1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * raid1.c : Multiple Devices driver for Linux 4 * 5 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat 6 * 7 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman 8 * 9 * RAID-1 management functions. 10 * 11 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000 12 * 13 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk> 14 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au> 15 * 16 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support 17 * bitmapped intelligence in resync: 18 * 19 * - bitmap marked during normal i/o 20 * - bitmap used to skip nondirty blocks during sync 21 * 22 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology: 23 * - persistent bitmap code 24 */ 25 26 #include <linux/slab.h> 27 #include <linux/delay.h> 28 #include <linux/blkdev.h> 29 #include <linux/module.h> 30 #include <linux/seq_file.h> 31 #include <linux/ratelimit.h> 32 #include <linux/interval_tree_generic.h> 33 34 #include <trace/events/block.h> 35 36 #include "md.h" 37 #include "raid1.h" 38 #include "md-bitmap.h" 39 40 #define UNSUPPORTED_MDDEV_FLAGS \ 41 ((1L << MD_HAS_JOURNAL) | \ 42 (1L << MD_JOURNAL_CLEAN) | \ 43 (1L << MD_HAS_PPL) | \ 44 (1L << MD_HAS_MULTIPLE_PPLS)) 45 46 static void allow_barrier(struct r1conf *conf, sector_t sector_nr); 47 static void lower_barrier(struct r1conf *conf, sector_t sector_nr); 48 49 #define raid1_log(md, fmt, args...) \ 50 do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid1 " fmt, ##args); } while (0) 51 52 #include "raid1-10.c" 53 54 #define START(node) ((node)->start) 55 #define LAST(node) ((node)->last) 56 INTERVAL_TREE_DEFINE(struct serial_info, node, sector_t, _subtree_last, 57 START, LAST, static inline, raid1_rb); 58 59 static int check_and_add_serial(struct md_rdev *rdev, struct r1bio *r1_bio, 60 struct serial_info *si, int idx) 61 { 62 unsigned long flags; 63 int ret = 0; 64 sector_t lo = r1_bio->sector; 65 sector_t hi = lo + r1_bio->sectors; 66 struct serial_in_rdev *serial = &rdev->serial[idx]; 67 68 spin_lock_irqsave(&serial->serial_lock, flags); 69 /* collision happened */ 70 if (raid1_rb_iter_first(&serial->serial_rb, lo, hi)) 71 ret = -EBUSY; 72 else { 73 si->start = lo; 74 si->last = hi; 75 raid1_rb_insert(si, &serial->serial_rb); 76 } 77 spin_unlock_irqrestore(&serial->serial_lock, flags); 78 79 return ret; 80 } 81 82 static void wait_for_serialization(struct md_rdev *rdev, struct r1bio *r1_bio) 83 { 84 struct mddev *mddev = rdev->mddev; 85 struct serial_info *si; 86 int idx = sector_to_idx(r1_bio->sector); 87 struct serial_in_rdev *serial = &rdev->serial[idx]; 88 89 if (WARN_ON(!mddev->serial_info_pool)) 90 return; 91 si = mempool_alloc(mddev->serial_info_pool, GFP_NOIO); 92 wait_event(serial->serial_io_wait, 93 check_and_add_serial(rdev, r1_bio, si, idx) == 0); 94 } 95 96 static void remove_serial(struct md_rdev *rdev, sector_t lo, sector_t hi) 97 { 98 struct serial_info *si; 99 unsigned long flags; 100 int found = 0; 101 struct mddev *mddev = rdev->mddev; 102 int idx = sector_to_idx(lo); 103 struct serial_in_rdev *serial = &rdev->serial[idx]; 104 105 spin_lock_irqsave(&serial->serial_lock, flags); 106 for (si = raid1_rb_iter_first(&serial->serial_rb, lo, hi); 107 si; si = raid1_rb_iter_next(si, lo, hi)) { 108 if (si->start == lo && si->last == hi) { 109 raid1_rb_remove(si, &serial->serial_rb); 110 mempool_free(si, mddev->serial_info_pool); 111 found = 1; 112 break; 113 } 114 } 115 if (!found) 116 WARN(1, "The write IO is not recorded for serialization\n"); 117 spin_unlock_irqrestore(&serial->serial_lock, flags); 118 wake_up(&serial->serial_io_wait); 119 } 120 121 /* 122 * for resync bio, r1bio pointer can be retrieved from the per-bio 123 * 'struct resync_pages'. 124 */ 125 static inline struct r1bio *get_resync_r1bio(struct bio *bio) 126 { 127 return get_resync_pages(bio)->raid_bio; 128 } 129 130 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data) 131 { 132 struct pool_info *pi = data; 133 int size = offsetof(struct r1bio, bios[pi->raid_disks]); 134 135 /* allocate a r1bio with room for raid_disks entries in the bios array */ 136 return kzalloc(size, gfp_flags); 137 } 138 139 #define RESYNC_DEPTH 32 140 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9) 141 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH) 142 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9) 143 #define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW) 144 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9) 145 146 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data) 147 { 148 struct pool_info *pi = data; 149 struct r1bio *r1_bio; 150 struct bio *bio; 151 int need_pages; 152 int j; 153 struct resync_pages *rps; 154 155 r1_bio = r1bio_pool_alloc(gfp_flags, pi); 156 if (!r1_bio) 157 return NULL; 158 159 rps = kmalloc_array(pi->raid_disks, sizeof(struct resync_pages), 160 gfp_flags); 161 if (!rps) 162 goto out_free_r1bio; 163 164 /* 165 * Allocate bios : 1 for reading, n-1 for writing 166 */ 167 for (j = pi->raid_disks ; j-- ; ) { 168 bio = bio_kmalloc(RESYNC_PAGES, gfp_flags); 169 if (!bio) 170 goto out_free_bio; 171 bio_init(bio, NULL, bio->bi_inline_vecs, RESYNC_PAGES, 0); 172 r1_bio->bios[j] = bio; 173 } 174 /* 175 * Allocate RESYNC_PAGES data pages and attach them to 176 * the first bio. 177 * If this is a user-requested check/repair, allocate 178 * RESYNC_PAGES for each bio. 179 */ 180 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) 181 need_pages = pi->raid_disks; 182 else 183 need_pages = 1; 184 for (j = 0; j < pi->raid_disks; j++) { 185 struct resync_pages *rp = &rps[j]; 186 187 bio = r1_bio->bios[j]; 188 189 if (j < need_pages) { 190 if (resync_alloc_pages(rp, gfp_flags)) 191 goto out_free_pages; 192 } else { 193 memcpy(rp, &rps[0], sizeof(*rp)); 194 resync_get_all_pages(rp); 195 } 196 197 rp->raid_bio = r1_bio; 198 bio->bi_private = rp; 199 } 200 201 r1_bio->master_bio = NULL; 202 203 return r1_bio; 204 205 out_free_pages: 206 while (--j >= 0) 207 resync_free_pages(&rps[j]); 208 209 out_free_bio: 210 while (++j < pi->raid_disks) { 211 bio_uninit(r1_bio->bios[j]); 212 kfree(r1_bio->bios[j]); 213 } 214 kfree(rps); 215 216 out_free_r1bio: 217 rbio_pool_free(r1_bio, data); 218 return NULL; 219 } 220 221 static void r1buf_pool_free(void *__r1_bio, void *data) 222 { 223 struct pool_info *pi = data; 224 int i; 225 struct r1bio *r1bio = __r1_bio; 226 struct resync_pages *rp = NULL; 227 228 for (i = pi->raid_disks; i--; ) { 229 rp = get_resync_pages(r1bio->bios[i]); 230 resync_free_pages(rp); 231 bio_uninit(r1bio->bios[i]); 232 kfree(r1bio->bios[i]); 233 } 234 235 /* resync pages array stored in the 1st bio's .bi_private */ 236 kfree(rp); 237 238 rbio_pool_free(r1bio, data); 239 } 240 241 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio) 242 { 243 int i; 244 245 for (i = 0; i < conf->raid_disks * 2; i++) { 246 struct bio **bio = r1_bio->bios + i; 247 if (!BIO_SPECIAL(*bio)) 248 bio_put(*bio); 249 *bio = NULL; 250 } 251 } 252 253 static void free_r1bio(struct r1bio *r1_bio) 254 { 255 struct r1conf *conf = r1_bio->mddev->private; 256 257 put_all_bios(conf, r1_bio); 258 mempool_free(r1_bio, &conf->r1bio_pool); 259 } 260 261 static void put_buf(struct r1bio *r1_bio) 262 { 263 struct r1conf *conf = r1_bio->mddev->private; 264 sector_t sect = r1_bio->sector; 265 int i; 266 267 for (i = 0; i < conf->raid_disks * 2; i++) { 268 struct bio *bio = r1_bio->bios[i]; 269 if (bio->bi_end_io) 270 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev); 271 } 272 273 mempool_free(r1_bio, &conf->r1buf_pool); 274 275 lower_barrier(conf, sect); 276 } 277 278 static void reschedule_retry(struct r1bio *r1_bio) 279 { 280 unsigned long flags; 281 struct mddev *mddev = r1_bio->mddev; 282 struct r1conf *conf = mddev->private; 283 int idx; 284 285 idx = sector_to_idx(r1_bio->sector); 286 spin_lock_irqsave(&conf->device_lock, flags); 287 list_add(&r1_bio->retry_list, &conf->retry_list); 288 atomic_inc(&conf->nr_queued[idx]); 289 spin_unlock_irqrestore(&conf->device_lock, flags); 290 291 wake_up(&conf->wait_barrier); 292 md_wakeup_thread(mddev->thread); 293 } 294 295 /* 296 * raid_end_bio_io() is called when we have finished servicing a mirrored 297 * operation and are ready to return a success/failure code to the buffer 298 * cache layer. 299 */ 300 static void call_bio_endio(struct r1bio *r1_bio) 301 { 302 struct bio *bio = r1_bio->master_bio; 303 304 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) 305 bio->bi_status = BLK_STS_IOERR; 306 307 if (blk_queue_io_stat(bio->bi_bdev->bd_disk->queue)) 308 bio_end_io_acct(bio, r1_bio->start_time); 309 bio_endio(bio); 310 } 311 312 static void raid_end_bio_io(struct r1bio *r1_bio) 313 { 314 struct bio *bio = r1_bio->master_bio; 315 struct r1conf *conf = r1_bio->mddev->private; 316 317 /* if nobody has done the final endio yet, do it now */ 318 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) { 319 pr_debug("raid1: sync end %s on sectors %llu-%llu\n", 320 (bio_data_dir(bio) == WRITE) ? "write" : "read", 321 (unsigned long long) bio->bi_iter.bi_sector, 322 (unsigned long long) bio_end_sector(bio) - 1); 323 324 call_bio_endio(r1_bio); 325 } 326 /* 327 * Wake up any possible resync thread that waits for the device 328 * to go idle. All I/Os, even write-behind writes, are done. 329 */ 330 allow_barrier(conf, r1_bio->sector); 331 332 free_r1bio(r1_bio); 333 } 334 335 /* 336 * Update disk head position estimator based on IRQ completion info. 337 */ 338 static inline void update_head_pos(int disk, struct r1bio *r1_bio) 339 { 340 struct r1conf *conf = r1_bio->mddev->private; 341 342 conf->mirrors[disk].head_position = 343 r1_bio->sector + (r1_bio->sectors); 344 } 345 346 /* 347 * Find the disk number which triggered given bio 348 */ 349 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio) 350 { 351 int mirror; 352 struct r1conf *conf = r1_bio->mddev->private; 353 int raid_disks = conf->raid_disks; 354 355 for (mirror = 0; mirror < raid_disks * 2; mirror++) 356 if (r1_bio->bios[mirror] == bio) 357 break; 358 359 BUG_ON(mirror == raid_disks * 2); 360 update_head_pos(mirror, r1_bio); 361 362 return mirror; 363 } 364 365 static void raid1_end_read_request(struct bio *bio) 366 { 367 int uptodate = !bio->bi_status; 368 struct r1bio *r1_bio = bio->bi_private; 369 struct r1conf *conf = r1_bio->mddev->private; 370 struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev; 371 372 /* 373 * this branch is our 'one mirror IO has finished' event handler: 374 */ 375 update_head_pos(r1_bio->read_disk, r1_bio); 376 377 if (uptodate) 378 set_bit(R1BIO_Uptodate, &r1_bio->state); 379 else if (test_bit(FailFast, &rdev->flags) && 380 test_bit(R1BIO_FailFast, &r1_bio->state)) 381 /* This was a fail-fast read so we definitely 382 * want to retry */ 383 ; 384 else { 385 /* If all other devices have failed, we want to return 386 * the error upwards rather than fail the last device. 387 * Here we redefine "uptodate" to mean "Don't want to retry" 388 */ 389 unsigned long flags; 390 spin_lock_irqsave(&conf->device_lock, flags); 391 if (r1_bio->mddev->degraded == conf->raid_disks || 392 (r1_bio->mddev->degraded == conf->raid_disks-1 && 393 test_bit(In_sync, &rdev->flags))) 394 uptodate = 1; 395 spin_unlock_irqrestore(&conf->device_lock, flags); 396 } 397 398 if (uptodate) { 399 raid_end_bio_io(r1_bio); 400 rdev_dec_pending(rdev, conf->mddev); 401 } else { 402 /* 403 * oops, read error: 404 */ 405 pr_err_ratelimited("md/raid1:%s: %pg: rescheduling sector %llu\n", 406 mdname(conf->mddev), 407 rdev->bdev, 408 (unsigned long long)r1_bio->sector); 409 set_bit(R1BIO_ReadError, &r1_bio->state); 410 reschedule_retry(r1_bio); 411 /* don't drop the reference on read_disk yet */ 412 } 413 } 414 415 static void close_write(struct r1bio *r1_bio) 416 { 417 /* it really is the end of this request */ 418 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) { 419 bio_free_pages(r1_bio->behind_master_bio); 420 bio_put(r1_bio->behind_master_bio); 421 r1_bio->behind_master_bio = NULL; 422 } 423 /* clear the bitmap if all writes complete successfully */ 424 md_bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector, 425 r1_bio->sectors, 426 !test_bit(R1BIO_Degraded, &r1_bio->state), 427 test_bit(R1BIO_BehindIO, &r1_bio->state)); 428 md_write_end(r1_bio->mddev); 429 } 430 431 static void r1_bio_write_done(struct r1bio *r1_bio) 432 { 433 if (!atomic_dec_and_test(&r1_bio->remaining)) 434 return; 435 436 if (test_bit(R1BIO_WriteError, &r1_bio->state)) 437 reschedule_retry(r1_bio); 438 else { 439 close_write(r1_bio); 440 if (test_bit(R1BIO_MadeGood, &r1_bio->state)) 441 reschedule_retry(r1_bio); 442 else 443 raid_end_bio_io(r1_bio); 444 } 445 } 446 447 static void raid1_end_write_request(struct bio *bio) 448 { 449 struct r1bio *r1_bio = bio->bi_private; 450 int behind = test_bit(R1BIO_BehindIO, &r1_bio->state); 451 struct r1conf *conf = r1_bio->mddev->private; 452 struct bio *to_put = NULL; 453 int mirror = find_bio_disk(r1_bio, bio); 454 struct md_rdev *rdev = conf->mirrors[mirror].rdev; 455 bool discard_error; 456 sector_t lo = r1_bio->sector; 457 sector_t hi = r1_bio->sector + r1_bio->sectors; 458 459 discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD; 460 461 /* 462 * 'one mirror IO has finished' event handler: 463 */ 464 if (bio->bi_status && !discard_error) { 465 set_bit(WriteErrorSeen, &rdev->flags); 466 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 467 set_bit(MD_RECOVERY_NEEDED, & 468 conf->mddev->recovery); 469 470 if (test_bit(FailFast, &rdev->flags) && 471 (bio->bi_opf & MD_FAILFAST) && 472 /* We never try FailFast to WriteMostly devices */ 473 !test_bit(WriteMostly, &rdev->flags)) { 474 md_error(r1_bio->mddev, rdev); 475 } 476 477 /* 478 * When the device is faulty, it is not necessary to 479 * handle write error. 480 */ 481 if (!test_bit(Faulty, &rdev->flags)) 482 set_bit(R1BIO_WriteError, &r1_bio->state); 483 else { 484 /* Fail the request */ 485 set_bit(R1BIO_Degraded, &r1_bio->state); 486 /* Finished with this branch */ 487 r1_bio->bios[mirror] = NULL; 488 to_put = bio; 489 } 490 } else { 491 /* 492 * Set R1BIO_Uptodate in our master bio, so that we 493 * will return a good error code for to the higher 494 * levels even if IO on some other mirrored buffer 495 * fails. 496 * 497 * The 'master' represents the composite IO operation 498 * to user-side. So if something waits for IO, then it 499 * will wait for the 'master' bio. 500 */ 501 sector_t first_bad; 502 int bad_sectors; 503 504 r1_bio->bios[mirror] = NULL; 505 to_put = bio; 506 /* 507 * Do not set R1BIO_Uptodate if the current device is 508 * rebuilding or Faulty. This is because we cannot use 509 * such device for properly reading the data back (we could 510 * potentially use it, if the current write would have felt 511 * before rdev->recovery_offset, but for simplicity we don't 512 * check this here. 513 */ 514 if (test_bit(In_sync, &rdev->flags) && 515 !test_bit(Faulty, &rdev->flags)) 516 set_bit(R1BIO_Uptodate, &r1_bio->state); 517 518 /* Maybe we can clear some bad blocks. */ 519 if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors, 520 &first_bad, &bad_sectors) && !discard_error) { 521 r1_bio->bios[mirror] = IO_MADE_GOOD; 522 set_bit(R1BIO_MadeGood, &r1_bio->state); 523 } 524 } 525 526 if (behind) { 527 if (test_bit(CollisionCheck, &rdev->flags)) 528 remove_serial(rdev, lo, hi); 529 if (test_bit(WriteMostly, &rdev->flags)) 530 atomic_dec(&r1_bio->behind_remaining); 531 532 /* 533 * In behind mode, we ACK the master bio once the I/O 534 * has safely reached all non-writemostly 535 * disks. Setting the Returned bit ensures that this 536 * gets done only once -- we don't ever want to return 537 * -EIO here, instead we'll wait 538 */ 539 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) && 540 test_bit(R1BIO_Uptodate, &r1_bio->state)) { 541 /* Maybe we can return now */ 542 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) { 543 struct bio *mbio = r1_bio->master_bio; 544 pr_debug("raid1: behind end write sectors" 545 " %llu-%llu\n", 546 (unsigned long long) mbio->bi_iter.bi_sector, 547 (unsigned long long) bio_end_sector(mbio) - 1); 548 call_bio_endio(r1_bio); 549 } 550 } 551 } else if (rdev->mddev->serialize_policy) 552 remove_serial(rdev, lo, hi); 553 if (r1_bio->bios[mirror] == NULL) 554 rdev_dec_pending(rdev, conf->mddev); 555 556 /* 557 * Let's see if all mirrored write operations have finished 558 * already. 559 */ 560 r1_bio_write_done(r1_bio); 561 562 if (to_put) 563 bio_put(to_put); 564 } 565 566 static sector_t align_to_barrier_unit_end(sector_t start_sector, 567 sector_t sectors) 568 { 569 sector_t len; 570 571 WARN_ON(sectors == 0); 572 /* 573 * len is the number of sectors from start_sector to end of the 574 * barrier unit which start_sector belongs to. 575 */ 576 len = round_up(start_sector + 1, BARRIER_UNIT_SECTOR_SIZE) - 577 start_sector; 578 579 if (len > sectors) 580 len = sectors; 581 582 return len; 583 } 584 585 /* 586 * This routine returns the disk from which the requested read should 587 * be done. There is a per-array 'next expected sequential IO' sector 588 * number - if this matches on the next IO then we use the last disk. 589 * There is also a per-disk 'last know head position' sector that is 590 * maintained from IRQ contexts, both the normal and the resync IO 591 * completion handlers update this position correctly. If there is no 592 * perfect sequential match then we pick the disk whose head is closest. 593 * 594 * If there are 2 mirrors in the same 2 devices, performance degrades 595 * because position is mirror, not device based. 596 * 597 * The rdev for the device selected will have nr_pending incremented. 598 */ 599 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors) 600 { 601 const sector_t this_sector = r1_bio->sector; 602 int sectors; 603 int best_good_sectors; 604 int best_disk, best_dist_disk, best_pending_disk; 605 int has_nonrot_disk; 606 int disk; 607 sector_t best_dist; 608 unsigned int min_pending; 609 struct md_rdev *rdev; 610 int choose_first; 611 int choose_next_idle; 612 613 rcu_read_lock(); 614 /* 615 * Check if we can balance. We can balance on the whole 616 * device if no resync is going on, or below the resync window. 617 * We take the first readable disk when above the resync window. 618 */ 619 retry: 620 sectors = r1_bio->sectors; 621 best_disk = -1; 622 best_dist_disk = -1; 623 best_dist = MaxSector; 624 best_pending_disk = -1; 625 min_pending = UINT_MAX; 626 best_good_sectors = 0; 627 has_nonrot_disk = 0; 628 choose_next_idle = 0; 629 clear_bit(R1BIO_FailFast, &r1_bio->state); 630 631 if ((conf->mddev->recovery_cp < this_sector + sectors) || 632 (mddev_is_clustered(conf->mddev) && 633 md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector, 634 this_sector + sectors))) 635 choose_first = 1; 636 else 637 choose_first = 0; 638 639 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) { 640 sector_t dist; 641 sector_t first_bad; 642 int bad_sectors; 643 unsigned int pending; 644 bool nonrot; 645 646 rdev = rcu_dereference(conf->mirrors[disk].rdev); 647 if (r1_bio->bios[disk] == IO_BLOCKED 648 || rdev == NULL 649 || test_bit(Faulty, &rdev->flags)) 650 continue; 651 if (!test_bit(In_sync, &rdev->flags) && 652 rdev->recovery_offset < this_sector + sectors) 653 continue; 654 if (test_bit(WriteMostly, &rdev->flags)) { 655 /* Don't balance among write-mostly, just 656 * use the first as a last resort */ 657 if (best_dist_disk < 0) { 658 if (is_badblock(rdev, this_sector, sectors, 659 &first_bad, &bad_sectors)) { 660 if (first_bad <= this_sector) 661 /* Cannot use this */ 662 continue; 663 best_good_sectors = first_bad - this_sector; 664 } else 665 best_good_sectors = sectors; 666 best_dist_disk = disk; 667 best_pending_disk = disk; 668 } 669 continue; 670 } 671 /* This is a reasonable device to use. It might 672 * even be best. 673 */ 674 if (is_badblock(rdev, this_sector, sectors, 675 &first_bad, &bad_sectors)) { 676 if (best_dist < MaxSector) 677 /* already have a better device */ 678 continue; 679 if (first_bad <= this_sector) { 680 /* cannot read here. If this is the 'primary' 681 * device, then we must not read beyond 682 * bad_sectors from another device.. 683 */ 684 bad_sectors -= (this_sector - first_bad); 685 if (choose_first && sectors > bad_sectors) 686 sectors = bad_sectors; 687 if (best_good_sectors > sectors) 688 best_good_sectors = sectors; 689 690 } else { 691 sector_t good_sectors = first_bad - this_sector; 692 if (good_sectors > best_good_sectors) { 693 best_good_sectors = good_sectors; 694 best_disk = disk; 695 } 696 if (choose_first) 697 break; 698 } 699 continue; 700 } else { 701 if ((sectors > best_good_sectors) && (best_disk >= 0)) 702 best_disk = -1; 703 best_good_sectors = sectors; 704 } 705 706 if (best_disk >= 0) 707 /* At least two disks to choose from so failfast is OK */ 708 set_bit(R1BIO_FailFast, &r1_bio->state); 709 710 nonrot = bdev_nonrot(rdev->bdev); 711 has_nonrot_disk |= nonrot; 712 pending = atomic_read(&rdev->nr_pending); 713 dist = abs(this_sector - conf->mirrors[disk].head_position); 714 if (choose_first) { 715 best_disk = disk; 716 break; 717 } 718 /* Don't change to another disk for sequential reads */ 719 if (conf->mirrors[disk].next_seq_sect == this_sector 720 || dist == 0) { 721 int opt_iosize = bdev_io_opt(rdev->bdev) >> 9; 722 struct raid1_info *mirror = &conf->mirrors[disk]; 723 724 best_disk = disk; 725 /* 726 * If buffered sequential IO size exceeds optimal 727 * iosize, check if there is idle disk. If yes, choose 728 * the idle disk. read_balance could already choose an 729 * idle disk before noticing it's a sequential IO in 730 * this disk. This doesn't matter because this disk 731 * will idle, next time it will be utilized after the 732 * first disk has IO size exceeds optimal iosize. In 733 * this way, iosize of the first disk will be optimal 734 * iosize at least. iosize of the second disk might be 735 * small, but not a big deal since when the second disk 736 * starts IO, the first disk is likely still busy. 737 */ 738 if (nonrot && opt_iosize > 0 && 739 mirror->seq_start != MaxSector && 740 mirror->next_seq_sect > opt_iosize && 741 mirror->next_seq_sect - opt_iosize >= 742 mirror->seq_start) { 743 choose_next_idle = 1; 744 continue; 745 } 746 break; 747 } 748 749 if (choose_next_idle) 750 continue; 751 752 if (min_pending > pending) { 753 min_pending = pending; 754 best_pending_disk = disk; 755 } 756 757 if (dist < best_dist) { 758 best_dist = dist; 759 best_dist_disk = disk; 760 } 761 } 762 763 /* 764 * If all disks are rotational, choose the closest disk. If any disk is 765 * non-rotational, choose the disk with less pending request even the 766 * disk is rotational, which might/might not be optimal for raids with 767 * mixed ratation/non-rotational disks depending on workload. 768 */ 769 if (best_disk == -1) { 770 if (has_nonrot_disk || min_pending == 0) 771 best_disk = best_pending_disk; 772 else 773 best_disk = best_dist_disk; 774 } 775 776 if (best_disk >= 0) { 777 rdev = rcu_dereference(conf->mirrors[best_disk].rdev); 778 if (!rdev) 779 goto retry; 780 atomic_inc(&rdev->nr_pending); 781 sectors = best_good_sectors; 782 783 if (conf->mirrors[best_disk].next_seq_sect != this_sector) 784 conf->mirrors[best_disk].seq_start = this_sector; 785 786 conf->mirrors[best_disk].next_seq_sect = this_sector + sectors; 787 } 788 rcu_read_unlock(); 789 *max_sectors = sectors; 790 791 return best_disk; 792 } 793 794 static void flush_bio_list(struct r1conf *conf, struct bio *bio) 795 { 796 /* flush any pending bitmap writes to disk before proceeding w/ I/O */ 797 raid1_prepare_flush_writes(conf->mddev->bitmap); 798 wake_up(&conf->wait_barrier); 799 800 while (bio) { /* submit pending writes */ 801 struct bio *next = bio->bi_next; 802 803 raid1_submit_write(bio); 804 bio = next; 805 cond_resched(); 806 } 807 } 808 809 static void flush_pending_writes(struct r1conf *conf) 810 { 811 /* Any writes that have been queued but are awaiting 812 * bitmap updates get flushed here. 813 */ 814 spin_lock_irq(&conf->device_lock); 815 816 if (conf->pending_bio_list.head) { 817 struct blk_plug plug; 818 struct bio *bio; 819 820 bio = bio_list_get(&conf->pending_bio_list); 821 spin_unlock_irq(&conf->device_lock); 822 823 /* 824 * As this is called in a wait_event() loop (see freeze_array), 825 * current->state might be TASK_UNINTERRUPTIBLE which will 826 * cause a warning when we prepare to wait again. As it is 827 * rare that this path is taken, it is perfectly safe to force 828 * us to go around the wait_event() loop again, so the warning 829 * is a false-positive. Silence the warning by resetting 830 * thread state 831 */ 832 __set_current_state(TASK_RUNNING); 833 blk_start_plug(&plug); 834 flush_bio_list(conf, bio); 835 blk_finish_plug(&plug); 836 } else 837 spin_unlock_irq(&conf->device_lock); 838 } 839 840 /* Barriers.... 841 * Sometimes we need to suspend IO while we do something else, 842 * either some resync/recovery, or reconfigure the array. 843 * To do this we raise a 'barrier'. 844 * The 'barrier' is a counter that can be raised multiple times 845 * to count how many activities are happening which preclude 846 * normal IO. 847 * We can only raise the barrier if there is no pending IO. 848 * i.e. if nr_pending == 0. 849 * We choose only to raise the barrier if no-one is waiting for the 850 * barrier to go down. This means that as soon as an IO request 851 * is ready, no other operations which require a barrier will start 852 * until the IO request has had a chance. 853 * 854 * So: regular IO calls 'wait_barrier'. When that returns there 855 * is no backgroup IO happening, It must arrange to call 856 * allow_barrier when it has finished its IO. 857 * backgroup IO calls must call raise_barrier. Once that returns 858 * there is no normal IO happeing. It must arrange to call 859 * lower_barrier when the particular background IO completes. 860 * 861 * If resync/recovery is interrupted, returns -EINTR; 862 * Otherwise, returns 0. 863 */ 864 static int raise_barrier(struct r1conf *conf, sector_t sector_nr) 865 { 866 int idx = sector_to_idx(sector_nr); 867 868 spin_lock_irq(&conf->resync_lock); 869 870 /* Wait until no block IO is waiting */ 871 wait_event_lock_irq(conf->wait_barrier, 872 !atomic_read(&conf->nr_waiting[idx]), 873 conf->resync_lock); 874 875 /* block any new IO from starting */ 876 atomic_inc(&conf->barrier[idx]); 877 /* 878 * In raise_barrier() we firstly increase conf->barrier[idx] then 879 * check conf->nr_pending[idx]. In _wait_barrier() we firstly 880 * increase conf->nr_pending[idx] then check conf->barrier[idx]. 881 * A memory barrier here to make sure conf->nr_pending[idx] won't 882 * be fetched before conf->barrier[idx] is increased. Otherwise 883 * there will be a race between raise_barrier() and _wait_barrier(). 884 */ 885 smp_mb__after_atomic(); 886 887 /* For these conditions we must wait: 888 * A: while the array is in frozen state 889 * B: while conf->nr_pending[idx] is not 0, meaning regular I/O 890 * existing in corresponding I/O barrier bucket. 891 * C: while conf->barrier[idx] >= RESYNC_DEPTH, meaning reaches 892 * max resync count which allowed on current I/O barrier bucket. 893 */ 894 wait_event_lock_irq(conf->wait_barrier, 895 (!conf->array_frozen && 896 !atomic_read(&conf->nr_pending[idx]) && 897 atomic_read(&conf->barrier[idx]) < RESYNC_DEPTH) || 898 test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery), 899 conf->resync_lock); 900 901 if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) { 902 atomic_dec(&conf->barrier[idx]); 903 spin_unlock_irq(&conf->resync_lock); 904 wake_up(&conf->wait_barrier); 905 return -EINTR; 906 } 907 908 atomic_inc(&conf->nr_sync_pending); 909 spin_unlock_irq(&conf->resync_lock); 910 911 return 0; 912 } 913 914 static void lower_barrier(struct r1conf *conf, sector_t sector_nr) 915 { 916 int idx = sector_to_idx(sector_nr); 917 918 BUG_ON(atomic_read(&conf->barrier[idx]) <= 0); 919 920 atomic_dec(&conf->barrier[idx]); 921 atomic_dec(&conf->nr_sync_pending); 922 wake_up(&conf->wait_barrier); 923 } 924 925 static bool _wait_barrier(struct r1conf *conf, int idx, bool nowait) 926 { 927 bool ret = true; 928 929 /* 930 * We need to increase conf->nr_pending[idx] very early here, 931 * then raise_barrier() can be blocked when it waits for 932 * conf->nr_pending[idx] to be 0. Then we can avoid holding 933 * conf->resync_lock when there is no barrier raised in same 934 * barrier unit bucket. Also if the array is frozen, I/O 935 * should be blocked until array is unfrozen. 936 */ 937 atomic_inc(&conf->nr_pending[idx]); 938 /* 939 * In _wait_barrier() we firstly increase conf->nr_pending[idx], then 940 * check conf->barrier[idx]. In raise_barrier() we firstly increase 941 * conf->barrier[idx], then check conf->nr_pending[idx]. A memory 942 * barrier is necessary here to make sure conf->barrier[idx] won't be 943 * fetched before conf->nr_pending[idx] is increased. Otherwise there 944 * will be a race between _wait_barrier() and raise_barrier(). 945 */ 946 smp_mb__after_atomic(); 947 948 /* 949 * Don't worry about checking two atomic_t variables at same time 950 * here. If during we check conf->barrier[idx], the array is 951 * frozen (conf->array_frozen is 1), and chonf->barrier[idx] is 952 * 0, it is safe to return and make the I/O continue. Because the 953 * array is frozen, all I/O returned here will eventually complete 954 * or be queued, no race will happen. See code comment in 955 * frozen_array(). 956 */ 957 if (!READ_ONCE(conf->array_frozen) && 958 !atomic_read(&conf->barrier[idx])) 959 return ret; 960 961 /* 962 * After holding conf->resync_lock, conf->nr_pending[idx] 963 * should be decreased before waiting for barrier to drop. 964 * Otherwise, we may encounter a race condition because 965 * raise_barrer() might be waiting for conf->nr_pending[idx] 966 * to be 0 at same time. 967 */ 968 spin_lock_irq(&conf->resync_lock); 969 atomic_inc(&conf->nr_waiting[idx]); 970 atomic_dec(&conf->nr_pending[idx]); 971 /* 972 * In case freeze_array() is waiting for 973 * get_unqueued_pending() == extra 974 */ 975 wake_up(&conf->wait_barrier); 976 /* Wait for the barrier in same barrier unit bucket to drop. */ 977 978 /* Return false when nowait flag is set */ 979 if (nowait) { 980 ret = false; 981 } else { 982 wait_event_lock_irq(conf->wait_barrier, 983 !conf->array_frozen && 984 !atomic_read(&conf->barrier[idx]), 985 conf->resync_lock); 986 atomic_inc(&conf->nr_pending[idx]); 987 } 988 989 atomic_dec(&conf->nr_waiting[idx]); 990 spin_unlock_irq(&conf->resync_lock); 991 return ret; 992 } 993 994 static bool wait_read_barrier(struct r1conf *conf, sector_t sector_nr, bool nowait) 995 { 996 int idx = sector_to_idx(sector_nr); 997 bool ret = true; 998 999 /* 1000 * Very similar to _wait_barrier(). The difference is, for read 1001 * I/O we don't need wait for sync I/O, but if the whole array 1002 * is frozen, the read I/O still has to wait until the array is 1003 * unfrozen. Since there is no ordering requirement with 1004 * conf->barrier[idx] here, memory barrier is unnecessary as well. 1005 */ 1006 atomic_inc(&conf->nr_pending[idx]); 1007 1008 if (!READ_ONCE(conf->array_frozen)) 1009 return ret; 1010 1011 spin_lock_irq(&conf->resync_lock); 1012 atomic_inc(&conf->nr_waiting[idx]); 1013 atomic_dec(&conf->nr_pending[idx]); 1014 /* 1015 * In case freeze_array() is waiting for 1016 * get_unqueued_pending() == extra 1017 */ 1018 wake_up(&conf->wait_barrier); 1019 /* Wait for array to be unfrozen */ 1020 1021 /* Return false when nowait flag is set */ 1022 if (nowait) { 1023 /* Return false when nowait flag is set */ 1024 ret = false; 1025 } else { 1026 wait_event_lock_irq(conf->wait_barrier, 1027 !conf->array_frozen, 1028 conf->resync_lock); 1029 atomic_inc(&conf->nr_pending[idx]); 1030 } 1031 1032 atomic_dec(&conf->nr_waiting[idx]); 1033 spin_unlock_irq(&conf->resync_lock); 1034 return ret; 1035 } 1036 1037 static bool wait_barrier(struct r1conf *conf, sector_t sector_nr, bool nowait) 1038 { 1039 int idx = sector_to_idx(sector_nr); 1040 1041 return _wait_barrier(conf, idx, nowait); 1042 } 1043 1044 static void _allow_barrier(struct r1conf *conf, int idx) 1045 { 1046 atomic_dec(&conf->nr_pending[idx]); 1047 wake_up(&conf->wait_barrier); 1048 } 1049 1050 static void allow_barrier(struct r1conf *conf, sector_t sector_nr) 1051 { 1052 int idx = sector_to_idx(sector_nr); 1053 1054 _allow_barrier(conf, idx); 1055 } 1056 1057 /* conf->resync_lock should be held */ 1058 static int get_unqueued_pending(struct r1conf *conf) 1059 { 1060 int idx, ret; 1061 1062 ret = atomic_read(&conf->nr_sync_pending); 1063 for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++) 1064 ret += atomic_read(&conf->nr_pending[idx]) - 1065 atomic_read(&conf->nr_queued[idx]); 1066 1067 return ret; 1068 } 1069 1070 static void freeze_array(struct r1conf *conf, int extra) 1071 { 1072 /* Stop sync I/O and normal I/O and wait for everything to 1073 * go quiet. 1074 * This is called in two situations: 1075 * 1) management command handlers (reshape, remove disk, quiesce). 1076 * 2) one normal I/O request failed. 1077 1078 * After array_frozen is set to 1, new sync IO will be blocked at 1079 * raise_barrier(), and new normal I/O will blocked at _wait_barrier() 1080 * or wait_read_barrier(). The flying I/Os will either complete or be 1081 * queued. When everything goes quite, there are only queued I/Os left. 1082 1083 * Every flying I/O contributes to a conf->nr_pending[idx], idx is the 1084 * barrier bucket index which this I/O request hits. When all sync and 1085 * normal I/O are queued, sum of all conf->nr_pending[] will match sum 1086 * of all conf->nr_queued[]. But normal I/O failure is an exception, 1087 * in handle_read_error(), we may call freeze_array() before trying to 1088 * fix the read error. In this case, the error read I/O is not queued, 1089 * so get_unqueued_pending() == 1. 1090 * 1091 * Therefore before this function returns, we need to wait until 1092 * get_unqueued_pendings(conf) gets equal to extra. For 1093 * normal I/O context, extra is 1, in rested situations extra is 0. 1094 */ 1095 spin_lock_irq(&conf->resync_lock); 1096 conf->array_frozen = 1; 1097 raid1_log(conf->mddev, "wait freeze"); 1098 wait_event_lock_irq_cmd( 1099 conf->wait_barrier, 1100 get_unqueued_pending(conf) == extra, 1101 conf->resync_lock, 1102 flush_pending_writes(conf)); 1103 spin_unlock_irq(&conf->resync_lock); 1104 } 1105 static void unfreeze_array(struct r1conf *conf) 1106 { 1107 /* reverse the effect of the freeze */ 1108 spin_lock_irq(&conf->resync_lock); 1109 conf->array_frozen = 0; 1110 spin_unlock_irq(&conf->resync_lock); 1111 wake_up(&conf->wait_barrier); 1112 } 1113 1114 static void alloc_behind_master_bio(struct r1bio *r1_bio, 1115 struct bio *bio) 1116 { 1117 int size = bio->bi_iter.bi_size; 1118 unsigned vcnt = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; 1119 int i = 0; 1120 struct bio *behind_bio = NULL; 1121 1122 behind_bio = bio_alloc_bioset(NULL, vcnt, 0, GFP_NOIO, 1123 &r1_bio->mddev->bio_set); 1124 if (!behind_bio) 1125 return; 1126 1127 /* discard op, we don't support writezero/writesame yet */ 1128 if (!bio_has_data(bio)) { 1129 behind_bio->bi_iter.bi_size = size; 1130 goto skip_copy; 1131 } 1132 1133 while (i < vcnt && size) { 1134 struct page *page; 1135 int len = min_t(int, PAGE_SIZE, size); 1136 1137 page = alloc_page(GFP_NOIO); 1138 if (unlikely(!page)) 1139 goto free_pages; 1140 1141 if (!bio_add_page(behind_bio, page, len, 0)) { 1142 put_page(page); 1143 goto free_pages; 1144 } 1145 1146 size -= len; 1147 i++; 1148 } 1149 1150 bio_copy_data(behind_bio, bio); 1151 skip_copy: 1152 r1_bio->behind_master_bio = behind_bio; 1153 set_bit(R1BIO_BehindIO, &r1_bio->state); 1154 1155 return; 1156 1157 free_pages: 1158 pr_debug("%dB behind alloc failed, doing sync I/O\n", 1159 bio->bi_iter.bi_size); 1160 bio_free_pages(behind_bio); 1161 bio_put(behind_bio); 1162 } 1163 1164 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule) 1165 { 1166 struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb, 1167 cb); 1168 struct mddev *mddev = plug->cb.data; 1169 struct r1conf *conf = mddev->private; 1170 struct bio *bio; 1171 1172 if (from_schedule) { 1173 spin_lock_irq(&conf->device_lock); 1174 bio_list_merge(&conf->pending_bio_list, &plug->pending); 1175 spin_unlock_irq(&conf->device_lock); 1176 wake_up(&conf->wait_barrier); 1177 md_wakeup_thread(mddev->thread); 1178 kfree(plug); 1179 return; 1180 } 1181 1182 /* we aren't scheduling, so we can do the write-out directly. */ 1183 bio = bio_list_get(&plug->pending); 1184 flush_bio_list(conf, bio); 1185 kfree(plug); 1186 } 1187 1188 static void init_r1bio(struct r1bio *r1_bio, struct mddev *mddev, struct bio *bio) 1189 { 1190 r1_bio->master_bio = bio; 1191 r1_bio->sectors = bio_sectors(bio); 1192 r1_bio->state = 0; 1193 r1_bio->mddev = mddev; 1194 r1_bio->sector = bio->bi_iter.bi_sector; 1195 } 1196 1197 static inline struct r1bio * 1198 alloc_r1bio(struct mddev *mddev, struct bio *bio) 1199 { 1200 struct r1conf *conf = mddev->private; 1201 struct r1bio *r1_bio; 1202 1203 r1_bio = mempool_alloc(&conf->r1bio_pool, GFP_NOIO); 1204 /* Ensure no bio records IO_BLOCKED */ 1205 memset(r1_bio->bios, 0, conf->raid_disks * sizeof(r1_bio->bios[0])); 1206 init_r1bio(r1_bio, mddev, bio); 1207 return r1_bio; 1208 } 1209 1210 static void raid1_read_request(struct mddev *mddev, struct bio *bio, 1211 int max_read_sectors, struct r1bio *r1_bio) 1212 { 1213 struct r1conf *conf = mddev->private; 1214 struct raid1_info *mirror; 1215 struct bio *read_bio; 1216 struct bitmap *bitmap = mddev->bitmap; 1217 const enum req_op op = bio_op(bio); 1218 const blk_opf_t do_sync = bio->bi_opf & REQ_SYNC; 1219 int max_sectors; 1220 int rdisk; 1221 bool r1bio_existed = !!r1_bio; 1222 char b[BDEVNAME_SIZE]; 1223 1224 /* 1225 * If r1_bio is set, we are blocking the raid1d thread 1226 * so there is a tiny risk of deadlock. So ask for 1227 * emergency memory if needed. 1228 */ 1229 gfp_t gfp = r1_bio ? (GFP_NOIO | __GFP_HIGH) : GFP_NOIO; 1230 1231 if (r1bio_existed) { 1232 /* Need to get the block device name carefully */ 1233 struct md_rdev *rdev; 1234 rcu_read_lock(); 1235 rdev = rcu_dereference(conf->mirrors[r1_bio->read_disk].rdev); 1236 if (rdev) 1237 snprintf(b, sizeof(b), "%pg", rdev->bdev); 1238 else 1239 strcpy(b, "???"); 1240 rcu_read_unlock(); 1241 } 1242 1243 /* 1244 * Still need barrier for READ in case that whole 1245 * array is frozen. 1246 */ 1247 if (!wait_read_barrier(conf, bio->bi_iter.bi_sector, 1248 bio->bi_opf & REQ_NOWAIT)) { 1249 bio_wouldblock_error(bio); 1250 return; 1251 } 1252 1253 if (!r1_bio) 1254 r1_bio = alloc_r1bio(mddev, bio); 1255 else 1256 init_r1bio(r1_bio, mddev, bio); 1257 r1_bio->sectors = max_read_sectors; 1258 1259 /* 1260 * make_request() can abort the operation when read-ahead is being 1261 * used and no empty request is available. 1262 */ 1263 rdisk = read_balance(conf, r1_bio, &max_sectors); 1264 1265 if (rdisk < 0) { 1266 /* couldn't find anywhere to read from */ 1267 if (r1bio_existed) { 1268 pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n", 1269 mdname(mddev), 1270 b, 1271 (unsigned long long)r1_bio->sector); 1272 } 1273 raid_end_bio_io(r1_bio); 1274 return; 1275 } 1276 mirror = conf->mirrors + rdisk; 1277 1278 if (r1bio_existed) 1279 pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %pg\n", 1280 mdname(mddev), 1281 (unsigned long long)r1_bio->sector, 1282 mirror->rdev->bdev); 1283 1284 if (test_bit(WriteMostly, &mirror->rdev->flags) && 1285 bitmap) { 1286 /* 1287 * Reading from a write-mostly device must take care not to 1288 * over-take any writes that are 'behind' 1289 */ 1290 raid1_log(mddev, "wait behind writes"); 1291 wait_event(bitmap->behind_wait, 1292 atomic_read(&bitmap->behind_writes) == 0); 1293 } 1294 1295 if (max_sectors < bio_sectors(bio)) { 1296 struct bio *split = bio_split(bio, max_sectors, 1297 gfp, &conf->bio_split); 1298 bio_chain(split, bio); 1299 submit_bio_noacct(bio); 1300 bio = split; 1301 r1_bio->master_bio = bio; 1302 r1_bio->sectors = max_sectors; 1303 } 1304 1305 r1_bio->read_disk = rdisk; 1306 1307 if (!r1bio_existed && blk_queue_io_stat(bio->bi_bdev->bd_disk->queue)) 1308 r1_bio->start_time = bio_start_io_acct(bio); 1309 1310 read_bio = bio_alloc_clone(mirror->rdev->bdev, bio, gfp, 1311 &mddev->bio_set); 1312 1313 r1_bio->bios[rdisk] = read_bio; 1314 1315 read_bio->bi_iter.bi_sector = r1_bio->sector + 1316 mirror->rdev->data_offset; 1317 read_bio->bi_end_io = raid1_end_read_request; 1318 read_bio->bi_opf = op | do_sync; 1319 if (test_bit(FailFast, &mirror->rdev->flags) && 1320 test_bit(R1BIO_FailFast, &r1_bio->state)) 1321 read_bio->bi_opf |= MD_FAILFAST; 1322 read_bio->bi_private = r1_bio; 1323 1324 if (mddev->gendisk) 1325 trace_block_bio_remap(read_bio, disk_devt(mddev->gendisk), 1326 r1_bio->sector); 1327 1328 submit_bio_noacct(read_bio); 1329 } 1330 1331 static void raid1_write_request(struct mddev *mddev, struct bio *bio, 1332 int max_write_sectors) 1333 { 1334 struct r1conf *conf = mddev->private; 1335 struct r1bio *r1_bio; 1336 int i, disks; 1337 struct bitmap *bitmap = mddev->bitmap; 1338 unsigned long flags; 1339 struct md_rdev *blocked_rdev; 1340 int first_clone; 1341 int max_sectors; 1342 bool write_behind = false; 1343 1344 if (mddev_is_clustered(mddev) && 1345 md_cluster_ops->area_resyncing(mddev, WRITE, 1346 bio->bi_iter.bi_sector, bio_end_sector(bio))) { 1347 1348 DEFINE_WAIT(w); 1349 if (bio->bi_opf & REQ_NOWAIT) { 1350 bio_wouldblock_error(bio); 1351 return; 1352 } 1353 for (;;) { 1354 prepare_to_wait(&conf->wait_barrier, 1355 &w, TASK_IDLE); 1356 if (!md_cluster_ops->area_resyncing(mddev, WRITE, 1357 bio->bi_iter.bi_sector, 1358 bio_end_sector(bio))) 1359 break; 1360 schedule(); 1361 } 1362 finish_wait(&conf->wait_barrier, &w); 1363 } 1364 1365 /* 1366 * Register the new request and wait if the reconstruction 1367 * thread has put up a bar for new requests. 1368 * Continue immediately if no resync is active currently. 1369 */ 1370 if (!wait_barrier(conf, bio->bi_iter.bi_sector, 1371 bio->bi_opf & REQ_NOWAIT)) { 1372 bio_wouldblock_error(bio); 1373 return; 1374 } 1375 1376 r1_bio = alloc_r1bio(mddev, bio); 1377 r1_bio->sectors = max_write_sectors; 1378 1379 /* first select target devices under rcu_lock and 1380 * inc refcount on their rdev. Record them by setting 1381 * bios[x] to bio 1382 * If there are known/acknowledged bad blocks on any device on 1383 * which we have seen a write error, we want to avoid writing those 1384 * blocks. 1385 * This potentially requires several writes to write around 1386 * the bad blocks. Each set of writes gets it's own r1bio 1387 * with a set of bios attached. 1388 */ 1389 1390 disks = conf->raid_disks * 2; 1391 retry_write: 1392 blocked_rdev = NULL; 1393 rcu_read_lock(); 1394 max_sectors = r1_bio->sectors; 1395 for (i = 0; i < disks; i++) { 1396 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 1397 1398 /* 1399 * The write-behind io is only attempted on drives marked as 1400 * write-mostly, which means we could allocate write behind 1401 * bio later. 1402 */ 1403 if (rdev && test_bit(WriteMostly, &rdev->flags)) 1404 write_behind = true; 1405 1406 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) { 1407 atomic_inc(&rdev->nr_pending); 1408 blocked_rdev = rdev; 1409 break; 1410 } 1411 r1_bio->bios[i] = NULL; 1412 if (!rdev || test_bit(Faulty, &rdev->flags)) { 1413 if (i < conf->raid_disks) 1414 set_bit(R1BIO_Degraded, &r1_bio->state); 1415 continue; 1416 } 1417 1418 atomic_inc(&rdev->nr_pending); 1419 if (test_bit(WriteErrorSeen, &rdev->flags)) { 1420 sector_t first_bad; 1421 int bad_sectors; 1422 int is_bad; 1423 1424 is_bad = is_badblock(rdev, r1_bio->sector, max_sectors, 1425 &first_bad, &bad_sectors); 1426 if (is_bad < 0) { 1427 /* mustn't write here until the bad block is 1428 * acknowledged*/ 1429 set_bit(BlockedBadBlocks, &rdev->flags); 1430 blocked_rdev = rdev; 1431 break; 1432 } 1433 if (is_bad && first_bad <= r1_bio->sector) { 1434 /* Cannot write here at all */ 1435 bad_sectors -= (r1_bio->sector - first_bad); 1436 if (bad_sectors < max_sectors) 1437 /* mustn't write more than bad_sectors 1438 * to other devices yet 1439 */ 1440 max_sectors = bad_sectors; 1441 rdev_dec_pending(rdev, mddev); 1442 /* We don't set R1BIO_Degraded as that 1443 * only applies if the disk is 1444 * missing, so it might be re-added, 1445 * and we want to know to recover this 1446 * chunk. 1447 * In this case the device is here, 1448 * and the fact that this chunk is not 1449 * in-sync is recorded in the bad 1450 * block log 1451 */ 1452 continue; 1453 } 1454 if (is_bad) { 1455 int good_sectors = first_bad - r1_bio->sector; 1456 if (good_sectors < max_sectors) 1457 max_sectors = good_sectors; 1458 } 1459 } 1460 r1_bio->bios[i] = bio; 1461 } 1462 rcu_read_unlock(); 1463 1464 if (unlikely(blocked_rdev)) { 1465 /* Wait for this device to become unblocked */ 1466 int j; 1467 1468 for (j = 0; j < i; j++) 1469 if (r1_bio->bios[j]) 1470 rdev_dec_pending(conf->mirrors[j].rdev, mddev); 1471 r1_bio->state = 0; 1472 allow_barrier(conf, bio->bi_iter.bi_sector); 1473 1474 if (bio->bi_opf & REQ_NOWAIT) { 1475 bio_wouldblock_error(bio); 1476 return; 1477 } 1478 raid1_log(mddev, "wait rdev %d blocked", blocked_rdev->raid_disk); 1479 md_wait_for_blocked_rdev(blocked_rdev, mddev); 1480 wait_barrier(conf, bio->bi_iter.bi_sector, false); 1481 goto retry_write; 1482 } 1483 1484 /* 1485 * When using a bitmap, we may call alloc_behind_master_bio below. 1486 * alloc_behind_master_bio allocates a copy of the data payload a page 1487 * at a time and thus needs a new bio that can fit the whole payload 1488 * this bio in page sized chunks. 1489 */ 1490 if (write_behind && bitmap) 1491 max_sectors = min_t(int, max_sectors, 1492 BIO_MAX_VECS * (PAGE_SIZE >> 9)); 1493 if (max_sectors < bio_sectors(bio)) { 1494 struct bio *split = bio_split(bio, max_sectors, 1495 GFP_NOIO, &conf->bio_split); 1496 bio_chain(split, bio); 1497 submit_bio_noacct(bio); 1498 bio = split; 1499 r1_bio->master_bio = bio; 1500 r1_bio->sectors = max_sectors; 1501 } 1502 1503 if (blk_queue_io_stat(bio->bi_bdev->bd_disk->queue)) 1504 r1_bio->start_time = bio_start_io_acct(bio); 1505 atomic_set(&r1_bio->remaining, 1); 1506 atomic_set(&r1_bio->behind_remaining, 0); 1507 1508 first_clone = 1; 1509 1510 for (i = 0; i < disks; i++) { 1511 struct bio *mbio = NULL; 1512 struct md_rdev *rdev = conf->mirrors[i].rdev; 1513 if (!r1_bio->bios[i]) 1514 continue; 1515 1516 if (first_clone) { 1517 /* do behind I/O ? 1518 * Not if there are too many, or cannot 1519 * allocate memory, or a reader on WriteMostly 1520 * is waiting for behind writes to flush */ 1521 if (bitmap && 1522 test_bit(WriteMostly, &rdev->flags) && 1523 (atomic_read(&bitmap->behind_writes) 1524 < mddev->bitmap_info.max_write_behind) && 1525 !waitqueue_active(&bitmap->behind_wait)) { 1526 alloc_behind_master_bio(r1_bio, bio); 1527 } 1528 1529 md_bitmap_startwrite(bitmap, r1_bio->sector, r1_bio->sectors, 1530 test_bit(R1BIO_BehindIO, &r1_bio->state)); 1531 first_clone = 0; 1532 } 1533 1534 if (r1_bio->behind_master_bio) { 1535 mbio = bio_alloc_clone(rdev->bdev, 1536 r1_bio->behind_master_bio, 1537 GFP_NOIO, &mddev->bio_set); 1538 if (test_bit(CollisionCheck, &rdev->flags)) 1539 wait_for_serialization(rdev, r1_bio); 1540 if (test_bit(WriteMostly, &rdev->flags)) 1541 atomic_inc(&r1_bio->behind_remaining); 1542 } else { 1543 mbio = bio_alloc_clone(rdev->bdev, bio, GFP_NOIO, 1544 &mddev->bio_set); 1545 1546 if (mddev->serialize_policy) 1547 wait_for_serialization(rdev, r1_bio); 1548 } 1549 1550 r1_bio->bios[i] = mbio; 1551 1552 mbio->bi_iter.bi_sector = (r1_bio->sector + rdev->data_offset); 1553 mbio->bi_end_io = raid1_end_write_request; 1554 mbio->bi_opf = bio_op(bio) | (bio->bi_opf & (REQ_SYNC | REQ_FUA)); 1555 if (test_bit(FailFast, &rdev->flags) && 1556 !test_bit(WriteMostly, &rdev->flags) && 1557 conf->raid_disks - mddev->degraded > 1) 1558 mbio->bi_opf |= MD_FAILFAST; 1559 mbio->bi_private = r1_bio; 1560 1561 atomic_inc(&r1_bio->remaining); 1562 1563 if (mddev->gendisk) 1564 trace_block_bio_remap(mbio, disk_devt(mddev->gendisk), 1565 r1_bio->sector); 1566 /* flush_pending_writes() needs access to the rdev so...*/ 1567 mbio->bi_bdev = (void *)rdev; 1568 if (!raid1_add_bio_to_plug(mddev, mbio, raid1_unplug, disks)) { 1569 spin_lock_irqsave(&conf->device_lock, flags); 1570 bio_list_add(&conf->pending_bio_list, mbio); 1571 spin_unlock_irqrestore(&conf->device_lock, flags); 1572 md_wakeup_thread(mddev->thread); 1573 } 1574 } 1575 1576 r1_bio_write_done(r1_bio); 1577 1578 /* In case raid1d snuck in to freeze_array */ 1579 wake_up(&conf->wait_barrier); 1580 } 1581 1582 static bool raid1_make_request(struct mddev *mddev, struct bio *bio) 1583 { 1584 sector_t sectors; 1585 1586 if (unlikely(bio->bi_opf & REQ_PREFLUSH) 1587 && md_flush_request(mddev, bio)) 1588 return true; 1589 1590 /* 1591 * There is a limit to the maximum size, but 1592 * the read/write handler might find a lower limit 1593 * due to bad blocks. To avoid multiple splits, 1594 * we pass the maximum number of sectors down 1595 * and let the lower level perform the split. 1596 */ 1597 sectors = align_to_barrier_unit_end( 1598 bio->bi_iter.bi_sector, bio_sectors(bio)); 1599 1600 if (bio_data_dir(bio) == READ) 1601 raid1_read_request(mddev, bio, sectors, NULL); 1602 else { 1603 if (!md_write_start(mddev,bio)) 1604 return false; 1605 raid1_write_request(mddev, bio, sectors); 1606 } 1607 return true; 1608 } 1609 1610 static void raid1_status(struct seq_file *seq, struct mddev *mddev) 1611 { 1612 struct r1conf *conf = mddev->private; 1613 int i; 1614 1615 seq_printf(seq, " [%d/%d] [", conf->raid_disks, 1616 conf->raid_disks - mddev->degraded); 1617 rcu_read_lock(); 1618 for (i = 0; i < conf->raid_disks; i++) { 1619 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 1620 seq_printf(seq, "%s", 1621 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_"); 1622 } 1623 rcu_read_unlock(); 1624 seq_printf(seq, "]"); 1625 } 1626 1627 /** 1628 * raid1_error() - RAID1 error handler. 1629 * @mddev: affected md device. 1630 * @rdev: member device to fail. 1631 * 1632 * The routine acknowledges &rdev failure and determines new @mddev state. 1633 * If it failed, then: 1634 * - &MD_BROKEN flag is set in &mddev->flags. 1635 * - recovery is disabled. 1636 * Otherwise, it must be degraded: 1637 * - recovery is interrupted. 1638 * - &mddev->degraded is bumped. 1639 * 1640 * @rdev is marked as &Faulty excluding case when array is failed and 1641 * &mddev->fail_last_dev is off. 1642 */ 1643 static void raid1_error(struct mddev *mddev, struct md_rdev *rdev) 1644 { 1645 struct r1conf *conf = mddev->private; 1646 unsigned long flags; 1647 1648 spin_lock_irqsave(&conf->device_lock, flags); 1649 1650 if (test_bit(In_sync, &rdev->flags) && 1651 (conf->raid_disks - mddev->degraded) == 1) { 1652 set_bit(MD_BROKEN, &mddev->flags); 1653 1654 if (!mddev->fail_last_dev) { 1655 conf->recovery_disabled = mddev->recovery_disabled; 1656 spin_unlock_irqrestore(&conf->device_lock, flags); 1657 return; 1658 } 1659 } 1660 set_bit(Blocked, &rdev->flags); 1661 if (test_and_clear_bit(In_sync, &rdev->flags)) 1662 mddev->degraded++; 1663 set_bit(Faulty, &rdev->flags); 1664 spin_unlock_irqrestore(&conf->device_lock, flags); 1665 /* 1666 * if recovery is running, make sure it aborts. 1667 */ 1668 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 1669 set_mask_bits(&mddev->sb_flags, 0, 1670 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING)); 1671 pr_crit("md/raid1:%s: Disk failure on %pg, disabling device.\n" 1672 "md/raid1:%s: Operation continuing on %d devices.\n", 1673 mdname(mddev), rdev->bdev, 1674 mdname(mddev), conf->raid_disks - mddev->degraded); 1675 } 1676 1677 static void print_conf(struct r1conf *conf) 1678 { 1679 int i; 1680 1681 pr_debug("RAID1 conf printout:\n"); 1682 if (!conf) { 1683 pr_debug("(!conf)\n"); 1684 return; 1685 } 1686 pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded, 1687 conf->raid_disks); 1688 1689 rcu_read_lock(); 1690 for (i = 0; i < conf->raid_disks; i++) { 1691 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 1692 if (rdev) 1693 pr_debug(" disk %d, wo:%d, o:%d, dev:%pg\n", 1694 i, !test_bit(In_sync, &rdev->flags), 1695 !test_bit(Faulty, &rdev->flags), 1696 rdev->bdev); 1697 } 1698 rcu_read_unlock(); 1699 } 1700 1701 static void close_sync(struct r1conf *conf) 1702 { 1703 int idx; 1704 1705 for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++) { 1706 _wait_barrier(conf, idx, false); 1707 _allow_barrier(conf, idx); 1708 } 1709 1710 mempool_exit(&conf->r1buf_pool); 1711 } 1712 1713 static int raid1_spare_active(struct mddev *mddev) 1714 { 1715 int i; 1716 struct r1conf *conf = mddev->private; 1717 int count = 0; 1718 unsigned long flags; 1719 1720 /* 1721 * Find all failed disks within the RAID1 configuration 1722 * and mark them readable. 1723 * Called under mddev lock, so rcu protection not needed. 1724 * device_lock used to avoid races with raid1_end_read_request 1725 * which expects 'In_sync' flags and ->degraded to be consistent. 1726 */ 1727 spin_lock_irqsave(&conf->device_lock, flags); 1728 for (i = 0; i < conf->raid_disks; i++) { 1729 struct md_rdev *rdev = conf->mirrors[i].rdev; 1730 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev; 1731 if (repl 1732 && !test_bit(Candidate, &repl->flags) 1733 && repl->recovery_offset == MaxSector 1734 && !test_bit(Faulty, &repl->flags) 1735 && !test_and_set_bit(In_sync, &repl->flags)) { 1736 /* replacement has just become active */ 1737 if (!rdev || 1738 !test_and_clear_bit(In_sync, &rdev->flags)) 1739 count++; 1740 if (rdev) { 1741 /* Replaced device not technically 1742 * faulty, but we need to be sure 1743 * it gets removed and never re-added 1744 */ 1745 set_bit(Faulty, &rdev->flags); 1746 sysfs_notify_dirent_safe( 1747 rdev->sysfs_state); 1748 } 1749 } 1750 if (rdev 1751 && rdev->recovery_offset == MaxSector 1752 && !test_bit(Faulty, &rdev->flags) 1753 && !test_and_set_bit(In_sync, &rdev->flags)) { 1754 count++; 1755 sysfs_notify_dirent_safe(rdev->sysfs_state); 1756 } 1757 } 1758 mddev->degraded -= count; 1759 spin_unlock_irqrestore(&conf->device_lock, flags); 1760 1761 print_conf(conf); 1762 return count; 1763 } 1764 1765 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev) 1766 { 1767 struct r1conf *conf = mddev->private; 1768 int err = -EEXIST; 1769 int mirror = 0; 1770 struct raid1_info *p; 1771 int first = 0; 1772 int last = conf->raid_disks - 1; 1773 1774 if (mddev->recovery_disabled == conf->recovery_disabled) 1775 return -EBUSY; 1776 1777 if (md_integrity_add_rdev(rdev, mddev)) 1778 return -ENXIO; 1779 1780 if (rdev->raid_disk >= 0) 1781 first = last = rdev->raid_disk; 1782 1783 /* 1784 * find the disk ... but prefer rdev->saved_raid_disk 1785 * if possible. 1786 */ 1787 if (rdev->saved_raid_disk >= 0 && 1788 rdev->saved_raid_disk >= first && 1789 rdev->saved_raid_disk < conf->raid_disks && 1790 conf->mirrors[rdev->saved_raid_disk].rdev == NULL) 1791 first = last = rdev->saved_raid_disk; 1792 1793 for (mirror = first; mirror <= last; mirror++) { 1794 p = conf->mirrors + mirror; 1795 if (!p->rdev) { 1796 if (mddev->gendisk) 1797 disk_stack_limits(mddev->gendisk, rdev->bdev, 1798 rdev->data_offset << 9); 1799 1800 p->head_position = 0; 1801 rdev->raid_disk = mirror; 1802 err = 0; 1803 /* As all devices are equivalent, we don't need a full recovery 1804 * if this was recently any drive of the array 1805 */ 1806 if (rdev->saved_raid_disk < 0) 1807 conf->fullsync = 1; 1808 rcu_assign_pointer(p->rdev, rdev); 1809 break; 1810 } 1811 if (test_bit(WantReplacement, &p->rdev->flags) && 1812 p[conf->raid_disks].rdev == NULL) { 1813 /* Add this device as a replacement */ 1814 clear_bit(In_sync, &rdev->flags); 1815 set_bit(Replacement, &rdev->flags); 1816 rdev->raid_disk = mirror; 1817 err = 0; 1818 conf->fullsync = 1; 1819 rcu_assign_pointer(p[conf->raid_disks].rdev, rdev); 1820 break; 1821 } 1822 } 1823 print_conf(conf); 1824 return err; 1825 } 1826 1827 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev) 1828 { 1829 struct r1conf *conf = mddev->private; 1830 int err = 0; 1831 int number = rdev->raid_disk; 1832 struct raid1_info *p = conf->mirrors + number; 1833 1834 if (rdev != p->rdev) 1835 p = conf->mirrors + conf->raid_disks + number; 1836 1837 print_conf(conf); 1838 if (rdev == p->rdev) { 1839 if (test_bit(In_sync, &rdev->flags) || 1840 atomic_read(&rdev->nr_pending)) { 1841 err = -EBUSY; 1842 goto abort; 1843 } 1844 /* Only remove non-faulty devices if recovery 1845 * is not possible. 1846 */ 1847 if (!test_bit(Faulty, &rdev->flags) && 1848 mddev->recovery_disabled != conf->recovery_disabled && 1849 mddev->degraded < conf->raid_disks) { 1850 err = -EBUSY; 1851 goto abort; 1852 } 1853 p->rdev = NULL; 1854 if (!test_bit(RemoveSynchronized, &rdev->flags)) { 1855 synchronize_rcu(); 1856 if (atomic_read(&rdev->nr_pending)) { 1857 /* lost the race, try later */ 1858 err = -EBUSY; 1859 p->rdev = rdev; 1860 goto abort; 1861 } 1862 } 1863 if (conf->mirrors[conf->raid_disks + number].rdev) { 1864 /* We just removed a device that is being replaced. 1865 * Move down the replacement. We drain all IO before 1866 * doing this to avoid confusion. 1867 */ 1868 struct md_rdev *repl = 1869 conf->mirrors[conf->raid_disks + number].rdev; 1870 freeze_array(conf, 0); 1871 if (atomic_read(&repl->nr_pending)) { 1872 /* It means that some queued IO of retry_list 1873 * hold repl. Thus, we cannot set replacement 1874 * as NULL, avoiding rdev NULL pointer 1875 * dereference in sync_request_write and 1876 * handle_write_finished. 1877 */ 1878 err = -EBUSY; 1879 unfreeze_array(conf); 1880 goto abort; 1881 } 1882 clear_bit(Replacement, &repl->flags); 1883 p->rdev = repl; 1884 conf->mirrors[conf->raid_disks + number].rdev = NULL; 1885 unfreeze_array(conf); 1886 } 1887 1888 clear_bit(WantReplacement, &rdev->flags); 1889 err = md_integrity_register(mddev); 1890 } 1891 abort: 1892 1893 print_conf(conf); 1894 return err; 1895 } 1896 1897 static void end_sync_read(struct bio *bio) 1898 { 1899 struct r1bio *r1_bio = get_resync_r1bio(bio); 1900 1901 update_head_pos(r1_bio->read_disk, r1_bio); 1902 1903 /* 1904 * we have read a block, now it needs to be re-written, 1905 * or re-read if the read failed. 1906 * We don't do much here, just schedule handling by raid1d 1907 */ 1908 if (!bio->bi_status) 1909 set_bit(R1BIO_Uptodate, &r1_bio->state); 1910 1911 if (atomic_dec_and_test(&r1_bio->remaining)) 1912 reschedule_retry(r1_bio); 1913 } 1914 1915 static void abort_sync_write(struct mddev *mddev, struct r1bio *r1_bio) 1916 { 1917 sector_t sync_blocks = 0; 1918 sector_t s = r1_bio->sector; 1919 long sectors_to_go = r1_bio->sectors; 1920 1921 /* make sure these bits don't get cleared. */ 1922 do { 1923 md_bitmap_end_sync(mddev->bitmap, s, &sync_blocks, 1); 1924 s += sync_blocks; 1925 sectors_to_go -= sync_blocks; 1926 } while (sectors_to_go > 0); 1927 } 1928 1929 static void put_sync_write_buf(struct r1bio *r1_bio, int uptodate) 1930 { 1931 if (atomic_dec_and_test(&r1_bio->remaining)) { 1932 struct mddev *mddev = r1_bio->mddev; 1933 int s = r1_bio->sectors; 1934 1935 if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 1936 test_bit(R1BIO_WriteError, &r1_bio->state)) 1937 reschedule_retry(r1_bio); 1938 else { 1939 put_buf(r1_bio); 1940 md_done_sync(mddev, s, uptodate); 1941 } 1942 } 1943 } 1944 1945 static void end_sync_write(struct bio *bio) 1946 { 1947 int uptodate = !bio->bi_status; 1948 struct r1bio *r1_bio = get_resync_r1bio(bio); 1949 struct mddev *mddev = r1_bio->mddev; 1950 struct r1conf *conf = mddev->private; 1951 sector_t first_bad; 1952 int bad_sectors; 1953 struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev; 1954 1955 if (!uptodate) { 1956 abort_sync_write(mddev, r1_bio); 1957 set_bit(WriteErrorSeen, &rdev->flags); 1958 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 1959 set_bit(MD_RECOVERY_NEEDED, & 1960 mddev->recovery); 1961 set_bit(R1BIO_WriteError, &r1_bio->state); 1962 } else if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors, 1963 &first_bad, &bad_sectors) && 1964 !is_badblock(conf->mirrors[r1_bio->read_disk].rdev, 1965 r1_bio->sector, 1966 r1_bio->sectors, 1967 &first_bad, &bad_sectors) 1968 ) 1969 set_bit(R1BIO_MadeGood, &r1_bio->state); 1970 1971 put_sync_write_buf(r1_bio, uptodate); 1972 } 1973 1974 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector, 1975 int sectors, struct page *page, int rw) 1976 { 1977 if (sync_page_io(rdev, sector, sectors << 9, page, rw, false)) 1978 /* success */ 1979 return 1; 1980 if (rw == WRITE) { 1981 set_bit(WriteErrorSeen, &rdev->flags); 1982 if (!test_and_set_bit(WantReplacement, 1983 &rdev->flags)) 1984 set_bit(MD_RECOVERY_NEEDED, & 1985 rdev->mddev->recovery); 1986 } 1987 /* need to record an error - either for the block or the device */ 1988 if (!rdev_set_badblocks(rdev, sector, sectors, 0)) 1989 md_error(rdev->mddev, rdev); 1990 return 0; 1991 } 1992 1993 static int fix_sync_read_error(struct r1bio *r1_bio) 1994 { 1995 /* Try some synchronous reads of other devices to get 1996 * good data, much like with normal read errors. Only 1997 * read into the pages we already have so we don't 1998 * need to re-issue the read request. 1999 * We don't need to freeze the array, because being in an 2000 * active sync request, there is no normal IO, and 2001 * no overlapping syncs. 2002 * We don't need to check is_badblock() again as we 2003 * made sure that anything with a bad block in range 2004 * will have bi_end_io clear. 2005 */ 2006 struct mddev *mddev = r1_bio->mddev; 2007 struct r1conf *conf = mddev->private; 2008 struct bio *bio = r1_bio->bios[r1_bio->read_disk]; 2009 struct page **pages = get_resync_pages(bio)->pages; 2010 sector_t sect = r1_bio->sector; 2011 int sectors = r1_bio->sectors; 2012 int idx = 0; 2013 struct md_rdev *rdev; 2014 2015 rdev = conf->mirrors[r1_bio->read_disk].rdev; 2016 if (test_bit(FailFast, &rdev->flags)) { 2017 /* Don't try recovering from here - just fail it 2018 * ... unless it is the last working device of course */ 2019 md_error(mddev, rdev); 2020 if (test_bit(Faulty, &rdev->flags)) 2021 /* Don't try to read from here, but make sure 2022 * put_buf does it's thing 2023 */ 2024 bio->bi_end_io = end_sync_write; 2025 } 2026 2027 while(sectors) { 2028 int s = sectors; 2029 int d = r1_bio->read_disk; 2030 int success = 0; 2031 int start; 2032 2033 if (s > (PAGE_SIZE>>9)) 2034 s = PAGE_SIZE >> 9; 2035 do { 2036 if (r1_bio->bios[d]->bi_end_io == end_sync_read) { 2037 /* No rcu protection needed here devices 2038 * can only be removed when no resync is 2039 * active, and resync is currently active 2040 */ 2041 rdev = conf->mirrors[d].rdev; 2042 if (sync_page_io(rdev, sect, s<<9, 2043 pages[idx], 2044 REQ_OP_READ, false)) { 2045 success = 1; 2046 break; 2047 } 2048 } 2049 d++; 2050 if (d == conf->raid_disks * 2) 2051 d = 0; 2052 } while (!success && d != r1_bio->read_disk); 2053 2054 if (!success) { 2055 int abort = 0; 2056 /* Cannot read from anywhere, this block is lost. 2057 * Record a bad block on each device. If that doesn't 2058 * work just disable and interrupt the recovery. 2059 * Don't fail devices as that won't really help. 2060 */ 2061 pr_crit_ratelimited("md/raid1:%s: %pg: unrecoverable I/O read error for block %llu\n", 2062 mdname(mddev), bio->bi_bdev, 2063 (unsigned long long)r1_bio->sector); 2064 for (d = 0; d < conf->raid_disks * 2; d++) { 2065 rdev = conf->mirrors[d].rdev; 2066 if (!rdev || test_bit(Faulty, &rdev->flags)) 2067 continue; 2068 if (!rdev_set_badblocks(rdev, sect, s, 0)) 2069 abort = 1; 2070 } 2071 if (abort) { 2072 conf->recovery_disabled = 2073 mddev->recovery_disabled; 2074 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 2075 md_done_sync(mddev, r1_bio->sectors, 0); 2076 put_buf(r1_bio); 2077 return 0; 2078 } 2079 /* Try next page */ 2080 sectors -= s; 2081 sect += s; 2082 idx++; 2083 continue; 2084 } 2085 2086 start = d; 2087 /* write it back and re-read */ 2088 while (d != r1_bio->read_disk) { 2089 if (d == 0) 2090 d = conf->raid_disks * 2; 2091 d--; 2092 if (r1_bio->bios[d]->bi_end_io != end_sync_read) 2093 continue; 2094 rdev = conf->mirrors[d].rdev; 2095 if (r1_sync_page_io(rdev, sect, s, 2096 pages[idx], 2097 WRITE) == 0) { 2098 r1_bio->bios[d]->bi_end_io = NULL; 2099 rdev_dec_pending(rdev, mddev); 2100 } 2101 } 2102 d = start; 2103 while (d != r1_bio->read_disk) { 2104 if (d == 0) 2105 d = conf->raid_disks * 2; 2106 d--; 2107 if (r1_bio->bios[d]->bi_end_io != end_sync_read) 2108 continue; 2109 rdev = conf->mirrors[d].rdev; 2110 if (r1_sync_page_io(rdev, sect, s, 2111 pages[idx], 2112 READ) != 0) 2113 atomic_add(s, &rdev->corrected_errors); 2114 } 2115 sectors -= s; 2116 sect += s; 2117 idx ++; 2118 } 2119 set_bit(R1BIO_Uptodate, &r1_bio->state); 2120 bio->bi_status = 0; 2121 return 1; 2122 } 2123 2124 static void process_checks(struct r1bio *r1_bio) 2125 { 2126 /* We have read all readable devices. If we haven't 2127 * got the block, then there is no hope left. 2128 * If we have, then we want to do a comparison 2129 * and skip the write if everything is the same. 2130 * If any blocks failed to read, then we need to 2131 * attempt an over-write 2132 */ 2133 struct mddev *mddev = r1_bio->mddev; 2134 struct r1conf *conf = mddev->private; 2135 int primary; 2136 int i; 2137 int vcnt; 2138 2139 /* Fix variable parts of all bios */ 2140 vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9); 2141 for (i = 0; i < conf->raid_disks * 2; i++) { 2142 blk_status_t status; 2143 struct bio *b = r1_bio->bios[i]; 2144 struct resync_pages *rp = get_resync_pages(b); 2145 if (b->bi_end_io != end_sync_read) 2146 continue; 2147 /* fixup the bio for reuse, but preserve errno */ 2148 status = b->bi_status; 2149 bio_reset(b, conf->mirrors[i].rdev->bdev, REQ_OP_READ); 2150 b->bi_status = status; 2151 b->bi_iter.bi_sector = r1_bio->sector + 2152 conf->mirrors[i].rdev->data_offset; 2153 b->bi_end_io = end_sync_read; 2154 rp->raid_bio = r1_bio; 2155 b->bi_private = rp; 2156 2157 /* initialize bvec table again */ 2158 md_bio_reset_resync_pages(b, rp, r1_bio->sectors << 9); 2159 } 2160 for (primary = 0; primary < conf->raid_disks * 2; primary++) 2161 if (r1_bio->bios[primary]->bi_end_io == end_sync_read && 2162 !r1_bio->bios[primary]->bi_status) { 2163 r1_bio->bios[primary]->bi_end_io = NULL; 2164 rdev_dec_pending(conf->mirrors[primary].rdev, mddev); 2165 break; 2166 } 2167 r1_bio->read_disk = primary; 2168 for (i = 0; i < conf->raid_disks * 2; i++) { 2169 int j = 0; 2170 struct bio *pbio = r1_bio->bios[primary]; 2171 struct bio *sbio = r1_bio->bios[i]; 2172 blk_status_t status = sbio->bi_status; 2173 struct page **ppages = get_resync_pages(pbio)->pages; 2174 struct page **spages = get_resync_pages(sbio)->pages; 2175 struct bio_vec *bi; 2176 int page_len[RESYNC_PAGES] = { 0 }; 2177 struct bvec_iter_all iter_all; 2178 2179 if (sbio->bi_end_io != end_sync_read) 2180 continue; 2181 /* Now we can 'fixup' the error value */ 2182 sbio->bi_status = 0; 2183 2184 bio_for_each_segment_all(bi, sbio, iter_all) 2185 page_len[j++] = bi->bv_len; 2186 2187 if (!status) { 2188 for (j = vcnt; j-- ; ) { 2189 if (memcmp(page_address(ppages[j]), 2190 page_address(spages[j]), 2191 page_len[j])) 2192 break; 2193 } 2194 } else 2195 j = 0; 2196 if (j >= 0) 2197 atomic64_add(r1_bio->sectors, &mddev->resync_mismatches); 2198 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery) 2199 && !status)) { 2200 /* No need to write to this device. */ 2201 sbio->bi_end_io = NULL; 2202 rdev_dec_pending(conf->mirrors[i].rdev, mddev); 2203 continue; 2204 } 2205 2206 bio_copy_data(sbio, pbio); 2207 } 2208 } 2209 2210 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio) 2211 { 2212 struct r1conf *conf = mddev->private; 2213 int i; 2214 int disks = conf->raid_disks * 2; 2215 struct bio *wbio; 2216 2217 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) 2218 /* ouch - failed to read all of that. */ 2219 if (!fix_sync_read_error(r1_bio)) 2220 return; 2221 2222 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 2223 process_checks(r1_bio); 2224 2225 /* 2226 * schedule writes 2227 */ 2228 atomic_set(&r1_bio->remaining, 1); 2229 for (i = 0; i < disks ; i++) { 2230 wbio = r1_bio->bios[i]; 2231 if (wbio->bi_end_io == NULL || 2232 (wbio->bi_end_io == end_sync_read && 2233 (i == r1_bio->read_disk || 2234 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery)))) 2235 continue; 2236 if (test_bit(Faulty, &conf->mirrors[i].rdev->flags)) { 2237 abort_sync_write(mddev, r1_bio); 2238 continue; 2239 } 2240 2241 wbio->bi_opf = REQ_OP_WRITE; 2242 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags)) 2243 wbio->bi_opf |= MD_FAILFAST; 2244 2245 wbio->bi_end_io = end_sync_write; 2246 atomic_inc(&r1_bio->remaining); 2247 md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio)); 2248 2249 submit_bio_noacct(wbio); 2250 } 2251 2252 put_sync_write_buf(r1_bio, 1); 2253 } 2254 2255 /* 2256 * This is a kernel thread which: 2257 * 2258 * 1. Retries failed read operations on working mirrors. 2259 * 2. Updates the raid superblock when problems encounter. 2260 * 3. Performs writes following reads for array synchronising. 2261 */ 2262 2263 static void fix_read_error(struct r1conf *conf, int read_disk, 2264 sector_t sect, int sectors) 2265 { 2266 struct mddev *mddev = conf->mddev; 2267 while(sectors) { 2268 int s = sectors; 2269 int d = read_disk; 2270 int success = 0; 2271 int start; 2272 struct md_rdev *rdev; 2273 2274 if (s > (PAGE_SIZE>>9)) 2275 s = PAGE_SIZE >> 9; 2276 2277 do { 2278 sector_t first_bad; 2279 int bad_sectors; 2280 2281 rcu_read_lock(); 2282 rdev = rcu_dereference(conf->mirrors[d].rdev); 2283 if (rdev && 2284 (test_bit(In_sync, &rdev->flags) || 2285 (!test_bit(Faulty, &rdev->flags) && 2286 rdev->recovery_offset >= sect + s)) && 2287 is_badblock(rdev, sect, s, 2288 &first_bad, &bad_sectors) == 0) { 2289 atomic_inc(&rdev->nr_pending); 2290 rcu_read_unlock(); 2291 if (sync_page_io(rdev, sect, s<<9, 2292 conf->tmppage, REQ_OP_READ, false)) 2293 success = 1; 2294 rdev_dec_pending(rdev, mddev); 2295 if (success) 2296 break; 2297 } else 2298 rcu_read_unlock(); 2299 d++; 2300 if (d == conf->raid_disks * 2) 2301 d = 0; 2302 } while (!success && d != read_disk); 2303 2304 if (!success) { 2305 /* Cannot read from anywhere - mark it bad */ 2306 struct md_rdev *rdev = conf->mirrors[read_disk].rdev; 2307 if (!rdev_set_badblocks(rdev, sect, s, 0)) 2308 md_error(mddev, rdev); 2309 break; 2310 } 2311 /* write it back and re-read */ 2312 start = d; 2313 while (d != read_disk) { 2314 if (d==0) 2315 d = conf->raid_disks * 2; 2316 d--; 2317 rcu_read_lock(); 2318 rdev = rcu_dereference(conf->mirrors[d].rdev); 2319 if (rdev && 2320 !test_bit(Faulty, &rdev->flags)) { 2321 atomic_inc(&rdev->nr_pending); 2322 rcu_read_unlock(); 2323 r1_sync_page_io(rdev, sect, s, 2324 conf->tmppage, WRITE); 2325 rdev_dec_pending(rdev, mddev); 2326 } else 2327 rcu_read_unlock(); 2328 } 2329 d = start; 2330 while (d != read_disk) { 2331 if (d==0) 2332 d = conf->raid_disks * 2; 2333 d--; 2334 rcu_read_lock(); 2335 rdev = rcu_dereference(conf->mirrors[d].rdev); 2336 if (rdev && 2337 !test_bit(Faulty, &rdev->flags)) { 2338 atomic_inc(&rdev->nr_pending); 2339 rcu_read_unlock(); 2340 if (r1_sync_page_io(rdev, sect, s, 2341 conf->tmppage, READ)) { 2342 atomic_add(s, &rdev->corrected_errors); 2343 pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %pg)\n", 2344 mdname(mddev), s, 2345 (unsigned long long)(sect + 2346 rdev->data_offset), 2347 rdev->bdev); 2348 } 2349 rdev_dec_pending(rdev, mddev); 2350 } else 2351 rcu_read_unlock(); 2352 } 2353 sectors -= s; 2354 sect += s; 2355 } 2356 } 2357 2358 static int narrow_write_error(struct r1bio *r1_bio, int i) 2359 { 2360 struct mddev *mddev = r1_bio->mddev; 2361 struct r1conf *conf = mddev->private; 2362 struct md_rdev *rdev = conf->mirrors[i].rdev; 2363 2364 /* bio has the data to be written to device 'i' where 2365 * we just recently had a write error. 2366 * We repeatedly clone the bio and trim down to one block, 2367 * then try the write. Where the write fails we record 2368 * a bad block. 2369 * It is conceivable that the bio doesn't exactly align with 2370 * blocks. We must handle this somehow. 2371 * 2372 * We currently own a reference on the rdev. 2373 */ 2374 2375 int block_sectors; 2376 sector_t sector; 2377 int sectors; 2378 int sect_to_write = r1_bio->sectors; 2379 int ok = 1; 2380 2381 if (rdev->badblocks.shift < 0) 2382 return 0; 2383 2384 block_sectors = roundup(1 << rdev->badblocks.shift, 2385 bdev_logical_block_size(rdev->bdev) >> 9); 2386 sector = r1_bio->sector; 2387 sectors = ((sector + block_sectors) 2388 & ~(sector_t)(block_sectors - 1)) 2389 - sector; 2390 2391 while (sect_to_write) { 2392 struct bio *wbio; 2393 if (sectors > sect_to_write) 2394 sectors = sect_to_write; 2395 /* Write at 'sector' for 'sectors'*/ 2396 2397 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) { 2398 wbio = bio_alloc_clone(rdev->bdev, 2399 r1_bio->behind_master_bio, 2400 GFP_NOIO, &mddev->bio_set); 2401 } else { 2402 wbio = bio_alloc_clone(rdev->bdev, r1_bio->master_bio, 2403 GFP_NOIO, &mddev->bio_set); 2404 } 2405 2406 wbio->bi_opf = REQ_OP_WRITE; 2407 wbio->bi_iter.bi_sector = r1_bio->sector; 2408 wbio->bi_iter.bi_size = r1_bio->sectors << 9; 2409 2410 bio_trim(wbio, sector - r1_bio->sector, sectors); 2411 wbio->bi_iter.bi_sector += rdev->data_offset; 2412 2413 if (submit_bio_wait(wbio) < 0) 2414 /* failure! */ 2415 ok = rdev_set_badblocks(rdev, sector, 2416 sectors, 0) 2417 && ok; 2418 2419 bio_put(wbio); 2420 sect_to_write -= sectors; 2421 sector += sectors; 2422 sectors = block_sectors; 2423 } 2424 return ok; 2425 } 2426 2427 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio) 2428 { 2429 int m; 2430 int s = r1_bio->sectors; 2431 for (m = 0; m < conf->raid_disks * 2 ; m++) { 2432 struct md_rdev *rdev = conf->mirrors[m].rdev; 2433 struct bio *bio = r1_bio->bios[m]; 2434 if (bio->bi_end_io == NULL) 2435 continue; 2436 if (!bio->bi_status && 2437 test_bit(R1BIO_MadeGood, &r1_bio->state)) { 2438 rdev_clear_badblocks(rdev, r1_bio->sector, s, 0); 2439 } 2440 if (bio->bi_status && 2441 test_bit(R1BIO_WriteError, &r1_bio->state)) { 2442 if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0)) 2443 md_error(conf->mddev, rdev); 2444 } 2445 } 2446 put_buf(r1_bio); 2447 md_done_sync(conf->mddev, s, 1); 2448 } 2449 2450 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio) 2451 { 2452 int m, idx; 2453 bool fail = false; 2454 2455 for (m = 0; m < conf->raid_disks * 2 ; m++) 2456 if (r1_bio->bios[m] == IO_MADE_GOOD) { 2457 struct md_rdev *rdev = conf->mirrors[m].rdev; 2458 rdev_clear_badblocks(rdev, 2459 r1_bio->sector, 2460 r1_bio->sectors, 0); 2461 rdev_dec_pending(rdev, conf->mddev); 2462 } else if (r1_bio->bios[m] != NULL) { 2463 /* This drive got a write error. We need to 2464 * narrow down and record precise write 2465 * errors. 2466 */ 2467 fail = true; 2468 if (!narrow_write_error(r1_bio, m)) { 2469 md_error(conf->mddev, 2470 conf->mirrors[m].rdev); 2471 /* an I/O failed, we can't clear the bitmap */ 2472 set_bit(R1BIO_Degraded, &r1_bio->state); 2473 } 2474 rdev_dec_pending(conf->mirrors[m].rdev, 2475 conf->mddev); 2476 } 2477 if (fail) { 2478 spin_lock_irq(&conf->device_lock); 2479 list_add(&r1_bio->retry_list, &conf->bio_end_io_list); 2480 idx = sector_to_idx(r1_bio->sector); 2481 atomic_inc(&conf->nr_queued[idx]); 2482 spin_unlock_irq(&conf->device_lock); 2483 /* 2484 * In case freeze_array() is waiting for condition 2485 * get_unqueued_pending() == extra to be true. 2486 */ 2487 wake_up(&conf->wait_barrier); 2488 md_wakeup_thread(conf->mddev->thread); 2489 } else { 2490 if (test_bit(R1BIO_WriteError, &r1_bio->state)) 2491 close_write(r1_bio); 2492 raid_end_bio_io(r1_bio); 2493 } 2494 } 2495 2496 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio) 2497 { 2498 struct mddev *mddev = conf->mddev; 2499 struct bio *bio; 2500 struct md_rdev *rdev; 2501 2502 clear_bit(R1BIO_ReadError, &r1_bio->state); 2503 /* we got a read error. Maybe the drive is bad. Maybe just 2504 * the block and we can fix it. 2505 * We freeze all other IO, and try reading the block from 2506 * other devices. When we find one, we re-write 2507 * and check it that fixes the read error. 2508 * This is all done synchronously while the array is 2509 * frozen 2510 */ 2511 2512 bio = r1_bio->bios[r1_bio->read_disk]; 2513 bio_put(bio); 2514 r1_bio->bios[r1_bio->read_disk] = NULL; 2515 2516 rdev = conf->mirrors[r1_bio->read_disk].rdev; 2517 if (mddev->ro == 0 2518 && !test_bit(FailFast, &rdev->flags)) { 2519 freeze_array(conf, 1); 2520 fix_read_error(conf, r1_bio->read_disk, 2521 r1_bio->sector, r1_bio->sectors); 2522 unfreeze_array(conf); 2523 } else if (mddev->ro == 0 && test_bit(FailFast, &rdev->flags)) { 2524 md_error(mddev, rdev); 2525 } else { 2526 r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED; 2527 } 2528 2529 rdev_dec_pending(rdev, conf->mddev); 2530 allow_barrier(conf, r1_bio->sector); 2531 bio = r1_bio->master_bio; 2532 2533 /* Reuse the old r1_bio so that the IO_BLOCKED settings are preserved */ 2534 r1_bio->state = 0; 2535 raid1_read_request(mddev, bio, r1_bio->sectors, r1_bio); 2536 } 2537 2538 static void raid1d(struct md_thread *thread) 2539 { 2540 struct mddev *mddev = thread->mddev; 2541 struct r1bio *r1_bio; 2542 unsigned long flags; 2543 struct r1conf *conf = mddev->private; 2544 struct list_head *head = &conf->retry_list; 2545 struct blk_plug plug; 2546 int idx; 2547 2548 md_check_recovery(mddev); 2549 2550 if (!list_empty_careful(&conf->bio_end_io_list) && 2551 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) { 2552 LIST_HEAD(tmp); 2553 spin_lock_irqsave(&conf->device_lock, flags); 2554 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) 2555 list_splice_init(&conf->bio_end_io_list, &tmp); 2556 spin_unlock_irqrestore(&conf->device_lock, flags); 2557 while (!list_empty(&tmp)) { 2558 r1_bio = list_first_entry(&tmp, struct r1bio, 2559 retry_list); 2560 list_del(&r1_bio->retry_list); 2561 idx = sector_to_idx(r1_bio->sector); 2562 atomic_dec(&conf->nr_queued[idx]); 2563 if (mddev->degraded) 2564 set_bit(R1BIO_Degraded, &r1_bio->state); 2565 if (test_bit(R1BIO_WriteError, &r1_bio->state)) 2566 close_write(r1_bio); 2567 raid_end_bio_io(r1_bio); 2568 } 2569 } 2570 2571 blk_start_plug(&plug); 2572 for (;;) { 2573 2574 flush_pending_writes(conf); 2575 2576 spin_lock_irqsave(&conf->device_lock, flags); 2577 if (list_empty(head)) { 2578 spin_unlock_irqrestore(&conf->device_lock, flags); 2579 break; 2580 } 2581 r1_bio = list_entry(head->prev, struct r1bio, retry_list); 2582 list_del(head->prev); 2583 idx = sector_to_idx(r1_bio->sector); 2584 atomic_dec(&conf->nr_queued[idx]); 2585 spin_unlock_irqrestore(&conf->device_lock, flags); 2586 2587 mddev = r1_bio->mddev; 2588 conf = mddev->private; 2589 if (test_bit(R1BIO_IsSync, &r1_bio->state)) { 2590 if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 2591 test_bit(R1BIO_WriteError, &r1_bio->state)) 2592 handle_sync_write_finished(conf, r1_bio); 2593 else 2594 sync_request_write(mddev, r1_bio); 2595 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 2596 test_bit(R1BIO_WriteError, &r1_bio->state)) 2597 handle_write_finished(conf, r1_bio); 2598 else if (test_bit(R1BIO_ReadError, &r1_bio->state)) 2599 handle_read_error(conf, r1_bio); 2600 else 2601 WARN_ON_ONCE(1); 2602 2603 cond_resched(); 2604 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING)) 2605 md_check_recovery(mddev); 2606 } 2607 blk_finish_plug(&plug); 2608 } 2609 2610 static int init_resync(struct r1conf *conf) 2611 { 2612 int buffs; 2613 2614 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE; 2615 BUG_ON(mempool_initialized(&conf->r1buf_pool)); 2616 2617 return mempool_init(&conf->r1buf_pool, buffs, r1buf_pool_alloc, 2618 r1buf_pool_free, conf->poolinfo); 2619 } 2620 2621 static struct r1bio *raid1_alloc_init_r1buf(struct r1conf *conf) 2622 { 2623 struct r1bio *r1bio = mempool_alloc(&conf->r1buf_pool, GFP_NOIO); 2624 struct resync_pages *rps; 2625 struct bio *bio; 2626 int i; 2627 2628 for (i = conf->poolinfo->raid_disks; i--; ) { 2629 bio = r1bio->bios[i]; 2630 rps = bio->bi_private; 2631 bio_reset(bio, NULL, 0); 2632 bio->bi_private = rps; 2633 } 2634 r1bio->master_bio = NULL; 2635 return r1bio; 2636 } 2637 2638 /* 2639 * perform a "sync" on one "block" 2640 * 2641 * We need to make sure that no normal I/O request - particularly write 2642 * requests - conflict with active sync requests. 2643 * 2644 * This is achieved by tracking pending requests and a 'barrier' concept 2645 * that can be installed to exclude normal IO requests. 2646 */ 2647 2648 static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr, 2649 int *skipped) 2650 { 2651 struct r1conf *conf = mddev->private; 2652 struct r1bio *r1_bio; 2653 struct bio *bio; 2654 sector_t max_sector, nr_sectors; 2655 int disk = -1; 2656 int i; 2657 int wonly = -1; 2658 int write_targets = 0, read_targets = 0; 2659 sector_t sync_blocks; 2660 int still_degraded = 0; 2661 int good_sectors = RESYNC_SECTORS; 2662 int min_bad = 0; /* number of sectors that are bad in all devices */ 2663 int idx = sector_to_idx(sector_nr); 2664 int page_idx = 0; 2665 2666 if (!mempool_initialized(&conf->r1buf_pool)) 2667 if (init_resync(conf)) 2668 return 0; 2669 2670 max_sector = mddev->dev_sectors; 2671 if (sector_nr >= max_sector) { 2672 /* If we aborted, we need to abort the 2673 * sync on the 'current' bitmap chunk (there will 2674 * only be one in raid1 resync. 2675 * We can find the current addess in mddev->curr_resync 2676 */ 2677 if (mddev->curr_resync < max_sector) /* aborted */ 2678 md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 2679 &sync_blocks, 1); 2680 else /* completed sync */ 2681 conf->fullsync = 0; 2682 2683 md_bitmap_close_sync(mddev->bitmap); 2684 close_sync(conf); 2685 2686 if (mddev_is_clustered(mddev)) { 2687 conf->cluster_sync_low = 0; 2688 conf->cluster_sync_high = 0; 2689 } 2690 return 0; 2691 } 2692 2693 if (mddev->bitmap == NULL && 2694 mddev->recovery_cp == MaxSector && 2695 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 2696 conf->fullsync == 0) { 2697 *skipped = 1; 2698 return max_sector - sector_nr; 2699 } 2700 /* before building a request, check if we can skip these blocks.. 2701 * This call the bitmap_start_sync doesn't actually record anything 2702 */ 2703 if (!md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) && 2704 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 2705 /* We can skip this block, and probably several more */ 2706 *skipped = 1; 2707 return sync_blocks; 2708 } 2709 2710 /* 2711 * If there is non-resync activity waiting for a turn, then let it 2712 * though before starting on this new sync request. 2713 */ 2714 if (atomic_read(&conf->nr_waiting[idx])) 2715 schedule_timeout_uninterruptible(1); 2716 2717 /* we are incrementing sector_nr below. To be safe, we check against 2718 * sector_nr + two times RESYNC_SECTORS 2719 */ 2720 2721 md_bitmap_cond_end_sync(mddev->bitmap, sector_nr, 2722 mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high)); 2723 2724 2725 if (raise_barrier(conf, sector_nr)) 2726 return 0; 2727 2728 r1_bio = raid1_alloc_init_r1buf(conf); 2729 2730 rcu_read_lock(); 2731 /* 2732 * If we get a correctably read error during resync or recovery, 2733 * we might want to read from a different device. So we 2734 * flag all drives that could conceivably be read from for READ, 2735 * and any others (which will be non-In_sync devices) for WRITE. 2736 * If a read fails, we try reading from something else for which READ 2737 * is OK. 2738 */ 2739 2740 r1_bio->mddev = mddev; 2741 r1_bio->sector = sector_nr; 2742 r1_bio->state = 0; 2743 set_bit(R1BIO_IsSync, &r1_bio->state); 2744 /* make sure good_sectors won't go across barrier unit boundary */ 2745 good_sectors = align_to_barrier_unit_end(sector_nr, good_sectors); 2746 2747 for (i = 0; i < conf->raid_disks * 2; i++) { 2748 struct md_rdev *rdev; 2749 bio = r1_bio->bios[i]; 2750 2751 rdev = rcu_dereference(conf->mirrors[i].rdev); 2752 if (rdev == NULL || 2753 test_bit(Faulty, &rdev->flags)) { 2754 if (i < conf->raid_disks) 2755 still_degraded = 1; 2756 } else if (!test_bit(In_sync, &rdev->flags)) { 2757 bio->bi_opf = REQ_OP_WRITE; 2758 bio->bi_end_io = end_sync_write; 2759 write_targets ++; 2760 } else { 2761 /* may need to read from here */ 2762 sector_t first_bad = MaxSector; 2763 int bad_sectors; 2764 2765 if (is_badblock(rdev, sector_nr, good_sectors, 2766 &first_bad, &bad_sectors)) { 2767 if (first_bad > sector_nr) 2768 good_sectors = first_bad - sector_nr; 2769 else { 2770 bad_sectors -= (sector_nr - first_bad); 2771 if (min_bad == 0 || 2772 min_bad > bad_sectors) 2773 min_bad = bad_sectors; 2774 } 2775 } 2776 if (sector_nr < first_bad) { 2777 if (test_bit(WriteMostly, &rdev->flags)) { 2778 if (wonly < 0) 2779 wonly = i; 2780 } else { 2781 if (disk < 0) 2782 disk = i; 2783 } 2784 bio->bi_opf = REQ_OP_READ; 2785 bio->bi_end_io = end_sync_read; 2786 read_targets++; 2787 } else if (!test_bit(WriteErrorSeen, &rdev->flags) && 2788 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && 2789 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) { 2790 /* 2791 * The device is suitable for reading (InSync), 2792 * but has bad block(s) here. Let's try to correct them, 2793 * if we are doing resync or repair. Otherwise, leave 2794 * this device alone for this sync request. 2795 */ 2796 bio->bi_opf = REQ_OP_WRITE; 2797 bio->bi_end_io = end_sync_write; 2798 write_targets++; 2799 } 2800 } 2801 if (rdev && bio->bi_end_io) { 2802 atomic_inc(&rdev->nr_pending); 2803 bio->bi_iter.bi_sector = sector_nr + rdev->data_offset; 2804 bio_set_dev(bio, rdev->bdev); 2805 if (test_bit(FailFast, &rdev->flags)) 2806 bio->bi_opf |= MD_FAILFAST; 2807 } 2808 } 2809 rcu_read_unlock(); 2810 if (disk < 0) 2811 disk = wonly; 2812 r1_bio->read_disk = disk; 2813 2814 if (read_targets == 0 && min_bad > 0) { 2815 /* These sectors are bad on all InSync devices, so we 2816 * need to mark them bad on all write targets 2817 */ 2818 int ok = 1; 2819 for (i = 0 ; i < conf->raid_disks * 2 ; i++) 2820 if (r1_bio->bios[i]->bi_end_io == end_sync_write) { 2821 struct md_rdev *rdev = conf->mirrors[i].rdev; 2822 ok = rdev_set_badblocks(rdev, sector_nr, 2823 min_bad, 0 2824 ) && ok; 2825 } 2826 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2827 *skipped = 1; 2828 put_buf(r1_bio); 2829 2830 if (!ok) { 2831 /* Cannot record the badblocks, so need to 2832 * abort the resync. 2833 * If there are multiple read targets, could just 2834 * fail the really bad ones ??? 2835 */ 2836 conf->recovery_disabled = mddev->recovery_disabled; 2837 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 2838 return 0; 2839 } else 2840 return min_bad; 2841 2842 } 2843 if (min_bad > 0 && min_bad < good_sectors) { 2844 /* only resync enough to reach the next bad->good 2845 * transition */ 2846 good_sectors = min_bad; 2847 } 2848 2849 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0) 2850 /* extra read targets are also write targets */ 2851 write_targets += read_targets-1; 2852 2853 if (write_targets == 0 || read_targets == 0) { 2854 /* There is nowhere to write, so all non-sync 2855 * drives must be failed - so we are finished 2856 */ 2857 sector_t rv; 2858 if (min_bad > 0) 2859 max_sector = sector_nr + min_bad; 2860 rv = max_sector - sector_nr; 2861 *skipped = 1; 2862 put_buf(r1_bio); 2863 return rv; 2864 } 2865 2866 if (max_sector > mddev->resync_max) 2867 max_sector = mddev->resync_max; /* Don't do IO beyond here */ 2868 if (max_sector > sector_nr + good_sectors) 2869 max_sector = sector_nr + good_sectors; 2870 nr_sectors = 0; 2871 sync_blocks = 0; 2872 do { 2873 struct page *page; 2874 int len = PAGE_SIZE; 2875 if (sector_nr + (len>>9) > max_sector) 2876 len = (max_sector - sector_nr) << 9; 2877 if (len == 0) 2878 break; 2879 if (sync_blocks == 0) { 2880 if (!md_bitmap_start_sync(mddev->bitmap, sector_nr, 2881 &sync_blocks, still_degraded) && 2882 !conf->fullsync && 2883 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 2884 break; 2885 if ((len >> 9) > sync_blocks) 2886 len = sync_blocks<<9; 2887 } 2888 2889 for (i = 0 ; i < conf->raid_disks * 2; i++) { 2890 struct resync_pages *rp; 2891 2892 bio = r1_bio->bios[i]; 2893 rp = get_resync_pages(bio); 2894 if (bio->bi_end_io) { 2895 page = resync_fetch_page(rp, page_idx); 2896 2897 /* 2898 * won't fail because the vec table is big 2899 * enough to hold all these pages 2900 */ 2901 __bio_add_page(bio, page, len, 0); 2902 } 2903 } 2904 nr_sectors += len>>9; 2905 sector_nr += len>>9; 2906 sync_blocks -= (len>>9); 2907 } while (++page_idx < RESYNC_PAGES); 2908 2909 r1_bio->sectors = nr_sectors; 2910 2911 if (mddev_is_clustered(mddev) && 2912 conf->cluster_sync_high < sector_nr + nr_sectors) { 2913 conf->cluster_sync_low = mddev->curr_resync_completed; 2914 conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS; 2915 /* Send resync message */ 2916 md_cluster_ops->resync_info_update(mddev, 2917 conf->cluster_sync_low, 2918 conf->cluster_sync_high); 2919 } 2920 2921 /* For a user-requested sync, we read all readable devices and do a 2922 * compare 2923 */ 2924 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 2925 atomic_set(&r1_bio->remaining, read_targets); 2926 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) { 2927 bio = r1_bio->bios[i]; 2928 if (bio->bi_end_io == end_sync_read) { 2929 read_targets--; 2930 md_sync_acct_bio(bio, nr_sectors); 2931 if (read_targets == 1) 2932 bio->bi_opf &= ~MD_FAILFAST; 2933 submit_bio_noacct(bio); 2934 } 2935 } 2936 } else { 2937 atomic_set(&r1_bio->remaining, 1); 2938 bio = r1_bio->bios[r1_bio->read_disk]; 2939 md_sync_acct_bio(bio, nr_sectors); 2940 if (read_targets == 1) 2941 bio->bi_opf &= ~MD_FAILFAST; 2942 submit_bio_noacct(bio); 2943 } 2944 return nr_sectors; 2945 } 2946 2947 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks) 2948 { 2949 if (sectors) 2950 return sectors; 2951 2952 return mddev->dev_sectors; 2953 } 2954 2955 static struct r1conf *setup_conf(struct mddev *mddev) 2956 { 2957 struct r1conf *conf; 2958 int i; 2959 struct raid1_info *disk; 2960 struct md_rdev *rdev; 2961 int err = -ENOMEM; 2962 2963 conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL); 2964 if (!conf) 2965 goto abort; 2966 2967 conf->nr_pending = kcalloc(BARRIER_BUCKETS_NR, 2968 sizeof(atomic_t), GFP_KERNEL); 2969 if (!conf->nr_pending) 2970 goto abort; 2971 2972 conf->nr_waiting = kcalloc(BARRIER_BUCKETS_NR, 2973 sizeof(atomic_t), GFP_KERNEL); 2974 if (!conf->nr_waiting) 2975 goto abort; 2976 2977 conf->nr_queued = kcalloc(BARRIER_BUCKETS_NR, 2978 sizeof(atomic_t), GFP_KERNEL); 2979 if (!conf->nr_queued) 2980 goto abort; 2981 2982 conf->barrier = kcalloc(BARRIER_BUCKETS_NR, 2983 sizeof(atomic_t), GFP_KERNEL); 2984 if (!conf->barrier) 2985 goto abort; 2986 2987 conf->mirrors = kzalloc(array3_size(sizeof(struct raid1_info), 2988 mddev->raid_disks, 2), 2989 GFP_KERNEL); 2990 if (!conf->mirrors) 2991 goto abort; 2992 2993 conf->tmppage = alloc_page(GFP_KERNEL); 2994 if (!conf->tmppage) 2995 goto abort; 2996 2997 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL); 2998 if (!conf->poolinfo) 2999 goto abort; 3000 conf->poolinfo->raid_disks = mddev->raid_disks * 2; 3001 err = mempool_init(&conf->r1bio_pool, NR_RAID_BIOS, r1bio_pool_alloc, 3002 rbio_pool_free, conf->poolinfo); 3003 if (err) 3004 goto abort; 3005 3006 err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0); 3007 if (err) 3008 goto abort; 3009 3010 conf->poolinfo->mddev = mddev; 3011 3012 err = -EINVAL; 3013 spin_lock_init(&conf->device_lock); 3014 rdev_for_each(rdev, mddev) { 3015 int disk_idx = rdev->raid_disk; 3016 if (disk_idx >= mddev->raid_disks 3017 || disk_idx < 0) 3018 continue; 3019 if (test_bit(Replacement, &rdev->flags)) 3020 disk = conf->mirrors + mddev->raid_disks + disk_idx; 3021 else 3022 disk = conf->mirrors + disk_idx; 3023 3024 if (disk->rdev) 3025 goto abort; 3026 disk->rdev = rdev; 3027 disk->head_position = 0; 3028 disk->seq_start = MaxSector; 3029 } 3030 conf->raid_disks = mddev->raid_disks; 3031 conf->mddev = mddev; 3032 INIT_LIST_HEAD(&conf->retry_list); 3033 INIT_LIST_HEAD(&conf->bio_end_io_list); 3034 3035 spin_lock_init(&conf->resync_lock); 3036 init_waitqueue_head(&conf->wait_barrier); 3037 3038 bio_list_init(&conf->pending_bio_list); 3039 conf->recovery_disabled = mddev->recovery_disabled - 1; 3040 3041 err = -EIO; 3042 for (i = 0; i < conf->raid_disks * 2; i++) { 3043 3044 disk = conf->mirrors + i; 3045 3046 if (i < conf->raid_disks && 3047 disk[conf->raid_disks].rdev) { 3048 /* This slot has a replacement. */ 3049 if (!disk->rdev) { 3050 /* No original, just make the replacement 3051 * a recovering spare 3052 */ 3053 disk->rdev = 3054 disk[conf->raid_disks].rdev; 3055 disk[conf->raid_disks].rdev = NULL; 3056 } else if (!test_bit(In_sync, &disk->rdev->flags)) 3057 /* Original is not in_sync - bad */ 3058 goto abort; 3059 } 3060 3061 if (!disk->rdev || 3062 !test_bit(In_sync, &disk->rdev->flags)) { 3063 disk->head_position = 0; 3064 if (disk->rdev && 3065 (disk->rdev->saved_raid_disk < 0)) 3066 conf->fullsync = 1; 3067 } 3068 } 3069 3070 err = -ENOMEM; 3071 rcu_assign_pointer(conf->thread, 3072 md_register_thread(raid1d, mddev, "raid1")); 3073 if (!conf->thread) 3074 goto abort; 3075 3076 return conf; 3077 3078 abort: 3079 if (conf) { 3080 mempool_exit(&conf->r1bio_pool); 3081 kfree(conf->mirrors); 3082 safe_put_page(conf->tmppage); 3083 kfree(conf->poolinfo); 3084 kfree(conf->nr_pending); 3085 kfree(conf->nr_waiting); 3086 kfree(conf->nr_queued); 3087 kfree(conf->barrier); 3088 bioset_exit(&conf->bio_split); 3089 kfree(conf); 3090 } 3091 return ERR_PTR(err); 3092 } 3093 3094 static void raid1_free(struct mddev *mddev, void *priv); 3095 static int raid1_run(struct mddev *mddev) 3096 { 3097 struct r1conf *conf; 3098 int i; 3099 struct md_rdev *rdev; 3100 int ret; 3101 3102 if (mddev->level != 1) { 3103 pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n", 3104 mdname(mddev), mddev->level); 3105 return -EIO; 3106 } 3107 if (mddev->reshape_position != MaxSector) { 3108 pr_warn("md/raid1:%s: reshape_position set but not supported\n", 3109 mdname(mddev)); 3110 return -EIO; 3111 } 3112 if (mddev_init_writes_pending(mddev) < 0) 3113 return -ENOMEM; 3114 /* 3115 * copy the already verified devices into our private RAID1 3116 * bookkeeping area. [whatever we allocate in run(), 3117 * should be freed in raid1_free()] 3118 */ 3119 if (mddev->private == NULL) 3120 conf = setup_conf(mddev); 3121 else 3122 conf = mddev->private; 3123 3124 if (IS_ERR(conf)) 3125 return PTR_ERR(conf); 3126 3127 if (mddev->queue) 3128 blk_queue_max_write_zeroes_sectors(mddev->queue, 0); 3129 3130 rdev_for_each(rdev, mddev) { 3131 if (!mddev->gendisk) 3132 continue; 3133 disk_stack_limits(mddev->gendisk, rdev->bdev, 3134 rdev->data_offset << 9); 3135 } 3136 3137 mddev->degraded = 0; 3138 for (i = 0; i < conf->raid_disks; i++) 3139 if (conf->mirrors[i].rdev == NULL || 3140 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) || 3141 test_bit(Faulty, &conf->mirrors[i].rdev->flags)) 3142 mddev->degraded++; 3143 /* 3144 * RAID1 needs at least one disk in active 3145 */ 3146 if (conf->raid_disks - mddev->degraded < 1) { 3147 md_unregister_thread(&conf->thread); 3148 ret = -EINVAL; 3149 goto abort; 3150 } 3151 3152 if (conf->raid_disks - mddev->degraded == 1) 3153 mddev->recovery_cp = MaxSector; 3154 3155 if (mddev->recovery_cp != MaxSector) 3156 pr_info("md/raid1:%s: not clean -- starting background reconstruction\n", 3157 mdname(mddev)); 3158 pr_info("md/raid1:%s: active with %d out of %d mirrors\n", 3159 mdname(mddev), mddev->raid_disks - mddev->degraded, 3160 mddev->raid_disks); 3161 3162 /* 3163 * Ok, everything is just fine now 3164 */ 3165 rcu_assign_pointer(mddev->thread, conf->thread); 3166 rcu_assign_pointer(conf->thread, NULL); 3167 mddev->private = conf; 3168 set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags); 3169 3170 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0)); 3171 3172 ret = md_integrity_register(mddev); 3173 if (ret) { 3174 md_unregister_thread(&mddev->thread); 3175 goto abort; 3176 } 3177 return 0; 3178 3179 abort: 3180 raid1_free(mddev, conf); 3181 return ret; 3182 } 3183 3184 static void raid1_free(struct mddev *mddev, void *priv) 3185 { 3186 struct r1conf *conf = priv; 3187 3188 mempool_exit(&conf->r1bio_pool); 3189 kfree(conf->mirrors); 3190 safe_put_page(conf->tmppage); 3191 kfree(conf->poolinfo); 3192 kfree(conf->nr_pending); 3193 kfree(conf->nr_waiting); 3194 kfree(conf->nr_queued); 3195 kfree(conf->barrier); 3196 bioset_exit(&conf->bio_split); 3197 kfree(conf); 3198 } 3199 3200 static int raid1_resize(struct mddev *mddev, sector_t sectors) 3201 { 3202 /* no resync is happening, and there is enough space 3203 * on all devices, so we can resize. 3204 * We need to make sure resync covers any new space. 3205 * If the array is shrinking we should possibly wait until 3206 * any io in the removed space completes, but it hardly seems 3207 * worth it. 3208 */ 3209 sector_t newsize = raid1_size(mddev, sectors, 0); 3210 if (mddev->external_size && 3211 mddev->array_sectors > newsize) 3212 return -EINVAL; 3213 if (mddev->bitmap) { 3214 int ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0); 3215 if (ret) 3216 return ret; 3217 } 3218 md_set_array_sectors(mddev, newsize); 3219 if (sectors > mddev->dev_sectors && 3220 mddev->recovery_cp > mddev->dev_sectors) { 3221 mddev->recovery_cp = mddev->dev_sectors; 3222 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3223 } 3224 mddev->dev_sectors = sectors; 3225 mddev->resync_max_sectors = sectors; 3226 return 0; 3227 } 3228 3229 static int raid1_reshape(struct mddev *mddev) 3230 { 3231 /* We need to: 3232 * 1/ resize the r1bio_pool 3233 * 2/ resize conf->mirrors 3234 * 3235 * We allocate a new r1bio_pool if we can. 3236 * Then raise a device barrier and wait until all IO stops. 3237 * Then resize conf->mirrors and swap in the new r1bio pool. 3238 * 3239 * At the same time, we "pack" the devices so that all the missing 3240 * devices have the higher raid_disk numbers. 3241 */ 3242 mempool_t newpool, oldpool; 3243 struct pool_info *newpoolinfo; 3244 struct raid1_info *newmirrors; 3245 struct r1conf *conf = mddev->private; 3246 int cnt, raid_disks; 3247 unsigned long flags; 3248 int d, d2; 3249 int ret; 3250 3251 memset(&newpool, 0, sizeof(newpool)); 3252 memset(&oldpool, 0, sizeof(oldpool)); 3253 3254 /* Cannot change chunk_size, layout, or level */ 3255 if (mddev->chunk_sectors != mddev->new_chunk_sectors || 3256 mddev->layout != mddev->new_layout || 3257 mddev->level != mddev->new_level) { 3258 mddev->new_chunk_sectors = mddev->chunk_sectors; 3259 mddev->new_layout = mddev->layout; 3260 mddev->new_level = mddev->level; 3261 return -EINVAL; 3262 } 3263 3264 if (!mddev_is_clustered(mddev)) 3265 md_allow_write(mddev); 3266 3267 raid_disks = mddev->raid_disks + mddev->delta_disks; 3268 3269 if (raid_disks < conf->raid_disks) { 3270 cnt=0; 3271 for (d= 0; d < conf->raid_disks; d++) 3272 if (conf->mirrors[d].rdev) 3273 cnt++; 3274 if (cnt > raid_disks) 3275 return -EBUSY; 3276 } 3277 3278 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL); 3279 if (!newpoolinfo) 3280 return -ENOMEM; 3281 newpoolinfo->mddev = mddev; 3282 newpoolinfo->raid_disks = raid_disks * 2; 3283 3284 ret = mempool_init(&newpool, NR_RAID_BIOS, r1bio_pool_alloc, 3285 rbio_pool_free, newpoolinfo); 3286 if (ret) { 3287 kfree(newpoolinfo); 3288 return ret; 3289 } 3290 newmirrors = kzalloc(array3_size(sizeof(struct raid1_info), 3291 raid_disks, 2), 3292 GFP_KERNEL); 3293 if (!newmirrors) { 3294 kfree(newpoolinfo); 3295 mempool_exit(&newpool); 3296 return -ENOMEM; 3297 } 3298 3299 freeze_array(conf, 0); 3300 3301 /* ok, everything is stopped */ 3302 oldpool = conf->r1bio_pool; 3303 conf->r1bio_pool = newpool; 3304 3305 for (d = d2 = 0; d < conf->raid_disks; d++) { 3306 struct md_rdev *rdev = conf->mirrors[d].rdev; 3307 if (rdev && rdev->raid_disk != d2) { 3308 sysfs_unlink_rdev(mddev, rdev); 3309 rdev->raid_disk = d2; 3310 sysfs_unlink_rdev(mddev, rdev); 3311 if (sysfs_link_rdev(mddev, rdev)) 3312 pr_warn("md/raid1:%s: cannot register rd%d\n", 3313 mdname(mddev), rdev->raid_disk); 3314 } 3315 if (rdev) 3316 newmirrors[d2++].rdev = rdev; 3317 } 3318 kfree(conf->mirrors); 3319 conf->mirrors = newmirrors; 3320 kfree(conf->poolinfo); 3321 conf->poolinfo = newpoolinfo; 3322 3323 spin_lock_irqsave(&conf->device_lock, flags); 3324 mddev->degraded += (raid_disks - conf->raid_disks); 3325 spin_unlock_irqrestore(&conf->device_lock, flags); 3326 conf->raid_disks = mddev->raid_disks = raid_disks; 3327 mddev->delta_disks = 0; 3328 3329 unfreeze_array(conf); 3330 3331 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 3332 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3333 md_wakeup_thread(mddev->thread); 3334 3335 mempool_exit(&oldpool); 3336 return 0; 3337 } 3338 3339 static void raid1_quiesce(struct mddev *mddev, int quiesce) 3340 { 3341 struct r1conf *conf = mddev->private; 3342 3343 if (quiesce) 3344 freeze_array(conf, 0); 3345 else 3346 unfreeze_array(conf); 3347 } 3348 3349 static void *raid1_takeover(struct mddev *mddev) 3350 { 3351 /* raid1 can take over: 3352 * raid5 with 2 devices, any layout or chunk size 3353 */ 3354 if (mddev->level == 5 && mddev->raid_disks == 2) { 3355 struct r1conf *conf; 3356 mddev->new_level = 1; 3357 mddev->new_layout = 0; 3358 mddev->new_chunk_sectors = 0; 3359 conf = setup_conf(mddev); 3360 if (!IS_ERR(conf)) { 3361 /* Array must appear to be quiesced */ 3362 conf->array_frozen = 1; 3363 mddev_clear_unsupported_flags(mddev, 3364 UNSUPPORTED_MDDEV_FLAGS); 3365 } 3366 return conf; 3367 } 3368 return ERR_PTR(-EINVAL); 3369 } 3370 3371 static struct md_personality raid1_personality = 3372 { 3373 .name = "raid1", 3374 .level = 1, 3375 .owner = THIS_MODULE, 3376 .make_request = raid1_make_request, 3377 .run = raid1_run, 3378 .free = raid1_free, 3379 .status = raid1_status, 3380 .error_handler = raid1_error, 3381 .hot_add_disk = raid1_add_disk, 3382 .hot_remove_disk= raid1_remove_disk, 3383 .spare_active = raid1_spare_active, 3384 .sync_request = raid1_sync_request, 3385 .resize = raid1_resize, 3386 .size = raid1_size, 3387 .check_reshape = raid1_reshape, 3388 .quiesce = raid1_quiesce, 3389 .takeover = raid1_takeover, 3390 }; 3391 3392 static int __init raid_init(void) 3393 { 3394 return register_md_personality(&raid1_personality); 3395 } 3396 3397 static void raid_exit(void) 3398 { 3399 unregister_md_personality(&raid1_personality); 3400 } 3401 3402 module_init(raid_init); 3403 module_exit(raid_exit); 3404 MODULE_LICENSE("GPL"); 3405 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD"); 3406 MODULE_ALIAS("md-personality-3"); /* RAID1 */ 3407 MODULE_ALIAS("md-raid1"); 3408 MODULE_ALIAS("md-level-1"); 3409