xref: /openbmc/linux/drivers/md/raid1.c (revision 64590f45)
1 /*
2  * raid1.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5  *
6  * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7  *
8  * RAID-1 management functions.
9  *
10  * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11  *
12  * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
13  * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14  *
15  * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16  * bitmapped intelligence in resync:
17  *
18  *      - bitmap marked during normal i/o
19  *      - bitmap used to skip nondirty blocks during sync
20  *
21  * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22  * - persistent bitmap code
23  *
24  * This program is free software; you can redistribute it and/or modify
25  * it under the terms of the GNU General Public License as published by
26  * the Free Software Foundation; either version 2, or (at your option)
27  * any later version.
28  *
29  * You should have received a copy of the GNU General Public License
30  * (for example /usr/src/linux/COPYING); if not, write to the Free
31  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32  */
33 
34 #include <linux/slab.h>
35 #include <linux/delay.h>
36 #include <linux/blkdev.h>
37 #include <linux/module.h>
38 #include <linux/seq_file.h>
39 #include <linux/ratelimit.h>
40 #include "md.h"
41 #include "raid1.h"
42 #include "bitmap.h"
43 
44 /*
45  * Number of guaranteed r1bios in case of extreme VM load:
46  */
47 #define	NR_RAID1_BIOS 256
48 
49 /* when we get a read error on a read-only array, we redirect to another
50  * device without failing the first device, or trying to over-write to
51  * correct the read error.  To keep track of bad blocks on a per-bio
52  * level, we store IO_BLOCKED in the appropriate 'bios' pointer
53  */
54 #define IO_BLOCKED ((struct bio *)1)
55 /* When we successfully write to a known bad-block, we need to remove the
56  * bad-block marking which must be done from process context.  So we record
57  * the success by setting devs[n].bio to IO_MADE_GOOD
58  */
59 #define IO_MADE_GOOD ((struct bio *)2)
60 
61 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
62 
63 /* When there are this many requests queue to be written by
64  * the raid1 thread, we become 'congested' to provide back-pressure
65  * for writeback.
66  */
67 static int max_queued_requests = 1024;
68 
69 static void allow_barrier(struct r1conf *conf, sector_t start_next_window,
70 			  sector_t bi_sector);
71 static void lower_barrier(struct r1conf *conf);
72 
73 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
74 {
75 	struct pool_info *pi = data;
76 	int size = offsetof(struct r1bio, bios[pi->raid_disks]);
77 
78 	/* allocate a r1bio with room for raid_disks entries in the bios array */
79 	return kzalloc(size, gfp_flags);
80 }
81 
82 static void r1bio_pool_free(void *r1_bio, void *data)
83 {
84 	kfree(r1_bio);
85 }
86 
87 #define RESYNC_BLOCK_SIZE (64*1024)
88 #define RESYNC_DEPTH 32
89 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
90 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
91 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
92 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
93 #define NEXT_NORMALIO_DISTANCE (3 * RESYNC_WINDOW_SECTORS)
94 
95 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
96 {
97 	struct pool_info *pi = data;
98 	struct r1bio *r1_bio;
99 	struct bio *bio;
100 	int need_pages;
101 	int i, j;
102 
103 	r1_bio = r1bio_pool_alloc(gfp_flags, pi);
104 	if (!r1_bio)
105 		return NULL;
106 
107 	/*
108 	 * Allocate bios : 1 for reading, n-1 for writing
109 	 */
110 	for (j = pi->raid_disks ; j-- ; ) {
111 		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
112 		if (!bio)
113 			goto out_free_bio;
114 		r1_bio->bios[j] = bio;
115 	}
116 	/*
117 	 * Allocate RESYNC_PAGES data pages and attach them to
118 	 * the first bio.
119 	 * If this is a user-requested check/repair, allocate
120 	 * RESYNC_PAGES for each bio.
121 	 */
122 	if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
123 		need_pages = pi->raid_disks;
124 	else
125 		need_pages = 1;
126 	for (j = 0; j < need_pages; j++) {
127 		bio = r1_bio->bios[j];
128 		bio->bi_vcnt = RESYNC_PAGES;
129 
130 		if (bio_alloc_pages(bio, gfp_flags))
131 			goto out_free_pages;
132 	}
133 	/* If not user-requests, copy the page pointers to all bios */
134 	if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
135 		for (i=0; i<RESYNC_PAGES ; i++)
136 			for (j=1; j<pi->raid_disks; j++)
137 				r1_bio->bios[j]->bi_io_vec[i].bv_page =
138 					r1_bio->bios[0]->bi_io_vec[i].bv_page;
139 	}
140 
141 	r1_bio->master_bio = NULL;
142 
143 	return r1_bio;
144 
145 out_free_pages:
146 	while (--j >= 0) {
147 		struct bio_vec *bv;
148 
149 		bio_for_each_segment_all(bv, r1_bio->bios[j], i)
150 			__free_page(bv->bv_page);
151 	}
152 
153 out_free_bio:
154 	while (++j < pi->raid_disks)
155 		bio_put(r1_bio->bios[j]);
156 	r1bio_pool_free(r1_bio, data);
157 	return NULL;
158 }
159 
160 static void r1buf_pool_free(void *__r1_bio, void *data)
161 {
162 	struct pool_info *pi = data;
163 	int i,j;
164 	struct r1bio *r1bio = __r1_bio;
165 
166 	for (i = 0; i < RESYNC_PAGES; i++)
167 		for (j = pi->raid_disks; j-- ;) {
168 			if (j == 0 ||
169 			    r1bio->bios[j]->bi_io_vec[i].bv_page !=
170 			    r1bio->bios[0]->bi_io_vec[i].bv_page)
171 				safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
172 		}
173 	for (i=0 ; i < pi->raid_disks; i++)
174 		bio_put(r1bio->bios[i]);
175 
176 	r1bio_pool_free(r1bio, data);
177 }
178 
179 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
180 {
181 	int i;
182 
183 	for (i = 0; i < conf->raid_disks * 2; i++) {
184 		struct bio **bio = r1_bio->bios + i;
185 		if (!BIO_SPECIAL(*bio))
186 			bio_put(*bio);
187 		*bio = NULL;
188 	}
189 }
190 
191 static void free_r1bio(struct r1bio *r1_bio)
192 {
193 	struct r1conf *conf = r1_bio->mddev->private;
194 
195 	put_all_bios(conf, r1_bio);
196 	mempool_free(r1_bio, conf->r1bio_pool);
197 }
198 
199 static void put_buf(struct r1bio *r1_bio)
200 {
201 	struct r1conf *conf = r1_bio->mddev->private;
202 	int i;
203 
204 	for (i = 0; i < conf->raid_disks * 2; i++) {
205 		struct bio *bio = r1_bio->bios[i];
206 		if (bio->bi_end_io)
207 			rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
208 	}
209 
210 	mempool_free(r1_bio, conf->r1buf_pool);
211 
212 	lower_barrier(conf);
213 }
214 
215 static void reschedule_retry(struct r1bio *r1_bio)
216 {
217 	unsigned long flags;
218 	struct mddev *mddev = r1_bio->mddev;
219 	struct r1conf *conf = mddev->private;
220 
221 	spin_lock_irqsave(&conf->device_lock, flags);
222 	list_add(&r1_bio->retry_list, &conf->retry_list);
223 	conf->nr_queued ++;
224 	spin_unlock_irqrestore(&conf->device_lock, flags);
225 
226 	wake_up(&conf->wait_barrier);
227 	md_wakeup_thread(mddev->thread);
228 }
229 
230 /*
231  * raid_end_bio_io() is called when we have finished servicing a mirrored
232  * operation and are ready to return a success/failure code to the buffer
233  * cache layer.
234  */
235 static void call_bio_endio(struct r1bio *r1_bio)
236 {
237 	struct bio *bio = r1_bio->master_bio;
238 	int done;
239 	struct r1conf *conf = r1_bio->mddev->private;
240 	sector_t start_next_window = r1_bio->start_next_window;
241 	sector_t bi_sector = bio->bi_iter.bi_sector;
242 
243 	if (bio->bi_phys_segments) {
244 		unsigned long flags;
245 		spin_lock_irqsave(&conf->device_lock, flags);
246 		bio->bi_phys_segments--;
247 		done = (bio->bi_phys_segments == 0);
248 		spin_unlock_irqrestore(&conf->device_lock, flags);
249 		/*
250 		 * make_request() might be waiting for
251 		 * bi_phys_segments to decrease
252 		 */
253 		wake_up(&conf->wait_barrier);
254 	} else
255 		done = 1;
256 
257 	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
258 		clear_bit(BIO_UPTODATE, &bio->bi_flags);
259 	if (done) {
260 		bio_endio(bio, 0);
261 		/*
262 		 * Wake up any possible resync thread that waits for the device
263 		 * to go idle.
264 		 */
265 		allow_barrier(conf, start_next_window, bi_sector);
266 	}
267 }
268 
269 static void raid_end_bio_io(struct r1bio *r1_bio)
270 {
271 	struct bio *bio = r1_bio->master_bio;
272 
273 	/* if nobody has done the final endio yet, do it now */
274 	if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
275 		pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
276 			 (bio_data_dir(bio) == WRITE) ? "write" : "read",
277 			 (unsigned long long) bio->bi_iter.bi_sector,
278 			 (unsigned long long) bio_end_sector(bio) - 1);
279 
280 		call_bio_endio(r1_bio);
281 	}
282 	free_r1bio(r1_bio);
283 }
284 
285 /*
286  * Update disk head position estimator based on IRQ completion info.
287  */
288 static inline void update_head_pos(int disk, struct r1bio *r1_bio)
289 {
290 	struct r1conf *conf = r1_bio->mddev->private;
291 
292 	conf->mirrors[disk].head_position =
293 		r1_bio->sector + (r1_bio->sectors);
294 }
295 
296 /*
297  * Find the disk number which triggered given bio
298  */
299 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
300 {
301 	int mirror;
302 	struct r1conf *conf = r1_bio->mddev->private;
303 	int raid_disks = conf->raid_disks;
304 
305 	for (mirror = 0; mirror < raid_disks * 2; mirror++)
306 		if (r1_bio->bios[mirror] == bio)
307 			break;
308 
309 	BUG_ON(mirror == raid_disks * 2);
310 	update_head_pos(mirror, r1_bio);
311 
312 	return mirror;
313 }
314 
315 static void raid1_end_read_request(struct bio *bio, int error)
316 {
317 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
318 	struct r1bio *r1_bio = bio->bi_private;
319 	int mirror;
320 	struct r1conf *conf = r1_bio->mddev->private;
321 
322 	mirror = r1_bio->read_disk;
323 	/*
324 	 * this branch is our 'one mirror IO has finished' event handler:
325 	 */
326 	update_head_pos(mirror, r1_bio);
327 
328 	if (uptodate)
329 		set_bit(R1BIO_Uptodate, &r1_bio->state);
330 	else {
331 		/* If all other devices have failed, we want to return
332 		 * the error upwards rather than fail the last device.
333 		 * Here we redefine "uptodate" to mean "Don't want to retry"
334 		 */
335 		unsigned long flags;
336 		spin_lock_irqsave(&conf->device_lock, flags);
337 		if (r1_bio->mddev->degraded == conf->raid_disks ||
338 		    (r1_bio->mddev->degraded == conf->raid_disks-1 &&
339 		     !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags)))
340 			uptodate = 1;
341 		spin_unlock_irqrestore(&conf->device_lock, flags);
342 	}
343 
344 	if (uptodate) {
345 		raid_end_bio_io(r1_bio);
346 		rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
347 	} else {
348 		/*
349 		 * oops, read error:
350 		 */
351 		char b[BDEVNAME_SIZE];
352 		printk_ratelimited(
353 			KERN_ERR "md/raid1:%s: %s: "
354 			"rescheduling sector %llu\n",
355 			mdname(conf->mddev),
356 			bdevname(conf->mirrors[mirror].rdev->bdev,
357 				 b),
358 			(unsigned long long)r1_bio->sector);
359 		set_bit(R1BIO_ReadError, &r1_bio->state);
360 		reschedule_retry(r1_bio);
361 		/* don't drop the reference on read_disk yet */
362 	}
363 }
364 
365 static void close_write(struct r1bio *r1_bio)
366 {
367 	/* it really is the end of this request */
368 	if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
369 		/* free extra copy of the data pages */
370 		int i = r1_bio->behind_page_count;
371 		while (i--)
372 			safe_put_page(r1_bio->behind_bvecs[i].bv_page);
373 		kfree(r1_bio->behind_bvecs);
374 		r1_bio->behind_bvecs = NULL;
375 	}
376 	/* clear the bitmap if all writes complete successfully */
377 	bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
378 			r1_bio->sectors,
379 			!test_bit(R1BIO_Degraded, &r1_bio->state),
380 			test_bit(R1BIO_BehindIO, &r1_bio->state));
381 	md_write_end(r1_bio->mddev);
382 }
383 
384 static void r1_bio_write_done(struct r1bio *r1_bio)
385 {
386 	if (!atomic_dec_and_test(&r1_bio->remaining))
387 		return;
388 
389 	if (test_bit(R1BIO_WriteError, &r1_bio->state))
390 		reschedule_retry(r1_bio);
391 	else {
392 		close_write(r1_bio);
393 		if (test_bit(R1BIO_MadeGood, &r1_bio->state))
394 			reschedule_retry(r1_bio);
395 		else
396 			raid_end_bio_io(r1_bio);
397 	}
398 }
399 
400 static void raid1_end_write_request(struct bio *bio, int error)
401 {
402 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
403 	struct r1bio *r1_bio = bio->bi_private;
404 	int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
405 	struct r1conf *conf = r1_bio->mddev->private;
406 	struct bio *to_put = NULL;
407 
408 	mirror = find_bio_disk(r1_bio, bio);
409 
410 	/*
411 	 * 'one mirror IO has finished' event handler:
412 	 */
413 	if (!uptodate) {
414 		set_bit(WriteErrorSeen,
415 			&conf->mirrors[mirror].rdev->flags);
416 		if (!test_and_set_bit(WantReplacement,
417 				      &conf->mirrors[mirror].rdev->flags))
418 			set_bit(MD_RECOVERY_NEEDED, &
419 				conf->mddev->recovery);
420 
421 		set_bit(R1BIO_WriteError, &r1_bio->state);
422 	} else {
423 		/*
424 		 * Set R1BIO_Uptodate in our master bio, so that we
425 		 * will return a good error code for to the higher
426 		 * levels even if IO on some other mirrored buffer
427 		 * fails.
428 		 *
429 		 * The 'master' represents the composite IO operation
430 		 * to user-side. So if something waits for IO, then it
431 		 * will wait for the 'master' bio.
432 		 */
433 		sector_t first_bad;
434 		int bad_sectors;
435 
436 		r1_bio->bios[mirror] = NULL;
437 		to_put = bio;
438 		/*
439 		 * Do not set R1BIO_Uptodate if the current device is
440 		 * rebuilding or Faulty. This is because we cannot use
441 		 * such device for properly reading the data back (we could
442 		 * potentially use it, if the current write would have felt
443 		 * before rdev->recovery_offset, but for simplicity we don't
444 		 * check this here.
445 		 */
446 		if (test_bit(In_sync, &conf->mirrors[mirror].rdev->flags) &&
447 		    !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags))
448 			set_bit(R1BIO_Uptodate, &r1_bio->state);
449 
450 		/* Maybe we can clear some bad blocks. */
451 		if (is_badblock(conf->mirrors[mirror].rdev,
452 				r1_bio->sector, r1_bio->sectors,
453 				&first_bad, &bad_sectors)) {
454 			r1_bio->bios[mirror] = IO_MADE_GOOD;
455 			set_bit(R1BIO_MadeGood, &r1_bio->state);
456 		}
457 	}
458 
459 	if (behind) {
460 		if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
461 			atomic_dec(&r1_bio->behind_remaining);
462 
463 		/*
464 		 * In behind mode, we ACK the master bio once the I/O
465 		 * has safely reached all non-writemostly
466 		 * disks. Setting the Returned bit ensures that this
467 		 * gets done only once -- we don't ever want to return
468 		 * -EIO here, instead we'll wait
469 		 */
470 		if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
471 		    test_bit(R1BIO_Uptodate, &r1_bio->state)) {
472 			/* Maybe we can return now */
473 			if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
474 				struct bio *mbio = r1_bio->master_bio;
475 				pr_debug("raid1: behind end write sectors"
476 					 " %llu-%llu\n",
477 					 (unsigned long long) mbio->bi_iter.bi_sector,
478 					 (unsigned long long) bio_end_sector(mbio) - 1);
479 				call_bio_endio(r1_bio);
480 			}
481 		}
482 	}
483 	if (r1_bio->bios[mirror] == NULL)
484 		rdev_dec_pending(conf->mirrors[mirror].rdev,
485 				 conf->mddev);
486 
487 	/*
488 	 * Let's see if all mirrored write operations have finished
489 	 * already.
490 	 */
491 	r1_bio_write_done(r1_bio);
492 
493 	if (to_put)
494 		bio_put(to_put);
495 }
496 
497 /*
498  * This routine returns the disk from which the requested read should
499  * be done. There is a per-array 'next expected sequential IO' sector
500  * number - if this matches on the next IO then we use the last disk.
501  * There is also a per-disk 'last know head position' sector that is
502  * maintained from IRQ contexts, both the normal and the resync IO
503  * completion handlers update this position correctly. If there is no
504  * perfect sequential match then we pick the disk whose head is closest.
505  *
506  * If there are 2 mirrors in the same 2 devices, performance degrades
507  * because position is mirror, not device based.
508  *
509  * The rdev for the device selected will have nr_pending incremented.
510  */
511 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
512 {
513 	const sector_t this_sector = r1_bio->sector;
514 	int sectors;
515 	int best_good_sectors;
516 	int best_disk, best_dist_disk, best_pending_disk;
517 	int has_nonrot_disk;
518 	int disk;
519 	sector_t best_dist;
520 	unsigned int min_pending;
521 	struct md_rdev *rdev;
522 	int choose_first;
523 	int choose_next_idle;
524 
525 	rcu_read_lock();
526 	/*
527 	 * Check if we can balance. We can balance on the whole
528 	 * device if no resync is going on, or below the resync window.
529 	 * We take the first readable disk when above the resync window.
530 	 */
531  retry:
532 	sectors = r1_bio->sectors;
533 	best_disk = -1;
534 	best_dist_disk = -1;
535 	best_dist = MaxSector;
536 	best_pending_disk = -1;
537 	min_pending = UINT_MAX;
538 	best_good_sectors = 0;
539 	has_nonrot_disk = 0;
540 	choose_next_idle = 0;
541 
542 	choose_first = (conf->mddev->recovery_cp < this_sector + sectors);
543 
544 	for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
545 		sector_t dist;
546 		sector_t first_bad;
547 		int bad_sectors;
548 		unsigned int pending;
549 		bool nonrot;
550 
551 		rdev = rcu_dereference(conf->mirrors[disk].rdev);
552 		if (r1_bio->bios[disk] == IO_BLOCKED
553 		    || rdev == NULL
554 		    || test_bit(Unmerged, &rdev->flags)
555 		    || test_bit(Faulty, &rdev->flags))
556 			continue;
557 		if (!test_bit(In_sync, &rdev->flags) &&
558 		    rdev->recovery_offset < this_sector + sectors)
559 			continue;
560 		if (test_bit(WriteMostly, &rdev->flags)) {
561 			/* Don't balance among write-mostly, just
562 			 * use the first as a last resort */
563 			if (best_disk < 0) {
564 				if (is_badblock(rdev, this_sector, sectors,
565 						&first_bad, &bad_sectors)) {
566 					if (first_bad < this_sector)
567 						/* Cannot use this */
568 						continue;
569 					best_good_sectors = first_bad - this_sector;
570 				} else
571 					best_good_sectors = sectors;
572 				best_disk = disk;
573 			}
574 			continue;
575 		}
576 		/* This is a reasonable device to use.  It might
577 		 * even be best.
578 		 */
579 		if (is_badblock(rdev, this_sector, sectors,
580 				&first_bad, &bad_sectors)) {
581 			if (best_dist < MaxSector)
582 				/* already have a better device */
583 				continue;
584 			if (first_bad <= this_sector) {
585 				/* cannot read here. If this is the 'primary'
586 				 * device, then we must not read beyond
587 				 * bad_sectors from another device..
588 				 */
589 				bad_sectors -= (this_sector - first_bad);
590 				if (choose_first && sectors > bad_sectors)
591 					sectors = bad_sectors;
592 				if (best_good_sectors > sectors)
593 					best_good_sectors = sectors;
594 
595 			} else {
596 				sector_t good_sectors = first_bad - this_sector;
597 				if (good_sectors > best_good_sectors) {
598 					best_good_sectors = good_sectors;
599 					best_disk = disk;
600 				}
601 				if (choose_first)
602 					break;
603 			}
604 			continue;
605 		} else
606 			best_good_sectors = sectors;
607 
608 		nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
609 		has_nonrot_disk |= nonrot;
610 		pending = atomic_read(&rdev->nr_pending);
611 		dist = abs(this_sector - conf->mirrors[disk].head_position);
612 		if (choose_first) {
613 			best_disk = disk;
614 			break;
615 		}
616 		/* Don't change to another disk for sequential reads */
617 		if (conf->mirrors[disk].next_seq_sect == this_sector
618 		    || dist == 0) {
619 			int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
620 			struct raid1_info *mirror = &conf->mirrors[disk];
621 
622 			best_disk = disk;
623 			/*
624 			 * If buffered sequential IO size exceeds optimal
625 			 * iosize, check if there is idle disk. If yes, choose
626 			 * the idle disk. read_balance could already choose an
627 			 * idle disk before noticing it's a sequential IO in
628 			 * this disk. This doesn't matter because this disk
629 			 * will idle, next time it will be utilized after the
630 			 * first disk has IO size exceeds optimal iosize. In
631 			 * this way, iosize of the first disk will be optimal
632 			 * iosize at least. iosize of the second disk might be
633 			 * small, but not a big deal since when the second disk
634 			 * starts IO, the first disk is likely still busy.
635 			 */
636 			if (nonrot && opt_iosize > 0 &&
637 			    mirror->seq_start != MaxSector &&
638 			    mirror->next_seq_sect > opt_iosize &&
639 			    mirror->next_seq_sect - opt_iosize >=
640 			    mirror->seq_start) {
641 				choose_next_idle = 1;
642 				continue;
643 			}
644 			break;
645 		}
646 		/* If device is idle, use it */
647 		if (pending == 0) {
648 			best_disk = disk;
649 			break;
650 		}
651 
652 		if (choose_next_idle)
653 			continue;
654 
655 		if (min_pending > pending) {
656 			min_pending = pending;
657 			best_pending_disk = disk;
658 		}
659 
660 		if (dist < best_dist) {
661 			best_dist = dist;
662 			best_dist_disk = disk;
663 		}
664 	}
665 
666 	/*
667 	 * If all disks are rotational, choose the closest disk. If any disk is
668 	 * non-rotational, choose the disk with less pending request even the
669 	 * disk is rotational, which might/might not be optimal for raids with
670 	 * mixed ratation/non-rotational disks depending on workload.
671 	 */
672 	if (best_disk == -1) {
673 		if (has_nonrot_disk)
674 			best_disk = best_pending_disk;
675 		else
676 			best_disk = best_dist_disk;
677 	}
678 
679 	if (best_disk >= 0) {
680 		rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
681 		if (!rdev)
682 			goto retry;
683 		atomic_inc(&rdev->nr_pending);
684 		if (test_bit(Faulty, &rdev->flags)) {
685 			/* cannot risk returning a device that failed
686 			 * before we inc'ed nr_pending
687 			 */
688 			rdev_dec_pending(rdev, conf->mddev);
689 			goto retry;
690 		}
691 		sectors = best_good_sectors;
692 
693 		if (conf->mirrors[best_disk].next_seq_sect != this_sector)
694 			conf->mirrors[best_disk].seq_start = this_sector;
695 
696 		conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
697 	}
698 	rcu_read_unlock();
699 	*max_sectors = sectors;
700 
701 	return best_disk;
702 }
703 
704 static int raid1_mergeable_bvec(struct mddev *mddev,
705 				struct bvec_merge_data *bvm,
706 				struct bio_vec *biovec)
707 {
708 	struct r1conf *conf = mddev->private;
709 	sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
710 	int max = biovec->bv_len;
711 
712 	if (mddev->merge_check_needed) {
713 		int disk;
714 		rcu_read_lock();
715 		for (disk = 0; disk < conf->raid_disks * 2; disk++) {
716 			struct md_rdev *rdev = rcu_dereference(
717 				conf->mirrors[disk].rdev);
718 			if (rdev && !test_bit(Faulty, &rdev->flags)) {
719 				struct request_queue *q =
720 					bdev_get_queue(rdev->bdev);
721 				if (q->merge_bvec_fn) {
722 					bvm->bi_sector = sector +
723 						rdev->data_offset;
724 					bvm->bi_bdev = rdev->bdev;
725 					max = min(max, q->merge_bvec_fn(
726 							  q, bvm, biovec));
727 				}
728 			}
729 		}
730 		rcu_read_unlock();
731 	}
732 	return max;
733 
734 }
735 
736 static int raid1_congested(struct mddev *mddev, int bits)
737 {
738 	struct r1conf *conf = mddev->private;
739 	int i, ret = 0;
740 
741 	if ((bits & (1 << BDI_async_congested)) &&
742 	    conf->pending_count >= max_queued_requests)
743 		return 1;
744 
745 	rcu_read_lock();
746 	for (i = 0; i < conf->raid_disks * 2; i++) {
747 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
748 		if (rdev && !test_bit(Faulty, &rdev->flags)) {
749 			struct request_queue *q = bdev_get_queue(rdev->bdev);
750 
751 			BUG_ON(!q);
752 
753 			/* Note the '|| 1' - when read_balance prefers
754 			 * non-congested targets, it can be removed
755 			 */
756 			if ((bits & (1<<BDI_async_congested)) || 1)
757 				ret |= bdi_congested(&q->backing_dev_info, bits);
758 			else
759 				ret &= bdi_congested(&q->backing_dev_info, bits);
760 		}
761 	}
762 	rcu_read_unlock();
763 	return ret;
764 }
765 
766 static void flush_pending_writes(struct r1conf *conf)
767 {
768 	/* Any writes that have been queued but are awaiting
769 	 * bitmap updates get flushed here.
770 	 */
771 	spin_lock_irq(&conf->device_lock);
772 
773 	if (conf->pending_bio_list.head) {
774 		struct bio *bio;
775 		bio = bio_list_get(&conf->pending_bio_list);
776 		conf->pending_count = 0;
777 		spin_unlock_irq(&conf->device_lock);
778 		/* flush any pending bitmap writes to
779 		 * disk before proceeding w/ I/O */
780 		bitmap_unplug(conf->mddev->bitmap);
781 		wake_up(&conf->wait_barrier);
782 
783 		while (bio) { /* submit pending writes */
784 			struct bio *next = bio->bi_next;
785 			bio->bi_next = NULL;
786 			if (unlikely((bio->bi_rw & REQ_DISCARD) &&
787 			    !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
788 				/* Just ignore it */
789 				bio_endio(bio, 0);
790 			else
791 				generic_make_request(bio);
792 			bio = next;
793 		}
794 	} else
795 		spin_unlock_irq(&conf->device_lock);
796 }
797 
798 /* Barriers....
799  * Sometimes we need to suspend IO while we do something else,
800  * either some resync/recovery, or reconfigure the array.
801  * To do this we raise a 'barrier'.
802  * The 'barrier' is a counter that can be raised multiple times
803  * to count how many activities are happening which preclude
804  * normal IO.
805  * We can only raise the barrier if there is no pending IO.
806  * i.e. if nr_pending == 0.
807  * We choose only to raise the barrier if no-one is waiting for the
808  * barrier to go down.  This means that as soon as an IO request
809  * is ready, no other operations which require a barrier will start
810  * until the IO request has had a chance.
811  *
812  * So: regular IO calls 'wait_barrier'.  When that returns there
813  *    is no backgroup IO happening,  It must arrange to call
814  *    allow_barrier when it has finished its IO.
815  * backgroup IO calls must call raise_barrier.  Once that returns
816  *    there is no normal IO happeing.  It must arrange to call
817  *    lower_barrier when the particular background IO completes.
818  */
819 static void raise_barrier(struct r1conf *conf, sector_t sector_nr)
820 {
821 	spin_lock_irq(&conf->resync_lock);
822 
823 	/* Wait until no block IO is waiting */
824 	wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
825 			    conf->resync_lock);
826 
827 	/* block any new IO from starting */
828 	conf->barrier++;
829 	conf->next_resync = sector_nr;
830 
831 	/* For these conditions we must wait:
832 	 * A: while the array is in frozen state
833 	 * B: while barrier >= RESYNC_DEPTH, meaning resync reach
834 	 *    the max count which allowed.
835 	 * C: next_resync + RESYNC_SECTORS > start_next_window, meaning
836 	 *    next resync will reach to the window which normal bios are
837 	 *    handling.
838 	 * D: while there are any active requests in the current window.
839 	 */
840 	wait_event_lock_irq(conf->wait_barrier,
841 			    !conf->array_frozen &&
842 			    conf->barrier < RESYNC_DEPTH &&
843 			    conf->current_window_requests == 0 &&
844 			    (conf->start_next_window >=
845 			     conf->next_resync + RESYNC_SECTORS),
846 			    conf->resync_lock);
847 
848 	conf->nr_pending++;
849 	spin_unlock_irq(&conf->resync_lock);
850 }
851 
852 static void lower_barrier(struct r1conf *conf)
853 {
854 	unsigned long flags;
855 	BUG_ON(conf->barrier <= 0);
856 	spin_lock_irqsave(&conf->resync_lock, flags);
857 	conf->barrier--;
858 	conf->nr_pending--;
859 	spin_unlock_irqrestore(&conf->resync_lock, flags);
860 	wake_up(&conf->wait_barrier);
861 }
862 
863 static bool need_to_wait_for_sync(struct r1conf *conf, struct bio *bio)
864 {
865 	bool wait = false;
866 
867 	if (conf->array_frozen || !bio)
868 		wait = true;
869 	else if (conf->barrier && bio_data_dir(bio) == WRITE) {
870 		if ((conf->mddev->curr_resync_completed
871 		     >= bio_end_sector(bio)) ||
872 		    (conf->next_resync + NEXT_NORMALIO_DISTANCE
873 		     <= bio->bi_iter.bi_sector))
874 			wait = false;
875 		else
876 			wait = true;
877 	}
878 
879 	return wait;
880 }
881 
882 static sector_t wait_barrier(struct r1conf *conf, struct bio *bio)
883 {
884 	sector_t sector = 0;
885 
886 	spin_lock_irq(&conf->resync_lock);
887 	if (need_to_wait_for_sync(conf, bio)) {
888 		conf->nr_waiting++;
889 		/* Wait for the barrier to drop.
890 		 * However if there are already pending
891 		 * requests (preventing the barrier from
892 		 * rising completely), and the
893 		 * per-process bio queue isn't empty,
894 		 * then don't wait, as we need to empty
895 		 * that queue to allow conf->start_next_window
896 		 * to increase.
897 		 */
898 		wait_event_lock_irq(conf->wait_barrier,
899 				    !conf->array_frozen &&
900 				    (!conf->barrier ||
901 				     ((conf->start_next_window <
902 				       conf->next_resync + RESYNC_SECTORS) &&
903 				      current->bio_list &&
904 				      !bio_list_empty(current->bio_list))),
905 				    conf->resync_lock);
906 		conf->nr_waiting--;
907 	}
908 
909 	if (bio && bio_data_dir(bio) == WRITE) {
910 		if (bio->bi_iter.bi_sector >=
911 		    conf->mddev->curr_resync_completed) {
912 			if (conf->start_next_window == MaxSector)
913 				conf->start_next_window =
914 					conf->next_resync +
915 					NEXT_NORMALIO_DISTANCE;
916 
917 			if ((conf->start_next_window + NEXT_NORMALIO_DISTANCE)
918 			    <= bio->bi_iter.bi_sector)
919 				conf->next_window_requests++;
920 			else
921 				conf->current_window_requests++;
922 			sector = conf->start_next_window;
923 		}
924 	}
925 
926 	conf->nr_pending++;
927 	spin_unlock_irq(&conf->resync_lock);
928 	return sector;
929 }
930 
931 static void allow_barrier(struct r1conf *conf, sector_t start_next_window,
932 			  sector_t bi_sector)
933 {
934 	unsigned long flags;
935 
936 	spin_lock_irqsave(&conf->resync_lock, flags);
937 	conf->nr_pending--;
938 	if (start_next_window) {
939 		if (start_next_window == conf->start_next_window) {
940 			if (conf->start_next_window + NEXT_NORMALIO_DISTANCE
941 			    <= bi_sector)
942 				conf->next_window_requests--;
943 			else
944 				conf->current_window_requests--;
945 		} else
946 			conf->current_window_requests--;
947 
948 		if (!conf->current_window_requests) {
949 			if (conf->next_window_requests) {
950 				conf->current_window_requests =
951 					conf->next_window_requests;
952 				conf->next_window_requests = 0;
953 				conf->start_next_window +=
954 					NEXT_NORMALIO_DISTANCE;
955 			} else
956 				conf->start_next_window = MaxSector;
957 		}
958 	}
959 	spin_unlock_irqrestore(&conf->resync_lock, flags);
960 	wake_up(&conf->wait_barrier);
961 }
962 
963 static void freeze_array(struct r1conf *conf, int extra)
964 {
965 	/* stop syncio and normal IO and wait for everything to
966 	 * go quite.
967 	 * We wait until nr_pending match nr_queued+extra
968 	 * This is called in the context of one normal IO request
969 	 * that has failed. Thus any sync request that might be pending
970 	 * will be blocked by nr_pending, and we need to wait for
971 	 * pending IO requests to complete or be queued for re-try.
972 	 * Thus the number queued (nr_queued) plus this request (extra)
973 	 * must match the number of pending IOs (nr_pending) before
974 	 * we continue.
975 	 */
976 	spin_lock_irq(&conf->resync_lock);
977 	conf->array_frozen = 1;
978 	wait_event_lock_irq_cmd(conf->wait_barrier,
979 				conf->nr_pending == conf->nr_queued+extra,
980 				conf->resync_lock,
981 				flush_pending_writes(conf));
982 	spin_unlock_irq(&conf->resync_lock);
983 }
984 static void unfreeze_array(struct r1conf *conf)
985 {
986 	/* reverse the effect of the freeze */
987 	spin_lock_irq(&conf->resync_lock);
988 	conf->array_frozen = 0;
989 	wake_up(&conf->wait_barrier);
990 	spin_unlock_irq(&conf->resync_lock);
991 }
992 
993 /* duplicate the data pages for behind I/O
994  */
995 static void alloc_behind_pages(struct bio *bio, struct r1bio *r1_bio)
996 {
997 	int i;
998 	struct bio_vec *bvec;
999 	struct bio_vec *bvecs = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec),
1000 					GFP_NOIO);
1001 	if (unlikely(!bvecs))
1002 		return;
1003 
1004 	bio_for_each_segment_all(bvec, bio, i) {
1005 		bvecs[i] = *bvec;
1006 		bvecs[i].bv_page = alloc_page(GFP_NOIO);
1007 		if (unlikely(!bvecs[i].bv_page))
1008 			goto do_sync_io;
1009 		memcpy(kmap(bvecs[i].bv_page) + bvec->bv_offset,
1010 		       kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
1011 		kunmap(bvecs[i].bv_page);
1012 		kunmap(bvec->bv_page);
1013 	}
1014 	r1_bio->behind_bvecs = bvecs;
1015 	r1_bio->behind_page_count = bio->bi_vcnt;
1016 	set_bit(R1BIO_BehindIO, &r1_bio->state);
1017 	return;
1018 
1019 do_sync_io:
1020 	for (i = 0; i < bio->bi_vcnt; i++)
1021 		if (bvecs[i].bv_page)
1022 			put_page(bvecs[i].bv_page);
1023 	kfree(bvecs);
1024 	pr_debug("%dB behind alloc failed, doing sync I/O\n",
1025 		 bio->bi_iter.bi_size);
1026 }
1027 
1028 struct raid1_plug_cb {
1029 	struct blk_plug_cb	cb;
1030 	struct bio_list		pending;
1031 	int			pending_cnt;
1032 };
1033 
1034 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1035 {
1036 	struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1037 						  cb);
1038 	struct mddev *mddev = plug->cb.data;
1039 	struct r1conf *conf = mddev->private;
1040 	struct bio *bio;
1041 
1042 	if (from_schedule || current->bio_list) {
1043 		spin_lock_irq(&conf->device_lock);
1044 		bio_list_merge(&conf->pending_bio_list, &plug->pending);
1045 		conf->pending_count += plug->pending_cnt;
1046 		spin_unlock_irq(&conf->device_lock);
1047 		wake_up(&conf->wait_barrier);
1048 		md_wakeup_thread(mddev->thread);
1049 		kfree(plug);
1050 		return;
1051 	}
1052 
1053 	/* we aren't scheduling, so we can do the write-out directly. */
1054 	bio = bio_list_get(&plug->pending);
1055 	bitmap_unplug(mddev->bitmap);
1056 	wake_up(&conf->wait_barrier);
1057 
1058 	while (bio) { /* submit pending writes */
1059 		struct bio *next = bio->bi_next;
1060 		bio->bi_next = NULL;
1061 		if (unlikely((bio->bi_rw & REQ_DISCARD) &&
1062 		    !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
1063 			/* Just ignore it */
1064 			bio_endio(bio, 0);
1065 		else
1066 			generic_make_request(bio);
1067 		bio = next;
1068 	}
1069 	kfree(plug);
1070 }
1071 
1072 static void make_request(struct mddev *mddev, struct bio * bio)
1073 {
1074 	struct r1conf *conf = mddev->private;
1075 	struct raid1_info *mirror;
1076 	struct r1bio *r1_bio;
1077 	struct bio *read_bio;
1078 	int i, disks;
1079 	struct bitmap *bitmap;
1080 	unsigned long flags;
1081 	const int rw = bio_data_dir(bio);
1082 	const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
1083 	const unsigned long do_flush_fua = (bio->bi_rw & (REQ_FLUSH | REQ_FUA));
1084 	const unsigned long do_discard = (bio->bi_rw
1085 					  & (REQ_DISCARD | REQ_SECURE));
1086 	const unsigned long do_same = (bio->bi_rw & REQ_WRITE_SAME);
1087 	struct md_rdev *blocked_rdev;
1088 	struct blk_plug_cb *cb;
1089 	struct raid1_plug_cb *plug = NULL;
1090 	int first_clone;
1091 	int sectors_handled;
1092 	int max_sectors;
1093 	sector_t start_next_window;
1094 
1095 	/*
1096 	 * Register the new request and wait if the reconstruction
1097 	 * thread has put up a bar for new requests.
1098 	 * Continue immediately if no resync is active currently.
1099 	 */
1100 
1101 	md_write_start(mddev, bio); /* wait on superblock update early */
1102 
1103 	if (bio_data_dir(bio) == WRITE &&
1104 	    bio_end_sector(bio) > mddev->suspend_lo &&
1105 	    bio->bi_iter.bi_sector < mddev->suspend_hi) {
1106 		/* As the suspend_* range is controlled by
1107 		 * userspace, we want an interruptible
1108 		 * wait.
1109 		 */
1110 		DEFINE_WAIT(w);
1111 		for (;;) {
1112 			flush_signals(current);
1113 			prepare_to_wait(&conf->wait_barrier,
1114 					&w, TASK_INTERRUPTIBLE);
1115 			if (bio_end_sector(bio) <= mddev->suspend_lo ||
1116 			    bio->bi_iter.bi_sector >= mddev->suspend_hi)
1117 				break;
1118 			schedule();
1119 		}
1120 		finish_wait(&conf->wait_barrier, &w);
1121 	}
1122 
1123 	start_next_window = wait_barrier(conf, bio);
1124 
1125 	bitmap = mddev->bitmap;
1126 
1127 	/*
1128 	 * make_request() can abort the operation when READA is being
1129 	 * used and no empty request is available.
1130 	 *
1131 	 */
1132 	r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1133 
1134 	r1_bio->master_bio = bio;
1135 	r1_bio->sectors = bio_sectors(bio);
1136 	r1_bio->state = 0;
1137 	r1_bio->mddev = mddev;
1138 	r1_bio->sector = bio->bi_iter.bi_sector;
1139 
1140 	/* We might need to issue multiple reads to different
1141 	 * devices if there are bad blocks around, so we keep
1142 	 * track of the number of reads in bio->bi_phys_segments.
1143 	 * If this is 0, there is only one r1_bio and no locking
1144 	 * will be needed when requests complete.  If it is
1145 	 * non-zero, then it is the number of not-completed requests.
1146 	 */
1147 	bio->bi_phys_segments = 0;
1148 	clear_bit(BIO_SEG_VALID, &bio->bi_flags);
1149 
1150 	if (rw == READ) {
1151 		/*
1152 		 * read balancing logic:
1153 		 */
1154 		int rdisk;
1155 
1156 read_again:
1157 		rdisk = read_balance(conf, r1_bio, &max_sectors);
1158 
1159 		if (rdisk < 0) {
1160 			/* couldn't find anywhere to read from */
1161 			raid_end_bio_io(r1_bio);
1162 			return;
1163 		}
1164 		mirror = conf->mirrors + rdisk;
1165 
1166 		if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1167 		    bitmap) {
1168 			/* Reading from a write-mostly device must
1169 			 * take care not to over-take any writes
1170 			 * that are 'behind'
1171 			 */
1172 			wait_event(bitmap->behind_wait,
1173 				   atomic_read(&bitmap->behind_writes) == 0);
1174 		}
1175 		r1_bio->read_disk = rdisk;
1176 		r1_bio->start_next_window = 0;
1177 
1178 		read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1179 		bio_trim(read_bio, r1_bio->sector - bio->bi_iter.bi_sector,
1180 			 max_sectors);
1181 
1182 		r1_bio->bios[rdisk] = read_bio;
1183 
1184 		read_bio->bi_iter.bi_sector = r1_bio->sector +
1185 			mirror->rdev->data_offset;
1186 		read_bio->bi_bdev = mirror->rdev->bdev;
1187 		read_bio->bi_end_io = raid1_end_read_request;
1188 		read_bio->bi_rw = READ | do_sync;
1189 		read_bio->bi_private = r1_bio;
1190 
1191 		if (max_sectors < r1_bio->sectors) {
1192 			/* could not read all from this device, so we will
1193 			 * need another r1_bio.
1194 			 */
1195 
1196 			sectors_handled = (r1_bio->sector + max_sectors
1197 					   - bio->bi_iter.bi_sector);
1198 			r1_bio->sectors = max_sectors;
1199 			spin_lock_irq(&conf->device_lock);
1200 			if (bio->bi_phys_segments == 0)
1201 				bio->bi_phys_segments = 2;
1202 			else
1203 				bio->bi_phys_segments++;
1204 			spin_unlock_irq(&conf->device_lock);
1205 			/* Cannot call generic_make_request directly
1206 			 * as that will be queued in __make_request
1207 			 * and subsequent mempool_alloc might block waiting
1208 			 * for it.  So hand bio over to raid1d.
1209 			 */
1210 			reschedule_retry(r1_bio);
1211 
1212 			r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1213 
1214 			r1_bio->master_bio = bio;
1215 			r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1216 			r1_bio->state = 0;
1217 			r1_bio->mddev = mddev;
1218 			r1_bio->sector = bio->bi_iter.bi_sector +
1219 				sectors_handled;
1220 			goto read_again;
1221 		} else
1222 			generic_make_request(read_bio);
1223 		return;
1224 	}
1225 
1226 	/*
1227 	 * WRITE:
1228 	 */
1229 	if (conf->pending_count >= max_queued_requests) {
1230 		md_wakeup_thread(mddev->thread);
1231 		wait_event(conf->wait_barrier,
1232 			   conf->pending_count < max_queued_requests);
1233 	}
1234 	/* first select target devices under rcu_lock and
1235 	 * inc refcount on their rdev.  Record them by setting
1236 	 * bios[x] to bio
1237 	 * If there are known/acknowledged bad blocks on any device on
1238 	 * which we have seen a write error, we want to avoid writing those
1239 	 * blocks.
1240 	 * This potentially requires several writes to write around
1241 	 * the bad blocks.  Each set of writes gets it's own r1bio
1242 	 * with a set of bios attached.
1243 	 */
1244 
1245 	disks = conf->raid_disks * 2;
1246  retry_write:
1247 	r1_bio->start_next_window = start_next_window;
1248 	blocked_rdev = NULL;
1249 	rcu_read_lock();
1250 	max_sectors = r1_bio->sectors;
1251 	for (i = 0;  i < disks; i++) {
1252 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1253 		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1254 			atomic_inc(&rdev->nr_pending);
1255 			blocked_rdev = rdev;
1256 			break;
1257 		}
1258 		r1_bio->bios[i] = NULL;
1259 		if (!rdev || test_bit(Faulty, &rdev->flags)
1260 		    || test_bit(Unmerged, &rdev->flags)) {
1261 			if (i < conf->raid_disks)
1262 				set_bit(R1BIO_Degraded, &r1_bio->state);
1263 			continue;
1264 		}
1265 
1266 		atomic_inc(&rdev->nr_pending);
1267 		if (test_bit(WriteErrorSeen, &rdev->flags)) {
1268 			sector_t first_bad;
1269 			int bad_sectors;
1270 			int is_bad;
1271 
1272 			is_bad = is_badblock(rdev, r1_bio->sector,
1273 					     max_sectors,
1274 					     &first_bad, &bad_sectors);
1275 			if (is_bad < 0) {
1276 				/* mustn't write here until the bad block is
1277 				 * acknowledged*/
1278 				set_bit(BlockedBadBlocks, &rdev->flags);
1279 				blocked_rdev = rdev;
1280 				break;
1281 			}
1282 			if (is_bad && first_bad <= r1_bio->sector) {
1283 				/* Cannot write here at all */
1284 				bad_sectors -= (r1_bio->sector - first_bad);
1285 				if (bad_sectors < max_sectors)
1286 					/* mustn't write more than bad_sectors
1287 					 * to other devices yet
1288 					 */
1289 					max_sectors = bad_sectors;
1290 				rdev_dec_pending(rdev, mddev);
1291 				/* We don't set R1BIO_Degraded as that
1292 				 * only applies if the disk is
1293 				 * missing, so it might be re-added,
1294 				 * and we want to know to recover this
1295 				 * chunk.
1296 				 * In this case the device is here,
1297 				 * and the fact that this chunk is not
1298 				 * in-sync is recorded in the bad
1299 				 * block log
1300 				 */
1301 				continue;
1302 			}
1303 			if (is_bad) {
1304 				int good_sectors = first_bad - r1_bio->sector;
1305 				if (good_sectors < max_sectors)
1306 					max_sectors = good_sectors;
1307 			}
1308 		}
1309 		r1_bio->bios[i] = bio;
1310 	}
1311 	rcu_read_unlock();
1312 
1313 	if (unlikely(blocked_rdev)) {
1314 		/* Wait for this device to become unblocked */
1315 		int j;
1316 		sector_t old = start_next_window;
1317 
1318 		for (j = 0; j < i; j++)
1319 			if (r1_bio->bios[j])
1320 				rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1321 		r1_bio->state = 0;
1322 		allow_barrier(conf, start_next_window, bio->bi_iter.bi_sector);
1323 		md_wait_for_blocked_rdev(blocked_rdev, mddev);
1324 		start_next_window = wait_barrier(conf, bio);
1325 		/*
1326 		 * We must make sure the multi r1bios of bio have
1327 		 * the same value of bi_phys_segments
1328 		 */
1329 		if (bio->bi_phys_segments && old &&
1330 		    old != start_next_window)
1331 			/* Wait for the former r1bio(s) to complete */
1332 			wait_event(conf->wait_barrier,
1333 				   bio->bi_phys_segments == 1);
1334 		goto retry_write;
1335 	}
1336 
1337 	if (max_sectors < r1_bio->sectors) {
1338 		/* We are splitting this write into multiple parts, so
1339 		 * we need to prepare for allocating another r1_bio.
1340 		 */
1341 		r1_bio->sectors = max_sectors;
1342 		spin_lock_irq(&conf->device_lock);
1343 		if (bio->bi_phys_segments == 0)
1344 			bio->bi_phys_segments = 2;
1345 		else
1346 			bio->bi_phys_segments++;
1347 		spin_unlock_irq(&conf->device_lock);
1348 	}
1349 	sectors_handled = r1_bio->sector + max_sectors - bio->bi_iter.bi_sector;
1350 
1351 	atomic_set(&r1_bio->remaining, 1);
1352 	atomic_set(&r1_bio->behind_remaining, 0);
1353 
1354 	first_clone = 1;
1355 	for (i = 0; i < disks; i++) {
1356 		struct bio *mbio;
1357 		if (!r1_bio->bios[i])
1358 			continue;
1359 
1360 		mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1361 		bio_trim(mbio, r1_bio->sector - bio->bi_iter.bi_sector, max_sectors);
1362 
1363 		if (first_clone) {
1364 			/* do behind I/O ?
1365 			 * Not if there are too many, or cannot
1366 			 * allocate memory, or a reader on WriteMostly
1367 			 * is waiting for behind writes to flush */
1368 			if (bitmap &&
1369 			    (atomic_read(&bitmap->behind_writes)
1370 			     < mddev->bitmap_info.max_write_behind) &&
1371 			    !waitqueue_active(&bitmap->behind_wait))
1372 				alloc_behind_pages(mbio, r1_bio);
1373 
1374 			bitmap_startwrite(bitmap, r1_bio->sector,
1375 					  r1_bio->sectors,
1376 					  test_bit(R1BIO_BehindIO,
1377 						   &r1_bio->state));
1378 			first_clone = 0;
1379 		}
1380 		if (r1_bio->behind_bvecs) {
1381 			struct bio_vec *bvec;
1382 			int j;
1383 
1384 			/*
1385 			 * We trimmed the bio, so _all is legit
1386 			 */
1387 			bio_for_each_segment_all(bvec, mbio, j)
1388 				bvec->bv_page = r1_bio->behind_bvecs[j].bv_page;
1389 			if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1390 				atomic_inc(&r1_bio->behind_remaining);
1391 		}
1392 
1393 		r1_bio->bios[i] = mbio;
1394 
1395 		mbio->bi_iter.bi_sector	= (r1_bio->sector +
1396 				   conf->mirrors[i].rdev->data_offset);
1397 		mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1398 		mbio->bi_end_io	= raid1_end_write_request;
1399 		mbio->bi_rw =
1400 			WRITE | do_flush_fua | do_sync | do_discard | do_same;
1401 		mbio->bi_private = r1_bio;
1402 
1403 		atomic_inc(&r1_bio->remaining);
1404 
1405 		cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1406 		if (cb)
1407 			plug = container_of(cb, struct raid1_plug_cb, cb);
1408 		else
1409 			plug = NULL;
1410 		spin_lock_irqsave(&conf->device_lock, flags);
1411 		if (plug) {
1412 			bio_list_add(&plug->pending, mbio);
1413 			plug->pending_cnt++;
1414 		} else {
1415 			bio_list_add(&conf->pending_bio_list, mbio);
1416 			conf->pending_count++;
1417 		}
1418 		spin_unlock_irqrestore(&conf->device_lock, flags);
1419 		if (!plug)
1420 			md_wakeup_thread(mddev->thread);
1421 	}
1422 	/* Mustn't call r1_bio_write_done before this next test,
1423 	 * as it could result in the bio being freed.
1424 	 */
1425 	if (sectors_handled < bio_sectors(bio)) {
1426 		r1_bio_write_done(r1_bio);
1427 		/* We need another r1_bio.  It has already been counted
1428 		 * in bio->bi_phys_segments
1429 		 */
1430 		r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1431 		r1_bio->master_bio = bio;
1432 		r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1433 		r1_bio->state = 0;
1434 		r1_bio->mddev = mddev;
1435 		r1_bio->sector = bio->bi_iter.bi_sector + sectors_handled;
1436 		goto retry_write;
1437 	}
1438 
1439 	r1_bio_write_done(r1_bio);
1440 
1441 	/* In case raid1d snuck in to freeze_array */
1442 	wake_up(&conf->wait_barrier);
1443 }
1444 
1445 static void status(struct seq_file *seq, struct mddev *mddev)
1446 {
1447 	struct r1conf *conf = mddev->private;
1448 	int i;
1449 
1450 	seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1451 		   conf->raid_disks - mddev->degraded);
1452 	rcu_read_lock();
1453 	for (i = 0; i < conf->raid_disks; i++) {
1454 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1455 		seq_printf(seq, "%s",
1456 			   rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1457 	}
1458 	rcu_read_unlock();
1459 	seq_printf(seq, "]");
1460 }
1461 
1462 static void error(struct mddev *mddev, struct md_rdev *rdev)
1463 {
1464 	char b[BDEVNAME_SIZE];
1465 	struct r1conf *conf = mddev->private;
1466 
1467 	/*
1468 	 * If it is not operational, then we have already marked it as dead
1469 	 * else if it is the last working disks, ignore the error, let the
1470 	 * next level up know.
1471 	 * else mark the drive as failed
1472 	 */
1473 	if (test_bit(In_sync, &rdev->flags)
1474 	    && (conf->raid_disks - mddev->degraded) == 1) {
1475 		/*
1476 		 * Don't fail the drive, act as though we were just a
1477 		 * normal single drive.
1478 		 * However don't try a recovery from this drive as
1479 		 * it is very likely to fail.
1480 		 */
1481 		conf->recovery_disabled = mddev->recovery_disabled;
1482 		return;
1483 	}
1484 	set_bit(Blocked, &rdev->flags);
1485 	if (test_and_clear_bit(In_sync, &rdev->flags)) {
1486 		unsigned long flags;
1487 		spin_lock_irqsave(&conf->device_lock, flags);
1488 		mddev->degraded++;
1489 		set_bit(Faulty, &rdev->flags);
1490 		spin_unlock_irqrestore(&conf->device_lock, flags);
1491 	} else
1492 		set_bit(Faulty, &rdev->flags);
1493 	/*
1494 	 * if recovery is running, make sure it aborts.
1495 	 */
1496 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1497 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
1498 	printk(KERN_ALERT
1499 	       "md/raid1:%s: Disk failure on %s, disabling device.\n"
1500 	       "md/raid1:%s: Operation continuing on %d devices.\n",
1501 	       mdname(mddev), bdevname(rdev->bdev, b),
1502 	       mdname(mddev), conf->raid_disks - mddev->degraded);
1503 }
1504 
1505 static void print_conf(struct r1conf *conf)
1506 {
1507 	int i;
1508 
1509 	printk(KERN_DEBUG "RAID1 conf printout:\n");
1510 	if (!conf) {
1511 		printk(KERN_DEBUG "(!conf)\n");
1512 		return;
1513 	}
1514 	printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1515 		conf->raid_disks);
1516 
1517 	rcu_read_lock();
1518 	for (i = 0; i < conf->raid_disks; i++) {
1519 		char b[BDEVNAME_SIZE];
1520 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1521 		if (rdev)
1522 			printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1523 			       i, !test_bit(In_sync, &rdev->flags),
1524 			       !test_bit(Faulty, &rdev->flags),
1525 			       bdevname(rdev->bdev,b));
1526 	}
1527 	rcu_read_unlock();
1528 }
1529 
1530 static void close_sync(struct r1conf *conf)
1531 {
1532 	wait_barrier(conf, NULL);
1533 	allow_barrier(conf, 0, 0);
1534 
1535 	mempool_destroy(conf->r1buf_pool);
1536 	conf->r1buf_pool = NULL;
1537 
1538 	spin_lock_irq(&conf->resync_lock);
1539 	conf->next_resync = 0;
1540 	conf->start_next_window = MaxSector;
1541 	conf->current_window_requests +=
1542 		conf->next_window_requests;
1543 	conf->next_window_requests = 0;
1544 	spin_unlock_irq(&conf->resync_lock);
1545 }
1546 
1547 static int raid1_spare_active(struct mddev *mddev)
1548 {
1549 	int i;
1550 	struct r1conf *conf = mddev->private;
1551 	int count = 0;
1552 	unsigned long flags;
1553 
1554 	/*
1555 	 * Find all failed disks within the RAID1 configuration
1556 	 * and mark them readable.
1557 	 * Called under mddev lock, so rcu protection not needed.
1558 	 */
1559 	for (i = 0; i < conf->raid_disks; i++) {
1560 		struct md_rdev *rdev = conf->mirrors[i].rdev;
1561 		struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1562 		if (repl
1563 		    && repl->recovery_offset == MaxSector
1564 		    && !test_bit(Faulty, &repl->flags)
1565 		    && !test_and_set_bit(In_sync, &repl->flags)) {
1566 			/* replacement has just become active */
1567 			if (!rdev ||
1568 			    !test_and_clear_bit(In_sync, &rdev->flags))
1569 				count++;
1570 			if (rdev) {
1571 				/* Replaced device not technically
1572 				 * faulty, but we need to be sure
1573 				 * it gets removed and never re-added
1574 				 */
1575 				set_bit(Faulty, &rdev->flags);
1576 				sysfs_notify_dirent_safe(
1577 					rdev->sysfs_state);
1578 			}
1579 		}
1580 		if (rdev
1581 		    && rdev->recovery_offset == MaxSector
1582 		    && !test_bit(Faulty, &rdev->flags)
1583 		    && !test_and_set_bit(In_sync, &rdev->flags)) {
1584 			count++;
1585 			sysfs_notify_dirent_safe(rdev->sysfs_state);
1586 		}
1587 	}
1588 	spin_lock_irqsave(&conf->device_lock, flags);
1589 	mddev->degraded -= count;
1590 	spin_unlock_irqrestore(&conf->device_lock, flags);
1591 
1592 	print_conf(conf);
1593 	return count;
1594 }
1595 
1596 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1597 {
1598 	struct r1conf *conf = mddev->private;
1599 	int err = -EEXIST;
1600 	int mirror = 0;
1601 	struct raid1_info *p;
1602 	int first = 0;
1603 	int last = conf->raid_disks - 1;
1604 	struct request_queue *q = bdev_get_queue(rdev->bdev);
1605 
1606 	if (mddev->recovery_disabled == conf->recovery_disabled)
1607 		return -EBUSY;
1608 
1609 	if (rdev->raid_disk >= 0)
1610 		first = last = rdev->raid_disk;
1611 
1612 	if (q->merge_bvec_fn) {
1613 		set_bit(Unmerged, &rdev->flags);
1614 		mddev->merge_check_needed = 1;
1615 	}
1616 
1617 	for (mirror = first; mirror <= last; mirror++) {
1618 		p = conf->mirrors+mirror;
1619 		if (!p->rdev) {
1620 
1621 			if (mddev->gendisk)
1622 				disk_stack_limits(mddev->gendisk, rdev->bdev,
1623 						  rdev->data_offset << 9);
1624 
1625 			p->head_position = 0;
1626 			rdev->raid_disk = mirror;
1627 			err = 0;
1628 			/* As all devices are equivalent, we don't need a full recovery
1629 			 * if this was recently any drive of the array
1630 			 */
1631 			if (rdev->saved_raid_disk < 0)
1632 				conf->fullsync = 1;
1633 			rcu_assign_pointer(p->rdev, rdev);
1634 			break;
1635 		}
1636 		if (test_bit(WantReplacement, &p->rdev->flags) &&
1637 		    p[conf->raid_disks].rdev == NULL) {
1638 			/* Add this device as a replacement */
1639 			clear_bit(In_sync, &rdev->flags);
1640 			set_bit(Replacement, &rdev->flags);
1641 			rdev->raid_disk = mirror;
1642 			err = 0;
1643 			conf->fullsync = 1;
1644 			rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1645 			break;
1646 		}
1647 	}
1648 	if (err == 0 && test_bit(Unmerged, &rdev->flags)) {
1649 		/* Some requests might not have seen this new
1650 		 * merge_bvec_fn.  We must wait for them to complete
1651 		 * before merging the device fully.
1652 		 * First we make sure any code which has tested
1653 		 * our function has submitted the request, then
1654 		 * we wait for all outstanding requests to complete.
1655 		 */
1656 		synchronize_sched();
1657 		freeze_array(conf, 0);
1658 		unfreeze_array(conf);
1659 		clear_bit(Unmerged, &rdev->flags);
1660 	}
1661 	md_integrity_add_rdev(rdev, mddev);
1662 	if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1663 		queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1664 	print_conf(conf);
1665 	return err;
1666 }
1667 
1668 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1669 {
1670 	struct r1conf *conf = mddev->private;
1671 	int err = 0;
1672 	int number = rdev->raid_disk;
1673 	struct raid1_info *p = conf->mirrors + number;
1674 
1675 	if (rdev != p->rdev)
1676 		p = conf->mirrors + conf->raid_disks + number;
1677 
1678 	print_conf(conf);
1679 	if (rdev == p->rdev) {
1680 		if (test_bit(In_sync, &rdev->flags) ||
1681 		    atomic_read(&rdev->nr_pending)) {
1682 			err = -EBUSY;
1683 			goto abort;
1684 		}
1685 		/* Only remove non-faulty devices if recovery
1686 		 * is not possible.
1687 		 */
1688 		if (!test_bit(Faulty, &rdev->flags) &&
1689 		    mddev->recovery_disabled != conf->recovery_disabled &&
1690 		    mddev->degraded < conf->raid_disks) {
1691 			err = -EBUSY;
1692 			goto abort;
1693 		}
1694 		p->rdev = NULL;
1695 		synchronize_rcu();
1696 		if (atomic_read(&rdev->nr_pending)) {
1697 			/* lost the race, try later */
1698 			err = -EBUSY;
1699 			p->rdev = rdev;
1700 			goto abort;
1701 		} else if (conf->mirrors[conf->raid_disks + number].rdev) {
1702 			/* We just removed a device that is being replaced.
1703 			 * Move down the replacement.  We drain all IO before
1704 			 * doing this to avoid confusion.
1705 			 */
1706 			struct md_rdev *repl =
1707 				conf->mirrors[conf->raid_disks + number].rdev;
1708 			freeze_array(conf, 0);
1709 			clear_bit(Replacement, &repl->flags);
1710 			p->rdev = repl;
1711 			conf->mirrors[conf->raid_disks + number].rdev = NULL;
1712 			unfreeze_array(conf);
1713 			clear_bit(WantReplacement, &rdev->flags);
1714 		} else
1715 			clear_bit(WantReplacement, &rdev->flags);
1716 		err = md_integrity_register(mddev);
1717 	}
1718 abort:
1719 
1720 	print_conf(conf);
1721 	return err;
1722 }
1723 
1724 static void end_sync_read(struct bio *bio, int error)
1725 {
1726 	struct r1bio *r1_bio = bio->bi_private;
1727 
1728 	update_head_pos(r1_bio->read_disk, r1_bio);
1729 
1730 	/*
1731 	 * we have read a block, now it needs to be re-written,
1732 	 * or re-read if the read failed.
1733 	 * We don't do much here, just schedule handling by raid1d
1734 	 */
1735 	if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1736 		set_bit(R1BIO_Uptodate, &r1_bio->state);
1737 
1738 	if (atomic_dec_and_test(&r1_bio->remaining))
1739 		reschedule_retry(r1_bio);
1740 }
1741 
1742 static void end_sync_write(struct bio *bio, int error)
1743 {
1744 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1745 	struct r1bio *r1_bio = bio->bi_private;
1746 	struct mddev *mddev = r1_bio->mddev;
1747 	struct r1conf *conf = mddev->private;
1748 	int mirror=0;
1749 	sector_t first_bad;
1750 	int bad_sectors;
1751 
1752 	mirror = find_bio_disk(r1_bio, bio);
1753 
1754 	if (!uptodate) {
1755 		sector_t sync_blocks = 0;
1756 		sector_t s = r1_bio->sector;
1757 		long sectors_to_go = r1_bio->sectors;
1758 		/* make sure these bits doesn't get cleared. */
1759 		do {
1760 			bitmap_end_sync(mddev->bitmap, s,
1761 					&sync_blocks, 1);
1762 			s += sync_blocks;
1763 			sectors_to_go -= sync_blocks;
1764 		} while (sectors_to_go > 0);
1765 		set_bit(WriteErrorSeen,
1766 			&conf->mirrors[mirror].rdev->flags);
1767 		if (!test_and_set_bit(WantReplacement,
1768 				      &conf->mirrors[mirror].rdev->flags))
1769 			set_bit(MD_RECOVERY_NEEDED, &
1770 				mddev->recovery);
1771 		set_bit(R1BIO_WriteError, &r1_bio->state);
1772 	} else if (is_badblock(conf->mirrors[mirror].rdev,
1773 			       r1_bio->sector,
1774 			       r1_bio->sectors,
1775 			       &first_bad, &bad_sectors) &&
1776 		   !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1777 				r1_bio->sector,
1778 				r1_bio->sectors,
1779 				&first_bad, &bad_sectors)
1780 		)
1781 		set_bit(R1BIO_MadeGood, &r1_bio->state);
1782 
1783 	if (atomic_dec_and_test(&r1_bio->remaining)) {
1784 		int s = r1_bio->sectors;
1785 		if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1786 		    test_bit(R1BIO_WriteError, &r1_bio->state))
1787 			reschedule_retry(r1_bio);
1788 		else {
1789 			put_buf(r1_bio);
1790 			md_done_sync(mddev, s, uptodate);
1791 		}
1792 	}
1793 }
1794 
1795 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1796 			    int sectors, struct page *page, int rw)
1797 {
1798 	if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
1799 		/* success */
1800 		return 1;
1801 	if (rw == WRITE) {
1802 		set_bit(WriteErrorSeen, &rdev->flags);
1803 		if (!test_and_set_bit(WantReplacement,
1804 				      &rdev->flags))
1805 			set_bit(MD_RECOVERY_NEEDED, &
1806 				rdev->mddev->recovery);
1807 	}
1808 	/* need to record an error - either for the block or the device */
1809 	if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1810 		md_error(rdev->mddev, rdev);
1811 	return 0;
1812 }
1813 
1814 static int fix_sync_read_error(struct r1bio *r1_bio)
1815 {
1816 	/* Try some synchronous reads of other devices to get
1817 	 * good data, much like with normal read errors.  Only
1818 	 * read into the pages we already have so we don't
1819 	 * need to re-issue the read request.
1820 	 * We don't need to freeze the array, because being in an
1821 	 * active sync request, there is no normal IO, and
1822 	 * no overlapping syncs.
1823 	 * We don't need to check is_badblock() again as we
1824 	 * made sure that anything with a bad block in range
1825 	 * will have bi_end_io clear.
1826 	 */
1827 	struct mddev *mddev = r1_bio->mddev;
1828 	struct r1conf *conf = mddev->private;
1829 	struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1830 	sector_t sect = r1_bio->sector;
1831 	int sectors = r1_bio->sectors;
1832 	int idx = 0;
1833 
1834 	while(sectors) {
1835 		int s = sectors;
1836 		int d = r1_bio->read_disk;
1837 		int success = 0;
1838 		struct md_rdev *rdev;
1839 		int start;
1840 
1841 		if (s > (PAGE_SIZE>>9))
1842 			s = PAGE_SIZE >> 9;
1843 		do {
1844 			if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1845 				/* No rcu protection needed here devices
1846 				 * can only be removed when no resync is
1847 				 * active, and resync is currently active
1848 				 */
1849 				rdev = conf->mirrors[d].rdev;
1850 				if (sync_page_io(rdev, sect, s<<9,
1851 						 bio->bi_io_vec[idx].bv_page,
1852 						 READ, false)) {
1853 					success = 1;
1854 					break;
1855 				}
1856 			}
1857 			d++;
1858 			if (d == conf->raid_disks * 2)
1859 				d = 0;
1860 		} while (!success && d != r1_bio->read_disk);
1861 
1862 		if (!success) {
1863 			char b[BDEVNAME_SIZE];
1864 			int abort = 0;
1865 			/* Cannot read from anywhere, this block is lost.
1866 			 * Record a bad block on each device.  If that doesn't
1867 			 * work just disable and interrupt the recovery.
1868 			 * Don't fail devices as that won't really help.
1869 			 */
1870 			printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error"
1871 			       " for block %llu\n",
1872 			       mdname(mddev),
1873 			       bdevname(bio->bi_bdev, b),
1874 			       (unsigned long long)r1_bio->sector);
1875 			for (d = 0; d < conf->raid_disks * 2; d++) {
1876 				rdev = conf->mirrors[d].rdev;
1877 				if (!rdev || test_bit(Faulty, &rdev->flags))
1878 					continue;
1879 				if (!rdev_set_badblocks(rdev, sect, s, 0))
1880 					abort = 1;
1881 			}
1882 			if (abort) {
1883 				conf->recovery_disabled =
1884 					mddev->recovery_disabled;
1885 				set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1886 				md_done_sync(mddev, r1_bio->sectors, 0);
1887 				put_buf(r1_bio);
1888 				return 0;
1889 			}
1890 			/* Try next page */
1891 			sectors -= s;
1892 			sect += s;
1893 			idx++;
1894 			continue;
1895 		}
1896 
1897 		start = d;
1898 		/* write it back and re-read */
1899 		while (d != r1_bio->read_disk) {
1900 			if (d == 0)
1901 				d = conf->raid_disks * 2;
1902 			d--;
1903 			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1904 				continue;
1905 			rdev = conf->mirrors[d].rdev;
1906 			if (r1_sync_page_io(rdev, sect, s,
1907 					    bio->bi_io_vec[idx].bv_page,
1908 					    WRITE) == 0) {
1909 				r1_bio->bios[d]->bi_end_io = NULL;
1910 				rdev_dec_pending(rdev, mddev);
1911 			}
1912 		}
1913 		d = start;
1914 		while (d != r1_bio->read_disk) {
1915 			if (d == 0)
1916 				d = conf->raid_disks * 2;
1917 			d--;
1918 			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1919 				continue;
1920 			rdev = conf->mirrors[d].rdev;
1921 			if (r1_sync_page_io(rdev, sect, s,
1922 					    bio->bi_io_vec[idx].bv_page,
1923 					    READ) != 0)
1924 				atomic_add(s, &rdev->corrected_errors);
1925 		}
1926 		sectors -= s;
1927 		sect += s;
1928 		idx ++;
1929 	}
1930 	set_bit(R1BIO_Uptodate, &r1_bio->state);
1931 	set_bit(BIO_UPTODATE, &bio->bi_flags);
1932 	return 1;
1933 }
1934 
1935 static void process_checks(struct r1bio *r1_bio)
1936 {
1937 	/* We have read all readable devices.  If we haven't
1938 	 * got the block, then there is no hope left.
1939 	 * If we have, then we want to do a comparison
1940 	 * and skip the write if everything is the same.
1941 	 * If any blocks failed to read, then we need to
1942 	 * attempt an over-write
1943 	 */
1944 	struct mddev *mddev = r1_bio->mddev;
1945 	struct r1conf *conf = mddev->private;
1946 	int primary;
1947 	int i;
1948 	int vcnt;
1949 
1950 	/* Fix variable parts of all bios */
1951 	vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
1952 	for (i = 0; i < conf->raid_disks * 2; i++) {
1953 		int j;
1954 		int size;
1955 		int uptodate;
1956 		struct bio *b = r1_bio->bios[i];
1957 		if (b->bi_end_io != end_sync_read)
1958 			continue;
1959 		/* fixup the bio for reuse, but preserve BIO_UPTODATE */
1960 		uptodate = test_bit(BIO_UPTODATE, &b->bi_flags);
1961 		bio_reset(b);
1962 		if (!uptodate)
1963 			clear_bit(BIO_UPTODATE, &b->bi_flags);
1964 		b->bi_vcnt = vcnt;
1965 		b->bi_iter.bi_size = r1_bio->sectors << 9;
1966 		b->bi_iter.bi_sector = r1_bio->sector +
1967 			conf->mirrors[i].rdev->data_offset;
1968 		b->bi_bdev = conf->mirrors[i].rdev->bdev;
1969 		b->bi_end_io = end_sync_read;
1970 		b->bi_private = r1_bio;
1971 
1972 		size = b->bi_iter.bi_size;
1973 		for (j = 0; j < vcnt ; j++) {
1974 			struct bio_vec *bi;
1975 			bi = &b->bi_io_vec[j];
1976 			bi->bv_offset = 0;
1977 			if (size > PAGE_SIZE)
1978 				bi->bv_len = PAGE_SIZE;
1979 			else
1980 				bi->bv_len = size;
1981 			size -= PAGE_SIZE;
1982 		}
1983 	}
1984 	for (primary = 0; primary < conf->raid_disks * 2; primary++)
1985 		if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
1986 		    test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) {
1987 			r1_bio->bios[primary]->bi_end_io = NULL;
1988 			rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
1989 			break;
1990 		}
1991 	r1_bio->read_disk = primary;
1992 	for (i = 0; i < conf->raid_disks * 2; i++) {
1993 		int j;
1994 		struct bio *pbio = r1_bio->bios[primary];
1995 		struct bio *sbio = r1_bio->bios[i];
1996 		int uptodate = test_bit(BIO_UPTODATE, &sbio->bi_flags);
1997 
1998 		if (sbio->bi_end_io != end_sync_read)
1999 			continue;
2000 		/* Now we can 'fixup' the BIO_UPTODATE flag */
2001 		set_bit(BIO_UPTODATE, &sbio->bi_flags);
2002 
2003 		if (uptodate) {
2004 			for (j = vcnt; j-- ; ) {
2005 				struct page *p, *s;
2006 				p = pbio->bi_io_vec[j].bv_page;
2007 				s = sbio->bi_io_vec[j].bv_page;
2008 				if (memcmp(page_address(p),
2009 					   page_address(s),
2010 					   sbio->bi_io_vec[j].bv_len))
2011 					break;
2012 			}
2013 		} else
2014 			j = 0;
2015 		if (j >= 0)
2016 			atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
2017 		if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
2018 			      && uptodate)) {
2019 			/* No need to write to this device. */
2020 			sbio->bi_end_io = NULL;
2021 			rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2022 			continue;
2023 		}
2024 
2025 		bio_copy_data(sbio, pbio);
2026 	}
2027 }
2028 
2029 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
2030 {
2031 	struct r1conf *conf = mddev->private;
2032 	int i;
2033 	int disks = conf->raid_disks * 2;
2034 	struct bio *bio, *wbio;
2035 
2036 	bio = r1_bio->bios[r1_bio->read_disk];
2037 
2038 	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2039 		/* ouch - failed to read all of that. */
2040 		if (!fix_sync_read_error(r1_bio))
2041 			return;
2042 
2043 	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2044 		process_checks(r1_bio);
2045 
2046 	/*
2047 	 * schedule writes
2048 	 */
2049 	atomic_set(&r1_bio->remaining, 1);
2050 	for (i = 0; i < disks ; i++) {
2051 		wbio = r1_bio->bios[i];
2052 		if (wbio->bi_end_io == NULL ||
2053 		    (wbio->bi_end_io == end_sync_read &&
2054 		     (i == r1_bio->read_disk ||
2055 		      !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2056 			continue;
2057 
2058 		wbio->bi_rw = WRITE;
2059 		wbio->bi_end_io = end_sync_write;
2060 		atomic_inc(&r1_bio->remaining);
2061 		md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
2062 
2063 		generic_make_request(wbio);
2064 	}
2065 
2066 	if (atomic_dec_and_test(&r1_bio->remaining)) {
2067 		/* if we're here, all write(s) have completed, so clean up */
2068 		int s = r1_bio->sectors;
2069 		if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2070 		    test_bit(R1BIO_WriteError, &r1_bio->state))
2071 			reschedule_retry(r1_bio);
2072 		else {
2073 			put_buf(r1_bio);
2074 			md_done_sync(mddev, s, 1);
2075 		}
2076 	}
2077 }
2078 
2079 /*
2080  * This is a kernel thread which:
2081  *
2082  *	1.	Retries failed read operations on working mirrors.
2083  *	2.	Updates the raid superblock when problems encounter.
2084  *	3.	Performs writes following reads for array synchronising.
2085  */
2086 
2087 static void fix_read_error(struct r1conf *conf, int read_disk,
2088 			   sector_t sect, int sectors)
2089 {
2090 	struct mddev *mddev = conf->mddev;
2091 	while(sectors) {
2092 		int s = sectors;
2093 		int d = read_disk;
2094 		int success = 0;
2095 		int start;
2096 		struct md_rdev *rdev;
2097 
2098 		if (s > (PAGE_SIZE>>9))
2099 			s = PAGE_SIZE >> 9;
2100 
2101 		do {
2102 			/* Note: no rcu protection needed here
2103 			 * as this is synchronous in the raid1d thread
2104 			 * which is the thread that might remove
2105 			 * a device.  If raid1d ever becomes multi-threaded....
2106 			 */
2107 			sector_t first_bad;
2108 			int bad_sectors;
2109 
2110 			rdev = conf->mirrors[d].rdev;
2111 			if (rdev &&
2112 			    (test_bit(In_sync, &rdev->flags) ||
2113 			     (!test_bit(Faulty, &rdev->flags) &&
2114 			      rdev->recovery_offset >= sect + s)) &&
2115 			    is_badblock(rdev, sect, s,
2116 					&first_bad, &bad_sectors) == 0 &&
2117 			    sync_page_io(rdev, sect, s<<9,
2118 					 conf->tmppage, READ, false))
2119 				success = 1;
2120 			else {
2121 				d++;
2122 				if (d == conf->raid_disks * 2)
2123 					d = 0;
2124 			}
2125 		} while (!success && d != read_disk);
2126 
2127 		if (!success) {
2128 			/* Cannot read from anywhere - mark it bad */
2129 			struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2130 			if (!rdev_set_badblocks(rdev, sect, s, 0))
2131 				md_error(mddev, rdev);
2132 			break;
2133 		}
2134 		/* write it back and re-read */
2135 		start = d;
2136 		while (d != read_disk) {
2137 			if (d==0)
2138 				d = conf->raid_disks * 2;
2139 			d--;
2140 			rdev = conf->mirrors[d].rdev;
2141 			if (rdev &&
2142 			    !test_bit(Faulty, &rdev->flags))
2143 				r1_sync_page_io(rdev, sect, s,
2144 						conf->tmppage, WRITE);
2145 		}
2146 		d = start;
2147 		while (d != read_disk) {
2148 			char b[BDEVNAME_SIZE];
2149 			if (d==0)
2150 				d = conf->raid_disks * 2;
2151 			d--;
2152 			rdev = conf->mirrors[d].rdev;
2153 			if (rdev &&
2154 			    !test_bit(Faulty, &rdev->flags)) {
2155 				if (r1_sync_page_io(rdev, sect, s,
2156 						    conf->tmppage, READ)) {
2157 					atomic_add(s, &rdev->corrected_errors);
2158 					printk(KERN_INFO
2159 					       "md/raid1:%s: read error corrected "
2160 					       "(%d sectors at %llu on %s)\n",
2161 					       mdname(mddev), s,
2162 					       (unsigned long long)(sect +
2163 					           rdev->data_offset),
2164 					       bdevname(rdev->bdev, b));
2165 				}
2166 			}
2167 		}
2168 		sectors -= s;
2169 		sect += s;
2170 	}
2171 }
2172 
2173 static int narrow_write_error(struct r1bio *r1_bio, int i)
2174 {
2175 	struct mddev *mddev = r1_bio->mddev;
2176 	struct r1conf *conf = mddev->private;
2177 	struct md_rdev *rdev = conf->mirrors[i].rdev;
2178 
2179 	/* bio has the data to be written to device 'i' where
2180 	 * we just recently had a write error.
2181 	 * We repeatedly clone the bio and trim down to one block,
2182 	 * then try the write.  Where the write fails we record
2183 	 * a bad block.
2184 	 * It is conceivable that the bio doesn't exactly align with
2185 	 * blocks.  We must handle this somehow.
2186 	 *
2187 	 * We currently own a reference on the rdev.
2188 	 */
2189 
2190 	int block_sectors;
2191 	sector_t sector;
2192 	int sectors;
2193 	int sect_to_write = r1_bio->sectors;
2194 	int ok = 1;
2195 
2196 	if (rdev->badblocks.shift < 0)
2197 		return 0;
2198 
2199 	block_sectors = 1 << rdev->badblocks.shift;
2200 	sector = r1_bio->sector;
2201 	sectors = ((sector + block_sectors)
2202 		   & ~(sector_t)(block_sectors - 1))
2203 		- sector;
2204 
2205 	while (sect_to_write) {
2206 		struct bio *wbio;
2207 		if (sectors > sect_to_write)
2208 			sectors = sect_to_write;
2209 		/* Write at 'sector' for 'sectors'*/
2210 
2211 		if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2212 			unsigned vcnt = r1_bio->behind_page_count;
2213 			struct bio_vec *vec = r1_bio->behind_bvecs;
2214 
2215 			while (!vec->bv_page) {
2216 				vec++;
2217 				vcnt--;
2218 			}
2219 
2220 			wbio = bio_alloc_mddev(GFP_NOIO, vcnt, mddev);
2221 			memcpy(wbio->bi_io_vec, vec, vcnt * sizeof(struct bio_vec));
2222 
2223 			wbio->bi_vcnt = vcnt;
2224 		} else {
2225 			wbio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2226 		}
2227 
2228 		wbio->bi_rw = WRITE;
2229 		wbio->bi_iter.bi_sector = r1_bio->sector;
2230 		wbio->bi_iter.bi_size = r1_bio->sectors << 9;
2231 
2232 		bio_trim(wbio, sector - r1_bio->sector, sectors);
2233 		wbio->bi_iter.bi_sector += rdev->data_offset;
2234 		wbio->bi_bdev = rdev->bdev;
2235 		if (submit_bio_wait(WRITE, wbio) == 0)
2236 			/* failure! */
2237 			ok = rdev_set_badblocks(rdev, sector,
2238 						sectors, 0)
2239 				&& ok;
2240 
2241 		bio_put(wbio);
2242 		sect_to_write -= sectors;
2243 		sector += sectors;
2244 		sectors = block_sectors;
2245 	}
2246 	return ok;
2247 }
2248 
2249 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2250 {
2251 	int m;
2252 	int s = r1_bio->sectors;
2253 	for (m = 0; m < conf->raid_disks * 2 ; m++) {
2254 		struct md_rdev *rdev = conf->mirrors[m].rdev;
2255 		struct bio *bio = r1_bio->bios[m];
2256 		if (bio->bi_end_io == NULL)
2257 			continue;
2258 		if (test_bit(BIO_UPTODATE, &bio->bi_flags) &&
2259 		    test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2260 			rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2261 		}
2262 		if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
2263 		    test_bit(R1BIO_WriteError, &r1_bio->state)) {
2264 			if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2265 				md_error(conf->mddev, rdev);
2266 		}
2267 	}
2268 	put_buf(r1_bio);
2269 	md_done_sync(conf->mddev, s, 1);
2270 }
2271 
2272 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2273 {
2274 	int m;
2275 	for (m = 0; m < conf->raid_disks * 2 ; m++)
2276 		if (r1_bio->bios[m] == IO_MADE_GOOD) {
2277 			struct md_rdev *rdev = conf->mirrors[m].rdev;
2278 			rdev_clear_badblocks(rdev,
2279 					     r1_bio->sector,
2280 					     r1_bio->sectors, 0);
2281 			rdev_dec_pending(rdev, conf->mddev);
2282 		} else if (r1_bio->bios[m] != NULL) {
2283 			/* This drive got a write error.  We need to
2284 			 * narrow down and record precise write
2285 			 * errors.
2286 			 */
2287 			if (!narrow_write_error(r1_bio, m)) {
2288 				md_error(conf->mddev,
2289 					 conf->mirrors[m].rdev);
2290 				/* an I/O failed, we can't clear the bitmap */
2291 				set_bit(R1BIO_Degraded, &r1_bio->state);
2292 			}
2293 			rdev_dec_pending(conf->mirrors[m].rdev,
2294 					 conf->mddev);
2295 		}
2296 	if (test_bit(R1BIO_WriteError, &r1_bio->state))
2297 		close_write(r1_bio);
2298 	raid_end_bio_io(r1_bio);
2299 }
2300 
2301 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2302 {
2303 	int disk;
2304 	int max_sectors;
2305 	struct mddev *mddev = conf->mddev;
2306 	struct bio *bio;
2307 	char b[BDEVNAME_SIZE];
2308 	struct md_rdev *rdev;
2309 
2310 	clear_bit(R1BIO_ReadError, &r1_bio->state);
2311 	/* we got a read error. Maybe the drive is bad.  Maybe just
2312 	 * the block and we can fix it.
2313 	 * We freeze all other IO, and try reading the block from
2314 	 * other devices.  When we find one, we re-write
2315 	 * and check it that fixes the read error.
2316 	 * This is all done synchronously while the array is
2317 	 * frozen
2318 	 */
2319 	if (mddev->ro == 0) {
2320 		freeze_array(conf, 1);
2321 		fix_read_error(conf, r1_bio->read_disk,
2322 			       r1_bio->sector, r1_bio->sectors);
2323 		unfreeze_array(conf);
2324 	} else
2325 		md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
2326 	rdev_dec_pending(conf->mirrors[r1_bio->read_disk].rdev, conf->mddev);
2327 
2328 	bio = r1_bio->bios[r1_bio->read_disk];
2329 	bdevname(bio->bi_bdev, b);
2330 read_more:
2331 	disk = read_balance(conf, r1_bio, &max_sectors);
2332 	if (disk == -1) {
2333 		printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O"
2334 		       " read error for block %llu\n",
2335 		       mdname(mddev), b, (unsigned long long)r1_bio->sector);
2336 		raid_end_bio_io(r1_bio);
2337 	} else {
2338 		const unsigned long do_sync
2339 			= r1_bio->master_bio->bi_rw & REQ_SYNC;
2340 		if (bio) {
2341 			r1_bio->bios[r1_bio->read_disk] =
2342 				mddev->ro ? IO_BLOCKED : NULL;
2343 			bio_put(bio);
2344 		}
2345 		r1_bio->read_disk = disk;
2346 		bio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2347 		bio_trim(bio, r1_bio->sector - bio->bi_iter.bi_sector,
2348 			 max_sectors);
2349 		r1_bio->bios[r1_bio->read_disk] = bio;
2350 		rdev = conf->mirrors[disk].rdev;
2351 		printk_ratelimited(KERN_ERR
2352 				   "md/raid1:%s: redirecting sector %llu"
2353 				   " to other mirror: %s\n",
2354 				   mdname(mddev),
2355 				   (unsigned long long)r1_bio->sector,
2356 				   bdevname(rdev->bdev, b));
2357 		bio->bi_iter.bi_sector = r1_bio->sector + rdev->data_offset;
2358 		bio->bi_bdev = rdev->bdev;
2359 		bio->bi_end_io = raid1_end_read_request;
2360 		bio->bi_rw = READ | do_sync;
2361 		bio->bi_private = r1_bio;
2362 		if (max_sectors < r1_bio->sectors) {
2363 			/* Drat - have to split this up more */
2364 			struct bio *mbio = r1_bio->master_bio;
2365 			int sectors_handled = (r1_bio->sector + max_sectors
2366 					       - mbio->bi_iter.bi_sector);
2367 			r1_bio->sectors = max_sectors;
2368 			spin_lock_irq(&conf->device_lock);
2369 			if (mbio->bi_phys_segments == 0)
2370 				mbio->bi_phys_segments = 2;
2371 			else
2372 				mbio->bi_phys_segments++;
2373 			spin_unlock_irq(&conf->device_lock);
2374 			generic_make_request(bio);
2375 			bio = NULL;
2376 
2377 			r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
2378 
2379 			r1_bio->master_bio = mbio;
2380 			r1_bio->sectors = bio_sectors(mbio) - sectors_handled;
2381 			r1_bio->state = 0;
2382 			set_bit(R1BIO_ReadError, &r1_bio->state);
2383 			r1_bio->mddev = mddev;
2384 			r1_bio->sector = mbio->bi_iter.bi_sector +
2385 				sectors_handled;
2386 
2387 			goto read_more;
2388 		} else
2389 			generic_make_request(bio);
2390 	}
2391 }
2392 
2393 static void raid1d(struct md_thread *thread)
2394 {
2395 	struct mddev *mddev = thread->mddev;
2396 	struct r1bio *r1_bio;
2397 	unsigned long flags;
2398 	struct r1conf *conf = mddev->private;
2399 	struct list_head *head = &conf->retry_list;
2400 	struct blk_plug plug;
2401 
2402 	md_check_recovery(mddev);
2403 
2404 	blk_start_plug(&plug);
2405 	for (;;) {
2406 
2407 		flush_pending_writes(conf);
2408 
2409 		spin_lock_irqsave(&conf->device_lock, flags);
2410 		if (list_empty(head)) {
2411 			spin_unlock_irqrestore(&conf->device_lock, flags);
2412 			break;
2413 		}
2414 		r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2415 		list_del(head->prev);
2416 		conf->nr_queued--;
2417 		spin_unlock_irqrestore(&conf->device_lock, flags);
2418 
2419 		mddev = r1_bio->mddev;
2420 		conf = mddev->private;
2421 		if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2422 			if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2423 			    test_bit(R1BIO_WriteError, &r1_bio->state))
2424 				handle_sync_write_finished(conf, r1_bio);
2425 			else
2426 				sync_request_write(mddev, r1_bio);
2427 		} else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2428 			   test_bit(R1BIO_WriteError, &r1_bio->state))
2429 			handle_write_finished(conf, r1_bio);
2430 		else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2431 			handle_read_error(conf, r1_bio);
2432 		else
2433 			/* just a partial read to be scheduled from separate
2434 			 * context
2435 			 */
2436 			generic_make_request(r1_bio->bios[r1_bio->read_disk]);
2437 
2438 		cond_resched();
2439 		if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2440 			md_check_recovery(mddev);
2441 	}
2442 	blk_finish_plug(&plug);
2443 }
2444 
2445 static int init_resync(struct r1conf *conf)
2446 {
2447 	int buffs;
2448 
2449 	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2450 	BUG_ON(conf->r1buf_pool);
2451 	conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2452 					  conf->poolinfo);
2453 	if (!conf->r1buf_pool)
2454 		return -ENOMEM;
2455 	conf->next_resync = 0;
2456 	return 0;
2457 }
2458 
2459 /*
2460  * perform a "sync" on one "block"
2461  *
2462  * We need to make sure that no normal I/O request - particularly write
2463  * requests - conflict with active sync requests.
2464  *
2465  * This is achieved by tracking pending requests and a 'barrier' concept
2466  * that can be installed to exclude normal IO requests.
2467  */
2468 
2469 static sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
2470 {
2471 	struct r1conf *conf = mddev->private;
2472 	struct r1bio *r1_bio;
2473 	struct bio *bio;
2474 	sector_t max_sector, nr_sectors;
2475 	int disk = -1;
2476 	int i;
2477 	int wonly = -1;
2478 	int write_targets = 0, read_targets = 0;
2479 	sector_t sync_blocks;
2480 	int still_degraded = 0;
2481 	int good_sectors = RESYNC_SECTORS;
2482 	int min_bad = 0; /* number of sectors that are bad in all devices */
2483 
2484 	if (!conf->r1buf_pool)
2485 		if (init_resync(conf))
2486 			return 0;
2487 
2488 	max_sector = mddev->dev_sectors;
2489 	if (sector_nr >= max_sector) {
2490 		/* If we aborted, we need to abort the
2491 		 * sync on the 'current' bitmap chunk (there will
2492 		 * only be one in raid1 resync.
2493 		 * We can find the current addess in mddev->curr_resync
2494 		 */
2495 		if (mddev->curr_resync < max_sector) /* aborted */
2496 			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2497 						&sync_blocks, 1);
2498 		else /* completed sync */
2499 			conf->fullsync = 0;
2500 
2501 		bitmap_close_sync(mddev->bitmap);
2502 		close_sync(conf);
2503 		return 0;
2504 	}
2505 
2506 	if (mddev->bitmap == NULL &&
2507 	    mddev->recovery_cp == MaxSector &&
2508 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2509 	    conf->fullsync == 0) {
2510 		*skipped = 1;
2511 		return max_sector - sector_nr;
2512 	}
2513 	/* before building a request, check if we can skip these blocks..
2514 	 * This call the bitmap_start_sync doesn't actually record anything
2515 	 */
2516 	if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2517 	    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2518 		/* We can skip this block, and probably several more */
2519 		*skipped = 1;
2520 		return sync_blocks;
2521 	}
2522 	/*
2523 	 * If there is non-resync activity waiting for a turn,
2524 	 * and resync is going fast enough,
2525 	 * then let it though before starting on this new sync request.
2526 	 */
2527 	if (!go_faster && conf->nr_waiting)
2528 		msleep_interruptible(1000);
2529 
2530 	bitmap_cond_end_sync(mddev->bitmap, sector_nr);
2531 	r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
2532 
2533 	raise_barrier(conf, sector_nr);
2534 
2535 	rcu_read_lock();
2536 	/*
2537 	 * If we get a correctably read error during resync or recovery,
2538 	 * we might want to read from a different device.  So we
2539 	 * flag all drives that could conceivably be read from for READ,
2540 	 * and any others (which will be non-In_sync devices) for WRITE.
2541 	 * If a read fails, we try reading from something else for which READ
2542 	 * is OK.
2543 	 */
2544 
2545 	r1_bio->mddev = mddev;
2546 	r1_bio->sector = sector_nr;
2547 	r1_bio->state = 0;
2548 	set_bit(R1BIO_IsSync, &r1_bio->state);
2549 
2550 	for (i = 0; i < conf->raid_disks * 2; i++) {
2551 		struct md_rdev *rdev;
2552 		bio = r1_bio->bios[i];
2553 		bio_reset(bio);
2554 
2555 		rdev = rcu_dereference(conf->mirrors[i].rdev);
2556 		if (rdev == NULL ||
2557 		    test_bit(Faulty, &rdev->flags)) {
2558 			if (i < conf->raid_disks)
2559 				still_degraded = 1;
2560 		} else if (!test_bit(In_sync, &rdev->flags)) {
2561 			bio->bi_rw = WRITE;
2562 			bio->bi_end_io = end_sync_write;
2563 			write_targets ++;
2564 		} else {
2565 			/* may need to read from here */
2566 			sector_t first_bad = MaxSector;
2567 			int bad_sectors;
2568 
2569 			if (is_badblock(rdev, sector_nr, good_sectors,
2570 					&first_bad, &bad_sectors)) {
2571 				if (first_bad > sector_nr)
2572 					good_sectors = first_bad - sector_nr;
2573 				else {
2574 					bad_sectors -= (sector_nr - first_bad);
2575 					if (min_bad == 0 ||
2576 					    min_bad > bad_sectors)
2577 						min_bad = bad_sectors;
2578 				}
2579 			}
2580 			if (sector_nr < first_bad) {
2581 				if (test_bit(WriteMostly, &rdev->flags)) {
2582 					if (wonly < 0)
2583 						wonly = i;
2584 				} else {
2585 					if (disk < 0)
2586 						disk = i;
2587 				}
2588 				bio->bi_rw = READ;
2589 				bio->bi_end_io = end_sync_read;
2590 				read_targets++;
2591 			} else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2592 				test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2593 				!test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2594 				/*
2595 				 * The device is suitable for reading (InSync),
2596 				 * but has bad block(s) here. Let's try to correct them,
2597 				 * if we are doing resync or repair. Otherwise, leave
2598 				 * this device alone for this sync request.
2599 				 */
2600 				bio->bi_rw = WRITE;
2601 				bio->bi_end_io = end_sync_write;
2602 				write_targets++;
2603 			}
2604 		}
2605 		if (bio->bi_end_io) {
2606 			atomic_inc(&rdev->nr_pending);
2607 			bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
2608 			bio->bi_bdev = rdev->bdev;
2609 			bio->bi_private = r1_bio;
2610 		}
2611 	}
2612 	rcu_read_unlock();
2613 	if (disk < 0)
2614 		disk = wonly;
2615 	r1_bio->read_disk = disk;
2616 
2617 	if (read_targets == 0 && min_bad > 0) {
2618 		/* These sectors are bad on all InSync devices, so we
2619 		 * need to mark them bad on all write targets
2620 		 */
2621 		int ok = 1;
2622 		for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2623 			if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2624 				struct md_rdev *rdev = conf->mirrors[i].rdev;
2625 				ok = rdev_set_badblocks(rdev, sector_nr,
2626 							min_bad, 0
2627 					) && ok;
2628 			}
2629 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
2630 		*skipped = 1;
2631 		put_buf(r1_bio);
2632 
2633 		if (!ok) {
2634 			/* Cannot record the badblocks, so need to
2635 			 * abort the resync.
2636 			 * If there are multiple read targets, could just
2637 			 * fail the really bad ones ???
2638 			 */
2639 			conf->recovery_disabled = mddev->recovery_disabled;
2640 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2641 			return 0;
2642 		} else
2643 			return min_bad;
2644 
2645 	}
2646 	if (min_bad > 0 && min_bad < good_sectors) {
2647 		/* only resync enough to reach the next bad->good
2648 		 * transition */
2649 		good_sectors = min_bad;
2650 	}
2651 
2652 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2653 		/* extra read targets are also write targets */
2654 		write_targets += read_targets-1;
2655 
2656 	if (write_targets == 0 || read_targets == 0) {
2657 		/* There is nowhere to write, so all non-sync
2658 		 * drives must be failed - so we are finished
2659 		 */
2660 		sector_t rv;
2661 		if (min_bad > 0)
2662 			max_sector = sector_nr + min_bad;
2663 		rv = max_sector - sector_nr;
2664 		*skipped = 1;
2665 		put_buf(r1_bio);
2666 		return rv;
2667 	}
2668 
2669 	if (max_sector > mddev->resync_max)
2670 		max_sector = mddev->resync_max; /* Don't do IO beyond here */
2671 	if (max_sector > sector_nr + good_sectors)
2672 		max_sector = sector_nr + good_sectors;
2673 	nr_sectors = 0;
2674 	sync_blocks = 0;
2675 	do {
2676 		struct page *page;
2677 		int len = PAGE_SIZE;
2678 		if (sector_nr + (len>>9) > max_sector)
2679 			len = (max_sector - sector_nr) << 9;
2680 		if (len == 0)
2681 			break;
2682 		if (sync_blocks == 0) {
2683 			if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2684 					       &sync_blocks, still_degraded) &&
2685 			    !conf->fullsync &&
2686 			    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2687 				break;
2688 			BUG_ON(sync_blocks < (PAGE_SIZE>>9));
2689 			if ((len >> 9) > sync_blocks)
2690 				len = sync_blocks<<9;
2691 		}
2692 
2693 		for (i = 0 ; i < conf->raid_disks * 2; i++) {
2694 			bio = r1_bio->bios[i];
2695 			if (bio->bi_end_io) {
2696 				page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
2697 				if (bio_add_page(bio, page, len, 0) == 0) {
2698 					/* stop here */
2699 					bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
2700 					while (i > 0) {
2701 						i--;
2702 						bio = r1_bio->bios[i];
2703 						if (bio->bi_end_io==NULL)
2704 							continue;
2705 						/* remove last page from this bio */
2706 						bio->bi_vcnt--;
2707 						bio->bi_iter.bi_size -= len;
2708 						__clear_bit(BIO_SEG_VALID, &bio->bi_flags);
2709 					}
2710 					goto bio_full;
2711 				}
2712 			}
2713 		}
2714 		nr_sectors += len>>9;
2715 		sector_nr += len>>9;
2716 		sync_blocks -= (len>>9);
2717 	} while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
2718  bio_full:
2719 	r1_bio->sectors = nr_sectors;
2720 
2721 	/* For a user-requested sync, we read all readable devices and do a
2722 	 * compare
2723 	 */
2724 	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2725 		atomic_set(&r1_bio->remaining, read_targets);
2726 		for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2727 			bio = r1_bio->bios[i];
2728 			if (bio->bi_end_io == end_sync_read) {
2729 				read_targets--;
2730 				md_sync_acct(bio->bi_bdev, nr_sectors);
2731 				generic_make_request(bio);
2732 			}
2733 		}
2734 	} else {
2735 		atomic_set(&r1_bio->remaining, 1);
2736 		bio = r1_bio->bios[r1_bio->read_disk];
2737 		md_sync_acct(bio->bi_bdev, nr_sectors);
2738 		generic_make_request(bio);
2739 
2740 	}
2741 	return nr_sectors;
2742 }
2743 
2744 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2745 {
2746 	if (sectors)
2747 		return sectors;
2748 
2749 	return mddev->dev_sectors;
2750 }
2751 
2752 static struct r1conf *setup_conf(struct mddev *mddev)
2753 {
2754 	struct r1conf *conf;
2755 	int i;
2756 	struct raid1_info *disk;
2757 	struct md_rdev *rdev;
2758 	int err = -ENOMEM;
2759 
2760 	conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2761 	if (!conf)
2762 		goto abort;
2763 
2764 	conf->mirrors = kzalloc(sizeof(struct raid1_info)
2765 				* mddev->raid_disks * 2,
2766 				 GFP_KERNEL);
2767 	if (!conf->mirrors)
2768 		goto abort;
2769 
2770 	conf->tmppage = alloc_page(GFP_KERNEL);
2771 	if (!conf->tmppage)
2772 		goto abort;
2773 
2774 	conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
2775 	if (!conf->poolinfo)
2776 		goto abort;
2777 	conf->poolinfo->raid_disks = mddev->raid_disks * 2;
2778 	conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2779 					  r1bio_pool_free,
2780 					  conf->poolinfo);
2781 	if (!conf->r1bio_pool)
2782 		goto abort;
2783 
2784 	conf->poolinfo->mddev = mddev;
2785 
2786 	err = -EINVAL;
2787 	spin_lock_init(&conf->device_lock);
2788 	rdev_for_each(rdev, mddev) {
2789 		struct request_queue *q;
2790 		int disk_idx = rdev->raid_disk;
2791 		if (disk_idx >= mddev->raid_disks
2792 		    || disk_idx < 0)
2793 			continue;
2794 		if (test_bit(Replacement, &rdev->flags))
2795 			disk = conf->mirrors + mddev->raid_disks + disk_idx;
2796 		else
2797 			disk = conf->mirrors + disk_idx;
2798 
2799 		if (disk->rdev)
2800 			goto abort;
2801 		disk->rdev = rdev;
2802 		q = bdev_get_queue(rdev->bdev);
2803 		if (q->merge_bvec_fn)
2804 			mddev->merge_check_needed = 1;
2805 
2806 		disk->head_position = 0;
2807 		disk->seq_start = MaxSector;
2808 	}
2809 	conf->raid_disks = mddev->raid_disks;
2810 	conf->mddev = mddev;
2811 	INIT_LIST_HEAD(&conf->retry_list);
2812 
2813 	spin_lock_init(&conf->resync_lock);
2814 	init_waitqueue_head(&conf->wait_barrier);
2815 
2816 	bio_list_init(&conf->pending_bio_list);
2817 	conf->pending_count = 0;
2818 	conf->recovery_disabled = mddev->recovery_disabled - 1;
2819 
2820 	conf->start_next_window = MaxSector;
2821 	conf->current_window_requests = conf->next_window_requests = 0;
2822 
2823 	err = -EIO;
2824 	for (i = 0; i < conf->raid_disks * 2; i++) {
2825 
2826 		disk = conf->mirrors + i;
2827 
2828 		if (i < conf->raid_disks &&
2829 		    disk[conf->raid_disks].rdev) {
2830 			/* This slot has a replacement. */
2831 			if (!disk->rdev) {
2832 				/* No original, just make the replacement
2833 				 * a recovering spare
2834 				 */
2835 				disk->rdev =
2836 					disk[conf->raid_disks].rdev;
2837 				disk[conf->raid_disks].rdev = NULL;
2838 			} else if (!test_bit(In_sync, &disk->rdev->flags))
2839 				/* Original is not in_sync - bad */
2840 				goto abort;
2841 		}
2842 
2843 		if (!disk->rdev ||
2844 		    !test_bit(In_sync, &disk->rdev->flags)) {
2845 			disk->head_position = 0;
2846 			if (disk->rdev &&
2847 			    (disk->rdev->saved_raid_disk < 0))
2848 				conf->fullsync = 1;
2849 		}
2850 	}
2851 
2852 	err = -ENOMEM;
2853 	conf->thread = md_register_thread(raid1d, mddev, "raid1");
2854 	if (!conf->thread) {
2855 		printk(KERN_ERR
2856 		       "md/raid1:%s: couldn't allocate thread\n",
2857 		       mdname(mddev));
2858 		goto abort;
2859 	}
2860 
2861 	return conf;
2862 
2863  abort:
2864 	if (conf) {
2865 		if (conf->r1bio_pool)
2866 			mempool_destroy(conf->r1bio_pool);
2867 		kfree(conf->mirrors);
2868 		safe_put_page(conf->tmppage);
2869 		kfree(conf->poolinfo);
2870 		kfree(conf);
2871 	}
2872 	return ERR_PTR(err);
2873 }
2874 
2875 static int stop(struct mddev *mddev);
2876 static int run(struct mddev *mddev)
2877 {
2878 	struct r1conf *conf;
2879 	int i;
2880 	struct md_rdev *rdev;
2881 	int ret;
2882 	bool discard_supported = false;
2883 
2884 	if (mddev->level != 1) {
2885 		printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n",
2886 		       mdname(mddev), mddev->level);
2887 		return -EIO;
2888 	}
2889 	if (mddev->reshape_position != MaxSector) {
2890 		printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n",
2891 		       mdname(mddev));
2892 		return -EIO;
2893 	}
2894 	/*
2895 	 * copy the already verified devices into our private RAID1
2896 	 * bookkeeping area. [whatever we allocate in run(),
2897 	 * should be freed in stop()]
2898 	 */
2899 	if (mddev->private == NULL)
2900 		conf = setup_conf(mddev);
2901 	else
2902 		conf = mddev->private;
2903 
2904 	if (IS_ERR(conf))
2905 		return PTR_ERR(conf);
2906 
2907 	if (mddev->queue)
2908 		blk_queue_max_write_same_sectors(mddev->queue, 0);
2909 
2910 	rdev_for_each(rdev, mddev) {
2911 		if (!mddev->gendisk)
2912 			continue;
2913 		disk_stack_limits(mddev->gendisk, rdev->bdev,
2914 				  rdev->data_offset << 9);
2915 		if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
2916 			discard_supported = true;
2917 	}
2918 
2919 	mddev->degraded = 0;
2920 	for (i=0; i < conf->raid_disks; i++)
2921 		if (conf->mirrors[i].rdev == NULL ||
2922 		    !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
2923 		    test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2924 			mddev->degraded++;
2925 
2926 	if (conf->raid_disks - mddev->degraded == 1)
2927 		mddev->recovery_cp = MaxSector;
2928 
2929 	if (mddev->recovery_cp != MaxSector)
2930 		printk(KERN_NOTICE "md/raid1:%s: not clean"
2931 		       " -- starting background reconstruction\n",
2932 		       mdname(mddev));
2933 	printk(KERN_INFO
2934 		"md/raid1:%s: active with %d out of %d mirrors\n",
2935 		mdname(mddev), mddev->raid_disks - mddev->degraded,
2936 		mddev->raid_disks);
2937 
2938 	/*
2939 	 * Ok, everything is just fine now
2940 	 */
2941 	mddev->thread = conf->thread;
2942 	conf->thread = NULL;
2943 	mddev->private = conf;
2944 
2945 	md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
2946 
2947 	if (mddev->queue) {
2948 		if (discard_supported)
2949 			queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
2950 						mddev->queue);
2951 		else
2952 			queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
2953 						  mddev->queue);
2954 	}
2955 
2956 	ret =  md_integrity_register(mddev);
2957 	if (ret)
2958 		stop(mddev);
2959 	return ret;
2960 }
2961 
2962 static int stop(struct mddev *mddev)
2963 {
2964 	struct r1conf *conf = mddev->private;
2965 	struct bitmap *bitmap = mddev->bitmap;
2966 
2967 	/* wait for behind writes to complete */
2968 	if (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
2969 		printk(KERN_INFO "md/raid1:%s: behind writes in progress - waiting to stop.\n",
2970 		       mdname(mddev));
2971 		/* need to kick something here to make sure I/O goes? */
2972 		wait_event(bitmap->behind_wait,
2973 			   atomic_read(&bitmap->behind_writes) == 0);
2974 	}
2975 
2976 	freeze_array(conf, 0);
2977 	unfreeze_array(conf);
2978 
2979 	md_unregister_thread(&mddev->thread);
2980 	if (conf->r1bio_pool)
2981 		mempool_destroy(conf->r1bio_pool);
2982 	kfree(conf->mirrors);
2983 	safe_put_page(conf->tmppage);
2984 	kfree(conf->poolinfo);
2985 	kfree(conf);
2986 	mddev->private = NULL;
2987 	return 0;
2988 }
2989 
2990 static int raid1_resize(struct mddev *mddev, sector_t sectors)
2991 {
2992 	/* no resync is happening, and there is enough space
2993 	 * on all devices, so we can resize.
2994 	 * We need to make sure resync covers any new space.
2995 	 * If the array is shrinking we should possibly wait until
2996 	 * any io in the removed space completes, but it hardly seems
2997 	 * worth it.
2998 	 */
2999 	sector_t newsize = raid1_size(mddev, sectors, 0);
3000 	if (mddev->external_size &&
3001 	    mddev->array_sectors > newsize)
3002 		return -EINVAL;
3003 	if (mddev->bitmap) {
3004 		int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0);
3005 		if (ret)
3006 			return ret;
3007 	}
3008 	md_set_array_sectors(mddev, newsize);
3009 	set_capacity(mddev->gendisk, mddev->array_sectors);
3010 	revalidate_disk(mddev->gendisk);
3011 	if (sectors > mddev->dev_sectors &&
3012 	    mddev->recovery_cp > mddev->dev_sectors) {
3013 		mddev->recovery_cp = mddev->dev_sectors;
3014 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3015 	}
3016 	mddev->dev_sectors = sectors;
3017 	mddev->resync_max_sectors = sectors;
3018 	return 0;
3019 }
3020 
3021 static int raid1_reshape(struct mddev *mddev)
3022 {
3023 	/* We need to:
3024 	 * 1/ resize the r1bio_pool
3025 	 * 2/ resize conf->mirrors
3026 	 *
3027 	 * We allocate a new r1bio_pool if we can.
3028 	 * Then raise a device barrier and wait until all IO stops.
3029 	 * Then resize conf->mirrors and swap in the new r1bio pool.
3030 	 *
3031 	 * At the same time, we "pack" the devices so that all the missing
3032 	 * devices have the higher raid_disk numbers.
3033 	 */
3034 	mempool_t *newpool, *oldpool;
3035 	struct pool_info *newpoolinfo;
3036 	struct raid1_info *newmirrors;
3037 	struct r1conf *conf = mddev->private;
3038 	int cnt, raid_disks;
3039 	unsigned long flags;
3040 	int d, d2, err;
3041 
3042 	/* Cannot change chunk_size, layout, or level */
3043 	if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3044 	    mddev->layout != mddev->new_layout ||
3045 	    mddev->level != mddev->new_level) {
3046 		mddev->new_chunk_sectors = mddev->chunk_sectors;
3047 		mddev->new_layout = mddev->layout;
3048 		mddev->new_level = mddev->level;
3049 		return -EINVAL;
3050 	}
3051 
3052 	err = md_allow_write(mddev);
3053 	if (err)
3054 		return err;
3055 
3056 	raid_disks = mddev->raid_disks + mddev->delta_disks;
3057 
3058 	if (raid_disks < conf->raid_disks) {
3059 		cnt=0;
3060 		for (d= 0; d < conf->raid_disks; d++)
3061 			if (conf->mirrors[d].rdev)
3062 				cnt++;
3063 		if (cnt > raid_disks)
3064 			return -EBUSY;
3065 	}
3066 
3067 	newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3068 	if (!newpoolinfo)
3069 		return -ENOMEM;
3070 	newpoolinfo->mddev = mddev;
3071 	newpoolinfo->raid_disks = raid_disks * 2;
3072 
3073 	newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
3074 				 r1bio_pool_free, newpoolinfo);
3075 	if (!newpool) {
3076 		kfree(newpoolinfo);
3077 		return -ENOMEM;
3078 	}
3079 	newmirrors = kzalloc(sizeof(struct raid1_info) * raid_disks * 2,
3080 			     GFP_KERNEL);
3081 	if (!newmirrors) {
3082 		kfree(newpoolinfo);
3083 		mempool_destroy(newpool);
3084 		return -ENOMEM;
3085 	}
3086 
3087 	freeze_array(conf, 0);
3088 
3089 	/* ok, everything is stopped */
3090 	oldpool = conf->r1bio_pool;
3091 	conf->r1bio_pool = newpool;
3092 
3093 	for (d = d2 = 0; d < conf->raid_disks; d++) {
3094 		struct md_rdev *rdev = conf->mirrors[d].rdev;
3095 		if (rdev && rdev->raid_disk != d2) {
3096 			sysfs_unlink_rdev(mddev, rdev);
3097 			rdev->raid_disk = d2;
3098 			sysfs_unlink_rdev(mddev, rdev);
3099 			if (sysfs_link_rdev(mddev, rdev))
3100 				printk(KERN_WARNING
3101 				       "md/raid1:%s: cannot register rd%d\n",
3102 				       mdname(mddev), rdev->raid_disk);
3103 		}
3104 		if (rdev)
3105 			newmirrors[d2++].rdev = rdev;
3106 	}
3107 	kfree(conf->mirrors);
3108 	conf->mirrors = newmirrors;
3109 	kfree(conf->poolinfo);
3110 	conf->poolinfo = newpoolinfo;
3111 
3112 	spin_lock_irqsave(&conf->device_lock, flags);
3113 	mddev->degraded += (raid_disks - conf->raid_disks);
3114 	spin_unlock_irqrestore(&conf->device_lock, flags);
3115 	conf->raid_disks = mddev->raid_disks = raid_disks;
3116 	mddev->delta_disks = 0;
3117 
3118 	unfreeze_array(conf);
3119 
3120 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3121 	md_wakeup_thread(mddev->thread);
3122 
3123 	mempool_destroy(oldpool);
3124 	return 0;
3125 }
3126 
3127 static void raid1_quiesce(struct mddev *mddev, int state)
3128 {
3129 	struct r1conf *conf = mddev->private;
3130 
3131 	switch(state) {
3132 	case 2: /* wake for suspend */
3133 		wake_up(&conf->wait_barrier);
3134 		break;
3135 	case 1:
3136 		freeze_array(conf, 0);
3137 		break;
3138 	case 0:
3139 		unfreeze_array(conf);
3140 		break;
3141 	}
3142 }
3143 
3144 static void *raid1_takeover(struct mddev *mddev)
3145 {
3146 	/* raid1 can take over:
3147 	 *  raid5 with 2 devices, any layout or chunk size
3148 	 */
3149 	if (mddev->level == 5 && mddev->raid_disks == 2) {
3150 		struct r1conf *conf;
3151 		mddev->new_level = 1;
3152 		mddev->new_layout = 0;
3153 		mddev->new_chunk_sectors = 0;
3154 		conf = setup_conf(mddev);
3155 		if (!IS_ERR(conf))
3156 			/* Array must appear to be quiesced */
3157 			conf->array_frozen = 1;
3158 		return conf;
3159 	}
3160 	return ERR_PTR(-EINVAL);
3161 }
3162 
3163 static struct md_personality raid1_personality =
3164 {
3165 	.name		= "raid1",
3166 	.level		= 1,
3167 	.owner		= THIS_MODULE,
3168 	.make_request	= make_request,
3169 	.run		= run,
3170 	.stop		= stop,
3171 	.status		= status,
3172 	.error_handler	= error,
3173 	.hot_add_disk	= raid1_add_disk,
3174 	.hot_remove_disk= raid1_remove_disk,
3175 	.spare_active	= raid1_spare_active,
3176 	.sync_request	= sync_request,
3177 	.resize		= raid1_resize,
3178 	.size		= raid1_size,
3179 	.check_reshape	= raid1_reshape,
3180 	.quiesce	= raid1_quiesce,
3181 	.takeover	= raid1_takeover,
3182 	.congested	= raid1_congested,
3183 	.mergeable_bvec	= raid1_mergeable_bvec,
3184 };
3185 
3186 static int __init raid_init(void)
3187 {
3188 	return register_md_personality(&raid1_personality);
3189 }
3190 
3191 static void raid_exit(void)
3192 {
3193 	unregister_md_personality(&raid1_personality);
3194 }
3195 
3196 module_init(raid_init);
3197 module_exit(raid_exit);
3198 MODULE_LICENSE("GPL");
3199 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3200 MODULE_ALIAS("md-personality-3"); /* RAID1 */
3201 MODULE_ALIAS("md-raid1");
3202 MODULE_ALIAS("md-level-1");
3203 
3204 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
3205