xref: /openbmc/linux/drivers/md/raid1.c (revision 643d1f7f)
1 /*
2  * raid1.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5  *
6  * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7  *
8  * RAID-1 management functions.
9  *
10  * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11  *
12  * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
13  * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14  *
15  * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16  * bitmapped intelligence in resync:
17  *
18  *      - bitmap marked during normal i/o
19  *      - bitmap used to skip nondirty blocks during sync
20  *
21  * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22  * - persistent bitmap code
23  *
24  * This program is free software; you can redistribute it and/or modify
25  * it under the terms of the GNU General Public License as published by
26  * the Free Software Foundation; either version 2, or (at your option)
27  * any later version.
28  *
29  * You should have received a copy of the GNU General Public License
30  * (for example /usr/src/linux/COPYING); if not, write to the Free
31  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32  */
33 
34 #include "dm-bio-list.h"
35 #include <linux/raid/raid1.h>
36 #include <linux/raid/bitmap.h>
37 
38 #define DEBUG 0
39 #if DEBUG
40 #define PRINTK(x...) printk(x)
41 #else
42 #define PRINTK(x...)
43 #endif
44 
45 /*
46  * Number of guaranteed r1bios in case of extreme VM load:
47  */
48 #define	NR_RAID1_BIOS 256
49 
50 
51 static void unplug_slaves(mddev_t *mddev);
52 
53 static void allow_barrier(conf_t *conf);
54 static void lower_barrier(conf_t *conf);
55 
56 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
57 {
58 	struct pool_info *pi = data;
59 	r1bio_t *r1_bio;
60 	int size = offsetof(r1bio_t, bios[pi->raid_disks]);
61 
62 	/* allocate a r1bio with room for raid_disks entries in the bios array */
63 	r1_bio = kzalloc(size, gfp_flags);
64 	if (!r1_bio)
65 		unplug_slaves(pi->mddev);
66 
67 	return r1_bio;
68 }
69 
70 static void r1bio_pool_free(void *r1_bio, void *data)
71 {
72 	kfree(r1_bio);
73 }
74 
75 #define RESYNC_BLOCK_SIZE (64*1024)
76 //#define RESYNC_BLOCK_SIZE PAGE_SIZE
77 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
78 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
79 #define RESYNC_WINDOW (2048*1024)
80 
81 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
82 {
83 	struct pool_info *pi = data;
84 	struct page *page;
85 	r1bio_t *r1_bio;
86 	struct bio *bio;
87 	int i, j;
88 
89 	r1_bio = r1bio_pool_alloc(gfp_flags, pi);
90 	if (!r1_bio) {
91 		unplug_slaves(pi->mddev);
92 		return NULL;
93 	}
94 
95 	/*
96 	 * Allocate bios : 1 for reading, n-1 for writing
97 	 */
98 	for (j = pi->raid_disks ; j-- ; ) {
99 		bio = bio_alloc(gfp_flags, RESYNC_PAGES);
100 		if (!bio)
101 			goto out_free_bio;
102 		r1_bio->bios[j] = bio;
103 	}
104 	/*
105 	 * Allocate RESYNC_PAGES data pages and attach them to
106 	 * the first bio.
107 	 * If this is a user-requested check/repair, allocate
108 	 * RESYNC_PAGES for each bio.
109 	 */
110 	if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
111 		j = pi->raid_disks;
112 	else
113 		j = 1;
114 	while(j--) {
115 		bio = r1_bio->bios[j];
116 		for (i = 0; i < RESYNC_PAGES; i++) {
117 			page = alloc_page(gfp_flags);
118 			if (unlikely(!page))
119 				goto out_free_pages;
120 
121 			bio->bi_io_vec[i].bv_page = page;
122 		}
123 	}
124 	/* If not user-requests, copy the page pointers to all bios */
125 	if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
126 		for (i=0; i<RESYNC_PAGES ; i++)
127 			for (j=1; j<pi->raid_disks; j++)
128 				r1_bio->bios[j]->bi_io_vec[i].bv_page =
129 					r1_bio->bios[0]->bi_io_vec[i].bv_page;
130 	}
131 
132 	r1_bio->master_bio = NULL;
133 
134 	return r1_bio;
135 
136 out_free_pages:
137 	for (i=0; i < RESYNC_PAGES ; i++)
138 		for (j=0 ; j < pi->raid_disks; j++)
139 			safe_put_page(r1_bio->bios[j]->bi_io_vec[i].bv_page);
140 	j = -1;
141 out_free_bio:
142 	while ( ++j < pi->raid_disks )
143 		bio_put(r1_bio->bios[j]);
144 	r1bio_pool_free(r1_bio, data);
145 	return NULL;
146 }
147 
148 static void r1buf_pool_free(void *__r1_bio, void *data)
149 {
150 	struct pool_info *pi = data;
151 	int i,j;
152 	r1bio_t *r1bio = __r1_bio;
153 
154 	for (i = 0; i < RESYNC_PAGES; i++)
155 		for (j = pi->raid_disks; j-- ;) {
156 			if (j == 0 ||
157 			    r1bio->bios[j]->bi_io_vec[i].bv_page !=
158 			    r1bio->bios[0]->bi_io_vec[i].bv_page)
159 				safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
160 		}
161 	for (i=0 ; i < pi->raid_disks; i++)
162 		bio_put(r1bio->bios[i]);
163 
164 	r1bio_pool_free(r1bio, data);
165 }
166 
167 static void put_all_bios(conf_t *conf, r1bio_t *r1_bio)
168 {
169 	int i;
170 
171 	for (i = 0; i < conf->raid_disks; i++) {
172 		struct bio **bio = r1_bio->bios + i;
173 		if (*bio && *bio != IO_BLOCKED)
174 			bio_put(*bio);
175 		*bio = NULL;
176 	}
177 }
178 
179 static void free_r1bio(r1bio_t *r1_bio)
180 {
181 	conf_t *conf = mddev_to_conf(r1_bio->mddev);
182 
183 	/*
184 	 * Wake up any possible resync thread that waits for the device
185 	 * to go idle.
186 	 */
187 	allow_barrier(conf);
188 
189 	put_all_bios(conf, r1_bio);
190 	mempool_free(r1_bio, conf->r1bio_pool);
191 }
192 
193 static void put_buf(r1bio_t *r1_bio)
194 {
195 	conf_t *conf = mddev_to_conf(r1_bio->mddev);
196 	int i;
197 
198 	for (i=0; i<conf->raid_disks; i++) {
199 		struct bio *bio = r1_bio->bios[i];
200 		if (bio->bi_end_io)
201 			rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
202 	}
203 
204 	mempool_free(r1_bio, conf->r1buf_pool);
205 
206 	lower_barrier(conf);
207 }
208 
209 static void reschedule_retry(r1bio_t *r1_bio)
210 {
211 	unsigned long flags;
212 	mddev_t *mddev = r1_bio->mddev;
213 	conf_t *conf = mddev_to_conf(mddev);
214 
215 	spin_lock_irqsave(&conf->device_lock, flags);
216 	list_add(&r1_bio->retry_list, &conf->retry_list);
217 	conf->nr_queued ++;
218 	spin_unlock_irqrestore(&conf->device_lock, flags);
219 
220 	wake_up(&conf->wait_barrier);
221 	md_wakeup_thread(mddev->thread);
222 }
223 
224 /*
225  * raid_end_bio_io() is called when we have finished servicing a mirrored
226  * operation and are ready to return a success/failure code to the buffer
227  * cache layer.
228  */
229 static void raid_end_bio_io(r1bio_t *r1_bio)
230 {
231 	struct bio *bio = r1_bio->master_bio;
232 
233 	/* if nobody has done the final endio yet, do it now */
234 	if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
235 		PRINTK(KERN_DEBUG "raid1: sync end %s on sectors %llu-%llu\n",
236 			(bio_data_dir(bio) == WRITE) ? "write" : "read",
237 			(unsigned long long) bio->bi_sector,
238 			(unsigned long long) bio->bi_sector +
239 				(bio->bi_size >> 9) - 1);
240 
241 		bio_endio(bio,
242 			test_bit(R1BIO_Uptodate, &r1_bio->state) ? 0 : -EIO);
243 	}
244 	free_r1bio(r1_bio);
245 }
246 
247 /*
248  * Update disk head position estimator based on IRQ completion info.
249  */
250 static inline void update_head_pos(int disk, r1bio_t *r1_bio)
251 {
252 	conf_t *conf = mddev_to_conf(r1_bio->mddev);
253 
254 	conf->mirrors[disk].head_position =
255 		r1_bio->sector + (r1_bio->sectors);
256 }
257 
258 static void raid1_end_read_request(struct bio *bio, int error)
259 {
260 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
261 	r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
262 	int mirror;
263 	conf_t *conf = mddev_to_conf(r1_bio->mddev);
264 
265 	mirror = r1_bio->read_disk;
266 	/*
267 	 * this branch is our 'one mirror IO has finished' event handler:
268 	 */
269 	update_head_pos(mirror, r1_bio);
270 
271 	if (uptodate)
272 		set_bit(R1BIO_Uptodate, &r1_bio->state);
273 	else {
274 		/* If all other devices have failed, we want to return
275 		 * the error upwards rather than fail the last device.
276 		 * Here we redefine "uptodate" to mean "Don't want to retry"
277 		 */
278 		unsigned long flags;
279 		spin_lock_irqsave(&conf->device_lock, flags);
280 		if (r1_bio->mddev->degraded == conf->raid_disks ||
281 		    (r1_bio->mddev->degraded == conf->raid_disks-1 &&
282 		     !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags)))
283 			uptodate = 1;
284 		spin_unlock_irqrestore(&conf->device_lock, flags);
285 	}
286 
287 	if (uptodate)
288 		raid_end_bio_io(r1_bio);
289 	else {
290 		/*
291 		 * oops, read error:
292 		 */
293 		char b[BDEVNAME_SIZE];
294 		if (printk_ratelimit())
295 			printk(KERN_ERR "raid1: %s: rescheduling sector %llu\n",
296 			       bdevname(conf->mirrors[mirror].rdev->bdev,b), (unsigned long long)r1_bio->sector);
297 		reschedule_retry(r1_bio);
298 	}
299 
300 	rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
301 }
302 
303 static void raid1_end_write_request(struct bio *bio, int error)
304 {
305 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
306 	r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
307 	int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
308 	conf_t *conf = mddev_to_conf(r1_bio->mddev);
309 	struct bio *to_put = NULL;
310 
311 
312 	for (mirror = 0; mirror < conf->raid_disks; mirror++)
313 		if (r1_bio->bios[mirror] == bio)
314 			break;
315 
316 	if (error == -EOPNOTSUPP && test_bit(R1BIO_Barrier, &r1_bio->state)) {
317 		set_bit(BarriersNotsupp, &conf->mirrors[mirror].rdev->flags);
318 		set_bit(R1BIO_BarrierRetry, &r1_bio->state);
319 		r1_bio->mddev->barriers_work = 0;
320 		/* Don't rdev_dec_pending in this branch - keep it for the retry */
321 	} else {
322 		/*
323 		 * this branch is our 'one mirror IO has finished' event handler:
324 		 */
325 		r1_bio->bios[mirror] = NULL;
326 		to_put = bio;
327 		if (!uptodate) {
328 			md_error(r1_bio->mddev, conf->mirrors[mirror].rdev);
329 			/* an I/O failed, we can't clear the bitmap */
330 			set_bit(R1BIO_Degraded, &r1_bio->state);
331 		} else
332 			/*
333 			 * Set R1BIO_Uptodate in our master bio, so that
334 			 * we will return a good error code for to the higher
335 			 * levels even if IO on some other mirrored buffer fails.
336 			 *
337 			 * The 'master' represents the composite IO operation to
338 			 * user-side. So if something waits for IO, then it will
339 			 * wait for the 'master' bio.
340 			 */
341 			set_bit(R1BIO_Uptodate, &r1_bio->state);
342 
343 		update_head_pos(mirror, r1_bio);
344 
345 		if (behind) {
346 			if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
347 				atomic_dec(&r1_bio->behind_remaining);
348 
349 			/* In behind mode, we ACK the master bio once the I/O has safely
350 			 * reached all non-writemostly disks. Setting the Returned bit
351 			 * ensures that this gets done only once -- we don't ever want to
352 			 * return -EIO here, instead we'll wait */
353 
354 			if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
355 			    test_bit(R1BIO_Uptodate, &r1_bio->state)) {
356 				/* Maybe we can return now */
357 				if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
358 					struct bio *mbio = r1_bio->master_bio;
359 					PRINTK(KERN_DEBUG "raid1: behind end write sectors %llu-%llu\n",
360 					       (unsigned long long) mbio->bi_sector,
361 					       (unsigned long long) mbio->bi_sector +
362 					       (mbio->bi_size >> 9) - 1);
363 					bio_endio(mbio, 0);
364 				}
365 			}
366 		}
367 		rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
368 	}
369 	/*
370 	 *
371 	 * Let's see if all mirrored write operations have finished
372 	 * already.
373 	 */
374 	if (atomic_dec_and_test(&r1_bio->remaining)) {
375 		if (test_bit(R1BIO_BarrierRetry, &r1_bio->state))
376 			reschedule_retry(r1_bio);
377 		else {
378 			/* it really is the end of this request */
379 			if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
380 				/* free extra copy of the data pages */
381 				int i = bio->bi_vcnt;
382 				while (i--)
383 					safe_put_page(bio->bi_io_vec[i].bv_page);
384 			}
385 			/* clear the bitmap if all writes complete successfully */
386 			bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
387 					r1_bio->sectors,
388 					!test_bit(R1BIO_Degraded, &r1_bio->state),
389 					behind);
390 			md_write_end(r1_bio->mddev);
391 			raid_end_bio_io(r1_bio);
392 		}
393 	}
394 
395 	if (to_put)
396 		bio_put(to_put);
397 }
398 
399 
400 /*
401  * This routine returns the disk from which the requested read should
402  * be done. There is a per-array 'next expected sequential IO' sector
403  * number - if this matches on the next IO then we use the last disk.
404  * There is also a per-disk 'last know head position' sector that is
405  * maintained from IRQ contexts, both the normal and the resync IO
406  * completion handlers update this position correctly. If there is no
407  * perfect sequential match then we pick the disk whose head is closest.
408  *
409  * If there are 2 mirrors in the same 2 devices, performance degrades
410  * because position is mirror, not device based.
411  *
412  * The rdev for the device selected will have nr_pending incremented.
413  */
414 static int read_balance(conf_t *conf, r1bio_t *r1_bio)
415 {
416 	const unsigned long this_sector = r1_bio->sector;
417 	int new_disk = conf->last_used, disk = new_disk;
418 	int wonly_disk = -1;
419 	const int sectors = r1_bio->sectors;
420 	sector_t new_distance, current_distance;
421 	mdk_rdev_t *rdev;
422 
423 	rcu_read_lock();
424 	/*
425 	 * Check if we can balance. We can balance on the whole
426 	 * device if no resync is going on, or below the resync window.
427 	 * We take the first readable disk when above the resync window.
428 	 */
429  retry:
430 	if (conf->mddev->recovery_cp < MaxSector &&
431 	    (this_sector + sectors >= conf->next_resync)) {
432 		/* Choose the first operation device, for consistancy */
433 		new_disk = 0;
434 
435 		for (rdev = rcu_dereference(conf->mirrors[new_disk].rdev);
436 		     r1_bio->bios[new_disk] == IO_BLOCKED ||
437 		     !rdev || !test_bit(In_sync, &rdev->flags)
438 			     || test_bit(WriteMostly, &rdev->flags);
439 		     rdev = rcu_dereference(conf->mirrors[++new_disk].rdev)) {
440 
441 			if (rdev && test_bit(In_sync, &rdev->flags) &&
442 				r1_bio->bios[new_disk] != IO_BLOCKED)
443 				wonly_disk = new_disk;
444 
445 			if (new_disk == conf->raid_disks - 1) {
446 				new_disk = wonly_disk;
447 				break;
448 			}
449 		}
450 		goto rb_out;
451 	}
452 
453 
454 	/* make sure the disk is operational */
455 	for (rdev = rcu_dereference(conf->mirrors[new_disk].rdev);
456 	     r1_bio->bios[new_disk] == IO_BLOCKED ||
457 	     !rdev || !test_bit(In_sync, &rdev->flags) ||
458 		     test_bit(WriteMostly, &rdev->flags);
459 	     rdev = rcu_dereference(conf->mirrors[new_disk].rdev)) {
460 
461 		if (rdev && test_bit(In_sync, &rdev->flags) &&
462 		    r1_bio->bios[new_disk] != IO_BLOCKED)
463 			wonly_disk = new_disk;
464 
465 		if (new_disk <= 0)
466 			new_disk = conf->raid_disks;
467 		new_disk--;
468 		if (new_disk == disk) {
469 			new_disk = wonly_disk;
470 			break;
471 		}
472 	}
473 
474 	if (new_disk < 0)
475 		goto rb_out;
476 
477 	disk = new_disk;
478 	/* now disk == new_disk == starting point for search */
479 
480 	/*
481 	 * Don't change to another disk for sequential reads:
482 	 */
483 	if (conf->next_seq_sect == this_sector)
484 		goto rb_out;
485 	if (this_sector == conf->mirrors[new_disk].head_position)
486 		goto rb_out;
487 
488 	current_distance = abs(this_sector - conf->mirrors[disk].head_position);
489 
490 	/* Find the disk whose head is closest */
491 
492 	do {
493 		if (disk <= 0)
494 			disk = conf->raid_disks;
495 		disk--;
496 
497 		rdev = rcu_dereference(conf->mirrors[disk].rdev);
498 
499 		if (!rdev || r1_bio->bios[disk] == IO_BLOCKED ||
500 		    !test_bit(In_sync, &rdev->flags) ||
501 		    test_bit(WriteMostly, &rdev->flags))
502 			continue;
503 
504 		if (!atomic_read(&rdev->nr_pending)) {
505 			new_disk = disk;
506 			break;
507 		}
508 		new_distance = abs(this_sector - conf->mirrors[disk].head_position);
509 		if (new_distance < current_distance) {
510 			current_distance = new_distance;
511 			new_disk = disk;
512 		}
513 	} while (disk != conf->last_used);
514 
515  rb_out:
516 
517 
518 	if (new_disk >= 0) {
519 		rdev = rcu_dereference(conf->mirrors[new_disk].rdev);
520 		if (!rdev)
521 			goto retry;
522 		atomic_inc(&rdev->nr_pending);
523 		if (!test_bit(In_sync, &rdev->flags)) {
524 			/* cannot risk returning a device that failed
525 			 * before we inc'ed nr_pending
526 			 */
527 			rdev_dec_pending(rdev, conf->mddev);
528 			goto retry;
529 		}
530 		conf->next_seq_sect = this_sector + sectors;
531 		conf->last_used = new_disk;
532 	}
533 	rcu_read_unlock();
534 
535 	return new_disk;
536 }
537 
538 static void unplug_slaves(mddev_t *mddev)
539 {
540 	conf_t *conf = mddev_to_conf(mddev);
541 	int i;
542 
543 	rcu_read_lock();
544 	for (i=0; i<mddev->raid_disks; i++) {
545 		mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
546 		if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
547 			struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
548 
549 			atomic_inc(&rdev->nr_pending);
550 			rcu_read_unlock();
551 
552 			blk_unplug(r_queue);
553 
554 			rdev_dec_pending(rdev, mddev);
555 			rcu_read_lock();
556 		}
557 	}
558 	rcu_read_unlock();
559 }
560 
561 static void raid1_unplug(struct request_queue *q)
562 {
563 	mddev_t *mddev = q->queuedata;
564 
565 	unplug_slaves(mddev);
566 	md_wakeup_thread(mddev->thread);
567 }
568 
569 static int raid1_congested(void *data, int bits)
570 {
571 	mddev_t *mddev = data;
572 	conf_t *conf = mddev_to_conf(mddev);
573 	int i, ret = 0;
574 
575 	rcu_read_lock();
576 	for (i = 0; i < mddev->raid_disks; i++) {
577 		mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
578 		if (rdev && !test_bit(Faulty, &rdev->flags)) {
579 			struct request_queue *q = bdev_get_queue(rdev->bdev);
580 
581 			/* Note the '|| 1' - when read_balance prefers
582 			 * non-congested targets, it can be removed
583 			 */
584 			if ((bits & (1<<BDI_write_congested)) || 1)
585 				ret |= bdi_congested(&q->backing_dev_info, bits);
586 			else
587 				ret &= bdi_congested(&q->backing_dev_info, bits);
588 		}
589 	}
590 	rcu_read_unlock();
591 	return ret;
592 }
593 
594 
595 /* Barriers....
596  * Sometimes we need to suspend IO while we do something else,
597  * either some resync/recovery, or reconfigure the array.
598  * To do this we raise a 'barrier'.
599  * The 'barrier' is a counter that can be raised multiple times
600  * to count how many activities are happening which preclude
601  * normal IO.
602  * We can only raise the barrier if there is no pending IO.
603  * i.e. if nr_pending == 0.
604  * We choose only to raise the barrier if no-one is waiting for the
605  * barrier to go down.  This means that as soon as an IO request
606  * is ready, no other operations which require a barrier will start
607  * until the IO request has had a chance.
608  *
609  * So: regular IO calls 'wait_barrier'.  When that returns there
610  *    is no backgroup IO happening,  It must arrange to call
611  *    allow_barrier when it has finished its IO.
612  * backgroup IO calls must call raise_barrier.  Once that returns
613  *    there is no normal IO happeing.  It must arrange to call
614  *    lower_barrier when the particular background IO completes.
615  */
616 #define RESYNC_DEPTH 32
617 
618 static void raise_barrier(conf_t *conf)
619 {
620 	spin_lock_irq(&conf->resync_lock);
621 
622 	/* Wait until no block IO is waiting */
623 	wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
624 			    conf->resync_lock,
625 			    raid1_unplug(conf->mddev->queue));
626 
627 	/* block any new IO from starting */
628 	conf->barrier++;
629 
630 	/* No wait for all pending IO to complete */
631 	wait_event_lock_irq(conf->wait_barrier,
632 			    !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
633 			    conf->resync_lock,
634 			    raid1_unplug(conf->mddev->queue));
635 
636 	spin_unlock_irq(&conf->resync_lock);
637 }
638 
639 static void lower_barrier(conf_t *conf)
640 {
641 	unsigned long flags;
642 	spin_lock_irqsave(&conf->resync_lock, flags);
643 	conf->barrier--;
644 	spin_unlock_irqrestore(&conf->resync_lock, flags);
645 	wake_up(&conf->wait_barrier);
646 }
647 
648 static void wait_barrier(conf_t *conf)
649 {
650 	spin_lock_irq(&conf->resync_lock);
651 	if (conf->barrier) {
652 		conf->nr_waiting++;
653 		wait_event_lock_irq(conf->wait_barrier, !conf->barrier,
654 				    conf->resync_lock,
655 				    raid1_unplug(conf->mddev->queue));
656 		conf->nr_waiting--;
657 	}
658 	conf->nr_pending++;
659 	spin_unlock_irq(&conf->resync_lock);
660 }
661 
662 static void allow_barrier(conf_t *conf)
663 {
664 	unsigned long flags;
665 	spin_lock_irqsave(&conf->resync_lock, flags);
666 	conf->nr_pending--;
667 	spin_unlock_irqrestore(&conf->resync_lock, flags);
668 	wake_up(&conf->wait_barrier);
669 }
670 
671 static void freeze_array(conf_t *conf)
672 {
673 	/* stop syncio and normal IO and wait for everything to
674 	 * go quite.
675 	 * We increment barrier and nr_waiting, and then
676 	 * wait until barrier+nr_pending match nr_queued+2
677 	 */
678 	spin_lock_irq(&conf->resync_lock);
679 	conf->barrier++;
680 	conf->nr_waiting++;
681 	wait_event_lock_irq(conf->wait_barrier,
682 			    conf->barrier+conf->nr_pending == conf->nr_queued+2,
683 			    conf->resync_lock,
684 			    raid1_unplug(conf->mddev->queue));
685 	spin_unlock_irq(&conf->resync_lock);
686 }
687 static void unfreeze_array(conf_t *conf)
688 {
689 	/* reverse the effect of the freeze */
690 	spin_lock_irq(&conf->resync_lock);
691 	conf->barrier--;
692 	conf->nr_waiting--;
693 	wake_up(&conf->wait_barrier);
694 	spin_unlock_irq(&conf->resync_lock);
695 }
696 
697 
698 /* duplicate the data pages for behind I/O */
699 static struct page **alloc_behind_pages(struct bio *bio)
700 {
701 	int i;
702 	struct bio_vec *bvec;
703 	struct page **pages = kzalloc(bio->bi_vcnt * sizeof(struct page *),
704 					GFP_NOIO);
705 	if (unlikely(!pages))
706 		goto do_sync_io;
707 
708 	bio_for_each_segment(bvec, bio, i) {
709 		pages[i] = alloc_page(GFP_NOIO);
710 		if (unlikely(!pages[i]))
711 			goto do_sync_io;
712 		memcpy(kmap(pages[i]) + bvec->bv_offset,
713 			kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
714 		kunmap(pages[i]);
715 		kunmap(bvec->bv_page);
716 	}
717 
718 	return pages;
719 
720 do_sync_io:
721 	if (pages)
722 		for (i = 0; i < bio->bi_vcnt && pages[i]; i++)
723 			put_page(pages[i]);
724 	kfree(pages);
725 	PRINTK("%dB behind alloc failed, doing sync I/O\n", bio->bi_size);
726 	return NULL;
727 }
728 
729 static int make_request(struct request_queue *q, struct bio * bio)
730 {
731 	mddev_t *mddev = q->queuedata;
732 	conf_t *conf = mddev_to_conf(mddev);
733 	mirror_info_t *mirror;
734 	r1bio_t *r1_bio;
735 	struct bio *read_bio;
736 	int i, targets = 0, disks;
737 	mdk_rdev_t *rdev;
738 	struct bitmap *bitmap = mddev->bitmap;
739 	unsigned long flags;
740 	struct bio_list bl;
741 	struct page **behind_pages = NULL;
742 	const int rw = bio_data_dir(bio);
743 	const int do_sync = bio_sync(bio);
744 	int do_barriers;
745 
746 	/*
747 	 * Register the new request and wait if the reconstruction
748 	 * thread has put up a bar for new requests.
749 	 * Continue immediately if no resync is active currently.
750 	 * We test barriers_work *after* md_write_start as md_write_start
751 	 * may cause the first superblock write, and that will check out
752 	 * if barriers work.
753 	 */
754 
755 	md_write_start(mddev, bio); /* wait on superblock update early */
756 
757 	if (unlikely(!mddev->barriers_work && bio_barrier(bio))) {
758 		if (rw == WRITE)
759 			md_write_end(mddev);
760 		bio_endio(bio, -EOPNOTSUPP);
761 		return 0;
762 	}
763 
764 	wait_barrier(conf);
765 
766 	disk_stat_inc(mddev->gendisk, ios[rw]);
767 	disk_stat_add(mddev->gendisk, sectors[rw], bio_sectors(bio));
768 
769 	/*
770 	 * make_request() can abort the operation when READA is being
771 	 * used and no empty request is available.
772 	 *
773 	 */
774 	r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
775 
776 	r1_bio->master_bio = bio;
777 	r1_bio->sectors = bio->bi_size >> 9;
778 	r1_bio->state = 0;
779 	r1_bio->mddev = mddev;
780 	r1_bio->sector = bio->bi_sector;
781 
782 	if (rw == READ) {
783 		/*
784 		 * read balancing logic:
785 		 */
786 		int rdisk = read_balance(conf, r1_bio);
787 
788 		if (rdisk < 0) {
789 			/* couldn't find anywhere to read from */
790 			raid_end_bio_io(r1_bio);
791 			return 0;
792 		}
793 		mirror = conf->mirrors + rdisk;
794 
795 		r1_bio->read_disk = rdisk;
796 
797 		read_bio = bio_clone(bio, GFP_NOIO);
798 
799 		r1_bio->bios[rdisk] = read_bio;
800 
801 		read_bio->bi_sector = r1_bio->sector + mirror->rdev->data_offset;
802 		read_bio->bi_bdev = mirror->rdev->bdev;
803 		read_bio->bi_end_io = raid1_end_read_request;
804 		read_bio->bi_rw = READ | do_sync;
805 		read_bio->bi_private = r1_bio;
806 
807 		generic_make_request(read_bio);
808 		return 0;
809 	}
810 
811 	/*
812 	 * WRITE:
813 	 */
814 	/* first select target devices under spinlock and
815 	 * inc refcount on their rdev.  Record them by setting
816 	 * bios[x] to bio
817 	 */
818 	disks = conf->raid_disks;
819 #if 0
820 	{ static int first=1;
821 	if (first) printk("First Write sector %llu disks %d\n",
822 			  (unsigned long long)r1_bio->sector, disks);
823 	first = 0;
824 	}
825 #endif
826 	rcu_read_lock();
827 	for (i = 0;  i < disks; i++) {
828 		if ((rdev=rcu_dereference(conf->mirrors[i].rdev)) != NULL &&
829 		    !test_bit(Faulty, &rdev->flags)) {
830 			atomic_inc(&rdev->nr_pending);
831 			if (test_bit(Faulty, &rdev->flags)) {
832 				rdev_dec_pending(rdev, mddev);
833 				r1_bio->bios[i] = NULL;
834 			} else
835 				r1_bio->bios[i] = bio;
836 			targets++;
837 		} else
838 			r1_bio->bios[i] = NULL;
839 	}
840 	rcu_read_unlock();
841 
842 	BUG_ON(targets == 0); /* we never fail the last device */
843 
844 	if (targets < conf->raid_disks) {
845 		/* array is degraded, we will not clear the bitmap
846 		 * on I/O completion (see raid1_end_write_request) */
847 		set_bit(R1BIO_Degraded, &r1_bio->state);
848 	}
849 
850 	/* do behind I/O ? */
851 	if (bitmap &&
852 	    atomic_read(&bitmap->behind_writes) < bitmap->max_write_behind &&
853 	    (behind_pages = alloc_behind_pages(bio)) != NULL)
854 		set_bit(R1BIO_BehindIO, &r1_bio->state);
855 
856 	atomic_set(&r1_bio->remaining, 0);
857 	atomic_set(&r1_bio->behind_remaining, 0);
858 
859 	do_barriers = bio_barrier(bio);
860 	if (do_barriers)
861 		set_bit(R1BIO_Barrier, &r1_bio->state);
862 
863 	bio_list_init(&bl);
864 	for (i = 0; i < disks; i++) {
865 		struct bio *mbio;
866 		if (!r1_bio->bios[i])
867 			continue;
868 
869 		mbio = bio_clone(bio, GFP_NOIO);
870 		r1_bio->bios[i] = mbio;
871 
872 		mbio->bi_sector	= r1_bio->sector + conf->mirrors[i].rdev->data_offset;
873 		mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
874 		mbio->bi_end_io	= raid1_end_write_request;
875 		mbio->bi_rw = WRITE | do_barriers | do_sync;
876 		mbio->bi_private = r1_bio;
877 
878 		if (behind_pages) {
879 			struct bio_vec *bvec;
880 			int j;
881 
882 			/* Yes, I really want the '__' version so that
883 			 * we clear any unused pointer in the io_vec, rather
884 			 * than leave them unchanged.  This is important
885 			 * because when we come to free the pages, we won't
886 			 * know the originial bi_idx, so we just free
887 			 * them all
888 			 */
889 			__bio_for_each_segment(bvec, mbio, j, 0)
890 				bvec->bv_page = behind_pages[j];
891 			if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
892 				atomic_inc(&r1_bio->behind_remaining);
893 		}
894 
895 		atomic_inc(&r1_bio->remaining);
896 
897 		bio_list_add(&bl, mbio);
898 	}
899 	kfree(behind_pages); /* the behind pages are attached to the bios now */
900 
901 	bitmap_startwrite(bitmap, bio->bi_sector, r1_bio->sectors,
902 				test_bit(R1BIO_BehindIO, &r1_bio->state));
903 	spin_lock_irqsave(&conf->device_lock, flags);
904 	bio_list_merge(&conf->pending_bio_list, &bl);
905 	bio_list_init(&bl);
906 
907 	blk_plug_device(mddev->queue);
908 	spin_unlock_irqrestore(&conf->device_lock, flags);
909 
910 	if (do_sync)
911 		md_wakeup_thread(mddev->thread);
912 #if 0
913 	while ((bio = bio_list_pop(&bl)) != NULL)
914 		generic_make_request(bio);
915 #endif
916 
917 	return 0;
918 }
919 
920 static void status(struct seq_file *seq, mddev_t *mddev)
921 {
922 	conf_t *conf = mddev_to_conf(mddev);
923 	int i;
924 
925 	seq_printf(seq, " [%d/%d] [", conf->raid_disks,
926 		   conf->raid_disks - mddev->degraded);
927 	rcu_read_lock();
928 	for (i = 0; i < conf->raid_disks; i++) {
929 		mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
930 		seq_printf(seq, "%s",
931 			   rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
932 	}
933 	rcu_read_unlock();
934 	seq_printf(seq, "]");
935 }
936 
937 
938 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
939 {
940 	char b[BDEVNAME_SIZE];
941 	conf_t *conf = mddev_to_conf(mddev);
942 
943 	/*
944 	 * If it is not operational, then we have already marked it as dead
945 	 * else if it is the last working disks, ignore the error, let the
946 	 * next level up know.
947 	 * else mark the drive as failed
948 	 */
949 	if (test_bit(In_sync, &rdev->flags)
950 	    && (conf->raid_disks - mddev->degraded) == 1)
951 		/*
952 		 * Don't fail the drive, act as though we were just a
953 		 * normal single drive
954 		 */
955 		return;
956 	if (test_and_clear_bit(In_sync, &rdev->flags)) {
957 		unsigned long flags;
958 		spin_lock_irqsave(&conf->device_lock, flags);
959 		mddev->degraded++;
960 		set_bit(Faulty, &rdev->flags);
961 		spin_unlock_irqrestore(&conf->device_lock, flags);
962 		/*
963 		 * if recovery is running, make sure it aborts.
964 		 */
965 		set_bit(MD_RECOVERY_ERR, &mddev->recovery);
966 	} else
967 		set_bit(Faulty, &rdev->flags);
968 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
969 	printk(KERN_ALERT "raid1: Disk failure on %s, disabling device. \n"
970 		"	Operation continuing on %d devices\n",
971 		bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded);
972 }
973 
974 static void print_conf(conf_t *conf)
975 {
976 	int i;
977 
978 	printk("RAID1 conf printout:\n");
979 	if (!conf) {
980 		printk("(!conf)\n");
981 		return;
982 	}
983 	printk(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
984 		conf->raid_disks);
985 
986 	rcu_read_lock();
987 	for (i = 0; i < conf->raid_disks; i++) {
988 		char b[BDEVNAME_SIZE];
989 		mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
990 		if (rdev)
991 			printk(" disk %d, wo:%d, o:%d, dev:%s\n",
992 			       i, !test_bit(In_sync, &rdev->flags),
993 			       !test_bit(Faulty, &rdev->flags),
994 			       bdevname(rdev->bdev,b));
995 	}
996 	rcu_read_unlock();
997 }
998 
999 static void close_sync(conf_t *conf)
1000 {
1001 	wait_barrier(conf);
1002 	allow_barrier(conf);
1003 
1004 	mempool_destroy(conf->r1buf_pool);
1005 	conf->r1buf_pool = NULL;
1006 }
1007 
1008 static int raid1_spare_active(mddev_t *mddev)
1009 {
1010 	int i;
1011 	conf_t *conf = mddev->private;
1012 
1013 	/*
1014 	 * Find all failed disks within the RAID1 configuration
1015 	 * and mark them readable.
1016 	 * Called under mddev lock, so rcu protection not needed.
1017 	 */
1018 	for (i = 0; i < conf->raid_disks; i++) {
1019 		mdk_rdev_t *rdev = conf->mirrors[i].rdev;
1020 		if (rdev
1021 		    && !test_bit(Faulty, &rdev->flags)
1022 		    && !test_and_set_bit(In_sync, &rdev->flags)) {
1023 			unsigned long flags;
1024 			spin_lock_irqsave(&conf->device_lock, flags);
1025 			mddev->degraded--;
1026 			spin_unlock_irqrestore(&conf->device_lock, flags);
1027 		}
1028 	}
1029 
1030 	print_conf(conf);
1031 	return 0;
1032 }
1033 
1034 
1035 static int raid1_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
1036 {
1037 	conf_t *conf = mddev->private;
1038 	int found = 0;
1039 	int mirror = 0;
1040 	mirror_info_t *p;
1041 
1042 	for (mirror=0; mirror < mddev->raid_disks; mirror++)
1043 		if ( !(p=conf->mirrors+mirror)->rdev) {
1044 
1045 			blk_queue_stack_limits(mddev->queue,
1046 					       rdev->bdev->bd_disk->queue);
1047 			/* as we don't honour merge_bvec_fn, we must never risk
1048 			 * violating it, so limit ->max_sector to one PAGE, as
1049 			 * a one page request is never in violation.
1050 			 */
1051 			if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
1052 			    mddev->queue->max_sectors > (PAGE_SIZE>>9))
1053 				blk_queue_max_sectors(mddev->queue, PAGE_SIZE>>9);
1054 
1055 			p->head_position = 0;
1056 			rdev->raid_disk = mirror;
1057 			found = 1;
1058 			/* As all devices are equivalent, we don't need a full recovery
1059 			 * if this was recently any drive of the array
1060 			 */
1061 			if (rdev->saved_raid_disk < 0)
1062 				conf->fullsync = 1;
1063 			rcu_assign_pointer(p->rdev, rdev);
1064 			break;
1065 		}
1066 
1067 	print_conf(conf);
1068 	return found;
1069 }
1070 
1071 static int raid1_remove_disk(mddev_t *mddev, int number)
1072 {
1073 	conf_t *conf = mddev->private;
1074 	int err = 0;
1075 	mdk_rdev_t *rdev;
1076 	mirror_info_t *p = conf->mirrors+ number;
1077 
1078 	print_conf(conf);
1079 	rdev = p->rdev;
1080 	if (rdev) {
1081 		if (test_bit(In_sync, &rdev->flags) ||
1082 		    atomic_read(&rdev->nr_pending)) {
1083 			err = -EBUSY;
1084 			goto abort;
1085 		}
1086 		p->rdev = NULL;
1087 		synchronize_rcu();
1088 		if (atomic_read(&rdev->nr_pending)) {
1089 			/* lost the race, try later */
1090 			err = -EBUSY;
1091 			p->rdev = rdev;
1092 		}
1093 	}
1094 abort:
1095 
1096 	print_conf(conf);
1097 	return err;
1098 }
1099 
1100 
1101 static void end_sync_read(struct bio *bio, int error)
1102 {
1103 	r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
1104 	int i;
1105 
1106 	for (i=r1_bio->mddev->raid_disks; i--; )
1107 		if (r1_bio->bios[i] == bio)
1108 			break;
1109 	BUG_ON(i < 0);
1110 	update_head_pos(i, r1_bio);
1111 	/*
1112 	 * we have read a block, now it needs to be re-written,
1113 	 * or re-read if the read failed.
1114 	 * We don't do much here, just schedule handling by raid1d
1115 	 */
1116 	if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1117 		set_bit(R1BIO_Uptodate, &r1_bio->state);
1118 
1119 	if (atomic_dec_and_test(&r1_bio->remaining))
1120 		reschedule_retry(r1_bio);
1121 }
1122 
1123 static void end_sync_write(struct bio *bio, int error)
1124 {
1125 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1126 	r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
1127 	mddev_t *mddev = r1_bio->mddev;
1128 	conf_t *conf = mddev_to_conf(mddev);
1129 	int i;
1130 	int mirror=0;
1131 
1132 	for (i = 0; i < conf->raid_disks; i++)
1133 		if (r1_bio->bios[i] == bio) {
1134 			mirror = i;
1135 			break;
1136 		}
1137 	if (!uptodate) {
1138 		int sync_blocks = 0;
1139 		sector_t s = r1_bio->sector;
1140 		long sectors_to_go = r1_bio->sectors;
1141 		/* make sure these bits doesn't get cleared. */
1142 		do {
1143 			bitmap_end_sync(mddev->bitmap, s,
1144 					&sync_blocks, 1);
1145 			s += sync_blocks;
1146 			sectors_to_go -= sync_blocks;
1147 		} while (sectors_to_go > 0);
1148 		md_error(mddev, conf->mirrors[mirror].rdev);
1149 	}
1150 
1151 	update_head_pos(mirror, r1_bio);
1152 
1153 	if (atomic_dec_and_test(&r1_bio->remaining)) {
1154 		md_done_sync(mddev, r1_bio->sectors, uptodate);
1155 		put_buf(r1_bio);
1156 	}
1157 }
1158 
1159 static void sync_request_write(mddev_t *mddev, r1bio_t *r1_bio)
1160 {
1161 	conf_t *conf = mddev_to_conf(mddev);
1162 	int i;
1163 	int disks = conf->raid_disks;
1164 	struct bio *bio, *wbio;
1165 
1166 	bio = r1_bio->bios[r1_bio->read_disk];
1167 
1168 
1169 	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
1170 		/* We have read all readable devices.  If we haven't
1171 		 * got the block, then there is no hope left.
1172 		 * If we have, then we want to do a comparison
1173 		 * and skip the write if everything is the same.
1174 		 * If any blocks failed to read, then we need to
1175 		 * attempt an over-write
1176 		 */
1177 		int primary;
1178 		if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) {
1179 			for (i=0; i<mddev->raid_disks; i++)
1180 				if (r1_bio->bios[i]->bi_end_io == end_sync_read)
1181 					md_error(mddev, conf->mirrors[i].rdev);
1182 
1183 			md_done_sync(mddev, r1_bio->sectors, 1);
1184 			put_buf(r1_bio);
1185 			return;
1186 		}
1187 		for (primary=0; primary<mddev->raid_disks; primary++)
1188 			if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
1189 			    test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) {
1190 				r1_bio->bios[primary]->bi_end_io = NULL;
1191 				rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
1192 				break;
1193 			}
1194 		r1_bio->read_disk = primary;
1195 		for (i=0; i<mddev->raid_disks; i++)
1196 			if (r1_bio->bios[i]->bi_end_io == end_sync_read) {
1197 				int j;
1198 				int vcnt = r1_bio->sectors >> (PAGE_SHIFT- 9);
1199 				struct bio *pbio = r1_bio->bios[primary];
1200 				struct bio *sbio = r1_bio->bios[i];
1201 
1202 				if (test_bit(BIO_UPTODATE, &sbio->bi_flags)) {
1203 					for (j = vcnt; j-- ; ) {
1204 						struct page *p, *s;
1205 						p = pbio->bi_io_vec[j].bv_page;
1206 						s = sbio->bi_io_vec[j].bv_page;
1207 						if (memcmp(page_address(p),
1208 							   page_address(s),
1209 							   PAGE_SIZE))
1210 							break;
1211 					}
1212 				} else
1213 					j = 0;
1214 				if (j >= 0)
1215 					mddev->resync_mismatches += r1_bio->sectors;
1216 				if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
1217 					      && test_bit(BIO_UPTODATE, &sbio->bi_flags))) {
1218 					sbio->bi_end_io = NULL;
1219 					rdev_dec_pending(conf->mirrors[i].rdev, mddev);
1220 				} else {
1221 					/* fixup the bio for reuse */
1222 					sbio->bi_vcnt = vcnt;
1223 					sbio->bi_size = r1_bio->sectors << 9;
1224 					sbio->bi_idx = 0;
1225 					sbio->bi_phys_segments = 0;
1226 					sbio->bi_hw_segments = 0;
1227 					sbio->bi_hw_front_size = 0;
1228 					sbio->bi_hw_back_size = 0;
1229 					sbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1230 					sbio->bi_flags |= 1 << BIO_UPTODATE;
1231 					sbio->bi_next = NULL;
1232 					sbio->bi_sector = r1_bio->sector +
1233 						conf->mirrors[i].rdev->data_offset;
1234 					sbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1235 					for (j = 0; j < vcnt ; j++)
1236 						memcpy(page_address(sbio->bi_io_vec[j].bv_page),
1237 						       page_address(pbio->bi_io_vec[j].bv_page),
1238 						       PAGE_SIZE);
1239 
1240 				}
1241 			}
1242 	}
1243 	if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) {
1244 		/* ouch - failed to read all of that.
1245 		 * Try some synchronous reads of other devices to get
1246 		 * good data, much like with normal read errors.  Only
1247 		 * read into the pages we already have so we don't
1248 		 * need to re-issue the read request.
1249 		 * We don't need to freeze the array, because being in an
1250 		 * active sync request, there is no normal IO, and
1251 		 * no overlapping syncs.
1252 		 */
1253 		sector_t sect = r1_bio->sector;
1254 		int sectors = r1_bio->sectors;
1255 		int idx = 0;
1256 
1257 		while(sectors) {
1258 			int s = sectors;
1259 			int d = r1_bio->read_disk;
1260 			int success = 0;
1261 			mdk_rdev_t *rdev;
1262 
1263 			if (s > (PAGE_SIZE>>9))
1264 				s = PAGE_SIZE >> 9;
1265 			do {
1266 				if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1267 					/* No rcu protection needed here devices
1268 					 * can only be removed when no resync is
1269 					 * active, and resync is currently active
1270 					 */
1271 					rdev = conf->mirrors[d].rdev;
1272 					if (sync_page_io(rdev->bdev,
1273 							 sect + rdev->data_offset,
1274 							 s<<9,
1275 							 bio->bi_io_vec[idx].bv_page,
1276 							 READ)) {
1277 						success = 1;
1278 						break;
1279 					}
1280 				}
1281 				d++;
1282 				if (d == conf->raid_disks)
1283 					d = 0;
1284 			} while (!success && d != r1_bio->read_disk);
1285 
1286 			if (success) {
1287 				int start = d;
1288 				/* write it back and re-read */
1289 				set_bit(R1BIO_Uptodate, &r1_bio->state);
1290 				while (d != r1_bio->read_disk) {
1291 					if (d == 0)
1292 						d = conf->raid_disks;
1293 					d--;
1294 					if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1295 						continue;
1296 					rdev = conf->mirrors[d].rdev;
1297 					atomic_add(s, &rdev->corrected_errors);
1298 					if (sync_page_io(rdev->bdev,
1299 							 sect + rdev->data_offset,
1300 							 s<<9,
1301 							 bio->bi_io_vec[idx].bv_page,
1302 							 WRITE) == 0)
1303 						md_error(mddev, rdev);
1304 				}
1305 				d = start;
1306 				while (d != r1_bio->read_disk) {
1307 					if (d == 0)
1308 						d = conf->raid_disks;
1309 					d--;
1310 					if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1311 						continue;
1312 					rdev = conf->mirrors[d].rdev;
1313 					if (sync_page_io(rdev->bdev,
1314 							 sect + rdev->data_offset,
1315 							 s<<9,
1316 							 bio->bi_io_vec[idx].bv_page,
1317 							 READ) == 0)
1318 						md_error(mddev, rdev);
1319 				}
1320 			} else {
1321 				char b[BDEVNAME_SIZE];
1322 				/* Cannot read from anywhere, array is toast */
1323 				md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
1324 				printk(KERN_ALERT "raid1: %s: unrecoverable I/O read error"
1325 				       " for block %llu\n",
1326 				       bdevname(bio->bi_bdev,b),
1327 				       (unsigned long long)r1_bio->sector);
1328 				md_done_sync(mddev, r1_bio->sectors, 0);
1329 				put_buf(r1_bio);
1330 				return;
1331 			}
1332 			sectors -= s;
1333 			sect += s;
1334 			idx ++;
1335 		}
1336 	}
1337 
1338 	/*
1339 	 * schedule writes
1340 	 */
1341 	atomic_set(&r1_bio->remaining, 1);
1342 	for (i = 0; i < disks ; i++) {
1343 		wbio = r1_bio->bios[i];
1344 		if (wbio->bi_end_io == NULL ||
1345 		    (wbio->bi_end_io == end_sync_read &&
1346 		     (i == r1_bio->read_disk ||
1347 		      !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
1348 			continue;
1349 
1350 		wbio->bi_rw = WRITE;
1351 		wbio->bi_end_io = end_sync_write;
1352 		atomic_inc(&r1_bio->remaining);
1353 		md_sync_acct(conf->mirrors[i].rdev->bdev, wbio->bi_size >> 9);
1354 
1355 		generic_make_request(wbio);
1356 	}
1357 
1358 	if (atomic_dec_and_test(&r1_bio->remaining)) {
1359 		/* if we're here, all write(s) have completed, so clean up */
1360 		md_done_sync(mddev, r1_bio->sectors, 1);
1361 		put_buf(r1_bio);
1362 	}
1363 }
1364 
1365 /*
1366  * This is a kernel thread which:
1367  *
1368  *	1.	Retries failed read operations on working mirrors.
1369  *	2.	Updates the raid superblock when problems encounter.
1370  *	3.	Performs writes following reads for array syncronising.
1371  */
1372 
1373 static void fix_read_error(conf_t *conf, int read_disk,
1374 			   sector_t sect, int sectors)
1375 {
1376 	mddev_t *mddev = conf->mddev;
1377 	while(sectors) {
1378 		int s = sectors;
1379 		int d = read_disk;
1380 		int success = 0;
1381 		int start;
1382 		mdk_rdev_t *rdev;
1383 
1384 		if (s > (PAGE_SIZE>>9))
1385 			s = PAGE_SIZE >> 9;
1386 
1387 		do {
1388 			/* Note: no rcu protection needed here
1389 			 * as this is synchronous in the raid1d thread
1390 			 * which is the thread that might remove
1391 			 * a device.  If raid1d ever becomes multi-threaded....
1392 			 */
1393 			rdev = conf->mirrors[d].rdev;
1394 			if (rdev &&
1395 			    test_bit(In_sync, &rdev->flags) &&
1396 			    sync_page_io(rdev->bdev,
1397 					 sect + rdev->data_offset,
1398 					 s<<9,
1399 					 conf->tmppage, READ))
1400 				success = 1;
1401 			else {
1402 				d++;
1403 				if (d == conf->raid_disks)
1404 					d = 0;
1405 			}
1406 		} while (!success && d != read_disk);
1407 
1408 		if (!success) {
1409 			/* Cannot read from anywhere -- bye bye array */
1410 			md_error(mddev, conf->mirrors[read_disk].rdev);
1411 			break;
1412 		}
1413 		/* write it back and re-read */
1414 		start = d;
1415 		while (d != read_disk) {
1416 			if (d==0)
1417 				d = conf->raid_disks;
1418 			d--;
1419 			rdev = conf->mirrors[d].rdev;
1420 			if (rdev &&
1421 			    test_bit(In_sync, &rdev->flags)) {
1422 				if (sync_page_io(rdev->bdev,
1423 						 sect + rdev->data_offset,
1424 						 s<<9, conf->tmppage, WRITE)
1425 				    == 0)
1426 					/* Well, this device is dead */
1427 					md_error(mddev, rdev);
1428 			}
1429 		}
1430 		d = start;
1431 		while (d != read_disk) {
1432 			char b[BDEVNAME_SIZE];
1433 			if (d==0)
1434 				d = conf->raid_disks;
1435 			d--;
1436 			rdev = conf->mirrors[d].rdev;
1437 			if (rdev &&
1438 			    test_bit(In_sync, &rdev->flags)) {
1439 				if (sync_page_io(rdev->bdev,
1440 						 sect + rdev->data_offset,
1441 						 s<<9, conf->tmppage, READ)
1442 				    == 0)
1443 					/* Well, this device is dead */
1444 					md_error(mddev, rdev);
1445 				else {
1446 					atomic_add(s, &rdev->corrected_errors);
1447 					printk(KERN_INFO
1448 					       "raid1:%s: read error corrected "
1449 					       "(%d sectors at %llu on %s)\n",
1450 					       mdname(mddev), s,
1451 					       (unsigned long long)(sect +
1452 					           rdev->data_offset),
1453 					       bdevname(rdev->bdev, b));
1454 				}
1455 			}
1456 		}
1457 		sectors -= s;
1458 		sect += s;
1459 	}
1460 }
1461 
1462 static void raid1d(mddev_t *mddev)
1463 {
1464 	r1bio_t *r1_bio;
1465 	struct bio *bio;
1466 	unsigned long flags;
1467 	conf_t *conf = mddev_to_conf(mddev);
1468 	struct list_head *head = &conf->retry_list;
1469 	int unplug=0;
1470 	mdk_rdev_t *rdev;
1471 
1472 	md_check_recovery(mddev);
1473 
1474 	for (;;) {
1475 		char b[BDEVNAME_SIZE];
1476 		spin_lock_irqsave(&conf->device_lock, flags);
1477 
1478 		if (conf->pending_bio_list.head) {
1479 			bio = bio_list_get(&conf->pending_bio_list);
1480 			blk_remove_plug(mddev->queue);
1481 			spin_unlock_irqrestore(&conf->device_lock, flags);
1482 			/* flush any pending bitmap writes to disk before proceeding w/ I/O */
1483 			bitmap_unplug(mddev->bitmap);
1484 
1485 			while (bio) { /* submit pending writes */
1486 				struct bio *next = bio->bi_next;
1487 				bio->bi_next = NULL;
1488 				generic_make_request(bio);
1489 				bio = next;
1490 			}
1491 			unplug = 1;
1492 
1493 			continue;
1494 		}
1495 
1496 		if (list_empty(head))
1497 			break;
1498 		r1_bio = list_entry(head->prev, r1bio_t, retry_list);
1499 		list_del(head->prev);
1500 		conf->nr_queued--;
1501 		spin_unlock_irqrestore(&conf->device_lock, flags);
1502 
1503 		mddev = r1_bio->mddev;
1504 		conf = mddev_to_conf(mddev);
1505 		if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
1506 			sync_request_write(mddev, r1_bio);
1507 			unplug = 1;
1508 		} else if (test_bit(R1BIO_BarrierRetry, &r1_bio->state)) {
1509 			/* some requests in the r1bio were BIO_RW_BARRIER
1510 			 * requests which failed with -EOPNOTSUPP.  Hohumm..
1511 			 * Better resubmit without the barrier.
1512 			 * We know which devices to resubmit for, because
1513 			 * all others have had their bios[] entry cleared.
1514 			 * We already have a nr_pending reference on these rdevs.
1515 			 */
1516 			int i;
1517 			const int do_sync = bio_sync(r1_bio->master_bio);
1518 			clear_bit(R1BIO_BarrierRetry, &r1_bio->state);
1519 			clear_bit(R1BIO_Barrier, &r1_bio->state);
1520 			for (i=0; i < conf->raid_disks; i++)
1521 				if (r1_bio->bios[i])
1522 					atomic_inc(&r1_bio->remaining);
1523 			for (i=0; i < conf->raid_disks; i++)
1524 				if (r1_bio->bios[i]) {
1525 					struct bio_vec *bvec;
1526 					int j;
1527 
1528 					bio = bio_clone(r1_bio->master_bio, GFP_NOIO);
1529 					/* copy pages from the failed bio, as
1530 					 * this might be a write-behind device */
1531 					__bio_for_each_segment(bvec, bio, j, 0)
1532 						bvec->bv_page = bio_iovec_idx(r1_bio->bios[i], j)->bv_page;
1533 					bio_put(r1_bio->bios[i]);
1534 					bio->bi_sector = r1_bio->sector +
1535 						conf->mirrors[i].rdev->data_offset;
1536 					bio->bi_bdev = conf->mirrors[i].rdev->bdev;
1537 					bio->bi_end_io = raid1_end_write_request;
1538 					bio->bi_rw = WRITE | do_sync;
1539 					bio->bi_private = r1_bio;
1540 					r1_bio->bios[i] = bio;
1541 					generic_make_request(bio);
1542 				}
1543 		} else {
1544 			int disk;
1545 
1546 			/* we got a read error. Maybe the drive is bad.  Maybe just
1547 			 * the block and we can fix it.
1548 			 * We freeze all other IO, and try reading the block from
1549 			 * other devices.  When we find one, we re-write
1550 			 * and check it that fixes the read error.
1551 			 * This is all done synchronously while the array is
1552 			 * frozen
1553 			 */
1554 			if (mddev->ro == 0) {
1555 				freeze_array(conf);
1556 				fix_read_error(conf, r1_bio->read_disk,
1557 					       r1_bio->sector,
1558 					       r1_bio->sectors);
1559 				unfreeze_array(conf);
1560 			}
1561 
1562 			bio = r1_bio->bios[r1_bio->read_disk];
1563 			if ((disk=read_balance(conf, r1_bio)) == -1) {
1564 				printk(KERN_ALERT "raid1: %s: unrecoverable I/O"
1565 				       " read error for block %llu\n",
1566 				       bdevname(bio->bi_bdev,b),
1567 				       (unsigned long long)r1_bio->sector);
1568 				raid_end_bio_io(r1_bio);
1569 			} else {
1570 				const int do_sync = bio_sync(r1_bio->master_bio);
1571 				r1_bio->bios[r1_bio->read_disk] =
1572 					mddev->ro ? IO_BLOCKED : NULL;
1573 				r1_bio->read_disk = disk;
1574 				bio_put(bio);
1575 				bio = bio_clone(r1_bio->master_bio, GFP_NOIO);
1576 				r1_bio->bios[r1_bio->read_disk] = bio;
1577 				rdev = conf->mirrors[disk].rdev;
1578 				if (printk_ratelimit())
1579 					printk(KERN_ERR "raid1: %s: redirecting sector %llu to"
1580 					       " another mirror\n",
1581 					       bdevname(rdev->bdev,b),
1582 					       (unsigned long long)r1_bio->sector);
1583 				bio->bi_sector = r1_bio->sector + rdev->data_offset;
1584 				bio->bi_bdev = rdev->bdev;
1585 				bio->bi_end_io = raid1_end_read_request;
1586 				bio->bi_rw = READ | do_sync;
1587 				bio->bi_private = r1_bio;
1588 				unplug = 1;
1589 				generic_make_request(bio);
1590 			}
1591 		}
1592 	}
1593 	spin_unlock_irqrestore(&conf->device_lock, flags);
1594 	if (unplug)
1595 		unplug_slaves(mddev);
1596 }
1597 
1598 
1599 static int init_resync(conf_t *conf)
1600 {
1601 	int buffs;
1602 
1603 	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
1604 	BUG_ON(conf->r1buf_pool);
1605 	conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
1606 					  conf->poolinfo);
1607 	if (!conf->r1buf_pool)
1608 		return -ENOMEM;
1609 	conf->next_resync = 0;
1610 	return 0;
1611 }
1612 
1613 /*
1614  * perform a "sync" on one "block"
1615  *
1616  * We need to make sure that no normal I/O request - particularly write
1617  * requests - conflict with active sync requests.
1618  *
1619  * This is achieved by tracking pending requests and a 'barrier' concept
1620  * that can be installed to exclude normal IO requests.
1621  */
1622 
1623 static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
1624 {
1625 	conf_t *conf = mddev_to_conf(mddev);
1626 	r1bio_t *r1_bio;
1627 	struct bio *bio;
1628 	sector_t max_sector, nr_sectors;
1629 	int disk = -1;
1630 	int i;
1631 	int wonly = -1;
1632 	int write_targets = 0, read_targets = 0;
1633 	int sync_blocks;
1634 	int still_degraded = 0;
1635 
1636 	if (!conf->r1buf_pool)
1637 	{
1638 /*
1639 		printk("sync start - bitmap %p\n", mddev->bitmap);
1640 */
1641 		if (init_resync(conf))
1642 			return 0;
1643 	}
1644 
1645 	max_sector = mddev->size << 1;
1646 	if (sector_nr >= max_sector) {
1647 		/* If we aborted, we need to abort the
1648 		 * sync on the 'current' bitmap chunk (there will
1649 		 * only be one in raid1 resync.
1650 		 * We can find the current addess in mddev->curr_resync
1651 		 */
1652 		if (mddev->curr_resync < max_sector) /* aborted */
1653 			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
1654 						&sync_blocks, 1);
1655 		else /* completed sync */
1656 			conf->fullsync = 0;
1657 
1658 		bitmap_close_sync(mddev->bitmap);
1659 		close_sync(conf);
1660 		return 0;
1661 	}
1662 
1663 	if (mddev->bitmap == NULL &&
1664 	    mddev->recovery_cp == MaxSector &&
1665 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
1666 	    conf->fullsync == 0) {
1667 		*skipped = 1;
1668 		return max_sector - sector_nr;
1669 	}
1670 	/* before building a request, check if we can skip these blocks..
1671 	 * This call the bitmap_start_sync doesn't actually record anything
1672 	 */
1673 	if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
1674 	    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
1675 		/* We can skip this block, and probably several more */
1676 		*skipped = 1;
1677 		return sync_blocks;
1678 	}
1679 	/*
1680 	 * If there is non-resync activity waiting for a turn,
1681 	 * and resync is going fast enough,
1682 	 * then let it though before starting on this new sync request.
1683 	 */
1684 	if (!go_faster && conf->nr_waiting)
1685 		msleep_interruptible(1000);
1686 
1687 	raise_barrier(conf);
1688 
1689 	conf->next_resync = sector_nr;
1690 
1691 	r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
1692 	rcu_read_lock();
1693 	/*
1694 	 * If we get a correctably read error during resync or recovery,
1695 	 * we might want to read from a different device.  So we
1696 	 * flag all drives that could conceivably be read from for READ,
1697 	 * and any others (which will be non-In_sync devices) for WRITE.
1698 	 * If a read fails, we try reading from something else for which READ
1699 	 * is OK.
1700 	 */
1701 
1702 	r1_bio->mddev = mddev;
1703 	r1_bio->sector = sector_nr;
1704 	r1_bio->state = 0;
1705 	set_bit(R1BIO_IsSync, &r1_bio->state);
1706 
1707 	for (i=0; i < conf->raid_disks; i++) {
1708 		mdk_rdev_t *rdev;
1709 		bio = r1_bio->bios[i];
1710 
1711 		/* take from bio_init */
1712 		bio->bi_next = NULL;
1713 		bio->bi_flags |= 1 << BIO_UPTODATE;
1714 		bio->bi_rw = READ;
1715 		bio->bi_vcnt = 0;
1716 		bio->bi_idx = 0;
1717 		bio->bi_phys_segments = 0;
1718 		bio->bi_hw_segments = 0;
1719 		bio->bi_size = 0;
1720 		bio->bi_end_io = NULL;
1721 		bio->bi_private = NULL;
1722 
1723 		rdev = rcu_dereference(conf->mirrors[i].rdev);
1724 		if (rdev == NULL ||
1725 			   test_bit(Faulty, &rdev->flags)) {
1726 			still_degraded = 1;
1727 			continue;
1728 		} else if (!test_bit(In_sync, &rdev->flags)) {
1729 			bio->bi_rw = WRITE;
1730 			bio->bi_end_io = end_sync_write;
1731 			write_targets ++;
1732 		} else {
1733 			/* may need to read from here */
1734 			bio->bi_rw = READ;
1735 			bio->bi_end_io = end_sync_read;
1736 			if (test_bit(WriteMostly, &rdev->flags)) {
1737 				if (wonly < 0)
1738 					wonly = i;
1739 			} else {
1740 				if (disk < 0)
1741 					disk = i;
1742 			}
1743 			read_targets++;
1744 		}
1745 		atomic_inc(&rdev->nr_pending);
1746 		bio->bi_sector = sector_nr + rdev->data_offset;
1747 		bio->bi_bdev = rdev->bdev;
1748 		bio->bi_private = r1_bio;
1749 	}
1750 	rcu_read_unlock();
1751 	if (disk < 0)
1752 		disk = wonly;
1753 	r1_bio->read_disk = disk;
1754 
1755 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
1756 		/* extra read targets are also write targets */
1757 		write_targets += read_targets-1;
1758 
1759 	if (write_targets == 0 || read_targets == 0) {
1760 		/* There is nowhere to write, so all non-sync
1761 		 * drives must be failed - so we are finished
1762 		 */
1763 		sector_t rv = max_sector - sector_nr;
1764 		*skipped = 1;
1765 		put_buf(r1_bio);
1766 		return rv;
1767 	}
1768 
1769 	nr_sectors = 0;
1770 	sync_blocks = 0;
1771 	do {
1772 		struct page *page;
1773 		int len = PAGE_SIZE;
1774 		if (sector_nr + (len>>9) > max_sector)
1775 			len = (max_sector - sector_nr) << 9;
1776 		if (len == 0)
1777 			break;
1778 		if (sync_blocks == 0) {
1779 			if (!bitmap_start_sync(mddev->bitmap, sector_nr,
1780 					       &sync_blocks, still_degraded) &&
1781 			    !conf->fullsync &&
1782 			    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
1783 				break;
1784 			BUG_ON(sync_blocks < (PAGE_SIZE>>9));
1785 			if (len > (sync_blocks<<9))
1786 				len = sync_blocks<<9;
1787 		}
1788 
1789 		for (i=0 ; i < conf->raid_disks; i++) {
1790 			bio = r1_bio->bios[i];
1791 			if (bio->bi_end_io) {
1792 				page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
1793 				if (bio_add_page(bio, page, len, 0) == 0) {
1794 					/* stop here */
1795 					bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
1796 					while (i > 0) {
1797 						i--;
1798 						bio = r1_bio->bios[i];
1799 						if (bio->bi_end_io==NULL)
1800 							continue;
1801 						/* remove last page from this bio */
1802 						bio->bi_vcnt--;
1803 						bio->bi_size -= len;
1804 						bio->bi_flags &= ~(1<< BIO_SEG_VALID);
1805 					}
1806 					goto bio_full;
1807 				}
1808 			}
1809 		}
1810 		nr_sectors += len>>9;
1811 		sector_nr += len>>9;
1812 		sync_blocks -= (len>>9);
1813 	} while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
1814  bio_full:
1815 	r1_bio->sectors = nr_sectors;
1816 
1817 	/* For a user-requested sync, we read all readable devices and do a
1818 	 * compare
1819 	 */
1820 	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
1821 		atomic_set(&r1_bio->remaining, read_targets);
1822 		for (i=0; i<conf->raid_disks; i++) {
1823 			bio = r1_bio->bios[i];
1824 			if (bio->bi_end_io == end_sync_read) {
1825 				md_sync_acct(bio->bi_bdev, nr_sectors);
1826 				generic_make_request(bio);
1827 			}
1828 		}
1829 	} else {
1830 		atomic_set(&r1_bio->remaining, 1);
1831 		bio = r1_bio->bios[r1_bio->read_disk];
1832 		md_sync_acct(bio->bi_bdev, nr_sectors);
1833 		generic_make_request(bio);
1834 
1835 	}
1836 	return nr_sectors;
1837 }
1838 
1839 static int run(mddev_t *mddev)
1840 {
1841 	conf_t *conf;
1842 	int i, j, disk_idx;
1843 	mirror_info_t *disk;
1844 	mdk_rdev_t *rdev;
1845 	struct list_head *tmp;
1846 
1847 	if (mddev->level != 1) {
1848 		printk("raid1: %s: raid level not set to mirroring (%d)\n",
1849 		       mdname(mddev), mddev->level);
1850 		goto out;
1851 	}
1852 	if (mddev->reshape_position != MaxSector) {
1853 		printk("raid1: %s: reshape_position set but not supported\n",
1854 		       mdname(mddev));
1855 		goto out;
1856 	}
1857 	/*
1858 	 * copy the already verified devices into our private RAID1
1859 	 * bookkeeping area. [whatever we allocate in run(),
1860 	 * should be freed in stop()]
1861 	 */
1862 	conf = kzalloc(sizeof(conf_t), GFP_KERNEL);
1863 	mddev->private = conf;
1864 	if (!conf)
1865 		goto out_no_mem;
1866 
1867 	conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks,
1868 				 GFP_KERNEL);
1869 	if (!conf->mirrors)
1870 		goto out_no_mem;
1871 
1872 	conf->tmppage = alloc_page(GFP_KERNEL);
1873 	if (!conf->tmppage)
1874 		goto out_no_mem;
1875 
1876 	conf->poolinfo = kmalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
1877 	if (!conf->poolinfo)
1878 		goto out_no_mem;
1879 	conf->poolinfo->mddev = mddev;
1880 	conf->poolinfo->raid_disks = mddev->raid_disks;
1881 	conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
1882 					  r1bio_pool_free,
1883 					  conf->poolinfo);
1884 	if (!conf->r1bio_pool)
1885 		goto out_no_mem;
1886 
1887 	ITERATE_RDEV(mddev, rdev, tmp) {
1888 		disk_idx = rdev->raid_disk;
1889 		if (disk_idx >= mddev->raid_disks
1890 		    || disk_idx < 0)
1891 			continue;
1892 		disk = conf->mirrors + disk_idx;
1893 
1894 		disk->rdev = rdev;
1895 
1896 		blk_queue_stack_limits(mddev->queue,
1897 				       rdev->bdev->bd_disk->queue);
1898 		/* as we don't honour merge_bvec_fn, we must never risk
1899 		 * violating it, so limit ->max_sector to one PAGE, as
1900 		 * a one page request is never in violation.
1901 		 */
1902 		if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
1903 		    mddev->queue->max_sectors > (PAGE_SIZE>>9))
1904 			blk_queue_max_sectors(mddev->queue, PAGE_SIZE>>9);
1905 
1906 		disk->head_position = 0;
1907 	}
1908 	conf->raid_disks = mddev->raid_disks;
1909 	conf->mddev = mddev;
1910 	spin_lock_init(&conf->device_lock);
1911 	INIT_LIST_HEAD(&conf->retry_list);
1912 
1913 	spin_lock_init(&conf->resync_lock);
1914 	init_waitqueue_head(&conf->wait_barrier);
1915 
1916 	bio_list_init(&conf->pending_bio_list);
1917 	bio_list_init(&conf->flushing_bio_list);
1918 
1919 
1920 	mddev->degraded = 0;
1921 	for (i = 0; i < conf->raid_disks; i++) {
1922 
1923 		disk = conf->mirrors + i;
1924 
1925 		if (!disk->rdev ||
1926 		    !test_bit(In_sync, &disk->rdev->flags)) {
1927 			disk->head_position = 0;
1928 			mddev->degraded++;
1929 			if (disk->rdev)
1930 				conf->fullsync = 1;
1931 		}
1932 	}
1933 	if (mddev->degraded == conf->raid_disks) {
1934 		printk(KERN_ERR "raid1: no operational mirrors for %s\n",
1935 			mdname(mddev));
1936 		goto out_free_conf;
1937 	}
1938 	if (conf->raid_disks - mddev->degraded == 1)
1939 		mddev->recovery_cp = MaxSector;
1940 
1941 	/*
1942 	 * find the first working one and use it as a starting point
1943 	 * to read balancing.
1944 	 */
1945 	for (j = 0; j < conf->raid_disks &&
1946 		     (!conf->mirrors[j].rdev ||
1947 		      !test_bit(In_sync, &conf->mirrors[j].rdev->flags)) ; j++)
1948 		/* nothing */;
1949 	conf->last_used = j;
1950 
1951 
1952 	mddev->thread = md_register_thread(raid1d, mddev, "%s_raid1");
1953 	if (!mddev->thread) {
1954 		printk(KERN_ERR
1955 		       "raid1: couldn't allocate thread for %s\n",
1956 		       mdname(mddev));
1957 		goto out_free_conf;
1958 	}
1959 
1960 	printk(KERN_INFO
1961 		"raid1: raid set %s active with %d out of %d mirrors\n",
1962 		mdname(mddev), mddev->raid_disks - mddev->degraded,
1963 		mddev->raid_disks);
1964 	/*
1965 	 * Ok, everything is just fine now
1966 	 */
1967 	mddev->array_size = mddev->size;
1968 
1969 	mddev->queue->unplug_fn = raid1_unplug;
1970 	mddev->queue->backing_dev_info.congested_fn = raid1_congested;
1971 	mddev->queue->backing_dev_info.congested_data = mddev;
1972 
1973 	return 0;
1974 
1975 out_no_mem:
1976 	printk(KERN_ERR "raid1: couldn't allocate memory for %s\n",
1977 	       mdname(mddev));
1978 
1979 out_free_conf:
1980 	if (conf) {
1981 		if (conf->r1bio_pool)
1982 			mempool_destroy(conf->r1bio_pool);
1983 		kfree(conf->mirrors);
1984 		safe_put_page(conf->tmppage);
1985 		kfree(conf->poolinfo);
1986 		kfree(conf);
1987 		mddev->private = NULL;
1988 	}
1989 out:
1990 	return -EIO;
1991 }
1992 
1993 static int stop(mddev_t *mddev)
1994 {
1995 	conf_t *conf = mddev_to_conf(mddev);
1996 	struct bitmap *bitmap = mddev->bitmap;
1997 	int behind_wait = 0;
1998 
1999 	/* wait for behind writes to complete */
2000 	while (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
2001 		behind_wait++;
2002 		printk(KERN_INFO "raid1: behind writes in progress on device %s, waiting to stop (%d)\n", mdname(mddev), behind_wait);
2003 		set_current_state(TASK_UNINTERRUPTIBLE);
2004 		schedule_timeout(HZ); /* wait a second */
2005 		/* need to kick something here to make sure I/O goes? */
2006 	}
2007 
2008 	md_unregister_thread(mddev->thread);
2009 	mddev->thread = NULL;
2010 	blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
2011 	if (conf->r1bio_pool)
2012 		mempool_destroy(conf->r1bio_pool);
2013 	kfree(conf->mirrors);
2014 	kfree(conf->poolinfo);
2015 	kfree(conf);
2016 	mddev->private = NULL;
2017 	return 0;
2018 }
2019 
2020 static int raid1_resize(mddev_t *mddev, sector_t sectors)
2021 {
2022 	/* no resync is happening, and there is enough space
2023 	 * on all devices, so we can resize.
2024 	 * We need to make sure resync covers any new space.
2025 	 * If the array is shrinking we should possibly wait until
2026 	 * any io in the removed space completes, but it hardly seems
2027 	 * worth it.
2028 	 */
2029 	mddev->array_size = sectors>>1;
2030 	set_capacity(mddev->gendisk, mddev->array_size << 1);
2031 	mddev->changed = 1;
2032 	if (mddev->array_size > mddev->size && mddev->recovery_cp == MaxSector) {
2033 		mddev->recovery_cp = mddev->size << 1;
2034 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2035 	}
2036 	mddev->size = mddev->array_size;
2037 	mddev->resync_max_sectors = sectors;
2038 	return 0;
2039 }
2040 
2041 static int raid1_reshape(mddev_t *mddev)
2042 {
2043 	/* We need to:
2044 	 * 1/ resize the r1bio_pool
2045 	 * 2/ resize conf->mirrors
2046 	 *
2047 	 * We allocate a new r1bio_pool if we can.
2048 	 * Then raise a device barrier and wait until all IO stops.
2049 	 * Then resize conf->mirrors and swap in the new r1bio pool.
2050 	 *
2051 	 * At the same time, we "pack" the devices so that all the missing
2052 	 * devices have the higher raid_disk numbers.
2053 	 */
2054 	mempool_t *newpool, *oldpool;
2055 	struct pool_info *newpoolinfo;
2056 	mirror_info_t *newmirrors;
2057 	conf_t *conf = mddev_to_conf(mddev);
2058 	int cnt, raid_disks;
2059 	unsigned long flags;
2060 	int d, d2;
2061 
2062 	/* Cannot change chunk_size, layout, or level */
2063 	if (mddev->chunk_size != mddev->new_chunk ||
2064 	    mddev->layout != mddev->new_layout ||
2065 	    mddev->level != mddev->new_level) {
2066 		mddev->new_chunk = mddev->chunk_size;
2067 		mddev->new_layout = mddev->layout;
2068 		mddev->new_level = mddev->level;
2069 		return -EINVAL;
2070 	}
2071 
2072 	md_allow_write(mddev);
2073 
2074 	raid_disks = mddev->raid_disks + mddev->delta_disks;
2075 
2076 	if (raid_disks < conf->raid_disks) {
2077 		cnt=0;
2078 		for (d= 0; d < conf->raid_disks; d++)
2079 			if (conf->mirrors[d].rdev)
2080 				cnt++;
2081 		if (cnt > raid_disks)
2082 			return -EBUSY;
2083 	}
2084 
2085 	newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
2086 	if (!newpoolinfo)
2087 		return -ENOMEM;
2088 	newpoolinfo->mddev = mddev;
2089 	newpoolinfo->raid_disks = raid_disks;
2090 
2091 	newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2092 				 r1bio_pool_free, newpoolinfo);
2093 	if (!newpool) {
2094 		kfree(newpoolinfo);
2095 		return -ENOMEM;
2096 	}
2097 	newmirrors = kzalloc(sizeof(struct mirror_info) * raid_disks, GFP_KERNEL);
2098 	if (!newmirrors) {
2099 		kfree(newpoolinfo);
2100 		mempool_destroy(newpool);
2101 		return -ENOMEM;
2102 	}
2103 
2104 	raise_barrier(conf);
2105 
2106 	/* ok, everything is stopped */
2107 	oldpool = conf->r1bio_pool;
2108 	conf->r1bio_pool = newpool;
2109 
2110 	for (d = d2 = 0; d < conf->raid_disks; d++) {
2111 		mdk_rdev_t *rdev = conf->mirrors[d].rdev;
2112 		if (rdev && rdev->raid_disk != d2) {
2113 			char nm[20];
2114 			sprintf(nm, "rd%d", rdev->raid_disk);
2115 			sysfs_remove_link(&mddev->kobj, nm);
2116 			rdev->raid_disk = d2;
2117 			sprintf(nm, "rd%d", rdev->raid_disk);
2118 			sysfs_remove_link(&mddev->kobj, nm);
2119 			if (sysfs_create_link(&mddev->kobj,
2120 					      &rdev->kobj, nm))
2121 				printk(KERN_WARNING
2122 				       "md/raid1: cannot register "
2123 				       "%s for %s\n",
2124 				       nm, mdname(mddev));
2125 		}
2126 		if (rdev)
2127 			newmirrors[d2++].rdev = rdev;
2128 	}
2129 	kfree(conf->mirrors);
2130 	conf->mirrors = newmirrors;
2131 	kfree(conf->poolinfo);
2132 	conf->poolinfo = newpoolinfo;
2133 
2134 	spin_lock_irqsave(&conf->device_lock, flags);
2135 	mddev->degraded += (raid_disks - conf->raid_disks);
2136 	spin_unlock_irqrestore(&conf->device_lock, flags);
2137 	conf->raid_disks = mddev->raid_disks = raid_disks;
2138 	mddev->delta_disks = 0;
2139 
2140 	conf->last_used = 0; /* just make sure it is in-range */
2141 	lower_barrier(conf);
2142 
2143 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2144 	md_wakeup_thread(mddev->thread);
2145 
2146 	mempool_destroy(oldpool);
2147 	return 0;
2148 }
2149 
2150 static void raid1_quiesce(mddev_t *mddev, int state)
2151 {
2152 	conf_t *conf = mddev_to_conf(mddev);
2153 
2154 	switch(state) {
2155 	case 1:
2156 		raise_barrier(conf);
2157 		break;
2158 	case 0:
2159 		lower_barrier(conf);
2160 		break;
2161 	}
2162 }
2163 
2164 
2165 static struct mdk_personality raid1_personality =
2166 {
2167 	.name		= "raid1",
2168 	.level		= 1,
2169 	.owner		= THIS_MODULE,
2170 	.make_request	= make_request,
2171 	.run		= run,
2172 	.stop		= stop,
2173 	.status		= status,
2174 	.error_handler	= error,
2175 	.hot_add_disk	= raid1_add_disk,
2176 	.hot_remove_disk= raid1_remove_disk,
2177 	.spare_active	= raid1_spare_active,
2178 	.sync_request	= sync_request,
2179 	.resize		= raid1_resize,
2180 	.check_reshape	= raid1_reshape,
2181 	.quiesce	= raid1_quiesce,
2182 };
2183 
2184 static int __init raid_init(void)
2185 {
2186 	return register_md_personality(&raid1_personality);
2187 }
2188 
2189 static void raid_exit(void)
2190 {
2191 	unregister_md_personality(&raid1_personality);
2192 }
2193 
2194 module_init(raid_init);
2195 module_exit(raid_exit);
2196 MODULE_LICENSE("GPL");
2197 MODULE_ALIAS("md-personality-3"); /* RAID1 */
2198 MODULE_ALIAS("md-raid1");
2199 MODULE_ALIAS("md-level-1");
2200