
2872 
2873 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2874 		/* extra read targets are also write targets */
2875 		write_targets += read_targets-1;
2876 
2877 	if (write_targets == 0 || read_targets == 0) {
2878 		/* There is nowhere to write, so all non-sync
2879 		 * drives must be failed - so we are finished
2880 		 */
2881 		sector_t rv;
2882 		if (min_bad > 0)
2883 			max_sector = sector_nr + min_bad;
2884 		rv = max_sector - sector_nr;
2885 		*skipped = 1;
2886 		put_buf(r1_bio);
2887 		return rv;
2888 	}
2889 
2890 	if (max_sector > mddev->resync_max)
2891 		max_sector = mddev->resync_max; /* Don't do IO beyond here */
2892 	if (max_sector > sector_nr + good_sectors)
2893 		max_sector = sector_nr + good_sectors;
2894 	nr_sectors = 0;
2895 	sync_blocks = 0;
2896 	do {
2897 		struct page *page;
2898 		int len = PAGE_SIZE;
2899 		if (sector_nr + (len>>9) > max_sector)
2900 			len = (max_sector - sector_nr) << 9;
2901 		if (len == 0)
2902 			break;
2903 		if (sync_blocks == 0) {
2904 			if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2905 					       &sync_blocks, still_degraded) &&
2906 			    !conf->fullsync &&
2907 			    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2908 				break;
2909 			if ((len >> 9) > sync_blocks)
2910 				len = sync_blocks<<9;
2911 		}
2912 
2913 		for (i = 0 ; i < conf->raid_disks * 2; i++) {
2914 			bio = r1_bio->bios[i];
2915 			if (bio->bi_end_io) {
2916 				page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
2917 				if (bio_add_page(bio, page, len, 0) == 0) {
2918 					/* stop here */
2919 					bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
2920 					while (i > 0) {
2921 						i--;
2922 						bio = r1_bio->bios[i];
2923 						if (bio->bi_end_io==NULL)
2924 							continue;
2925 						/* remove last page from this bio */
2926 						bio->bi_vcnt--;
2927 						bio->bi_iter.bi_size -= len;
2928 						bio_clear_flag(bio, BIO_SEG_VALID);
2929 					}
2930 					goto bio_full;
2931 				}
2932 			}
2933 		}
2934 		nr_sectors += len>>9;
2935 		sector_nr += len>>9;
2936 		sync_blocks -= (len>>9);
2937 	} while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
2938  bio_full:
2939 	r1_bio->sectors = nr_sectors;
2940 
2941 	if (mddev_is_clustered(mddev) &&
2942 			conf->cluster_sync_high < sector_nr + nr_sectors) {
2943 		conf->cluster_sync_low = mddev->curr_resync_completed;
2944 		conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS;
2945 		/* Send resync message */
2946 		md_cluster_ops->resync_info_update(mddev,
2947 				conf->cluster_sync_low,
2948 				conf->cluster_sync_high);
2949 	}
2950 
2951 	/* For a user-requested sync, we read all readable devices and do a
2952 	 * compare
2953 	 */
2954 	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2955 		atomic_set(&r1_bio->remaining, read_targets);
2956 		for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2957 			bio = r1_bio->bios[i];
2958 			if (bio->bi_end_io == end_sync_read) {
2959 				read_targets--;
2960 				md_sync_acct(bio->bi_bdev, nr_sectors);
2961 				if (read_targets == 1)
2962 					bio->bi_opf &= ~MD_FAILFAST;
2963 				generic_make_request(bio);
2964 			}
2965 		}
2966 	} else {
2967 		atomic_set(&r1_bio->remaining, 1);
2968 		bio = r1_bio->bios[r1_bio->read_disk];
2969 		md_sync_acct(bio->bi_bdev, nr_sectors);
2970 		if (read_targets == 1)
2971 			bio->bi_opf &= ~MD_FAILFAST;
2972 		generic_make_request(bio);
2973 
2974 	}
2975 	return nr_sectors;
2976 }
2977 
2978 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2979 {
2980 	if (sectors)
2981 		return sectors;
2982 
2983 	return mddev->dev_sectors;
2984 }
2985 
2986 static struct r1conf *setup_conf(struct mddev *mddev)
2987 {
2988 	struct r1conf *conf;
2989 	int i;
2990 	struct raid1_info *disk;
2991 	struct md_rdev *rdev;
2992 	int err = -ENOMEM;
2993 
2994 	conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2995 	if (!conf)
2996 		goto abort;
2997 
2998 	conf->nr_pending = kcalloc(BARRIER_BUCKETS_NR,
2999 				   sizeof(atomic_t), GFP_KERNEL);
3000 	if (!conf->nr_pending)
3001 		goto abort;
3002 
3003 	conf->nr_waiting = kcalloc(BARRIER_BUCKETS_NR,
3004 				   sizeof(atomic_t), GFP_KERNEL);
3005 	if (!conf->nr_waiting)
3006 		goto abort;
3007 
3008 	conf->nr_queued = kcalloc(BARRIER_BUCKETS_NR,
3009 				  sizeof(atomic_t), GFP_KERNEL);
3010 	if (!conf->nr_queued)
3011 		goto abort;
3012 
3013 	conf->barrier = kcalloc(BARRIER_BUCKETS_NR,
3014 				sizeof(atomic_t), GFP_KERNEL);
3015 	if (!conf->barrier)
3016 		goto abort;
3017 
3018 	conf->mirrors = kzalloc(sizeof(struct raid1_info)
3019 				* mddev->raid_disks * 2,
3020 				 GFP_KERNEL);
3021 	if (!conf->mirrors)
3022 		goto abort;
3023 
3024 	conf->tmppage = alloc_page(GFP_KERNEL);
3025 	if (!conf->tmppage)
3026 		goto abort;
3027 
3028 	conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
3029 	if (!conf->poolinfo)
3030 		goto abort;
3031 	conf->poolinfo->raid_disks = mddev->raid_disks * 2;
3032 	conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
3033 					  r1bio_pool_free,
3034 					  conf->poolinfo);
3035 	if (!conf->r1bio_pool)
3036 		goto abort;
3037 
3038 	conf->poolinfo->mddev = mddev;
3039 
3040 	err = -EINVAL;
3041 	spin_lock_init(&conf->device_lock);
3042 	rdev_for_each(rdev, mddev) {
3043 		struct request_queue *q;
3044 		int disk_idx = rdev->raid_disk;
3045 		if (disk_idx >= mddev->raid_disks
3046 		    || disk_idx < 0)
3047 			continue;
3048 		if (test_bit(Replacement, &rdev->flags))
3049 			disk = conf->mirrors + mddev->raid_disks + disk_idx;
3050 		else
3051 			disk = conf->mirrors + disk_idx;
3052 
3053 		if (disk->rdev)
3054 			goto abort;
3055 		disk->rdev = rdev;
3056 		q = bdev_get_queue(rdev->bdev);
3057 
3058 		disk->head_position = 0;
3059 		disk->seq_start = MaxSector;
3060 	}
3061 	conf->raid_disks = mddev->raid_disks;
3062 	conf->mddev = mddev;
3063 	INIT_LIST_HEAD(&conf->retry_list);
3064 	INIT_LIST_HEAD(&conf->bio_end_io_list);
3065 
3066 	spin_lock_init(&conf->resync_lock);
3067 	init_waitqueue_head(&conf->wait_barrier);
3068 
3069 	bio_list_init(&conf->pending_bio_list);
3070 	conf->pending_count = 0;
3071 	conf->recovery_disabled = mddev->recovery_disabled - 1;
3072 
3073 	err = -EIO;
3074 	for (i = 0; i < conf->raid_disks * 2; i++) {
3075 
3076 		disk = conf->mirrors + i;
3077 
3078 		if (i < conf->raid_disks &&
3079 		    disk[conf->raid_disks].rdev) {
3080 			/* This slot has a replacement. */
3081 			if (!disk->rdev) {
3082 				/* No original, just make the replacement
3083 				 * a recovering spare
3084 				 */
3085 				disk->rdev =
3086 					disk[conf->raid_disks].rdev;
3087 				disk[conf->raid_disks].rdev = NULL;
3088 			} else if (!test_bit(In_sync, &disk->rdev->flags))
3089 				/* Original is not in_sync - bad */
3090 				goto abort;
3091 		}
3092 
3093 		if (!disk->rdev ||
3094 		    !test_bit(In_sync, &disk->rdev->flags)) {
3095 			disk->head_position = 0;
3096 			if (disk->rdev &&
3097 			    (disk->rdev->saved_raid_disk < 0))
3098 				conf->fullsync = 1;
3099 		}
3100 	}
3101 
3102 	err = -ENOMEM;
3103 	conf->thread = md_register_thread(raid1d, mddev, "raid1");
3104 	if (!conf->thread)
3105 		goto abort;
3106 
3107 	return conf;
3108 
3109  abort:
3110 	if (conf) {
3111 		mempool_destroy(conf->r1bio_pool);
3112 		kfree(conf->mirrors);
3113 		safe_put_page(conf->tmppage);
3114 		kfree(conf->poolinfo);
3115 		kfree(conf->nr_pending);
3116 		kfree(conf->nr_waiting);
3117 		kfree(conf->nr_queued);
3118 		kfree(conf->barrier);
3119 		kfree(conf);
3120 	}
3121 	return ERR_PTR(err);
3122 }
3123 
3124 static void raid1_free(struct mddev *mddev, void *priv);
3125 static int raid1_run(struct mddev *mddev)
3126 {
3127 	struct r1conf *conf;
3128 	int i;
3129 	struct md_rdev *rdev;
3130 	int ret;
3131 	bool discard_supported = false;
3132 
3133 	if (mddev->level != 1) {
3134 		pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n",
3135 			mdname(mddev), mddev->level);
3136 		return -EIO;
3137 	}
3138 	if (mddev->reshape_position != MaxSector) {
3139 		pr_warn("md/raid1:%s: reshape_position set but not supported\n",
3140 			mdname(mddev));
3141 		return -EIO;
3142 	}
3143 	/*
3144 	 * copy the already verified devices into our private RAID1
3145 	 * bookkeeping area. [whatever we allocate in run(),
3146 	 * should be freed in raid1_free()]
3147 	 */
3148 	if (mddev->private == NULL)
3149 		conf = setup_conf(mddev);
3150 	else
3151 		conf = mddev->private;
3152 
3153 	if (IS_ERR(conf))
3154 		return PTR_ERR(conf);
3155 
3156 	if (mddev->queue)
3157 		blk_queue_max_write_same_sectors(mddev->queue, 0);
3158 
3159 	rdev_for_each(rdev, mddev) {
3160 		if (!mddev->gendisk)
3161 			continue;
3162 		disk_stack_limits(mddev->gendisk, rdev->bdev,
3163 				  rdev->data_offset << 9);
3164 		if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3165 			discard_supported = true;
3166 	}
3167 
3168 	mddev->degraded = 0;
3169 	for (i=0; i < conf->raid_disks; i++)
3170 		if (conf->mirrors[i].rdev == NULL ||
3171 		    !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
3172 		    test_bit(Faulty, &conf->mirrors[i].rdev->flags))
3173 			mddev->degraded++;
3174 
3175 	if (conf->raid_disks - mddev->degraded == 1)
3176 		mddev->recovery_cp = MaxSector;
3177 
3178 	if (mddev->recovery_cp != MaxSector)
3179 		pr_info("md/raid1:%s: not clean -- starting background reconstruction\n",
3180 			mdname(mddev));
3181 	pr_info("md/raid1:%s: active with %d out of %d mirrors\n",
3182 		mdname(mddev), mddev->raid_disks - mddev->degraded,
3183 		mddev->raid_disks);
3184 
3185 	/*
3186 	 * Ok, everything is just fine now
3187 	 */
3188 	mddev->thread = conf->thread;
3189 	conf->thread = NULL;
3190 	mddev->private = conf;
3191 	set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
3192 
3193 	md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
3194 
3195 	if (mddev->queue) {
3196 		if (discard_supported)
3197 			queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
3198 						mddev->queue);
3199 		else
3200 			queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
3201 						  mddev->queue);
3202 	}
3203 
3204 	ret =  md_integrity_register(mddev);
3205 	if (ret) {
3206 		md_unregister_thread(&mddev->thread);
3207 		raid1_free(mddev, conf);
3208 	}
3209 	return ret;
3210 }
3211 
3212 static void raid1_free(struct mddev *mddev, void *priv)
3213 {
3214 	struct r1conf *conf = priv;
3215 
3216 	mempool_destroy(conf->r1bio_pool);
3217 	kfree(conf->mirrors);
3218 	safe_put_page(conf->tmppage);
3219 	kfree(conf->poolinfo);
3220 	kfree(conf->nr_pending);
3221 	kfree(conf->nr_waiting);
3222 	kfree(conf->nr_queued);
3223 	kfree(conf->barrier);
3224 	kfree(conf);
3225 }
3226 
3227 static int raid1_resize(struct mddev *mddev, sector_t sectors)
3228 {
3229 	/* no resync is happening, and there is enough space
3230 	 * on all devices, so we can resize.
3231 	 * We need to make sure resync covers any new space.
3232 	 * If the array is shrinking we should possibly wait until
3233 	 * any io in the removed space completes, but it hardly seems
3234 	 * worth it.
3235 	 */
3236 	sector_t newsize = raid1_size(mddev, sectors, 0);
3237 	if (mddev->external_size &&
3238 	    mddev->array_sectors > newsize)
3239 		return -EINVAL;
3240 	if (mddev->bitmap) {
3241 		int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0);
3242 		if (ret)
3243 			return ret;
3244 	}
3245 	md_set_array_sectors(mddev, newsize);
3246 	set_capacity(mddev->gendisk, mddev->array_sectors);
3247 	revalidate_disk(mddev->gendisk);
3248 	if (sectors > mddev->dev_sectors &&
3249 	    mddev->recovery_cp > mddev->dev_sectors) {
3250 		mddev->recovery_cp = mddev->dev_sectors;
3251 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3252 	}
3253 	mddev->dev_sectors = sectors;
3254 	mddev->resync_max_sectors = sectors;
3255 	return 0;
3256 }
3257 
3258 static int raid1_reshape(struct mddev *mddev)
3259 {
3260 	/* We need to:
3261 	 * 1/ resize the r1bio_pool
3262 	 * 2/ resize conf->mirrors
3263 	 *
3264 	 * We allocate a new r1bio_pool if we can.
3265 	 * Then raise a device barrier and wait until all IO stops.
3266 	 * Then resize conf->mirrors and swap in the new r1bio pool.
3267 	 *
3268 	 * At the same time, we "pack" the devices so that all the missing
3269 	 * devices have the higher raid_disk numbers.
3270 	 */
3271 	mempool_t *newpool, *oldpool;
3272 	struct pool_info *newpoolinfo;
3273 	struct raid1_info *newmirrors;
3274 	struct r1conf *conf = mddev->private;
3275 	int cnt, raid_disks;
3276 	unsigned long flags;
3277 	int d, d2, err;
3278 
3279 	/* Cannot change chunk_size, layout, or level */
3280 	if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3281 	    mddev->layout != mddev->new_layout ||
3282 	    mddev->level != mddev->new_level) {
3283 		mddev->new_chunk_sectors = mddev->chunk_sectors;
3284 		mddev->new_layout = mddev->layout;
3285 		mddev->new_level = mddev->level;
3286 		return -EINVAL;
3287 	}
3288 
3289 	if (!mddev_is_clustered(mddev)) {
3290 		err = md_allow_write(mddev);
3291 		if (err)
3292 			return err;
3293 	}
3294 
3295 	raid_disks = mddev->raid_disks + mddev->delta_disks;
3296 
3297 	if (raid_disks < conf->raid_disks) {
3298 		cnt=0;
3299 		for (d= 0; d < conf->raid_disks; d++)
3300 			if (conf->mirrors[d].rdev)
3301 				cnt++;
3302 		if (cnt > raid_disks)
3303 			return -EBUSY;
3304 	}
3305 
3306 	newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3307 	if (!newpoolinfo)
3308 		return -ENOMEM;
3309 	newpoolinfo->mddev = mddev;
3310 	newpoolinfo->raid_disks = raid_disks * 2;
3311 
3312 	newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
3313 				 r1bio_pool_free, newpoolinfo);
3314 	if (!newpool) {
3315 		kfree(newpoolinfo);
3316 		return -ENOMEM;
3317 	}
3318 	newmirrors = kzalloc(sizeof(struct raid1_info) * raid_disks * 2,
3319 			     GFP_KERNEL);
3320 	if (!newmirrors) {
3321 		kfree(newpoolinfo);
3322 		mempool_destroy(newpool);
3323 		return -ENOMEM;
3324 	}
3325 
3326 	freeze_array(conf, 0);
3327 
3328 	/* ok, everything is stopped */
3329 	oldpool = conf->r1bio_pool;
3330 	conf->r1bio_pool = newpool;
3331 
3332 	for (d = d2 = 0; d < conf->raid_disks; d++) {
3333 		struct md_rdev *rdev = conf->mirrors[d].rdev;
3334 		if (rdev && rdev->raid_disk != d2) {
3335 			sysfs_unlink_rdev(mddev, rdev);
3336 			rdev->raid_disk = d2;
3337 			sysfs_unlink_rdev(mddev, rdev);
3338 			if (sysfs_link_rdev(mddev, rdev))
3339 				pr_warn("md/raid1:%s: cannot register rd%d\n",
3340 					mdname(mddev), rdev->raid_disk);
3341 		}
3342 		if (rdev)
3343 			newmirrors[d2++].rdev = rdev;
3344 	}
3345 	kfree(conf->mirrors);
3346 	conf->mirrors = newmirrors;
3347 	kfree(conf->poolinfo);
3348 	conf->poolinfo = newpoolinfo;
3349 
3350 	spin_lock_irqsave(&conf->device_lock, flags);
3351 	mddev->degraded += (raid_disks - conf->raid_disks);
3352 	spin_unlock_irqrestore(&conf->device_lock, flags);
3353 	conf->raid_disks = mddev->raid_disks = raid_disks;
3354 	mddev->delta_disks = 0;
3355 
3356 	unfreeze_array(conf);
3357 
3358 	set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3359 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3360 	md_wakeup_thread(mddev->thread);
3361 
3362 	mempool_destroy(oldpool);
3363 	return 0;
3364 }
3365 
3366 static void raid1_quiesce(struct mddev *mddev, int state)
3367 {
3368 	struct r1conf *conf = mddev->private;
3369 
3370 	switch(state) {
3371 	case 2: /* wake for suspend */
3372 		wake_up(&conf->wait_barrier);
3373 		break;
3374 	case 1:
3375 		freeze_array(conf, 0);
3376 		break;
3377 	case 0:
3378 		unfreeze_array(conf);
3379 		break;
3380 	}
3381 }
3382 
3383 static void *raid1_takeover(struct mddev *mddev)
3384 {
3385 	/* raid1 can take over:
3386 	 *  raid5 with 2 devices, any layout or chunk size
3387 	 */
3388 	if (mddev->level == 5 && mddev->raid_disks == 2) {
3389 		struct r1conf *conf;
3390 		mddev->new_level = 1;
3391 		mddev->new_layout = 0;
3392 		mddev->new_chunk_sectors = 0;
3393 		conf = setup_conf(mddev);
3394 		if (!IS_ERR(conf)) {
3395 			/* Array must appear to be quiesced */
3396 			conf->array_frozen = 1;
3397 			mddev_clear_unsupported_flags(mddev,
3398 				UNSUPPORTED_MDDEV_FLAGS);
3399 		}
3400 		return conf;
3401 	}
3402 	return ERR_PTR(-EINVAL);
3403 }
3404 
3405 static struct md_personality raid1_personality =
3406 {
3407 	.name		= "raid1",
3408 	.level		= 1,
3409 	.owner		= THIS_MODULE,
3410 	.make_request	= raid1_make_request,
3411 	.run		= raid1_run,
3412 	.free		= raid1_free,
3413 	.status		= raid1_status,
3414 	.error_handler	= raid1_error,
3415 	.hot_add_disk	= raid1_add_disk,
3416 	.hot_remove_disk= raid1_remove_disk,
3417 	.spare_active	= raid1_spare_active,
3418 	.sync_request	= raid1_sync_request,
3419 	.resize		= raid1_resize,
3420 	.size		= raid1_size,
3421 	.check_reshape	= raid1_reshape,
3422 	.quiesce	= raid1_quiesce,
3423 	.takeover	= raid1_takeover,
3424 	.congested	= raid1_congested,
3425 };
3426 
3427 static int __init raid_init(void)
3428 {
3429 	return register_md_personality(&raid1_personality);
3430 }
3431 
3432 static void raid_exit(void)
3433 {
3434 	unregister_md_personality(&raid1_personality);
3435 }
3436 
3437 module_init(raid_init);
3438 module_exit(raid_exit);
3439 MODULE_LICENSE("GPL");
3440 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3441 MODULE_ALIAS("md-personality-3"); /* RAID1 */
3442 MODULE_ALIAS("md-raid1");
3443 MODULE_ALIAS("md-level-1");
3444 
3445 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
3446