1 /* 2 * raid1.c : Multiple Devices driver for Linux 3 * 4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat 5 * 6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman 7 * 8 * RAID-1 management functions. 9 * 10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000 11 * 12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk> 13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au> 14 * 15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support 16 * bitmapped intelligence in resync: 17 * 18 * - bitmap marked during normal i/o 19 * - bitmap used to skip nondirty blocks during sync 20 * 21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology: 22 * - persistent bitmap code 23 * 24 * This program is free software; you can redistribute it and/or modify 25 * it under the terms of the GNU General Public License as published by 26 * the Free Software Foundation; either version 2, or (at your option) 27 * any later version. 28 * 29 * You should have received a copy of the GNU General Public License 30 * (for example /usr/src/linux/COPYING); if not, write to the Free 31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 32 */ 33 34 #include "dm-bio-list.h" 35 #include <linux/raid/raid1.h> 36 #include <linux/raid/bitmap.h> 37 38 #define DEBUG 0 39 #if DEBUG 40 #define PRINTK(x...) printk(x) 41 #else 42 #define PRINTK(x...) 43 #endif 44 45 /* 46 * Number of guaranteed r1bios in case of extreme VM load: 47 */ 48 #define NR_RAID1_BIOS 256 49 50 51 static void unplug_slaves(mddev_t *mddev); 52 53 static void allow_barrier(conf_t *conf); 54 static void lower_barrier(conf_t *conf); 55 56 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data) 57 { 58 struct pool_info *pi = data; 59 r1bio_t *r1_bio; 60 int size = offsetof(r1bio_t, bios[pi->raid_disks]); 61 62 /* allocate a r1bio with room for raid_disks entries in the bios array */ 63 r1_bio = kzalloc(size, gfp_flags); 64 if (!r1_bio) 65 unplug_slaves(pi->mddev); 66 67 return r1_bio; 68 } 69 70 static void r1bio_pool_free(void *r1_bio, void *data) 71 { 72 kfree(r1_bio); 73 } 74 75 #define RESYNC_BLOCK_SIZE (64*1024) 76 //#define RESYNC_BLOCK_SIZE PAGE_SIZE 77 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9) 78 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE) 79 #define RESYNC_WINDOW (2048*1024) 80 81 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data) 82 { 83 struct pool_info *pi = data; 84 struct page *page; 85 r1bio_t *r1_bio; 86 struct bio *bio; 87 int i, j; 88 89 r1_bio = r1bio_pool_alloc(gfp_flags, pi); 90 if (!r1_bio) { 91 unplug_slaves(pi->mddev); 92 return NULL; 93 } 94 95 /* 96 * Allocate bios : 1 for reading, n-1 for writing 97 */ 98 for (j = pi->raid_disks ; j-- ; ) { 99 bio = bio_alloc(gfp_flags, RESYNC_PAGES); 100 if (!bio) 101 goto out_free_bio; 102 r1_bio->bios[j] = bio; 103 } 104 /* 105 * Allocate RESYNC_PAGES data pages and attach them to 106 * the first bio. 107 * If this is a user-requested check/repair, allocate 108 * RESYNC_PAGES for each bio. 109 */ 110 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) 111 j = pi->raid_disks; 112 else 113 j = 1; 114 while(j--) { 115 bio = r1_bio->bios[j]; 116 for (i = 0; i < RESYNC_PAGES; i++) { 117 page = alloc_page(gfp_flags); 118 if (unlikely(!page)) 119 goto out_free_pages; 120 121 bio->bi_io_vec[i].bv_page = page; 122 } 123 } 124 /* If not user-requests, copy the page pointers to all bios */ 125 if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) { 126 for (i=0; i<RESYNC_PAGES ; i++) 127 for (j=1; j<pi->raid_disks; j++) 128 r1_bio->bios[j]->bi_io_vec[i].bv_page = 129 r1_bio->bios[0]->bi_io_vec[i].bv_page; 130 } 131 132 r1_bio->master_bio = NULL; 133 134 return r1_bio; 135 136 out_free_pages: 137 for (i=0; i < RESYNC_PAGES ; i++) 138 for (j=0 ; j < pi->raid_disks; j++) 139 safe_put_page(r1_bio->bios[j]->bi_io_vec[i].bv_page); 140 j = -1; 141 out_free_bio: 142 while ( ++j < pi->raid_disks ) 143 bio_put(r1_bio->bios[j]); 144 r1bio_pool_free(r1_bio, data); 145 return NULL; 146 } 147 148 static void r1buf_pool_free(void *__r1_bio, void *data) 149 { 150 struct pool_info *pi = data; 151 int i,j; 152 r1bio_t *r1bio = __r1_bio; 153 154 for (i = 0; i < RESYNC_PAGES; i++) 155 for (j = pi->raid_disks; j-- ;) { 156 if (j == 0 || 157 r1bio->bios[j]->bi_io_vec[i].bv_page != 158 r1bio->bios[0]->bi_io_vec[i].bv_page) 159 safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page); 160 } 161 for (i=0 ; i < pi->raid_disks; i++) 162 bio_put(r1bio->bios[i]); 163 164 r1bio_pool_free(r1bio, data); 165 } 166 167 static void put_all_bios(conf_t *conf, r1bio_t *r1_bio) 168 { 169 int i; 170 171 for (i = 0; i < conf->raid_disks; i++) { 172 struct bio **bio = r1_bio->bios + i; 173 if (*bio && *bio != IO_BLOCKED) 174 bio_put(*bio); 175 *bio = NULL; 176 } 177 } 178 179 static void free_r1bio(r1bio_t *r1_bio) 180 { 181 conf_t *conf = mddev_to_conf(r1_bio->mddev); 182 183 /* 184 * Wake up any possible resync thread that waits for the device 185 * to go idle. 186 */ 187 allow_barrier(conf); 188 189 put_all_bios(conf, r1_bio); 190 mempool_free(r1_bio, conf->r1bio_pool); 191 } 192 193 static void put_buf(r1bio_t *r1_bio) 194 { 195 conf_t *conf = mddev_to_conf(r1_bio->mddev); 196 int i; 197 198 for (i=0; i<conf->raid_disks; i++) { 199 struct bio *bio = r1_bio->bios[i]; 200 if (bio->bi_end_io) 201 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev); 202 } 203 204 mempool_free(r1_bio, conf->r1buf_pool); 205 206 lower_barrier(conf); 207 } 208 209 static void reschedule_retry(r1bio_t *r1_bio) 210 { 211 unsigned long flags; 212 mddev_t *mddev = r1_bio->mddev; 213 conf_t *conf = mddev_to_conf(mddev); 214 215 spin_lock_irqsave(&conf->device_lock, flags); 216 list_add(&r1_bio->retry_list, &conf->retry_list); 217 conf->nr_queued ++; 218 spin_unlock_irqrestore(&conf->device_lock, flags); 219 220 wake_up(&conf->wait_barrier); 221 md_wakeup_thread(mddev->thread); 222 } 223 224 /* 225 * raid_end_bio_io() is called when we have finished servicing a mirrored 226 * operation and are ready to return a success/failure code to the buffer 227 * cache layer. 228 */ 229 static void raid_end_bio_io(r1bio_t *r1_bio) 230 { 231 struct bio *bio = r1_bio->master_bio; 232 233 /* if nobody has done the final endio yet, do it now */ 234 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) { 235 PRINTK(KERN_DEBUG "raid1: sync end %s on sectors %llu-%llu\n", 236 (bio_data_dir(bio) == WRITE) ? "write" : "read", 237 (unsigned long long) bio->bi_sector, 238 (unsigned long long) bio->bi_sector + 239 (bio->bi_size >> 9) - 1); 240 241 bio_endio(bio, 242 test_bit(R1BIO_Uptodate, &r1_bio->state) ? 0 : -EIO); 243 } 244 free_r1bio(r1_bio); 245 } 246 247 /* 248 * Update disk head position estimator based on IRQ completion info. 249 */ 250 static inline void update_head_pos(int disk, r1bio_t *r1_bio) 251 { 252 conf_t *conf = mddev_to_conf(r1_bio->mddev); 253 254 conf->mirrors[disk].head_position = 255 r1_bio->sector + (r1_bio->sectors); 256 } 257 258 static void raid1_end_read_request(struct bio *bio, int error) 259 { 260 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 261 r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private); 262 int mirror; 263 conf_t *conf = mddev_to_conf(r1_bio->mddev); 264 265 mirror = r1_bio->read_disk; 266 /* 267 * this branch is our 'one mirror IO has finished' event handler: 268 */ 269 update_head_pos(mirror, r1_bio); 270 271 if (uptodate) 272 set_bit(R1BIO_Uptodate, &r1_bio->state); 273 else { 274 /* If all other devices have failed, we want to return 275 * the error upwards rather than fail the last device. 276 * Here we redefine "uptodate" to mean "Don't want to retry" 277 */ 278 unsigned long flags; 279 spin_lock_irqsave(&conf->device_lock, flags); 280 if (r1_bio->mddev->degraded == conf->raid_disks || 281 (r1_bio->mddev->degraded == conf->raid_disks-1 && 282 !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags))) 283 uptodate = 1; 284 spin_unlock_irqrestore(&conf->device_lock, flags); 285 } 286 287 if (uptodate) 288 raid_end_bio_io(r1_bio); 289 else { 290 /* 291 * oops, read error: 292 */ 293 char b[BDEVNAME_SIZE]; 294 if (printk_ratelimit()) 295 printk(KERN_ERR "raid1: %s: rescheduling sector %llu\n", 296 bdevname(conf->mirrors[mirror].rdev->bdev,b), (unsigned long long)r1_bio->sector); 297 reschedule_retry(r1_bio); 298 } 299 300 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev); 301 } 302 303 static void raid1_end_write_request(struct bio *bio, int error) 304 { 305 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 306 r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private); 307 int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state); 308 conf_t *conf = mddev_to_conf(r1_bio->mddev); 309 struct bio *to_put = NULL; 310 311 312 for (mirror = 0; mirror < conf->raid_disks; mirror++) 313 if (r1_bio->bios[mirror] == bio) 314 break; 315 316 if (error == -EOPNOTSUPP && test_bit(R1BIO_Barrier, &r1_bio->state)) { 317 set_bit(BarriersNotsupp, &conf->mirrors[mirror].rdev->flags); 318 set_bit(R1BIO_BarrierRetry, &r1_bio->state); 319 r1_bio->mddev->barriers_work = 0; 320 /* Don't rdev_dec_pending in this branch - keep it for the retry */ 321 } else { 322 /* 323 * this branch is our 'one mirror IO has finished' event handler: 324 */ 325 r1_bio->bios[mirror] = NULL; 326 to_put = bio; 327 if (!uptodate) { 328 md_error(r1_bio->mddev, conf->mirrors[mirror].rdev); 329 /* an I/O failed, we can't clear the bitmap */ 330 set_bit(R1BIO_Degraded, &r1_bio->state); 331 } else 332 /* 333 * Set R1BIO_Uptodate in our master bio, so that 334 * we will return a good error code for to the higher 335 * levels even if IO on some other mirrored buffer fails. 336 * 337 * The 'master' represents the composite IO operation to 338 * user-side. So if something waits for IO, then it will 339 * wait for the 'master' bio. 340 */ 341 set_bit(R1BIO_Uptodate, &r1_bio->state); 342 343 update_head_pos(mirror, r1_bio); 344 345 if (behind) { 346 if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags)) 347 atomic_dec(&r1_bio->behind_remaining); 348 349 /* In behind mode, we ACK the master bio once the I/O has safely 350 * reached all non-writemostly disks. Setting the Returned bit 351 * ensures that this gets done only once -- we don't ever want to 352 * return -EIO here, instead we'll wait */ 353 354 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) && 355 test_bit(R1BIO_Uptodate, &r1_bio->state)) { 356 /* Maybe we can return now */ 357 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) { 358 struct bio *mbio = r1_bio->master_bio; 359 PRINTK(KERN_DEBUG "raid1: behind end write sectors %llu-%llu\n", 360 (unsigned long long) mbio->bi_sector, 361 (unsigned long long) mbio->bi_sector + 362 (mbio->bi_size >> 9) - 1); 363 bio_endio(mbio, 0); 364 } 365 } 366 } 367 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev); 368 } 369 /* 370 * 371 * Let's see if all mirrored write operations have finished 372 * already. 373 */ 374 if (atomic_dec_and_test(&r1_bio->remaining)) { 375 if (test_bit(R1BIO_BarrierRetry, &r1_bio->state)) 376 reschedule_retry(r1_bio); 377 else { 378 /* it really is the end of this request */ 379 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) { 380 /* free extra copy of the data pages */ 381 int i = bio->bi_vcnt; 382 while (i--) 383 safe_put_page(bio->bi_io_vec[i].bv_page); 384 } 385 /* clear the bitmap if all writes complete successfully */ 386 bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector, 387 r1_bio->sectors, 388 !test_bit(R1BIO_Degraded, &r1_bio->state), 389 behind); 390 md_write_end(r1_bio->mddev); 391 raid_end_bio_io(r1_bio); 392 } 393 } 394 395 if (to_put) 396 bio_put(to_put); 397 } 398 399 400 /* 401 * This routine returns the disk from which the requested read should 402 * be done. There is a per-array 'next expected sequential IO' sector 403 * number - if this matches on the next IO then we use the last disk. 404 * There is also a per-disk 'last know head position' sector that is 405 * maintained from IRQ contexts, both the normal and the resync IO 406 * completion handlers update this position correctly. If there is no 407 * perfect sequential match then we pick the disk whose head is closest. 408 * 409 * If there are 2 mirrors in the same 2 devices, performance degrades 410 * because position is mirror, not device based. 411 * 412 * The rdev for the device selected will have nr_pending incremented. 413 */ 414 static int read_balance(conf_t *conf, r1bio_t *r1_bio) 415 { 416 const unsigned long this_sector = r1_bio->sector; 417 int new_disk = conf->last_used, disk = new_disk; 418 int wonly_disk = -1; 419 const int sectors = r1_bio->sectors; 420 sector_t new_distance, current_distance; 421 mdk_rdev_t *rdev; 422 423 rcu_read_lock(); 424 /* 425 * Check if we can balance. We can balance on the whole 426 * device if no resync is going on, or below the resync window. 427 * We take the first readable disk when above the resync window. 428 */ 429 retry: 430 if (conf->mddev->recovery_cp < MaxSector && 431 (this_sector + sectors >= conf->next_resync)) { 432 /* Choose the first operation device, for consistancy */ 433 new_disk = 0; 434 435 for (rdev = rcu_dereference(conf->mirrors[new_disk].rdev); 436 r1_bio->bios[new_disk] == IO_BLOCKED || 437 !rdev || !test_bit(In_sync, &rdev->flags) 438 || test_bit(WriteMostly, &rdev->flags); 439 rdev = rcu_dereference(conf->mirrors[++new_disk].rdev)) { 440 441 if (rdev && test_bit(In_sync, &rdev->flags) && 442 r1_bio->bios[new_disk] != IO_BLOCKED) 443 wonly_disk = new_disk; 444 445 if (new_disk == conf->raid_disks - 1) { 446 new_disk = wonly_disk; 447 break; 448 } 449 } 450 goto rb_out; 451 } 452 453 454 /* make sure the disk is operational */ 455 for (rdev = rcu_dereference(conf->mirrors[new_disk].rdev); 456 r1_bio->bios[new_disk] == IO_BLOCKED || 457 !rdev || !test_bit(In_sync, &rdev->flags) || 458 test_bit(WriteMostly, &rdev->flags); 459 rdev = rcu_dereference(conf->mirrors[new_disk].rdev)) { 460 461 if (rdev && test_bit(In_sync, &rdev->flags) && 462 r1_bio->bios[new_disk] != IO_BLOCKED) 463 wonly_disk = new_disk; 464 465 if (new_disk <= 0) 466 new_disk = conf->raid_disks; 467 new_disk--; 468 if (new_disk == disk) { 469 new_disk = wonly_disk; 470 break; 471 } 472 } 473 474 if (new_disk < 0) 475 goto rb_out; 476 477 disk = new_disk; 478 /* now disk == new_disk == starting point for search */ 479 480 /* 481 * Don't change to another disk for sequential reads: 482 */ 483 if (conf->next_seq_sect == this_sector) 484 goto rb_out; 485 if (this_sector == conf->mirrors[new_disk].head_position) 486 goto rb_out; 487 488 current_distance = abs(this_sector - conf->mirrors[disk].head_position); 489 490 /* Find the disk whose head is closest */ 491 492 do { 493 if (disk <= 0) 494 disk = conf->raid_disks; 495 disk--; 496 497 rdev = rcu_dereference(conf->mirrors[disk].rdev); 498 499 if (!rdev || r1_bio->bios[disk] == IO_BLOCKED || 500 !test_bit(In_sync, &rdev->flags) || 501 test_bit(WriteMostly, &rdev->flags)) 502 continue; 503 504 if (!atomic_read(&rdev->nr_pending)) { 505 new_disk = disk; 506 break; 507 } 508 new_distance = abs(this_sector - conf->mirrors[disk].head_position); 509 if (new_distance < current_distance) { 510 current_distance = new_distance; 511 new_disk = disk; 512 } 513 } while (disk != conf->last_used); 514 515 rb_out: 516 517 518 if (new_disk >= 0) { 519 rdev = rcu_dereference(conf->mirrors[new_disk].rdev); 520 if (!rdev) 521 goto retry; 522 atomic_inc(&rdev->nr_pending); 523 if (!test_bit(In_sync, &rdev->flags)) { 524 /* cannot risk returning a device that failed 525 * before we inc'ed nr_pending 526 */ 527 rdev_dec_pending(rdev, conf->mddev); 528 goto retry; 529 } 530 conf->next_seq_sect = this_sector + sectors; 531 conf->last_used = new_disk; 532 } 533 rcu_read_unlock(); 534 535 return new_disk; 536 } 537 538 static void unplug_slaves(mddev_t *mddev) 539 { 540 conf_t *conf = mddev_to_conf(mddev); 541 int i; 542 543 rcu_read_lock(); 544 for (i=0; i<mddev->raid_disks; i++) { 545 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev); 546 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) { 547 struct request_queue *r_queue = bdev_get_queue(rdev->bdev); 548 549 atomic_inc(&rdev->nr_pending); 550 rcu_read_unlock(); 551 552 blk_unplug(r_queue); 553 554 rdev_dec_pending(rdev, mddev); 555 rcu_read_lock(); 556 } 557 } 558 rcu_read_unlock(); 559 } 560 561 static void raid1_unplug(struct request_queue *q) 562 { 563 mddev_t *mddev = q->queuedata; 564 565 unplug_slaves(mddev); 566 md_wakeup_thread(mddev->thread); 567 } 568 569 static int raid1_congested(void *data, int bits) 570 { 571 mddev_t *mddev = data; 572 conf_t *conf = mddev_to_conf(mddev); 573 int i, ret = 0; 574 575 rcu_read_lock(); 576 for (i = 0; i < mddev->raid_disks; i++) { 577 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev); 578 if (rdev && !test_bit(Faulty, &rdev->flags)) { 579 struct request_queue *q = bdev_get_queue(rdev->bdev); 580 581 /* Note the '|| 1' - when read_balance prefers 582 * non-congested targets, it can be removed 583 */ 584 if ((bits & (1<<BDI_write_congested)) || 1) 585 ret |= bdi_congested(&q->backing_dev_info, bits); 586 else 587 ret &= bdi_congested(&q->backing_dev_info, bits); 588 } 589 } 590 rcu_read_unlock(); 591 return ret; 592 } 593 594 595 /* Barriers.... 596 * Sometimes we need to suspend IO while we do something else, 597 * either some resync/recovery, or reconfigure the array. 598 * To do this we raise a 'barrier'. 599 * The 'barrier' is a counter that can be raised multiple times 600 * to count how many activities are happening which preclude 601 * normal IO. 602 * We can only raise the barrier if there is no pending IO. 603 * i.e. if nr_pending == 0. 604 * We choose only to raise the barrier if no-one is waiting for the 605 * barrier to go down. This means that as soon as an IO request 606 * is ready, no other operations which require a barrier will start 607 * until the IO request has had a chance. 608 * 609 * So: regular IO calls 'wait_barrier'. When that returns there 610 * is no backgroup IO happening, It must arrange to call 611 * allow_barrier when it has finished its IO. 612 * backgroup IO calls must call raise_barrier. Once that returns 613 * there is no normal IO happeing. It must arrange to call 614 * lower_barrier when the particular background IO completes. 615 */ 616 #define RESYNC_DEPTH 32 617 618 static void raise_barrier(conf_t *conf) 619 { 620 spin_lock_irq(&conf->resync_lock); 621 622 /* Wait until no block IO is waiting */ 623 wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting, 624 conf->resync_lock, 625 raid1_unplug(conf->mddev->queue)); 626 627 /* block any new IO from starting */ 628 conf->barrier++; 629 630 /* No wait for all pending IO to complete */ 631 wait_event_lock_irq(conf->wait_barrier, 632 !conf->nr_pending && conf->barrier < RESYNC_DEPTH, 633 conf->resync_lock, 634 raid1_unplug(conf->mddev->queue)); 635 636 spin_unlock_irq(&conf->resync_lock); 637 } 638 639 static void lower_barrier(conf_t *conf) 640 { 641 unsigned long flags; 642 spin_lock_irqsave(&conf->resync_lock, flags); 643 conf->barrier--; 644 spin_unlock_irqrestore(&conf->resync_lock, flags); 645 wake_up(&conf->wait_barrier); 646 } 647 648 static void wait_barrier(conf_t *conf) 649 { 650 spin_lock_irq(&conf->resync_lock); 651 if (conf->barrier) { 652 conf->nr_waiting++; 653 wait_event_lock_irq(conf->wait_barrier, !conf->barrier, 654 conf->resync_lock, 655 raid1_unplug(conf->mddev->queue)); 656 conf->nr_waiting--; 657 } 658 conf->nr_pending++; 659 spin_unlock_irq(&conf->resync_lock); 660 } 661 662 static void allow_barrier(conf_t *conf) 663 { 664 unsigned long flags; 665 spin_lock_irqsave(&conf->resync_lock, flags); 666 conf->nr_pending--; 667 spin_unlock_irqrestore(&conf->resync_lock, flags); 668 wake_up(&conf->wait_barrier); 669 } 670 671 static void freeze_array(conf_t *conf) 672 { 673 /* stop syncio and normal IO and wait for everything to 674 * go quite. 675 * We increment barrier and nr_waiting, and then 676 * wait until barrier+nr_pending match nr_queued+2 677 */ 678 spin_lock_irq(&conf->resync_lock); 679 conf->barrier++; 680 conf->nr_waiting++; 681 wait_event_lock_irq(conf->wait_barrier, 682 conf->barrier+conf->nr_pending == conf->nr_queued+2, 683 conf->resync_lock, 684 raid1_unplug(conf->mddev->queue)); 685 spin_unlock_irq(&conf->resync_lock); 686 } 687 static void unfreeze_array(conf_t *conf) 688 { 689 /* reverse the effect of the freeze */ 690 spin_lock_irq(&conf->resync_lock); 691 conf->barrier--; 692 conf->nr_waiting--; 693 wake_up(&conf->wait_barrier); 694 spin_unlock_irq(&conf->resync_lock); 695 } 696 697 698 /* duplicate the data pages for behind I/O */ 699 static struct page **alloc_behind_pages(struct bio *bio) 700 { 701 int i; 702 struct bio_vec *bvec; 703 struct page **pages = kzalloc(bio->bi_vcnt * sizeof(struct page *), 704 GFP_NOIO); 705 if (unlikely(!pages)) 706 goto do_sync_io; 707 708 bio_for_each_segment(bvec, bio, i) { 709 pages[i] = alloc_page(GFP_NOIO); 710 if (unlikely(!pages[i])) 711 goto do_sync_io; 712 memcpy(kmap(pages[i]) + bvec->bv_offset, 713 kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len); 714 kunmap(pages[i]); 715 kunmap(bvec->bv_page); 716 } 717 718 return pages; 719 720 do_sync_io: 721 if (pages) 722 for (i = 0; i < bio->bi_vcnt && pages[i]; i++) 723 put_page(pages[i]); 724 kfree(pages); 725 PRINTK("%dB behind alloc failed, doing sync I/O\n", bio->bi_size); 726 return NULL; 727 } 728 729 static int make_request(struct request_queue *q, struct bio * bio) 730 { 731 mddev_t *mddev = q->queuedata; 732 conf_t *conf = mddev_to_conf(mddev); 733 mirror_info_t *mirror; 734 r1bio_t *r1_bio; 735 struct bio *read_bio; 736 int i, targets = 0, disks; 737 mdk_rdev_t *rdev; 738 struct bitmap *bitmap = mddev->bitmap; 739 unsigned long flags; 740 struct bio_list bl; 741 struct page **behind_pages = NULL; 742 const int rw = bio_data_dir(bio); 743 const int do_sync = bio_sync(bio); 744 int do_barriers; 745 746 /* 747 * Register the new request and wait if the reconstruction 748 * thread has put up a bar for new requests. 749 * Continue immediately if no resync is active currently. 750 * We test barriers_work *after* md_write_start as md_write_start 751 * may cause the first superblock write, and that will check out 752 * if barriers work. 753 */ 754 755 md_write_start(mddev, bio); /* wait on superblock update early */ 756 757 if (unlikely(!mddev->barriers_work && bio_barrier(bio))) { 758 if (rw == WRITE) 759 md_write_end(mddev); 760 bio_endio(bio, -EOPNOTSUPP); 761 return 0; 762 } 763 764 wait_barrier(conf); 765 766 disk_stat_inc(mddev->gendisk, ios[rw]); 767 disk_stat_add(mddev->gendisk, sectors[rw], bio_sectors(bio)); 768 769 /* 770 * make_request() can abort the operation when READA is being 771 * used and no empty request is available. 772 * 773 */ 774 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO); 775 776 r1_bio->master_bio = bio; 777 r1_bio->sectors = bio->bi_size >> 9; 778 r1_bio->state = 0; 779 r1_bio->mddev = mddev; 780 r1_bio->sector = bio->bi_sector; 781 782 if (rw == READ) { 783 /* 784 * read balancing logic: 785 */ 786 int rdisk = read_balance(conf, r1_bio); 787 788 if (rdisk < 0) { 789 /* couldn't find anywhere to read from */ 790 raid_end_bio_io(r1_bio); 791 return 0; 792 } 793 mirror = conf->mirrors + rdisk; 794 795 r1_bio->read_disk = rdisk; 796 797 read_bio = bio_clone(bio, GFP_NOIO); 798 799 r1_bio->bios[rdisk] = read_bio; 800 801 read_bio->bi_sector = r1_bio->sector + mirror->rdev->data_offset; 802 read_bio->bi_bdev = mirror->rdev->bdev; 803 read_bio->bi_end_io = raid1_end_read_request; 804 read_bio->bi_rw = READ | do_sync; 805 read_bio->bi_private = r1_bio; 806 807 generic_make_request(read_bio); 808 return 0; 809 } 810 811 /* 812 * WRITE: 813 */ 814 /* first select target devices under spinlock and 815 * inc refcount on their rdev. Record them by setting 816 * bios[x] to bio 817 */ 818 disks = conf->raid_disks; 819 #if 0 820 { static int first=1; 821 if (first) printk("First Write sector %llu disks %d\n", 822 (unsigned long long)r1_bio->sector, disks); 823 first = 0; 824 } 825 #endif 826 rcu_read_lock(); 827 for (i = 0; i < disks; i++) { 828 if ((rdev=rcu_dereference(conf->mirrors[i].rdev)) != NULL && 829 !test_bit(Faulty, &rdev->flags)) { 830 atomic_inc(&rdev->nr_pending); 831 if (test_bit(Faulty, &rdev->flags)) { 832 rdev_dec_pending(rdev, mddev); 833 r1_bio->bios[i] = NULL; 834 } else 835 r1_bio->bios[i] = bio; 836 targets++; 837 } else 838 r1_bio->bios[i] = NULL; 839 } 840 rcu_read_unlock(); 841 842 BUG_ON(targets == 0); /* we never fail the last device */ 843 844 if (targets < conf->raid_disks) { 845 /* array is degraded, we will not clear the bitmap 846 * on I/O completion (see raid1_end_write_request) */ 847 set_bit(R1BIO_Degraded, &r1_bio->state); 848 } 849 850 /* do behind I/O ? */ 851 if (bitmap && 852 atomic_read(&bitmap->behind_writes) < bitmap->max_write_behind && 853 (behind_pages = alloc_behind_pages(bio)) != NULL) 854 set_bit(R1BIO_BehindIO, &r1_bio->state); 855 856 atomic_set(&r1_bio->remaining, 0); 857 atomic_set(&r1_bio->behind_remaining, 0); 858 859 do_barriers = bio_barrier(bio); 860 if (do_barriers) 861 set_bit(R1BIO_Barrier, &r1_bio->state); 862 863 bio_list_init(&bl); 864 for (i = 0; i < disks; i++) { 865 struct bio *mbio; 866 if (!r1_bio->bios[i]) 867 continue; 868 869 mbio = bio_clone(bio, GFP_NOIO); 870 r1_bio->bios[i] = mbio; 871 872 mbio->bi_sector = r1_bio->sector + conf->mirrors[i].rdev->data_offset; 873 mbio->bi_bdev = conf->mirrors[i].rdev->bdev; 874 mbio->bi_end_io = raid1_end_write_request; 875 mbio->bi_rw = WRITE | do_barriers | do_sync; 876 mbio->bi_private = r1_bio; 877 878 if (behind_pages) { 879 struct bio_vec *bvec; 880 int j; 881 882 /* Yes, I really want the '__' version so that 883 * we clear any unused pointer in the io_vec, rather 884 * than leave them unchanged. This is important 885 * because when we come to free the pages, we won't 886 * know the originial bi_idx, so we just free 887 * them all 888 */ 889 __bio_for_each_segment(bvec, mbio, j, 0) 890 bvec->bv_page = behind_pages[j]; 891 if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags)) 892 atomic_inc(&r1_bio->behind_remaining); 893 } 894 895 atomic_inc(&r1_bio->remaining); 896 897 bio_list_add(&bl, mbio); 898 } 899 kfree(behind_pages); /* the behind pages are attached to the bios now */ 900 901 bitmap_startwrite(bitmap, bio->bi_sector, r1_bio->sectors, 902 test_bit(R1BIO_BehindIO, &r1_bio->state)); 903 spin_lock_irqsave(&conf->device_lock, flags); 904 bio_list_merge(&conf->pending_bio_list, &bl); 905 bio_list_init(&bl); 906 907 blk_plug_device(mddev->queue); 908 spin_unlock_irqrestore(&conf->device_lock, flags); 909 910 if (do_sync) 911 md_wakeup_thread(mddev->thread); 912 #if 0 913 while ((bio = bio_list_pop(&bl)) != NULL) 914 generic_make_request(bio); 915 #endif 916 917 return 0; 918 } 919 920 static void status(struct seq_file *seq, mddev_t *mddev) 921 { 922 conf_t *conf = mddev_to_conf(mddev); 923 int i; 924 925 seq_printf(seq, " [%d/%d] [", conf->raid_disks, 926 conf->raid_disks - mddev->degraded); 927 rcu_read_lock(); 928 for (i = 0; i < conf->raid_disks; i++) { 929 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev); 930 seq_printf(seq, "%s", 931 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_"); 932 } 933 rcu_read_unlock(); 934 seq_printf(seq, "]"); 935 } 936 937 938 static void error(mddev_t *mddev, mdk_rdev_t *rdev) 939 { 940 char b[BDEVNAME_SIZE]; 941 conf_t *conf = mddev_to_conf(mddev); 942 943 /* 944 * If it is not operational, then we have already marked it as dead 945 * else if it is the last working disks, ignore the error, let the 946 * next level up know. 947 * else mark the drive as failed 948 */ 949 if (test_bit(In_sync, &rdev->flags) 950 && (conf->raid_disks - mddev->degraded) == 1) 951 /* 952 * Don't fail the drive, act as though we were just a 953 * normal single drive 954 */ 955 return; 956 if (test_and_clear_bit(In_sync, &rdev->flags)) { 957 unsigned long flags; 958 spin_lock_irqsave(&conf->device_lock, flags); 959 mddev->degraded++; 960 set_bit(Faulty, &rdev->flags); 961 spin_unlock_irqrestore(&conf->device_lock, flags); 962 /* 963 * if recovery is running, make sure it aborts. 964 */ 965 set_bit(MD_RECOVERY_ERR, &mddev->recovery); 966 } else 967 set_bit(Faulty, &rdev->flags); 968 set_bit(MD_CHANGE_DEVS, &mddev->flags); 969 printk(KERN_ALERT "raid1: Disk failure on %s, disabling device. \n" 970 " Operation continuing on %d devices\n", 971 bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded); 972 } 973 974 static void print_conf(conf_t *conf) 975 { 976 int i; 977 978 printk("RAID1 conf printout:\n"); 979 if (!conf) { 980 printk("(!conf)\n"); 981 return; 982 } 983 printk(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded, 984 conf->raid_disks); 985 986 rcu_read_lock(); 987 for (i = 0; i < conf->raid_disks; i++) { 988 char b[BDEVNAME_SIZE]; 989 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev); 990 if (rdev) 991 printk(" disk %d, wo:%d, o:%d, dev:%s\n", 992 i, !test_bit(In_sync, &rdev->flags), 993 !test_bit(Faulty, &rdev->flags), 994 bdevname(rdev->bdev,b)); 995 } 996 rcu_read_unlock(); 997 } 998 999 static void close_sync(conf_t *conf) 1000 { 1001 wait_barrier(conf); 1002 allow_barrier(conf); 1003 1004 mempool_destroy(conf->r1buf_pool); 1005 conf->r1buf_pool = NULL; 1006 } 1007 1008 static int raid1_spare_active(mddev_t *mddev) 1009 { 1010 int i; 1011 conf_t *conf = mddev->private; 1012 1013 /* 1014 * Find all failed disks within the RAID1 configuration 1015 * and mark them readable. 1016 * Called under mddev lock, so rcu protection not needed. 1017 */ 1018 for (i = 0; i < conf->raid_disks; i++) { 1019 mdk_rdev_t *rdev = conf->mirrors[i].rdev; 1020 if (rdev 1021 && !test_bit(Faulty, &rdev->flags) 1022 && !test_and_set_bit(In_sync, &rdev->flags)) { 1023 unsigned long flags; 1024 spin_lock_irqsave(&conf->device_lock, flags); 1025 mddev->degraded--; 1026 spin_unlock_irqrestore(&conf->device_lock, flags); 1027 } 1028 } 1029 1030 print_conf(conf); 1031 return 0; 1032 } 1033 1034 1035 static int raid1_add_disk(mddev_t *mddev, mdk_rdev_t *rdev) 1036 { 1037 conf_t *conf = mddev->private; 1038 int found = 0; 1039 int mirror = 0; 1040 mirror_info_t *p; 1041 1042 for (mirror=0; mirror < mddev->raid_disks; mirror++) 1043 if ( !(p=conf->mirrors+mirror)->rdev) { 1044 1045 blk_queue_stack_limits(mddev->queue, 1046 rdev->bdev->bd_disk->queue); 1047 /* as we don't honour merge_bvec_fn, we must never risk 1048 * violating it, so limit ->max_sector to one PAGE, as 1049 * a one page request is never in violation. 1050 */ 1051 if (rdev->bdev->bd_disk->queue->merge_bvec_fn && 1052 mddev->queue->max_sectors > (PAGE_SIZE>>9)) 1053 blk_queue_max_sectors(mddev->queue, PAGE_SIZE>>9); 1054 1055 p->head_position = 0; 1056 rdev->raid_disk = mirror; 1057 found = 1; 1058 /* As all devices are equivalent, we don't need a full recovery 1059 * if this was recently any drive of the array 1060 */ 1061 if (rdev->saved_raid_disk < 0) 1062 conf->fullsync = 1; 1063 rcu_assign_pointer(p->rdev, rdev); 1064 break; 1065 } 1066 1067 print_conf(conf); 1068 return found; 1069 } 1070 1071 static int raid1_remove_disk(mddev_t *mddev, int number) 1072 { 1073 conf_t *conf = mddev->private; 1074 int err = 0; 1075 mdk_rdev_t *rdev; 1076 mirror_info_t *p = conf->mirrors+ number; 1077 1078 print_conf(conf); 1079 rdev = p->rdev; 1080 if (rdev) { 1081 if (test_bit(In_sync, &rdev->flags) || 1082 atomic_read(&rdev->nr_pending)) { 1083 err = -EBUSY; 1084 goto abort; 1085 } 1086 p->rdev = NULL; 1087 synchronize_rcu(); 1088 if (atomic_read(&rdev->nr_pending)) { 1089 /* lost the race, try later */ 1090 err = -EBUSY; 1091 p->rdev = rdev; 1092 } 1093 } 1094 abort: 1095 1096 print_conf(conf); 1097 return err; 1098 } 1099 1100 1101 static void end_sync_read(struct bio *bio, int error) 1102 { 1103 r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private); 1104 int i; 1105 1106 for (i=r1_bio->mddev->raid_disks; i--; ) 1107 if (r1_bio->bios[i] == bio) 1108 break; 1109 BUG_ON(i < 0); 1110 update_head_pos(i, r1_bio); 1111 /* 1112 * we have read a block, now it needs to be re-written, 1113 * or re-read if the read failed. 1114 * We don't do much here, just schedule handling by raid1d 1115 */ 1116 if (test_bit(BIO_UPTODATE, &bio->bi_flags)) 1117 set_bit(R1BIO_Uptodate, &r1_bio->state); 1118 1119 if (atomic_dec_and_test(&r1_bio->remaining)) 1120 reschedule_retry(r1_bio); 1121 } 1122 1123 static void end_sync_write(struct bio *bio, int error) 1124 { 1125 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 1126 r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private); 1127 mddev_t *mddev = r1_bio->mddev; 1128 conf_t *conf = mddev_to_conf(mddev); 1129 int i; 1130 int mirror=0; 1131 1132 for (i = 0; i < conf->raid_disks; i++) 1133 if (r1_bio->bios[i] == bio) { 1134 mirror = i; 1135 break; 1136 } 1137 if (!uptodate) { 1138 int sync_blocks = 0; 1139 sector_t s = r1_bio->sector; 1140 long sectors_to_go = r1_bio->sectors; 1141 /* make sure these bits doesn't get cleared. */ 1142 do { 1143 bitmap_end_sync(mddev->bitmap, s, 1144 &sync_blocks, 1); 1145 s += sync_blocks; 1146 sectors_to_go -= sync_blocks; 1147 } while (sectors_to_go > 0); 1148 md_error(mddev, conf->mirrors[mirror].rdev); 1149 } 1150 1151 update_head_pos(mirror, r1_bio); 1152 1153 if (atomic_dec_and_test(&r1_bio->remaining)) { 1154 md_done_sync(mddev, r1_bio->sectors, uptodate); 1155 put_buf(r1_bio); 1156 } 1157 } 1158 1159 static void sync_request_write(mddev_t *mddev, r1bio_t *r1_bio) 1160 { 1161 conf_t *conf = mddev_to_conf(mddev); 1162 int i; 1163 int disks = conf->raid_disks; 1164 struct bio *bio, *wbio; 1165 1166 bio = r1_bio->bios[r1_bio->read_disk]; 1167 1168 1169 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 1170 /* We have read all readable devices. If we haven't 1171 * got the block, then there is no hope left. 1172 * If we have, then we want to do a comparison 1173 * and skip the write if everything is the same. 1174 * If any blocks failed to read, then we need to 1175 * attempt an over-write 1176 */ 1177 int primary; 1178 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) { 1179 for (i=0; i<mddev->raid_disks; i++) 1180 if (r1_bio->bios[i]->bi_end_io == end_sync_read) 1181 md_error(mddev, conf->mirrors[i].rdev); 1182 1183 md_done_sync(mddev, r1_bio->sectors, 1); 1184 put_buf(r1_bio); 1185 return; 1186 } 1187 for (primary=0; primary<mddev->raid_disks; primary++) 1188 if (r1_bio->bios[primary]->bi_end_io == end_sync_read && 1189 test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) { 1190 r1_bio->bios[primary]->bi_end_io = NULL; 1191 rdev_dec_pending(conf->mirrors[primary].rdev, mddev); 1192 break; 1193 } 1194 r1_bio->read_disk = primary; 1195 for (i=0; i<mddev->raid_disks; i++) 1196 if (r1_bio->bios[i]->bi_end_io == end_sync_read) { 1197 int j; 1198 int vcnt = r1_bio->sectors >> (PAGE_SHIFT- 9); 1199 struct bio *pbio = r1_bio->bios[primary]; 1200 struct bio *sbio = r1_bio->bios[i]; 1201 1202 if (test_bit(BIO_UPTODATE, &sbio->bi_flags)) { 1203 for (j = vcnt; j-- ; ) { 1204 struct page *p, *s; 1205 p = pbio->bi_io_vec[j].bv_page; 1206 s = sbio->bi_io_vec[j].bv_page; 1207 if (memcmp(page_address(p), 1208 page_address(s), 1209 PAGE_SIZE)) 1210 break; 1211 } 1212 } else 1213 j = 0; 1214 if (j >= 0) 1215 mddev->resync_mismatches += r1_bio->sectors; 1216 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery) 1217 && test_bit(BIO_UPTODATE, &sbio->bi_flags))) { 1218 sbio->bi_end_io = NULL; 1219 rdev_dec_pending(conf->mirrors[i].rdev, mddev); 1220 } else { 1221 /* fixup the bio for reuse */ 1222 sbio->bi_vcnt = vcnt; 1223 sbio->bi_size = r1_bio->sectors << 9; 1224 sbio->bi_idx = 0; 1225 sbio->bi_phys_segments = 0; 1226 sbio->bi_hw_segments = 0; 1227 sbio->bi_hw_front_size = 0; 1228 sbio->bi_hw_back_size = 0; 1229 sbio->bi_flags &= ~(BIO_POOL_MASK - 1); 1230 sbio->bi_flags |= 1 << BIO_UPTODATE; 1231 sbio->bi_next = NULL; 1232 sbio->bi_sector = r1_bio->sector + 1233 conf->mirrors[i].rdev->data_offset; 1234 sbio->bi_bdev = conf->mirrors[i].rdev->bdev; 1235 for (j = 0; j < vcnt ; j++) 1236 memcpy(page_address(sbio->bi_io_vec[j].bv_page), 1237 page_address(pbio->bi_io_vec[j].bv_page), 1238 PAGE_SIZE); 1239 1240 } 1241 } 1242 } 1243 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) { 1244 /* ouch - failed to read all of that. 1245 * Try some synchronous reads of other devices to get 1246 * good data, much like with normal read errors. Only 1247 * read into the pages we already have so we don't 1248 * need to re-issue the read request. 1249 * We don't need to freeze the array, because being in an 1250 * active sync request, there is no normal IO, and 1251 * no overlapping syncs. 1252 */ 1253 sector_t sect = r1_bio->sector; 1254 int sectors = r1_bio->sectors; 1255 int idx = 0; 1256 1257 while(sectors) { 1258 int s = sectors; 1259 int d = r1_bio->read_disk; 1260 int success = 0; 1261 mdk_rdev_t *rdev; 1262 1263 if (s > (PAGE_SIZE>>9)) 1264 s = PAGE_SIZE >> 9; 1265 do { 1266 if (r1_bio->bios[d]->bi_end_io == end_sync_read) { 1267 /* No rcu protection needed here devices 1268 * can only be removed when no resync is 1269 * active, and resync is currently active 1270 */ 1271 rdev = conf->mirrors[d].rdev; 1272 if (sync_page_io(rdev->bdev, 1273 sect + rdev->data_offset, 1274 s<<9, 1275 bio->bi_io_vec[idx].bv_page, 1276 READ)) { 1277 success = 1; 1278 break; 1279 } 1280 } 1281 d++; 1282 if (d == conf->raid_disks) 1283 d = 0; 1284 } while (!success && d != r1_bio->read_disk); 1285 1286 if (success) { 1287 int start = d; 1288 /* write it back and re-read */ 1289 set_bit(R1BIO_Uptodate, &r1_bio->state); 1290 while (d != r1_bio->read_disk) { 1291 if (d == 0) 1292 d = conf->raid_disks; 1293 d--; 1294 if (r1_bio->bios[d]->bi_end_io != end_sync_read) 1295 continue; 1296 rdev = conf->mirrors[d].rdev; 1297 atomic_add(s, &rdev->corrected_errors); 1298 if (sync_page_io(rdev->bdev, 1299 sect + rdev->data_offset, 1300 s<<9, 1301 bio->bi_io_vec[idx].bv_page, 1302 WRITE) == 0) 1303 md_error(mddev, rdev); 1304 } 1305 d = start; 1306 while (d != r1_bio->read_disk) { 1307 if (d == 0) 1308 d = conf->raid_disks; 1309 d--; 1310 if (r1_bio->bios[d]->bi_end_io != end_sync_read) 1311 continue; 1312 rdev = conf->mirrors[d].rdev; 1313 if (sync_page_io(rdev->bdev, 1314 sect + rdev->data_offset, 1315 s<<9, 1316 bio->bi_io_vec[idx].bv_page, 1317 READ) == 0) 1318 md_error(mddev, rdev); 1319 } 1320 } else { 1321 char b[BDEVNAME_SIZE]; 1322 /* Cannot read from anywhere, array is toast */ 1323 md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev); 1324 printk(KERN_ALERT "raid1: %s: unrecoverable I/O read error" 1325 " for block %llu\n", 1326 bdevname(bio->bi_bdev,b), 1327 (unsigned long long)r1_bio->sector); 1328 md_done_sync(mddev, r1_bio->sectors, 0); 1329 put_buf(r1_bio); 1330 return; 1331 } 1332 sectors -= s; 1333 sect += s; 1334 idx ++; 1335 } 1336 } 1337 1338 /* 1339 * schedule writes 1340 */ 1341 atomic_set(&r1_bio->remaining, 1); 1342 for (i = 0; i < disks ; i++) { 1343 wbio = r1_bio->bios[i]; 1344 if (wbio->bi_end_io == NULL || 1345 (wbio->bi_end_io == end_sync_read && 1346 (i == r1_bio->read_disk || 1347 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery)))) 1348 continue; 1349 1350 wbio->bi_rw = WRITE; 1351 wbio->bi_end_io = end_sync_write; 1352 atomic_inc(&r1_bio->remaining); 1353 md_sync_acct(conf->mirrors[i].rdev->bdev, wbio->bi_size >> 9); 1354 1355 generic_make_request(wbio); 1356 } 1357 1358 if (atomic_dec_and_test(&r1_bio->remaining)) { 1359 /* if we're here, all write(s) have completed, so clean up */ 1360 md_done_sync(mddev, r1_bio->sectors, 1); 1361 put_buf(r1_bio); 1362 } 1363 } 1364 1365 /* 1366 * This is a kernel thread which: 1367 * 1368 * 1. Retries failed read operations on working mirrors. 1369 * 2. Updates the raid superblock when problems encounter. 1370 * 3. Performs writes following reads for array syncronising. 1371 */ 1372 1373 static void fix_read_error(conf_t *conf, int read_disk, 1374 sector_t sect, int sectors) 1375 { 1376 mddev_t *mddev = conf->mddev; 1377 while(sectors) { 1378 int s = sectors; 1379 int d = read_disk; 1380 int success = 0; 1381 int start; 1382 mdk_rdev_t *rdev; 1383 1384 if (s > (PAGE_SIZE>>9)) 1385 s = PAGE_SIZE >> 9; 1386 1387 do { 1388 /* Note: no rcu protection needed here 1389 * as this is synchronous in the raid1d thread 1390 * which is the thread that might remove 1391 * a device. If raid1d ever becomes multi-threaded.... 1392 */ 1393 rdev = conf->mirrors[d].rdev; 1394 if (rdev && 1395 test_bit(In_sync, &rdev->flags) && 1396 sync_page_io(rdev->bdev, 1397 sect + rdev->data_offset, 1398 s<<9, 1399 conf->tmppage, READ)) 1400 success = 1; 1401 else { 1402 d++; 1403 if (d == conf->raid_disks) 1404 d = 0; 1405 } 1406 } while (!success && d != read_disk); 1407 1408 if (!success) { 1409 /* Cannot read from anywhere -- bye bye array */ 1410 md_error(mddev, conf->mirrors[read_disk].rdev); 1411 break; 1412 } 1413 /* write it back and re-read */ 1414 start = d; 1415 while (d != read_disk) { 1416 if (d==0) 1417 d = conf->raid_disks; 1418 d--; 1419 rdev = conf->mirrors[d].rdev; 1420 if (rdev && 1421 test_bit(In_sync, &rdev->flags)) { 1422 if (sync_page_io(rdev->bdev, 1423 sect + rdev->data_offset, 1424 s<<9, conf->tmppage, WRITE) 1425 == 0) 1426 /* Well, this device is dead */ 1427 md_error(mddev, rdev); 1428 } 1429 } 1430 d = start; 1431 while (d != read_disk) { 1432 char b[BDEVNAME_SIZE]; 1433 if (d==0) 1434 d = conf->raid_disks; 1435 d--; 1436 rdev = conf->mirrors[d].rdev; 1437 if (rdev && 1438 test_bit(In_sync, &rdev->flags)) { 1439 if (sync_page_io(rdev->bdev, 1440 sect + rdev->data_offset, 1441 s<<9, conf->tmppage, READ) 1442 == 0) 1443 /* Well, this device is dead */ 1444 md_error(mddev, rdev); 1445 else { 1446 atomic_add(s, &rdev->corrected_errors); 1447 printk(KERN_INFO 1448 "raid1:%s: read error corrected " 1449 "(%d sectors at %llu on %s)\n", 1450 mdname(mddev), s, 1451 (unsigned long long)(sect + 1452 rdev->data_offset), 1453 bdevname(rdev->bdev, b)); 1454 } 1455 } 1456 } 1457 sectors -= s; 1458 sect += s; 1459 } 1460 } 1461 1462 static void raid1d(mddev_t *mddev) 1463 { 1464 r1bio_t *r1_bio; 1465 struct bio *bio; 1466 unsigned long flags; 1467 conf_t *conf = mddev_to_conf(mddev); 1468 struct list_head *head = &conf->retry_list; 1469 int unplug=0; 1470 mdk_rdev_t *rdev; 1471 1472 md_check_recovery(mddev); 1473 1474 for (;;) { 1475 char b[BDEVNAME_SIZE]; 1476 spin_lock_irqsave(&conf->device_lock, flags); 1477 1478 if (conf->pending_bio_list.head) { 1479 bio = bio_list_get(&conf->pending_bio_list); 1480 blk_remove_plug(mddev->queue); 1481 spin_unlock_irqrestore(&conf->device_lock, flags); 1482 /* flush any pending bitmap writes to disk before proceeding w/ I/O */ 1483 bitmap_unplug(mddev->bitmap); 1484 1485 while (bio) { /* submit pending writes */ 1486 struct bio *next = bio->bi_next; 1487 bio->bi_next = NULL; 1488 generic_make_request(bio); 1489 bio = next; 1490 } 1491 unplug = 1; 1492 1493 continue; 1494 } 1495 1496 if (list_empty(head)) 1497 break; 1498 r1_bio = list_entry(head->prev, r1bio_t, retry_list); 1499 list_del(head->prev); 1500 conf->nr_queued--; 1501 spin_unlock_irqrestore(&conf->device_lock, flags); 1502 1503 mddev = r1_bio->mddev; 1504 conf = mddev_to_conf(mddev); 1505 if (test_bit(R1BIO_IsSync, &r1_bio->state)) { 1506 sync_request_write(mddev, r1_bio); 1507 unplug = 1; 1508 } else if (test_bit(R1BIO_BarrierRetry, &r1_bio->state)) { 1509 /* some requests in the r1bio were BIO_RW_BARRIER 1510 * requests which failed with -EOPNOTSUPP. Hohumm.. 1511 * Better resubmit without the barrier. 1512 * We know which devices to resubmit for, because 1513 * all others have had their bios[] entry cleared. 1514 * We already have a nr_pending reference on these rdevs. 1515 */ 1516 int i; 1517 const int do_sync = bio_sync(r1_bio->master_bio); 1518 clear_bit(R1BIO_BarrierRetry, &r1_bio->state); 1519 clear_bit(R1BIO_Barrier, &r1_bio->state); 1520 for (i=0; i < conf->raid_disks; i++) 1521 if (r1_bio->bios[i]) 1522 atomic_inc(&r1_bio->remaining); 1523 for (i=0; i < conf->raid_disks; i++) 1524 if (r1_bio->bios[i]) { 1525 struct bio_vec *bvec; 1526 int j; 1527 1528 bio = bio_clone(r1_bio->master_bio, GFP_NOIO); 1529 /* copy pages from the failed bio, as 1530 * this might be a write-behind device */ 1531 __bio_for_each_segment(bvec, bio, j, 0) 1532 bvec->bv_page = bio_iovec_idx(r1_bio->bios[i], j)->bv_page; 1533 bio_put(r1_bio->bios[i]); 1534 bio->bi_sector = r1_bio->sector + 1535 conf->mirrors[i].rdev->data_offset; 1536 bio->bi_bdev = conf->mirrors[i].rdev->bdev; 1537 bio->bi_end_io = raid1_end_write_request; 1538 bio->bi_rw = WRITE | do_sync; 1539 bio->bi_private = r1_bio; 1540 r1_bio->bios[i] = bio; 1541 generic_make_request(bio); 1542 } 1543 } else { 1544 int disk; 1545 1546 /* we got a read error. Maybe the drive is bad. Maybe just 1547 * the block and we can fix it. 1548 * We freeze all other IO, and try reading the block from 1549 * other devices. When we find one, we re-write 1550 * and check it that fixes the read error. 1551 * This is all done synchronously while the array is 1552 * frozen 1553 */ 1554 if (mddev->ro == 0) { 1555 freeze_array(conf); 1556 fix_read_error(conf, r1_bio->read_disk, 1557 r1_bio->sector, 1558 r1_bio->sectors); 1559 unfreeze_array(conf); 1560 } 1561 1562 bio = r1_bio->bios[r1_bio->read_disk]; 1563 if ((disk=read_balance(conf, r1_bio)) == -1) { 1564 printk(KERN_ALERT "raid1: %s: unrecoverable I/O" 1565 " read error for block %llu\n", 1566 bdevname(bio->bi_bdev,b), 1567 (unsigned long long)r1_bio->sector); 1568 raid_end_bio_io(r1_bio); 1569 } else { 1570 const int do_sync = bio_sync(r1_bio->master_bio); 1571 r1_bio->bios[r1_bio->read_disk] = 1572 mddev->ro ? IO_BLOCKED : NULL; 1573 r1_bio->read_disk = disk; 1574 bio_put(bio); 1575 bio = bio_clone(r1_bio->master_bio, GFP_NOIO); 1576 r1_bio->bios[r1_bio->read_disk] = bio; 1577 rdev = conf->mirrors[disk].rdev; 1578 if (printk_ratelimit()) 1579 printk(KERN_ERR "raid1: %s: redirecting sector %llu to" 1580 " another mirror\n", 1581 bdevname(rdev->bdev,b), 1582 (unsigned long long)r1_bio->sector); 1583 bio->bi_sector = r1_bio->sector + rdev->data_offset; 1584 bio->bi_bdev = rdev->bdev; 1585 bio->bi_end_io = raid1_end_read_request; 1586 bio->bi_rw = READ | do_sync; 1587 bio->bi_private = r1_bio; 1588 unplug = 1; 1589 generic_make_request(bio); 1590 } 1591 } 1592 } 1593 spin_unlock_irqrestore(&conf->device_lock, flags); 1594 if (unplug) 1595 unplug_slaves(mddev); 1596 } 1597 1598 1599 static int init_resync(conf_t *conf) 1600 { 1601 int buffs; 1602 1603 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE; 1604 BUG_ON(conf->r1buf_pool); 1605 conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free, 1606 conf->poolinfo); 1607 if (!conf->r1buf_pool) 1608 return -ENOMEM; 1609 conf->next_resync = 0; 1610 return 0; 1611 } 1612 1613 /* 1614 * perform a "sync" on one "block" 1615 * 1616 * We need to make sure that no normal I/O request - particularly write 1617 * requests - conflict with active sync requests. 1618 * 1619 * This is achieved by tracking pending requests and a 'barrier' concept 1620 * that can be installed to exclude normal IO requests. 1621 */ 1622 1623 static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster) 1624 { 1625 conf_t *conf = mddev_to_conf(mddev); 1626 r1bio_t *r1_bio; 1627 struct bio *bio; 1628 sector_t max_sector, nr_sectors; 1629 int disk = -1; 1630 int i; 1631 int wonly = -1; 1632 int write_targets = 0, read_targets = 0; 1633 int sync_blocks; 1634 int still_degraded = 0; 1635 1636 if (!conf->r1buf_pool) 1637 { 1638 /* 1639 printk("sync start - bitmap %p\n", mddev->bitmap); 1640 */ 1641 if (init_resync(conf)) 1642 return 0; 1643 } 1644 1645 max_sector = mddev->size << 1; 1646 if (sector_nr >= max_sector) { 1647 /* If we aborted, we need to abort the 1648 * sync on the 'current' bitmap chunk (there will 1649 * only be one in raid1 resync. 1650 * We can find the current addess in mddev->curr_resync 1651 */ 1652 if (mddev->curr_resync < max_sector) /* aborted */ 1653 bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 1654 &sync_blocks, 1); 1655 else /* completed sync */ 1656 conf->fullsync = 0; 1657 1658 bitmap_close_sync(mddev->bitmap); 1659 close_sync(conf); 1660 return 0; 1661 } 1662 1663 if (mddev->bitmap == NULL && 1664 mddev->recovery_cp == MaxSector && 1665 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 1666 conf->fullsync == 0) { 1667 *skipped = 1; 1668 return max_sector - sector_nr; 1669 } 1670 /* before building a request, check if we can skip these blocks.. 1671 * This call the bitmap_start_sync doesn't actually record anything 1672 */ 1673 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) && 1674 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 1675 /* We can skip this block, and probably several more */ 1676 *skipped = 1; 1677 return sync_blocks; 1678 } 1679 /* 1680 * If there is non-resync activity waiting for a turn, 1681 * and resync is going fast enough, 1682 * then let it though before starting on this new sync request. 1683 */ 1684 if (!go_faster && conf->nr_waiting) 1685 msleep_interruptible(1000); 1686 1687 raise_barrier(conf); 1688 1689 conf->next_resync = sector_nr; 1690 1691 r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO); 1692 rcu_read_lock(); 1693 /* 1694 * If we get a correctably read error during resync or recovery, 1695 * we might want to read from a different device. So we 1696 * flag all drives that could conceivably be read from for READ, 1697 * and any others (which will be non-In_sync devices) for WRITE. 1698 * If a read fails, we try reading from something else for which READ 1699 * is OK. 1700 */ 1701 1702 r1_bio->mddev = mddev; 1703 r1_bio->sector = sector_nr; 1704 r1_bio->state = 0; 1705 set_bit(R1BIO_IsSync, &r1_bio->state); 1706 1707 for (i=0; i < conf->raid_disks; i++) { 1708 mdk_rdev_t *rdev; 1709 bio = r1_bio->bios[i]; 1710 1711 /* take from bio_init */ 1712 bio->bi_next = NULL; 1713 bio->bi_flags |= 1 << BIO_UPTODATE; 1714 bio->bi_rw = READ; 1715 bio->bi_vcnt = 0; 1716 bio->bi_idx = 0; 1717 bio->bi_phys_segments = 0; 1718 bio->bi_hw_segments = 0; 1719 bio->bi_size = 0; 1720 bio->bi_end_io = NULL; 1721 bio->bi_private = NULL; 1722 1723 rdev = rcu_dereference(conf->mirrors[i].rdev); 1724 if (rdev == NULL || 1725 test_bit(Faulty, &rdev->flags)) { 1726 still_degraded = 1; 1727 continue; 1728 } else if (!test_bit(In_sync, &rdev->flags)) { 1729 bio->bi_rw = WRITE; 1730 bio->bi_end_io = end_sync_write; 1731 write_targets ++; 1732 } else { 1733 /* may need to read from here */ 1734 bio->bi_rw = READ; 1735 bio->bi_end_io = end_sync_read; 1736 if (test_bit(WriteMostly, &rdev->flags)) { 1737 if (wonly < 0) 1738 wonly = i; 1739 } else { 1740 if (disk < 0) 1741 disk = i; 1742 } 1743 read_targets++; 1744 } 1745 atomic_inc(&rdev->nr_pending); 1746 bio->bi_sector = sector_nr + rdev->data_offset; 1747 bio->bi_bdev = rdev->bdev; 1748 bio->bi_private = r1_bio; 1749 } 1750 rcu_read_unlock(); 1751 if (disk < 0) 1752 disk = wonly; 1753 r1_bio->read_disk = disk; 1754 1755 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0) 1756 /* extra read targets are also write targets */ 1757 write_targets += read_targets-1; 1758 1759 if (write_targets == 0 || read_targets == 0) { 1760 /* There is nowhere to write, so all non-sync 1761 * drives must be failed - so we are finished 1762 */ 1763 sector_t rv = max_sector - sector_nr; 1764 *skipped = 1; 1765 put_buf(r1_bio); 1766 return rv; 1767 } 1768 1769 nr_sectors = 0; 1770 sync_blocks = 0; 1771 do { 1772 struct page *page; 1773 int len = PAGE_SIZE; 1774 if (sector_nr + (len>>9) > max_sector) 1775 len = (max_sector - sector_nr) << 9; 1776 if (len == 0) 1777 break; 1778 if (sync_blocks == 0) { 1779 if (!bitmap_start_sync(mddev->bitmap, sector_nr, 1780 &sync_blocks, still_degraded) && 1781 !conf->fullsync && 1782 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 1783 break; 1784 BUG_ON(sync_blocks < (PAGE_SIZE>>9)); 1785 if (len > (sync_blocks<<9)) 1786 len = sync_blocks<<9; 1787 } 1788 1789 for (i=0 ; i < conf->raid_disks; i++) { 1790 bio = r1_bio->bios[i]; 1791 if (bio->bi_end_io) { 1792 page = bio->bi_io_vec[bio->bi_vcnt].bv_page; 1793 if (bio_add_page(bio, page, len, 0) == 0) { 1794 /* stop here */ 1795 bio->bi_io_vec[bio->bi_vcnt].bv_page = page; 1796 while (i > 0) { 1797 i--; 1798 bio = r1_bio->bios[i]; 1799 if (bio->bi_end_io==NULL) 1800 continue; 1801 /* remove last page from this bio */ 1802 bio->bi_vcnt--; 1803 bio->bi_size -= len; 1804 bio->bi_flags &= ~(1<< BIO_SEG_VALID); 1805 } 1806 goto bio_full; 1807 } 1808 } 1809 } 1810 nr_sectors += len>>9; 1811 sector_nr += len>>9; 1812 sync_blocks -= (len>>9); 1813 } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES); 1814 bio_full: 1815 r1_bio->sectors = nr_sectors; 1816 1817 /* For a user-requested sync, we read all readable devices and do a 1818 * compare 1819 */ 1820 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 1821 atomic_set(&r1_bio->remaining, read_targets); 1822 for (i=0; i<conf->raid_disks; i++) { 1823 bio = r1_bio->bios[i]; 1824 if (bio->bi_end_io == end_sync_read) { 1825 md_sync_acct(bio->bi_bdev, nr_sectors); 1826 generic_make_request(bio); 1827 } 1828 } 1829 } else { 1830 atomic_set(&r1_bio->remaining, 1); 1831 bio = r1_bio->bios[r1_bio->read_disk]; 1832 md_sync_acct(bio->bi_bdev, nr_sectors); 1833 generic_make_request(bio); 1834 1835 } 1836 return nr_sectors; 1837 } 1838 1839 static int run(mddev_t *mddev) 1840 { 1841 conf_t *conf; 1842 int i, j, disk_idx; 1843 mirror_info_t *disk; 1844 mdk_rdev_t *rdev; 1845 struct list_head *tmp; 1846 1847 if (mddev->level != 1) { 1848 printk("raid1: %s: raid level not set to mirroring (%d)\n", 1849 mdname(mddev), mddev->level); 1850 goto out; 1851 } 1852 if (mddev->reshape_position != MaxSector) { 1853 printk("raid1: %s: reshape_position set but not supported\n", 1854 mdname(mddev)); 1855 goto out; 1856 } 1857 /* 1858 * copy the already verified devices into our private RAID1 1859 * bookkeeping area. [whatever we allocate in run(), 1860 * should be freed in stop()] 1861 */ 1862 conf = kzalloc(sizeof(conf_t), GFP_KERNEL); 1863 mddev->private = conf; 1864 if (!conf) 1865 goto out_no_mem; 1866 1867 conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks, 1868 GFP_KERNEL); 1869 if (!conf->mirrors) 1870 goto out_no_mem; 1871 1872 conf->tmppage = alloc_page(GFP_KERNEL); 1873 if (!conf->tmppage) 1874 goto out_no_mem; 1875 1876 conf->poolinfo = kmalloc(sizeof(*conf->poolinfo), GFP_KERNEL); 1877 if (!conf->poolinfo) 1878 goto out_no_mem; 1879 conf->poolinfo->mddev = mddev; 1880 conf->poolinfo->raid_disks = mddev->raid_disks; 1881 conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc, 1882 r1bio_pool_free, 1883 conf->poolinfo); 1884 if (!conf->r1bio_pool) 1885 goto out_no_mem; 1886 1887 ITERATE_RDEV(mddev, rdev, tmp) { 1888 disk_idx = rdev->raid_disk; 1889 if (disk_idx >= mddev->raid_disks 1890 || disk_idx < 0) 1891 continue; 1892 disk = conf->mirrors + disk_idx; 1893 1894 disk->rdev = rdev; 1895 1896 blk_queue_stack_limits(mddev->queue, 1897 rdev->bdev->bd_disk->queue); 1898 /* as we don't honour merge_bvec_fn, we must never risk 1899 * violating it, so limit ->max_sector to one PAGE, as 1900 * a one page request is never in violation. 1901 */ 1902 if (rdev->bdev->bd_disk->queue->merge_bvec_fn && 1903 mddev->queue->max_sectors > (PAGE_SIZE>>9)) 1904 blk_queue_max_sectors(mddev->queue, PAGE_SIZE>>9); 1905 1906 disk->head_position = 0; 1907 } 1908 conf->raid_disks = mddev->raid_disks; 1909 conf->mddev = mddev; 1910 spin_lock_init(&conf->device_lock); 1911 INIT_LIST_HEAD(&conf->retry_list); 1912 1913 spin_lock_init(&conf->resync_lock); 1914 init_waitqueue_head(&conf->wait_barrier); 1915 1916 bio_list_init(&conf->pending_bio_list); 1917 bio_list_init(&conf->flushing_bio_list); 1918 1919 1920 mddev->degraded = 0; 1921 for (i = 0; i < conf->raid_disks; i++) { 1922 1923 disk = conf->mirrors + i; 1924 1925 if (!disk->rdev || 1926 !test_bit(In_sync, &disk->rdev->flags)) { 1927 disk->head_position = 0; 1928 mddev->degraded++; 1929 if (disk->rdev) 1930 conf->fullsync = 1; 1931 } 1932 } 1933 if (mddev->degraded == conf->raid_disks) { 1934 printk(KERN_ERR "raid1: no operational mirrors for %s\n", 1935 mdname(mddev)); 1936 goto out_free_conf; 1937 } 1938 if (conf->raid_disks - mddev->degraded == 1) 1939 mddev->recovery_cp = MaxSector; 1940 1941 /* 1942 * find the first working one and use it as a starting point 1943 * to read balancing. 1944 */ 1945 for (j = 0; j < conf->raid_disks && 1946 (!conf->mirrors[j].rdev || 1947 !test_bit(In_sync, &conf->mirrors[j].rdev->flags)) ; j++) 1948 /* nothing */; 1949 conf->last_used = j; 1950 1951 1952 mddev->thread = md_register_thread(raid1d, mddev, "%s_raid1"); 1953 if (!mddev->thread) { 1954 printk(KERN_ERR 1955 "raid1: couldn't allocate thread for %s\n", 1956 mdname(mddev)); 1957 goto out_free_conf; 1958 } 1959 1960 printk(KERN_INFO 1961 "raid1: raid set %s active with %d out of %d mirrors\n", 1962 mdname(mddev), mddev->raid_disks - mddev->degraded, 1963 mddev->raid_disks); 1964 /* 1965 * Ok, everything is just fine now 1966 */ 1967 mddev->array_size = mddev->size; 1968 1969 mddev->queue->unplug_fn = raid1_unplug; 1970 mddev->queue->backing_dev_info.congested_fn = raid1_congested; 1971 mddev->queue->backing_dev_info.congested_data = mddev; 1972 1973 return 0; 1974 1975 out_no_mem: 1976 printk(KERN_ERR "raid1: couldn't allocate memory for %s\n", 1977 mdname(mddev)); 1978 1979 out_free_conf: 1980 if (conf) { 1981 if (conf->r1bio_pool) 1982 mempool_destroy(conf->r1bio_pool); 1983 kfree(conf->mirrors); 1984 safe_put_page(conf->tmppage); 1985 kfree(conf->poolinfo); 1986 kfree(conf); 1987 mddev->private = NULL; 1988 } 1989 out: 1990 return -EIO; 1991 } 1992 1993 static int stop(mddev_t *mddev) 1994 { 1995 conf_t *conf = mddev_to_conf(mddev); 1996 struct bitmap *bitmap = mddev->bitmap; 1997 int behind_wait = 0; 1998 1999 /* wait for behind writes to complete */ 2000 while (bitmap && atomic_read(&bitmap->behind_writes) > 0) { 2001 behind_wait++; 2002 printk(KERN_INFO "raid1: behind writes in progress on device %s, waiting to stop (%d)\n", mdname(mddev), behind_wait); 2003 set_current_state(TASK_UNINTERRUPTIBLE); 2004 schedule_timeout(HZ); /* wait a second */ 2005 /* need to kick something here to make sure I/O goes? */ 2006 } 2007 2008 md_unregister_thread(mddev->thread); 2009 mddev->thread = NULL; 2010 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/ 2011 if (conf->r1bio_pool) 2012 mempool_destroy(conf->r1bio_pool); 2013 kfree(conf->mirrors); 2014 kfree(conf->poolinfo); 2015 kfree(conf); 2016 mddev->private = NULL; 2017 return 0; 2018 } 2019 2020 static int raid1_resize(mddev_t *mddev, sector_t sectors) 2021 { 2022 /* no resync is happening, and there is enough space 2023 * on all devices, so we can resize. 2024 * We need to make sure resync covers any new space. 2025 * If the array is shrinking we should possibly wait until 2026 * any io in the removed space completes, but it hardly seems 2027 * worth it. 2028 */ 2029 mddev->array_size = sectors>>1; 2030 set_capacity(mddev->gendisk, mddev->array_size << 1); 2031 mddev->changed = 1; 2032 if (mddev->array_size > mddev->size && mddev->recovery_cp == MaxSector) { 2033 mddev->recovery_cp = mddev->size << 1; 2034 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 2035 } 2036 mddev->size = mddev->array_size; 2037 mddev->resync_max_sectors = sectors; 2038 return 0; 2039 } 2040 2041 static int raid1_reshape(mddev_t *mddev) 2042 { 2043 /* We need to: 2044 * 1/ resize the r1bio_pool 2045 * 2/ resize conf->mirrors 2046 * 2047 * We allocate a new r1bio_pool if we can. 2048 * Then raise a device barrier and wait until all IO stops. 2049 * Then resize conf->mirrors and swap in the new r1bio pool. 2050 * 2051 * At the same time, we "pack" the devices so that all the missing 2052 * devices have the higher raid_disk numbers. 2053 */ 2054 mempool_t *newpool, *oldpool; 2055 struct pool_info *newpoolinfo; 2056 mirror_info_t *newmirrors; 2057 conf_t *conf = mddev_to_conf(mddev); 2058 int cnt, raid_disks; 2059 unsigned long flags; 2060 int d, d2; 2061 2062 /* Cannot change chunk_size, layout, or level */ 2063 if (mddev->chunk_size != mddev->new_chunk || 2064 mddev->layout != mddev->new_layout || 2065 mddev->level != mddev->new_level) { 2066 mddev->new_chunk = mddev->chunk_size; 2067 mddev->new_layout = mddev->layout; 2068 mddev->new_level = mddev->level; 2069 return -EINVAL; 2070 } 2071 2072 md_allow_write(mddev); 2073 2074 raid_disks = mddev->raid_disks + mddev->delta_disks; 2075 2076 if (raid_disks < conf->raid_disks) { 2077 cnt=0; 2078 for (d= 0; d < conf->raid_disks; d++) 2079 if (conf->mirrors[d].rdev) 2080 cnt++; 2081 if (cnt > raid_disks) 2082 return -EBUSY; 2083 } 2084 2085 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL); 2086 if (!newpoolinfo) 2087 return -ENOMEM; 2088 newpoolinfo->mddev = mddev; 2089 newpoolinfo->raid_disks = raid_disks; 2090 2091 newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc, 2092 r1bio_pool_free, newpoolinfo); 2093 if (!newpool) { 2094 kfree(newpoolinfo); 2095 return -ENOMEM; 2096 } 2097 newmirrors = kzalloc(sizeof(struct mirror_info) * raid_disks, GFP_KERNEL); 2098 if (!newmirrors) { 2099 kfree(newpoolinfo); 2100 mempool_destroy(newpool); 2101 return -ENOMEM; 2102 } 2103 2104 raise_barrier(conf); 2105 2106 /* ok, everything is stopped */ 2107 oldpool = conf->r1bio_pool; 2108 conf->r1bio_pool = newpool; 2109 2110 for (d = d2 = 0; d < conf->raid_disks; d++) { 2111 mdk_rdev_t *rdev = conf->mirrors[d].rdev; 2112 if (rdev && rdev->raid_disk != d2) { 2113 char nm[20]; 2114 sprintf(nm, "rd%d", rdev->raid_disk); 2115 sysfs_remove_link(&mddev->kobj, nm); 2116 rdev->raid_disk = d2; 2117 sprintf(nm, "rd%d", rdev->raid_disk); 2118 sysfs_remove_link(&mddev->kobj, nm); 2119 if (sysfs_create_link(&mddev->kobj, 2120 &rdev->kobj, nm)) 2121 printk(KERN_WARNING 2122 "md/raid1: cannot register " 2123 "%s for %s\n", 2124 nm, mdname(mddev)); 2125 } 2126 if (rdev) 2127 newmirrors[d2++].rdev = rdev; 2128 } 2129 kfree(conf->mirrors); 2130 conf->mirrors = newmirrors; 2131 kfree(conf->poolinfo); 2132 conf->poolinfo = newpoolinfo; 2133 2134 spin_lock_irqsave(&conf->device_lock, flags); 2135 mddev->degraded += (raid_disks - conf->raid_disks); 2136 spin_unlock_irqrestore(&conf->device_lock, flags); 2137 conf->raid_disks = mddev->raid_disks = raid_disks; 2138 mddev->delta_disks = 0; 2139 2140 conf->last_used = 0; /* just make sure it is in-range */ 2141 lower_barrier(conf); 2142 2143 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 2144 md_wakeup_thread(mddev->thread); 2145 2146 mempool_destroy(oldpool); 2147 return 0; 2148 } 2149 2150 static void raid1_quiesce(mddev_t *mddev, int state) 2151 { 2152 conf_t *conf = mddev_to_conf(mddev); 2153 2154 switch(state) { 2155 case 1: 2156 raise_barrier(conf); 2157 break; 2158 case 0: 2159 lower_barrier(conf); 2160 break; 2161 } 2162 } 2163 2164 2165 static struct mdk_personality raid1_personality = 2166 { 2167 .name = "raid1", 2168 .level = 1, 2169 .owner = THIS_MODULE, 2170 .make_request = make_request, 2171 .run = run, 2172 .stop = stop, 2173 .status = status, 2174 .error_handler = error, 2175 .hot_add_disk = raid1_add_disk, 2176 .hot_remove_disk= raid1_remove_disk, 2177 .spare_active = raid1_spare_active, 2178 .sync_request = sync_request, 2179 .resize = raid1_resize, 2180 .check_reshape = raid1_reshape, 2181 .quiesce = raid1_quiesce, 2182 }; 2183 2184 static int __init raid_init(void) 2185 { 2186 return register_md_personality(&raid1_personality); 2187 } 2188 2189 static void raid_exit(void) 2190 { 2191 unregister_md_personality(&raid1_personality); 2192 } 2193 2194 module_init(raid_init); 2195 module_exit(raid_exit); 2196 MODULE_LICENSE("GPL"); 2197 MODULE_ALIAS("md-personality-3"); /* RAID1 */ 2198 MODULE_ALIAS("md-raid1"); 2199 MODULE_ALIAS("md-level-1"); 2200