1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * raid1.c : Multiple Devices driver for Linux 4 * 5 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat 6 * 7 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman 8 * 9 * RAID-1 management functions. 10 * 11 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000 12 * 13 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk> 14 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au> 15 * 16 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support 17 * bitmapped intelligence in resync: 18 * 19 * - bitmap marked during normal i/o 20 * - bitmap used to skip nondirty blocks during sync 21 * 22 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology: 23 * - persistent bitmap code 24 */ 25 26 #include <linux/slab.h> 27 #include <linux/delay.h> 28 #include <linux/blkdev.h> 29 #include <linux/module.h> 30 #include <linux/seq_file.h> 31 #include <linux/ratelimit.h> 32 33 #include <trace/events/block.h> 34 35 #include "md.h" 36 #include "raid1.h" 37 #include "md-bitmap.h" 38 39 #define UNSUPPORTED_MDDEV_FLAGS \ 40 ((1L << MD_HAS_JOURNAL) | \ 41 (1L << MD_JOURNAL_CLEAN) | \ 42 (1L << MD_HAS_PPL) | \ 43 (1L << MD_HAS_MULTIPLE_PPLS)) 44 45 static void allow_barrier(struct r1conf *conf, sector_t sector_nr); 46 static void lower_barrier(struct r1conf *conf, sector_t sector_nr); 47 48 #define raid1_log(md, fmt, args...) \ 49 do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid1 " fmt, ##args); } while (0) 50 51 #include "raid1-10.c" 52 53 static int check_and_add_wb(struct md_rdev *rdev, sector_t lo, sector_t hi) 54 { 55 struct wb_info *wi, *temp_wi; 56 unsigned long flags; 57 int ret = 0; 58 struct mddev *mddev = rdev->mddev; 59 60 wi = mempool_alloc(mddev->wb_info_pool, GFP_NOIO); 61 62 spin_lock_irqsave(&rdev->wb_list_lock, flags); 63 list_for_each_entry(temp_wi, &rdev->wb_list, list) { 64 /* collision happened */ 65 if (hi > temp_wi->lo && lo < temp_wi->hi) { 66 ret = -EBUSY; 67 break; 68 } 69 } 70 71 if (!ret) { 72 wi->lo = lo; 73 wi->hi = hi; 74 list_add(&wi->list, &rdev->wb_list); 75 } else 76 mempool_free(wi, mddev->wb_info_pool); 77 spin_unlock_irqrestore(&rdev->wb_list_lock, flags); 78 79 return ret; 80 } 81 82 static void remove_wb(struct md_rdev *rdev, sector_t lo, sector_t hi) 83 { 84 struct wb_info *wi; 85 unsigned long flags; 86 int found = 0; 87 struct mddev *mddev = rdev->mddev; 88 89 spin_lock_irqsave(&rdev->wb_list_lock, flags); 90 list_for_each_entry(wi, &rdev->wb_list, list) 91 if (hi == wi->hi && lo == wi->lo) { 92 list_del(&wi->list); 93 mempool_free(wi, mddev->wb_info_pool); 94 found = 1; 95 break; 96 } 97 98 if (!found) 99 WARN(1, "The write behind IO is not recorded\n"); 100 spin_unlock_irqrestore(&rdev->wb_list_lock, flags); 101 wake_up(&rdev->wb_io_wait); 102 } 103 104 /* 105 * for resync bio, r1bio pointer can be retrieved from the per-bio 106 * 'struct resync_pages'. 107 */ 108 static inline struct r1bio *get_resync_r1bio(struct bio *bio) 109 { 110 return get_resync_pages(bio)->raid_bio; 111 } 112 113 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data) 114 { 115 struct pool_info *pi = data; 116 int size = offsetof(struct r1bio, bios[pi->raid_disks]); 117 118 /* allocate a r1bio with room for raid_disks entries in the bios array */ 119 return kzalloc(size, gfp_flags); 120 } 121 122 #define RESYNC_DEPTH 32 123 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9) 124 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH) 125 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9) 126 #define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW) 127 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9) 128 129 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data) 130 { 131 struct pool_info *pi = data; 132 struct r1bio *r1_bio; 133 struct bio *bio; 134 int need_pages; 135 int j; 136 struct resync_pages *rps; 137 138 r1_bio = r1bio_pool_alloc(gfp_flags, pi); 139 if (!r1_bio) 140 return NULL; 141 142 rps = kmalloc_array(pi->raid_disks, sizeof(struct resync_pages), 143 gfp_flags); 144 if (!rps) 145 goto out_free_r1bio; 146 147 /* 148 * Allocate bios : 1 for reading, n-1 for writing 149 */ 150 for (j = pi->raid_disks ; j-- ; ) { 151 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES); 152 if (!bio) 153 goto out_free_bio; 154 r1_bio->bios[j] = bio; 155 } 156 /* 157 * Allocate RESYNC_PAGES data pages and attach them to 158 * the first bio. 159 * If this is a user-requested check/repair, allocate 160 * RESYNC_PAGES for each bio. 161 */ 162 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) 163 need_pages = pi->raid_disks; 164 else 165 need_pages = 1; 166 for (j = 0; j < pi->raid_disks; j++) { 167 struct resync_pages *rp = &rps[j]; 168 169 bio = r1_bio->bios[j]; 170 171 if (j < need_pages) { 172 if (resync_alloc_pages(rp, gfp_flags)) 173 goto out_free_pages; 174 } else { 175 memcpy(rp, &rps[0], sizeof(*rp)); 176 resync_get_all_pages(rp); 177 } 178 179 rp->raid_bio = r1_bio; 180 bio->bi_private = rp; 181 } 182 183 r1_bio->master_bio = NULL; 184 185 return r1_bio; 186 187 out_free_pages: 188 while (--j >= 0) 189 resync_free_pages(&rps[j]); 190 191 out_free_bio: 192 while (++j < pi->raid_disks) 193 bio_put(r1_bio->bios[j]); 194 kfree(rps); 195 196 out_free_r1bio: 197 rbio_pool_free(r1_bio, data); 198 return NULL; 199 } 200 201 static void r1buf_pool_free(void *__r1_bio, void *data) 202 { 203 struct pool_info *pi = data; 204 int i; 205 struct r1bio *r1bio = __r1_bio; 206 struct resync_pages *rp = NULL; 207 208 for (i = pi->raid_disks; i--; ) { 209 rp = get_resync_pages(r1bio->bios[i]); 210 resync_free_pages(rp); 211 bio_put(r1bio->bios[i]); 212 } 213 214 /* resync pages array stored in the 1st bio's .bi_private */ 215 kfree(rp); 216 217 rbio_pool_free(r1bio, data); 218 } 219 220 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio) 221 { 222 int i; 223 224 for (i = 0; i < conf->raid_disks * 2; i++) { 225 struct bio **bio = r1_bio->bios + i; 226 if (!BIO_SPECIAL(*bio)) 227 bio_put(*bio); 228 *bio = NULL; 229 } 230 } 231 232 static void free_r1bio(struct r1bio *r1_bio) 233 { 234 struct r1conf *conf = r1_bio->mddev->private; 235 236 put_all_bios(conf, r1_bio); 237 mempool_free(r1_bio, &conf->r1bio_pool); 238 } 239 240 static void put_buf(struct r1bio *r1_bio) 241 { 242 struct r1conf *conf = r1_bio->mddev->private; 243 sector_t sect = r1_bio->sector; 244 int i; 245 246 for (i = 0; i < conf->raid_disks * 2; i++) { 247 struct bio *bio = r1_bio->bios[i]; 248 if (bio->bi_end_io) 249 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev); 250 } 251 252 mempool_free(r1_bio, &conf->r1buf_pool); 253 254 lower_barrier(conf, sect); 255 } 256 257 static void reschedule_retry(struct r1bio *r1_bio) 258 { 259 unsigned long flags; 260 struct mddev *mddev = r1_bio->mddev; 261 struct r1conf *conf = mddev->private; 262 int idx; 263 264 idx = sector_to_idx(r1_bio->sector); 265 spin_lock_irqsave(&conf->device_lock, flags); 266 list_add(&r1_bio->retry_list, &conf->retry_list); 267 atomic_inc(&conf->nr_queued[idx]); 268 spin_unlock_irqrestore(&conf->device_lock, flags); 269 270 wake_up(&conf->wait_barrier); 271 md_wakeup_thread(mddev->thread); 272 } 273 274 /* 275 * raid_end_bio_io() is called when we have finished servicing a mirrored 276 * operation and are ready to return a success/failure code to the buffer 277 * cache layer. 278 */ 279 static void call_bio_endio(struct r1bio *r1_bio) 280 { 281 struct bio *bio = r1_bio->master_bio; 282 struct r1conf *conf = r1_bio->mddev->private; 283 284 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) 285 bio->bi_status = BLK_STS_IOERR; 286 287 bio_endio(bio); 288 /* 289 * Wake up any possible resync thread that waits for the device 290 * to go idle. 291 */ 292 allow_barrier(conf, r1_bio->sector); 293 } 294 295 static void raid_end_bio_io(struct r1bio *r1_bio) 296 { 297 struct bio *bio = r1_bio->master_bio; 298 299 /* if nobody has done the final endio yet, do it now */ 300 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) { 301 pr_debug("raid1: sync end %s on sectors %llu-%llu\n", 302 (bio_data_dir(bio) == WRITE) ? "write" : "read", 303 (unsigned long long) bio->bi_iter.bi_sector, 304 (unsigned long long) bio_end_sector(bio) - 1); 305 306 call_bio_endio(r1_bio); 307 } 308 free_r1bio(r1_bio); 309 } 310 311 /* 312 * Update disk head position estimator based on IRQ completion info. 313 */ 314 static inline void update_head_pos(int disk, struct r1bio *r1_bio) 315 { 316 struct r1conf *conf = r1_bio->mddev->private; 317 318 conf->mirrors[disk].head_position = 319 r1_bio->sector + (r1_bio->sectors); 320 } 321 322 /* 323 * Find the disk number which triggered given bio 324 */ 325 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio) 326 { 327 int mirror; 328 struct r1conf *conf = r1_bio->mddev->private; 329 int raid_disks = conf->raid_disks; 330 331 for (mirror = 0; mirror < raid_disks * 2; mirror++) 332 if (r1_bio->bios[mirror] == bio) 333 break; 334 335 BUG_ON(mirror == raid_disks * 2); 336 update_head_pos(mirror, r1_bio); 337 338 return mirror; 339 } 340 341 static void raid1_end_read_request(struct bio *bio) 342 { 343 int uptodate = !bio->bi_status; 344 struct r1bio *r1_bio = bio->bi_private; 345 struct r1conf *conf = r1_bio->mddev->private; 346 struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev; 347 348 /* 349 * this branch is our 'one mirror IO has finished' event handler: 350 */ 351 update_head_pos(r1_bio->read_disk, r1_bio); 352 353 if (uptodate) 354 set_bit(R1BIO_Uptodate, &r1_bio->state); 355 else if (test_bit(FailFast, &rdev->flags) && 356 test_bit(R1BIO_FailFast, &r1_bio->state)) 357 /* This was a fail-fast read so we definitely 358 * want to retry */ 359 ; 360 else { 361 /* If all other devices have failed, we want to return 362 * the error upwards rather than fail the last device. 363 * Here we redefine "uptodate" to mean "Don't want to retry" 364 */ 365 unsigned long flags; 366 spin_lock_irqsave(&conf->device_lock, flags); 367 if (r1_bio->mddev->degraded == conf->raid_disks || 368 (r1_bio->mddev->degraded == conf->raid_disks-1 && 369 test_bit(In_sync, &rdev->flags))) 370 uptodate = 1; 371 spin_unlock_irqrestore(&conf->device_lock, flags); 372 } 373 374 if (uptodate) { 375 raid_end_bio_io(r1_bio); 376 rdev_dec_pending(rdev, conf->mddev); 377 } else { 378 /* 379 * oops, read error: 380 */ 381 char b[BDEVNAME_SIZE]; 382 pr_err_ratelimited("md/raid1:%s: %s: rescheduling sector %llu\n", 383 mdname(conf->mddev), 384 bdevname(rdev->bdev, b), 385 (unsigned long long)r1_bio->sector); 386 set_bit(R1BIO_ReadError, &r1_bio->state); 387 reschedule_retry(r1_bio); 388 /* don't drop the reference on read_disk yet */ 389 } 390 } 391 392 static void close_write(struct r1bio *r1_bio) 393 { 394 /* it really is the end of this request */ 395 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) { 396 bio_free_pages(r1_bio->behind_master_bio); 397 bio_put(r1_bio->behind_master_bio); 398 r1_bio->behind_master_bio = NULL; 399 } 400 /* clear the bitmap if all writes complete successfully */ 401 md_bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector, 402 r1_bio->sectors, 403 !test_bit(R1BIO_Degraded, &r1_bio->state), 404 test_bit(R1BIO_BehindIO, &r1_bio->state)); 405 md_write_end(r1_bio->mddev); 406 } 407 408 static void r1_bio_write_done(struct r1bio *r1_bio) 409 { 410 if (!atomic_dec_and_test(&r1_bio->remaining)) 411 return; 412 413 if (test_bit(R1BIO_WriteError, &r1_bio->state)) 414 reschedule_retry(r1_bio); 415 else { 416 close_write(r1_bio); 417 if (test_bit(R1BIO_MadeGood, &r1_bio->state)) 418 reschedule_retry(r1_bio); 419 else 420 raid_end_bio_io(r1_bio); 421 } 422 } 423 424 static void raid1_end_write_request(struct bio *bio) 425 { 426 struct r1bio *r1_bio = bio->bi_private; 427 int behind = test_bit(R1BIO_BehindIO, &r1_bio->state); 428 struct r1conf *conf = r1_bio->mddev->private; 429 struct bio *to_put = NULL; 430 int mirror = find_bio_disk(r1_bio, bio); 431 struct md_rdev *rdev = conf->mirrors[mirror].rdev; 432 bool discard_error; 433 434 discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD; 435 436 /* 437 * 'one mirror IO has finished' event handler: 438 */ 439 if (bio->bi_status && !discard_error) { 440 set_bit(WriteErrorSeen, &rdev->flags); 441 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 442 set_bit(MD_RECOVERY_NEEDED, & 443 conf->mddev->recovery); 444 445 if (test_bit(FailFast, &rdev->flags) && 446 (bio->bi_opf & MD_FAILFAST) && 447 /* We never try FailFast to WriteMostly devices */ 448 !test_bit(WriteMostly, &rdev->flags)) { 449 md_error(r1_bio->mddev, rdev); 450 } 451 452 /* 453 * When the device is faulty, it is not necessary to 454 * handle write error. 455 * For failfast, this is the only remaining device, 456 * We need to retry the write without FailFast. 457 */ 458 if (!test_bit(Faulty, &rdev->flags)) 459 set_bit(R1BIO_WriteError, &r1_bio->state); 460 else { 461 /* Finished with this branch */ 462 r1_bio->bios[mirror] = NULL; 463 to_put = bio; 464 } 465 } else { 466 /* 467 * Set R1BIO_Uptodate in our master bio, so that we 468 * will return a good error code for to the higher 469 * levels even if IO on some other mirrored buffer 470 * fails. 471 * 472 * The 'master' represents the composite IO operation 473 * to user-side. So if something waits for IO, then it 474 * will wait for the 'master' bio. 475 */ 476 sector_t first_bad; 477 int bad_sectors; 478 479 r1_bio->bios[mirror] = NULL; 480 to_put = bio; 481 /* 482 * Do not set R1BIO_Uptodate if the current device is 483 * rebuilding or Faulty. This is because we cannot use 484 * such device for properly reading the data back (we could 485 * potentially use it, if the current write would have felt 486 * before rdev->recovery_offset, but for simplicity we don't 487 * check this here. 488 */ 489 if (test_bit(In_sync, &rdev->flags) && 490 !test_bit(Faulty, &rdev->flags)) 491 set_bit(R1BIO_Uptodate, &r1_bio->state); 492 493 /* Maybe we can clear some bad blocks. */ 494 if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors, 495 &first_bad, &bad_sectors) && !discard_error) { 496 r1_bio->bios[mirror] = IO_MADE_GOOD; 497 set_bit(R1BIO_MadeGood, &r1_bio->state); 498 } 499 } 500 501 if (behind) { 502 if (test_bit(WBCollisionCheck, &rdev->flags)) { 503 sector_t lo = r1_bio->sector; 504 sector_t hi = r1_bio->sector + r1_bio->sectors; 505 506 remove_wb(rdev, lo, hi); 507 } 508 if (test_bit(WriteMostly, &rdev->flags)) 509 atomic_dec(&r1_bio->behind_remaining); 510 511 /* 512 * In behind mode, we ACK the master bio once the I/O 513 * has safely reached all non-writemostly 514 * disks. Setting the Returned bit ensures that this 515 * gets done only once -- we don't ever want to return 516 * -EIO here, instead we'll wait 517 */ 518 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) && 519 test_bit(R1BIO_Uptodate, &r1_bio->state)) { 520 /* Maybe we can return now */ 521 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) { 522 struct bio *mbio = r1_bio->master_bio; 523 pr_debug("raid1: behind end write sectors" 524 " %llu-%llu\n", 525 (unsigned long long) mbio->bi_iter.bi_sector, 526 (unsigned long long) bio_end_sector(mbio) - 1); 527 call_bio_endio(r1_bio); 528 } 529 } 530 } 531 if (r1_bio->bios[mirror] == NULL) 532 rdev_dec_pending(rdev, conf->mddev); 533 534 /* 535 * Let's see if all mirrored write operations have finished 536 * already. 537 */ 538 r1_bio_write_done(r1_bio); 539 540 if (to_put) 541 bio_put(to_put); 542 } 543 544 static sector_t align_to_barrier_unit_end(sector_t start_sector, 545 sector_t sectors) 546 { 547 sector_t len; 548 549 WARN_ON(sectors == 0); 550 /* 551 * len is the number of sectors from start_sector to end of the 552 * barrier unit which start_sector belongs to. 553 */ 554 len = round_up(start_sector + 1, BARRIER_UNIT_SECTOR_SIZE) - 555 start_sector; 556 557 if (len > sectors) 558 len = sectors; 559 560 return len; 561 } 562 563 /* 564 * This routine returns the disk from which the requested read should 565 * be done. There is a per-array 'next expected sequential IO' sector 566 * number - if this matches on the next IO then we use the last disk. 567 * There is also a per-disk 'last know head position' sector that is 568 * maintained from IRQ contexts, both the normal and the resync IO 569 * completion handlers update this position correctly. If there is no 570 * perfect sequential match then we pick the disk whose head is closest. 571 * 572 * If there are 2 mirrors in the same 2 devices, performance degrades 573 * because position is mirror, not device based. 574 * 575 * The rdev for the device selected will have nr_pending incremented. 576 */ 577 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors) 578 { 579 const sector_t this_sector = r1_bio->sector; 580 int sectors; 581 int best_good_sectors; 582 int best_disk, best_dist_disk, best_pending_disk; 583 int has_nonrot_disk; 584 int disk; 585 sector_t best_dist; 586 unsigned int min_pending; 587 struct md_rdev *rdev; 588 int choose_first; 589 int choose_next_idle; 590 591 rcu_read_lock(); 592 /* 593 * Check if we can balance. We can balance on the whole 594 * device if no resync is going on, or below the resync window. 595 * We take the first readable disk when above the resync window. 596 */ 597 retry: 598 sectors = r1_bio->sectors; 599 best_disk = -1; 600 best_dist_disk = -1; 601 best_dist = MaxSector; 602 best_pending_disk = -1; 603 min_pending = UINT_MAX; 604 best_good_sectors = 0; 605 has_nonrot_disk = 0; 606 choose_next_idle = 0; 607 clear_bit(R1BIO_FailFast, &r1_bio->state); 608 609 if ((conf->mddev->recovery_cp < this_sector + sectors) || 610 (mddev_is_clustered(conf->mddev) && 611 md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector, 612 this_sector + sectors))) 613 choose_first = 1; 614 else 615 choose_first = 0; 616 617 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) { 618 sector_t dist; 619 sector_t first_bad; 620 int bad_sectors; 621 unsigned int pending; 622 bool nonrot; 623 624 rdev = rcu_dereference(conf->mirrors[disk].rdev); 625 if (r1_bio->bios[disk] == IO_BLOCKED 626 || rdev == NULL 627 || test_bit(Faulty, &rdev->flags)) 628 continue; 629 if (!test_bit(In_sync, &rdev->flags) && 630 rdev->recovery_offset < this_sector + sectors) 631 continue; 632 if (test_bit(WriteMostly, &rdev->flags)) { 633 /* Don't balance among write-mostly, just 634 * use the first as a last resort */ 635 if (best_dist_disk < 0) { 636 if (is_badblock(rdev, this_sector, sectors, 637 &first_bad, &bad_sectors)) { 638 if (first_bad <= this_sector) 639 /* Cannot use this */ 640 continue; 641 best_good_sectors = first_bad - this_sector; 642 } else 643 best_good_sectors = sectors; 644 best_dist_disk = disk; 645 best_pending_disk = disk; 646 } 647 continue; 648 } 649 /* This is a reasonable device to use. It might 650 * even be best. 651 */ 652 if (is_badblock(rdev, this_sector, sectors, 653 &first_bad, &bad_sectors)) { 654 if (best_dist < MaxSector) 655 /* already have a better device */ 656 continue; 657 if (first_bad <= this_sector) { 658 /* cannot read here. If this is the 'primary' 659 * device, then we must not read beyond 660 * bad_sectors from another device.. 661 */ 662 bad_sectors -= (this_sector - first_bad); 663 if (choose_first && sectors > bad_sectors) 664 sectors = bad_sectors; 665 if (best_good_sectors > sectors) 666 best_good_sectors = sectors; 667 668 } else { 669 sector_t good_sectors = first_bad - this_sector; 670 if (good_sectors > best_good_sectors) { 671 best_good_sectors = good_sectors; 672 best_disk = disk; 673 } 674 if (choose_first) 675 break; 676 } 677 continue; 678 } else { 679 if ((sectors > best_good_sectors) && (best_disk >= 0)) 680 best_disk = -1; 681 best_good_sectors = sectors; 682 } 683 684 if (best_disk >= 0) 685 /* At least two disks to choose from so failfast is OK */ 686 set_bit(R1BIO_FailFast, &r1_bio->state); 687 688 nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev)); 689 has_nonrot_disk |= nonrot; 690 pending = atomic_read(&rdev->nr_pending); 691 dist = abs(this_sector - conf->mirrors[disk].head_position); 692 if (choose_first) { 693 best_disk = disk; 694 break; 695 } 696 /* Don't change to another disk for sequential reads */ 697 if (conf->mirrors[disk].next_seq_sect == this_sector 698 || dist == 0) { 699 int opt_iosize = bdev_io_opt(rdev->bdev) >> 9; 700 struct raid1_info *mirror = &conf->mirrors[disk]; 701 702 best_disk = disk; 703 /* 704 * If buffered sequential IO size exceeds optimal 705 * iosize, check if there is idle disk. If yes, choose 706 * the idle disk. read_balance could already choose an 707 * idle disk before noticing it's a sequential IO in 708 * this disk. This doesn't matter because this disk 709 * will idle, next time it will be utilized after the 710 * first disk has IO size exceeds optimal iosize. In 711 * this way, iosize of the first disk will be optimal 712 * iosize at least. iosize of the second disk might be 713 * small, but not a big deal since when the second disk 714 * starts IO, the first disk is likely still busy. 715 */ 716 if (nonrot && opt_iosize > 0 && 717 mirror->seq_start != MaxSector && 718 mirror->next_seq_sect > opt_iosize && 719 mirror->next_seq_sect - opt_iosize >= 720 mirror->seq_start) { 721 choose_next_idle = 1; 722 continue; 723 } 724 break; 725 } 726 727 if (choose_next_idle) 728 continue; 729 730 if (min_pending > pending) { 731 min_pending = pending; 732 best_pending_disk = disk; 733 } 734 735 if (dist < best_dist) { 736 best_dist = dist; 737 best_dist_disk = disk; 738 } 739 } 740 741 /* 742 * If all disks are rotational, choose the closest disk. If any disk is 743 * non-rotational, choose the disk with less pending request even the 744 * disk is rotational, which might/might not be optimal for raids with 745 * mixed ratation/non-rotational disks depending on workload. 746 */ 747 if (best_disk == -1) { 748 if (has_nonrot_disk || min_pending == 0) 749 best_disk = best_pending_disk; 750 else 751 best_disk = best_dist_disk; 752 } 753 754 if (best_disk >= 0) { 755 rdev = rcu_dereference(conf->mirrors[best_disk].rdev); 756 if (!rdev) 757 goto retry; 758 atomic_inc(&rdev->nr_pending); 759 sectors = best_good_sectors; 760 761 if (conf->mirrors[best_disk].next_seq_sect != this_sector) 762 conf->mirrors[best_disk].seq_start = this_sector; 763 764 conf->mirrors[best_disk].next_seq_sect = this_sector + sectors; 765 } 766 rcu_read_unlock(); 767 *max_sectors = sectors; 768 769 return best_disk; 770 } 771 772 static int raid1_congested(struct mddev *mddev, int bits) 773 { 774 struct r1conf *conf = mddev->private; 775 int i, ret = 0; 776 777 if ((bits & (1 << WB_async_congested)) && 778 conf->pending_count >= max_queued_requests) 779 return 1; 780 781 rcu_read_lock(); 782 for (i = 0; i < conf->raid_disks * 2; i++) { 783 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 784 if (rdev && !test_bit(Faulty, &rdev->flags)) { 785 struct request_queue *q = bdev_get_queue(rdev->bdev); 786 787 BUG_ON(!q); 788 789 /* Note the '|| 1' - when read_balance prefers 790 * non-congested targets, it can be removed 791 */ 792 if ((bits & (1 << WB_async_congested)) || 1) 793 ret |= bdi_congested(q->backing_dev_info, bits); 794 else 795 ret &= bdi_congested(q->backing_dev_info, bits); 796 } 797 } 798 rcu_read_unlock(); 799 return ret; 800 } 801 802 static void flush_bio_list(struct r1conf *conf, struct bio *bio) 803 { 804 /* flush any pending bitmap writes to disk before proceeding w/ I/O */ 805 md_bitmap_unplug(conf->mddev->bitmap); 806 wake_up(&conf->wait_barrier); 807 808 while (bio) { /* submit pending writes */ 809 struct bio *next = bio->bi_next; 810 struct md_rdev *rdev = (void *)bio->bi_disk; 811 bio->bi_next = NULL; 812 bio_set_dev(bio, rdev->bdev); 813 if (test_bit(Faulty, &rdev->flags)) { 814 bio_io_error(bio); 815 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) && 816 !blk_queue_discard(bio->bi_disk->queue))) 817 /* Just ignore it */ 818 bio_endio(bio); 819 else 820 generic_make_request(bio); 821 bio = next; 822 cond_resched(); 823 } 824 } 825 826 static void flush_pending_writes(struct r1conf *conf) 827 { 828 /* Any writes that have been queued but are awaiting 829 * bitmap updates get flushed here. 830 */ 831 spin_lock_irq(&conf->device_lock); 832 833 if (conf->pending_bio_list.head) { 834 struct blk_plug plug; 835 struct bio *bio; 836 837 bio = bio_list_get(&conf->pending_bio_list); 838 conf->pending_count = 0; 839 spin_unlock_irq(&conf->device_lock); 840 841 /* 842 * As this is called in a wait_event() loop (see freeze_array), 843 * current->state might be TASK_UNINTERRUPTIBLE which will 844 * cause a warning when we prepare to wait again. As it is 845 * rare that this path is taken, it is perfectly safe to force 846 * us to go around the wait_event() loop again, so the warning 847 * is a false-positive. Silence the warning by resetting 848 * thread state 849 */ 850 __set_current_state(TASK_RUNNING); 851 blk_start_plug(&plug); 852 flush_bio_list(conf, bio); 853 blk_finish_plug(&plug); 854 } else 855 spin_unlock_irq(&conf->device_lock); 856 } 857 858 /* Barriers.... 859 * Sometimes we need to suspend IO while we do something else, 860 * either some resync/recovery, or reconfigure the array. 861 * To do this we raise a 'barrier'. 862 * The 'barrier' is a counter that can be raised multiple times 863 * to count how many activities are happening which preclude 864 * normal IO. 865 * We can only raise the barrier if there is no pending IO. 866 * i.e. if nr_pending == 0. 867 * We choose only to raise the barrier if no-one is waiting for the 868 * barrier to go down. This means that as soon as an IO request 869 * is ready, no other operations which require a barrier will start 870 * until the IO request has had a chance. 871 * 872 * So: regular IO calls 'wait_barrier'. When that returns there 873 * is no backgroup IO happening, It must arrange to call 874 * allow_barrier when it has finished its IO. 875 * backgroup IO calls must call raise_barrier. Once that returns 876 * there is no normal IO happeing. It must arrange to call 877 * lower_barrier when the particular background IO completes. 878 * 879 * If resync/recovery is interrupted, returns -EINTR; 880 * Otherwise, returns 0. 881 */ 882 static int raise_barrier(struct r1conf *conf, sector_t sector_nr) 883 { 884 int idx = sector_to_idx(sector_nr); 885 886 spin_lock_irq(&conf->resync_lock); 887 888 /* Wait until no block IO is waiting */ 889 wait_event_lock_irq(conf->wait_barrier, 890 !atomic_read(&conf->nr_waiting[idx]), 891 conf->resync_lock); 892 893 /* block any new IO from starting */ 894 atomic_inc(&conf->barrier[idx]); 895 /* 896 * In raise_barrier() we firstly increase conf->barrier[idx] then 897 * check conf->nr_pending[idx]. In _wait_barrier() we firstly 898 * increase conf->nr_pending[idx] then check conf->barrier[idx]. 899 * A memory barrier here to make sure conf->nr_pending[idx] won't 900 * be fetched before conf->barrier[idx] is increased. Otherwise 901 * there will be a race between raise_barrier() and _wait_barrier(). 902 */ 903 smp_mb__after_atomic(); 904 905 /* For these conditions we must wait: 906 * A: while the array is in frozen state 907 * B: while conf->nr_pending[idx] is not 0, meaning regular I/O 908 * existing in corresponding I/O barrier bucket. 909 * C: while conf->barrier[idx] >= RESYNC_DEPTH, meaning reaches 910 * max resync count which allowed on current I/O barrier bucket. 911 */ 912 wait_event_lock_irq(conf->wait_barrier, 913 (!conf->array_frozen && 914 !atomic_read(&conf->nr_pending[idx]) && 915 atomic_read(&conf->barrier[idx]) < RESYNC_DEPTH) || 916 test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery), 917 conf->resync_lock); 918 919 if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) { 920 atomic_dec(&conf->barrier[idx]); 921 spin_unlock_irq(&conf->resync_lock); 922 wake_up(&conf->wait_barrier); 923 return -EINTR; 924 } 925 926 atomic_inc(&conf->nr_sync_pending); 927 spin_unlock_irq(&conf->resync_lock); 928 929 return 0; 930 } 931 932 static void lower_barrier(struct r1conf *conf, sector_t sector_nr) 933 { 934 int idx = sector_to_idx(sector_nr); 935 936 BUG_ON(atomic_read(&conf->barrier[idx]) <= 0); 937 938 atomic_dec(&conf->barrier[idx]); 939 atomic_dec(&conf->nr_sync_pending); 940 wake_up(&conf->wait_barrier); 941 } 942 943 static void _wait_barrier(struct r1conf *conf, int idx) 944 { 945 /* 946 * We need to increase conf->nr_pending[idx] very early here, 947 * then raise_barrier() can be blocked when it waits for 948 * conf->nr_pending[idx] to be 0. Then we can avoid holding 949 * conf->resync_lock when there is no barrier raised in same 950 * barrier unit bucket. Also if the array is frozen, I/O 951 * should be blocked until array is unfrozen. 952 */ 953 atomic_inc(&conf->nr_pending[idx]); 954 /* 955 * In _wait_barrier() we firstly increase conf->nr_pending[idx], then 956 * check conf->barrier[idx]. In raise_barrier() we firstly increase 957 * conf->barrier[idx], then check conf->nr_pending[idx]. A memory 958 * barrier is necessary here to make sure conf->barrier[idx] won't be 959 * fetched before conf->nr_pending[idx] is increased. Otherwise there 960 * will be a race between _wait_barrier() and raise_barrier(). 961 */ 962 smp_mb__after_atomic(); 963 964 /* 965 * Don't worry about checking two atomic_t variables at same time 966 * here. If during we check conf->barrier[idx], the array is 967 * frozen (conf->array_frozen is 1), and chonf->barrier[idx] is 968 * 0, it is safe to return and make the I/O continue. Because the 969 * array is frozen, all I/O returned here will eventually complete 970 * or be queued, no race will happen. See code comment in 971 * frozen_array(). 972 */ 973 if (!READ_ONCE(conf->array_frozen) && 974 !atomic_read(&conf->barrier[idx])) 975 return; 976 977 /* 978 * After holding conf->resync_lock, conf->nr_pending[idx] 979 * should be decreased before waiting for barrier to drop. 980 * Otherwise, we may encounter a race condition because 981 * raise_barrer() might be waiting for conf->nr_pending[idx] 982 * to be 0 at same time. 983 */ 984 spin_lock_irq(&conf->resync_lock); 985 atomic_inc(&conf->nr_waiting[idx]); 986 atomic_dec(&conf->nr_pending[idx]); 987 /* 988 * In case freeze_array() is waiting for 989 * get_unqueued_pending() == extra 990 */ 991 wake_up(&conf->wait_barrier); 992 /* Wait for the barrier in same barrier unit bucket to drop. */ 993 wait_event_lock_irq(conf->wait_barrier, 994 !conf->array_frozen && 995 !atomic_read(&conf->barrier[idx]), 996 conf->resync_lock); 997 atomic_inc(&conf->nr_pending[idx]); 998 atomic_dec(&conf->nr_waiting[idx]); 999 spin_unlock_irq(&conf->resync_lock); 1000 } 1001 1002 static void wait_read_barrier(struct r1conf *conf, sector_t sector_nr) 1003 { 1004 int idx = sector_to_idx(sector_nr); 1005 1006 /* 1007 * Very similar to _wait_barrier(). The difference is, for read 1008 * I/O we don't need wait for sync I/O, but if the whole array 1009 * is frozen, the read I/O still has to wait until the array is 1010 * unfrozen. Since there is no ordering requirement with 1011 * conf->barrier[idx] here, memory barrier is unnecessary as well. 1012 */ 1013 atomic_inc(&conf->nr_pending[idx]); 1014 1015 if (!READ_ONCE(conf->array_frozen)) 1016 return; 1017 1018 spin_lock_irq(&conf->resync_lock); 1019 atomic_inc(&conf->nr_waiting[idx]); 1020 atomic_dec(&conf->nr_pending[idx]); 1021 /* 1022 * In case freeze_array() is waiting for 1023 * get_unqueued_pending() == extra 1024 */ 1025 wake_up(&conf->wait_barrier); 1026 /* Wait for array to be unfrozen */ 1027 wait_event_lock_irq(conf->wait_barrier, 1028 !conf->array_frozen, 1029 conf->resync_lock); 1030 atomic_inc(&conf->nr_pending[idx]); 1031 atomic_dec(&conf->nr_waiting[idx]); 1032 spin_unlock_irq(&conf->resync_lock); 1033 } 1034 1035 static void wait_barrier(struct r1conf *conf, sector_t sector_nr) 1036 { 1037 int idx = sector_to_idx(sector_nr); 1038 1039 _wait_barrier(conf, idx); 1040 } 1041 1042 static void _allow_barrier(struct r1conf *conf, int idx) 1043 { 1044 atomic_dec(&conf->nr_pending[idx]); 1045 wake_up(&conf->wait_barrier); 1046 } 1047 1048 static void allow_barrier(struct r1conf *conf, sector_t sector_nr) 1049 { 1050 int idx = sector_to_idx(sector_nr); 1051 1052 _allow_barrier(conf, idx); 1053 } 1054 1055 /* conf->resync_lock should be held */ 1056 static int get_unqueued_pending(struct r1conf *conf) 1057 { 1058 int idx, ret; 1059 1060 ret = atomic_read(&conf->nr_sync_pending); 1061 for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++) 1062 ret += atomic_read(&conf->nr_pending[idx]) - 1063 atomic_read(&conf->nr_queued[idx]); 1064 1065 return ret; 1066 } 1067 1068 static void freeze_array(struct r1conf *conf, int extra) 1069 { 1070 /* Stop sync I/O and normal I/O and wait for everything to 1071 * go quiet. 1072 * This is called in two situations: 1073 * 1) management command handlers (reshape, remove disk, quiesce). 1074 * 2) one normal I/O request failed. 1075 1076 * After array_frozen is set to 1, new sync IO will be blocked at 1077 * raise_barrier(), and new normal I/O will blocked at _wait_barrier() 1078 * or wait_read_barrier(). The flying I/Os will either complete or be 1079 * queued. When everything goes quite, there are only queued I/Os left. 1080 1081 * Every flying I/O contributes to a conf->nr_pending[idx], idx is the 1082 * barrier bucket index which this I/O request hits. When all sync and 1083 * normal I/O are queued, sum of all conf->nr_pending[] will match sum 1084 * of all conf->nr_queued[]. But normal I/O failure is an exception, 1085 * in handle_read_error(), we may call freeze_array() before trying to 1086 * fix the read error. In this case, the error read I/O is not queued, 1087 * so get_unqueued_pending() == 1. 1088 * 1089 * Therefore before this function returns, we need to wait until 1090 * get_unqueued_pendings(conf) gets equal to extra. For 1091 * normal I/O context, extra is 1, in rested situations extra is 0. 1092 */ 1093 spin_lock_irq(&conf->resync_lock); 1094 conf->array_frozen = 1; 1095 raid1_log(conf->mddev, "wait freeze"); 1096 wait_event_lock_irq_cmd( 1097 conf->wait_barrier, 1098 get_unqueued_pending(conf) == extra, 1099 conf->resync_lock, 1100 flush_pending_writes(conf)); 1101 spin_unlock_irq(&conf->resync_lock); 1102 } 1103 static void unfreeze_array(struct r1conf *conf) 1104 { 1105 /* reverse the effect of the freeze */ 1106 spin_lock_irq(&conf->resync_lock); 1107 conf->array_frozen = 0; 1108 spin_unlock_irq(&conf->resync_lock); 1109 wake_up(&conf->wait_barrier); 1110 } 1111 1112 static void alloc_behind_master_bio(struct r1bio *r1_bio, 1113 struct bio *bio) 1114 { 1115 int size = bio->bi_iter.bi_size; 1116 unsigned vcnt = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; 1117 int i = 0; 1118 struct bio *behind_bio = NULL; 1119 1120 behind_bio = bio_alloc_mddev(GFP_NOIO, vcnt, r1_bio->mddev); 1121 if (!behind_bio) 1122 return; 1123 1124 /* discard op, we don't support writezero/writesame yet */ 1125 if (!bio_has_data(bio)) { 1126 behind_bio->bi_iter.bi_size = size; 1127 goto skip_copy; 1128 } 1129 1130 behind_bio->bi_write_hint = bio->bi_write_hint; 1131 1132 while (i < vcnt && size) { 1133 struct page *page; 1134 int len = min_t(int, PAGE_SIZE, size); 1135 1136 page = alloc_page(GFP_NOIO); 1137 if (unlikely(!page)) 1138 goto free_pages; 1139 1140 bio_add_page(behind_bio, page, len, 0); 1141 1142 size -= len; 1143 i++; 1144 } 1145 1146 bio_copy_data(behind_bio, bio); 1147 skip_copy: 1148 r1_bio->behind_master_bio = behind_bio; 1149 set_bit(R1BIO_BehindIO, &r1_bio->state); 1150 1151 return; 1152 1153 free_pages: 1154 pr_debug("%dB behind alloc failed, doing sync I/O\n", 1155 bio->bi_iter.bi_size); 1156 bio_free_pages(behind_bio); 1157 bio_put(behind_bio); 1158 } 1159 1160 struct raid1_plug_cb { 1161 struct blk_plug_cb cb; 1162 struct bio_list pending; 1163 int pending_cnt; 1164 }; 1165 1166 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule) 1167 { 1168 struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb, 1169 cb); 1170 struct mddev *mddev = plug->cb.data; 1171 struct r1conf *conf = mddev->private; 1172 struct bio *bio; 1173 1174 if (from_schedule || current->bio_list) { 1175 spin_lock_irq(&conf->device_lock); 1176 bio_list_merge(&conf->pending_bio_list, &plug->pending); 1177 conf->pending_count += plug->pending_cnt; 1178 spin_unlock_irq(&conf->device_lock); 1179 wake_up(&conf->wait_barrier); 1180 md_wakeup_thread(mddev->thread); 1181 kfree(plug); 1182 return; 1183 } 1184 1185 /* we aren't scheduling, so we can do the write-out directly. */ 1186 bio = bio_list_get(&plug->pending); 1187 flush_bio_list(conf, bio); 1188 kfree(plug); 1189 } 1190 1191 static void init_r1bio(struct r1bio *r1_bio, struct mddev *mddev, struct bio *bio) 1192 { 1193 r1_bio->master_bio = bio; 1194 r1_bio->sectors = bio_sectors(bio); 1195 r1_bio->state = 0; 1196 r1_bio->mddev = mddev; 1197 r1_bio->sector = bio->bi_iter.bi_sector; 1198 } 1199 1200 static inline struct r1bio * 1201 alloc_r1bio(struct mddev *mddev, struct bio *bio) 1202 { 1203 struct r1conf *conf = mddev->private; 1204 struct r1bio *r1_bio; 1205 1206 r1_bio = mempool_alloc(&conf->r1bio_pool, GFP_NOIO); 1207 /* Ensure no bio records IO_BLOCKED */ 1208 memset(r1_bio->bios, 0, conf->raid_disks * sizeof(r1_bio->bios[0])); 1209 init_r1bio(r1_bio, mddev, bio); 1210 return r1_bio; 1211 } 1212 1213 static void raid1_read_request(struct mddev *mddev, struct bio *bio, 1214 int max_read_sectors, struct r1bio *r1_bio) 1215 { 1216 struct r1conf *conf = mddev->private; 1217 struct raid1_info *mirror; 1218 struct bio *read_bio; 1219 struct bitmap *bitmap = mddev->bitmap; 1220 const int op = bio_op(bio); 1221 const unsigned long do_sync = (bio->bi_opf & REQ_SYNC); 1222 int max_sectors; 1223 int rdisk; 1224 bool print_msg = !!r1_bio; 1225 char b[BDEVNAME_SIZE]; 1226 1227 /* 1228 * If r1_bio is set, we are blocking the raid1d thread 1229 * so there is a tiny risk of deadlock. So ask for 1230 * emergency memory if needed. 1231 */ 1232 gfp_t gfp = r1_bio ? (GFP_NOIO | __GFP_HIGH) : GFP_NOIO; 1233 1234 if (print_msg) { 1235 /* Need to get the block device name carefully */ 1236 struct md_rdev *rdev; 1237 rcu_read_lock(); 1238 rdev = rcu_dereference(conf->mirrors[r1_bio->read_disk].rdev); 1239 if (rdev) 1240 bdevname(rdev->bdev, b); 1241 else 1242 strcpy(b, "???"); 1243 rcu_read_unlock(); 1244 } 1245 1246 /* 1247 * Still need barrier for READ in case that whole 1248 * array is frozen. 1249 */ 1250 wait_read_barrier(conf, bio->bi_iter.bi_sector); 1251 1252 if (!r1_bio) 1253 r1_bio = alloc_r1bio(mddev, bio); 1254 else 1255 init_r1bio(r1_bio, mddev, bio); 1256 r1_bio->sectors = max_read_sectors; 1257 1258 /* 1259 * make_request() can abort the operation when read-ahead is being 1260 * used and no empty request is available. 1261 */ 1262 rdisk = read_balance(conf, r1_bio, &max_sectors); 1263 1264 if (rdisk < 0) { 1265 /* couldn't find anywhere to read from */ 1266 if (print_msg) { 1267 pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n", 1268 mdname(mddev), 1269 b, 1270 (unsigned long long)r1_bio->sector); 1271 } 1272 raid_end_bio_io(r1_bio); 1273 return; 1274 } 1275 mirror = conf->mirrors + rdisk; 1276 1277 if (print_msg) 1278 pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %s\n", 1279 mdname(mddev), 1280 (unsigned long long)r1_bio->sector, 1281 bdevname(mirror->rdev->bdev, b)); 1282 1283 if (test_bit(WriteMostly, &mirror->rdev->flags) && 1284 bitmap) { 1285 /* 1286 * Reading from a write-mostly device must take care not to 1287 * over-take any writes that are 'behind' 1288 */ 1289 raid1_log(mddev, "wait behind writes"); 1290 wait_event(bitmap->behind_wait, 1291 atomic_read(&bitmap->behind_writes) == 0); 1292 } 1293 1294 if (max_sectors < bio_sectors(bio)) { 1295 struct bio *split = bio_split(bio, max_sectors, 1296 gfp, &conf->bio_split); 1297 bio_chain(split, bio); 1298 generic_make_request(bio); 1299 bio = split; 1300 r1_bio->master_bio = bio; 1301 r1_bio->sectors = max_sectors; 1302 } 1303 1304 r1_bio->read_disk = rdisk; 1305 1306 read_bio = bio_clone_fast(bio, gfp, &mddev->bio_set); 1307 1308 r1_bio->bios[rdisk] = read_bio; 1309 1310 read_bio->bi_iter.bi_sector = r1_bio->sector + 1311 mirror->rdev->data_offset; 1312 bio_set_dev(read_bio, mirror->rdev->bdev); 1313 read_bio->bi_end_io = raid1_end_read_request; 1314 bio_set_op_attrs(read_bio, op, do_sync); 1315 if (test_bit(FailFast, &mirror->rdev->flags) && 1316 test_bit(R1BIO_FailFast, &r1_bio->state)) 1317 read_bio->bi_opf |= MD_FAILFAST; 1318 read_bio->bi_private = r1_bio; 1319 1320 if (mddev->gendisk) 1321 trace_block_bio_remap(read_bio->bi_disk->queue, read_bio, 1322 disk_devt(mddev->gendisk), r1_bio->sector); 1323 1324 generic_make_request(read_bio); 1325 } 1326 1327 static void raid1_write_request(struct mddev *mddev, struct bio *bio, 1328 int max_write_sectors) 1329 { 1330 struct r1conf *conf = mddev->private; 1331 struct r1bio *r1_bio; 1332 int i, disks; 1333 struct bitmap *bitmap = mddev->bitmap; 1334 unsigned long flags; 1335 struct md_rdev *blocked_rdev; 1336 struct blk_plug_cb *cb; 1337 struct raid1_plug_cb *plug = NULL; 1338 int first_clone; 1339 int max_sectors; 1340 1341 if (mddev_is_clustered(mddev) && 1342 md_cluster_ops->area_resyncing(mddev, WRITE, 1343 bio->bi_iter.bi_sector, bio_end_sector(bio))) { 1344 1345 DEFINE_WAIT(w); 1346 for (;;) { 1347 prepare_to_wait(&conf->wait_barrier, 1348 &w, TASK_IDLE); 1349 if (!md_cluster_ops->area_resyncing(mddev, WRITE, 1350 bio->bi_iter.bi_sector, 1351 bio_end_sector(bio))) 1352 break; 1353 schedule(); 1354 } 1355 finish_wait(&conf->wait_barrier, &w); 1356 } 1357 1358 /* 1359 * Register the new request and wait if the reconstruction 1360 * thread has put up a bar for new requests. 1361 * Continue immediately if no resync is active currently. 1362 */ 1363 wait_barrier(conf, bio->bi_iter.bi_sector); 1364 1365 r1_bio = alloc_r1bio(mddev, bio); 1366 r1_bio->sectors = max_write_sectors; 1367 1368 if (conf->pending_count >= max_queued_requests) { 1369 md_wakeup_thread(mddev->thread); 1370 raid1_log(mddev, "wait queued"); 1371 wait_event(conf->wait_barrier, 1372 conf->pending_count < max_queued_requests); 1373 } 1374 /* first select target devices under rcu_lock and 1375 * inc refcount on their rdev. Record them by setting 1376 * bios[x] to bio 1377 * If there are known/acknowledged bad blocks on any device on 1378 * which we have seen a write error, we want to avoid writing those 1379 * blocks. 1380 * This potentially requires several writes to write around 1381 * the bad blocks. Each set of writes gets it's own r1bio 1382 * with a set of bios attached. 1383 */ 1384 1385 disks = conf->raid_disks * 2; 1386 retry_write: 1387 blocked_rdev = NULL; 1388 rcu_read_lock(); 1389 max_sectors = r1_bio->sectors; 1390 for (i = 0; i < disks; i++) { 1391 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 1392 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) { 1393 atomic_inc(&rdev->nr_pending); 1394 blocked_rdev = rdev; 1395 break; 1396 } 1397 r1_bio->bios[i] = NULL; 1398 if (!rdev || test_bit(Faulty, &rdev->flags)) { 1399 if (i < conf->raid_disks) 1400 set_bit(R1BIO_Degraded, &r1_bio->state); 1401 continue; 1402 } 1403 1404 atomic_inc(&rdev->nr_pending); 1405 if (test_bit(WriteErrorSeen, &rdev->flags)) { 1406 sector_t first_bad; 1407 int bad_sectors; 1408 int is_bad; 1409 1410 is_bad = is_badblock(rdev, r1_bio->sector, max_sectors, 1411 &first_bad, &bad_sectors); 1412 if (is_bad < 0) { 1413 /* mustn't write here until the bad block is 1414 * acknowledged*/ 1415 set_bit(BlockedBadBlocks, &rdev->flags); 1416 blocked_rdev = rdev; 1417 break; 1418 } 1419 if (is_bad && first_bad <= r1_bio->sector) { 1420 /* Cannot write here at all */ 1421 bad_sectors -= (r1_bio->sector - first_bad); 1422 if (bad_sectors < max_sectors) 1423 /* mustn't write more than bad_sectors 1424 * to other devices yet 1425 */ 1426 max_sectors = bad_sectors; 1427 rdev_dec_pending(rdev, mddev); 1428 /* We don't set R1BIO_Degraded as that 1429 * only applies if the disk is 1430 * missing, so it might be re-added, 1431 * and we want to know to recover this 1432 * chunk. 1433 * In this case the device is here, 1434 * and the fact that this chunk is not 1435 * in-sync is recorded in the bad 1436 * block log 1437 */ 1438 continue; 1439 } 1440 if (is_bad) { 1441 int good_sectors = first_bad - r1_bio->sector; 1442 if (good_sectors < max_sectors) 1443 max_sectors = good_sectors; 1444 } 1445 } 1446 r1_bio->bios[i] = bio; 1447 } 1448 rcu_read_unlock(); 1449 1450 if (unlikely(blocked_rdev)) { 1451 /* Wait for this device to become unblocked */ 1452 int j; 1453 1454 for (j = 0; j < i; j++) 1455 if (r1_bio->bios[j]) 1456 rdev_dec_pending(conf->mirrors[j].rdev, mddev); 1457 r1_bio->state = 0; 1458 allow_barrier(conf, bio->bi_iter.bi_sector); 1459 raid1_log(mddev, "wait rdev %d blocked", blocked_rdev->raid_disk); 1460 md_wait_for_blocked_rdev(blocked_rdev, mddev); 1461 wait_barrier(conf, bio->bi_iter.bi_sector); 1462 goto retry_write; 1463 } 1464 1465 if (max_sectors < bio_sectors(bio)) { 1466 struct bio *split = bio_split(bio, max_sectors, 1467 GFP_NOIO, &conf->bio_split); 1468 bio_chain(split, bio); 1469 generic_make_request(bio); 1470 bio = split; 1471 r1_bio->master_bio = bio; 1472 r1_bio->sectors = max_sectors; 1473 } 1474 1475 atomic_set(&r1_bio->remaining, 1); 1476 atomic_set(&r1_bio->behind_remaining, 0); 1477 1478 first_clone = 1; 1479 1480 for (i = 0; i < disks; i++) { 1481 struct bio *mbio = NULL; 1482 if (!r1_bio->bios[i]) 1483 continue; 1484 1485 if (first_clone) { 1486 /* do behind I/O ? 1487 * Not if there are too many, or cannot 1488 * allocate memory, or a reader on WriteMostly 1489 * is waiting for behind writes to flush */ 1490 if (bitmap && 1491 (atomic_read(&bitmap->behind_writes) 1492 < mddev->bitmap_info.max_write_behind) && 1493 !waitqueue_active(&bitmap->behind_wait)) { 1494 alloc_behind_master_bio(r1_bio, bio); 1495 } 1496 1497 md_bitmap_startwrite(bitmap, r1_bio->sector, r1_bio->sectors, 1498 test_bit(R1BIO_BehindIO, &r1_bio->state)); 1499 first_clone = 0; 1500 } 1501 1502 if (r1_bio->behind_master_bio) 1503 mbio = bio_clone_fast(r1_bio->behind_master_bio, 1504 GFP_NOIO, &mddev->bio_set); 1505 else 1506 mbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set); 1507 1508 if (r1_bio->behind_master_bio) { 1509 struct md_rdev *rdev = conf->mirrors[i].rdev; 1510 1511 if (test_bit(WBCollisionCheck, &rdev->flags)) { 1512 sector_t lo = r1_bio->sector; 1513 sector_t hi = r1_bio->sector + r1_bio->sectors; 1514 1515 wait_event(rdev->wb_io_wait, 1516 check_and_add_wb(rdev, lo, hi) == 0); 1517 } 1518 if (test_bit(WriteMostly, &rdev->flags)) 1519 atomic_inc(&r1_bio->behind_remaining); 1520 } 1521 1522 r1_bio->bios[i] = mbio; 1523 1524 mbio->bi_iter.bi_sector = (r1_bio->sector + 1525 conf->mirrors[i].rdev->data_offset); 1526 bio_set_dev(mbio, conf->mirrors[i].rdev->bdev); 1527 mbio->bi_end_io = raid1_end_write_request; 1528 mbio->bi_opf = bio_op(bio) | (bio->bi_opf & (REQ_SYNC | REQ_FUA)); 1529 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags) && 1530 !test_bit(WriteMostly, &conf->mirrors[i].rdev->flags) && 1531 conf->raid_disks - mddev->degraded > 1) 1532 mbio->bi_opf |= MD_FAILFAST; 1533 mbio->bi_private = r1_bio; 1534 1535 atomic_inc(&r1_bio->remaining); 1536 1537 if (mddev->gendisk) 1538 trace_block_bio_remap(mbio->bi_disk->queue, 1539 mbio, disk_devt(mddev->gendisk), 1540 r1_bio->sector); 1541 /* flush_pending_writes() needs access to the rdev so...*/ 1542 mbio->bi_disk = (void *)conf->mirrors[i].rdev; 1543 1544 cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug)); 1545 if (cb) 1546 plug = container_of(cb, struct raid1_plug_cb, cb); 1547 else 1548 plug = NULL; 1549 if (plug) { 1550 bio_list_add(&plug->pending, mbio); 1551 plug->pending_cnt++; 1552 } else { 1553 spin_lock_irqsave(&conf->device_lock, flags); 1554 bio_list_add(&conf->pending_bio_list, mbio); 1555 conf->pending_count++; 1556 spin_unlock_irqrestore(&conf->device_lock, flags); 1557 md_wakeup_thread(mddev->thread); 1558 } 1559 } 1560 1561 r1_bio_write_done(r1_bio); 1562 1563 /* In case raid1d snuck in to freeze_array */ 1564 wake_up(&conf->wait_barrier); 1565 } 1566 1567 static bool raid1_make_request(struct mddev *mddev, struct bio *bio) 1568 { 1569 sector_t sectors; 1570 1571 if (unlikely(bio->bi_opf & REQ_PREFLUSH) 1572 && md_flush_request(mddev, bio)) 1573 return true; 1574 1575 /* 1576 * There is a limit to the maximum size, but 1577 * the read/write handler might find a lower limit 1578 * due to bad blocks. To avoid multiple splits, 1579 * we pass the maximum number of sectors down 1580 * and let the lower level perform the split. 1581 */ 1582 sectors = align_to_barrier_unit_end( 1583 bio->bi_iter.bi_sector, bio_sectors(bio)); 1584 1585 if (bio_data_dir(bio) == READ) 1586 raid1_read_request(mddev, bio, sectors, NULL); 1587 else { 1588 if (!md_write_start(mddev,bio)) 1589 return false; 1590 raid1_write_request(mddev, bio, sectors); 1591 } 1592 return true; 1593 } 1594 1595 static void raid1_status(struct seq_file *seq, struct mddev *mddev) 1596 { 1597 struct r1conf *conf = mddev->private; 1598 int i; 1599 1600 seq_printf(seq, " [%d/%d] [", conf->raid_disks, 1601 conf->raid_disks - mddev->degraded); 1602 rcu_read_lock(); 1603 for (i = 0; i < conf->raid_disks; i++) { 1604 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 1605 seq_printf(seq, "%s", 1606 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_"); 1607 } 1608 rcu_read_unlock(); 1609 seq_printf(seq, "]"); 1610 } 1611 1612 static void raid1_error(struct mddev *mddev, struct md_rdev *rdev) 1613 { 1614 char b[BDEVNAME_SIZE]; 1615 struct r1conf *conf = mddev->private; 1616 unsigned long flags; 1617 1618 /* 1619 * If it is not operational, then we have already marked it as dead 1620 * else if it is the last working disks with "fail_last_dev == false", 1621 * ignore the error, let the next level up know. 1622 * else mark the drive as failed 1623 */ 1624 spin_lock_irqsave(&conf->device_lock, flags); 1625 if (test_bit(In_sync, &rdev->flags) && !mddev->fail_last_dev 1626 && (conf->raid_disks - mddev->degraded) == 1) { 1627 /* 1628 * Don't fail the drive, act as though we were just a 1629 * normal single drive. 1630 * However don't try a recovery from this drive as 1631 * it is very likely to fail. 1632 */ 1633 conf->recovery_disabled = mddev->recovery_disabled; 1634 spin_unlock_irqrestore(&conf->device_lock, flags); 1635 return; 1636 } 1637 set_bit(Blocked, &rdev->flags); 1638 if (test_and_clear_bit(In_sync, &rdev->flags)) 1639 mddev->degraded++; 1640 set_bit(Faulty, &rdev->flags); 1641 spin_unlock_irqrestore(&conf->device_lock, flags); 1642 /* 1643 * if recovery is running, make sure it aborts. 1644 */ 1645 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 1646 set_mask_bits(&mddev->sb_flags, 0, 1647 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING)); 1648 pr_crit("md/raid1:%s: Disk failure on %s, disabling device.\n" 1649 "md/raid1:%s: Operation continuing on %d devices.\n", 1650 mdname(mddev), bdevname(rdev->bdev, b), 1651 mdname(mddev), conf->raid_disks - mddev->degraded); 1652 } 1653 1654 static void print_conf(struct r1conf *conf) 1655 { 1656 int i; 1657 1658 pr_debug("RAID1 conf printout:\n"); 1659 if (!conf) { 1660 pr_debug("(!conf)\n"); 1661 return; 1662 } 1663 pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded, 1664 conf->raid_disks); 1665 1666 rcu_read_lock(); 1667 for (i = 0; i < conf->raid_disks; i++) { 1668 char b[BDEVNAME_SIZE]; 1669 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 1670 if (rdev) 1671 pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n", 1672 i, !test_bit(In_sync, &rdev->flags), 1673 !test_bit(Faulty, &rdev->flags), 1674 bdevname(rdev->bdev,b)); 1675 } 1676 rcu_read_unlock(); 1677 } 1678 1679 static void close_sync(struct r1conf *conf) 1680 { 1681 int idx; 1682 1683 for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++) { 1684 _wait_barrier(conf, idx); 1685 _allow_barrier(conf, idx); 1686 } 1687 1688 mempool_exit(&conf->r1buf_pool); 1689 } 1690 1691 static int raid1_spare_active(struct mddev *mddev) 1692 { 1693 int i; 1694 struct r1conf *conf = mddev->private; 1695 int count = 0; 1696 unsigned long flags; 1697 1698 /* 1699 * Find all failed disks within the RAID1 configuration 1700 * and mark them readable. 1701 * Called under mddev lock, so rcu protection not needed. 1702 * device_lock used to avoid races with raid1_end_read_request 1703 * which expects 'In_sync' flags and ->degraded to be consistent. 1704 */ 1705 spin_lock_irqsave(&conf->device_lock, flags); 1706 for (i = 0; i < conf->raid_disks; i++) { 1707 struct md_rdev *rdev = conf->mirrors[i].rdev; 1708 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev; 1709 if (repl 1710 && !test_bit(Candidate, &repl->flags) 1711 && repl->recovery_offset == MaxSector 1712 && !test_bit(Faulty, &repl->flags) 1713 && !test_and_set_bit(In_sync, &repl->flags)) { 1714 /* replacement has just become active */ 1715 if (!rdev || 1716 !test_and_clear_bit(In_sync, &rdev->flags)) 1717 count++; 1718 if (rdev) { 1719 /* Replaced device not technically 1720 * faulty, but we need to be sure 1721 * it gets removed and never re-added 1722 */ 1723 set_bit(Faulty, &rdev->flags); 1724 sysfs_notify_dirent_safe( 1725 rdev->sysfs_state); 1726 } 1727 } 1728 if (rdev 1729 && rdev->recovery_offset == MaxSector 1730 && !test_bit(Faulty, &rdev->flags) 1731 && !test_and_set_bit(In_sync, &rdev->flags)) { 1732 count++; 1733 sysfs_notify_dirent_safe(rdev->sysfs_state); 1734 } 1735 } 1736 mddev->degraded -= count; 1737 spin_unlock_irqrestore(&conf->device_lock, flags); 1738 1739 print_conf(conf); 1740 return count; 1741 } 1742 1743 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev) 1744 { 1745 struct r1conf *conf = mddev->private; 1746 int err = -EEXIST; 1747 int mirror = 0; 1748 struct raid1_info *p; 1749 int first = 0; 1750 int last = conf->raid_disks - 1; 1751 1752 if (mddev->recovery_disabled == conf->recovery_disabled) 1753 return -EBUSY; 1754 1755 if (md_integrity_add_rdev(rdev, mddev)) 1756 return -ENXIO; 1757 1758 if (rdev->raid_disk >= 0) 1759 first = last = rdev->raid_disk; 1760 1761 /* 1762 * find the disk ... but prefer rdev->saved_raid_disk 1763 * if possible. 1764 */ 1765 if (rdev->saved_raid_disk >= 0 && 1766 rdev->saved_raid_disk >= first && 1767 rdev->saved_raid_disk < conf->raid_disks && 1768 conf->mirrors[rdev->saved_raid_disk].rdev == NULL) 1769 first = last = rdev->saved_raid_disk; 1770 1771 for (mirror = first; mirror <= last; mirror++) { 1772 p = conf->mirrors + mirror; 1773 if (!p->rdev) { 1774 if (mddev->gendisk) 1775 disk_stack_limits(mddev->gendisk, rdev->bdev, 1776 rdev->data_offset << 9); 1777 1778 p->head_position = 0; 1779 rdev->raid_disk = mirror; 1780 err = 0; 1781 /* As all devices are equivalent, we don't need a full recovery 1782 * if this was recently any drive of the array 1783 */ 1784 if (rdev->saved_raid_disk < 0) 1785 conf->fullsync = 1; 1786 rcu_assign_pointer(p->rdev, rdev); 1787 break; 1788 } 1789 if (test_bit(WantReplacement, &p->rdev->flags) && 1790 p[conf->raid_disks].rdev == NULL) { 1791 /* Add this device as a replacement */ 1792 clear_bit(In_sync, &rdev->flags); 1793 set_bit(Replacement, &rdev->flags); 1794 rdev->raid_disk = mirror; 1795 err = 0; 1796 conf->fullsync = 1; 1797 rcu_assign_pointer(p[conf->raid_disks].rdev, rdev); 1798 break; 1799 } 1800 } 1801 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev))) 1802 blk_queue_flag_set(QUEUE_FLAG_DISCARD, mddev->queue); 1803 print_conf(conf); 1804 return err; 1805 } 1806 1807 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev) 1808 { 1809 struct r1conf *conf = mddev->private; 1810 int err = 0; 1811 int number = rdev->raid_disk; 1812 struct raid1_info *p = conf->mirrors + number; 1813 1814 if (rdev != p->rdev) 1815 p = conf->mirrors + conf->raid_disks + number; 1816 1817 print_conf(conf); 1818 if (rdev == p->rdev) { 1819 if (test_bit(In_sync, &rdev->flags) || 1820 atomic_read(&rdev->nr_pending)) { 1821 err = -EBUSY; 1822 goto abort; 1823 } 1824 /* Only remove non-faulty devices if recovery 1825 * is not possible. 1826 */ 1827 if (!test_bit(Faulty, &rdev->flags) && 1828 mddev->recovery_disabled != conf->recovery_disabled && 1829 mddev->degraded < conf->raid_disks) { 1830 err = -EBUSY; 1831 goto abort; 1832 } 1833 p->rdev = NULL; 1834 if (!test_bit(RemoveSynchronized, &rdev->flags)) { 1835 synchronize_rcu(); 1836 if (atomic_read(&rdev->nr_pending)) { 1837 /* lost the race, try later */ 1838 err = -EBUSY; 1839 p->rdev = rdev; 1840 goto abort; 1841 } 1842 } 1843 if (conf->mirrors[conf->raid_disks + number].rdev) { 1844 /* We just removed a device that is being replaced. 1845 * Move down the replacement. We drain all IO before 1846 * doing this to avoid confusion. 1847 */ 1848 struct md_rdev *repl = 1849 conf->mirrors[conf->raid_disks + number].rdev; 1850 freeze_array(conf, 0); 1851 if (atomic_read(&repl->nr_pending)) { 1852 /* It means that some queued IO of retry_list 1853 * hold repl. Thus, we cannot set replacement 1854 * as NULL, avoiding rdev NULL pointer 1855 * dereference in sync_request_write and 1856 * handle_write_finished. 1857 */ 1858 err = -EBUSY; 1859 unfreeze_array(conf); 1860 goto abort; 1861 } 1862 clear_bit(Replacement, &repl->flags); 1863 p->rdev = repl; 1864 conf->mirrors[conf->raid_disks + number].rdev = NULL; 1865 unfreeze_array(conf); 1866 } 1867 1868 clear_bit(WantReplacement, &rdev->flags); 1869 err = md_integrity_register(mddev); 1870 } 1871 abort: 1872 1873 print_conf(conf); 1874 return err; 1875 } 1876 1877 static void end_sync_read(struct bio *bio) 1878 { 1879 struct r1bio *r1_bio = get_resync_r1bio(bio); 1880 1881 update_head_pos(r1_bio->read_disk, r1_bio); 1882 1883 /* 1884 * we have read a block, now it needs to be re-written, 1885 * or re-read if the read failed. 1886 * We don't do much here, just schedule handling by raid1d 1887 */ 1888 if (!bio->bi_status) 1889 set_bit(R1BIO_Uptodate, &r1_bio->state); 1890 1891 if (atomic_dec_and_test(&r1_bio->remaining)) 1892 reschedule_retry(r1_bio); 1893 } 1894 1895 static void abort_sync_write(struct mddev *mddev, struct r1bio *r1_bio) 1896 { 1897 sector_t sync_blocks = 0; 1898 sector_t s = r1_bio->sector; 1899 long sectors_to_go = r1_bio->sectors; 1900 1901 /* make sure these bits don't get cleared. */ 1902 do { 1903 md_bitmap_end_sync(mddev->bitmap, s, &sync_blocks, 1); 1904 s += sync_blocks; 1905 sectors_to_go -= sync_blocks; 1906 } while (sectors_to_go > 0); 1907 } 1908 1909 static void put_sync_write_buf(struct r1bio *r1_bio, int uptodate) 1910 { 1911 if (atomic_dec_and_test(&r1_bio->remaining)) { 1912 struct mddev *mddev = r1_bio->mddev; 1913 int s = r1_bio->sectors; 1914 1915 if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 1916 test_bit(R1BIO_WriteError, &r1_bio->state)) 1917 reschedule_retry(r1_bio); 1918 else { 1919 put_buf(r1_bio); 1920 md_done_sync(mddev, s, uptodate); 1921 } 1922 } 1923 } 1924 1925 static void end_sync_write(struct bio *bio) 1926 { 1927 int uptodate = !bio->bi_status; 1928 struct r1bio *r1_bio = get_resync_r1bio(bio); 1929 struct mddev *mddev = r1_bio->mddev; 1930 struct r1conf *conf = mddev->private; 1931 sector_t first_bad; 1932 int bad_sectors; 1933 struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev; 1934 1935 if (!uptodate) { 1936 abort_sync_write(mddev, r1_bio); 1937 set_bit(WriteErrorSeen, &rdev->flags); 1938 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 1939 set_bit(MD_RECOVERY_NEEDED, & 1940 mddev->recovery); 1941 set_bit(R1BIO_WriteError, &r1_bio->state); 1942 } else if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors, 1943 &first_bad, &bad_sectors) && 1944 !is_badblock(conf->mirrors[r1_bio->read_disk].rdev, 1945 r1_bio->sector, 1946 r1_bio->sectors, 1947 &first_bad, &bad_sectors) 1948 ) 1949 set_bit(R1BIO_MadeGood, &r1_bio->state); 1950 1951 put_sync_write_buf(r1_bio, uptodate); 1952 } 1953 1954 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector, 1955 int sectors, struct page *page, int rw) 1956 { 1957 if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false)) 1958 /* success */ 1959 return 1; 1960 if (rw == WRITE) { 1961 set_bit(WriteErrorSeen, &rdev->flags); 1962 if (!test_and_set_bit(WantReplacement, 1963 &rdev->flags)) 1964 set_bit(MD_RECOVERY_NEEDED, & 1965 rdev->mddev->recovery); 1966 } 1967 /* need to record an error - either for the block or the device */ 1968 if (!rdev_set_badblocks(rdev, sector, sectors, 0)) 1969 md_error(rdev->mddev, rdev); 1970 return 0; 1971 } 1972 1973 static int fix_sync_read_error(struct r1bio *r1_bio) 1974 { 1975 /* Try some synchronous reads of other devices to get 1976 * good data, much like with normal read errors. Only 1977 * read into the pages we already have so we don't 1978 * need to re-issue the read request. 1979 * We don't need to freeze the array, because being in an 1980 * active sync request, there is no normal IO, and 1981 * no overlapping syncs. 1982 * We don't need to check is_badblock() again as we 1983 * made sure that anything with a bad block in range 1984 * will have bi_end_io clear. 1985 */ 1986 struct mddev *mddev = r1_bio->mddev; 1987 struct r1conf *conf = mddev->private; 1988 struct bio *bio = r1_bio->bios[r1_bio->read_disk]; 1989 struct page **pages = get_resync_pages(bio)->pages; 1990 sector_t sect = r1_bio->sector; 1991 int sectors = r1_bio->sectors; 1992 int idx = 0; 1993 struct md_rdev *rdev; 1994 1995 rdev = conf->mirrors[r1_bio->read_disk].rdev; 1996 if (test_bit(FailFast, &rdev->flags)) { 1997 /* Don't try recovering from here - just fail it 1998 * ... unless it is the last working device of course */ 1999 md_error(mddev, rdev); 2000 if (test_bit(Faulty, &rdev->flags)) 2001 /* Don't try to read from here, but make sure 2002 * put_buf does it's thing 2003 */ 2004 bio->bi_end_io = end_sync_write; 2005 } 2006 2007 while(sectors) { 2008 int s = sectors; 2009 int d = r1_bio->read_disk; 2010 int success = 0; 2011 int start; 2012 2013 if (s > (PAGE_SIZE>>9)) 2014 s = PAGE_SIZE >> 9; 2015 do { 2016 if (r1_bio->bios[d]->bi_end_io == end_sync_read) { 2017 /* No rcu protection needed here devices 2018 * can only be removed when no resync is 2019 * active, and resync is currently active 2020 */ 2021 rdev = conf->mirrors[d].rdev; 2022 if (sync_page_io(rdev, sect, s<<9, 2023 pages[idx], 2024 REQ_OP_READ, 0, false)) { 2025 success = 1; 2026 break; 2027 } 2028 } 2029 d++; 2030 if (d == conf->raid_disks * 2) 2031 d = 0; 2032 } while (!success && d != r1_bio->read_disk); 2033 2034 if (!success) { 2035 char b[BDEVNAME_SIZE]; 2036 int abort = 0; 2037 /* Cannot read from anywhere, this block is lost. 2038 * Record a bad block on each device. If that doesn't 2039 * work just disable and interrupt the recovery. 2040 * Don't fail devices as that won't really help. 2041 */ 2042 pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n", 2043 mdname(mddev), bio_devname(bio, b), 2044 (unsigned long long)r1_bio->sector); 2045 for (d = 0; d < conf->raid_disks * 2; d++) { 2046 rdev = conf->mirrors[d].rdev; 2047 if (!rdev || test_bit(Faulty, &rdev->flags)) 2048 continue; 2049 if (!rdev_set_badblocks(rdev, sect, s, 0)) 2050 abort = 1; 2051 } 2052 if (abort) { 2053 conf->recovery_disabled = 2054 mddev->recovery_disabled; 2055 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 2056 md_done_sync(mddev, r1_bio->sectors, 0); 2057 put_buf(r1_bio); 2058 return 0; 2059 } 2060 /* Try next page */ 2061 sectors -= s; 2062 sect += s; 2063 idx++; 2064 continue; 2065 } 2066 2067 start = d; 2068 /* write it back and re-read */ 2069 while (d != r1_bio->read_disk) { 2070 if (d == 0) 2071 d = conf->raid_disks * 2; 2072 d--; 2073 if (r1_bio->bios[d]->bi_end_io != end_sync_read) 2074 continue; 2075 rdev = conf->mirrors[d].rdev; 2076 if (r1_sync_page_io(rdev, sect, s, 2077 pages[idx], 2078 WRITE) == 0) { 2079 r1_bio->bios[d]->bi_end_io = NULL; 2080 rdev_dec_pending(rdev, mddev); 2081 } 2082 } 2083 d = start; 2084 while (d != r1_bio->read_disk) { 2085 if (d == 0) 2086 d = conf->raid_disks * 2; 2087 d--; 2088 if (r1_bio->bios[d]->bi_end_io != end_sync_read) 2089 continue; 2090 rdev = conf->mirrors[d].rdev; 2091 if (r1_sync_page_io(rdev, sect, s, 2092 pages[idx], 2093 READ) != 0) 2094 atomic_add(s, &rdev->corrected_errors); 2095 } 2096 sectors -= s; 2097 sect += s; 2098 idx ++; 2099 } 2100 set_bit(R1BIO_Uptodate, &r1_bio->state); 2101 bio->bi_status = 0; 2102 return 1; 2103 } 2104 2105 static void process_checks(struct r1bio *r1_bio) 2106 { 2107 /* We have read all readable devices. If we haven't 2108 * got the block, then there is no hope left. 2109 * If we have, then we want to do a comparison 2110 * and skip the write if everything is the same. 2111 * If any blocks failed to read, then we need to 2112 * attempt an over-write 2113 */ 2114 struct mddev *mddev = r1_bio->mddev; 2115 struct r1conf *conf = mddev->private; 2116 int primary; 2117 int i; 2118 int vcnt; 2119 2120 /* Fix variable parts of all bios */ 2121 vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9); 2122 for (i = 0; i < conf->raid_disks * 2; i++) { 2123 blk_status_t status; 2124 struct bio *b = r1_bio->bios[i]; 2125 struct resync_pages *rp = get_resync_pages(b); 2126 if (b->bi_end_io != end_sync_read) 2127 continue; 2128 /* fixup the bio for reuse, but preserve errno */ 2129 status = b->bi_status; 2130 bio_reset(b); 2131 b->bi_status = status; 2132 b->bi_iter.bi_sector = r1_bio->sector + 2133 conf->mirrors[i].rdev->data_offset; 2134 bio_set_dev(b, conf->mirrors[i].rdev->bdev); 2135 b->bi_end_io = end_sync_read; 2136 rp->raid_bio = r1_bio; 2137 b->bi_private = rp; 2138 2139 /* initialize bvec table again */ 2140 md_bio_reset_resync_pages(b, rp, r1_bio->sectors << 9); 2141 } 2142 for (primary = 0; primary < conf->raid_disks * 2; primary++) 2143 if (r1_bio->bios[primary]->bi_end_io == end_sync_read && 2144 !r1_bio->bios[primary]->bi_status) { 2145 r1_bio->bios[primary]->bi_end_io = NULL; 2146 rdev_dec_pending(conf->mirrors[primary].rdev, mddev); 2147 break; 2148 } 2149 r1_bio->read_disk = primary; 2150 for (i = 0; i < conf->raid_disks * 2; i++) { 2151 int j = 0; 2152 struct bio *pbio = r1_bio->bios[primary]; 2153 struct bio *sbio = r1_bio->bios[i]; 2154 blk_status_t status = sbio->bi_status; 2155 struct page **ppages = get_resync_pages(pbio)->pages; 2156 struct page **spages = get_resync_pages(sbio)->pages; 2157 struct bio_vec *bi; 2158 int page_len[RESYNC_PAGES] = { 0 }; 2159 struct bvec_iter_all iter_all; 2160 2161 if (sbio->bi_end_io != end_sync_read) 2162 continue; 2163 /* Now we can 'fixup' the error value */ 2164 sbio->bi_status = 0; 2165 2166 bio_for_each_segment_all(bi, sbio, iter_all) 2167 page_len[j++] = bi->bv_len; 2168 2169 if (!status) { 2170 for (j = vcnt; j-- ; ) { 2171 if (memcmp(page_address(ppages[j]), 2172 page_address(spages[j]), 2173 page_len[j])) 2174 break; 2175 } 2176 } else 2177 j = 0; 2178 if (j >= 0) 2179 atomic64_add(r1_bio->sectors, &mddev->resync_mismatches); 2180 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery) 2181 && !status)) { 2182 /* No need to write to this device. */ 2183 sbio->bi_end_io = NULL; 2184 rdev_dec_pending(conf->mirrors[i].rdev, mddev); 2185 continue; 2186 } 2187 2188 bio_copy_data(sbio, pbio); 2189 } 2190 } 2191 2192 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio) 2193 { 2194 struct r1conf *conf = mddev->private; 2195 int i; 2196 int disks = conf->raid_disks * 2; 2197 struct bio *wbio; 2198 2199 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) 2200 /* ouch - failed to read all of that. */ 2201 if (!fix_sync_read_error(r1_bio)) 2202 return; 2203 2204 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 2205 process_checks(r1_bio); 2206 2207 /* 2208 * schedule writes 2209 */ 2210 atomic_set(&r1_bio->remaining, 1); 2211 for (i = 0; i < disks ; i++) { 2212 wbio = r1_bio->bios[i]; 2213 if (wbio->bi_end_io == NULL || 2214 (wbio->bi_end_io == end_sync_read && 2215 (i == r1_bio->read_disk || 2216 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery)))) 2217 continue; 2218 if (test_bit(Faulty, &conf->mirrors[i].rdev->flags)) { 2219 abort_sync_write(mddev, r1_bio); 2220 continue; 2221 } 2222 2223 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0); 2224 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags)) 2225 wbio->bi_opf |= MD_FAILFAST; 2226 2227 wbio->bi_end_io = end_sync_write; 2228 atomic_inc(&r1_bio->remaining); 2229 md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio)); 2230 2231 generic_make_request(wbio); 2232 } 2233 2234 put_sync_write_buf(r1_bio, 1); 2235 } 2236 2237 /* 2238 * This is a kernel thread which: 2239 * 2240 * 1. Retries failed read operations on working mirrors. 2241 * 2. Updates the raid superblock when problems encounter. 2242 * 3. Performs writes following reads for array synchronising. 2243 */ 2244 2245 static void fix_read_error(struct r1conf *conf, int read_disk, 2246 sector_t sect, int sectors) 2247 { 2248 struct mddev *mddev = conf->mddev; 2249 while(sectors) { 2250 int s = sectors; 2251 int d = read_disk; 2252 int success = 0; 2253 int start; 2254 struct md_rdev *rdev; 2255 2256 if (s > (PAGE_SIZE>>9)) 2257 s = PAGE_SIZE >> 9; 2258 2259 do { 2260 sector_t first_bad; 2261 int bad_sectors; 2262 2263 rcu_read_lock(); 2264 rdev = rcu_dereference(conf->mirrors[d].rdev); 2265 if (rdev && 2266 (test_bit(In_sync, &rdev->flags) || 2267 (!test_bit(Faulty, &rdev->flags) && 2268 rdev->recovery_offset >= sect + s)) && 2269 is_badblock(rdev, sect, s, 2270 &first_bad, &bad_sectors) == 0) { 2271 atomic_inc(&rdev->nr_pending); 2272 rcu_read_unlock(); 2273 if (sync_page_io(rdev, sect, s<<9, 2274 conf->tmppage, REQ_OP_READ, 0, false)) 2275 success = 1; 2276 rdev_dec_pending(rdev, mddev); 2277 if (success) 2278 break; 2279 } else 2280 rcu_read_unlock(); 2281 d++; 2282 if (d == conf->raid_disks * 2) 2283 d = 0; 2284 } while (!success && d != read_disk); 2285 2286 if (!success) { 2287 /* Cannot read from anywhere - mark it bad */ 2288 struct md_rdev *rdev = conf->mirrors[read_disk].rdev; 2289 if (!rdev_set_badblocks(rdev, sect, s, 0)) 2290 md_error(mddev, rdev); 2291 break; 2292 } 2293 /* write it back and re-read */ 2294 start = d; 2295 while (d != read_disk) { 2296 if (d==0) 2297 d = conf->raid_disks * 2; 2298 d--; 2299 rcu_read_lock(); 2300 rdev = rcu_dereference(conf->mirrors[d].rdev); 2301 if (rdev && 2302 !test_bit(Faulty, &rdev->flags)) { 2303 atomic_inc(&rdev->nr_pending); 2304 rcu_read_unlock(); 2305 r1_sync_page_io(rdev, sect, s, 2306 conf->tmppage, WRITE); 2307 rdev_dec_pending(rdev, mddev); 2308 } else 2309 rcu_read_unlock(); 2310 } 2311 d = start; 2312 while (d != read_disk) { 2313 char b[BDEVNAME_SIZE]; 2314 if (d==0) 2315 d = conf->raid_disks * 2; 2316 d--; 2317 rcu_read_lock(); 2318 rdev = rcu_dereference(conf->mirrors[d].rdev); 2319 if (rdev && 2320 !test_bit(Faulty, &rdev->flags)) { 2321 atomic_inc(&rdev->nr_pending); 2322 rcu_read_unlock(); 2323 if (r1_sync_page_io(rdev, sect, s, 2324 conf->tmppage, READ)) { 2325 atomic_add(s, &rdev->corrected_errors); 2326 pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %s)\n", 2327 mdname(mddev), s, 2328 (unsigned long long)(sect + 2329 rdev->data_offset), 2330 bdevname(rdev->bdev, b)); 2331 } 2332 rdev_dec_pending(rdev, mddev); 2333 } else 2334 rcu_read_unlock(); 2335 } 2336 sectors -= s; 2337 sect += s; 2338 } 2339 } 2340 2341 static int narrow_write_error(struct r1bio *r1_bio, int i) 2342 { 2343 struct mddev *mddev = r1_bio->mddev; 2344 struct r1conf *conf = mddev->private; 2345 struct md_rdev *rdev = conf->mirrors[i].rdev; 2346 2347 /* bio has the data to be written to device 'i' where 2348 * we just recently had a write error. 2349 * We repeatedly clone the bio and trim down to one block, 2350 * then try the write. Where the write fails we record 2351 * a bad block. 2352 * It is conceivable that the bio doesn't exactly align with 2353 * blocks. We must handle this somehow. 2354 * 2355 * We currently own a reference on the rdev. 2356 */ 2357 2358 int block_sectors; 2359 sector_t sector; 2360 int sectors; 2361 int sect_to_write = r1_bio->sectors; 2362 int ok = 1; 2363 2364 if (rdev->badblocks.shift < 0) 2365 return 0; 2366 2367 block_sectors = roundup(1 << rdev->badblocks.shift, 2368 bdev_logical_block_size(rdev->bdev) >> 9); 2369 sector = r1_bio->sector; 2370 sectors = ((sector + block_sectors) 2371 & ~(sector_t)(block_sectors - 1)) 2372 - sector; 2373 2374 while (sect_to_write) { 2375 struct bio *wbio; 2376 if (sectors > sect_to_write) 2377 sectors = sect_to_write; 2378 /* Write at 'sector' for 'sectors'*/ 2379 2380 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) { 2381 wbio = bio_clone_fast(r1_bio->behind_master_bio, 2382 GFP_NOIO, 2383 &mddev->bio_set); 2384 } else { 2385 wbio = bio_clone_fast(r1_bio->master_bio, GFP_NOIO, 2386 &mddev->bio_set); 2387 } 2388 2389 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0); 2390 wbio->bi_iter.bi_sector = r1_bio->sector; 2391 wbio->bi_iter.bi_size = r1_bio->sectors << 9; 2392 2393 bio_trim(wbio, sector - r1_bio->sector, sectors); 2394 wbio->bi_iter.bi_sector += rdev->data_offset; 2395 bio_set_dev(wbio, rdev->bdev); 2396 2397 if (submit_bio_wait(wbio) < 0) 2398 /* failure! */ 2399 ok = rdev_set_badblocks(rdev, sector, 2400 sectors, 0) 2401 && ok; 2402 2403 bio_put(wbio); 2404 sect_to_write -= sectors; 2405 sector += sectors; 2406 sectors = block_sectors; 2407 } 2408 return ok; 2409 } 2410 2411 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio) 2412 { 2413 int m; 2414 int s = r1_bio->sectors; 2415 for (m = 0; m < conf->raid_disks * 2 ; m++) { 2416 struct md_rdev *rdev = conf->mirrors[m].rdev; 2417 struct bio *bio = r1_bio->bios[m]; 2418 if (bio->bi_end_io == NULL) 2419 continue; 2420 if (!bio->bi_status && 2421 test_bit(R1BIO_MadeGood, &r1_bio->state)) { 2422 rdev_clear_badblocks(rdev, r1_bio->sector, s, 0); 2423 } 2424 if (bio->bi_status && 2425 test_bit(R1BIO_WriteError, &r1_bio->state)) { 2426 if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0)) 2427 md_error(conf->mddev, rdev); 2428 } 2429 } 2430 put_buf(r1_bio); 2431 md_done_sync(conf->mddev, s, 1); 2432 } 2433 2434 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio) 2435 { 2436 int m, idx; 2437 bool fail = false; 2438 2439 for (m = 0; m < conf->raid_disks * 2 ; m++) 2440 if (r1_bio->bios[m] == IO_MADE_GOOD) { 2441 struct md_rdev *rdev = conf->mirrors[m].rdev; 2442 rdev_clear_badblocks(rdev, 2443 r1_bio->sector, 2444 r1_bio->sectors, 0); 2445 rdev_dec_pending(rdev, conf->mddev); 2446 } else if (r1_bio->bios[m] != NULL) { 2447 /* This drive got a write error. We need to 2448 * narrow down and record precise write 2449 * errors. 2450 */ 2451 fail = true; 2452 if (!narrow_write_error(r1_bio, m)) { 2453 md_error(conf->mddev, 2454 conf->mirrors[m].rdev); 2455 /* an I/O failed, we can't clear the bitmap */ 2456 set_bit(R1BIO_Degraded, &r1_bio->state); 2457 } 2458 rdev_dec_pending(conf->mirrors[m].rdev, 2459 conf->mddev); 2460 } 2461 if (fail) { 2462 spin_lock_irq(&conf->device_lock); 2463 list_add(&r1_bio->retry_list, &conf->bio_end_io_list); 2464 idx = sector_to_idx(r1_bio->sector); 2465 atomic_inc(&conf->nr_queued[idx]); 2466 spin_unlock_irq(&conf->device_lock); 2467 /* 2468 * In case freeze_array() is waiting for condition 2469 * get_unqueued_pending() == extra to be true. 2470 */ 2471 wake_up(&conf->wait_barrier); 2472 md_wakeup_thread(conf->mddev->thread); 2473 } else { 2474 if (test_bit(R1BIO_WriteError, &r1_bio->state)) 2475 close_write(r1_bio); 2476 raid_end_bio_io(r1_bio); 2477 } 2478 } 2479 2480 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio) 2481 { 2482 struct mddev *mddev = conf->mddev; 2483 struct bio *bio; 2484 struct md_rdev *rdev; 2485 2486 clear_bit(R1BIO_ReadError, &r1_bio->state); 2487 /* we got a read error. Maybe the drive is bad. Maybe just 2488 * the block and we can fix it. 2489 * We freeze all other IO, and try reading the block from 2490 * other devices. When we find one, we re-write 2491 * and check it that fixes the read error. 2492 * This is all done synchronously while the array is 2493 * frozen 2494 */ 2495 2496 bio = r1_bio->bios[r1_bio->read_disk]; 2497 bio_put(bio); 2498 r1_bio->bios[r1_bio->read_disk] = NULL; 2499 2500 rdev = conf->mirrors[r1_bio->read_disk].rdev; 2501 if (mddev->ro == 0 2502 && !test_bit(FailFast, &rdev->flags)) { 2503 freeze_array(conf, 1); 2504 fix_read_error(conf, r1_bio->read_disk, 2505 r1_bio->sector, r1_bio->sectors); 2506 unfreeze_array(conf); 2507 } else if (mddev->ro == 0 && test_bit(FailFast, &rdev->flags)) { 2508 md_error(mddev, rdev); 2509 } else { 2510 r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED; 2511 } 2512 2513 rdev_dec_pending(rdev, conf->mddev); 2514 allow_barrier(conf, r1_bio->sector); 2515 bio = r1_bio->master_bio; 2516 2517 /* Reuse the old r1_bio so that the IO_BLOCKED settings are preserved */ 2518 r1_bio->state = 0; 2519 raid1_read_request(mddev, bio, r1_bio->sectors, r1_bio); 2520 } 2521 2522 static void raid1d(struct md_thread *thread) 2523 { 2524 struct mddev *mddev = thread->mddev; 2525 struct r1bio *r1_bio; 2526 unsigned long flags; 2527 struct r1conf *conf = mddev->private; 2528 struct list_head *head = &conf->retry_list; 2529 struct blk_plug plug; 2530 int idx; 2531 2532 md_check_recovery(mddev); 2533 2534 if (!list_empty_careful(&conf->bio_end_io_list) && 2535 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) { 2536 LIST_HEAD(tmp); 2537 spin_lock_irqsave(&conf->device_lock, flags); 2538 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) 2539 list_splice_init(&conf->bio_end_io_list, &tmp); 2540 spin_unlock_irqrestore(&conf->device_lock, flags); 2541 while (!list_empty(&tmp)) { 2542 r1_bio = list_first_entry(&tmp, struct r1bio, 2543 retry_list); 2544 list_del(&r1_bio->retry_list); 2545 idx = sector_to_idx(r1_bio->sector); 2546 atomic_dec(&conf->nr_queued[idx]); 2547 if (mddev->degraded) 2548 set_bit(R1BIO_Degraded, &r1_bio->state); 2549 if (test_bit(R1BIO_WriteError, &r1_bio->state)) 2550 close_write(r1_bio); 2551 raid_end_bio_io(r1_bio); 2552 } 2553 } 2554 2555 blk_start_plug(&plug); 2556 for (;;) { 2557 2558 flush_pending_writes(conf); 2559 2560 spin_lock_irqsave(&conf->device_lock, flags); 2561 if (list_empty(head)) { 2562 spin_unlock_irqrestore(&conf->device_lock, flags); 2563 break; 2564 } 2565 r1_bio = list_entry(head->prev, struct r1bio, retry_list); 2566 list_del(head->prev); 2567 idx = sector_to_idx(r1_bio->sector); 2568 atomic_dec(&conf->nr_queued[idx]); 2569 spin_unlock_irqrestore(&conf->device_lock, flags); 2570 2571 mddev = r1_bio->mddev; 2572 conf = mddev->private; 2573 if (test_bit(R1BIO_IsSync, &r1_bio->state)) { 2574 if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 2575 test_bit(R1BIO_WriteError, &r1_bio->state)) 2576 handle_sync_write_finished(conf, r1_bio); 2577 else 2578 sync_request_write(mddev, r1_bio); 2579 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 2580 test_bit(R1BIO_WriteError, &r1_bio->state)) 2581 handle_write_finished(conf, r1_bio); 2582 else if (test_bit(R1BIO_ReadError, &r1_bio->state)) 2583 handle_read_error(conf, r1_bio); 2584 else 2585 WARN_ON_ONCE(1); 2586 2587 cond_resched(); 2588 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING)) 2589 md_check_recovery(mddev); 2590 } 2591 blk_finish_plug(&plug); 2592 } 2593 2594 static int init_resync(struct r1conf *conf) 2595 { 2596 int buffs; 2597 2598 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE; 2599 BUG_ON(mempool_initialized(&conf->r1buf_pool)); 2600 2601 return mempool_init(&conf->r1buf_pool, buffs, r1buf_pool_alloc, 2602 r1buf_pool_free, conf->poolinfo); 2603 } 2604 2605 static struct r1bio *raid1_alloc_init_r1buf(struct r1conf *conf) 2606 { 2607 struct r1bio *r1bio = mempool_alloc(&conf->r1buf_pool, GFP_NOIO); 2608 struct resync_pages *rps; 2609 struct bio *bio; 2610 int i; 2611 2612 for (i = conf->poolinfo->raid_disks; i--; ) { 2613 bio = r1bio->bios[i]; 2614 rps = bio->bi_private; 2615 bio_reset(bio); 2616 bio->bi_private = rps; 2617 } 2618 r1bio->master_bio = NULL; 2619 return r1bio; 2620 } 2621 2622 /* 2623 * perform a "sync" on one "block" 2624 * 2625 * We need to make sure that no normal I/O request - particularly write 2626 * requests - conflict with active sync requests. 2627 * 2628 * This is achieved by tracking pending requests and a 'barrier' concept 2629 * that can be installed to exclude normal IO requests. 2630 */ 2631 2632 static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr, 2633 int *skipped) 2634 { 2635 struct r1conf *conf = mddev->private; 2636 struct r1bio *r1_bio; 2637 struct bio *bio; 2638 sector_t max_sector, nr_sectors; 2639 int disk = -1; 2640 int i; 2641 int wonly = -1; 2642 int write_targets = 0, read_targets = 0; 2643 sector_t sync_blocks; 2644 int still_degraded = 0; 2645 int good_sectors = RESYNC_SECTORS; 2646 int min_bad = 0; /* number of sectors that are bad in all devices */ 2647 int idx = sector_to_idx(sector_nr); 2648 int page_idx = 0; 2649 2650 if (!mempool_initialized(&conf->r1buf_pool)) 2651 if (init_resync(conf)) 2652 return 0; 2653 2654 max_sector = mddev->dev_sectors; 2655 if (sector_nr >= max_sector) { 2656 /* If we aborted, we need to abort the 2657 * sync on the 'current' bitmap chunk (there will 2658 * only be one in raid1 resync. 2659 * We can find the current addess in mddev->curr_resync 2660 */ 2661 if (mddev->curr_resync < max_sector) /* aborted */ 2662 md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 2663 &sync_blocks, 1); 2664 else /* completed sync */ 2665 conf->fullsync = 0; 2666 2667 md_bitmap_close_sync(mddev->bitmap); 2668 close_sync(conf); 2669 2670 if (mddev_is_clustered(mddev)) { 2671 conf->cluster_sync_low = 0; 2672 conf->cluster_sync_high = 0; 2673 } 2674 return 0; 2675 } 2676 2677 if (mddev->bitmap == NULL && 2678 mddev->recovery_cp == MaxSector && 2679 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 2680 conf->fullsync == 0) { 2681 *skipped = 1; 2682 return max_sector - sector_nr; 2683 } 2684 /* before building a request, check if we can skip these blocks.. 2685 * This call the bitmap_start_sync doesn't actually record anything 2686 */ 2687 if (!md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) && 2688 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 2689 /* We can skip this block, and probably several more */ 2690 *skipped = 1; 2691 return sync_blocks; 2692 } 2693 2694 /* 2695 * If there is non-resync activity waiting for a turn, then let it 2696 * though before starting on this new sync request. 2697 */ 2698 if (atomic_read(&conf->nr_waiting[idx])) 2699 schedule_timeout_uninterruptible(1); 2700 2701 /* we are incrementing sector_nr below. To be safe, we check against 2702 * sector_nr + two times RESYNC_SECTORS 2703 */ 2704 2705 md_bitmap_cond_end_sync(mddev->bitmap, sector_nr, 2706 mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high)); 2707 2708 2709 if (raise_barrier(conf, sector_nr)) 2710 return 0; 2711 2712 r1_bio = raid1_alloc_init_r1buf(conf); 2713 2714 rcu_read_lock(); 2715 /* 2716 * If we get a correctably read error during resync or recovery, 2717 * we might want to read from a different device. So we 2718 * flag all drives that could conceivably be read from for READ, 2719 * and any others (which will be non-In_sync devices) for WRITE. 2720 * If a read fails, we try reading from something else for which READ 2721 * is OK. 2722 */ 2723 2724 r1_bio->mddev = mddev; 2725 r1_bio->sector = sector_nr; 2726 r1_bio->state = 0; 2727 set_bit(R1BIO_IsSync, &r1_bio->state); 2728 /* make sure good_sectors won't go across barrier unit boundary */ 2729 good_sectors = align_to_barrier_unit_end(sector_nr, good_sectors); 2730 2731 for (i = 0; i < conf->raid_disks * 2; i++) { 2732 struct md_rdev *rdev; 2733 bio = r1_bio->bios[i]; 2734 2735 rdev = rcu_dereference(conf->mirrors[i].rdev); 2736 if (rdev == NULL || 2737 test_bit(Faulty, &rdev->flags)) { 2738 if (i < conf->raid_disks) 2739 still_degraded = 1; 2740 } else if (!test_bit(In_sync, &rdev->flags)) { 2741 bio_set_op_attrs(bio, REQ_OP_WRITE, 0); 2742 bio->bi_end_io = end_sync_write; 2743 write_targets ++; 2744 } else { 2745 /* may need to read from here */ 2746 sector_t first_bad = MaxSector; 2747 int bad_sectors; 2748 2749 if (is_badblock(rdev, sector_nr, good_sectors, 2750 &first_bad, &bad_sectors)) { 2751 if (first_bad > sector_nr) 2752 good_sectors = first_bad - sector_nr; 2753 else { 2754 bad_sectors -= (sector_nr - first_bad); 2755 if (min_bad == 0 || 2756 min_bad > bad_sectors) 2757 min_bad = bad_sectors; 2758 } 2759 } 2760 if (sector_nr < first_bad) { 2761 if (test_bit(WriteMostly, &rdev->flags)) { 2762 if (wonly < 0) 2763 wonly = i; 2764 } else { 2765 if (disk < 0) 2766 disk = i; 2767 } 2768 bio_set_op_attrs(bio, REQ_OP_READ, 0); 2769 bio->bi_end_io = end_sync_read; 2770 read_targets++; 2771 } else if (!test_bit(WriteErrorSeen, &rdev->flags) && 2772 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && 2773 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) { 2774 /* 2775 * The device is suitable for reading (InSync), 2776 * but has bad block(s) here. Let's try to correct them, 2777 * if we are doing resync or repair. Otherwise, leave 2778 * this device alone for this sync request. 2779 */ 2780 bio_set_op_attrs(bio, REQ_OP_WRITE, 0); 2781 bio->bi_end_io = end_sync_write; 2782 write_targets++; 2783 } 2784 } 2785 if (rdev && bio->bi_end_io) { 2786 atomic_inc(&rdev->nr_pending); 2787 bio->bi_iter.bi_sector = sector_nr + rdev->data_offset; 2788 bio_set_dev(bio, rdev->bdev); 2789 if (test_bit(FailFast, &rdev->flags)) 2790 bio->bi_opf |= MD_FAILFAST; 2791 } 2792 } 2793 rcu_read_unlock(); 2794 if (disk < 0) 2795 disk = wonly; 2796 r1_bio->read_disk = disk; 2797 2798 if (read_targets == 0 && min_bad > 0) { 2799 /* These sectors are bad on all InSync devices, so we 2800 * need to mark them bad on all write targets 2801 */ 2802 int ok = 1; 2803 for (i = 0 ; i < conf->raid_disks * 2 ; i++) 2804 if (r1_bio->bios[i]->bi_end_io == end_sync_write) { 2805 struct md_rdev *rdev = conf->mirrors[i].rdev; 2806 ok = rdev_set_badblocks(rdev, sector_nr, 2807 min_bad, 0 2808 ) && ok; 2809 } 2810 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2811 *skipped = 1; 2812 put_buf(r1_bio); 2813 2814 if (!ok) { 2815 /* Cannot record the badblocks, so need to 2816 * abort the resync. 2817 * If there are multiple read targets, could just 2818 * fail the really bad ones ??? 2819 */ 2820 conf->recovery_disabled = mddev->recovery_disabled; 2821 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 2822 return 0; 2823 } else 2824 return min_bad; 2825 2826 } 2827 if (min_bad > 0 && min_bad < good_sectors) { 2828 /* only resync enough to reach the next bad->good 2829 * transition */ 2830 good_sectors = min_bad; 2831 } 2832 2833 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0) 2834 /* extra read targets are also write targets */ 2835 write_targets += read_targets-1; 2836 2837 if (write_targets == 0 || read_targets == 0) { 2838 /* There is nowhere to write, so all non-sync 2839 * drives must be failed - so we are finished 2840 */ 2841 sector_t rv; 2842 if (min_bad > 0) 2843 max_sector = sector_nr + min_bad; 2844 rv = max_sector - sector_nr; 2845 *skipped = 1; 2846 put_buf(r1_bio); 2847 return rv; 2848 } 2849 2850 if (max_sector > mddev->resync_max) 2851 max_sector = mddev->resync_max; /* Don't do IO beyond here */ 2852 if (max_sector > sector_nr + good_sectors) 2853 max_sector = sector_nr + good_sectors; 2854 nr_sectors = 0; 2855 sync_blocks = 0; 2856 do { 2857 struct page *page; 2858 int len = PAGE_SIZE; 2859 if (sector_nr + (len>>9) > max_sector) 2860 len = (max_sector - sector_nr) << 9; 2861 if (len == 0) 2862 break; 2863 if (sync_blocks == 0) { 2864 if (!md_bitmap_start_sync(mddev->bitmap, sector_nr, 2865 &sync_blocks, still_degraded) && 2866 !conf->fullsync && 2867 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 2868 break; 2869 if ((len >> 9) > sync_blocks) 2870 len = sync_blocks<<9; 2871 } 2872 2873 for (i = 0 ; i < conf->raid_disks * 2; i++) { 2874 struct resync_pages *rp; 2875 2876 bio = r1_bio->bios[i]; 2877 rp = get_resync_pages(bio); 2878 if (bio->bi_end_io) { 2879 page = resync_fetch_page(rp, page_idx); 2880 2881 /* 2882 * won't fail because the vec table is big 2883 * enough to hold all these pages 2884 */ 2885 bio_add_page(bio, page, len, 0); 2886 } 2887 } 2888 nr_sectors += len>>9; 2889 sector_nr += len>>9; 2890 sync_blocks -= (len>>9); 2891 } while (++page_idx < RESYNC_PAGES); 2892 2893 r1_bio->sectors = nr_sectors; 2894 2895 if (mddev_is_clustered(mddev) && 2896 conf->cluster_sync_high < sector_nr + nr_sectors) { 2897 conf->cluster_sync_low = mddev->curr_resync_completed; 2898 conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS; 2899 /* Send resync message */ 2900 md_cluster_ops->resync_info_update(mddev, 2901 conf->cluster_sync_low, 2902 conf->cluster_sync_high); 2903 } 2904 2905 /* For a user-requested sync, we read all readable devices and do a 2906 * compare 2907 */ 2908 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 2909 atomic_set(&r1_bio->remaining, read_targets); 2910 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) { 2911 bio = r1_bio->bios[i]; 2912 if (bio->bi_end_io == end_sync_read) { 2913 read_targets--; 2914 md_sync_acct_bio(bio, nr_sectors); 2915 if (read_targets == 1) 2916 bio->bi_opf &= ~MD_FAILFAST; 2917 generic_make_request(bio); 2918 } 2919 } 2920 } else { 2921 atomic_set(&r1_bio->remaining, 1); 2922 bio = r1_bio->bios[r1_bio->read_disk]; 2923 md_sync_acct_bio(bio, nr_sectors); 2924 if (read_targets == 1) 2925 bio->bi_opf &= ~MD_FAILFAST; 2926 generic_make_request(bio); 2927 } 2928 return nr_sectors; 2929 } 2930 2931 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks) 2932 { 2933 if (sectors) 2934 return sectors; 2935 2936 return mddev->dev_sectors; 2937 } 2938 2939 static struct r1conf *setup_conf(struct mddev *mddev) 2940 { 2941 struct r1conf *conf; 2942 int i; 2943 struct raid1_info *disk; 2944 struct md_rdev *rdev; 2945 int err = -ENOMEM; 2946 2947 conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL); 2948 if (!conf) 2949 goto abort; 2950 2951 conf->nr_pending = kcalloc(BARRIER_BUCKETS_NR, 2952 sizeof(atomic_t), GFP_KERNEL); 2953 if (!conf->nr_pending) 2954 goto abort; 2955 2956 conf->nr_waiting = kcalloc(BARRIER_BUCKETS_NR, 2957 sizeof(atomic_t), GFP_KERNEL); 2958 if (!conf->nr_waiting) 2959 goto abort; 2960 2961 conf->nr_queued = kcalloc(BARRIER_BUCKETS_NR, 2962 sizeof(atomic_t), GFP_KERNEL); 2963 if (!conf->nr_queued) 2964 goto abort; 2965 2966 conf->barrier = kcalloc(BARRIER_BUCKETS_NR, 2967 sizeof(atomic_t), GFP_KERNEL); 2968 if (!conf->barrier) 2969 goto abort; 2970 2971 conf->mirrors = kzalloc(array3_size(sizeof(struct raid1_info), 2972 mddev->raid_disks, 2), 2973 GFP_KERNEL); 2974 if (!conf->mirrors) 2975 goto abort; 2976 2977 conf->tmppage = alloc_page(GFP_KERNEL); 2978 if (!conf->tmppage) 2979 goto abort; 2980 2981 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL); 2982 if (!conf->poolinfo) 2983 goto abort; 2984 conf->poolinfo->raid_disks = mddev->raid_disks * 2; 2985 err = mempool_init(&conf->r1bio_pool, NR_RAID_BIOS, r1bio_pool_alloc, 2986 rbio_pool_free, conf->poolinfo); 2987 if (err) 2988 goto abort; 2989 2990 err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0); 2991 if (err) 2992 goto abort; 2993 2994 conf->poolinfo->mddev = mddev; 2995 2996 err = -EINVAL; 2997 spin_lock_init(&conf->device_lock); 2998 rdev_for_each(rdev, mddev) { 2999 int disk_idx = rdev->raid_disk; 3000 if (disk_idx >= mddev->raid_disks 3001 || disk_idx < 0) 3002 continue; 3003 if (test_bit(Replacement, &rdev->flags)) 3004 disk = conf->mirrors + mddev->raid_disks + disk_idx; 3005 else 3006 disk = conf->mirrors + disk_idx; 3007 3008 if (disk->rdev) 3009 goto abort; 3010 disk->rdev = rdev; 3011 disk->head_position = 0; 3012 disk->seq_start = MaxSector; 3013 } 3014 conf->raid_disks = mddev->raid_disks; 3015 conf->mddev = mddev; 3016 INIT_LIST_HEAD(&conf->retry_list); 3017 INIT_LIST_HEAD(&conf->bio_end_io_list); 3018 3019 spin_lock_init(&conf->resync_lock); 3020 init_waitqueue_head(&conf->wait_barrier); 3021 3022 bio_list_init(&conf->pending_bio_list); 3023 conf->pending_count = 0; 3024 conf->recovery_disabled = mddev->recovery_disabled - 1; 3025 3026 err = -EIO; 3027 for (i = 0; i < conf->raid_disks * 2; i++) { 3028 3029 disk = conf->mirrors + i; 3030 3031 if (i < conf->raid_disks && 3032 disk[conf->raid_disks].rdev) { 3033 /* This slot has a replacement. */ 3034 if (!disk->rdev) { 3035 /* No original, just make the replacement 3036 * a recovering spare 3037 */ 3038 disk->rdev = 3039 disk[conf->raid_disks].rdev; 3040 disk[conf->raid_disks].rdev = NULL; 3041 } else if (!test_bit(In_sync, &disk->rdev->flags)) 3042 /* Original is not in_sync - bad */ 3043 goto abort; 3044 } 3045 3046 if (!disk->rdev || 3047 !test_bit(In_sync, &disk->rdev->flags)) { 3048 disk->head_position = 0; 3049 if (disk->rdev && 3050 (disk->rdev->saved_raid_disk < 0)) 3051 conf->fullsync = 1; 3052 } 3053 } 3054 3055 err = -ENOMEM; 3056 conf->thread = md_register_thread(raid1d, mddev, "raid1"); 3057 if (!conf->thread) 3058 goto abort; 3059 3060 return conf; 3061 3062 abort: 3063 if (conf) { 3064 mempool_exit(&conf->r1bio_pool); 3065 kfree(conf->mirrors); 3066 safe_put_page(conf->tmppage); 3067 kfree(conf->poolinfo); 3068 kfree(conf->nr_pending); 3069 kfree(conf->nr_waiting); 3070 kfree(conf->nr_queued); 3071 kfree(conf->barrier); 3072 bioset_exit(&conf->bio_split); 3073 kfree(conf); 3074 } 3075 return ERR_PTR(err); 3076 } 3077 3078 static void raid1_free(struct mddev *mddev, void *priv); 3079 static int raid1_run(struct mddev *mddev) 3080 { 3081 struct r1conf *conf; 3082 int i; 3083 struct md_rdev *rdev; 3084 int ret; 3085 bool discard_supported = false; 3086 3087 if (mddev->level != 1) { 3088 pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n", 3089 mdname(mddev), mddev->level); 3090 return -EIO; 3091 } 3092 if (mddev->reshape_position != MaxSector) { 3093 pr_warn("md/raid1:%s: reshape_position set but not supported\n", 3094 mdname(mddev)); 3095 return -EIO; 3096 } 3097 if (mddev_init_writes_pending(mddev) < 0) 3098 return -ENOMEM; 3099 /* 3100 * copy the already verified devices into our private RAID1 3101 * bookkeeping area. [whatever we allocate in run(), 3102 * should be freed in raid1_free()] 3103 */ 3104 if (mddev->private == NULL) 3105 conf = setup_conf(mddev); 3106 else 3107 conf = mddev->private; 3108 3109 if (IS_ERR(conf)) 3110 return PTR_ERR(conf); 3111 3112 if (mddev->queue) { 3113 blk_queue_max_write_same_sectors(mddev->queue, 0); 3114 blk_queue_max_write_zeroes_sectors(mddev->queue, 0); 3115 } 3116 3117 rdev_for_each(rdev, mddev) { 3118 if (!mddev->gendisk) 3119 continue; 3120 disk_stack_limits(mddev->gendisk, rdev->bdev, 3121 rdev->data_offset << 9); 3122 if (blk_queue_discard(bdev_get_queue(rdev->bdev))) 3123 discard_supported = true; 3124 } 3125 3126 mddev->degraded = 0; 3127 for (i = 0; i < conf->raid_disks; i++) 3128 if (conf->mirrors[i].rdev == NULL || 3129 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) || 3130 test_bit(Faulty, &conf->mirrors[i].rdev->flags)) 3131 mddev->degraded++; 3132 /* 3133 * RAID1 needs at least one disk in active 3134 */ 3135 if (conf->raid_disks - mddev->degraded < 1) { 3136 ret = -EINVAL; 3137 goto abort; 3138 } 3139 3140 if (conf->raid_disks - mddev->degraded == 1) 3141 mddev->recovery_cp = MaxSector; 3142 3143 if (mddev->recovery_cp != MaxSector) 3144 pr_info("md/raid1:%s: not clean -- starting background reconstruction\n", 3145 mdname(mddev)); 3146 pr_info("md/raid1:%s: active with %d out of %d mirrors\n", 3147 mdname(mddev), mddev->raid_disks - mddev->degraded, 3148 mddev->raid_disks); 3149 3150 /* 3151 * Ok, everything is just fine now 3152 */ 3153 mddev->thread = conf->thread; 3154 conf->thread = NULL; 3155 mddev->private = conf; 3156 set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags); 3157 3158 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0)); 3159 3160 if (mddev->queue) { 3161 if (discard_supported) 3162 blk_queue_flag_set(QUEUE_FLAG_DISCARD, 3163 mddev->queue); 3164 else 3165 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, 3166 mddev->queue); 3167 } 3168 3169 ret = md_integrity_register(mddev); 3170 if (ret) { 3171 md_unregister_thread(&mddev->thread); 3172 goto abort; 3173 } 3174 return 0; 3175 3176 abort: 3177 raid1_free(mddev, conf); 3178 return ret; 3179 } 3180 3181 static void raid1_free(struct mddev *mddev, void *priv) 3182 { 3183 struct r1conf *conf = priv; 3184 3185 mempool_exit(&conf->r1bio_pool); 3186 kfree(conf->mirrors); 3187 safe_put_page(conf->tmppage); 3188 kfree(conf->poolinfo); 3189 kfree(conf->nr_pending); 3190 kfree(conf->nr_waiting); 3191 kfree(conf->nr_queued); 3192 kfree(conf->barrier); 3193 bioset_exit(&conf->bio_split); 3194 kfree(conf); 3195 } 3196 3197 static int raid1_resize(struct mddev *mddev, sector_t sectors) 3198 { 3199 /* no resync is happening, and there is enough space 3200 * on all devices, so we can resize. 3201 * We need to make sure resync covers any new space. 3202 * If the array is shrinking we should possibly wait until 3203 * any io in the removed space completes, but it hardly seems 3204 * worth it. 3205 */ 3206 sector_t newsize = raid1_size(mddev, sectors, 0); 3207 if (mddev->external_size && 3208 mddev->array_sectors > newsize) 3209 return -EINVAL; 3210 if (mddev->bitmap) { 3211 int ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0); 3212 if (ret) 3213 return ret; 3214 } 3215 md_set_array_sectors(mddev, newsize); 3216 if (sectors > mddev->dev_sectors && 3217 mddev->recovery_cp > mddev->dev_sectors) { 3218 mddev->recovery_cp = mddev->dev_sectors; 3219 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3220 } 3221 mddev->dev_sectors = sectors; 3222 mddev->resync_max_sectors = sectors; 3223 return 0; 3224 } 3225 3226 static int raid1_reshape(struct mddev *mddev) 3227 { 3228 /* We need to: 3229 * 1/ resize the r1bio_pool 3230 * 2/ resize conf->mirrors 3231 * 3232 * We allocate a new r1bio_pool if we can. 3233 * Then raise a device barrier and wait until all IO stops. 3234 * Then resize conf->mirrors and swap in the new r1bio pool. 3235 * 3236 * At the same time, we "pack" the devices so that all the missing 3237 * devices have the higher raid_disk numbers. 3238 */ 3239 mempool_t newpool, oldpool; 3240 struct pool_info *newpoolinfo; 3241 struct raid1_info *newmirrors; 3242 struct r1conf *conf = mddev->private; 3243 int cnt, raid_disks; 3244 unsigned long flags; 3245 int d, d2; 3246 int ret; 3247 3248 memset(&newpool, 0, sizeof(newpool)); 3249 memset(&oldpool, 0, sizeof(oldpool)); 3250 3251 /* Cannot change chunk_size, layout, or level */ 3252 if (mddev->chunk_sectors != mddev->new_chunk_sectors || 3253 mddev->layout != mddev->new_layout || 3254 mddev->level != mddev->new_level) { 3255 mddev->new_chunk_sectors = mddev->chunk_sectors; 3256 mddev->new_layout = mddev->layout; 3257 mddev->new_level = mddev->level; 3258 return -EINVAL; 3259 } 3260 3261 if (!mddev_is_clustered(mddev)) 3262 md_allow_write(mddev); 3263 3264 raid_disks = mddev->raid_disks + mddev->delta_disks; 3265 3266 if (raid_disks < conf->raid_disks) { 3267 cnt=0; 3268 for (d= 0; d < conf->raid_disks; d++) 3269 if (conf->mirrors[d].rdev) 3270 cnt++; 3271 if (cnt > raid_disks) 3272 return -EBUSY; 3273 } 3274 3275 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL); 3276 if (!newpoolinfo) 3277 return -ENOMEM; 3278 newpoolinfo->mddev = mddev; 3279 newpoolinfo->raid_disks = raid_disks * 2; 3280 3281 ret = mempool_init(&newpool, NR_RAID_BIOS, r1bio_pool_alloc, 3282 rbio_pool_free, newpoolinfo); 3283 if (ret) { 3284 kfree(newpoolinfo); 3285 return ret; 3286 } 3287 newmirrors = kzalloc(array3_size(sizeof(struct raid1_info), 3288 raid_disks, 2), 3289 GFP_KERNEL); 3290 if (!newmirrors) { 3291 kfree(newpoolinfo); 3292 mempool_exit(&newpool); 3293 return -ENOMEM; 3294 } 3295 3296 freeze_array(conf, 0); 3297 3298 /* ok, everything is stopped */ 3299 oldpool = conf->r1bio_pool; 3300 conf->r1bio_pool = newpool; 3301 3302 for (d = d2 = 0; d < conf->raid_disks; d++) { 3303 struct md_rdev *rdev = conf->mirrors[d].rdev; 3304 if (rdev && rdev->raid_disk != d2) { 3305 sysfs_unlink_rdev(mddev, rdev); 3306 rdev->raid_disk = d2; 3307 sysfs_unlink_rdev(mddev, rdev); 3308 if (sysfs_link_rdev(mddev, rdev)) 3309 pr_warn("md/raid1:%s: cannot register rd%d\n", 3310 mdname(mddev), rdev->raid_disk); 3311 } 3312 if (rdev) 3313 newmirrors[d2++].rdev = rdev; 3314 } 3315 kfree(conf->mirrors); 3316 conf->mirrors = newmirrors; 3317 kfree(conf->poolinfo); 3318 conf->poolinfo = newpoolinfo; 3319 3320 spin_lock_irqsave(&conf->device_lock, flags); 3321 mddev->degraded += (raid_disks - conf->raid_disks); 3322 spin_unlock_irqrestore(&conf->device_lock, flags); 3323 conf->raid_disks = mddev->raid_disks = raid_disks; 3324 mddev->delta_disks = 0; 3325 3326 unfreeze_array(conf); 3327 3328 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 3329 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3330 md_wakeup_thread(mddev->thread); 3331 3332 mempool_exit(&oldpool); 3333 return 0; 3334 } 3335 3336 static void raid1_quiesce(struct mddev *mddev, int quiesce) 3337 { 3338 struct r1conf *conf = mddev->private; 3339 3340 if (quiesce) 3341 freeze_array(conf, 0); 3342 else 3343 unfreeze_array(conf); 3344 } 3345 3346 static void *raid1_takeover(struct mddev *mddev) 3347 { 3348 /* raid1 can take over: 3349 * raid5 with 2 devices, any layout or chunk size 3350 */ 3351 if (mddev->level == 5 && mddev->raid_disks == 2) { 3352 struct r1conf *conf; 3353 mddev->new_level = 1; 3354 mddev->new_layout = 0; 3355 mddev->new_chunk_sectors = 0; 3356 conf = setup_conf(mddev); 3357 if (!IS_ERR(conf)) { 3358 /* Array must appear to be quiesced */ 3359 conf->array_frozen = 1; 3360 mddev_clear_unsupported_flags(mddev, 3361 UNSUPPORTED_MDDEV_FLAGS); 3362 } 3363 return conf; 3364 } 3365 return ERR_PTR(-EINVAL); 3366 } 3367 3368 static struct md_personality raid1_personality = 3369 { 3370 .name = "raid1", 3371 .level = 1, 3372 .owner = THIS_MODULE, 3373 .make_request = raid1_make_request, 3374 .run = raid1_run, 3375 .free = raid1_free, 3376 .status = raid1_status, 3377 .error_handler = raid1_error, 3378 .hot_add_disk = raid1_add_disk, 3379 .hot_remove_disk= raid1_remove_disk, 3380 .spare_active = raid1_spare_active, 3381 .sync_request = raid1_sync_request, 3382 .resize = raid1_resize, 3383 .size = raid1_size, 3384 .check_reshape = raid1_reshape, 3385 .quiesce = raid1_quiesce, 3386 .takeover = raid1_takeover, 3387 .congested = raid1_congested, 3388 }; 3389 3390 static int __init raid_init(void) 3391 { 3392 return register_md_personality(&raid1_personality); 3393 } 3394 3395 static void raid_exit(void) 3396 { 3397 unregister_md_personality(&raid1_personality); 3398 } 3399 3400 module_init(raid_init); 3401 module_exit(raid_exit); 3402 MODULE_LICENSE("GPL"); 3403 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD"); 3404 MODULE_ALIAS("md-personality-3"); /* RAID1 */ 3405 MODULE_ALIAS("md-raid1"); 3406 MODULE_ALIAS("md-level-1"); 3407 3408 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR); 3409