1 /* 2 * raid1.c : Multiple Devices driver for Linux 3 * 4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat 5 * 6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman 7 * 8 * RAID-1 management functions. 9 * 10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000 11 * 12 * Fixes to reconstruction by Jakob �stergaard" <jakob@ostenfeld.dk> 13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au> 14 * 15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support 16 * bitmapped intelligence in resync: 17 * 18 * - bitmap marked during normal i/o 19 * - bitmap used to skip nondirty blocks during sync 20 * 21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology: 22 * - persistent bitmap code 23 * 24 * This program is free software; you can redistribute it and/or modify 25 * it under the terms of the GNU General Public License as published by 26 * the Free Software Foundation; either version 2, or (at your option) 27 * any later version. 28 * 29 * You should have received a copy of the GNU General Public License 30 * (for example /usr/src/linux/COPYING); if not, write to the Free 31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 32 */ 33 34 #include "dm-bio-list.h" 35 #include <linux/raid/raid1.h> 36 #include <linux/raid/bitmap.h> 37 38 #define DEBUG 0 39 #if DEBUG 40 #define PRINTK(x...) printk(x) 41 #else 42 #define PRINTK(x...) 43 #endif 44 45 /* 46 * Number of guaranteed r1bios in case of extreme VM load: 47 */ 48 #define NR_RAID1_BIOS 256 49 50 51 static void unplug_slaves(mddev_t *mddev); 52 53 static void allow_barrier(conf_t *conf); 54 static void lower_barrier(conf_t *conf); 55 56 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data) 57 { 58 struct pool_info *pi = data; 59 r1bio_t *r1_bio; 60 int size = offsetof(r1bio_t, bios[pi->raid_disks]); 61 62 /* allocate a r1bio with room for raid_disks entries in the bios array */ 63 r1_bio = kzalloc(size, gfp_flags); 64 if (!r1_bio) 65 unplug_slaves(pi->mddev); 66 67 return r1_bio; 68 } 69 70 static void r1bio_pool_free(void *r1_bio, void *data) 71 { 72 kfree(r1_bio); 73 } 74 75 #define RESYNC_BLOCK_SIZE (64*1024) 76 //#define RESYNC_BLOCK_SIZE PAGE_SIZE 77 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9) 78 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE) 79 #define RESYNC_WINDOW (2048*1024) 80 81 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data) 82 { 83 struct pool_info *pi = data; 84 struct page *page; 85 r1bio_t *r1_bio; 86 struct bio *bio; 87 int i, j; 88 89 r1_bio = r1bio_pool_alloc(gfp_flags, pi); 90 if (!r1_bio) { 91 unplug_slaves(pi->mddev); 92 return NULL; 93 } 94 95 /* 96 * Allocate bios : 1 for reading, n-1 for writing 97 */ 98 for (j = pi->raid_disks ; j-- ; ) { 99 bio = bio_alloc(gfp_flags, RESYNC_PAGES); 100 if (!bio) 101 goto out_free_bio; 102 r1_bio->bios[j] = bio; 103 } 104 /* 105 * Allocate RESYNC_PAGES data pages and attach them to 106 * the first bio. 107 * If this is a user-requested check/repair, allocate 108 * RESYNC_PAGES for each bio. 109 */ 110 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) 111 j = pi->raid_disks; 112 else 113 j = 1; 114 while(j--) { 115 bio = r1_bio->bios[j]; 116 for (i = 0; i < RESYNC_PAGES; i++) { 117 page = alloc_page(gfp_flags); 118 if (unlikely(!page)) 119 goto out_free_pages; 120 121 bio->bi_io_vec[i].bv_page = page; 122 } 123 } 124 /* If not user-requests, copy the page pointers to all bios */ 125 if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) { 126 for (i=0; i<RESYNC_PAGES ; i++) 127 for (j=1; j<pi->raid_disks; j++) 128 r1_bio->bios[j]->bi_io_vec[i].bv_page = 129 r1_bio->bios[0]->bi_io_vec[i].bv_page; 130 } 131 132 r1_bio->master_bio = NULL; 133 134 return r1_bio; 135 136 out_free_pages: 137 for (i=0; i < RESYNC_PAGES ; i++) 138 for (j=0 ; j < pi->raid_disks; j++) 139 safe_put_page(r1_bio->bios[j]->bi_io_vec[i].bv_page); 140 j = -1; 141 out_free_bio: 142 while ( ++j < pi->raid_disks ) 143 bio_put(r1_bio->bios[j]); 144 r1bio_pool_free(r1_bio, data); 145 return NULL; 146 } 147 148 static void r1buf_pool_free(void *__r1_bio, void *data) 149 { 150 struct pool_info *pi = data; 151 int i,j; 152 r1bio_t *r1bio = __r1_bio; 153 154 for (i = 0; i < RESYNC_PAGES; i++) 155 for (j = pi->raid_disks; j-- ;) { 156 if (j == 0 || 157 r1bio->bios[j]->bi_io_vec[i].bv_page != 158 r1bio->bios[0]->bi_io_vec[i].bv_page) 159 safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page); 160 } 161 for (i=0 ; i < pi->raid_disks; i++) 162 bio_put(r1bio->bios[i]); 163 164 r1bio_pool_free(r1bio, data); 165 } 166 167 static void put_all_bios(conf_t *conf, r1bio_t *r1_bio) 168 { 169 int i; 170 171 for (i = 0; i < conf->raid_disks; i++) { 172 struct bio **bio = r1_bio->bios + i; 173 if (*bio && *bio != IO_BLOCKED) 174 bio_put(*bio); 175 *bio = NULL; 176 } 177 } 178 179 static void free_r1bio(r1bio_t *r1_bio) 180 { 181 conf_t *conf = mddev_to_conf(r1_bio->mddev); 182 183 /* 184 * Wake up any possible resync thread that waits for the device 185 * to go idle. 186 */ 187 allow_barrier(conf); 188 189 put_all_bios(conf, r1_bio); 190 mempool_free(r1_bio, conf->r1bio_pool); 191 } 192 193 static void put_buf(r1bio_t *r1_bio) 194 { 195 conf_t *conf = mddev_to_conf(r1_bio->mddev); 196 int i; 197 198 for (i=0; i<conf->raid_disks; i++) { 199 struct bio *bio = r1_bio->bios[i]; 200 if (bio->bi_end_io) 201 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev); 202 } 203 204 mempool_free(r1_bio, conf->r1buf_pool); 205 206 lower_barrier(conf); 207 } 208 209 static void reschedule_retry(r1bio_t *r1_bio) 210 { 211 unsigned long flags; 212 mddev_t *mddev = r1_bio->mddev; 213 conf_t *conf = mddev_to_conf(mddev); 214 215 spin_lock_irqsave(&conf->device_lock, flags); 216 list_add(&r1_bio->retry_list, &conf->retry_list); 217 conf->nr_queued ++; 218 spin_unlock_irqrestore(&conf->device_lock, flags); 219 220 wake_up(&conf->wait_barrier); 221 md_wakeup_thread(mddev->thread); 222 } 223 224 /* 225 * raid_end_bio_io() is called when we have finished servicing a mirrored 226 * operation and are ready to return a success/failure code to the buffer 227 * cache layer. 228 */ 229 static void raid_end_bio_io(r1bio_t *r1_bio) 230 { 231 struct bio *bio = r1_bio->master_bio; 232 233 /* if nobody has done the final endio yet, do it now */ 234 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) { 235 PRINTK(KERN_DEBUG "raid1: sync end %s on sectors %llu-%llu\n", 236 (bio_data_dir(bio) == WRITE) ? "write" : "read", 237 (unsigned long long) bio->bi_sector, 238 (unsigned long long) bio->bi_sector + 239 (bio->bi_size >> 9) - 1); 240 241 bio_endio(bio, bio->bi_size, 242 test_bit(R1BIO_Uptodate, &r1_bio->state) ? 0 : -EIO); 243 } 244 free_r1bio(r1_bio); 245 } 246 247 /* 248 * Update disk head position estimator based on IRQ completion info. 249 */ 250 static inline void update_head_pos(int disk, r1bio_t *r1_bio) 251 { 252 conf_t *conf = mddev_to_conf(r1_bio->mddev); 253 254 conf->mirrors[disk].head_position = 255 r1_bio->sector + (r1_bio->sectors); 256 } 257 258 static int raid1_end_read_request(struct bio *bio, unsigned int bytes_done, int error) 259 { 260 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 261 r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private); 262 int mirror; 263 conf_t *conf = mddev_to_conf(r1_bio->mddev); 264 265 if (bio->bi_size) 266 return 1; 267 268 mirror = r1_bio->read_disk; 269 /* 270 * this branch is our 'one mirror IO has finished' event handler: 271 */ 272 update_head_pos(mirror, r1_bio); 273 274 if (uptodate) 275 set_bit(R1BIO_Uptodate, &r1_bio->state); 276 else { 277 /* If all other devices have failed, we want to return 278 * the error upwards rather than fail the last device. 279 * Here we redefine "uptodate" to mean "Don't want to retry" 280 */ 281 unsigned long flags; 282 spin_lock_irqsave(&conf->device_lock, flags); 283 if (r1_bio->mddev->degraded == conf->raid_disks || 284 (r1_bio->mddev->degraded == conf->raid_disks-1 && 285 !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags))) 286 uptodate = 1; 287 spin_unlock_irqrestore(&conf->device_lock, flags); 288 } 289 290 if (uptodate) 291 raid_end_bio_io(r1_bio); 292 else { 293 /* 294 * oops, read error: 295 */ 296 char b[BDEVNAME_SIZE]; 297 if (printk_ratelimit()) 298 printk(KERN_ERR "raid1: %s: rescheduling sector %llu\n", 299 bdevname(conf->mirrors[mirror].rdev->bdev,b), (unsigned long long)r1_bio->sector); 300 reschedule_retry(r1_bio); 301 } 302 303 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev); 304 return 0; 305 } 306 307 static int raid1_end_write_request(struct bio *bio, unsigned int bytes_done, int error) 308 { 309 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 310 r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private); 311 int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state); 312 conf_t *conf = mddev_to_conf(r1_bio->mddev); 313 struct bio *to_put = NULL; 314 315 if (bio->bi_size) 316 return 1; 317 318 for (mirror = 0; mirror < conf->raid_disks; mirror++) 319 if (r1_bio->bios[mirror] == bio) 320 break; 321 322 if (error == -EOPNOTSUPP && test_bit(R1BIO_Barrier, &r1_bio->state)) { 323 set_bit(BarriersNotsupp, &conf->mirrors[mirror].rdev->flags); 324 set_bit(R1BIO_BarrierRetry, &r1_bio->state); 325 r1_bio->mddev->barriers_work = 0; 326 /* Don't rdev_dec_pending in this branch - keep it for the retry */ 327 } else { 328 /* 329 * this branch is our 'one mirror IO has finished' event handler: 330 */ 331 r1_bio->bios[mirror] = NULL; 332 to_put = bio; 333 if (!uptodate) { 334 md_error(r1_bio->mddev, conf->mirrors[mirror].rdev); 335 /* an I/O failed, we can't clear the bitmap */ 336 set_bit(R1BIO_Degraded, &r1_bio->state); 337 } else 338 /* 339 * Set R1BIO_Uptodate in our master bio, so that 340 * we will return a good error code for to the higher 341 * levels even if IO on some other mirrored buffer fails. 342 * 343 * The 'master' represents the composite IO operation to 344 * user-side. So if something waits for IO, then it will 345 * wait for the 'master' bio. 346 */ 347 set_bit(R1BIO_Uptodate, &r1_bio->state); 348 349 update_head_pos(mirror, r1_bio); 350 351 if (behind) { 352 if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags)) 353 atomic_dec(&r1_bio->behind_remaining); 354 355 /* In behind mode, we ACK the master bio once the I/O has safely 356 * reached all non-writemostly disks. Setting the Returned bit 357 * ensures that this gets done only once -- we don't ever want to 358 * return -EIO here, instead we'll wait */ 359 360 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) && 361 test_bit(R1BIO_Uptodate, &r1_bio->state)) { 362 /* Maybe we can return now */ 363 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) { 364 struct bio *mbio = r1_bio->master_bio; 365 PRINTK(KERN_DEBUG "raid1: behind end write sectors %llu-%llu\n", 366 (unsigned long long) mbio->bi_sector, 367 (unsigned long long) mbio->bi_sector + 368 (mbio->bi_size >> 9) - 1); 369 bio_endio(mbio, mbio->bi_size, 0); 370 } 371 } 372 } 373 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev); 374 } 375 /* 376 * 377 * Let's see if all mirrored write operations have finished 378 * already. 379 */ 380 if (atomic_dec_and_test(&r1_bio->remaining)) { 381 if (test_bit(R1BIO_BarrierRetry, &r1_bio->state)) 382 reschedule_retry(r1_bio); 383 else { 384 /* it really is the end of this request */ 385 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) { 386 /* free extra copy of the data pages */ 387 int i = bio->bi_vcnt; 388 while (i--) 389 safe_put_page(bio->bi_io_vec[i].bv_page); 390 } 391 /* clear the bitmap if all writes complete successfully */ 392 bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector, 393 r1_bio->sectors, 394 !test_bit(R1BIO_Degraded, &r1_bio->state), 395 behind); 396 md_write_end(r1_bio->mddev); 397 raid_end_bio_io(r1_bio); 398 } 399 } 400 401 if (to_put) 402 bio_put(to_put); 403 404 return 0; 405 } 406 407 408 /* 409 * This routine returns the disk from which the requested read should 410 * be done. There is a per-array 'next expected sequential IO' sector 411 * number - if this matches on the next IO then we use the last disk. 412 * There is also a per-disk 'last know head position' sector that is 413 * maintained from IRQ contexts, both the normal and the resync IO 414 * completion handlers update this position correctly. If there is no 415 * perfect sequential match then we pick the disk whose head is closest. 416 * 417 * If there are 2 mirrors in the same 2 devices, performance degrades 418 * because position is mirror, not device based. 419 * 420 * The rdev for the device selected will have nr_pending incremented. 421 */ 422 static int read_balance(conf_t *conf, r1bio_t *r1_bio) 423 { 424 const unsigned long this_sector = r1_bio->sector; 425 int new_disk = conf->last_used, disk = new_disk; 426 int wonly_disk = -1; 427 const int sectors = r1_bio->sectors; 428 sector_t new_distance, current_distance; 429 mdk_rdev_t *rdev; 430 431 rcu_read_lock(); 432 /* 433 * Check if we can balance. We can balance on the whole 434 * device if no resync is going on, or below the resync window. 435 * We take the first readable disk when above the resync window. 436 */ 437 retry: 438 if (conf->mddev->recovery_cp < MaxSector && 439 (this_sector + sectors >= conf->next_resync)) { 440 /* Choose the first operation device, for consistancy */ 441 new_disk = 0; 442 443 for (rdev = rcu_dereference(conf->mirrors[new_disk].rdev); 444 r1_bio->bios[new_disk] == IO_BLOCKED || 445 !rdev || !test_bit(In_sync, &rdev->flags) 446 || test_bit(WriteMostly, &rdev->flags); 447 rdev = rcu_dereference(conf->mirrors[++new_disk].rdev)) { 448 449 if (rdev && test_bit(In_sync, &rdev->flags) && 450 r1_bio->bios[new_disk] != IO_BLOCKED) 451 wonly_disk = new_disk; 452 453 if (new_disk == conf->raid_disks - 1) { 454 new_disk = wonly_disk; 455 break; 456 } 457 } 458 goto rb_out; 459 } 460 461 462 /* make sure the disk is operational */ 463 for (rdev = rcu_dereference(conf->mirrors[new_disk].rdev); 464 r1_bio->bios[new_disk] == IO_BLOCKED || 465 !rdev || !test_bit(In_sync, &rdev->flags) || 466 test_bit(WriteMostly, &rdev->flags); 467 rdev = rcu_dereference(conf->mirrors[new_disk].rdev)) { 468 469 if (rdev && test_bit(In_sync, &rdev->flags) && 470 r1_bio->bios[new_disk] != IO_BLOCKED) 471 wonly_disk = new_disk; 472 473 if (new_disk <= 0) 474 new_disk = conf->raid_disks; 475 new_disk--; 476 if (new_disk == disk) { 477 new_disk = wonly_disk; 478 break; 479 } 480 } 481 482 if (new_disk < 0) 483 goto rb_out; 484 485 disk = new_disk; 486 /* now disk == new_disk == starting point for search */ 487 488 /* 489 * Don't change to another disk for sequential reads: 490 */ 491 if (conf->next_seq_sect == this_sector) 492 goto rb_out; 493 if (this_sector == conf->mirrors[new_disk].head_position) 494 goto rb_out; 495 496 current_distance = abs(this_sector - conf->mirrors[disk].head_position); 497 498 /* Find the disk whose head is closest */ 499 500 do { 501 if (disk <= 0) 502 disk = conf->raid_disks; 503 disk--; 504 505 rdev = rcu_dereference(conf->mirrors[disk].rdev); 506 507 if (!rdev || r1_bio->bios[disk] == IO_BLOCKED || 508 !test_bit(In_sync, &rdev->flags) || 509 test_bit(WriteMostly, &rdev->flags)) 510 continue; 511 512 if (!atomic_read(&rdev->nr_pending)) { 513 new_disk = disk; 514 break; 515 } 516 new_distance = abs(this_sector - conf->mirrors[disk].head_position); 517 if (new_distance < current_distance) { 518 current_distance = new_distance; 519 new_disk = disk; 520 } 521 } while (disk != conf->last_used); 522 523 rb_out: 524 525 526 if (new_disk >= 0) { 527 rdev = rcu_dereference(conf->mirrors[new_disk].rdev); 528 if (!rdev) 529 goto retry; 530 atomic_inc(&rdev->nr_pending); 531 if (!test_bit(In_sync, &rdev->flags)) { 532 /* cannot risk returning a device that failed 533 * before we inc'ed nr_pending 534 */ 535 rdev_dec_pending(rdev, conf->mddev); 536 goto retry; 537 } 538 conf->next_seq_sect = this_sector + sectors; 539 conf->last_used = new_disk; 540 } 541 rcu_read_unlock(); 542 543 return new_disk; 544 } 545 546 static void unplug_slaves(mddev_t *mddev) 547 { 548 conf_t *conf = mddev_to_conf(mddev); 549 int i; 550 551 rcu_read_lock(); 552 for (i=0; i<mddev->raid_disks; i++) { 553 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev); 554 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) { 555 request_queue_t *r_queue = bdev_get_queue(rdev->bdev); 556 557 atomic_inc(&rdev->nr_pending); 558 rcu_read_unlock(); 559 560 if (r_queue->unplug_fn) 561 r_queue->unplug_fn(r_queue); 562 563 rdev_dec_pending(rdev, mddev); 564 rcu_read_lock(); 565 } 566 } 567 rcu_read_unlock(); 568 } 569 570 static void raid1_unplug(request_queue_t *q) 571 { 572 mddev_t *mddev = q->queuedata; 573 574 unplug_slaves(mddev); 575 md_wakeup_thread(mddev->thread); 576 } 577 578 static int raid1_issue_flush(request_queue_t *q, struct gendisk *disk, 579 sector_t *error_sector) 580 { 581 mddev_t *mddev = q->queuedata; 582 conf_t *conf = mddev_to_conf(mddev); 583 int i, ret = 0; 584 585 rcu_read_lock(); 586 for (i=0; i<mddev->raid_disks && ret == 0; i++) { 587 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev); 588 if (rdev && !test_bit(Faulty, &rdev->flags)) { 589 struct block_device *bdev = rdev->bdev; 590 request_queue_t *r_queue = bdev_get_queue(bdev); 591 592 if (!r_queue->issue_flush_fn) 593 ret = -EOPNOTSUPP; 594 else { 595 atomic_inc(&rdev->nr_pending); 596 rcu_read_unlock(); 597 ret = r_queue->issue_flush_fn(r_queue, bdev->bd_disk, 598 error_sector); 599 rdev_dec_pending(rdev, mddev); 600 rcu_read_lock(); 601 } 602 } 603 } 604 rcu_read_unlock(); 605 return ret; 606 } 607 608 static int raid1_congested(void *data, int bits) 609 { 610 mddev_t *mddev = data; 611 conf_t *conf = mddev_to_conf(mddev); 612 int i, ret = 0; 613 614 rcu_read_lock(); 615 for (i = 0; i < mddev->raid_disks; i++) { 616 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev); 617 if (rdev && !test_bit(Faulty, &rdev->flags)) { 618 request_queue_t *q = bdev_get_queue(rdev->bdev); 619 620 /* Note the '|| 1' - when read_balance prefers 621 * non-congested targets, it can be removed 622 */ 623 if ((bits & (1<<BDI_write_congested)) || 1) 624 ret |= bdi_congested(&q->backing_dev_info, bits); 625 else 626 ret &= bdi_congested(&q->backing_dev_info, bits); 627 } 628 } 629 rcu_read_unlock(); 630 return ret; 631 } 632 633 634 /* Barriers.... 635 * Sometimes we need to suspend IO while we do something else, 636 * either some resync/recovery, or reconfigure the array. 637 * To do this we raise a 'barrier'. 638 * The 'barrier' is a counter that can be raised multiple times 639 * to count how many activities are happening which preclude 640 * normal IO. 641 * We can only raise the barrier if there is no pending IO. 642 * i.e. if nr_pending == 0. 643 * We choose only to raise the barrier if no-one is waiting for the 644 * barrier to go down. This means that as soon as an IO request 645 * is ready, no other operations which require a barrier will start 646 * until the IO request has had a chance. 647 * 648 * So: regular IO calls 'wait_barrier'. When that returns there 649 * is no backgroup IO happening, It must arrange to call 650 * allow_barrier when it has finished its IO. 651 * backgroup IO calls must call raise_barrier. Once that returns 652 * there is no normal IO happeing. It must arrange to call 653 * lower_barrier when the particular background IO completes. 654 */ 655 #define RESYNC_DEPTH 32 656 657 static void raise_barrier(conf_t *conf) 658 { 659 spin_lock_irq(&conf->resync_lock); 660 661 /* Wait until no block IO is waiting */ 662 wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting, 663 conf->resync_lock, 664 raid1_unplug(conf->mddev->queue)); 665 666 /* block any new IO from starting */ 667 conf->barrier++; 668 669 /* No wait for all pending IO to complete */ 670 wait_event_lock_irq(conf->wait_barrier, 671 !conf->nr_pending && conf->barrier < RESYNC_DEPTH, 672 conf->resync_lock, 673 raid1_unplug(conf->mddev->queue)); 674 675 spin_unlock_irq(&conf->resync_lock); 676 } 677 678 static void lower_barrier(conf_t *conf) 679 { 680 unsigned long flags; 681 spin_lock_irqsave(&conf->resync_lock, flags); 682 conf->barrier--; 683 spin_unlock_irqrestore(&conf->resync_lock, flags); 684 wake_up(&conf->wait_barrier); 685 } 686 687 static void wait_barrier(conf_t *conf) 688 { 689 spin_lock_irq(&conf->resync_lock); 690 if (conf->barrier) { 691 conf->nr_waiting++; 692 wait_event_lock_irq(conf->wait_barrier, !conf->barrier, 693 conf->resync_lock, 694 raid1_unplug(conf->mddev->queue)); 695 conf->nr_waiting--; 696 } 697 conf->nr_pending++; 698 spin_unlock_irq(&conf->resync_lock); 699 } 700 701 static void allow_barrier(conf_t *conf) 702 { 703 unsigned long flags; 704 spin_lock_irqsave(&conf->resync_lock, flags); 705 conf->nr_pending--; 706 spin_unlock_irqrestore(&conf->resync_lock, flags); 707 wake_up(&conf->wait_barrier); 708 } 709 710 static void freeze_array(conf_t *conf) 711 { 712 /* stop syncio and normal IO and wait for everything to 713 * go quite. 714 * We increment barrier and nr_waiting, and then 715 * wait until barrier+nr_pending match nr_queued+2 716 */ 717 spin_lock_irq(&conf->resync_lock); 718 conf->barrier++; 719 conf->nr_waiting++; 720 wait_event_lock_irq(conf->wait_barrier, 721 conf->barrier+conf->nr_pending == conf->nr_queued+2, 722 conf->resync_lock, 723 raid1_unplug(conf->mddev->queue)); 724 spin_unlock_irq(&conf->resync_lock); 725 } 726 static void unfreeze_array(conf_t *conf) 727 { 728 /* reverse the effect of the freeze */ 729 spin_lock_irq(&conf->resync_lock); 730 conf->barrier--; 731 conf->nr_waiting--; 732 wake_up(&conf->wait_barrier); 733 spin_unlock_irq(&conf->resync_lock); 734 } 735 736 737 /* duplicate the data pages for behind I/O */ 738 static struct page **alloc_behind_pages(struct bio *bio) 739 { 740 int i; 741 struct bio_vec *bvec; 742 struct page **pages = kzalloc(bio->bi_vcnt * sizeof(struct page *), 743 GFP_NOIO); 744 if (unlikely(!pages)) 745 goto do_sync_io; 746 747 bio_for_each_segment(bvec, bio, i) { 748 pages[i] = alloc_page(GFP_NOIO); 749 if (unlikely(!pages[i])) 750 goto do_sync_io; 751 memcpy(kmap(pages[i]) + bvec->bv_offset, 752 kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len); 753 kunmap(pages[i]); 754 kunmap(bvec->bv_page); 755 } 756 757 return pages; 758 759 do_sync_io: 760 if (pages) 761 for (i = 0; i < bio->bi_vcnt && pages[i]; i++) 762 put_page(pages[i]); 763 kfree(pages); 764 PRINTK("%dB behind alloc failed, doing sync I/O\n", bio->bi_size); 765 return NULL; 766 } 767 768 static int make_request(request_queue_t *q, struct bio * bio) 769 { 770 mddev_t *mddev = q->queuedata; 771 conf_t *conf = mddev_to_conf(mddev); 772 mirror_info_t *mirror; 773 r1bio_t *r1_bio; 774 struct bio *read_bio; 775 int i, targets = 0, disks; 776 mdk_rdev_t *rdev; 777 struct bitmap *bitmap = mddev->bitmap; 778 unsigned long flags; 779 struct bio_list bl; 780 struct page **behind_pages = NULL; 781 const int rw = bio_data_dir(bio); 782 const int do_sync = bio_sync(bio); 783 int do_barriers; 784 785 /* 786 * Register the new request and wait if the reconstruction 787 * thread has put up a bar for new requests. 788 * Continue immediately if no resync is active currently. 789 * We test barriers_work *after* md_write_start as md_write_start 790 * may cause the first superblock write, and that will check out 791 * if barriers work. 792 */ 793 794 md_write_start(mddev, bio); /* wait on superblock update early */ 795 796 if (unlikely(!mddev->barriers_work && bio_barrier(bio))) { 797 if (rw == WRITE) 798 md_write_end(mddev); 799 bio_endio(bio, bio->bi_size, -EOPNOTSUPP); 800 return 0; 801 } 802 803 wait_barrier(conf); 804 805 disk_stat_inc(mddev->gendisk, ios[rw]); 806 disk_stat_add(mddev->gendisk, sectors[rw], bio_sectors(bio)); 807 808 /* 809 * make_request() can abort the operation when READA is being 810 * used and no empty request is available. 811 * 812 */ 813 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO); 814 815 r1_bio->master_bio = bio; 816 r1_bio->sectors = bio->bi_size >> 9; 817 r1_bio->state = 0; 818 r1_bio->mddev = mddev; 819 r1_bio->sector = bio->bi_sector; 820 821 if (rw == READ) { 822 /* 823 * read balancing logic: 824 */ 825 int rdisk = read_balance(conf, r1_bio); 826 827 if (rdisk < 0) { 828 /* couldn't find anywhere to read from */ 829 raid_end_bio_io(r1_bio); 830 return 0; 831 } 832 mirror = conf->mirrors + rdisk; 833 834 r1_bio->read_disk = rdisk; 835 836 read_bio = bio_clone(bio, GFP_NOIO); 837 838 r1_bio->bios[rdisk] = read_bio; 839 840 read_bio->bi_sector = r1_bio->sector + mirror->rdev->data_offset; 841 read_bio->bi_bdev = mirror->rdev->bdev; 842 read_bio->bi_end_io = raid1_end_read_request; 843 read_bio->bi_rw = READ | do_sync; 844 read_bio->bi_private = r1_bio; 845 846 generic_make_request(read_bio); 847 return 0; 848 } 849 850 /* 851 * WRITE: 852 */ 853 /* first select target devices under spinlock and 854 * inc refcount on their rdev. Record them by setting 855 * bios[x] to bio 856 */ 857 disks = conf->raid_disks; 858 #if 0 859 { static int first=1; 860 if (first) printk("First Write sector %llu disks %d\n", 861 (unsigned long long)r1_bio->sector, disks); 862 first = 0; 863 } 864 #endif 865 rcu_read_lock(); 866 for (i = 0; i < disks; i++) { 867 if ((rdev=rcu_dereference(conf->mirrors[i].rdev)) != NULL && 868 !test_bit(Faulty, &rdev->flags)) { 869 atomic_inc(&rdev->nr_pending); 870 if (test_bit(Faulty, &rdev->flags)) { 871 rdev_dec_pending(rdev, mddev); 872 r1_bio->bios[i] = NULL; 873 } else 874 r1_bio->bios[i] = bio; 875 targets++; 876 } else 877 r1_bio->bios[i] = NULL; 878 } 879 rcu_read_unlock(); 880 881 BUG_ON(targets == 0); /* we never fail the last device */ 882 883 if (targets < conf->raid_disks) { 884 /* array is degraded, we will not clear the bitmap 885 * on I/O completion (see raid1_end_write_request) */ 886 set_bit(R1BIO_Degraded, &r1_bio->state); 887 } 888 889 /* do behind I/O ? */ 890 if (bitmap && 891 atomic_read(&bitmap->behind_writes) < bitmap->max_write_behind && 892 (behind_pages = alloc_behind_pages(bio)) != NULL) 893 set_bit(R1BIO_BehindIO, &r1_bio->state); 894 895 atomic_set(&r1_bio->remaining, 0); 896 atomic_set(&r1_bio->behind_remaining, 0); 897 898 do_barriers = bio_barrier(bio); 899 if (do_barriers) 900 set_bit(R1BIO_Barrier, &r1_bio->state); 901 902 bio_list_init(&bl); 903 for (i = 0; i < disks; i++) { 904 struct bio *mbio; 905 if (!r1_bio->bios[i]) 906 continue; 907 908 mbio = bio_clone(bio, GFP_NOIO); 909 r1_bio->bios[i] = mbio; 910 911 mbio->bi_sector = r1_bio->sector + conf->mirrors[i].rdev->data_offset; 912 mbio->bi_bdev = conf->mirrors[i].rdev->bdev; 913 mbio->bi_end_io = raid1_end_write_request; 914 mbio->bi_rw = WRITE | do_barriers | do_sync; 915 mbio->bi_private = r1_bio; 916 917 if (behind_pages) { 918 struct bio_vec *bvec; 919 int j; 920 921 /* Yes, I really want the '__' version so that 922 * we clear any unused pointer in the io_vec, rather 923 * than leave them unchanged. This is important 924 * because when we come to free the pages, we won't 925 * know the originial bi_idx, so we just free 926 * them all 927 */ 928 __bio_for_each_segment(bvec, mbio, j, 0) 929 bvec->bv_page = behind_pages[j]; 930 if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags)) 931 atomic_inc(&r1_bio->behind_remaining); 932 } 933 934 atomic_inc(&r1_bio->remaining); 935 936 bio_list_add(&bl, mbio); 937 } 938 kfree(behind_pages); /* the behind pages are attached to the bios now */ 939 940 bitmap_startwrite(bitmap, bio->bi_sector, r1_bio->sectors, 941 test_bit(R1BIO_BehindIO, &r1_bio->state)); 942 spin_lock_irqsave(&conf->device_lock, flags); 943 bio_list_merge(&conf->pending_bio_list, &bl); 944 bio_list_init(&bl); 945 946 blk_plug_device(mddev->queue); 947 spin_unlock_irqrestore(&conf->device_lock, flags); 948 949 if (do_sync) 950 md_wakeup_thread(mddev->thread); 951 #if 0 952 while ((bio = bio_list_pop(&bl)) != NULL) 953 generic_make_request(bio); 954 #endif 955 956 return 0; 957 } 958 959 static void status(struct seq_file *seq, mddev_t *mddev) 960 { 961 conf_t *conf = mddev_to_conf(mddev); 962 int i; 963 964 seq_printf(seq, " [%d/%d] [", conf->raid_disks, 965 conf->raid_disks - mddev->degraded); 966 rcu_read_lock(); 967 for (i = 0; i < conf->raid_disks; i++) { 968 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev); 969 seq_printf(seq, "%s", 970 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_"); 971 } 972 rcu_read_unlock(); 973 seq_printf(seq, "]"); 974 } 975 976 977 static void error(mddev_t *mddev, mdk_rdev_t *rdev) 978 { 979 char b[BDEVNAME_SIZE]; 980 conf_t *conf = mddev_to_conf(mddev); 981 982 /* 983 * If it is not operational, then we have already marked it as dead 984 * else if it is the last working disks, ignore the error, let the 985 * next level up know. 986 * else mark the drive as failed 987 */ 988 if (test_bit(In_sync, &rdev->flags) 989 && (conf->raid_disks - mddev->degraded) == 1) 990 /* 991 * Don't fail the drive, act as though we were just a 992 * normal single drive 993 */ 994 return; 995 if (test_and_clear_bit(In_sync, &rdev->flags)) { 996 unsigned long flags; 997 spin_lock_irqsave(&conf->device_lock, flags); 998 mddev->degraded++; 999 set_bit(Faulty, &rdev->flags); 1000 spin_unlock_irqrestore(&conf->device_lock, flags); 1001 /* 1002 * if recovery is running, make sure it aborts. 1003 */ 1004 set_bit(MD_RECOVERY_ERR, &mddev->recovery); 1005 } else 1006 set_bit(Faulty, &rdev->flags); 1007 set_bit(MD_CHANGE_DEVS, &mddev->flags); 1008 printk(KERN_ALERT "raid1: Disk failure on %s, disabling device. \n" 1009 " Operation continuing on %d devices\n", 1010 bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded); 1011 } 1012 1013 static void print_conf(conf_t *conf) 1014 { 1015 int i; 1016 1017 printk("RAID1 conf printout:\n"); 1018 if (!conf) { 1019 printk("(!conf)\n"); 1020 return; 1021 } 1022 printk(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded, 1023 conf->raid_disks); 1024 1025 rcu_read_lock(); 1026 for (i = 0; i < conf->raid_disks; i++) { 1027 char b[BDEVNAME_SIZE]; 1028 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev); 1029 if (rdev) 1030 printk(" disk %d, wo:%d, o:%d, dev:%s\n", 1031 i, !test_bit(In_sync, &rdev->flags), 1032 !test_bit(Faulty, &rdev->flags), 1033 bdevname(rdev->bdev,b)); 1034 } 1035 rcu_read_unlock(); 1036 } 1037 1038 static void close_sync(conf_t *conf) 1039 { 1040 wait_barrier(conf); 1041 allow_barrier(conf); 1042 1043 mempool_destroy(conf->r1buf_pool); 1044 conf->r1buf_pool = NULL; 1045 } 1046 1047 static int raid1_spare_active(mddev_t *mddev) 1048 { 1049 int i; 1050 conf_t *conf = mddev->private; 1051 1052 /* 1053 * Find all failed disks within the RAID1 configuration 1054 * and mark them readable. 1055 * Called under mddev lock, so rcu protection not needed. 1056 */ 1057 for (i = 0; i < conf->raid_disks; i++) { 1058 mdk_rdev_t *rdev = conf->mirrors[i].rdev; 1059 if (rdev 1060 && !test_bit(Faulty, &rdev->flags) 1061 && !test_and_set_bit(In_sync, &rdev->flags)) { 1062 unsigned long flags; 1063 spin_lock_irqsave(&conf->device_lock, flags); 1064 mddev->degraded--; 1065 spin_unlock_irqrestore(&conf->device_lock, flags); 1066 } 1067 } 1068 1069 print_conf(conf); 1070 return 0; 1071 } 1072 1073 1074 static int raid1_add_disk(mddev_t *mddev, mdk_rdev_t *rdev) 1075 { 1076 conf_t *conf = mddev->private; 1077 int found = 0; 1078 int mirror = 0; 1079 mirror_info_t *p; 1080 1081 for (mirror=0; mirror < mddev->raid_disks; mirror++) 1082 if ( !(p=conf->mirrors+mirror)->rdev) { 1083 1084 blk_queue_stack_limits(mddev->queue, 1085 rdev->bdev->bd_disk->queue); 1086 /* as we don't honour merge_bvec_fn, we must never risk 1087 * violating it, so limit ->max_sector to one PAGE, as 1088 * a one page request is never in violation. 1089 */ 1090 if (rdev->bdev->bd_disk->queue->merge_bvec_fn && 1091 mddev->queue->max_sectors > (PAGE_SIZE>>9)) 1092 blk_queue_max_sectors(mddev->queue, PAGE_SIZE>>9); 1093 1094 p->head_position = 0; 1095 rdev->raid_disk = mirror; 1096 found = 1; 1097 /* As all devices are equivalent, we don't need a full recovery 1098 * if this was recently any drive of the array 1099 */ 1100 if (rdev->saved_raid_disk < 0) 1101 conf->fullsync = 1; 1102 rcu_assign_pointer(p->rdev, rdev); 1103 break; 1104 } 1105 1106 print_conf(conf); 1107 return found; 1108 } 1109 1110 static int raid1_remove_disk(mddev_t *mddev, int number) 1111 { 1112 conf_t *conf = mddev->private; 1113 int err = 0; 1114 mdk_rdev_t *rdev; 1115 mirror_info_t *p = conf->mirrors+ number; 1116 1117 print_conf(conf); 1118 rdev = p->rdev; 1119 if (rdev) { 1120 if (test_bit(In_sync, &rdev->flags) || 1121 atomic_read(&rdev->nr_pending)) { 1122 err = -EBUSY; 1123 goto abort; 1124 } 1125 p->rdev = NULL; 1126 synchronize_rcu(); 1127 if (atomic_read(&rdev->nr_pending)) { 1128 /* lost the race, try later */ 1129 err = -EBUSY; 1130 p->rdev = rdev; 1131 } 1132 } 1133 abort: 1134 1135 print_conf(conf); 1136 return err; 1137 } 1138 1139 1140 static int end_sync_read(struct bio *bio, unsigned int bytes_done, int error) 1141 { 1142 r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private); 1143 int i; 1144 1145 if (bio->bi_size) 1146 return 1; 1147 1148 for (i=r1_bio->mddev->raid_disks; i--; ) 1149 if (r1_bio->bios[i] == bio) 1150 break; 1151 BUG_ON(i < 0); 1152 update_head_pos(i, r1_bio); 1153 /* 1154 * we have read a block, now it needs to be re-written, 1155 * or re-read if the read failed. 1156 * We don't do much here, just schedule handling by raid1d 1157 */ 1158 if (test_bit(BIO_UPTODATE, &bio->bi_flags)) 1159 set_bit(R1BIO_Uptodate, &r1_bio->state); 1160 1161 if (atomic_dec_and_test(&r1_bio->remaining)) 1162 reschedule_retry(r1_bio); 1163 return 0; 1164 } 1165 1166 static int end_sync_write(struct bio *bio, unsigned int bytes_done, int error) 1167 { 1168 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 1169 r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private); 1170 mddev_t *mddev = r1_bio->mddev; 1171 conf_t *conf = mddev_to_conf(mddev); 1172 int i; 1173 int mirror=0; 1174 1175 if (bio->bi_size) 1176 return 1; 1177 1178 for (i = 0; i < conf->raid_disks; i++) 1179 if (r1_bio->bios[i] == bio) { 1180 mirror = i; 1181 break; 1182 } 1183 if (!uptodate) { 1184 int sync_blocks = 0; 1185 sector_t s = r1_bio->sector; 1186 long sectors_to_go = r1_bio->sectors; 1187 /* make sure these bits doesn't get cleared. */ 1188 do { 1189 bitmap_end_sync(mddev->bitmap, s, 1190 &sync_blocks, 1); 1191 s += sync_blocks; 1192 sectors_to_go -= sync_blocks; 1193 } while (sectors_to_go > 0); 1194 md_error(mddev, conf->mirrors[mirror].rdev); 1195 } 1196 1197 update_head_pos(mirror, r1_bio); 1198 1199 if (atomic_dec_and_test(&r1_bio->remaining)) { 1200 md_done_sync(mddev, r1_bio->sectors, uptodate); 1201 put_buf(r1_bio); 1202 } 1203 return 0; 1204 } 1205 1206 static void sync_request_write(mddev_t *mddev, r1bio_t *r1_bio) 1207 { 1208 conf_t *conf = mddev_to_conf(mddev); 1209 int i; 1210 int disks = conf->raid_disks; 1211 struct bio *bio, *wbio; 1212 1213 bio = r1_bio->bios[r1_bio->read_disk]; 1214 1215 1216 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 1217 /* We have read all readable devices. If we haven't 1218 * got the block, then there is no hope left. 1219 * If we have, then we want to do a comparison 1220 * and skip the write if everything is the same. 1221 * If any blocks failed to read, then we need to 1222 * attempt an over-write 1223 */ 1224 int primary; 1225 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) { 1226 for (i=0; i<mddev->raid_disks; i++) 1227 if (r1_bio->bios[i]->bi_end_io == end_sync_read) 1228 md_error(mddev, conf->mirrors[i].rdev); 1229 1230 md_done_sync(mddev, r1_bio->sectors, 1); 1231 put_buf(r1_bio); 1232 return; 1233 } 1234 for (primary=0; primary<mddev->raid_disks; primary++) 1235 if (r1_bio->bios[primary]->bi_end_io == end_sync_read && 1236 test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) { 1237 r1_bio->bios[primary]->bi_end_io = NULL; 1238 rdev_dec_pending(conf->mirrors[primary].rdev, mddev); 1239 break; 1240 } 1241 r1_bio->read_disk = primary; 1242 for (i=0; i<mddev->raid_disks; i++) 1243 if (r1_bio->bios[i]->bi_end_io == end_sync_read) { 1244 int j; 1245 int vcnt = r1_bio->sectors >> (PAGE_SHIFT- 9); 1246 struct bio *pbio = r1_bio->bios[primary]; 1247 struct bio *sbio = r1_bio->bios[i]; 1248 1249 if (test_bit(BIO_UPTODATE, &sbio->bi_flags)) { 1250 for (j = vcnt; j-- ; ) { 1251 struct page *p, *s; 1252 p = pbio->bi_io_vec[j].bv_page; 1253 s = sbio->bi_io_vec[j].bv_page; 1254 if (memcmp(page_address(p), 1255 page_address(s), 1256 PAGE_SIZE)) 1257 break; 1258 } 1259 } else 1260 j = 0; 1261 if (j >= 0) 1262 mddev->resync_mismatches += r1_bio->sectors; 1263 if (j < 0 || test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) { 1264 sbio->bi_end_io = NULL; 1265 rdev_dec_pending(conf->mirrors[i].rdev, mddev); 1266 } else { 1267 /* fixup the bio for reuse */ 1268 sbio->bi_vcnt = vcnt; 1269 sbio->bi_size = r1_bio->sectors << 9; 1270 sbio->bi_idx = 0; 1271 sbio->bi_phys_segments = 0; 1272 sbio->bi_hw_segments = 0; 1273 sbio->bi_hw_front_size = 0; 1274 sbio->bi_hw_back_size = 0; 1275 sbio->bi_flags &= ~(BIO_POOL_MASK - 1); 1276 sbio->bi_flags |= 1 << BIO_UPTODATE; 1277 sbio->bi_next = NULL; 1278 sbio->bi_sector = r1_bio->sector + 1279 conf->mirrors[i].rdev->data_offset; 1280 sbio->bi_bdev = conf->mirrors[i].rdev->bdev; 1281 for (j = 0; j < vcnt ; j++) 1282 memcpy(page_address(sbio->bi_io_vec[j].bv_page), 1283 page_address(pbio->bi_io_vec[j].bv_page), 1284 PAGE_SIZE); 1285 1286 } 1287 } 1288 } 1289 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) { 1290 /* ouch - failed to read all of that. 1291 * Try some synchronous reads of other devices to get 1292 * good data, much like with normal read errors. Only 1293 * read into the pages we already have so we don't 1294 * need to re-issue the read request. 1295 * We don't need to freeze the array, because being in an 1296 * active sync request, there is no normal IO, and 1297 * no overlapping syncs. 1298 */ 1299 sector_t sect = r1_bio->sector; 1300 int sectors = r1_bio->sectors; 1301 int idx = 0; 1302 1303 while(sectors) { 1304 int s = sectors; 1305 int d = r1_bio->read_disk; 1306 int success = 0; 1307 mdk_rdev_t *rdev; 1308 1309 if (s > (PAGE_SIZE>>9)) 1310 s = PAGE_SIZE >> 9; 1311 do { 1312 if (r1_bio->bios[d]->bi_end_io == end_sync_read) { 1313 /* No rcu protection needed here devices 1314 * can only be removed when no resync is 1315 * active, and resync is currently active 1316 */ 1317 rdev = conf->mirrors[d].rdev; 1318 if (sync_page_io(rdev->bdev, 1319 sect + rdev->data_offset, 1320 s<<9, 1321 bio->bi_io_vec[idx].bv_page, 1322 READ)) { 1323 success = 1; 1324 break; 1325 } 1326 } 1327 d++; 1328 if (d == conf->raid_disks) 1329 d = 0; 1330 } while (!success && d != r1_bio->read_disk); 1331 1332 if (success) { 1333 int start = d; 1334 /* write it back and re-read */ 1335 set_bit(R1BIO_Uptodate, &r1_bio->state); 1336 while (d != r1_bio->read_disk) { 1337 if (d == 0) 1338 d = conf->raid_disks; 1339 d--; 1340 if (r1_bio->bios[d]->bi_end_io != end_sync_read) 1341 continue; 1342 rdev = conf->mirrors[d].rdev; 1343 atomic_add(s, &rdev->corrected_errors); 1344 if (sync_page_io(rdev->bdev, 1345 sect + rdev->data_offset, 1346 s<<9, 1347 bio->bi_io_vec[idx].bv_page, 1348 WRITE) == 0) 1349 md_error(mddev, rdev); 1350 } 1351 d = start; 1352 while (d != r1_bio->read_disk) { 1353 if (d == 0) 1354 d = conf->raid_disks; 1355 d--; 1356 if (r1_bio->bios[d]->bi_end_io != end_sync_read) 1357 continue; 1358 rdev = conf->mirrors[d].rdev; 1359 if (sync_page_io(rdev->bdev, 1360 sect + rdev->data_offset, 1361 s<<9, 1362 bio->bi_io_vec[idx].bv_page, 1363 READ) == 0) 1364 md_error(mddev, rdev); 1365 } 1366 } else { 1367 char b[BDEVNAME_SIZE]; 1368 /* Cannot read from anywhere, array is toast */ 1369 md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev); 1370 printk(KERN_ALERT "raid1: %s: unrecoverable I/O read error" 1371 " for block %llu\n", 1372 bdevname(bio->bi_bdev,b), 1373 (unsigned long long)r1_bio->sector); 1374 md_done_sync(mddev, r1_bio->sectors, 0); 1375 put_buf(r1_bio); 1376 return; 1377 } 1378 sectors -= s; 1379 sect += s; 1380 idx ++; 1381 } 1382 } 1383 1384 /* 1385 * schedule writes 1386 */ 1387 atomic_set(&r1_bio->remaining, 1); 1388 for (i = 0; i < disks ; i++) { 1389 wbio = r1_bio->bios[i]; 1390 if (wbio->bi_end_io == NULL || 1391 (wbio->bi_end_io == end_sync_read && 1392 (i == r1_bio->read_disk || 1393 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery)))) 1394 continue; 1395 1396 wbio->bi_rw = WRITE; 1397 wbio->bi_end_io = end_sync_write; 1398 atomic_inc(&r1_bio->remaining); 1399 md_sync_acct(conf->mirrors[i].rdev->bdev, wbio->bi_size >> 9); 1400 1401 generic_make_request(wbio); 1402 } 1403 1404 if (atomic_dec_and_test(&r1_bio->remaining)) { 1405 /* if we're here, all write(s) have completed, so clean up */ 1406 md_done_sync(mddev, r1_bio->sectors, 1); 1407 put_buf(r1_bio); 1408 } 1409 } 1410 1411 /* 1412 * This is a kernel thread which: 1413 * 1414 * 1. Retries failed read operations on working mirrors. 1415 * 2. Updates the raid superblock when problems encounter. 1416 * 3. Performs writes following reads for array syncronising. 1417 */ 1418 1419 static void fix_read_error(conf_t *conf, int read_disk, 1420 sector_t sect, int sectors) 1421 { 1422 mddev_t *mddev = conf->mddev; 1423 while(sectors) { 1424 int s = sectors; 1425 int d = read_disk; 1426 int success = 0; 1427 int start; 1428 mdk_rdev_t *rdev; 1429 1430 if (s > (PAGE_SIZE>>9)) 1431 s = PAGE_SIZE >> 9; 1432 1433 do { 1434 /* Note: no rcu protection needed here 1435 * as this is synchronous in the raid1d thread 1436 * which is the thread that might remove 1437 * a device. If raid1d ever becomes multi-threaded.... 1438 */ 1439 rdev = conf->mirrors[d].rdev; 1440 if (rdev && 1441 test_bit(In_sync, &rdev->flags) && 1442 sync_page_io(rdev->bdev, 1443 sect + rdev->data_offset, 1444 s<<9, 1445 conf->tmppage, READ)) 1446 success = 1; 1447 else { 1448 d++; 1449 if (d == conf->raid_disks) 1450 d = 0; 1451 } 1452 } while (!success && d != read_disk); 1453 1454 if (!success) { 1455 /* Cannot read from anywhere -- bye bye array */ 1456 md_error(mddev, conf->mirrors[read_disk].rdev); 1457 break; 1458 } 1459 /* write it back and re-read */ 1460 start = d; 1461 while (d != read_disk) { 1462 if (d==0) 1463 d = conf->raid_disks; 1464 d--; 1465 rdev = conf->mirrors[d].rdev; 1466 if (rdev && 1467 test_bit(In_sync, &rdev->flags)) { 1468 if (sync_page_io(rdev->bdev, 1469 sect + rdev->data_offset, 1470 s<<9, conf->tmppage, WRITE) 1471 == 0) 1472 /* Well, this device is dead */ 1473 md_error(mddev, rdev); 1474 } 1475 } 1476 d = start; 1477 while (d != read_disk) { 1478 char b[BDEVNAME_SIZE]; 1479 if (d==0) 1480 d = conf->raid_disks; 1481 d--; 1482 rdev = conf->mirrors[d].rdev; 1483 if (rdev && 1484 test_bit(In_sync, &rdev->flags)) { 1485 if (sync_page_io(rdev->bdev, 1486 sect + rdev->data_offset, 1487 s<<9, conf->tmppage, READ) 1488 == 0) 1489 /* Well, this device is dead */ 1490 md_error(mddev, rdev); 1491 else { 1492 atomic_add(s, &rdev->corrected_errors); 1493 printk(KERN_INFO 1494 "raid1:%s: read error corrected " 1495 "(%d sectors at %llu on %s)\n", 1496 mdname(mddev), s, 1497 (unsigned long long)(sect + 1498 rdev->data_offset), 1499 bdevname(rdev->bdev, b)); 1500 } 1501 } 1502 } 1503 sectors -= s; 1504 sect += s; 1505 } 1506 } 1507 1508 static void raid1d(mddev_t *mddev) 1509 { 1510 r1bio_t *r1_bio; 1511 struct bio *bio; 1512 unsigned long flags; 1513 conf_t *conf = mddev_to_conf(mddev); 1514 struct list_head *head = &conf->retry_list; 1515 int unplug=0; 1516 mdk_rdev_t *rdev; 1517 1518 md_check_recovery(mddev); 1519 1520 for (;;) { 1521 char b[BDEVNAME_SIZE]; 1522 spin_lock_irqsave(&conf->device_lock, flags); 1523 1524 if (conf->pending_bio_list.head) { 1525 bio = bio_list_get(&conf->pending_bio_list); 1526 blk_remove_plug(mddev->queue); 1527 spin_unlock_irqrestore(&conf->device_lock, flags); 1528 /* flush any pending bitmap writes to disk before proceeding w/ I/O */ 1529 if (bitmap_unplug(mddev->bitmap) != 0) 1530 printk("%s: bitmap file write failed!\n", mdname(mddev)); 1531 1532 while (bio) { /* submit pending writes */ 1533 struct bio *next = bio->bi_next; 1534 bio->bi_next = NULL; 1535 generic_make_request(bio); 1536 bio = next; 1537 } 1538 unplug = 1; 1539 1540 continue; 1541 } 1542 1543 if (list_empty(head)) 1544 break; 1545 r1_bio = list_entry(head->prev, r1bio_t, retry_list); 1546 list_del(head->prev); 1547 conf->nr_queued--; 1548 spin_unlock_irqrestore(&conf->device_lock, flags); 1549 1550 mddev = r1_bio->mddev; 1551 conf = mddev_to_conf(mddev); 1552 if (test_bit(R1BIO_IsSync, &r1_bio->state)) { 1553 sync_request_write(mddev, r1_bio); 1554 unplug = 1; 1555 } else if (test_bit(R1BIO_BarrierRetry, &r1_bio->state)) { 1556 /* some requests in the r1bio were BIO_RW_BARRIER 1557 * requests which failed with -EOPNOTSUPP. Hohumm.. 1558 * Better resubmit without the barrier. 1559 * We know which devices to resubmit for, because 1560 * all others have had their bios[] entry cleared. 1561 * We already have a nr_pending reference on these rdevs. 1562 */ 1563 int i; 1564 const int do_sync = bio_sync(r1_bio->master_bio); 1565 clear_bit(R1BIO_BarrierRetry, &r1_bio->state); 1566 clear_bit(R1BIO_Barrier, &r1_bio->state); 1567 for (i=0; i < conf->raid_disks; i++) 1568 if (r1_bio->bios[i]) 1569 atomic_inc(&r1_bio->remaining); 1570 for (i=0; i < conf->raid_disks; i++) 1571 if (r1_bio->bios[i]) { 1572 struct bio_vec *bvec; 1573 int j; 1574 1575 bio = bio_clone(r1_bio->master_bio, GFP_NOIO); 1576 /* copy pages from the failed bio, as 1577 * this might be a write-behind device */ 1578 __bio_for_each_segment(bvec, bio, j, 0) 1579 bvec->bv_page = bio_iovec_idx(r1_bio->bios[i], j)->bv_page; 1580 bio_put(r1_bio->bios[i]); 1581 bio->bi_sector = r1_bio->sector + 1582 conf->mirrors[i].rdev->data_offset; 1583 bio->bi_bdev = conf->mirrors[i].rdev->bdev; 1584 bio->bi_end_io = raid1_end_write_request; 1585 bio->bi_rw = WRITE | do_sync; 1586 bio->bi_private = r1_bio; 1587 r1_bio->bios[i] = bio; 1588 generic_make_request(bio); 1589 } 1590 } else { 1591 int disk; 1592 1593 /* we got a read error. Maybe the drive is bad. Maybe just 1594 * the block and we can fix it. 1595 * We freeze all other IO, and try reading the block from 1596 * other devices. When we find one, we re-write 1597 * and check it that fixes the read error. 1598 * This is all done synchronously while the array is 1599 * frozen 1600 */ 1601 if (mddev->ro == 0) { 1602 freeze_array(conf); 1603 fix_read_error(conf, r1_bio->read_disk, 1604 r1_bio->sector, 1605 r1_bio->sectors); 1606 unfreeze_array(conf); 1607 } 1608 1609 bio = r1_bio->bios[r1_bio->read_disk]; 1610 if ((disk=read_balance(conf, r1_bio)) == -1) { 1611 printk(KERN_ALERT "raid1: %s: unrecoverable I/O" 1612 " read error for block %llu\n", 1613 bdevname(bio->bi_bdev,b), 1614 (unsigned long long)r1_bio->sector); 1615 raid_end_bio_io(r1_bio); 1616 } else { 1617 const int do_sync = bio_sync(r1_bio->master_bio); 1618 r1_bio->bios[r1_bio->read_disk] = 1619 mddev->ro ? IO_BLOCKED : NULL; 1620 r1_bio->read_disk = disk; 1621 bio_put(bio); 1622 bio = bio_clone(r1_bio->master_bio, GFP_NOIO); 1623 r1_bio->bios[r1_bio->read_disk] = bio; 1624 rdev = conf->mirrors[disk].rdev; 1625 if (printk_ratelimit()) 1626 printk(KERN_ERR "raid1: %s: redirecting sector %llu to" 1627 " another mirror\n", 1628 bdevname(rdev->bdev,b), 1629 (unsigned long long)r1_bio->sector); 1630 bio->bi_sector = r1_bio->sector + rdev->data_offset; 1631 bio->bi_bdev = rdev->bdev; 1632 bio->bi_end_io = raid1_end_read_request; 1633 bio->bi_rw = READ | do_sync; 1634 bio->bi_private = r1_bio; 1635 unplug = 1; 1636 generic_make_request(bio); 1637 } 1638 } 1639 } 1640 spin_unlock_irqrestore(&conf->device_lock, flags); 1641 if (unplug) 1642 unplug_slaves(mddev); 1643 } 1644 1645 1646 static int init_resync(conf_t *conf) 1647 { 1648 int buffs; 1649 1650 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE; 1651 BUG_ON(conf->r1buf_pool); 1652 conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free, 1653 conf->poolinfo); 1654 if (!conf->r1buf_pool) 1655 return -ENOMEM; 1656 conf->next_resync = 0; 1657 return 0; 1658 } 1659 1660 /* 1661 * perform a "sync" on one "block" 1662 * 1663 * We need to make sure that no normal I/O request - particularly write 1664 * requests - conflict with active sync requests. 1665 * 1666 * This is achieved by tracking pending requests and a 'barrier' concept 1667 * that can be installed to exclude normal IO requests. 1668 */ 1669 1670 static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster) 1671 { 1672 conf_t *conf = mddev_to_conf(mddev); 1673 r1bio_t *r1_bio; 1674 struct bio *bio; 1675 sector_t max_sector, nr_sectors; 1676 int disk = -1; 1677 int i; 1678 int wonly = -1; 1679 int write_targets = 0, read_targets = 0; 1680 int sync_blocks; 1681 int still_degraded = 0; 1682 1683 if (!conf->r1buf_pool) 1684 { 1685 /* 1686 printk("sync start - bitmap %p\n", mddev->bitmap); 1687 */ 1688 if (init_resync(conf)) 1689 return 0; 1690 } 1691 1692 max_sector = mddev->size << 1; 1693 if (sector_nr >= max_sector) { 1694 /* If we aborted, we need to abort the 1695 * sync on the 'current' bitmap chunk (there will 1696 * only be one in raid1 resync. 1697 * We can find the current addess in mddev->curr_resync 1698 */ 1699 if (mddev->curr_resync < max_sector) /* aborted */ 1700 bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 1701 &sync_blocks, 1); 1702 else /* completed sync */ 1703 conf->fullsync = 0; 1704 1705 bitmap_close_sync(mddev->bitmap); 1706 close_sync(conf); 1707 return 0; 1708 } 1709 1710 if (mddev->bitmap == NULL && 1711 mddev->recovery_cp == MaxSector && 1712 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 1713 conf->fullsync == 0) { 1714 *skipped = 1; 1715 return max_sector - sector_nr; 1716 } 1717 /* before building a request, check if we can skip these blocks.. 1718 * This call the bitmap_start_sync doesn't actually record anything 1719 */ 1720 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) && 1721 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 1722 /* We can skip this block, and probably several more */ 1723 *skipped = 1; 1724 return sync_blocks; 1725 } 1726 /* 1727 * If there is non-resync activity waiting for a turn, 1728 * and resync is going fast enough, 1729 * then let it though before starting on this new sync request. 1730 */ 1731 if (!go_faster && conf->nr_waiting) 1732 msleep_interruptible(1000); 1733 1734 raise_barrier(conf); 1735 1736 conf->next_resync = sector_nr; 1737 1738 r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO); 1739 rcu_read_lock(); 1740 /* 1741 * If we get a correctably read error during resync or recovery, 1742 * we might want to read from a different device. So we 1743 * flag all drives that could conceivably be read from for READ, 1744 * and any others (which will be non-In_sync devices) for WRITE. 1745 * If a read fails, we try reading from something else for which READ 1746 * is OK. 1747 */ 1748 1749 r1_bio->mddev = mddev; 1750 r1_bio->sector = sector_nr; 1751 r1_bio->state = 0; 1752 set_bit(R1BIO_IsSync, &r1_bio->state); 1753 1754 for (i=0; i < conf->raid_disks; i++) { 1755 mdk_rdev_t *rdev; 1756 bio = r1_bio->bios[i]; 1757 1758 /* take from bio_init */ 1759 bio->bi_next = NULL; 1760 bio->bi_flags |= 1 << BIO_UPTODATE; 1761 bio->bi_rw = READ; 1762 bio->bi_vcnt = 0; 1763 bio->bi_idx = 0; 1764 bio->bi_phys_segments = 0; 1765 bio->bi_hw_segments = 0; 1766 bio->bi_size = 0; 1767 bio->bi_end_io = NULL; 1768 bio->bi_private = NULL; 1769 1770 rdev = rcu_dereference(conf->mirrors[i].rdev); 1771 if (rdev == NULL || 1772 test_bit(Faulty, &rdev->flags)) { 1773 still_degraded = 1; 1774 continue; 1775 } else if (!test_bit(In_sync, &rdev->flags)) { 1776 bio->bi_rw = WRITE; 1777 bio->bi_end_io = end_sync_write; 1778 write_targets ++; 1779 } else { 1780 /* may need to read from here */ 1781 bio->bi_rw = READ; 1782 bio->bi_end_io = end_sync_read; 1783 if (test_bit(WriteMostly, &rdev->flags)) { 1784 if (wonly < 0) 1785 wonly = i; 1786 } else { 1787 if (disk < 0) 1788 disk = i; 1789 } 1790 read_targets++; 1791 } 1792 atomic_inc(&rdev->nr_pending); 1793 bio->bi_sector = sector_nr + rdev->data_offset; 1794 bio->bi_bdev = rdev->bdev; 1795 bio->bi_private = r1_bio; 1796 } 1797 rcu_read_unlock(); 1798 if (disk < 0) 1799 disk = wonly; 1800 r1_bio->read_disk = disk; 1801 1802 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0) 1803 /* extra read targets are also write targets */ 1804 write_targets += read_targets-1; 1805 1806 if (write_targets == 0 || read_targets == 0) { 1807 /* There is nowhere to write, so all non-sync 1808 * drives must be failed - so we are finished 1809 */ 1810 sector_t rv = max_sector - sector_nr; 1811 *skipped = 1; 1812 put_buf(r1_bio); 1813 return rv; 1814 } 1815 1816 nr_sectors = 0; 1817 sync_blocks = 0; 1818 do { 1819 struct page *page; 1820 int len = PAGE_SIZE; 1821 if (sector_nr + (len>>9) > max_sector) 1822 len = (max_sector - sector_nr) << 9; 1823 if (len == 0) 1824 break; 1825 if (sync_blocks == 0) { 1826 if (!bitmap_start_sync(mddev->bitmap, sector_nr, 1827 &sync_blocks, still_degraded) && 1828 !conf->fullsync && 1829 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 1830 break; 1831 BUG_ON(sync_blocks < (PAGE_SIZE>>9)); 1832 if (len > (sync_blocks<<9)) 1833 len = sync_blocks<<9; 1834 } 1835 1836 for (i=0 ; i < conf->raid_disks; i++) { 1837 bio = r1_bio->bios[i]; 1838 if (bio->bi_end_io) { 1839 page = bio->bi_io_vec[bio->bi_vcnt].bv_page; 1840 if (bio_add_page(bio, page, len, 0) == 0) { 1841 /* stop here */ 1842 bio->bi_io_vec[bio->bi_vcnt].bv_page = page; 1843 while (i > 0) { 1844 i--; 1845 bio = r1_bio->bios[i]; 1846 if (bio->bi_end_io==NULL) 1847 continue; 1848 /* remove last page from this bio */ 1849 bio->bi_vcnt--; 1850 bio->bi_size -= len; 1851 bio->bi_flags &= ~(1<< BIO_SEG_VALID); 1852 } 1853 goto bio_full; 1854 } 1855 } 1856 } 1857 nr_sectors += len>>9; 1858 sector_nr += len>>9; 1859 sync_blocks -= (len>>9); 1860 } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES); 1861 bio_full: 1862 r1_bio->sectors = nr_sectors; 1863 1864 /* For a user-requested sync, we read all readable devices and do a 1865 * compare 1866 */ 1867 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 1868 atomic_set(&r1_bio->remaining, read_targets); 1869 for (i=0; i<conf->raid_disks; i++) { 1870 bio = r1_bio->bios[i]; 1871 if (bio->bi_end_io == end_sync_read) { 1872 md_sync_acct(bio->bi_bdev, nr_sectors); 1873 generic_make_request(bio); 1874 } 1875 } 1876 } else { 1877 atomic_set(&r1_bio->remaining, 1); 1878 bio = r1_bio->bios[r1_bio->read_disk]; 1879 md_sync_acct(bio->bi_bdev, nr_sectors); 1880 generic_make_request(bio); 1881 1882 } 1883 return nr_sectors; 1884 } 1885 1886 static int run(mddev_t *mddev) 1887 { 1888 conf_t *conf; 1889 int i, j, disk_idx; 1890 mirror_info_t *disk; 1891 mdk_rdev_t *rdev; 1892 struct list_head *tmp; 1893 1894 if (mddev->level != 1) { 1895 printk("raid1: %s: raid level not set to mirroring (%d)\n", 1896 mdname(mddev), mddev->level); 1897 goto out; 1898 } 1899 if (mddev->reshape_position != MaxSector) { 1900 printk("raid1: %s: reshape_position set but not supported\n", 1901 mdname(mddev)); 1902 goto out; 1903 } 1904 /* 1905 * copy the already verified devices into our private RAID1 1906 * bookkeeping area. [whatever we allocate in run(), 1907 * should be freed in stop()] 1908 */ 1909 conf = kzalloc(sizeof(conf_t), GFP_KERNEL); 1910 mddev->private = conf; 1911 if (!conf) 1912 goto out_no_mem; 1913 1914 conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks, 1915 GFP_KERNEL); 1916 if (!conf->mirrors) 1917 goto out_no_mem; 1918 1919 conf->tmppage = alloc_page(GFP_KERNEL); 1920 if (!conf->tmppage) 1921 goto out_no_mem; 1922 1923 conf->poolinfo = kmalloc(sizeof(*conf->poolinfo), GFP_KERNEL); 1924 if (!conf->poolinfo) 1925 goto out_no_mem; 1926 conf->poolinfo->mddev = mddev; 1927 conf->poolinfo->raid_disks = mddev->raid_disks; 1928 conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc, 1929 r1bio_pool_free, 1930 conf->poolinfo); 1931 if (!conf->r1bio_pool) 1932 goto out_no_mem; 1933 1934 ITERATE_RDEV(mddev, rdev, tmp) { 1935 disk_idx = rdev->raid_disk; 1936 if (disk_idx >= mddev->raid_disks 1937 || disk_idx < 0) 1938 continue; 1939 disk = conf->mirrors + disk_idx; 1940 1941 disk->rdev = rdev; 1942 1943 blk_queue_stack_limits(mddev->queue, 1944 rdev->bdev->bd_disk->queue); 1945 /* as we don't honour merge_bvec_fn, we must never risk 1946 * violating it, so limit ->max_sector to one PAGE, as 1947 * a one page request is never in violation. 1948 */ 1949 if (rdev->bdev->bd_disk->queue->merge_bvec_fn && 1950 mddev->queue->max_sectors > (PAGE_SIZE>>9)) 1951 blk_queue_max_sectors(mddev->queue, PAGE_SIZE>>9); 1952 1953 disk->head_position = 0; 1954 } 1955 conf->raid_disks = mddev->raid_disks; 1956 conf->mddev = mddev; 1957 spin_lock_init(&conf->device_lock); 1958 INIT_LIST_HEAD(&conf->retry_list); 1959 1960 spin_lock_init(&conf->resync_lock); 1961 init_waitqueue_head(&conf->wait_barrier); 1962 1963 bio_list_init(&conf->pending_bio_list); 1964 bio_list_init(&conf->flushing_bio_list); 1965 1966 1967 mddev->degraded = 0; 1968 for (i = 0; i < conf->raid_disks; i++) { 1969 1970 disk = conf->mirrors + i; 1971 1972 if (!disk->rdev || 1973 !test_bit(In_sync, &disk->rdev->flags)) { 1974 disk->head_position = 0; 1975 mddev->degraded++; 1976 conf->fullsync = 1; 1977 } 1978 } 1979 if (mddev->degraded == conf->raid_disks) { 1980 printk(KERN_ERR "raid1: no operational mirrors for %s\n", 1981 mdname(mddev)); 1982 goto out_free_conf; 1983 } 1984 if (conf->raid_disks - mddev->degraded == 1) 1985 mddev->recovery_cp = MaxSector; 1986 1987 /* 1988 * find the first working one and use it as a starting point 1989 * to read balancing. 1990 */ 1991 for (j = 0; j < conf->raid_disks && 1992 (!conf->mirrors[j].rdev || 1993 !test_bit(In_sync, &conf->mirrors[j].rdev->flags)) ; j++) 1994 /* nothing */; 1995 conf->last_used = j; 1996 1997 1998 mddev->thread = md_register_thread(raid1d, mddev, "%s_raid1"); 1999 if (!mddev->thread) { 2000 printk(KERN_ERR 2001 "raid1: couldn't allocate thread for %s\n", 2002 mdname(mddev)); 2003 goto out_free_conf; 2004 } 2005 2006 printk(KERN_INFO 2007 "raid1: raid set %s active with %d out of %d mirrors\n", 2008 mdname(mddev), mddev->raid_disks - mddev->degraded, 2009 mddev->raid_disks); 2010 /* 2011 * Ok, everything is just fine now 2012 */ 2013 mddev->array_size = mddev->size; 2014 2015 mddev->queue->unplug_fn = raid1_unplug; 2016 mddev->queue->issue_flush_fn = raid1_issue_flush; 2017 mddev->queue->backing_dev_info.congested_fn = raid1_congested; 2018 mddev->queue->backing_dev_info.congested_data = mddev; 2019 2020 return 0; 2021 2022 out_no_mem: 2023 printk(KERN_ERR "raid1: couldn't allocate memory for %s\n", 2024 mdname(mddev)); 2025 2026 out_free_conf: 2027 if (conf) { 2028 if (conf->r1bio_pool) 2029 mempool_destroy(conf->r1bio_pool); 2030 kfree(conf->mirrors); 2031 safe_put_page(conf->tmppage); 2032 kfree(conf->poolinfo); 2033 kfree(conf); 2034 mddev->private = NULL; 2035 } 2036 out: 2037 return -EIO; 2038 } 2039 2040 static int stop(mddev_t *mddev) 2041 { 2042 conf_t *conf = mddev_to_conf(mddev); 2043 struct bitmap *bitmap = mddev->bitmap; 2044 int behind_wait = 0; 2045 2046 /* wait for behind writes to complete */ 2047 while (bitmap && atomic_read(&bitmap->behind_writes) > 0) { 2048 behind_wait++; 2049 printk(KERN_INFO "raid1: behind writes in progress on device %s, waiting to stop (%d)\n", mdname(mddev), behind_wait); 2050 set_current_state(TASK_UNINTERRUPTIBLE); 2051 schedule_timeout(HZ); /* wait a second */ 2052 /* need to kick something here to make sure I/O goes? */ 2053 } 2054 2055 md_unregister_thread(mddev->thread); 2056 mddev->thread = NULL; 2057 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/ 2058 if (conf->r1bio_pool) 2059 mempool_destroy(conf->r1bio_pool); 2060 kfree(conf->mirrors); 2061 kfree(conf->poolinfo); 2062 kfree(conf); 2063 mddev->private = NULL; 2064 return 0; 2065 } 2066 2067 static int raid1_resize(mddev_t *mddev, sector_t sectors) 2068 { 2069 /* no resync is happening, and there is enough space 2070 * on all devices, so we can resize. 2071 * We need to make sure resync covers any new space. 2072 * If the array is shrinking we should possibly wait until 2073 * any io in the removed space completes, but it hardly seems 2074 * worth it. 2075 */ 2076 mddev->array_size = sectors>>1; 2077 set_capacity(mddev->gendisk, mddev->array_size << 1); 2078 mddev->changed = 1; 2079 if (mddev->array_size > mddev->size && mddev->recovery_cp == MaxSector) { 2080 mddev->recovery_cp = mddev->size << 1; 2081 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 2082 } 2083 mddev->size = mddev->array_size; 2084 mddev->resync_max_sectors = sectors; 2085 return 0; 2086 } 2087 2088 static int raid1_reshape(mddev_t *mddev) 2089 { 2090 /* We need to: 2091 * 1/ resize the r1bio_pool 2092 * 2/ resize conf->mirrors 2093 * 2094 * We allocate a new r1bio_pool if we can. 2095 * Then raise a device barrier and wait until all IO stops. 2096 * Then resize conf->mirrors and swap in the new r1bio pool. 2097 * 2098 * At the same time, we "pack" the devices so that all the missing 2099 * devices have the higher raid_disk numbers. 2100 */ 2101 mempool_t *newpool, *oldpool; 2102 struct pool_info *newpoolinfo; 2103 mirror_info_t *newmirrors; 2104 conf_t *conf = mddev_to_conf(mddev); 2105 int cnt, raid_disks; 2106 unsigned long flags; 2107 int d, d2; 2108 2109 /* Cannot change chunk_size, layout, or level */ 2110 if (mddev->chunk_size != mddev->new_chunk || 2111 mddev->layout != mddev->new_layout || 2112 mddev->level != mddev->new_level) { 2113 mddev->new_chunk = mddev->chunk_size; 2114 mddev->new_layout = mddev->layout; 2115 mddev->new_level = mddev->level; 2116 return -EINVAL; 2117 } 2118 2119 md_allow_write(mddev); 2120 2121 raid_disks = mddev->raid_disks + mddev->delta_disks; 2122 2123 if (raid_disks < conf->raid_disks) { 2124 cnt=0; 2125 for (d= 0; d < conf->raid_disks; d++) 2126 if (conf->mirrors[d].rdev) 2127 cnt++; 2128 if (cnt > raid_disks) 2129 return -EBUSY; 2130 } 2131 2132 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL); 2133 if (!newpoolinfo) 2134 return -ENOMEM; 2135 newpoolinfo->mddev = mddev; 2136 newpoolinfo->raid_disks = raid_disks; 2137 2138 newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc, 2139 r1bio_pool_free, newpoolinfo); 2140 if (!newpool) { 2141 kfree(newpoolinfo); 2142 return -ENOMEM; 2143 } 2144 newmirrors = kzalloc(sizeof(struct mirror_info) * raid_disks, GFP_KERNEL); 2145 if (!newmirrors) { 2146 kfree(newpoolinfo); 2147 mempool_destroy(newpool); 2148 return -ENOMEM; 2149 } 2150 2151 raise_barrier(conf); 2152 2153 /* ok, everything is stopped */ 2154 oldpool = conf->r1bio_pool; 2155 conf->r1bio_pool = newpool; 2156 2157 for (d=d2=0; d < conf->raid_disks; d++) 2158 if (conf->mirrors[d].rdev) { 2159 conf->mirrors[d].rdev->raid_disk = d2; 2160 newmirrors[d2++].rdev = conf->mirrors[d].rdev; 2161 } 2162 kfree(conf->mirrors); 2163 conf->mirrors = newmirrors; 2164 kfree(conf->poolinfo); 2165 conf->poolinfo = newpoolinfo; 2166 2167 spin_lock_irqsave(&conf->device_lock, flags); 2168 mddev->degraded += (raid_disks - conf->raid_disks); 2169 spin_unlock_irqrestore(&conf->device_lock, flags); 2170 conf->raid_disks = mddev->raid_disks = raid_disks; 2171 mddev->delta_disks = 0; 2172 2173 conf->last_used = 0; /* just make sure it is in-range */ 2174 lower_barrier(conf); 2175 2176 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 2177 md_wakeup_thread(mddev->thread); 2178 2179 mempool_destroy(oldpool); 2180 return 0; 2181 } 2182 2183 static void raid1_quiesce(mddev_t *mddev, int state) 2184 { 2185 conf_t *conf = mddev_to_conf(mddev); 2186 2187 switch(state) { 2188 case 1: 2189 raise_barrier(conf); 2190 break; 2191 case 0: 2192 lower_barrier(conf); 2193 break; 2194 } 2195 } 2196 2197 2198 static struct mdk_personality raid1_personality = 2199 { 2200 .name = "raid1", 2201 .level = 1, 2202 .owner = THIS_MODULE, 2203 .make_request = make_request, 2204 .run = run, 2205 .stop = stop, 2206 .status = status, 2207 .error_handler = error, 2208 .hot_add_disk = raid1_add_disk, 2209 .hot_remove_disk= raid1_remove_disk, 2210 .spare_active = raid1_spare_active, 2211 .sync_request = sync_request, 2212 .resize = raid1_resize, 2213 .check_reshape = raid1_reshape, 2214 .quiesce = raid1_quiesce, 2215 }; 2216 2217 static int __init raid_init(void) 2218 { 2219 return register_md_personality(&raid1_personality); 2220 } 2221 2222 static void raid_exit(void) 2223 { 2224 unregister_md_personality(&raid1_personality); 2225 } 2226 2227 module_init(raid_init); 2228 module_exit(raid_exit); 2229 MODULE_LICENSE("GPL"); 2230 MODULE_ALIAS("md-personality-3"); /* RAID1 */ 2231 MODULE_ALIAS("md-raid1"); 2232 MODULE_ALIAS("md-level-1"); 2233