xref: /openbmc/linux/drivers/md/raid1.c (revision 7449f699)
1 /*
2  * raid1.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5  *
6  * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7  *
8  * RAID-1 management functions.
9  *
10  * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11  *
12  * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
13  * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14  *
15  * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16  * bitmapped intelligence in resync:
17  *
18  *      - bitmap marked during normal i/o
19  *      - bitmap used to skip nondirty blocks during sync
20  *
21  * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22  * - persistent bitmap code
23  *
24  * This program is free software; you can redistribute it and/or modify
25  * it under the terms of the GNU General Public License as published by
26  * the Free Software Foundation; either version 2, or (at your option)
27  * any later version.
28  *
29  * You should have received a copy of the GNU General Public License
30  * (for example /usr/src/linux/COPYING); if not, write to the Free
31  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32  */
33 
34 #include <linux/slab.h>
35 #include <linux/delay.h>
36 #include <linux/blkdev.h>
37 #include <linux/module.h>
38 #include <linux/seq_file.h>
39 #include <linux/ratelimit.h>
40 #include "md.h"
41 #include "raid1.h"
42 #include "bitmap.h"
43 
44 /*
45  * Number of guaranteed r1bios in case of extreme VM load:
46  */
47 #define	NR_RAID1_BIOS 256
48 
49 /* when we get a read error on a read-only array, we redirect to another
50  * device without failing the first device, or trying to over-write to
51  * correct the read error.  To keep track of bad blocks on a per-bio
52  * level, we store IO_BLOCKED in the appropriate 'bios' pointer
53  */
54 #define IO_BLOCKED ((struct bio *)1)
55 /* When we successfully write to a known bad-block, we need to remove the
56  * bad-block marking which must be done from process context.  So we record
57  * the success by setting devs[n].bio to IO_MADE_GOOD
58  */
59 #define IO_MADE_GOOD ((struct bio *)2)
60 
61 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
62 
63 /* When there are this many requests queue to be written by
64  * the raid1 thread, we become 'congested' to provide back-pressure
65  * for writeback.
66  */
67 static int max_queued_requests = 1024;
68 
69 static void allow_barrier(struct r1conf *conf, sector_t start_next_window,
70 			  sector_t bi_sector);
71 static void lower_barrier(struct r1conf *conf);
72 
73 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
74 {
75 	struct pool_info *pi = data;
76 	int size = offsetof(struct r1bio, bios[pi->raid_disks]);
77 
78 	/* allocate a r1bio with room for raid_disks entries in the bios array */
79 	return kzalloc(size, gfp_flags);
80 }
81 
82 static void r1bio_pool_free(void *r1_bio, void *data)
83 {
84 	kfree(r1_bio);
85 }
86 
87 #define RESYNC_BLOCK_SIZE (64*1024)
88 #define RESYNC_DEPTH 32
89 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
90 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
91 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
92 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
93 #define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
94 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
95 #define NEXT_NORMALIO_DISTANCE (3 * RESYNC_WINDOW_SECTORS)
96 
97 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
98 {
99 	struct pool_info *pi = data;
100 	struct r1bio *r1_bio;
101 	struct bio *bio;
102 	int need_pages;
103 	int i, j;
104 
105 	r1_bio = r1bio_pool_alloc(gfp_flags, pi);
106 	if (!r1_bio)
107 		return NULL;
108 
109 	/*
110 	 * Allocate bios : 1 for reading, n-1 for writing
111 	 */
112 	for (j = pi->raid_disks ; j-- ; ) {
113 		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
114 		if (!bio)
115 			goto out_free_bio;
116 		r1_bio->bios[j] = bio;
117 	}
118 	/*
119 	 * Allocate RESYNC_PAGES data pages and attach them to
120 	 * the first bio.
121 	 * If this is a user-requested check/repair, allocate
122 	 * RESYNC_PAGES for each bio.
123 	 */
124 	if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
125 		need_pages = pi->raid_disks;
126 	else
127 		need_pages = 1;
128 	for (j = 0; j < need_pages; j++) {
129 		bio = r1_bio->bios[j];
130 		bio->bi_vcnt = RESYNC_PAGES;
131 
132 		if (bio_alloc_pages(bio, gfp_flags))
133 			goto out_free_pages;
134 	}
135 	/* If not user-requests, copy the page pointers to all bios */
136 	if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
137 		for (i=0; i<RESYNC_PAGES ; i++)
138 			for (j=1; j<pi->raid_disks; j++)
139 				r1_bio->bios[j]->bi_io_vec[i].bv_page =
140 					r1_bio->bios[0]->bi_io_vec[i].bv_page;
141 	}
142 
143 	r1_bio->master_bio = NULL;
144 
145 	return r1_bio;
146 
147 out_free_pages:
148 	while (--j >= 0)
149 		bio_free_pages(r1_bio->bios[j]);
150 
151 out_free_bio:
152 	while (++j < pi->raid_disks)
153 		bio_put(r1_bio->bios[j]);
154 	r1bio_pool_free(r1_bio, data);
155 	return NULL;
156 }
157 
158 static void r1buf_pool_free(void *__r1_bio, void *data)
159 {
160 	struct pool_info *pi = data;
161 	int i,j;
162 	struct r1bio *r1bio = __r1_bio;
163 
164 	for (i = 0; i < RESYNC_PAGES; i++)
165 		for (j = pi->raid_disks; j-- ;) {
166 			if (j == 0 ||
167 			    r1bio->bios[j]->bi_io_vec[i].bv_page !=
168 			    r1bio->bios[0]->bi_io_vec[i].bv_page)
169 				safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
170 		}
171 	for (i=0 ; i < pi->raid_disks; i++)
172 		bio_put(r1bio->bios[i]);
173 
174 	r1bio_pool_free(r1bio, data);
175 }
176 
177 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
178 {
179 	int i;
180 
181 	for (i = 0; i < conf->raid_disks * 2; i++) {
182 		struct bio **bio = r1_bio->bios + i;
183 		if (!BIO_SPECIAL(*bio))
184 			bio_put(*bio);
185 		*bio = NULL;
186 	}
187 }
188 
189 static void free_r1bio(struct r1bio *r1_bio)
190 {
191 	struct r1conf *conf = r1_bio->mddev->private;
192 
193 	put_all_bios(conf, r1_bio);
194 	mempool_free(r1_bio, conf->r1bio_pool);
195 }
196 
197 static void put_buf(struct r1bio *r1_bio)
198 {
199 	struct r1conf *conf = r1_bio->mddev->private;
200 	int i;
201 
202 	for (i = 0; i < conf->raid_disks * 2; i++) {
203 		struct bio *bio = r1_bio->bios[i];
204 		if (bio->bi_end_io)
205 			rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
206 	}
207 
208 	mempool_free(r1_bio, conf->r1buf_pool);
209 
210 	lower_barrier(conf);
211 }
212 
213 static void reschedule_retry(struct r1bio *r1_bio)
214 {
215 	unsigned long flags;
216 	struct mddev *mddev = r1_bio->mddev;
217 	struct r1conf *conf = mddev->private;
218 
219 	spin_lock_irqsave(&conf->device_lock, flags);
220 	list_add(&r1_bio->retry_list, &conf->retry_list);
221 	conf->nr_queued ++;
222 	spin_unlock_irqrestore(&conf->device_lock, flags);
223 
224 	wake_up(&conf->wait_barrier);
225 	md_wakeup_thread(mddev->thread);
226 }
227 
228 /*
229  * raid_end_bio_io() is called when we have finished servicing a mirrored
230  * operation and are ready to return a success/failure code to the buffer
231  * cache layer.
232  */
233 static void call_bio_endio(struct r1bio *r1_bio)
234 {
235 	struct bio *bio = r1_bio->master_bio;
236 	int done;
237 	struct r1conf *conf = r1_bio->mddev->private;
238 	sector_t start_next_window = r1_bio->start_next_window;
239 	sector_t bi_sector = bio->bi_iter.bi_sector;
240 
241 	if (bio->bi_phys_segments) {
242 		unsigned long flags;
243 		spin_lock_irqsave(&conf->device_lock, flags);
244 		bio->bi_phys_segments--;
245 		done = (bio->bi_phys_segments == 0);
246 		spin_unlock_irqrestore(&conf->device_lock, flags);
247 		/*
248 		 * make_request() might be waiting for
249 		 * bi_phys_segments to decrease
250 		 */
251 		wake_up(&conf->wait_barrier);
252 	} else
253 		done = 1;
254 
255 	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
256 		bio->bi_error = -EIO;
257 
258 	if (done) {
259 		bio_endio(bio);
260 		/*
261 		 * Wake up any possible resync thread that waits for the device
262 		 * to go idle.
263 		 */
264 		allow_barrier(conf, start_next_window, bi_sector);
265 	}
266 }
267 
268 static void raid_end_bio_io(struct r1bio *r1_bio)
269 {
270 	struct bio *bio = r1_bio->master_bio;
271 
272 	/* if nobody has done the final endio yet, do it now */
273 	if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
274 		pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
275 			 (bio_data_dir(bio) == WRITE) ? "write" : "read",
276 			 (unsigned long long) bio->bi_iter.bi_sector,
277 			 (unsigned long long) bio_end_sector(bio) - 1);
278 
279 		call_bio_endio(r1_bio);
280 	}
281 	free_r1bio(r1_bio);
282 }
283 
284 /*
285  * Update disk head position estimator based on IRQ completion info.
286  */
287 static inline void update_head_pos(int disk, struct r1bio *r1_bio)
288 {
289 	struct r1conf *conf = r1_bio->mddev->private;
290 
291 	conf->mirrors[disk].head_position =
292 		r1_bio->sector + (r1_bio->sectors);
293 }
294 
295 /*
296  * Find the disk number which triggered given bio
297  */
298 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
299 {
300 	int mirror;
301 	struct r1conf *conf = r1_bio->mddev->private;
302 	int raid_disks = conf->raid_disks;
303 
304 	for (mirror = 0; mirror < raid_disks * 2; mirror++)
305 		if (r1_bio->bios[mirror] == bio)
306 			break;
307 
308 	BUG_ON(mirror == raid_disks * 2);
309 	update_head_pos(mirror, r1_bio);
310 
311 	return mirror;
312 }
313 
314 static void raid1_end_read_request(struct bio *bio)
315 {
316 	int uptodate = !bio->bi_error;
317 	struct r1bio *r1_bio = bio->bi_private;
318 	struct r1conf *conf = r1_bio->mddev->private;
319 	struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev;
320 
321 	/*
322 	 * this branch is our 'one mirror IO has finished' event handler:
323 	 */
324 	update_head_pos(r1_bio->read_disk, r1_bio);
325 
326 	if (uptodate)
327 		set_bit(R1BIO_Uptodate, &r1_bio->state);
328 	else {
329 		/* If all other devices have failed, we want to return
330 		 * the error upwards rather than fail the last device.
331 		 * Here we redefine "uptodate" to mean "Don't want to retry"
332 		 */
333 		unsigned long flags;
334 		spin_lock_irqsave(&conf->device_lock, flags);
335 		if (r1_bio->mddev->degraded == conf->raid_disks ||
336 		    (r1_bio->mddev->degraded == conf->raid_disks-1 &&
337 		     test_bit(In_sync, &rdev->flags)))
338 			uptodate = 1;
339 		spin_unlock_irqrestore(&conf->device_lock, flags);
340 	}
341 
342 	if (uptodate) {
343 		raid_end_bio_io(r1_bio);
344 		rdev_dec_pending(rdev, conf->mddev);
345 	} else {
346 		/*
347 		 * oops, read error:
348 		 */
349 		char b[BDEVNAME_SIZE];
350 		printk_ratelimited(
351 			KERN_ERR "md/raid1:%s: %s: "
352 			"rescheduling sector %llu\n",
353 			mdname(conf->mddev),
354 			bdevname(rdev->bdev,
355 				 b),
356 			(unsigned long long)r1_bio->sector);
357 		set_bit(R1BIO_ReadError, &r1_bio->state);
358 		reschedule_retry(r1_bio);
359 		/* don't drop the reference on read_disk yet */
360 	}
361 }
362 
363 static void close_write(struct r1bio *r1_bio)
364 {
365 	/* it really is the end of this request */
366 	if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
367 		/* free extra copy of the data pages */
368 		int i = r1_bio->behind_page_count;
369 		while (i--)
370 			safe_put_page(r1_bio->behind_bvecs[i].bv_page);
371 		kfree(r1_bio->behind_bvecs);
372 		r1_bio->behind_bvecs = NULL;
373 	}
374 	/* clear the bitmap if all writes complete successfully */
375 	bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
376 			r1_bio->sectors,
377 			!test_bit(R1BIO_Degraded, &r1_bio->state),
378 			test_bit(R1BIO_BehindIO, &r1_bio->state));
379 	md_write_end(r1_bio->mddev);
380 }
381 
382 static void r1_bio_write_done(struct r1bio *r1_bio)
383 {
384 	if (!atomic_dec_and_test(&r1_bio->remaining))
385 		return;
386 
387 	if (test_bit(R1BIO_WriteError, &r1_bio->state))
388 		reschedule_retry(r1_bio);
389 	else {
390 		close_write(r1_bio);
391 		if (test_bit(R1BIO_MadeGood, &r1_bio->state))
392 			reschedule_retry(r1_bio);
393 		else
394 			raid_end_bio_io(r1_bio);
395 	}
396 }
397 
398 static void raid1_end_write_request(struct bio *bio)
399 {
400 	struct r1bio *r1_bio = bio->bi_private;
401 	int behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
402 	struct r1conf *conf = r1_bio->mddev->private;
403 	struct bio *to_put = NULL;
404 	int mirror = find_bio_disk(r1_bio, bio);
405 	struct md_rdev *rdev = conf->mirrors[mirror].rdev;
406 	bool discard_error;
407 
408 	discard_error = bio->bi_error && bio_op(bio) == REQ_OP_DISCARD;
409 
410 	/*
411 	 * 'one mirror IO has finished' event handler:
412 	 */
413 	if (bio->bi_error && !discard_error) {
414 		set_bit(WriteErrorSeen,	&rdev->flags);
415 		if (!test_and_set_bit(WantReplacement, &rdev->flags))
416 			set_bit(MD_RECOVERY_NEEDED, &
417 				conf->mddev->recovery);
418 
419 		set_bit(R1BIO_WriteError, &r1_bio->state);
420 	} else {
421 		/*
422 		 * Set R1BIO_Uptodate in our master bio, so that we
423 		 * will return a good error code for to the higher
424 		 * levels even if IO on some other mirrored buffer
425 		 * fails.
426 		 *
427 		 * The 'master' represents the composite IO operation
428 		 * to user-side. So if something waits for IO, then it
429 		 * will wait for the 'master' bio.
430 		 */
431 		sector_t first_bad;
432 		int bad_sectors;
433 
434 		r1_bio->bios[mirror] = NULL;
435 		to_put = bio;
436 		/*
437 		 * Do not set R1BIO_Uptodate if the current device is
438 		 * rebuilding or Faulty. This is because we cannot use
439 		 * such device for properly reading the data back (we could
440 		 * potentially use it, if the current write would have felt
441 		 * before rdev->recovery_offset, but for simplicity we don't
442 		 * check this here.
443 		 */
444 		if (test_bit(In_sync, &rdev->flags) &&
445 		    !test_bit(Faulty, &rdev->flags))
446 			set_bit(R1BIO_Uptodate, &r1_bio->state);
447 
448 		/* Maybe we can clear some bad blocks. */
449 		if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
450 				&first_bad, &bad_sectors) && !discard_error) {
451 			r1_bio->bios[mirror] = IO_MADE_GOOD;
452 			set_bit(R1BIO_MadeGood, &r1_bio->state);
453 		}
454 	}
455 
456 	if (behind) {
457 		if (test_bit(WriteMostly, &rdev->flags))
458 			atomic_dec(&r1_bio->behind_remaining);
459 
460 		/*
461 		 * In behind mode, we ACK the master bio once the I/O
462 		 * has safely reached all non-writemostly
463 		 * disks. Setting the Returned bit ensures that this
464 		 * gets done only once -- we don't ever want to return
465 		 * -EIO here, instead we'll wait
466 		 */
467 		if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
468 		    test_bit(R1BIO_Uptodate, &r1_bio->state)) {
469 			/* Maybe we can return now */
470 			if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
471 				struct bio *mbio = r1_bio->master_bio;
472 				pr_debug("raid1: behind end write sectors"
473 					 " %llu-%llu\n",
474 					 (unsigned long long) mbio->bi_iter.bi_sector,
475 					 (unsigned long long) bio_end_sector(mbio) - 1);
476 				call_bio_endio(r1_bio);
477 			}
478 		}
479 	}
480 	if (r1_bio->bios[mirror] == NULL)
481 		rdev_dec_pending(rdev, conf->mddev);
482 
483 	/*
484 	 * Let's see if all mirrored write operations have finished
485 	 * already.
486 	 */
487 	r1_bio_write_done(r1_bio);
488 
489 	if (to_put)
490 		bio_put(to_put);
491 }
492 
493 /*
494  * This routine returns the disk from which the requested read should
495  * be done. There is a per-array 'next expected sequential IO' sector
496  * number - if this matches on the next IO then we use the last disk.
497  * There is also a per-disk 'last know head position' sector that is
498  * maintained from IRQ contexts, both the normal and the resync IO
499  * completion handlers update this position correctly. If there is no
500  * perfect sequential match then we pick the disk whose head is closest.
501  *
502  * If there are 2 mirrors in the same 2 devices, performance degrades
503  * because position is mirror, not device based.
504  *
505  * The rdev for the device selected will have nr_pending incremented.
506  */
507 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
508 {
509 	const sector_t this_sector = r1_bio->sector;
510 	int sectors;
511 	int best_good_sectors;
512 	int best_disk, best_dist_disk, best_pending_disk;
513 	int has_nonrot_disk;
514 	int disk;
515 	sector_t best_dist;
516 	unsigned int min_pending;
517 	struct md_rdev *rdev;
518 	int choose_first;
519 	int choose_next_idle;
520 
521 	rcu_read_lock();
522 	/*
523 	 * Check if we can balance. We can balance on the whole
524 	 * device if no resync is going on, or below the resync window.
525 	 * We take the first readable disk when above the resync window.
526 	 */
527  retry:
528 	sectors = r1_bio->sectors;
529 	best_disk = -1;
530 	best_dist_disk = -1;
531 	best_dist = MaxSector;
532 	best_pending_disk = -1;
533 	min_pending = UINT_MAX;
534 	best_good_sectors = 0;
535 	has_nonrot_disk = 0;
536 	choose_next_idle = 0;
537 
538 	if ((conf->mddev->recovery_cp < this_sector + sectors) ||
539 	    (mddev_is_clustered(conf->mddev) &&
540 	    md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
541 		    this_sector + sectors)))
542 		choose_first = 1;
543 	else
544 		choose_first = 0;
545 
546 	for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
547 		sector_t dist;
548 		sector_t first_bad;
549 		int bad_sectors;
550 		unsigned int pending;
551 		bool nonrot;
552 
553 		rdev = rcu_dereference(conf->mirrors[disk].rdev);
554 		if (r1_bio->bios[disk] == IO_BLOCKED
555 		    || rdev == NULL
556 		    || test_bit(Faulty, &rdev->flags))
557 			continue;
558 		if (!test_bit(In_sync, &rdev->flags) &&
559 		    rdev->recovery_offset < this_sector + sectors)
560 			continue;
561 		if (test_bit(WriteMostly, &rdev->flags)) {
562 			/* Don't balance among write-mostly, just
563 			 * use the first as a last resort */
564 			if (best_dist_disk < 0) {
565 				if (is_badblock(rdev, this_sector, sectors,
566 						&first_bad, &bad_sectors)) {
567 					if (first_bad <= this_sector)
568 						/* Cannot use this */
569 						continue;
570 					best_good_sectors = first_bad - this_sector;
571 				} else
572 					best_good_sectors = sectors;
573 				best_dist_disk = disk;
574 				best_pending_disk = disk;
575 			}
576 			continue;
577 		}
578 		/* This is a reasonable device to use.  It might
579 		 * even be best.
580 		 */
581 		if (is_badblock(rdev, this_sector, sectors,
582 				&first_bad, &bad_sectors)) {
583 			if (best_dist < MaxSector)
584 				/* already have a better device */
585 				continue;
586 			if (first_bad <= this_sector) {
587 				/* cannot read here. If this is the 'primary'
588 				 * device, then we must not read beyond
589 				 * bad_sectors from another device..
590 				 */
591 				bad_sectors -= (this_sector - first_bad);
592 				if (choose_first && sectors > bad_sectors)
593 					sectors = bad_sectors;
594 				if (best_good_sectors > sectors)
595 					best_good_sectors = sectors;
596 
597 			} else {
598 				sector_t good_sectors = first_bad - this_sector;
599 				if (good_sectors > best_good_sectors) {
600 					best_good_sectors = good_sectors;
601 					best_disk = disk;
602 				}
603 				if (choose_first)
604 					break;
605 			}
606 			continue;
607 		} else
608 			best_good_sectors = sectors;
609 
610 		nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
611 		has_nonrot_disk |= nonrot;
612 		pending = atomic_read(&rdev->nr_pending);
613 		dist = abs(this_sector - conf->mirrors[disk].head_position);
614 		if (choose_first) {
615 			best_disk = disk;
616 			break;
617 		}
618 		/* Don't change to another disk for sequential reads */
619 		if (conf->mirrors[disk].next_seq_sect == this_sector
620 		    || dist == 0) {
621 			int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
622 			struct raid1_info *mirror = &conf->mirrors[disk];
623 
624 			best_disk = disk;
625 			/*
626 			 * If buffered sequential IO size exceeds optimal
627 			 * iosize, check if there is idle disk. If yes, choose
628 			 * the idle disk. read_balance could already choose an
629 			 * idle disk before noticing it's a sequential IO in
630 			 * this disk. This doesn't matter because this disk
631 			 * will idle, next time it will be utilized after the
632 			 * first disk has IO size exceeds optimal iosize. In
633 			 * this way, iosize of the first disk will be optimal
634 			 * iosize at least. iosize of the second disk might be
635 			 * small, but not a big deal since when the second disk
636 			 * starts IO, the first disk is likely still busy.
637 			 */
638 			if (nonrot && opt_iosize > 0 &&
639 			    mirror->seq_start != MaxSector &&
640 			    mirror->next_seq_sect > opt_iosize &&
641 			    mirror->next_seq_sect - opt_iosize >=
642 			    mirror->seq_start) {
643 				choose_next_idle = 1;
644 				continue;
645 			}
646 			break;
647 		}
648 		/* If device is idle, use it */
649 		if (pending == 0) {
650 			best_disk = disk;
651 			break;
652 		}
653 
654 		if (choose_next_idle)
655 			continue;
656 
657 		if (min_pending > pending) {
658 			min_pending = pending;
659 			best_pending_disk = disk;
660 		}
661 
662 		if (dist < best_dist) {
663 			best_dist = dist;
664 			best_dist_disk = disk;
665 		}
666 	}
667 
668 	/*
669 	 * If all disks are rotational, choose the closest disk. If any disk is
670 	 * non-rotational, choose the disk with less pending request even the
671 	 * disk is rotational, which might/might not be optimal for raids with
672 	 * mixed ratation/non-rotational disks depending on workload.
673 	 */
674 	if (best_disk == -1) {
675 		if (has_nonrot_disk)
676 			best_disk = best_pending_disk;
677 		else
678 			best_disk = best_dist_disk;
679 	}
680 
681 	if (best_disk >= 0) {
682 		rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
683 		if (!rdev)
684 			goto retry;
685 		atomic_inc(&rdev->nr_pending);
686 		sectors = best_good_sectors;
687 
688 		if (conf->mirrors[best_disk].next_seq_sect != this_sector)
689 			conf->mirrors[best_disk].seq_start = this_sector;
690 
691 		conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
692 	}
693 	rcu_read_unlock();
694 	*max_sectors = sectors;
695 
696 	return best_disk;
697 }
698 
699 static int raid1_congested(struct mddev *mddev, int bits)
700 {
701 	struct r1conf *conf = mddev->private;
702 	int i, ret = 0;
703 
704 	if ((bits & (1 << WB_async_congested)) &&
705 	    conf->pending_count >= max_queued_requests)
706 		return 1;
707 
708 	rcu_read_lock();
709 	for (i = 0; i < conf->raid_disks * 2; i++) {
710 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
711 		if (rdev && !test_bit(Faulty, &rdev->flags)) {
712 			struct request_queue *q = bdev_get_queue(rdev->bdev);
713 
714 			BUG_ON(!q);
715 
716 			/* Note the '|| 1' - when read_balance prefers
717 			 * non-congested targets, it can be removed
718 			 */
719 			if ((bits & (1 << WB_async_congested)) || 1)
720 				ret |= bdi_congested(&q->backing_dev_info, bits);
721 			else
722 				ret &= bdi_congested(&q->backing_dev_info, bits);
723 		}
724 	}
725 	rcu_read_unlock();
726 	return ret;
727 }
728 
729 static void flush_pending_writes(struct r1conf *conf)
730 {
731 	/* Any writes that have been queued but are awaiting
732 	 * bitmap updates get flushed here.
733 	 */
734 	spin_lock_irq(&conf->device_lock);
735 
736 	if (conf->pending_bio_list.head) {
737 		struct bio *bio;
738 		bio = bio_list_get(&conf->pending_bio_list);
739 		conf->pending_count = 0;
740 		spin_unlock_irq(&conf->device_lock);
741 		/* flush any pending bitmap writes to
742 		 * disk before proceeding w/ I/O */
743 		bitmap_unplug(conf->mddev->bitmap);
744 		wake_up(&conf->wait_barrier);
745 
746 		while (bio) { /* submit pending writes */
747 			struct bio *next = bio->bi_next;
748 			bio->bi_next = NULL;
749 			if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
750 			    !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
751 				/* Just ignore it */
752 				bio_endio(bio);
753 			else
754 				generic_make_request(bio);
755 			bio = next;
756 		}
757 	} else
758 		spin_unlock_irq(&conf->device_lock);
759 }
760 
761 /* Barriers....
762  * Sometimes we need to suspend IO while we do something else,
763  * either some resync/recovery, or reconfigure the array.
764  * To do this we raise a 'barrier'.
765  * The 'barrier' is a counter that can be raised multiple times
766  * to count how many activities are happening which preclude
767  * normal IO.
768  * We can only raise the barrier if there is no pending IO.
769  * i.e. if nr_pending == 0.
770  * We choose only to raise the barrier if no-one is waiting for the
771  * barrier to go down.  This means that as soon as an IO request
772  * is ready, no other operations which require a barrier will start
773  * until the IO request has had a chance.
774  *
775  * So: regular IO calls 'wait_barrier'.  When that returns there
776  *    is no backgroup IO happening,  It must arrange to call
777  *    allow_barrier when it has finished its IO.
778  * backgroup IO calls must call raise_barrier.  Once that returns
779  *    there is no normal IO happeing.  It must arrange to call
780  *    lower_barrier when the particular background IO completes.
781  */
782 static void raise_barrier(struct r1conf *conf, sector_t sector_nr)
783 {
784 	spin_lock_irq(&conf->resync_lock);
785 
786 	/* Wait until no block IO is waiting */
787 	wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
788 			    conf->resync_lock);
789 
790 	/* block any new IO from starting */
791 	conf->barrier++;
792 	conf->next_resync = sector_nr;
793 
794 	/* For these conditions we must wait:
795 	 * A: while the array is in frozen state
796 	 * B: while barrier >= RESYNC_DEPTH, meaning resync reach
797 	 *    the max count which allowed.
798 	 * C: next_resync + RESYNC_SECTORS > start_next_window, meaning
799 	 *    next resync will reach to the window which normal bios are
800 	 *    handling.
801 	 * D: while there are any active requests in the current window.
802 	 */
803 	wait_event_lock_irq(conf->wait_barrier,
804 			    !conf->array_frozen &&
805 			    conf->barrier < RESYNC_DEPTH &&
806 			    conf->current_window_requests == 0 &&
807 			    (conf->start_next_window >=
808 			     conf->next_resync + RESYNC_SECTORS),
809 			    conf->resync_lock);
810 
811 	conf->nr_pending++;
812 	spin_unlock_irq(&conf->resync_lock);
813 }
814 
815 static void lower_barrier(struct r1conf *conf)
816 {
817 	unsigned long flags;
818 	BUG_ON(conf->barrier <= 0);
819 	spin_lock_irqsave(&conf->resync_lock, flags);
820 	conf->barrier--;
821 	conf->nr_pending--;
822 	spin_unlock_irqrestore(&conf->resync_lock, flags);
823 	wake_up(&conf->wait_barrier);
824 }
825 
826 static bool need_to_wait_for_sync(struct r1conf *conf, struct bio *bio)
827 {
828 	bool wait = false;
829 
830 	if (conf->array_frozen || !bio)
831 		wait = true;
832 	else if (conf->barrier && bio_data_dir(bio) == WRITE) {
833 		if ((conf->mddev->curr_resync_completed
834 		     >= bio_end_sector(bio)) ||
835 		    (conf->next_resync + NEXT_NORMALIO_DISTANCE
836 		     <= bio->bi_iter.bi_sector))
837 			wait = false;
838 		else
839 			wait = true;
840 	}
841 
842 	return wait;
843 }
844 
845 static sector_t wait_barrier(struct r1conf *conf, struct bio *bio)
846 {
847 	sector_t sector = 0;
848 
849 	spin_lock_irq(&conf->resync_lock);
850 	if (need_to_wait_for_sync(conf, bio)) {
851 		conf->nr_waiting++;
852 		/* Wait for the barrier to drop.
853 		 * However if there are already pending
854 		 * requests (preventing the barrier from
855 		 * rising completely), and the
856 		 * per-process bio queue isn't empty,
857 		 * then don't wait, as we need to empty
858 		 * that queue to allow conf->start_next_window
859 		 * to increase.
860 		 */
861 		wait_event_lock_irq(conf->wait_barrier,
862 				    !conf->array_frozen &&
863 				    (!conf->barrier ||
864 				     ((conf->start_next_window <
865 				       conf->next_resync + RESYNC_SECTORS) &&
866 				      current->bio_list &&
867 				      !bio_list_empty(current->bio_list))),
868 				    conf->resync_lock);
869 		conf->nr_waiting--;
870 	}
871 
872 	if (bio && bio_data_dir(bio) == WRITE) {
873 		if (bio->bi_iter.bi_sector >= conf->next_resync) {
874 			if (conf->start_next_window == MaxSector)
875 				conf->start_next_window =
876 					conf->next_resync +
877 					NEXT_NORMALIO_DISTANCE;
878 
879 			if ((conf->start_next_window + NEXT_NORMALIO_DISTANCE)
880 			    <= bio->bi_iter.bi_sector)
881 				conf->next_window_requests++;
882 			else
883 				conf->current_window_requests++;
884 			sector = conf->start_next_window;
885 		}
886 	}
887 
888 	conf->nr_pending++;
889 	spin_unlock_irq(&conf->resync_lock);
890 	return sector;
891 }
892 
893 static void allow_barrier(struct r1conf *conf, sector_t start_next_window,
894 			  sector_t bi_sector)
895 {
896 	unsigned long flags;
897 
898 	spin_lock_irqsave(&conf->resync_lock, flags);
899 	conf->nr_pending--;
900 	if (start_next_window) {
901 		if (start_next_window == conf->start_next_window) {
902 			if (conf->start_next_window + NEXT_NORMALIO_DISTANCE
903 			    <= bi_sector)
904 				conf->next_window_requests--;
905 			else
906 				conf->current_window_requests--;
907 		} else
908 			conf->current_window_requests--;
909 
910 		if (!conf->current_window_requests) {
911 			if (conf->next_window_requests) {
912 				conf->current_window_requests =
913 					conf->next_window_requests;
914 				conf->next_window_requests = 0;
915 				conf->start_next_window +=
916 					NEXT_NORMALIO_DISTANCE;
917 			} else
918 				conf->start_next_window = MaxSector;
919 		}
920 	}
921 	spin_unlock_irqrestore(&conf->resync_lock, flags);
922 	wake_up(&conf->wait_barrier);
923 }
924 
925 static void freeze_array(struct r1conf *conf, int extra)
926 {
927 	/* stop syncio and normal IO and wait for everything to
928 	 * go quite.
929 	 * We wait until nr_pending match nr_queued+extra
930 	 * This is called in the context of one normal IO request
931 	 * that has failed. Thus any sync request that might be pending
932 	 * will be blocked by nr_pending, and we need to wait for
933 	 * pending IO requests to complete or be queued for re-try.
934 	 * Thus the number queued (nr_queued) plus this request (extra)
935 	 * must match the number of pending IOs (nr_pending) before
936 	 * we continue.
937 	 */
938 	spin_lock_irq(&conf->resync_lock);
939 	conf->array_frozen = 1;
940 	wait_event_lock_irq_cmd(conf->wait_barrier,
941 				conf->nr_pending == conf->nr_queued+extra,
942 				conf->resync_lock,
943 				flush_pending_writes(conf));
944 	spin_unlock_irq(&conf->resync_lock);
945 }
946 static void unfreeze_array(struct r1conf *conf)
947 {
948 	/* reverse the effect of the freeze */
949 	spin_lock_irq(&conf->resync_lock);
950 	conf->array_frozen = 0;
951 	wake_up(&conf->wait_barrier);
952 	spin_unlock_irq(&conf->resync_lock);
953 }
954 
955 /* duplicate the data pages for behind I/O
956  */
957 static void alloc_behind_pages(struct bio *bio, struct r1bio *r1_bio)
958 {
959 	int i;
960 	struct bio_vec *bvec;
961 	struct bio_vec *bvecs = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec),
962 					GFP_NOIO);
963 	if (unlikely(!bvecs))
964 		return;
965 
966 	bio_for_each_segment_all(bvec, bio, i) {
967 		bvecs[i] = *bvec;
968 		bvecs[i].bv_page = alloc_page(GFP_NOIO);
969 		if (unlikely(!bvecs[i].bv_page))
970 			goto do_sync_io;
971 		memcpy(kmap(bvecs[i].bv_page) + bvec->bv_offset,
972 		       kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
973 		kunmap(bvecs[i].bv_page);
974 		kunmap(bvec->bv_page);
975 	}
976 	r1_bio->behind_bvecs = bvecs;
977 	r1_bio->behind_page_count = bio->bi_vcnt;
978 	set_bit(R1BIO_BehindIO, &r1_bio->state);
979 	return;
980 
981 do_sync_io:
982 	for (i = 0; i < bio->bi_vcnt; i++)
983 		if (bvecs[i].bv_page)
984 			put_page(bvecs[i].bv_page);
985 	kfree(bvecs);
986 	pr_debug("%dB behind alloc failed, doing sync I/O\n",
987 		 bio->bi_iter.bi_size);
988 }
989 
990 struct raid1_plug_cb {
991 	struct blk_plug_cb	cb;
992 	struct bio_list		pending;
993 	int			pending_cnt;
994 };
995 
996 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
997 {
998 	struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
999 						  cb);
1000 	struct mddev *mddev = plug->cb.data;
1001 	struct r1conf *conf = mddev->private;
1002 	struct bio *bio;
1003 
1004 	if (from_schedule || current->bio_list) {
1005 		spin_lock_irq(&conf->device_lock);
1006 		bio_list_merge(&conf->pending_bio_list, &plug->pending);
1007 		conf->pending_count += plug->pending_cnt;
1008 		spin_unlock_irq(&conf->device_lock);
1009 		wake_up(&conf->wait_barrier);
1010 		md_wakeup_thread(mddev->thread);
1011 		kfree(plug);
1012 		return;
1013 	}
1014 
1015 	/* we aren't scheduling, so we can do the write-out directly. */
1016 	bio = bio_list_get(&plug->pending);
1017 	bitmap_unplug(mddev->bitmap);
1018 	wake_up(&conf->wait_barrier);
1019 
1020 	while (bio) { /* submit pending writes */
1021 		struct bio *next = bio->bi_next;
1022 		bio->bi_next = NULL;
1023 		if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
1024 		    !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
1025 			/* Just ignore it */
1026 			bio_endio(bio);
1027 		else
1028 			generic_make_request(bio);
1029 		bio = next;
1030 	}
1031 	kfree(plug);
1032 }
1033 
1034 static void raid1_make_request(struct mddev *mddev, struct bio * bio)
1035 {
1036 	struct r1conf *conf = mddev->private;
1037 	struct raid1_info *mirror;
1038 	struct r1bio *r1_bio;
1039 	struct bio *read_bio;
1040 	int i, disks;
1041 	struct bitmap *bitmap;
1042 	unsigned long flags;
1043 	const int op = bio_op(bio);
1044 	const int rw = bio_data_dir(bio);
1045 	const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1046 	const unsigned long do_flush_fua = (bio->bi_opf &
1047 						(REQ_PREFLUSH | REQ_FUA));
1048 	struct md_rdev *blocked_rdev;
1049 	struct blk_plug_cb *cb;
1050 	struct raid1_plug_cb *plug = NULL;
1051 	int first_clone;
1052 	int sectors_handled;
1053 	int max_sectors;
1054 	sector_t start_next_window;
1055 
1056 	/*
1057 	 * Register the new request and wait if the reconstruction
1058 	 * thread has put up a bar for new requests.
1059 	 * Continue immediately if no resync is active currently.
1060 	 */
1061 
1062 	md_write_start(mddev, bio); /* wait on superblock update early */
1063 
1064 	if (bio_data_dir(bio) == WRITE &&
1065 	    ((bio_end_sector(bio) > mddev->suspend_lo &&
1066 	    bio->bi_iter.bi_sector < mddev->suspend_hi) ||
1067 	    (mddev_is_clustered(mddev) &&
1068 	     md_cluster_ops->area_resyncing(mddev, WRITE,
1069 		     bio->bi_iter.bi_sector, bio_end_sector(bio))))) {
1070 		/* As the suspend_* range is controlled by
1071 		 * userspace, we want an interruptible
1072 		 * wait.
1073 		 */
1074 		DEFINE_WAIT(w);
1075 		for (;;) {
1076 			flush_signals(current);
1077 			prepare_to_wait(&conf->wait_barrier,
1078 					&w, TASK_INTERRUPTIBLE);
1079 			if (bio_end_sector(bio) <= mddev->suspend_lo ||
1080 			    bio->bi_iter.bi_sector >= mddev->suspend_hi ||
1081 			    (mddev_is_clustered(mddev) &&
1082 			     !md_cluster_ops->area_resyncing(mddev, WRITE,
1083 				     bio->bi_iter.bi_sector, bio_end_sector(bio))))
1084 				break;
1085 			schedule();
1086 		}
1087 		finish_wait(&conf->wait_barrier, &w);
1088 	}
1089 
1090 	start_next_window = wait_barrier(conf, bio);
1091 
1092 	bitmap = mddev->bitmap;
1093 
1094 	/*
1095 	 * make_request() can abort the operation when read-ahead is being
1096 	 * used and no empty request is available.
1097 	 *
1098 	 */
1099 	r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1100 
1101 	r1_bio->master_bio = bio;
1102 	r1_bio->sectors = bio_sectors(bio);
1103 	r1_bio->state = 0;
1104 	r1_bio->mddev = mddev;
1105 	r1_bio->sector = bio->bi_iter.bi_sector;
1106 
1107 	/* We might need to issue multiple reads to different
1108 	 * devices if there are bad blocks around, so we keep
1109 	 * track of the number of reads in bio->bi_phys_segments.
1110 	 * If this is 0, there is only one r1_bio and no locking
1111 	 * will be needed when requests complete.  If it is
1112 	 * non-zero, then it is the number of not-completed requests.
1113 	 */
1114 	bio->bi_phys_segments = 0;
1115 	bio_clear_flag(bio, BIO_SEG_VALID);
1116 
1117 	if (rw == READ) {
1118 		/*
1119 		 * read balancing logic:
1120 		 */
1121 		int rdisk;
1122 
1123 read_again:
1124 		rdisk = read_balance(conf, r1_bio, &max_sectors);
1125 
1126 		if (rdisk < 0) {
1127 			/* couldn't find anywhere to read from */
1128 			raid_end_bio_io(r1_bio);
1129 			return;
1130 		}
1131 		mirror = conf->mirrors + rdisk;
1132 
1133 		if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1134 		    bitmap) {
1135 			/* Reading from a write-mostly device must
1136 			 * take care not to over-take any writes
1137 			 * that are 'behind'
1138 			 */
1139 			wait_event(bitmap->behind_wait,
1140 				   atomic_read(&bitmap->behind_writes) == 0);
1141 		}
1142 		r1_bio->read_disk = rdisk;
1143 		r1_bio->start_next_window = 0;
1144 
1145 		read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1146 		bio_trim(read_bio, r1_bio->sector - bio->bi_iter.bi_sector,
1147 			 max_sectors);
1148 
1149 		r1_bio->bios[rdisk] = read_bio;
1150 
1151 		read_bio->bi_iter.bi_sector = r1_bio->sector +
1152 			mirror->rdev->data_offset;
1153 		read_bio->bi_bdev = mirror->rdev->bdev;
1154 		read_bio->bi_end_io = raid1_end_read_request;
1155 		bio_set_op_attrs(read_bio, op, do_sync);
1156 		read_bio->bi_private = r1_bio;
1157 
1158 		if (max_sectors < r1_bio->sectors) {
1159 			/* could not read all from this device, so we will
1160 			 * need another r1_bio.
1161 			 */
1162 
1163 			sectors_handled = (r1_bio->sector + max_sectors
1164 					   - bio->bi_iter.bi_sector);
1165 			r1_bio->sectors = max_sectors;
1166 			spin_lock_irq(&conf->device_lock);
1167 			if (bio->bi_phys_segments == 0)
1168 				bio->bi_phys_segments = 2;
1169 			else
1170 				bio->bi_phys_segments++;
1171 			spin_unlock_irq(&conf->device_lock);
1172 			/* Cannot call generic_make_request directly
1173 			 * as that will be queued in __make_request
1174 			 * and subsequent mempool_alloc might block waiting
1175 			 * for it.  So hand bio over to raid1d.
1176 			 */
1177 			reschedule_retry(r1_bio);
1178 
1179 			r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1180 
1181 			r1_bio->master_bio = bio;
1182 			r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1183 			r1_bio->state = 0;
1184 			r1_bio->mddev = mddev;
1185 			r1_bio->sector = bio->bi_iter.bi_sector +
1186 				sectors_handled;
1187 			goto read_again;
1188 		} else
1189 			generic_make_request(read_bio);
1190 		return;
1191 	}
1192 
1193 	/*
1194 	 * WRITE:
1195 	 */
1196 	if (conf->pending_count >= max_queued_requests) {
1197 		md_wakeup_thread(mddev->thread);
1198 		wait_event(conf->wait_barrier,
1199 			   conf->pending_count < max_queued_requests);
1200 	}
1201 	/* first select target devices under rcu_lock and
1202 	 * inc refcount on their rdev.  Record them by setting
1203 	 * bios[x] to bio
1204 	 * If there are known/acknowledged bad blocks on any device on
1205 	 * which we have seen a write error, we want to avoid writing those
1206 	 * blocks.
1207 	 * This potentially requires several writes to write around
1208 	 * the bad blocks.  Each set of writes gets it's own r1bio
1209 	 * with a set of bios attached.
1210 	 */
1211 
1212 	disks = conf->raid_disks * 2;
1213  retry_write:
1214 	r1_bio->start_next_window = start_next_window;
1215 	blocked_rdev = NULL;
1216 	rcu_read_lock();
1217 	max_sectors = r1_bio->sectors;
1218 	for (i = 0;  i < disks; i++) {
1219 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1220 		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1221 			atomic_inc(&rdev->nr_pending);
1222 			blocked_rdev = rdev;
1223 			break;
1224 		}
1225 		r1_bio->bios[i] = NULL;
1226 		if (!rdev || test_bit(Faulty, &rdev->flags)) {
1227 			if (i < conf->raid_disks)
1228 				set_bit(R1BIO_Degraded, &r1_bio->state);
1229 			continue;
1230 		}
1231 
1232 		atomic_inc(&rdev->nr_pending);
1233 		if (test_bit(WriteErrorSeen, &rdev->flags)) {
1234 			sector_t first_bad;
1235 			int bad_sectors;
1236 			int is_bad;
1237 
1238 			is_bad = is_badblock(rdev, r1_bio->sector,
1239 					     max_sectors,
1240 					     &first_bad, &bad_sectors);
1241 			if (is_bad < 0) {
1242 				/* mustn't write here until the bad block is
1243 				 * acknowledged*/
1244 				set_bit(BlockedBadBlocks, &rdev->flags);
1245 				blocked_rdev = rdev;
1246 				break;
1247 			}
1248 			if (is_bad && first_bad <= r1_bio->sector) {
1249 				/* Cannot write here at all */
1250 				bad_sectors -= (r1_bio->sector - first_bad);
1251 				if (bad_sectors < max_sectors)
1252 					/* mustn't write more than bad_sectors
1253 					 * to other devices yet
1254 					 */
1255 					max_sectors = bad_sectors;
1256 				rdev_dec_pending(rdev, mddev);
1257 				/* We don't set R1BIO_Degraded as that
1258 				 * only applies if the disk is
1259 				 * missing, so it might be re-added,
1260 				 * and we want to know to recover this
1261 				 * chunk.
1262 				 * In this case the device is here,
1263 				 * and the fact that this chunk is not
1264 				 * in-sync is recorded in the bad
1265 				 * block log
1266 				 */
1267 				continue;
1268 			}
1269 			if (is_bad) {
1270 				int good_sectors = first_bad - r1_bio->sector;
1271 				if (good_sectors < max_sectors)
1272 					max_sectors = good_sectors;
1273 			}
1274 		}
1275 		r1_bio->bios[i] = bio;
1276 	}
1277 	rcu_read_unlock();
1278 
1279 	if (unlikely(blocked_rdev)) {
1280 		/* Wait for this device to become unblocked */
1281 		int j;
1282 		sector_t old = start_next_window;
1283 
1284 		for (j = 0; j < i; j++)
1285 			if (r1_bio->bios[j])
1286 				rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1287 		r1_bio->state = 0;
1288 		allow_barrier(conf, start_next_window, bio->bi_iter.bi_sector);
1289 		md_wait_for_blocked_rdev(blocked_rdev, mddev);
1290 		start_next_window = wait_barrier(conf, bio);
1291 		/*
1292 		 * We must make sure the multi r1bios of bio have
1293 		 * the same value of bi_phys_segments
1294 		 */
1295 		if (bio->bi_phys_segments && old &&
1296 		    old != start_next_window)
1297 			/* Wait for the former r1bio(s) to complete */
1298 			wait_event(conf->wait_barrier,
1299 				   bio->bi_phys_segments == 1);
1300 		goto retry_write;
1301 	}
1302 
1303 	if (max_sectors < r1_bio->sectors) {
1304 		/* We are splitting this write into multiple parts, so
1305 		 * we need to prepare for allocating another r1_bio.
1306 		 */
1307 		r1_bio->sectors = max_sectors;
1308 		spin_lock_irq(&conf->device_lock);
1309 		if (bio->bi_phys_segments == 0)
1310 			bio->bi_phys_segments = 2;
1311 		else
1312 			bio->bi_phys_segments++;
1313 		spin_unlock_irq(&conf->device_lock);
1314 	}
1315 	sectors_handled = r1_bio->sector + max_sectors - bio->bi_iter.bi_sector;
1316 
1317 	atomic_set(&r1_bio->remaining, 1);
1318 	atomic_set(&r1_bio->behind_remaining, 0);
1319 
1320 	first_clone = 1;
1321 	for (i = 0; i < disks; i++) {
1322 		struct bio *mbio;
1323 		if (!r1_bio->bios[i])
1324 			continue;
1325 
1326 		mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1327 		bio_trim(mbio, r1_bio->sector - bio->bi_iter.bi_sector, max_sectors);
1328 
1329 		if (first_clone) {
1330 			/* do behind I/O ?
1331 			 * Not if there are too many, or cannot
1332 			 * allocate memory, or a reader on WriteMostly
1333 			 * is waiting for behind writes to flush */
1334 			if (bitmap &&
1335 			    (atomic_read(&bitmap->behind_writes)
1336 			     < mddev->bitmap_info.max_write_behind) &&
1337 			    !waitqueue_active(&bitmap->behind_wait))
1338 				alloc_behind_pages(mbio, r1_bio);
1339 
1340 			bitmap_startwrite(bitmap, r1_bio->sector,
1341 					  r1_bio->sectors,
1342 					  test_bit(R1BIO_BehindIO,
1343 						   &r1_bio->state));
1344 			first_clone = 0;
1345 		}
1346 		if (r1_bio->behind_bvecs) {
1347 			struct bio_vec *bvec;
1348 			int j;
1349 
1350 			/*
1351 			 * We trimmed the bio, so _all is legit
1352 			 */
1353 			bio_for_each_segment_all(bvec, mbio, j)
1354 				bvec->bv_page = r1_bio->behind_bvecs[j].bv_page;
1355 			if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1356 				atomic_inc(&r1_bio->behind_remaining);
1357 		}
1358 
1359 		r1_bio->bios[i] = mbio;
1360 
1361 		mbio->bi_iter.bi_sector	= (r1_bio->sector +
1362 				   conf->mirrors[i].rdev->data_offset);
1363 		mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1364 		mbio->bi_end_io	= raid1_end_write_request;
1365 		bio_set_op_attrs(mbio, op, do_flush_fua | do_sync);
1366 		mbio->bi_private = r1_bio;
1367 
1368 		atomic_inc(&r1_bio->remaining);
1369 
1370 		cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1371 		if (cb)
1372 			plug = container_of(cb, struct raid1_plug_cb, cb);
1373 		else
1374 			plug = NULL;
1375 		spin_lock_irqsave(&conf->device_lock, flags);
1376 		if (plug) {
1377 			bio_list_add(&plug->pending, mbio);
1378 			plug->pending_cnt++;
1379 		} else {
1380 			bio_list_add(&conf->pending_bio_list, mbio);
1381 			conf->pending_count++;
1382 		}
1383 		spin_unlock_irqrestore(&conf->device_lock, flags);
1384 		if (!plug)
1385 			md_wakeup_thread(mddev->thread);
1386 	}
1387 	/* Mustn't call r1_bio_write_done before this next test,
1388 	 * as it could result in the bio being freed.
1389 	 */
1390 	if (sectors_handled < bio_sectors(bio)) {
1391 		r1_bio_write_done(r1_bio);
1392 		/* We need another r1_bio.  It has already been counted
1393 		 * in bio->bi_phys_segments
1394 		 */
1395 		r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1396 		r1_bio->master_bio = bio;
1397 		r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1398 		r1_bio->state = 0;
1399 		r1_bio->mddev = mddev;
1400 		r1_bio->sector = bio->bi_iter.bi_sector + sectors_handled;
1401 		goto retry_write;
1402 	}
1403 
1404 	r1_bio_write_done(r1_bio);
1405 
1406 	/* In case raid1d snuck in to freeze_array */
1407 	wake_up(&conf->wait_barrier);
1408 }
1409 
1410 static void raid1_status(struct seq_file *seq, struct mddev *mddev)
1411 {
1412 	struct r1conf *conf = mddev->private;
1413 	int i;
1414 
1415 	seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1416 		   conf->raid_disks - mddev->degraded);
1417 	rcu_read_lock();
1418 	for (i = 0; i < conf->raid_disks; i++) {
1419 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1420 		seq_printf(seq, "%s",
1421 			   rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1422 	}
1423 	rcu_read_unlock();
1424 	seq_printf(seq, "]");
1425 }
1426 
1427 static void raid1_error(struct mddev *mddev, struct md_rdev *rdev)
1428 {
1429 	char b[BDEVNAME_SIZE];
1430 	struct r1conf *conf = mddev->private;
1431 	unsigned long flags;
1432 
1433 	/*
1434 	 * If it is not operational, then we have already marked it as dead
1435 	 * else if it is the last working disks, ignore the error, let the
1436 	 * next level up know.
1437 	 * else mark the drive as failed
1438 	 */
1439 	if (test_bit(In_sync, &rdev->flags)
1440 	    && (conf->raid_disks - mddev->degraded) == 1) {
1441 		/*
1442 		 * Don't fail the drive, act as though we were just a
1443 		 * normal single drive.
1444 		 * However don't try a recovery from this drive as
1445 		 * it is very likely to fail.
1446 		 */
1447 		conf->recovery_disabled = mddev->recovery_disabled;
1448 		return;
1449 	}
1450 	set_bit(Blocked, &rdev->flags);
1451 	spin_lock_irqsave(&conf->device_lock, flags);
1452 	if (test_and_clear_bit(In_sync, &rdev->flags)) {
1453 		mddev->degraded++;
1454 		set_bit(Faulty, &rdev->flags);
1455 	} else
1456 		set_bit(Faulty, &rdev->flags);
1457 	spin_unlock_irqrestore(&conf->device_lock, flags);
1458 	/*
1459 	 * if recovery is running, make sure it aborts.
1460 	 */
1461 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1462 	set_mask_bits(&mddev->flags, 0,
1463 		      BIT(MD_CHANGE_DEVS) | BIT(MD_CHANGE_PENDING));
1464 	printk(KERN_ALERT
1465 	       "md/raid1:%s: Disk failure on %s, disabling device.\n"
1466 	       "md/raid1:%s: Operation continuing on %d devices.\n",
1467 	       mdname(mddev), bdevname(rdev->bdev, b),
1468 	       mdname(mddev), conf->raid_disks - mddev->degraded);
1469 }
1470 
1471 static void print_conf(struct r1conf *conf)
1472 {
1473 	int i;
1474 
1475 	printk(KERN_DEBUG "RAID1 conf printout:\n");
1476 	if (!conf) {
1477 		printk(KERN_DEBUG "(!conf)\n");
1478 		return;
1479 	}
1480 	printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1481 		conf->raid_disks);
1482 
1483 	rcu_read_lock();
1484 	for (i = 0; i < conf->raid_disks; i++) {
1485 		char b[BDEVNAME_SIZE];
1486 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1487 		if (rdev)
1488 			printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1489 			       i, !test_bit(In_sync, &rdev->flags),
1490 			       !test_bit(Faulty, &rdev->flags),
1491 			       bdevname(rdev->bdev,b));
1492 	}
1493 	rcu_read_unlock();
1494 }
1495 
1496 static void close_sync(struct r1conf *conf)
1497 {
1498 	wait_barrier(conf, NULL);
1499 	allow_barrier(conf, 0, 0);
1500 
1501 	mempool_destroy(conf->r1buf_pool);
1502 	conf->r1buf_pool = NULL;
1503 
1504 	spin_lock_irq(&conf->resync_lock);
1505 	conf->next_resync = MaxSector - 2 * NEXT_NORMALIO_DISTANCE;
1506 	conf->start_next_window = MaxSector;
1507 	conf->current_window_requests +=
1508 		conf->next_window_requests;
1509 	conf->next_window_requests = 0;
1510 	spin_unlock_irq(&conf->resync_lock);
1511 }
1512 
1513 static int raid1_spare_active(struct mddev *mddev)
1514 {
1515 	int i;
1516 	struct r1conf *conf = mddev->private;
1517 	int count = 0;
1518 	unsigned long flags;
1519 
1520 	/*
1521 	 * Find all failed disks within the RAID1 configuration
1522 	 * and mark them readable.
1523 	 * Called under mddev lock, so rcu protection not needed.
1524 	 * device_lock used to avoid races with raid1_end_read_request
1525 	 * which expects 'In_sync' flags and ->degraded to be consistent.
1526 	 */
1527 	spin_lock_irqsave(&conf->device_lock, flags);
1528 	for (i = 0; i < conf->raid_disks; i++) {
1529 		struct md_rdev *rdev = conf->mirrors[i].rdev;
1530 		struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1531 		if (repl
1532 		    && !test_bit(Candidate, &repl->flags)
1533 		    && repl->recovery_offset == MaxSector
1534 		    && !test_bit(Faulty, &repl->flags)
1535 		    && !test_and_set_bit(In_sync, &repl->flags)) {
1536 			/* replacement has just become active */
1537 			if (!rdev ||
1538 			    !test_and_clear_bit(In_sync, &rdev->flags))
1539 				count++;
1540 			if (rdev) {
1541 				/* Replaced device not technically
1542 				 * faulty, but we need to be sure
1543 				 * it gets removed and never re-added
1544 				 */
1545 				set_bit(Faulty, &rdev->flags);
1546 				sysfs_notify_dirent_safe(
1547 					rdev->sysfs_state);
1548 			}
1549 		}
1550 		if (rdev
1551 		    && rdev->recovery_offset == MaxSector
1552 		    && !test_bit(Faulty, &rdev->flags)
1553 		    && !test_and_set_bit(In_sync, &rdev->flags)) {
1554 			count++;
1555 			sysfs_notify_dirent_safe(rdev->sysfs_state);
1556 		}
1557 	}
1558 	mddev->degraded -= count;
1559 	spin_unlock_irqrestore(&conf->device_lock, flags);
1560 
1561 	print_conf(conf);
1562 	return count;
1563 }
1564 
1565 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1566 {
1567 	struct r1conf *conf = mddev->private;
1568 	int err = -EEXIST;
1569 	int mirror = 0;
1570 	struct raid1_info *p;
1571 	int first = 0;
1572 	int last = conf->raid_disks - 1;
1573 
1574 	if (mddev->recovery_disabled == conf->recovery_disabled)
1575 		return -EBUSY;
1576 
1577 	if (md_integrity_add_rdev(rdev, mddev))
1578 		return -ENXIO;
1579 
1580 	if (rdev->raid_disk >= 0)
1581 		first = last = rdev->raid_disk;
1582 
1583 	/*
1584 	 * find the disk ... but prefer rdev->saved_raid_disk
1585 	 * if possible.
1586 	 */
1587 	if (rdev->saved_raid_disk >= 0 &&
1588 	    rdev->saved_raid_disk >= first &&
1589 	    conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1590 		first = last = rdev->saved_raid_disk;
1591 
1592 	for (mirror = first; mirror <= last; mirror++) {
1593 		p = conf->mirrors+mirror;
1594 		if (!p->rdev) {
1595 
1596 			if (mddev->gendisk)
1597 				disk_stack_limits(mddev->gendisk, rdev->bdev,
1598 						  rdev->data_offset << 9);
1599 
1600 			p->head_position = 0;
1601 			rdev->raid_disk = mirror;
1602 			err = 0;
1603 			/* As all devices are equivalent, we don't need a full recovery
1604 			 * if this was recently any drive of the array
1605 			 */
1606 			if (rdev->saved_raid_disk < 0)
1607 				conf->fullsync = 1;
1608 			rcu_assign_pointer(p->rdev, rdev);
1609 			break;
1610 		}
1611 		if (test_bit(WantReplacement, &p->rdev->flags) &&
1612 		    p[conf->raid_disks].rdev == NULL) {
1613 			/* Add this device as a replacement */
1614 			clear_bit(In_sync, &rdev->flags);
1615 			set_bit(Replacement, &rdev->flags);
1616 			rdev->raid_disk = mirror;
1617 			err = 0;
1618 			conf->fullsync = 1;
1619 			rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1620 			break;
1621 		}
1622 	}
1623 	if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1624 		queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1625 	print_conf(conf);
1626 	return err;
1627 }
1628 
1629 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1630 {
1631 	struct r1conf *conf = mddev->private;
1632 	int err = 0;
1633 	int number = rdev->raid_disk;
1634 	struct raid1_info *p = conf->mirrors + number;
1635 
1636 	if (rdev != p->rdev)
1637 		p = conf->mirrors + conf->raid_disks + number;
1638 
1639 	print_conf(conf);
1640 	if (rdev == p->rdev) {
1641 		if (test_bit(In_sync, &rdev->flags) ||
1642 		    atomic_read(&rdev->nr_pending)) {
1643 			err = -EBUSY;
1644 			goto abort;
1645 		}
1646 		/* Only remove non-faulty devices if recovery
1647 		 * is not possible.
1648 		 */
1649 		if (!test_bit(Faulty, &rdev->flags) &&
1650 		    mddev->recovery_disabled != conf->recovery_disabled &&
1651 		    mddev->degraded < conf->raid_disks) {
1652 			err = -EBUSY;
1653 			goto abort;
1654 		}
1655 		p->rdev = NULL;
1656 		if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1657 			synchronize_rcu();
1658 			if (atomic_read(&rdev->nr_pending)) {
1659 				/* lost the race, try later */
1660 				err = -EBUSY;
1661 				p->rdev = rdev;
1662 				goto abort;
1663 			}
1664 		}
1665 		if (conf->mirrors[conf->raid_disks + number].rdev) {
1666 			/* We just removed a device that is being replaced.
1667 			 * Move down the replacement.  We drain all IO before
1668 			 * doing this to avoid confusion.
1669 			 */
1670 			struct md_rdev *repl =
1671 				conf->mirrors[conf->raid_disks + number].rdev;
1672 			freeze_array(conf, 0);
1673 			clear_bit(Replacement, &repl->flags);
1674 			p->rdev = repl;
1675 			conf->mirrors[conf->raid_disks + number].rdev = NULL;
1676 			unfreeze_array(conf);
1677 			clear_bit(WantReplacement, &rdev->flags);
1678 		} else
1679 			clear_bit(WantReplacement, &rdev->flags);
1680 		err = md_integrity_register(mddev);
1681 	}
1682 abort:
1683 
1684 	print_conf(conf);
1685 	return err;
1686 }
1687 
1688 static void end_sync_read(struct bio *bio)
1689 {
1690 	struct r1bio *r1_bio = bio->bi_private;
1691 
1692 	update_head_pos(r1_bio->read_disk, r1_bio);
1693 
1694 	/*
1695 	 * we have read a block, now it needs to be re-written,
1696 	 * or re-read if the read failed.
1697 	 * We don't do much here, just schedule handling by raid1d
1698 	 */
1699 	if (!bio->bi_error)
1700 		set_bit(R1BIO_Uptodate, &r1_bio->state);
1701 
1702 	if (atomic_dec_and_test(&r1_bio->remaining))
1703 		reschedule_retry(r1_bio);
1704 }
1705 
1706 static void end_sync_write(struct bio *bio)
1707 {
1708 	int uptodate = !bio->bi_error;
1709 	struct r1bio *r1_bio = bio->bi_private;
1710 	struct mddev *mddev = r1_bio->mddev;
1711 	struct r1conf *conf = mddev->private;
1712 	sector_t first_bad;
1713 	int bad_sectors;
1714 	struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev;
1715 
1716 	if (!uptodate) {
1717 		sector_t sync_blocks = 0;
1718 		sector_t s = r1_bio->sector;
1719 		long sectors_to_go = r1_bio->sectors;
1720 		/* make sure these bits doesn't get cleared. */
1721 		do {
1722 			bitmap_end_sync(mddev->bitmap, s,
1723 					&sync_blocks, 1);
1724 			s += sync_blocks;
1725 			sectors_to_go -= sync_blocks;
1726 		} while (sectors_to_go > 0);
1727 		set_bit(WriteErrorSeen, &rdev->flags);
1728 		if (!test_and_set_bit(WantReplacement, &rdev->flags))
1729 			set_bit(MD_RECOVERY_NEEDED, &
1730 				mddev->recovery);
1731 		set_bit(R1BIO_WriteError, &r1_bio->state);
1732 	} else if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
1733 			       &first_bad, &bad_sectors) &&
1734 		   !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1735 				r1_bio->sector,
1736 				r1_bio->sectors,
1737 				&first_bad, &bad_sectors)
1738 		)
1739 		set_bit(R1BIO_MadeGood, &r1_bio->state);
1740 
1741 	if (atomic_dec_and_test(&r1_bio->remaining)) {
1742 		int s = r1_bio->sectors;
1743 		if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1744 		    test_bit(R1BIO_WriteError, &r1_bio->state))
1745 			reschedule_retry(r1_bio);
1746 		else {
1747 			put_buf(r1_bio);
1748 			md_done_sync(mddev, s, uptodate);
1749 		}
1750 	}
1751 }
1752 
1753 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1754 			    int sectors, struct page *page, int rw)
1755 {
1756 	if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
1757 		/* success */
1758 		return 1;
1759 	if (rw == WRITE) {
1760 		set_bit(WriteErrorSeen, &rdev->flags);
1761 		if (!test_and_set_bit(WantReplacement,
1762 				      &rdev->flags))
1763 			set_bit(MD_RECOVERY_NEEDED, &
1764 				rdev->mddev->recovery);
1765 	}
1766 	/* need to record an error - either for the block or the device */
1767 	if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1768 		md_error(rdev->mddev, rdev);
1769 	return 0;
1770 }
1771 
1772 static int fix_sync_read_error(struct r1bio *r1_bio)
1773 {
1774 	/* Try some synchronous reads of other devices to get
1775 	 * good data, much like with normal read errors.  Only
1776 	 * read into the pages we already have so we don't
1777 	 * need to re-issue the read request.
1778 	 * We don't need to freeze the array, because being in an
1779 	 * active sync request, there is no normal IO, and
1780 	 * no overlapping syncs.
1781 	 * We don't need to check is_badblock() again as we
1782 	 * made sure that anything with a bad block in range
1783 	 * will have bi_end_io clear.
1784 	 */
1785 	struct mddev *mddev = r1_bio->mddev;
1786 	struct r1conf *conf = mddev->private;
1787 	struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1788 	sector_t sect = r1_bio->sector;
1789 	int sectors = r1_bio->sectors;
1790 	int idx = 0;
1791 
1792 	while(sectors) {
1793 		int s = sectors;
1794 		int d = r1_bio->read_disk;
1795 		int success = 0;
1796 		struct md_rdev *rdev;
1797 		int start;
1798 
1799 		if (s > (PAGE_SIZE>>9))
1800 			s = PAGE_SIZE >> 9;
1801 		do {
1802 			if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1803 				/* No rcu protection needed here devices
1804 				 * can only be removed when no resync is
1805 				 * active, and resync is currently active
1806 				 */
1807 				rdev = conf->mirrors[d].rdev;
1808 				if (sync_page_io(rdev, sect, s<<9,
1809 						 bio->bi_io_vec[idx].bv_page,
1810 						 REQ_OP_READ, 0, false)) {
1811 					success = 1;
1812 					break;
1813 				}
1814 			}
1815 			d++;
1816 			if (d == conf->raid_disks * 2)
1817 				d = 0;
1818 		} while (!success && d != r1_bio->read_disk);
1819 
1820 		if (!success) {
1821 			char b[BDEVNAME_SIZE];
1822 			int abort = 0;
1823 			/* Cannot read from anywhere, this block is lost.
1824 			 * Record a bad block on each device.  If that doesn't
1825 			 * work just disable and interrupt the recovery.
1826 			 * Don't fail devices as that won't really help.
1827 			 */
1828 			printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error"
1829 			       " for block %llu\n",
1830 			       mdname(mddev),
1831 			       bdevname(bio->bi_bdev, b),
1832 			       (unsigned long long)r1_bio->sector);
1833 			for (d = 0; d < conf->raid_disks * 2; d++) {
1834 				rdev = conf->mirrors[d].rdev;
1835 				if (!rdev || test_bit(Faulty, &rdev->flags))
1836 					continue;
1837 				if (!rdev_set_badblocks(rdev, sect, s, 0))
1838 					abort = 1;
1839 			}
1840 			if (abort) {
1841 				conf->recovery_disabled =
1842 					mddev->recovery_disabled;
1843 				set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1844 				md_done_sync(mddev, r1_bio->sectors, 0);
1845 				put_buf(r1_bio);
1846 				return 0;
1847 			}
1848 			/* Try next page */
1849 			sectors -= s;
1850 			sect += s;
1851 			idx++;
1852 			continue;
1853 		}
1854 
1855 		start = d;
1856 		/* write it back and re-read */
1857 		while (d != r1_bio->read_disk) {
1858 			if (d == 0)
1859 				d = conf->raid_disks * 2;
1860 			d--;
1861 			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1862 				continue;
1863 			rdev = conf->mirrors[d].rdev;
1864 			if (r1_sync_page_io(rdev, sect, s,
1865 					    bio->bi_io_vec[idx].bv_page,
1866 					    WRITE) == 0) {
1867 				r1_bio->bios[d]->bi_end_io = NULL;
1868 				rdev_dec_pending(rdev, mddev);
1869 			}
1870 		}
1871 		d = start;
1872 		while (d != r1_bio->read_disk) {
1873 			if (d == 0)
1874 				d = conf->raid_disks * 2;
1875 			d--;
1876 			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1877 				continue;
1878 			rdev = conf->mirrors[d].rdev;
1879 			if (r1_sync_page_io(rdev, sect, s,
1880 					    bio->bi_io_vec[idx].bv_page,
1881 					    READ) != 0)
1882 				atomic_add(s, &rdev->corrected_errors);
1883 		}
1884 		sectors -= s;
1885 		sect += s;
1886 		idx ++;
1887 	}
1888 	set_bit(R1BIO_Uptodate, &r1_bio->state);
1889 	bio->bi_error = 0;
1890 	return 1;
1891 }
1892 
1893 static void process_checks(struct r1bio *r1_bio)
1894 {
1895 	/* We have read all readable devices.  If we haven't
1896 	 * got the block, then there is no hope left.
1897 	 * If we have, then we want to do a comparison
1898 	 * and skip the write if everything is the same.
1899 	 * If any blocks failed to read, then we need to
1900 	 * attempt an over-write
1901 	 */
1902 	struct mddev *mddev = r1_bio->mddev;
1903 	struct r1conf *conf = mddev->private;
1904 	int primary;
1905 	int i;
1906 	int vcnt;
1907 
1908 	/* Fix variable parts of all bios */
1909 	vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
1910 	for (i = 0; i < conf->raid_disks * 2; i++) {
1911 		int j;
1912 		int size;
1913 		int error;
1914 		struct bio *b = r1_bio->bios[i];
1915 		if (b->bi_end_io != end_sync_read)
1916 			continue;
1917 		/* fixup the bio for reuse, but preserve errno */
1918 		error = b->bi_error;
1919 		bio_reset(b);
1920 		b->bi_error = error;
1921 		b->bi_vcnt = vcnt;
1922 		b->bi_iter.bi_size = r1_bio->sectors << 9;
1923 		b->bi_iter.bi_sector = r1_bio->sector +
1924 			conf->mirrors[i].rdev->data_offset;
1925 		b->bi_bdev = conf->mirrors[i].rdev->bdev;
1926 		b->bi_end_io = end_sync_read;
1927 		b->bi_private = r1_bio;
1928 
1929 		size = b->bi_iter.bi_size;
1930 		for (j = 0; j < vcnt ; j++) {
1931 			struct bio_vec *bi;
1932 			bi = &b->bi_io_vec[j];
1933 			bi->bv_offset = 0;
1934 			if (size > PAGE_SIZE)
1935 				bi->bv_len = PAGE_SIZE;
1936 			else
1937 				bi->bv_len = size;
1938 			size -= PAGE_SIZE;
1939 		}
1940 	}
1941 	for (primary = 0; primary < conf->raid_disks * 2; primary++)
1942 		if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
1943 		    !r1_bio->bios[primary]->bi_error) {
1944 			r1_bio->bios[primary]->bi_end_io = NULL;
1945 			rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
1946 			break;
1947 		}
1948 	r1_bio->read_disk = primary;
1949 	for (i = 0; i < conf->raid_disks * 2; i++) {
1950 		int j;
1951 		struct bio *pbio = r1_bio->bios[primary];
1952 		struct bio *sbio = r1_bio->bios[i];
1953 		int error = sbio->bi_error;
1954 
1955 		if (sbio->bi_end_io != end_sync_read)
1956 			continue;
1957 		/* Now we can 'fixup' the error value */
1958 		sbio->bi_error = 0;
1959 
1960 		if (!error) {
1961 			for (j = vcnt; j-- ; ) {
1962 				struct page *p, *s;
1963 				p = pbio->bi_io_vec[j].bv_page;
1964 				s = sbio->bi_io_vec[j].bv_page;
1965 				if (memcmp(page_address(p),
1966 					   page_address(s),
1967 					   sbio->bi_io_vec[j].bv_len))
1968 					break;
1969 			}
1970 		} else
1971 			j = 0;
1972 		if (j >= 0)
1973 			atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
1974 		if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
1975 			      && !error)) {
1976 			/* No need to write to this device. */
1977 			sbio->bi_end_io = NULL;
1978 			rdev_dec_pending(conf->mirrors[i].rdev, mddev);
1979 			continue;
1980 		}
1981 
1982 		bio_copy_data(sbio, pbio);
1983 	}
1984 }
1985 
1986 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
1987 {
1988 	struct r1conf *conf = mddev->private;
1989 	int i;
1990 	int disks = conf->raid_disks * 2;
1991 	struct bio *bio, *wbio;
1992 
1993 	bio = r1_bio->bios[r1_bio->read_disk];
1994 
1995 	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
1996 		/* ouch - failed to read all of that. */
1997 		if (!fix_sync_read_error(r1_bio))
1998 			return;
1999 
2000 	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2001 		process_checks(r1_bio);
2002 
2003 	/*
2004 	 * schedule writes
2005 	 */
2006 	atomic_set(&r1_bio->remaining, 1);
2007 	for (i = 0; i < disks ; i++) {
2008 		wbio = r1_bio->bios[i];
2009 		if (wbio->bi_end_io == NULL ||
2010 		    (wbio->bi_end_io == end_sync_read &&
2011 		     (i == r1_bio->read_disk ||
2012 		      !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2013 			continue;
2014 
2015 		bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2016 		wbio->bi_end_io = end_sync_write;
2017 		atomic_inc(&r1_bio->remaining);
2018 		md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
2019 
2020 		generic_make_request(wbio);
2021 	}
2022 
2023 	if (atomic_dec_and_test(&r1_bio->remaining)) {
2024 		/* if we're here, all write(s) have completed, so clean up */
2025 		int s = r1_bio->sectors;
2026 		if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2027 		    test_bit(R1BIO_WriteError, &r1_bio->state))
2028 			reschedule_retry(r1_bio);
2029 		else {
2030 			put_buf(r1_bio);
2031 			md_done_sync(mddev, s, 1);
2032 		}
2033 	}
2034 }
2035 
2036 /*
2037  * This is a kernel thread which:
2038  *
2039  *	1.	Retries failed read operations on working mirrors.
2040  *	2.	Updates the raid superblock when problems encounter.
2041  *	3.	Performs writes following reads for array synchronising.
2042  */
2043 
2044 static void fix_read_error(struct r1conf *conf, int read_disk,
2045 			   sector_t sect, int sectors)
2046 {
2047 	struct mddev *mddev = conf->mddev;
2048 	while(sectors) {
2049 		int s = sectors;
2050 		int d = read_disk;
2051 		int success = 0;
2052 		int start;
2053 		struct md_rdev *rdev;
2054 
2055 		if (s > (PAGE_SIZE>>9))
2056 			s = PAGE_SIZE >> 9;
2057 
2058 		do {
2059 			sector_t first_bad;
2060 			int bad_sectors;
2061 
2062 			rcu_read_lock();
2063 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2064 			if (rdev &&
2065 			    (test_bit(In_sync, &rdev->flags) ||
2066 			     (!test_bit(Faulty, &rdev->flags) &&
2067 			      rdev->recovery_offset >= sect + s)) &&
2068 			    is_badblock(rdev, sect, s,
2069 					&first_bad, &bad_sectors) == 0) {
2070 				atomic_inc(&rdev->nr_pending);
2071 				rcu_read_unlock();
2072 				if (sync_page_io(rdev, sect, s<<9,
2073 					 conf->tmppage, REQ_OP_READ, 0, false))
2074 					success = 1;
2075 				rdev_dec_pending(rdev, mddev);
2076 				if (success)
2077 					break;
2078 			} else
2079 				rcu_read_unlock();
2080 			d++;
2081 			if (d == conf->raid_disks * 2)
2082 				d = 0;
2083 		} while (!success && d != read_disk);
2084 
2085 		if (!success) {
2086 			/* Cannot read from anywhere - mark it bad */
2087 			struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2088 			if (!rdev_set_badblocks(rdev, sect, s, 0))
2089 				md_error(mddev, rdev);
2090 			break;
2091 		}
2092 		/* write it back and re-read */
2093 		start = d;
2094 		while (d != read_disk) {
2095 			if (d==0)
2096 				d = conf->raid_disks * 2;
2097 			d--;
2098 			rcu_read_lock();
2099 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2100 			if (rdev &&
2101 			    !test_bit(Faulty, &rdev->flags)) {
2102 				atomic_inc(&rdev->nr_pending);
2103 				rcu_read_unlock();
2104 				r1_sync_page_io(rdev, sect, s,
2105 						conf->tmppage, WRITE);
2106 				rdev_dec_pending(rdev, mddev);
2107 			} else
2108 				rcu_read_unlock();
2109 		}
2110 		d = start;
2111 		while (d != read_disk) {
2112 			char b[BDEVNAME_SIZE];
2113 			if (d==0)
2114 				d = conf->raid_disks * 2;
2115 			d--;
2116 			rcu_read_lock();
2117 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2118 			if (rdev &&
2119 			    !test_bit(Faulty, &rdev->flags)) {
2120 				atomic_inc(&rdev->nr_pending);
2121 				rcu_read_unlock();
2122 				if (r1_sync_page_io(rdev, sect, s,
2123 						    conf->tmppage, READ)) {
2124 					atomic_add(s, &rdev->corrected_errors);
2125 					printk(KERN_INFO
2126 					       "md/raid1:%s: read error corrected "
2127 					       "(%d sectors at %llu on %s)\n",
2128 					       mdname(mddev), s,
2129 					       (unsigned long long)(sect +
2130 								    rdev->data_offset),
2131 					       bdevname(rdev->bdev, b));
2132 				}
2133 				rdev_dec_pending(rdev, mddev);
2134 			} else
2135 				rcu_read_unlock();
2136 		}
2137 		sectors -= s;
2138 		sect += s;
2139 	}
2140 }
2141 
2142 static int narrow_write_error(struct r1bio *r1_bio, int i)
2143 {
2144 	struct mddev *mddev = r1_bio->mddev;
2145 	struct r1conf *conf = mddev->private;
2146 	struct md_rdev *rdev = conf->mirrors[i].rdev;
2147 
2148 	/* bio has the data to be written to device 'i' where
2149 	 * we just recently had a write error.
2150 	 * We repeatedly clone the bio and trim down to one block,
2151 	 * then try the write.  Where the write fails we record
2152 	 * a bad block.
2153 	 * It is conceivable that the bio doesn't exactly align with
2154 	 * blocks.  We must handle this somehow.
2155 	 *
2156 	 * We currently own a reference on the rdev.
2157 	 */
2158 
2159 	int block_sectors;
2160 	sector_t sector;
2161 	int sectors;
2162 	int sect_to_write = r1_bio->sectors;
2163 	int ok = 1;
2164 
2165 	if (rdev->badblocks.shift < 0)
2166 		return 0;
2167 
2168 	block_sectors = roundup(1 << rdev->badblocks.shift,
2169 				bdev_logical_block_size(rdev->bdev) >> 9);
2170 	sector = r1_bio->sector;
2171 	sectors = ((sector + block_sectors)
2172 		   & ~(sector_t)(block_sectors - 1))
2173 		- sector;
2174 
2175 	while (sect_to_write) {
2176 		struct bio *wbio;
2177 		if (sectors > sect_to_write)
2178 			sectors = sect_to_write;
2179 		/* Write at 'sector' for 'sectors'*/
2180 
2181 		if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2182 			unsigned vcnt = r1_bio->behind_page_count;
2183 			struct bio_vec *vec = r1_bio->behind_bvecs;
2184 
2185 			while (!vec->bv_page) {
2186 				vec++;
2187 				vcnt--;
2188 			}
2189 
2190 			wbio = bio_alloc_mddev(GFP_NOIO, vcnt, mddev);
2191 			memcpy(wbio->bi_io_vec, vec, vcnt * sizeof(struct bio_vec));
2192 
2193 			wbio->bi_vcnt = vcnt;
2194 		} else {
2195 			wbio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2196 		}
2197 
2198 		bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2199 		wbio->bi_iter.bi_sector = r1_bio->sector;
2200 		wbio->bi_iter.bi_size = r1_bio->sectors << 9;
2201 
2202 		bio_trim(wbio, sector - r1_bio->sector, sectors);
2203 		wbio->bi_iter.bi_sector += rdev->data_offset;
2204 		wbio->bi_bdev = rdev->bdev;
2205 
2206 		if (submit_bio_wait(wbio) < 0)
2207 			/* failure! */
2208 			ok = rdev_set_badblocks(rdev, sector,
2209 						sectors, 0)
2210 				&& ok;
2211 
2212 		bio_put(wbio);
2213 		sect_to_write -= sectors;
2214 		sector += sectors;
2215 		sectors = block_sectors;
2216 	}
2217 	return ok;
2218 }
2219 
2220 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2221 {
2222 	int m;
2223 	int s = r1_bio->sectors;
2224 	for (m = 0; m < conf->raid_disks * 2 ; m++) {
2225 		struct md_rdev *rdev = conf->mirrors[m].rdev;
2226 		struct bio *bio = r1_bio->bios[m];
2227 		if (bio->bi_end_io == NULL)
2228 			continue;
2229 		if (!bio->bi_error &&
2230 		    test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2231 			rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2232 		}
2233 		if (bio->bi_error &&
2234 		    test_bit(R1BIO_WriteError, &r1_bio->state)) {
2235 			if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2236 				md_error(conf->mddev, rdev);
2237 		}
2238 	}
2239 	put_buf(r1_bio);
2240 	md_done_sync(conf->mddev, s, 1);
2241 }
2242 
2243 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2244 {
2245 	int m;
2246 	bool fail = false;
2247 	for (m = 0; m < conf->raid_disks * 2 ; m++)
2248 		if (r1_bio->bios[m] == IO_MADE_GOOD) {
2249 			struct md_rdev *rdev = conf->mirrors[m].rdev;
2250 			rdev_clear_badblocks(rdev,
2251 					     r1_bio->sector,
2252 					     r1_bio->sectors, 0);
2253 			rdev_dec_pending(rdev, conf->mddev);
2254 		} else if (r1_bio->bios[m] != NULL) {
2255 			/* This drive got a write error.  We need to
2256 			 * narrow down and record precise write
2257 			 * errors.
2258 			 */
2259 			fail = true;
2260 			if (!narrow_write_error(r1_bio, m)) {
2261 				md_error(conf->mddev,
2262 					 conf->mirrors[m].rdev);
2263 				/* an I/O failed, we can't clear the bitmap */
2264 				set_bit(R1BIO_Degraded, &r1_bio->state);
2265 			}
2266 			rdev_dec_pending(conf->mirrors[m].rdev,
2267 					 conf->mddev);
2268 		}
2269 	if (fail) {
2270 		spin_lock_irq(&conf->device_lock);
2271 		list_add(&r1_bio->retry_list, &conf->bio_end_io_list);
2272 		conf->nr_queued++;
2273 		spin_unlock_irq(&conf->device_lock);
2274 		md_wakeup_thread(conf->mddev->thread);
2275 	} else {
2276 		if (test_bit(R1BIO_WriteError, &r1_bio->state))
2277 			close_write(r1_bio);
2278 		raid_end_bio_io(r1_bio);
2279 	}
2280 }
2281 
2282 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2283 {
2284 	int disk;
2285 	int max_sectors;
2286 	struct mddev *mddev = conf->mddev;
2287 	struct bio *bio;
2288 	char b[BDEVNAME_SIZE];
2289 	struct md_rdev *rdev;
2290 
2291 	clear_bit(R1BIO_ReadError, &r1_bio->state);
2292 	/* we got a read error. Maybe the drive is bad.  Maybe just
2293 	 * the block and we can fix it.
2294 	 * We freeze all other IO, and try reading the block from
2295 	 * other devices.  When we find one, we re-write
2296 	 * and check it that fixes the read error.
2297 	 * This is all done synchronously while the array is
2298 	 * frozen
2299 	 */
2300 
2301 	bio = r1_bio->bios[r1_bio->read_disk];
2302 	bdevname(bio->bi_bdev, b);
2303 	bio_put(bio);
2304 	r1_bio->bios[r1_bio->read_disk] = NULL;
2305 
2306 	if (mddev->ro == 0) {
2307 		freeze_array(conf, 1);
2308 		fix_read_error(conf, r1_bio->read_disk,
2309 			       r1_bio->sector, r1_bio->sectors);
2310 		unfreeze_array(conf);
2311 	} else {
2312 		r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED;
2313 	}
2314 
2315 	rdev_dec_pending(conf->mirrors[r1_bio->read_disk].rdev, conf->mddev);
2316 
2317 read_more:
2318 	disk = read_balance(conf, r1_bio, &max_sectors);
2319 	if (disk == -1) {
2320 		printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O"
2321 		       " read error for block %llu\n",
2322 		       mdname(mddev), b, (unsigned long long)r1_bio->sector);
2323 		raid_end_bio_io(r1_bio);
2324 	} else {
2325 		const unsigned long do_sync
2326 			= r1_bio->master_bio->bi_opf & REQ_SYNC;
2327 		r1_bio->read_disk = disk;
2328 		bio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2329 		bio_trim(bio, r1_bio->sector - bio->bi_iter.bi_sector,
2330 			 max_sectors);
2331 		r1_bio->bios[r1_bio->read_disk] = bio;
2332 		rdev = conf->mirrors[disk].rdev;
2333 		printk_ratelimited(KERN_ERR
2334 				   "md/raid1:%s: redirecting sector %llu"
2335 				   " to other mirror: %s\n",
2336 				   mdname(mddev),
2337 				   (unsigned long long)r1_bio->sector,
2338 				   bdevname(rdev->bdev, b));
2339 		bio->bi_iter.bi_sector = r1_bio->sector + rdev->data_offset;
2340 		bio->bi_bdev = rdev->bdev;
2341 		bio->bi_end_io = raid1_end_read_request;
2342 		bio_set_op_attrs(bio, REQ_OP_READ, do_sync);
2343 		bio->bi_private = r1_bio;
2344 		if (max_sectors < r1_bio->sectors) {
2345 			/* Drat - have to split this up more */
2346 			struct bio *mbio = r1_bio->master_bio;
2347 			int sectors_handled = (r1_bio->sector + max_sectors
2348 					       - mbio->bi_iter.bi_sector);
2349 			r1_bio->sectors = max_sectors;
2350 			spin_lock_irq(&conf->device_lock);
2351 			if (mbio->bi_phys_segments == 0)
2352 				mbio->bi_phys_segments = 2;
2353 			else
2354 				mbio->bi_phys_segments++;
2355 			spin_unlock_irq(&conf->device_lock);
2356 			generic_make_request(bio);
2357 			bio = NULL;
2358 
2359 			r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
2360 
2361 			r1_bio->master_bio = mbio;
2362 			r1_bio->sectors = bio_sectors(mbio) - sectors_handled;
2363 			r1_bio->state = 0;
2364 			set_bit(R1BIO_ReadError, &r1_bio->state);
2365 			r1_bio->mddev = mddev;
2366 			r1_bio->sector = mbio->bi_iter.bi_sector +
2367 				sectors_handled;
2368 
2369 			goto read_more;
2370 		} else
2371 			generic_make_request(bio);
2372 	}
2373 }
2374 
2375 static void raid1d(struct md_thread *thread)
2376 {
2377 	struct mddev *mddev = thread->mddev;
2378 	struct r1bio *r1_bio;
2379 	unsigned long flags;
2380 	struct r1conf *conf = mddev->private;
2381 	struct list_head *head = &conf->retry_list;
2382 	struct blk_plug plug;
2383 
2384 	md_check_recovery(mddev);
2385 
2386 	if (!list_empty_careful(&conf->bio_end_io_list) &&
2387 	    !test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
2388 		LIST_HEAD(tmp);
2389 		spin_lock_irqsave(&conf->device_lock, flags);
2390 		if (!test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
2391 			while (!list_empty(&conf->bio_end_io_list)) {
2392 				list_move(conf->bio_end_io_list.prev, &tmp);
2393 				conf->nr_queued--;
2394 			}
2395 		}
2396 		spin_unlock_irqrestore(&conf->device_lock, flags);
2397 		while (!list_empty(&tmp)) {
2398 			r1_bio = list_first_entry(&tmp, struct r1bio,
2399 						  retry_list);
2400 			list_del(&r1_bio->retry_list);
2401 			if (mddev->degraded)
2402 				set_bit(R1BIO_Degraded, &r1_bio->state);
2403 			if (test_bit(R1BIO_WriteError, &r1_bio->state))
2404 				close_write(r1_bio);
2405 			raid_end_bio_io(r1_bio);
2406 		}
2407 	}
2408 
2409 	blk_start_plug(&plug);
2410 	for (;;) {
2411 
2412 		flush_pending_writes(conf);
2413 
2414 		spin_lock_irqsave(&conf->device_lock, flags);
2415 		if (list_empty(head)) {
2416 			spin_unlock_irqrestore(&conf->device_lock, flags);
2417 			break;
2418 		}
2419 		r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2420 		list_del(head->prev);
2421 		conf->nr_queued--;
2422 		spin_unlock_irqrestore(&conf->device_lock, flags);
2423 
2424 		mddev = r1_bio->mddev;
2425 		conf = mddev->private;
2426 		if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2427 			if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2428 			    test_bit(R1BIO_WriteError, &r1_bio->state))
2429 				handle_sync_write_finished(conf, r1_bio);
2430 			else
2431 				sync_request_write(mddev, r1_bio);
2432 		} else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2433 			   test_bit(R1BIO_WriteError, &r1_bio->state))
2434 			handle_write_finished(conf, r1_bio);
2435 		else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2436 			handle_read_error(conf, r1_bio);
2437 		else
2438 			/* just a partial read to be scheduled from separate
2439 			 * context
2440 			 */
2441 			generic_make_request(r1_bio->bios[r1_bio->read_disk]);
2442 
2443 		cond_resched();
2444 		if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2445 			md_check_recovery(mddev);
2446 	}
2447 	blk_finish_plug(&plug);
2448 }
2449 
2450 static int init_resync(struct r1conf *conf)
2451 {
2452 	int buffs;
2453 
2454 	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2455 	BUG_ON(conf->r1buf_pool);
2456 	conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2457 					  conf->poolinfo);
2458 	if (!conf->r1buf_pool)
2459 		return -ENOMEM;
2460 	conf->next_resync = 0;
2461 	return 0;
2462 }
2463 
2464 /*
2465  * perform a "sync" on one "block"
2466  *
2467  * We need to make sure that no normal I/O request - particularly write
2468  * requests - conflict with active sync requests.
2469  *
2470  * This is achieved by tracking pending requests and a 'barrier' concept
2471  * that can be installed to exclude normal IO requests.
2472  */
2473 
2474 static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr,
2475 				   int *skipped)
2476 {
2477 	struct r1conf *conf = mddev->private;
2478 	struct r1bio *r1_bio;
2479 	struct bio *bio;
2480 	sector_t max_sector, nr_sectors;
2481 	int disk = -1;
2482 	int i;
2483 	int wonly = -1;
2484 	int write_targets = 0, read_targets = 0;
2485 	sector_t sync_blocks;
2486 	int still_degraded = 0;
2487 	int good_sectors = RESYNC_SECTORS;
2488 	int min_bad = 0; /* number of sectors that are bad in all devices */
2489 
2490 	if (!conf->r1buf_pool)
2491 		if (init_resync(conf))
2492 			return 0;
2493 
2494 	max_sector = mddev->dev_sectors;
2495 	if (sector_nr >= max_sector) {
2496 		/* If we aborted, we need to abort the
2497 		 * sync on the 'current' bitmap chunk (there will
2498 		 * only be one in raid1 resync.
2499 		 * We can find the current addess in mddev->curr_resync
2500 		 */
2501 		if (mddev->curr_resync < max_sector) /* aborted */
2502 			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2503 						&sync_blocks, 1);
2504 		else /* completed sync */
2505 			conf->fullsync = 0;
2506 
2507 		bitmap_close_sync(mddev->bitmap);
2508 		close_sync(conf);
2509 
2510 		if (mddev_is_clustered(mddev)) {
2511 			conf->cluster_sync_low = 0;
2512 			conf->cluster_sync_high = 0;
2513 		}
2514 		return 0;
2515 	}
2516 
2517 	if (mddev->bitmap == NULL &&
2518 	    mddev->recovery_cp == MaxSector &&
2519 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2520 	    conf->fullsync == 0) {
2521 		*skipped = 1;
2522 		return max_sector - sector_nr;
2523 	}
2524 	/* before building a request, check if we can skip these blocks..
2525 	 * This call the bitmap_start_sync doesn't actually record anything
2526 	 */
2527 	if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2528 	    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2529 		/* We can skip this block, and probably several more */
2530 		*skipped = 1;
2531 		return sync_blocks;
2532 	}
2533 
2534 	/*
2535 	 * If there is non-resync activity waiting for a turn, then let it
2536 	 * though before starting on this new sync request.
2537 	 */
2538 	if (conf->nr_waiting)
2539 		schedule_timeout_uninterruptible(1);
2540 
2541 	/* we are incrementing sector_nr below. To be safe, we check against
2542 	 * sector_nr + two times RESYNC_SECTORS
2543 	 */
2544 
2545 	bitmap_cond_end_sync(mddev->bitmap, sector_nr,
2546 		mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
2547 	r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
2548 
2549 	raise_barrier(conf, sector_nr);
2550 
2551 	rcu_read_lock();
2552 	/*
2553 	 * If we get a correctably read error during resync or recovery,
2554 	 * we might want to read from a different device.  So we
2555 	 * flag all drives that could conceivably be read from for READ,
2556 	 * and any others (which will be non-In_sync devices) for WRITE.
2557 	 * If a read fails, we try reading from something else for which READ
2558 	 * is OK.
2559 	 */
2560 
2561 	r1_bio->mddev = mddev;
2562 	r1_bio->sector = sector_nr;
2563 	r1_bio->state = 0;
2564 	set_bit(R1BIO_IsSync, &r1_bio->state);
2565 
2566 	for (i = 0; i < conf->raid_disks * 2; i++) {
2567 		struct md_rdev *rdev;
2568 		bio = r1_bio->bios[i];
2569 		bio_reset(bio);
2570 
2571 		rdev = rcu_dereference(conf->mirrors[i].rdev);
2572 		if (rdev == NULL ||
2573 		    test_bit(Faulty, &rdev->flags)) {
2574 			if (i < conf->raid_disks)
2575 				still_degraded = 1;
2576 		} else if (!test_bit(In_sync, &rdev->flags)) {
2577 			bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2578 			bio->bi_end_io = end_sync_write;
2579 			write_targets ++;
2580 		} else {
2581 			/* may need to read from here */
2582 			sector_t first_bad = MaxSector;
2583 			int bad_sectors;
2584 
2585 			if (is_badblock(rdev, sector_nr, good_sectors,
2586 					&first_bad, &bad_sectors)) {
2587 				if (first_bad > sector_nr)
2588 					good_sectors = first_bad - sector_nr;
2589 				else {
2590 					bad_sectors -= (sector_nr - first_bad);
2591 					if (min_bad == 0 ||
2592 					    min_bad > bad_sectors)
2593 						min_bad = bad_sectors;
2594 				}
2595 			}
2596 			if (sector_nr < first_bad) {
2597 				if (test_bit(WriteMostly, &rdev->flags)) {
2598 					if (wonly < 0)
2599 						wonly = i;
2600 				} else {
2601 					if (disk < 0)
2602 						disk = i;
2603 				}
2604 				bio_set_op_attrs(bio, REQ_OP_READ, 0);
2605 				bio->bi_end_io = end_sync_read;
2606 				read_targets++;
2607 			} else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2608 				test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2609 				!test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2610 				/*
2611 				 * The device is suitable for reading (InSync),
2612 				 * but has bad block(s) here. Let's try to correct them,
2613 				 * if we are doing resync or repair. Otherwise, leave
2614 				 * this device alone for this sync request.
2615 				 */
2616 				bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2617 				bio->bi_end_io = end_sync_write;
2618 				write_targets++;
2619 			}
2620 		}
2621 		if (bio->bi_end_io) {
2622 			atomic_inc(&rdev->nr_pending);
2623 			bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
2624 			bio->bi_bdev = rdev->bdev;
2625 			bio->bi_private = r1_bio;
2626 		}
2627 	}
2628 	rcu_read_unlock();
2629 	if (disk < 0)
2630 		disk = wonly;
2631 	r1_bio->read_disk = disk;
2632 
2633 	if (read_targets == 0 && min_bad > 0) {
2634 		/* These sectors are bad on all InSync devices, so we
2635 		 * need to mark them bad on all write targets
2636 		 */
2637 		int ok = 1;
2638 		for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2639 			if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2640 				struct md_rdev *rdev = conf->mirrors[i].rdev;
2641 				ok = rdev_set_badblocks(rdev, sector_nr,
2642 							min_bad, 0
2643 					) && ok;
2644 			}
2645 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
2646 		*skipped = 1;
2647 		put_buf(r1_bio);
2648 
2649 		if (!ok) {
2650 			/* Cannot record the badblocks, so need to
2651 			 * abort the resync.
2652 			 * If there are multiple read targets, could just
2653 			 * fail the really bad ones ???
2654 			 */
2655 			conf->recovery_disabled = mddev->recovery_disabled;
2656 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2657 			return 0;
2658 		} else
2659 			return min_bad;
2660 
2661 	}
2662 	if (min_bad > 0 && min_bad < good_sectors) {
2663 		/* only resync enough to reach the next bad->good
2664 		 * transition */
2665 		good_sectors = min_bad;
2666 	}
2667 
2668 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2669 		/* extra read targets are also write targets */
2670 		write_targets += read_targets-1;
2671 
2672 	if (write_targets == 0 || read_targets == 0) {
2673 		/* There is nowhere to write, so all non-sync
2674 		 * drives must be failed - so we are finished
2675 		 */
2676 		sector_t rv;
2677 		if (min_bad > 0)
2678 			max_sector = sector_nr + min_bad;
2679 		rv = max_sector - sector_nr;
2680 		*skipped = 1;
2681 		put_buf(r1_bio);
2682 		return rv;
2683 	}
2684 
2685 	if (max_sector > mddev->resync_max)
2686 		max_sector = mddev->resync_max; /* Don't do IO beyond here */
2687 	if (max_sector > sector_nr + good_sectors)
2688 		max_sector = sector_nr + good_sectors;
2689 	nr_sectors = 0;
2690 	sync_blocks = 0;
2691 	do {
2692 		struct page *page;
2693 		int len = PAGE_SIZE;
2694 		if (sector_nr + (len>>9) > max_sector)
2695 			len = (max_sector - sector_nr) << 9;
2696 		if (len == 0)
2697 			break;
2698 		if (sync_blocks == 0) {
2699 			if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2700 					       &sync_blocks, still_degraded) &&
2701 			    !conf->fullsync &&
2702 			    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2703 				break;
2704 			if ((len >> 9) > sync_blocks)
2705 				len = sync_blocks<<9;
2706 		}
2707 
2708 		for (i = 0 ; i < conf->raid_disks * 2; i++) {
2709 			bio = r1_bio->bios[i];
2710 			if (bio->bi_end_io) {
2711 				page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
2712 				if (bio_add_page(bio, page, len, 0) == 0) {
2713 					/* stop here */
2714 					bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
2715 					while (i > 0) {
2716 						i--;
2717 						bio = r1_bio->bios[i];
2718 						if (bio->bi_end_io==NULL)
2719 							continue;
2720 						/* remove last page from this bio */
2721 						bio->bi_vcnt--;
2722 						bio->bi_iter.bi_size -= len;
2723 						bio_clear_flag(bio, BIO_SEG_VALID);
2724 					}
2725 					goto bio_full;
2726 				}
2727 			}
2728 		}
2729 		nr_sectors += len>>9;
2730 		sector_nr += len>>9;
2731 		sync_blocks -= (len>>9);
2732 	} while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
2733  bio_full:
2734 	r1_bio->sectors = nr_sectors;
2735 
2736 	if (mddev_is_clustered(mddev) &&
2737 			conf->cluster_sync_high < sector_nr + nr_sectors) {
2738 		conf->cluster_sync_low = mddev->curr_resync_completed;
2739 		conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS;
2740 		/* Send resync message */
2741 		md_cluster_ops->resync_info_update(mddev,
2742 				conf->cluster_sync_low,
2743 				conf->cluster_sync_high);
2744 	}
2745 
2746 	/* For a user-requested sync, we read all readable devices and do a
2747 	 * compare
2748 	 */
2749 	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2750 		atomic_set(&r1_bio->remaining, read_targets);
2751 		for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2752 			bio = r1_bio->bios[i];
2753 			if (bio->bi_end_io == end_sync_read) {
2754 				read_targets--;
2755 				md_sync_acct(bio->bi_bdev, nr_sectors);
2756 				generic_make_request(bio);
2757 			}
2758 		}
2759 	} else {
2760 		atomic_set(&r1_bio->remaining, 1);
2761 		bio = r1_bio->bios[r1_bio->read_disk];
2762 		md_sync_acct(bio->bi_bdev, nr_sectors);
2763 		generic_make_request(bio);
2764 
2765 	}
2766 	return nr_sectors;
2767 }
2768 
2769 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2770 {
2771 	if (sectors)
2772 		return sectors;
2773 
2774 	return mddev->dev_sectors;
2775 }
2776 
2777 static struct r1conf *setup_conf(struct mddev *mddev)
2778 {
2779 	struct r1conf *conf;
2780 	int i;
2781 	struct raid1_info *disk;
2782 	struct md_rdev *rdev;
2783 	int err = -ENOMEM;
2784 
2785 	conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2786 	if (!conf)
2787 		goto abort;
2788 
2789 	conf->mirrors = kzalloc(sizeof(struct raid1_info)
2790 				* mddev->raid_disks * 2,
2791 				 GFP_KERNEL);
2792 	if (!conf->mirrors)
2793 		goto abort;
2794 
2795 	conf->tmppage = alloc_page(GFP_KERNEL);
2796 	if (!conf->tmppage)
2797 		goto abort;
2798 
2799 	conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
2800 	if (!conf->poolinfo)
2801 		goto abort;
2802 	conf->poolinfo->raid_disks = mddev->raid_disks * 2;
2803 	conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2804 					  r1bio_pool_free,
2805 					  conf->poolinfo);
2806 	if (!conf->r1bio_pool)
2807 		goto abort;
2808 
2809 	conf->poolinfo->mddev = mddev;
2810 
2811 	err = -EINVAL;
2812 	spin_lock_init(&conf->device_lock);
2813 	rdev_for_each(rdev, mddev) {
2814 		struct request_queue *q;
2815 		int disk_idx = rdev->raid_disk;
2816 		if (disk_idx >= mddev->raid_disks
2817 		    || disk_idx < 0)
2818 			continue;
2819 		if (test_bit(Replacement, &rdev->flags))
2820 			disk = conf->mirrors + mddev->raid_disks + disk_idx;
2821 		else
2822 			disk = conf->mirrors + disk_idx;
2823 
2824 		if (disk->rdev)
2825 			goto abort;
2826 		disk->rdev = rdev;
2827 		q = bdev_get_queue(rdev->bdev);
2828 
2829 		disk->head_position = 0;
2830 		disk->seq_start = MaxSector;
2831 	}
2832 	conf->raid_disks = mddev->raid_disks;
2833 	conf->mddev = mddev;
2834 	INIT_LIST_HEAD(&conf->retry_list);
2835 	INIT_LIST_HEAD(&conf->bio_end_io_list);
2836 
2837 	spin_lock_init(&conf->resync_lock);
2838 	init_waitqueue_head(&conf->wait_barrier);
2839 
2840 	bio_list_init(&conf->pending_bio_list);
2841 	conf->pending_count = 0;
2842 	conf->recovery_disabled = mddev->recovery_disabled - 1;
2843 
2844 	conf->start_next_window = MaxSector;
2845 	conf->current_window_requests = conf->next_window_requests = 0;
2846 
2847 	err = -EIO;
2848 	for (i = 0; i < conf->raid_disks * 2; i++) {
2849 
2850 		disk = conf->mirrors + i;
2851 
2852 		if (i < conf->raid_disks &&
2853 		    disk[conf->raid_disks].rdev) {
2854 			/* This slot has a replacement. */
2855 			if (!disk->rdev) {
2856 				/* No original, just make the replacement
2857 				 * a recovering spare
2858 				 */
2859 				disk->rdev =
2860 					disk[conf->raid_disks].rdev;
2861 				disk[conf->raid_disks].rdev = NULL;
2862 			} else if (!test_bit(In_sync, &disk->rdev->flags))
2863 				/* Original is not in_sync - bad */
2864 				goto abort;
2865 		}
2866 
2867 		if (!disk->rdev ||
2868 		    !test_bit(In_sync, &disk->rdev->flags)) {
2869 			disk->head_position = 0;
2870 			if (disk->rdev &&
2871 			    (disk->rdev->saved_raid_disk < 0))
2872 				conf->fullsync = 1;
2873 		}
2874 	}
2875 
2876 	err = -ENOMEM;
2877 	conf->thread = md_register_thread(raid1d, mddev, "raid1");
2878 	if (!conf->thread) {
2879 		printk(KERN_ERR
2880 		       "md/raid1:%s: couldn't allocate thread\n",
2881 		       mdname(mddev));
2882 		goto abort;
2883 	}
2884 
2885 	return conf;
2886 
2887  abort:
2888 	if (conf) {
2889 		mempool_destroy(conf->r1bio_pool);
2890 		kfree(conf->mirrors);
2891 		safe_put_page(conf->tmppage);
2892 		kfree(conf->poolinfo);
2893 		kfree(conf);
2894 	}
2895 	return ERR_PTR(err);
2896 }
2897 
2898 static void raid1_free(struct mddev *mddev, void *priv);
2899 static int raid1_run(struct mddev *mddev)
2900 {
2901 	struct r1conf *conf;
2902 	int i;
2903 	struct md_rdev *rdev;
2904 	int ret;
2905 	bool discard_supported = false;
2906 
2907 	if (mddev->level != 1) {
2908 		printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n",
2909 		       mdname(mddev), mddev->level);
2910 		return -EIO;
2911 	}
2912 	if (mddev->reshape_position != MaxSector) {
2913 		printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n",
2914 		       mdname(mddev));
2915 		return -EIO;
2916 	}
2917 	/*
2918 	 * copy the already verified devices into our private RAID1
2919 	 * bookkeeping area. [whatever we allocate in run(),
2920 	 * should be freed in raid1_free()]
2921 	 */
2922 	if (mddev->private == NULL)
2923 		conf = setup_conf(mddev);
2924 	else
2925 		conf = mddev->private;
2926 
2927 	if (IS_ERR(conf))
2928 		return PTR_ERR(conf);
2929 
2930 	if (mddev->queue)
2931 		blk_queue_max_write_same_sectors(mddev->queue, 0);
2932 
2933 	rdev_for_each(rdev, mddev) {
2934 		if (!mddev->gendisk)
2935 			continue;
2936 		disk_stack_limits(mddev->gendisk, rdev->bdev,
2937 				  rdev->data_offset << 9);
2938 		if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
2939 			discard_supported = true;
2940 	}
2941 
2942 	mddev->degraded = 0;
2943 	for (i=0; i < conf->raid_disks; i++)
2944 		if (conf->mirrors[i].rdev == NULL ||
2945 		    !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
2946 		    test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2947 			mddev->degraded++;
2948 
2949 	if (conf->raid_disks - mddev->degraded == 1)
2950 		mddev->recovery_cp = MaxSector;
2951 
2952 	if (mddev->recovery_cp != MaxSector)
2953 		printk(KERN_NOTICE "md/raid1:%s: not clean"
2954 		       " -- starting background reconstruction\n",
2955 		       mdname(mddev));
2956 	printk(KERN_INFO
2957 		"md/raid1:%s: active with %d out of %d mirrors\n",
2958 		mdname(mddev), mddev->raid_disks - mddev->degraded,
2959 		mddev->raid_disks);
2960 
2961 	/*
2962 	 * Ok, everything is just fine now
2963 	 */
2964 	mddev->thread = conf->thread;
2965 	conf->thread = NULL;
2966 	mddev->private = conf;
2967 
2968 	md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
2969 
2970 	if (mddev->queue) {
2971 		if (discard_supported)
2972 			queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
2973 						mddev->queue);
2974 		else
2975 			queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
2976 						  mddev->queue);
2977 	}
2978 
2979 	ret =  md_integrity_register(mddev);
2980 	if (ret) {
2981 		md_unregister_thread(&mddev->thread);
2982 		raid1_free(mddev, conf);
2983 	}
2984 	return ret;
2985 }
2986 
2987 static void raid1_free(struct mddev *mddev, void *priv)
2988 {
2989 	struct r1conf *conf = priv;
2990 
2991 	mempool_destroy(conf->r1bio_pool);
2992 	kfree(conf->mirrors);
2993 	safe_put_page(conf->tmppage);
2994 	kfree(conf->poolinfo);
2995 	kfree(conf);
2996 }
2997 
2998 static int raid1_resize(struct mddev *mddev, sector_t sectors)
2999 {
3000 	/* no resync is happening, and there is enough space
3001 	 * on all devices, so we can resize.
3002 	 * We need to make sure resync covers any new space.
3003 	 * If the array is shrinking we should possibly wait until
3004 	 * any io in the removed space completes, but it hardly seems
3005 	 * worth it.
3006 	 */
3007 	sector_t newsize = raid1_size(mddev, sectors, 0);
3008 	if (mddev->external_size &&
3009 	    mddev->array_sectors > newsize)
3010 		return -EINVAL;
3011 	if (mddev->bitmap) {
3012 		int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0);
3013 		if (ret)
3014 			return ret;
3015 	}
3016 	md_set_array_sectors(mddev, newsize);
3017 	set_capacity(mddev->gendisk, mddev->array_sectors);
3018 	revalidate_disk(mddev->gendisk);
3019 	if (sectors > mddev->dev_sectors &&
3020 	    mddev->recovery_cp > mddev->dev_sectors) {
3021 		mddev->recovery_cp = mddev->dev_sectors;
3022 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3023 	}
3024 	mddev->dev_sectors = sectors;
3025 	mddev->resync_max_sectors = sectors;
3026 	return 0;
3027 }
3028 
3029 static int raid1_reshape(struct mddev *mddev)
3030 {
3031 	/* We need to:
3032 	 * 1/ resize the r1bio_pool
3033 	 * 2/ resize conf->mirrors
3034 	 *
3035 	 * We allocate a new r1bio_pool if we can.
3036 	 * Then raise a device barrier and wait until all IO stops.
3037 	 * Then resize conf->mirrors and swap in the new r1bio pool.
3038 	 *
3039 	 * At the same time, we "pack" the devices so that all the missing
3040 	 * devices have the higher raid_disk numbers.
3041 	 */
3042 	mempool_t *newpool, *oldpool;
3043 	struct pool_info *newpoolinfo;
3044 	struct raid1_info *newmirrors;
3045 	struct r1conf *conf = mddev->private;
3046 	int cnt, raid_disks;
3047 	unsigned long flags;
3048 	int d, d2, err;
3049 
3050 	/* Cannot change chunk_size, layout, or level */
3051 	if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3052 	    mddev->layout != mddev->new_layout ||
3053 	    mddev->level != mddev->new_level) {
3054 		mddev->new_chunk_sectors = mddev->chunk_sectors;
3055 		mddev->new_layout = mddev->layout;
3056 		mddev->new_level = mddev->level;
3057 		return -EINVAL;
3058 	}
3059 
3060 	if (!mddev_is_clustered(mddev)) {
3061 		err = md_allow_write(mddev);
3062 		if (err)
3063 			return err;
3064 	}
3065 
3066 	raid_disks = mddev->raid_disks + mddev->delta_disks;
3067 
3068 	if (raid_disks < conf->raid_disks) {
3069 		cnt=0;
3070 		for (d= 0; d < conf->raid_disks; d++)
3071 			if (conf->mirrors[d].rdev)
3072 				cnt++;
3073 		if (cnt > raid_disks)
3074 			return -EBUSY;
3075 	}
3076 
3077 	newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3078 	if (!newpoolinfo)
3079 		return -ENOMEM;
3080 	newpoolinfo->mddev = mddev;
3081 	newpoolinfo->raid_disks = raid_disks * 2;
3082 
3083 	newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
3084 				 r1bio_pool_free, newpoolinfo);
3085 	if (!newpool) {
3086 		kfree(newpoolinfo);
3087 		return -ENOMEM;
3088 	}
3089 	newmirrors = kzalloc(sizeof(struct raid1_info) * raid_disks * 2,
3090 			     GFP_KERNEL);
3091 	if (!newmirrors) {
3092 		kfree(newpoolinfo);
3093 		mempool_destroy(newpool);
3094 		return -ENOMEM;
3095 	}
3096 
3097 	freeze_array(conf, 0);
3098 
3099 	/* ok, everything is stopped */
3100 	oldpool = conf->r1bio_pool;
3101 	conf->r1bio_pool = newpool;
3102 
3103 	for (d = d2 = 0; d < conf->raid_disks; d++) {
3104 		struct md_rdev *rdev = conf->mirrors[d].rdev;
3105 		if (rdev && rdev->raid_disk != d2) {
3106 			sysfs_unlink_rdev(mddev, rdev);
3107 			rdev->raid_disk = d2;
3108 			sysfs_unlink_rdev(mddev, rdev);
3109 			if (sysfs_link_rdev(mddev, rdev))
3110 				printk(KERN_WARNING
3111 				       "md/raid1:%s: cannot register rd%d\n",
3112 				       mdname(mddev), rdev->raid_disk);
3113 		}
3114 		if (rdev)
3115 			newmirrors[d2++].rdev = rdev;
3116 	}
3117 	kfree(conf->mirrors);
3118 	conf->mirrors = newmirrors;
3119 	kfree(conf->poolinfo);
3120 	conf->poolinfo = newpoolinfo;
3121 
3122 	spin_lock_irqsave(&conf->device_lock, flags);
3123 	mddev->degraded += (raid_disks - conf->raid_disks);
3124 	spin_unlock_irqrestore(&conf->device_lock, flags);
3125 	conf->raid_disks = mddev->raid_disks = raid_disks;
3126 	mddev->delta_disks = 0;
3127 
3128 	unfreeze_array(conf);
3129 
3130 	set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3131 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3132 	md_wakeup_thread(mddev->thread);
3133 
3134 	mempool_destroy(oldpool);
3135 	return 0;
3136 }
3137 
3138 static void raid1_quiesce(struct mddev *mddev, int state)
3139 {
3140 	struct r1conf *conf = mddev->private;
3141 
3142 	switch(state) {
3143 	case 2: /* wake for suspend */
3144 		wake_up(&conf->wait_barrier);
3145 		break;
3146 	case 1:
3147 		freeze_array(conf, 0);
3148 		break;
3149 	case 0:
3150 		unfreeze_array(conf);
3151 		break;
3152 	}
3153 }
3154 
3155 static void *raid1_takeover(struct mddev *mddev)
3156 {
3157 	/* raid1 can take over:
3158 	 *  raid5 with 2 devices, any layout or chunk size
3159 	 */
3160 	if (mddev->level == 5 && mddev->raid_disks == 2) {
3161 		struct r1conf *conf;
3162 		mddev->new_level = 1;
3163 		mddev->new_layout = 0;
3164 		mddev->new_chunk_sectors = 0;
3165 		conf = setup_conf(mddev);
3166 		if (!IS_ERR(conf))
3167 			/* Array must appear to be quiesced */
3168 			conf->array_frozen = 1;
3169 		return conf;
3170 	}
3171 	return ERR_PTR(-EINVAL);
3172 }
3173 
3174 static struct md_personality raid1_personality =
3175 {
3176 	.name		= "raid1",
3177 	.level		= 1,
3178 	.owner		= THIS_MODULE,
3179 	.make_request	= raid1_make_request,
3180 	.run		= raid1_run,
3181 	.free		= raid1_free,
3182 	.status		= raid1_status,
3183 	.error_handler	= raid1_error,
3184 	.hot_add_disk	= raid1_add_disk,
3185 	.hot_remove_disk= raid1_remove_disk,
3186 	.spare_active	= raid1_spare_active,
3187 	.sync_request	= raid1_sync_request,
3188 	.resize		= raid1_resize,
3189 	.size		= raid1_size,
3190 	.check_reshape	= raid1_reshape,
3191 	.quiesce	= raid1_quiesce,
3192 	.takeover	= raid1_takeover,
3193 	.congested	= raid1_congested,
3194 };
3195 
3196 static int __init raid_init(void)
3197 {
3198 	return register_md_personality(&raid1_personality);
3199 }
3200 
3201 static void raid_exit(void)
3202 {
3203 	unregister_md_personality(&raid1_personality);
3204 }
3205 
3206 module_init(raid_init);
3207 module_exit(raid_exit);
3208 MODULE_LICENSE("GPL");
3209 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3210 MODULE_ALIAS("md-personality-3"); /* RAID1 */
3211 MODULE_ALIAS("md-raid1");
3212 MODULE_ALIAS("md-level-1");
3213 
3214 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
3215