xref: /openbmc/linux/drivers/md/raid1.c (revision 63dc02bd)
1 /*
2  * raid1.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5  *
6  * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7  *
8  * RAID-1 management functions.
9  *
10  * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11  *
12  * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
13  * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14  *
15  * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16  * bitmapped intelligence in resync:
17  *
18  *      - bitmap marked during normal i/o
19  *      - bitmap used to skip nondirty blocks during sync
20  *
21  * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22  * - persistent bitmap code
23  *
24  * This program is free software; you can redistribute it and/or modify
25  * it under the terms of the GNU General Public License as published by
26  * the Free Software Foundation; either version 2, or (at your option)
27  * any later version.
28  *
29  * You should have received a copy of the GNU General Public License
30  * (for example /usr/src/linux/COPYING); if not, write to the Free
31  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32  */
33 
34 #include <linux/slab.h>
35 #include <linux/delay.h>
36 #include <linux/blkdev.h>
37 #include <linux/module.h>
38 #include <linux/seq_file.h>
39 #include <linux/ratelimit.h>
40 #include "md.h"
41 #include "raid1.h"
42 #include "bitmap.h"
43 
44 /*
45  * Number of guaranteed r1bios in case of extreme VM load:
46  */
47 #define	NR_RAID1_BIOS 256
48 
49 /* When there are this many requests queue to be written by
50  * the raid1 thread, we become 'congested' to provide back-pressure
51  * for writeback.
52  */
53 static int max_queued_requests = 1024;
54 
55 static void allow_barrier(struct r1conf *conf);
56 static void lower_barrier(struct r1conf *conf);
57 
58 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
59 {
60 	struct pool_info *pi = data;
61 	int size = offsetof(struct r1bio, bios[pi->raid_disks]);
62 
63 	/* allocate a r1bio with room for raid_disks entries in the bios array */
64 	return kzalloc(size, gfp_flags);
65 }
66 
67 static void r1bio_pool_free(void *r1_bio, void *data)
68 {
69 	kfree(r1_bio);
70 }
71 
72 #define RESYNC_BLOCK_SIZE (64*1024)
73 //#define RESYNC_BLOCK_SIZE PAGE_SIZE
74 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
75 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
76 #define RESYNC_WINDOW (2048*1024)
77 
78 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
79 {
80 	struct pool_info *pi = data;
81 	struct page *page;
82 	struct r1bio *r1_bio;
83 	struct bio *bio;
84 	int i, j;
85 
86 	r1_bio = r1bio_pool_alloc(gfp_flags, pi);
87 	if (!r1_bio)
88 		return NULL;
89 
90 	/*
91 	 * Allocate bios : 1 for reading, n-1 for writing
92 	 */
93 	for (j = pi->raid_disks ; j-- ; ) {
94 		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
95 		if (!bio)
96 			goto out_free_bio;
97 		r1_bio->bios[j] = bio;
98 	}
99 	/*
100 	 * Allocate RESYNC_PAGES data pages and attach them to
101 	 * the first bio.
102 	 * If this is a user-requested check/repair, allocate
103 	 * RESYNC_PAGES for each bio.
104 	 */
105 	if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
106 		j = pi->raid_disks;
107 	else
108 		j = 1;
109 	while(j--) {
110 		bio = r1_bio->bios[j];
111 		for (i = 0; i < RESYNC_PAGES; i++) {
112 			page = alloc_page(gfp_flags);
113 			if (unlikely(!page))
114 				goto out_free_pages;
115 
116 			bio->bi_io_vec[i].bv_page = page;
117 			bio->bi_vcnt = i+1;
118 		}
119 	}
120 	/* If not user-requests, copy the page pointers to all bios */
121 	if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
122 		for (i=0; i<RESYNC_PAGES ; i++)
123 			for (j=1; j<pi->raid_disks; j++)
124 				r1_bio->bios[j]->bi_io_vec[i].bv_page =
125 					r1_bio->bios[0]->bi_io_vec[i].bv_page;
126 	}
127 
128 	r1_bio->master_bio = NULL;
129 
130 	return r1_bio;
131 
132 out_free_pages:
133 	for (j=0 ; j < pi->raid_disks; j++)
134 		for (i=0; i < r1_bio->bios[j]->bi_vcnt ; i++)
135 			put_page(r1_bio->bios[j]->bi_io_vec[i].bv_page);
136 	j = -1;
137 out_free_bio:
138 	while (++j < pi->raid_disks)
139 		bio_put(r1_bio->bios[j]);
140 	r1bio_pool_free(r1_bio, data);
141 	return NULL;
142 }
143 
144 static void r1buf_pool_free(void *__r1_bio, void *data)
145 {
146 	struct pool_info *pi = data;
147 	int i,j;
148 	struct r1bio *r1bio = __r1_bio;
149 
150 	for (i = 0; i < RESYNC_PAGES; i++)
151 		for (j = pi->raid_disks; j-- ;) {
152 			if (j == 0 ||
153 			    r1bio->bios[j]->bi_io_vec[i].bv_page !=
154 			    r1bio->bios[0]->bi_io_vec[i].bv_page)
155 				safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
156 		}
157 	for (i=0 ; i < pi->raid_disks; i++)
158 		bio_put(r1bio->bios[i]);
159 
160 	r1bio_pool_free(r1bio, data);
161 }
162 
163 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
164 {
165 	int i;
166 
167 	for (i = 0; i < conf->raid_disks * 2; i++) {
168 		struct bio **bio = r1_bio->bios + i;
169 		if (!BIO_SPECIAL(*bio))
170 			bio_put(*bio);
171 		*bio = NULL;
172 	}
173 }
174 
175 static void free_r1bio(struct r1bio *r1_bio)
176 {
177 	struct r1conf *conf = r1_bio->mddev->private;
178 
179 	put_all_bios(conf, r1_bio);
180 	mempool_free(r1_bio, conf->r1bio_pool);
181 }
182 
183 static void put_buf(struct r1bio *r1_bio)
184 {
185 	struct r1conf *conf = r1_bio->mddev->private;
186 	int i;
187 
188 	for (i = 0; i < conf->raid_disks * 2; i++) {
189 		struct bio *bio = r1_bio->bios[i];
190 		if (bio->bi_end_io)
191 			rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
192 	}
193 
194 	mempool_free(r1_bio, conf->r1buf_pool);
195 
196 	lower_barrier(conf);
197 }
198 
199 static void reschedule_retry(struct r1bio *r1_bio)
200 {
201 	unsigned long flags;
202 	struct mddev *mddev = r1_bio->mddev;
203 	struct r1conf *conf = mddev->private;
204 
205 	spin_lock_irqsave(&conf->device_lock, flags);
206 	list_add(&r1_bio->retry_list, &conf->retry_list);
207 	conf->nr_queued ++;
208 	spin_unlock_irqrestore(&conf->device_lock, flags);
209 
210 	wake_up(&conf->wait_barrier);
211 	md_wakeup_thread(mddev->thread);
212 }
213 
214 /*
215  * raid_end_bio_io() is called when we have finished servicing a mirrored
216  * operation and are ready to return a success/failure code to the buffer
217  * cache layer.
218  */
219 static void call_bio_endio(struct r1bio *r1_bio)
220 {
221 	struct bio *bio = r1_bio->master_bio;
222 	int done;
223 	struct r1conf *conf = r1_bio->mddev->private;
224 
225 	if (bio->bi_phys_segments) {
226 		unsigned long flags;
227 		spin_lock_irqsave(&conf->device_lock, flags);
228 		bio->bi_phys_segments--;
229 		done = (bio->bi_phys_segments == 0);
230 		spin_unlock_irqrestore(&conf->device_lock, flags);
231 	} else
232 		done = 1;
233 
234 	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
235 		clear_bit(BIO_UPTODATE, &bio->bi_flags);
236 	if (done) {
237 		bio_endio(bio, 0);
238 		/*
239 		 * Wake up any possible resync thread that waits for the device
240 		 * to go idle.
241 		 */
242 		allow_barrier(conf);
243 	}
244 }
245 
246 static void raid_end_bio_io(struct r1bio *r1_bio)
247 {
248 	struct bio *bio = r1_bio->master_bio;
249 
250 	/* if nobody has done the final endio yet, do it now */
251 	if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
252 		pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
253 			 (bio_data_dir(bio) == WRITE) ? "write" : "read",
254 			 (unsigned long long) bio->bi_sector,
255 			 (unsigned long long) bio->bi_sector +
256 			 (bio->bi_size >> 9) - 1);
257 
258 		call_bio_endio(r1_bio);
259 	}
260 	free_r1bio(r1_bio);
261 }
262 
263 /*
264  * Update disk head position estimator based on IRQ completion info.
265  */
266 static inline void update_head_pos(int disk, struct r1bio *r1_bio)
267 {
268 	struct r1conf *conf = r1_bio->mddev->private;
269 
270 	conf->mirrors[disk].head_position =
271 		r1_bio->sector + (r1_bio->sectors);
272 }
273 
274 /*
275  * Find the disk number which triggered given bio
276  */
277 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
278 {
279 	int mirror;
280 	struct r1conf *conf = r1_bio->mddev->private;
281 	int raid_disks = conf->raid_disks;
282 
283 	for (mirror = 0; mirror < raid_disks * 2; mirror++)
284 		if (r1_bio->bios[mirror] == bio)
285 			break;
286 
287 	BUG_ON(mirror == raid_disks * 2);
288 	update_head_pos(mirror, r1_bio);
289 
290 	return mirror;
291 }
292 
293 static void raid1_end_read_request(struct bio *bio, int error)
294 {
295 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
296 	struct r1bio *r1_bio = bio->bi_private;
297 	int mirror;
298 	struct r1conf *conf = r1_bio->mddev->private;
299 
300 	mirror = r1_bio->read_disk;
301 	/*
302 	 * this branch is our 'one mirror IO has finished' event handler:
303 	 */
304 	update_head_pos(mirror, r1_bio);
305 
306 	if (uptodate)
307 		set_bit(R1BIO_Uptodate, &r1_bio->state);
308 	else {
309 		/* If all other devices have failed, we want to return
310 		 * the error upwards rather than fail the last device.
311 		 * Here we redefine "uptodate" to mean "Don't want to retry"
312 		 */
313 		unsigned long flags;
314 		spin_lock_irqsave(&conf->device_lock, flags);
315 		if (r1_bio->mddev->degraded == conf->raid_disks ||
316 		    (r1_bio->mddev->degraded == conf->raid_disks-1 &&
317 		     !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags)))
318 			uptodate = 1;
319 		spin_unlock_irqrestore(&conf->device_lock, flags);
320 	}
321 
322 	if (uptodate)
323 		raid_end_bio_io(r1_bio);
324 	else {
325 		/*
326 		 * oops, read error:
327 		 */
328 		char b[BDEVNAME_SIZE];
329 		printk_ratelimited(
330 			KERN_ERR "md/raid1:%s: %s: "
331 			"rescheduling sector %llu\n",
332 			mdname(conf->mddev),
333 			bdevname(conf->mirrors[mirror].rdev->bdev,
334 				 b),
335 			(unsigned long long)r1_bio->sector);
336 		set_bit(R1BIO_ReadError, &r1_bio->state);
337 		reschedule_retry(r1_bio);
338 	}
339 
340 	rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
341 }
342 
343 static void close_write(struct r1bio *r1_bio)
344 {
345 	/* it really is the end of this request */
346 	if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
347 		/* free extra copy of the data pages */
348 		int i = r1_bio->behind_page_count;
349 		while (i--)
350 			safe_put_page(r1_bio->behind_bvecs[i].bv_page);
351 		kfree(r1_bio->behind_bvecs);
352 		r1_bio->behind_bvecs = NULL;
353 	}
354 	/* clear the bitmap if all writes complete successfully */
355 	bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
356 			r1_bio->sectors,
357 			!test_bit(R1BIO_Degraded, &r1_bio->state),
358 			test_bit(R1BIO_BehindIO, &r1_bio->state));
359 	md_write_end(r1_bio->mddev);
360 }
361 
362 static void r1_bio_write_done(struct r1bio *r1_bio)
363 {
364 	if (!atomic_dec_and_test(&r1_bio->remaining))
365 		return;
366 
367 	if (test_bit(R1BIO_WriteError, &r1_bio->state))
368 		reschedule_retry(r1_bio);
369 	else {
370 		close_write(r1_bio);
371 		if (test_bit(R1BIO_MadeGood, &r1_bio->state))
372 			reschedule_retry(r1_bio);
373 		else
374 			raid_end_bio_io(r1_bio);
375 	}
376 }
377 
378 static void raid1_end_write_request(struct bio *bio, int error)
379 {
380 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
381 	struct r1bio *r1_bio = bio->bi_private;
382 	int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
383 	struct r1conf *conf = r1_bio->mddev->private;
384 	struct bio *to_put = NULL;
385 
386 	mirror = find_bio_disk(r1_bio, bio);
387 
388 	/*
389 	 * 'one mirror IO has finished' event handler:
390 	 */
391 	if (!uptodate) {
392 		set_bit(WriteErrorSeen,
393 			&conf->mirrors[mirror].rdev->flags);
394 		if (!test_and_set_bit(WantReplacement,
395 				      &conf->mirrors[mirror].rdev->flags))
396 			set_bit(MD_RECOVERY_NEEDED, &
397 				conf->mddev->recovery);
398 
399 		set_bit(R1BIO_WriteError, &r1_bio->state);
400 	} else {
401 		/*
402 		 * Set R1BIO_Uptodate in our master bio, so that we
403 		 * will return a good error code for to the higher
404 		 * levels even if IO on some other mirrored buffer
405 		 * fails.
406 		 *
407 		 * The 'master' represents the composite IO operation
408 		 * to user-side. So if something waits for IO, then it
409 		 * will wait for the 'master' bio.
410 		 */
411 		sector_t first_bad;
412 		int bad_sectors;
413 
414 		r1_bio->bios[mirror] = NULL;
415 		to_put = bio;
416 		set_bit(R1BIO_Uptodate, &r1_bio->state);
417 
418 		/* Maybe we can clear some bad blocks. */
419 		if (is_badblock(conf->mirrors[mirror].rdev,
420 				r1_bio->sector, r1_bio->sectors,
421 				&first_bad, &bad_sectors)) {
422 			r1_bio->bios[mirror] = IO_MADE_GOOD;
423 			set_bit(R1BIO_MadeGood, &r1_bio->state);
424 		}
425 	}
426 
427 	if (behind) {
428 		if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
429 			atomic_dec(&r1_bio->behind_remaining);
430 
431 		/*
432 		 * In behind mode, we ACK the master bio once the I/O
433 		 * has safely reached all non-writemostly
434 		 * disks. Setting the Returned bit ensures that this
435 		 * gets done only once -- we don't ever want to return
436 		 * -EIO here, instead we'll wait
437 		 */
438 		if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
439 		    test_bit(R1BIO_Uptodate, &r1_bio->state)) {
440 			/* Maybe we can return now */
441 			if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
442 				struct bio *mbio = r1_bio->master_bio;
443 				pr_debug("raid1: behind end write sectors"
444 					 " %llu-%llu\n",
445 					 (unsigned long long) mbio->bi_sector,
446 					 (unsigned long long) mbio->bi_sector +
447 					 (mbio->bi_size >> 9) - 1);
448 				call_bio_endio(r1_bio);
449 			}
450 		}
451 	}
452 	if (r1_bio->bios[mirror] == NULL)
453 		rdev_dec_pending(conf->mirrors[mirror].rdev,
454 				 conf->mddev);
455 
456 	/*
457 	 * Let's see if all mirrored write operations have finished
458 	 * already.
459 	 */
460 	r1_bio_write_done(r1_bio);
461 
462 	if (to_put)
463 		bio_put(to_put);
464 }
465 
466 
467 /*
468  * This routine returns the disk from which the requested read should
469  * be done. There is a per-array 'next expected sequential IO' sector
470  * number - if this matches on the next IO then we use the last disk.
471  * There is also a per-disk 'last know head position' sector that is
472  * maintained from IRQ contexts, both the normal and the resync IO
473  * completion handlers update this position correctly. If there is no
474  * perfect sequential match then we pick the disk whose head is closest.
475  *
476  * If there are 2 mirrors in the same 2 devices, performance degrades
477  * because position is mirror, not device based.
478  *
479  * The rdev for the device selected will have nr_pending incremented.
480  */
481 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
482 {
483 	const sector_t this_sector = r1_bio->sector;
484 	int sectors;
485 	int best_good_sectors;
486 	int start_disk;
487 	int best_disk;
488 	int i;
489 	sector_t best_dist;
490 	struct md_rdev *rdev;
491 	int choose_first;
492 
493 	rcu_read_lock();
494 	/*
495 	 * Check if we can balance. We can balance on the whole
496 	 * device if no resync is going on, or below the resync window.
497 	 * We take the first readable disk when above the resync window.
498 	 */
499  retry:
500 	sectors = r1_bio->sectors;
501 	best_disk = -1;
502 	best_dist = MaxSector;
503 	best_good_sectors = 0;
504 
505 	if (conf->mddev->recovery_cp < MaxSector &&
506 	    (this_sector + sectors >= conf->next_resync)) {
507 		choose_first = 1;
508 		start_disk = 0;
509 	} else {
510 		choose_first = 0;
511 		start_disk = conf->last_used;
512 	}
513 
514 	for (i = 0 ; i < conf->raid_disks * 2 ; i++) {
515 		sector_t dist;
516 		sector_t first_bad;
517 		int bad_sectors;
518 
519 		int disk = start_disk + i;
520 		if (disk >= conf->raid_disks)
521 			disk -= conf->raid_disks;
522 
523 		rdev = rcu_dereference(conf->mirrors[disk].rdev);
524 		if (r1_bio->bios[disk] == IO_BLOCKED
525 		    || rdev == NULL
526 		    || test_bit(Unmerged, &rdev->flags)
527 		    || test_bit(Faulty, &rdev->flags))
528 			continue;
529 		if (!test_bit(In_sync, &rdev->flags) &&
530 		    rdev->recovery_offset < this_sector + sectors)
531 			continue;
532 		if (test_bit(WriteMostly, &rdev->flags)) {
533 			/* Don't balance among write-mostly, just
534 			 * use the first as a last resort */
535 			if (best_disk < 0) {
536 				if (is_badblock(rdev, this_sector, sectors,
537 						&first_bad, &bad_sectors)) {
538 					if (first_bad < this_sector)
539 						/* Cannot use this */
540 						continue;
541 					best_good_sectors = first_bad - this_sector;
542 				} else
543 					best_good_sectors = sectors;
544 				best_disk = disk;
545 			}
546 			continue;
547 		}
548 		/* This is a reasonable device to use.  It might
549 		 * even be best.
550 		 */
551 		if (is_badblock(rdev, this_sector, sectors,
552 				&first_bad, &bad_sectors)) {
553 			if (best_dist < MaxSector)
554 				/* already have a better device */
555 				continue;
556 			if (first_bad <= this_sector) {
557 				/* cannot read here. If this is the 'primary'
558 				 * device, then we must not read beyond
559 				 * bad_sectors from another device..
560 				 */
561 				bad_sectors -= (this_sector - first_bad);
562 				if (choose_first && sectors > bad_sectors)
563 					sectors = bad_sectors;
564 				if (best_good_sectors > sectors)
565 					best_good_sectors = sectors;
566 
567 			} else {
568 				sector_t good_sectors = first_bad - this_sector;
569 				if (good_sectors > best_good_sectors) {
570 					best_good_sectors = good_sectors;
571 					best_disk = disk;
572 				}
573 				if (choose_first)
574 					break;
575 			}
576 			continue;
577 		} else
578 			best_good_sectors = sectors;
579 
580 		dist = abs(this_sector - conf->mirrors[disk].head_position);
581 		if (choose_first
582 		    /* Don't change to another disk for sequential reads */
583 		    || conf->next_seq_sect == this_sector
584 		    || dist == 0
585 		    /* If device is idle, use it */
586 		    || atomic_read(&rdev->nr_pending) == 0) {
587 			best_disk = disk;
588 			break;
589 		}
590 		if (dist < best_dist) {
591 			best_dist = dist;
592 			best_disk = disk;
593 		}
594 	}
595 
596 	if (best_disk >= 0) {
597 		rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
598 		if (!rdev)
599 			goto retry;
600 		atomic_inc(&rdev->nr_pending);
601 		if (test_bit(Faulty, &rdev->flags)) {
602 			/* cannot risk returning a device that failed
603 			 * before we inc'ed nr_pending
604 			 */
605 			rdev_dec_pending(rdev, conf->mddev);
606 			goto retry;
607 		}
608 		sectors = best_good_sectors;
609 		conf->next_seq_sect = this_sector + sectors;
610 		conf->last_used = best_disk;
611 	}
612 	rcu_read_unlock();
613 	*max_sectors = sectors;
614 
615 	return best_disk;
616 }
617 
618 static int raid1_mergeable_bvec(struct request_queue *q,
619 				struct bvec_merge_data *bvm,
620 				struct bio_vec *biovec)
621 {
622 	struct mddev *mddev = q->queuedata;
623 	struct r1conf *conf = mddev->private;
624 	sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
625 	int max = biovec->bv_len;
626 
627 	if (mddev->merge_check_needed) {
628 		int disk;
629 		rcu_read_lock();
630 		for (disk = 0; disk < conf->raid_disks * 2; disk++) {
631 			struct md_rdev *rdev = rcu_dereference(
632 				conf->mirrors[disk].rdev);
633 			if (rdev && !test_bit(Faulty, &rdev->flags)) {
634 				struct request_queue *q =
635 					bdev_get_queue(rdev->bdev);
636 				if (q->merge_bvec_fn) {
637 					bvm->bi_sector = sector +
638 						rdev->data_offset;
639 					bvm->bi_bdev = rdev->bdev;
640 					max = min(max, q->merge_bvec_fn(
641 							  q, bvm, biovec));
642 				}
643 			}
644 		}
645 		rcu_read_unlock();
646 	}
647 	return max;
648 
649 }
650 
651 int md_raid1_congested(struct mddev *mddev, int bits)
652 {
653 	struct r1conf *conf = mddev->private;
654 	int i, ret = 0;
655 
656 	if ((bits & (1 << BDI_async_congested)) &&
657 	    conf->pending_count >= max_queued_requests)
658 		return 1;
659 
660 	rcu_read_lock();
661 	for (i = 0; i < conf->raid_disks * 2; i++) {
662 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
663 		if (rdev && !test_bit(Faulty, &rdev->flags)) {
664 			struct request_queue *q = bdev_get_queue(rdev->bdev);
665 
666 			BUG_ON(!q);
667 
668 			/* Note the '|| 1' - when read_balance prefers
669 			 * non-congested targets, it can be removed
670 			 */
671 			if ((bits & (1<<BDI_async_congested)) || 1)
672 				ret |= bdi_congested(&q->backing_dev_info, bits);
673 			else
674 				ret &= bdi_congested(&q->backing_dev_info, bits);
675 		}
676 	}
677 	rcu_read_unlock();
678 	return ret;
679 }
680 EXPORT_SYMBOL_GPL(md_raid1_congested);
681 
682 static int raid1_congested(void *data, int bits)
683 {
684 	struct mddev *mddev = data;
685 
686 	return mddev_congested(mddev, bits) ||
687 		md_raid1_congested(mddev, bits);
688 }
689 
690 static void flush_pending_writes(struct r1conf *conf)
691 {
692 	/* Any writes that have been queued but are awaiting
693 	 * bitmap updates get flushed here.
694 	 */
695 	spin_lock_irq(&conf->device_lock);
696 
697 	if (conf->pending_bio_list.head) {
698 		struct bio *bio;
699 		bio = bio_list_get(&conf->pending_bio_list);
700 		conf->pending_count = 0;
701 		spin_unlock_irq(&conf->device_lock);
702 		/* flush any pending bitmap writes to
703 		 * disk before proceeding w/ I/O */
704 		bitmap_unplug(conf->mddev->bitmap);
705 		wake_up(&conf->wait_barrier);
706 
707 		while (bio) { /* submit pending writes */
708 			struct bio *next = bio->bi_next;
709 			bio->bi_next = NULL;
710 			generic_make_request(bio);
711 			bio = next;
712 		}
713 	} else
714 		spin_unlock_irq(&conf->device_lock);
715 }
716 
717 /* Barriers....
718  * Sometimes we need to suspend IO while we do something else,
719  * either some resync/recovery, or reconfigure the array.
720  * To do this we raise a 'barrier'.
721  * The 'barrier' is a counter that can be raised multiple times
722  * to count how many activities are happening which preclude
723  * normal IO.
724  * We can only raise the barrier if there is no pending IO.
725  * i.e. if nr_pending == 0.
726  * We choose only to raise the barrier if no-one is waiting for the
727  * barrier to go down.  This means that as soon as an IO request
728  * is ready, no other operations which require a barrier will start
729  * until the IO request has had a chance.
730  *
731  * So: regular IO calls 'wait_barrier'.  When that returns there
732  *    is no backgroup IO happening,  It must arrange to call
733  *    allow_barrier when it has finished its IO.
734  * backgroup IO calls must call raise_barrier.  Once that returns
735  *    there is no normal IO happeing.  It must arrange to call
736  *    lower_barrier when the particular background IO completes.
737  */
738 #define RESYNC_DEPTH 32
739 
740 static void raise_barrier(struct r1conf *conf)
741 {
742 	spin_lock_irq(&conf->resync_lock);
743 
744 	/* Wait until no block IO is waiting */
745 	wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
746 			    conf->resync_lock, );
747 
748 	/* block any new IO from starting */
749 	conf->barrier++;
750 
751 	/* Now wait for all pending IO to complete */
752 	wait_event_lock_irq(conf->wait_barrier,
753 			    !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
754 			    conf->resync_lock, );
755 
756 	spin_unlock_irq(&conf->resync_lock);
757 }
758 
759 static void lower_barrier(struct r1conf *conf)
760 {
761 	unsigned long flags;
762 	BUG_ON(conf->barrier <= 0);
763 	spin_lock_irqsave(&conf->resync_lock, flags);
764 	conf->barrier--;
765 	spin_unlock_irqrestore(&conf->resync_lock, flags);
766 	wake_up(&conf->wait_barrier);
767 }
768 
769 static void wait_barrier(struct r1conf *conf)
770 {
771 	spin_lock_irq(&conf->resync_lock);
772 	if (conf->barrier) {
773 		conf->nr_waiting++;
774 		/* Wait for the barrier to drop.
775 		 * However if there are already pending
776 		 * requests (preventing the barrier from
777 		 * rising completely), and the
778 		 * pre-process bio queue isn't empty,
779 		 * then don't wait, as we need to empty
780 		 * that queue to get the nr_pending
781 		 * count down.
782 		 */
783 		wait_event_lock_irq(conf->wait_barrier,
784 				    !conf->barrier ||
785 				    (conf->nr_pending &&
786 				     current->bio_list &&
787 				     !bio_list_empty(current->bio_list)),
788 				    conf->resync_lock,
789 			);
790 		conf->nr_waiting--;
791 	}
792 	conf->nr_pending++;
793 	spin_unlock_irq(&conf->resync_lock);
794 }
795 
796 static void allow_barrier(struct r1conf *conf)
797 {
798 	unsigned long flags;
799 	spin_lock_irqsave(&conf->resync_lock, flags);
800 	conf->nr_pending--;
801 	spin_unlock_irqrestore(&conf->resync_lock, flags);
802 	wake_up(&conf->wait_barrier);
803 }
804 
805 static void freeze_array(struct r1conf *conf)
806 {
807 	/* stop syncio and normal IO and wait for everything to
808 	 * go quite.
809 	 * We increment barrier and nr_waiting, and then
810 	 * wait until nr_pending match nr_queued+1
811 	 * This is called in the context of one normal IO request
812 	 * that has failed. Thus any sync request that might be pending
813 	 * will be blocked by nr_pending, and we need to wait for
814 	 * pending IO requests to complete or be queued for re-try.
815 	 * Thus the number queued (nr_queued) plus this request (1)
816 	 * must match the number of pending IOs (nr_pending) before
817 	 * we continue.
818 	 */
819 	spin_lock_irq(&conf->resync_lock);
820 	conf->barrier++;
821 	conf->nr_waiting++;
822 	wait_event_lock_irq(conf->wait_barrier,
823 			    conf->nr_pending == conf->nr_queued+1,
824 			    conf->resync_lock,
825 			    flush_pending_writes(conf));
826 	spin_unlock_irq(&conf->resync_lock);
827 }
828 static void unfreeze_array(struct r1conf *conf)
829 {
830 	/* reverse the effect of the freeze */
831 	spin_lock_irq(&conf->resync_lock);
832 	conf->barrier--;
833 	conf->nr_waiting--;
834 	wake_up(&conf->wait_barrier);
835 	spin_unlock_irq(&conf->resync_lock);
836 }
837 
838 
839 /* duplicate the data pages for behind I/O
840  */
841 static void alloc_behind_pages(struct bio *bio, struct r1bio *r1_bio)
842 {
843 	int i;
844 	struct bio_vec *bvec;
845 	struct bio_vec *bvecs = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec),
846 					GFP_NOIO);
847 	if (unlikely(!bvecs))
848 		return;
849 
850 	bio_for_each_segment(bvec, bio, i) {
851 		bvecs[i] = *bvec;
852 		bvecs[i].bv_page = alloc_page(GFP_NOIO);
853 		if (unlikely(!bvecs[i].bv_page))
854 			goto do_sync_io;
855 		memcpy(kmap(bvecs[i].bv_page) + bvec->bv_offset,
856 		       kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
857 		kunmap(bvecs[i].bv_page);
858 		kunmap(bvec->bv_page);
859 	}
860 	r1_bio->behind_bvecs = bvecs;
861 	r1_bio->behind_page_count = bio->bi_vcnt;
862 	set_bit(R1BIO_BehindIO, &r1_bio->state);
863 	return;
864 
865 do_sync_io:
866 	for (i = 0; i < bio->bi_vcnt; i++)
867 		if (bvecs[i].bv_page)
868 			put_page(bvecs[i].bv_page);
869 	kfree(bvecs);
870 	pr_debug("%dB behind alloc failed, doing sync I/O\n", bio->bi_size);
871 }
872 
873 static void make_request(struct mddev *mddev, struct bio * bio)
874 {
875 	struct r1conf *conf = mddev->private;
876 	struct mirror_info *mirror;
877 	struct r1bio *r1_bio;
878 	struct bio *read_bio;
879 	int i, disks;
880 	struct bitmap *bitmap;
881 	unsigned long flags;
882 	const int rw = bio_data_dir(bio);
883 	const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
884 	const unsigned long do_flush_fua = (bio->bi_rw & (REQ_FLUSH | REQ_FUA));
885 	struct md_rdev *blocked_rdev;
886 	int plugged;
887 	int first_clone;
888 	int sectors_handled;
889 	int max_sectors;
890 
891 	/*
892 	 * Register the new request and wait if the reconstruction
893 	 * thread has put up a bar for new requests.
894 	 * Continue immediately if no resync is active currently.
895 	 */
896 
897 	md_write_start(mddev, bio); /* wait on superblock update early */
898 
899 	if (bio_data_dir(bio) == WRITE &&
900 	    bio->bi_sector + bio->bi_size/512 > mddev->suspend_lo &&
901 	    bio->bi_sector < mddev->suspend_hi) {
902 		/* As the suspend_* range is controlled by
903 		 * userspace, we want an interruptible
904 		 * wait.
905 		 */
906 		DEFINE_WAIT(w);
907 		for (;;) {
908 			flush_signals(current);
909 			prepare_to_wait(&conf->wait_barrier,
910 					&w, TASK_INTERRUPTIBLE);
911 			if (bio->bi_sector + bio->bi_size/512 <= mddev->suspend_lo ||
912 			    bio->bi_sector >= mddev->suspend_hi)
913 				break;
914 			schedule();
915 		}
916 		finish_wait(&conf->wait_barrier, &w);
917 	}
918 
919 	wait_barrier(conf);
920 
921 	bitmap = mddev->bitmap;
922 
923 	/*
924 	 * make_request() can abort the operation when READA is being
925 	 * used and no empty request is available.
926 	 *
927 	 */
928 	r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
929 
930 	r1_bio->master_bio = bio;
931 	r1_bio->sectors = bio->bi_size >> 9;
932 	r1_bio->state = 0;
933 	r1_bio->mddev = mddev;
934 	r1_bio->sector = bio->bi_sector;
935 
936 	/* We might need to issue multiple reads to different
937 	 * devices if there are bad blocks around, so we keep
938 	 * track of the number of reads in bio->bi_phys_segments.
939 	 * If this is 0, there is only one r1_bio and no locking
940 	 * will be needed when requests complete.  If it is
941 	 * non-zero, then it is the number of not-completed requests.
942 	 */
943 	bio->bi_phys_segments = 0;
944 	clear_bit(BIO_SEG_VALID, &bio->bi_flags);
945 
946 	if (rw == READ) {
947 		/*
948 		 * read balancing logic:
949 		 */
950 		int rdisk;
951 
952 read_again:
953 		rdisk = read_balance(conf, r1_bio, &max_sectors);
954 
955 		if (rdisk < 0) {
956 			/* couldn't find anywhere to read from */
957 			raid_end_bio_io(r1_bio);
958 			return;
959 		}
960 		mirror = conf->mirrors + rdisk;
961 
962 		if (test_bit(WriteMostly, &mirror->rdev->flags) &&
963 		    bitmap) {
964 			/* Reading from a write-mostly device must
965 			 * take care not to over-take any writes
966 			 * that are 'behind'
967 			 */
968 			wait_event(bitmap->behind_wait,
969 				   atomic_read(&bitmap->behind_writes) == 0);
970 		}
971 		r1_bio->read_disk = rdisk;
972 
973 		read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
974 		md_trim_bio(read_bio, r1_bio->sector - bio->bi_sector,
975 			    max_sectors);
976 
977 		r1_bio->bios[rdisk] = read_bio;
978 
979 		read_bio->bi_sector = r1_bio->sector + mirror->rdev->data_offset;
980 		read_bio->bi_bdev = mirror->rdev->bdev;
981 		read_bio->bi_end_io = raid1_end_read_request;
982 		read_bio->bi_rw = READ | do_sync;
983 		read_bio->bi_private = r1_bio;
984 
985 		if (max_sectors < r1_bio->sectors) {
986 			/* could not read all from this device, so we will
987 			 * need another r1_bio.
988 			 */
989 
990 			sectors_handled = (r1_bio->sector + max_sectors
991 					   - bio->bi_sector);
992 			r1_bio->sectors = max_sectors;
993 			spin_lock_irq(&conf->device_lock);
994 			if (bio->bi_phys_segments == 0)
995 				bio->bi_phys_segments = 2;
996 			else
997 				bio->bi_phys_segments++;
998 			spin_unlock_irq(&conf->device_lock);
999 			/* Cannot call generic_make_request directly
1000 			 * as that will be queued in __make_request
1001 			 * and subsequent mempool_alloc might block waiting
1002 			 * for it.  So hand bio over to raid1d.
1003 			 */
1004 			reschedule_retry(r1_bio);
1005 
1006 			r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1007 
1008 			r1_bio->master_bio = bio;
1009 			r1_bio->sectors = (bio->bi_size >> 9) - sectors_handled;
1010 			r1_bio->state = 0;
1011 			r1_bio->mddev = mddev;
1012 			r1_bio->sector = bio->bi_sector + sectors_handled;
1013 			goto read_again;
1014 		} else
1015 			generic_make_request(read_bio);
1016 		return;
1017 	}
1018 
1019 	/*
1020 	 * WRITE:
1021 	 */
1022 	if (conf->pending_count >= max_queued_requests) {
1023 		md_wakeup_thread(mddev->thread);
1024 		wait_event(conf->wait_barrier,
1025 			   conf->pending_count < max_queued_requests);
1026 	}
1027 	/* first select target devices under rcu_lock and
1028 	 * inc refcount on their rdev.  Record them by setting
1029 	 * bios[x] to bio
1030 	 * If there are known/acknowledged bad blocks on any device on
1031 	 * which we have seen a write error, we want to avoid writing those
1032 	 * blocks.
1033 	 * This potentially requires several writes to write around
1034 	 * the bad blocks.  Each set of writes gets it's own r1bio
1035 	 * with a set of bios attached.
1036 	 */
1037 	plugged = mddev_check_plugged(mddev);
1038 
1039 	disks = conf->raid_disks * 2;
1040  retry_write:
1041 	blocked_rdev = NULL;
1042 	rcu_read_lock();
1043 	max_sectors = r1_bio->sectors;
1044 	for (i = 0;  i < disks; i++) {
1045 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1046 		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1047 			atomic_inc(&rdev->nr_pending);
1048 			blocked_rdev = rdev;
1049 			break;
1050 		}
1051 		r1_bio->bios[i] = NULL;
1052 		if (!rdev || test_bit(Faulty, &rdev->flags)
1053 		    || test_bit(Unmerged, &rdev->flags)) {
1054 			if (i < conf->raid_disks)
1055 				set_bit(R1BIO_Degraded, &r1_bio->state);
1056 			continue;
1057 		}
1058 
1059 		atomic_inc(&rdev->nr_pending);
1060 		if (test_bit(WriteErrorSeen, &rdev->flags)) {
1061 			sector_t first_bad;
1062 			int bad_sectors;
1063 			int is_bad;
1064 
1065 			is_bad = is_badblock(rdev, r1_bio->sector,
1066 					     max_sectors,
1067 					     &first_bad, &bad_sectors);
1068 			if (is_bad < 0) {
1069 				/* mustn't write here until the bad block is
1070 				 * acknowledged*/
1071 				set_bit(BlockedBadBlocks, &rdev->flags);
1072 				blocked_rdev = rdev;
1073 				break;
1074 			}
1075 			if (is_bad && first_bad <= r1_bio->sector) {
1076 				/* Cannot write here at all */
1077 				bad_sectors -= (r1_bio->sector - first_bad);
1078 				if (bad_sectors < max_sectors)
1079 					/* mustn't write more than bad_sectors
1080 					 * to other devices yet
1081 					 */
1082 					max_sectors = bad_sectors;
1083 				rdev_dec_pending(rdev, mddev);
1084 				/* We don't set R1BIO_Degraded as that
1085 				 * only applies if the disk is
1086 				 * missing, so it might be re-added,
1087 				 * and we want to know to recover this
1088 				 * chunk.
1089 				 * In this case the device is here,
1090 				 * and the fact that this chunk is not
1091 				 * in-sync is recorded in the bad
1092 				 * block log
1093 				 */
1094 				continue;
1095 			}
1096 			if (is_bad) {
1097 				int good_sectors = first_bad - r1_bio->sector;
1098 				if (good_sectors < max_sectors)
1099 					max_sectors = good_sectors;
1100 			}
1101 		}
1102 		r1_bio->bios[i] = bio;
1103 	}
1104 	rcu_read_unlock();
1105 
1106 	if (unlikely(blocked_rdev)) {
1107 		/* Wait for this device to become unblocked */
1108 		int j;
1109 
1110 		for (j = 0; j < i; j++)
1111 			if (r1_bio->bios[j])
1112 				rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1113 		r1_bio->state = 0;
1114 		allow_barrier(conf);
1115 		md_wait_for_blocked_rdev(blocked_rdev, mddev);
1116 		wait_barrier(conf);
1117 		goto retry_write;
1118 	}
1119 
1120 	if (max_sectors < r1_bio->sectors) {
1121 		/* We are splitting this write into multiple parts, so
1122 		 * we need to prepare for allocating another r1_bio.
1123 		 */
1124 		r1_bio->sectors = max_sectors;
1125 		spin_lock_irq(&conf->device_lock);
1126 		if (bio->bi_phys_segments == 0)
1127 			bio->bi_phys_segments = 2;
1128 		else
1129 			bio->bi_phys_segments++;
1130 		spin_unlock_irq(&conf->device_lock);
1131 	}
1132 	sectors_handled = r1_bio->sector + max_sectors - bio->bi_sector;
1133 
1134 	atomic_set(&r1_bio->remaining, 1);
1135 	atomic_set(&r1_bio->behind_remaining, 0);
1136 
1137 	first_clone = 1;
1138 	for (i = 0; i < disks; i++) {
1139 		struct bio *mbio;
1140 		if (!r1_bio->bios[i])
1141 			continue;
1142 
1143 		mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1144 		md_trim_bio(mbio, r1_bio->sector - bio->bi_sector, max_sectors);
1145 
1146 		if (first_clone) {
1147 			/* do behind I/O ?
1148 			 * Not if there are too many, or cannot
1149 			 * allocate memory, or a reader on WriteMostly
1150 			 * is waiting for behind writes to flush */
1151 			if (bitmap &&
1152 			    (atomic_read(&bitmap->behind_writes)
1153 			     < mddev->bitmap_info.max_write_behind) &&
1154 			    !waitqueue_active(&bitmap->behind_wait))
1155 				alloc_behind_pages(mbio, r1_bio);
1156 
1157 			bitmap_startwrite(bitmap, r1_bio->sector,
1158 					  r1_bio->sectors,
1159 					  test_bit(R1BIO_BehindIO,
1160 						   &r1_bio->state));
1161 			first_clone = 0;
1162 		}
1163 		if (r1_bio->behind_bvecs) {
1164 			struct bio_vec *bvec;
1165 			int j;
1166 
1167 			/* Yes, I really want the '__' version so that
1168 			 * we clear any unused pointer in the io_vec, rather
1169 			 * than leave them unchanged.  This is important
1170 			 * because when we come to free the pages, we won't
1171 			 * know the original bi_idx, so we just free
1172 			 * them all
1173 			 */
1174 			__bio_for_each_segment(bvec, mbio, j, 0)
1175 				bvec->bv_page = r1_bio->behind_bvecs[j].bv_page;
1176 			if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1177 				atomic_inc(&r1_bio->behind_remaining);
1178 		}
1179 
1180 		r1_bio->bios[i] = mbio;
1181 
1182 		mbio->bi_sector	= (r1_bio->sector +
1183 				   conf->mirrors[i].rdev->data_offset);
1184 		mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1185 		mbio->bi_end_io	= raid1_end_write_request;
1186 		mbio->bi_rw = WRITE | do_flush_fua | do_sync;
1187 		mbio->bi_private = r1_bio;
1188 
1189 		atomic_inc(&r1_bio->remaining);
1190 		spin_lock_irqsave(&conf->device_lock, flags);
1191 		bio_list_add(&conf->pending_bio_list, mbio);
1192 		conf->pending_count++;
1193 		spin_unlock_irqrestore(&conf->device_lock, flags);
1194 	}
1195 	/* Mustn't call r1_bio_write_done before this next test,
1196 	 * as it could result in the bio being freed.
1197 	 */
1198 	if (sectors_handled < (bio->bi_size >> 9)) {
1199 		r1_bio_write_done(r1_bio);
1200 		/* We need another r1_bio.  It has already been counted
1201 		 * in bio->bi_phys_segments
1202 		 */
1203 		r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1204 		r1_bio->master_bio = bio;
1205 		r1_bio->sectors = (bio->bi_size >> 9) - sectors_handled;
1206 		r1_bio->state = 0;
1207 		r1_bio->mddev = mddev;
1208 		r1_bio->sector = bio->bi_sector + sectors_handled;
1209 		goto retry_write;
1210 	}
1211 
1212 	r1_bio_write_done(r1_bio);
1213 
1214 	/* In case raid1d snuck in to freeze_array */
1215 	wake_up(&conf->wait_barrier);
1216 
1217 	if (do_sync || !bitmap || !plugged)
1218 		md_wakeup_thread(mddev->thread);
1219 }
1220 
1221 static void status(struct seq_file *seq, struct mddev *mddev)
1222 {
1223 	struct r1conf *conf = mddev->private;
1224 	int i;
1225 
1226 	seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1227 		   conf->raid_disks - mddev->degraded);
1228 	rcu_read_lock();
1229 	for (i = 0; i < conf->raid_disks; i++) {
1230 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1231 		seq_printf(seq, "%s",
1232 			   rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1233 	}
1234 	rcu_read_unlock();
1235 	seq_printf(seq, "]");
1236 }
1237 
1238 
1239 static void error(struct mddev *mddev, struct md_rdev *rdev)
1240 {
1241 	char b[BDEVNAME_SIZE];
1242 	struct r1conf *conf = mddev->private;
1243 
1244 	/*
1245 	 * If it is not operational, then we have already marked it as dead
1246 	 * else if it is the last working disks, ignore the error, let the
1247 	 * next level up know.
1248 	 * else mark the drive as failed
1249 	 */
1250 	if (test_bit(In_sync, &rdev->flags)
1251 	    && (conf->raid_disks - mddev->degraded) == 1) {
1252 		/*
1253 		 * Don't fail the drive, act as though we were just a
1254 		 * normal single drive.
1255 		 * However don't try a recovery from this drive as
1256 		 * it is very likely to fail.
1257 		 */
1258 		conf->recovery_disabled = mddev->recovery_disabled;
1259 		return;
1260 	}
1261 	set_bit(Blocked, &rdev->flags);
1262 	if (test_and_clear_bit(In_sync, &rdev->flags)) {
1263 		unsigned long flags;
1264 		spin_lock_irqsave(&conf->device_lock, flags);
1265 		mddev->degraded++;
1266 		set_bit(Faulty, &rdev->flags);
1267 		spin_unlock_irqrestore(&conf->device_lock, flags);
1268 		/*
1269 		 * if recovery is running, make sure it aborts.
1270 		 */
1271 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1272 	} else
1273 		set_bit(Faulty, &rdev->flags);
1274 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
1275 	printk(KERN_ALERT
1276 	       "md/raid1:%s: Disk failure on %s, disabling device.\n"
1277 	       "md/raid1:%s: Operation continuing on %d devices.\n",
1278 	       mdname(mddev), bdevname(rdev->bdev, b),
1279 	       mdname(mddev), conf->raid_disks - mddev->degraded);
1280 }
1281 
1282 static void print_conf(struct r1conf *conf)
1283 {
1284 	int i;
1285 
1286 	printk(KERN_DEBUG "RAID1 conf printout:\n");
1287 	if (!conf) {
1288 		printk(KERN_DEBUG "(!conf)\n");
1289 		return;
1290 	}
1291 	printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1292 		conf->raid_disks);
1293 
1294 	rcu_read_lock();
1295 	for (i = 0; i < conf->raid_disks; i++) {
1296 		char b[BDEVNAME_SIZE];
1297 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1298 		if (rdev)
1299 			printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1300 			       i, !test_bit(In_sync, &rdev->flags),
1301 			       !test_bit(Faulty, &rdev->flags),
1302 			       bdevname(rdev->bdev,b));
1303 	}
1304 	rcu_read_unlock();
1305 }
1306 
1307 static void close_sync(struct r1conf *conf)
1308 {
1309 	wait_barrier(conf);
1310 	allow_barrier(conf);
1311 
1312 	mempool_destroy(conf->r1buf_pool);
1313 	conf->r1buf_pool = NULL;
1314 }
1315 
1316 static int raid1_spare_active(struct mddev *mddev)
1317 {
1318 	int i;
1319 	struct r1conf *conf = mddev->private;
1320 	int count = 0;
1321 	unsigned long flags;
1322 
1323 	/*
1324 	 * Find all failed disks within the RAID1 configuration
1325 	 * and mark them readable.
1326 	 * Called under mddev lock, so rcu protection not needed.
1327 	 */
1328 	for (i = 0; i < conf->raid_disks; i++) {
1329 		struct md_rdev *rdev = conf->mirrors[i].rdev;
1330 		struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1331 		if (repl
1332 		    && repl->recovery_offset == MaxSector
1333 		    && !test_bit(Faulty, &repl->flags)
1334 		    && !test_and_set_bit(In_sync, &repl->flags)) {
1335 			/* replacement has just become active */
1336 			if (!rdev ||
1337 			    !test_and_clear_bit(In_sync, &rdev->flags))
1338 				count++;
1339 			if (rdev) {
1340 				/* Replaced device not technically
1341 				 * faulty, but we need to be sure
1342 				 * it gets removed and never re-added
1343 				 */
1344 				set_bit(Faulty, &rdev->flags);
1345 				sysfs_notify_dirent_safe(
1346 					rdev->sysfs_state);
1347 			}
1348 		}
1349 		if (rdev
1350 		    && !test_bit(Faulty, &rdev->flags)
1351 		    && !test_and_set_bit(In_sync, &rdev->flags)) {
1352 			count++;
1353 			sysfs_notify_dirent_safe(rdev->sysfs_state);
1354 		}
1355 	}
1356 	spin_lock_irqsave(&conf->device_lock, flags);
1357 	mddev->degraded -= count;
1358 	spin_unlock_irqrestore(&conf->device_lock, flags);
1359 
1360 	print_conf(conf);
1361 	return count;
1362 }
1363 
1364 
1365 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1366 {
1367 	struct r1conf *conf = mddev->private;
1368 	int err = -EEXIST;
1369 	int mirror = 0;
1370 	struct mirror_info *p;
1371 	int first = 0;
1372 	int last = conf->raid_disks - 1;
1373 	struct request_queue *q = bdev_get_queue(rdev->bdev);
1374 
1375 	if (mddev->recovery_disabled == conf->recovery_disabled)
1376 		return -EBUSY;
1377 
1378 	if (rdev->raid_disk >= 0)
1379 		first = last = rdev->raid_disk;
1380 
1381 	if (q->merge_bvec_fn) {
1382 		set_bit(Unmerged, &rdev->flags);
1383 		mddev->merge_check_needed = 1;
1384 	}
1385 
1386 	for (mirror = first; mirror <= last; mirror++) {
1387 		p = conf->mirrors+mirror;
1388 		if (!p->rdev) {
1389 
1390 			disk_stack_limits(mddev->gendisk, rdev->bdev,
1391 					  rdev->data_offset << 9);
1392 
1393 			p->head_position = 0;
1394 			rdev->raid_disk = mirror;
1395 			err = 0;
1396 			/* As all devices are equivalent, we don't need a full recovery
1397 			 * if this was recently any drive of the array
1398 			 */
1399 			if (rdev->saved_raid_disk < 0)
1400 				conf->fullsync = 1;
1401 			rcu_assign_pointer(p->rdev, rdev);
1402 			break;
1403 		}
1404 		if (test_bit(WantReplacement, &p->rdev->flags) &&
1405 		    p[conf->raid_disks].rdev == NULL) {
1406 			/* Add this device as a replacement */
1407 			clear_bit(In_sync, &rdev->flags);
1408 			set_bit(Replacement, &rdev->flags);
1409 			rdev->raid_disk = mirror;
1410 			err = 0;
1411 			conf->fullsync = 1;
1412 			rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1413 			break;
1414 		}
1415 	}
1416 	if (err == 0 && test_bit(Unmerged, &rdev->flags)) {
1417 		/* Some requests might not have seen this new
1418 		 * merge_bvec_fn.  We must wait for them to complete
1419 		 * before merging the device fully.
1420 		 * First we make sure any code which has tested
1421 		 * our function has submitted the request, then
1422 		 * we wait for all outstanding requests to complete.
1423 		 */
1424 		synchronize_sched();
1425 		raise_barrier(conf);
1426 		lower_barrier(conf);
1427 		clear_bit(Unmerged, &rdev->flags);
1428 	}
1429 	md_integrity_add_rdev(rdev, mddev);
1430 	print_conf(conf);
1431 	return err;
1432 }
1433 
1434 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1435 {
1436 	struct r1conf *conf = mddev->private;
1437 	int err = 0;
1438 	int number = rdev->raid_disk;
1439 	struct mirror_info *p = conf->mirrors+ number;
1440 
1441 	if (rdev != p->rdev)
1442 		p = conf->mirrors + conf->raid_disks + number;
1443 
1444 	print_conf(conf);
1445 	if (rdev == p->rdev) {
1446 		if (test_bit(In_sync, &rdev->flags) ||
1447 		    atomic_read(&rdev->nr_pending)) {
1448 			err = -EBUSY;
1449 			goto abort;
1450 		}
1451 		/* Only remove non-faulty devices if recovery
1452 		 * is not possible.
1453 		 */
1454 		if (!test_bit(Faulty, &rdev->flags) &&
1455 		    mddev->recovery_disabled != conf->recovery_disabled &&
1456 		    mddev->degraded < conf->raid_disks) {
1457 			err = -EBUSY;
1458 			goto abort;
1459 		}
1460 		p->rdev = NULL;
1461 		synchronize_rcu();
1462 		if (atomic_read(&rdev->nr_pending)) {
1463 			/* lost the race, try later */
1464 			err = -EBUSY;
1465 			p->rdev = rdev;
1466 			goto abort;
1467 		} else if (conf->mirrors[conf->raid_disks + number].rdev) {
1468 			/* We just removed a device that is being replaced.
1469 			 * Move down the replacement.  We drain all IO before
1470 			 * doing this to avoid confusion.
1471 			 */
1472 			struct md_rdev *repl =
1473 				conf->mirrors[conf->raid_disks + number].rdev;
1474 			raise_barrier(conf);
1475 			clear_bit(Replacement, &repl->flags);
1476 			p->rdev = repl;
1477 			conf->mirrors[conf->raid_disks + number].rdev = NULL;
1478 			lower_barrier(conf);
1479 			clear_bit(WantReplacement, &rdev->flags);
1480 		} else
1481 			clear_bit(WantReplacement, &rdev->flags);
1482 		err = md_integrity_register(mddev);
1483 	}
1484 abort:
1485 
1486 	print_conf(conf);
1487 	return err;
1488 }
1489 
1490 
1491 static void end_sync_read(struct bio *bio, int error)
1492 {
1493 	struct r1bio *r1_bio = bio->bi_private;
1494 
1495 	update_head_pos(r1_bio->read_disk, r1_bio);
1496 
1497 	/*
1498 	 * we have read a block, now it needs to be re-written,
1499 	 * or re-read if the read failed.
1500 	 * We don't do much here, just schedule handling by raid1d
1501 	 */
1502 	if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1503 		set_bit(R1BIO_Uptodate, &r1_bio->state);
1504 
1505 	if (atomic_dec_and_test(&r1_bio->remaining))
1506 		reschedule_retry(r1_bio);
1507 }
1508 
1509 static void end_sync_write(struct bio *bio, int error)
1510 {
1511 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1512 	struct r1bio *r1_bio = bio->bi_private;
1513 	struct mddev *mddev = r1_bio->mddev;
1514 	struct r1conf *conf = mddev->private;
1515 	int mirror=0;
1516 	sector_t first_bad;
1517 	int bad_sectors;
1518 
1519 	mirror = find_bio_disk(r1_bio, bio);
1520 
1521 	if (!uptodate) {
1522 		sector_t sync_blocks = 0;
1523 		sector_t s = r1_bio->sector;
1524 		long sectors_to_go = r1_bio->sectors;
1525 		/* make sure these bits doesn't get cleared. */
1526 		do {
1527 			bitmap_end_sync(mddev->bitmap, s,
1528 					&sync_blocks, 1);
1529 			s += sync_blocks;
1530 			sectors_to_go -= sync_blocks;
1531 		} while (sectors_to_go > 0);
1532 		set_bit(WriteErrorSeen,
1533 			&conf->mirrors[mirror].rdev->flags);
1534 		if (!test_and_set_bit(WantReplacement,
1535 				      &conf->mirrors[mirror].rdev->flags))
1536 			set_bit(MD_RECOVERY_NEEDED, &
1537 				mddev->recovery);
1538 		set_bit(R1BIO_WriteError, &r1_bio->state);
1539 	} else if (is_badblock(conf->mirrors[mirror].rdev,
1540 			       r1_bio->sector,
1541 			       r1_bio->sectors,
1542 			       &first_bad, &bad_sectors) &&
1543 		   !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1544 				r1_bio->sector,
1545 				r1_bio->sectors,
1546 				&first_bad, &bad_sectors)
1547 		)
1548 		set_bit(R1BIO_MadeGood, &r1_bio->state);
1549 
1550 	if (atomic_dec_and_test(&r1_bio->remaining)) {
1551 		int s = r1_bio->sectors;
1552 		if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1553 		    test_bit(R1BIO_WriteError, &r1_bio->state))
1554 			reschedule_retry(r1_bio);
1555 		else {
1556 			put_buf(r1_bio);
1557 			md_done_sync(mddev, s, uptodate);
1558 		}
1559 	}
1560 }
1561 
1562 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1563 			    int sectors, struct page *page, int rw)
1564 {
1565 	if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
1566 		/* success */
1567 		return 1;
1568 	if (rw == WRITE) {
1569 		set_bit(WriteErrorSeen, &rdev->flags);
1570 		if (!test_and_set_bit(WantReplacement,
1571 				      &rdev->flags))
1572 			set_bit(MD_RECOVERY_NEEDED, &
1573 				rdev->mddev->recovery);
1574 	}
1575 	/* need to record an error - either for the block or the device */
1576 	if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1577 		md_error(rdev->mddev, rdev);
1578 	return 0;
1579 }
1580 
1581 static int fix_sync_read_error(struct r1bio *r1_bio)
1582 {
1583 	/* Try some synchronous reads of other devices to get
1584 	 * good data, much like with normal read errors.  Only
1585 	 * read into the pages we already have so we don't
1586 	 * need to re-issue the read request.
1587 	 * We don't need to freeze the array, because being in an
1588 	 * active sync request, there is no normal IO, and
1589 	 * no overlapping syncs.
1590 	 * We don't need to check is_badblock() again as we
1591 	 * made sure that anything with a bad block in range
1592 	 * will have bi_end_io clear.
1593 	 */
1594 	struct mddev *mddev = r1_bio->mddev;
1595 	struct r1conf *conf = mddev->private;
1596 	struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1597 	sector_t sect = r1_bio->sector;
1598 	int sectors = r1_bio->sectors;
1599 	int idx = 0;
1600 
1601 	while(sectors) {
1602 		int s = sectors;
1603 		int d = r1_bio->read_disk;
1604 		int success = 0;
1605 		struct md_rdev *rdev;
1606 		int start;
1607 
1608 		if (s > (PAGE_SIZE>>9))
1609 			s = PAGE_SIZE >> 9;
1610 		do {
1611 			if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1612 				/* No rcu protection needed here devices
1613 				 * can only be removed when no resync is
1614 				 * active, and resync is currently active
1615 				 */
1616 				rdev = conf->mirrors[d].rdev;
1617 				if (sync_page_io(rdev, sect, s<<9,
1618 						 bio->bi_io_vec[idx].bv_page,
1619 						 READ, false)) {
1620 					success = 1;
1621 					break;
1622 				}
1623 			}
1624 			d++;
1625 			if (d == conf->raid_disks * 2)
1626 				d = 0;
1627 		} while (!success && d != r1_bio->read_disk);
1628 
1629 		if (!success) {
1630 			char b[BDEVNAME_SIZE];
1631 			int abort = 0;
1632 			/* Cannot read from anywhere, this block is lost.
1633 			 * Record a bad block on each device.  If that doesn't
1634 			 * work just disable and interrupt the recovery.
1635 			 * Don't fail devices as that won't really help.
1636 			 */
1637 			printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error"
1638 			       " for block %llu\n",
1639 			       mdname(mddev),
1640 			       bdevname(bio->bi_bdev, b),
1641 			       (unsigned long long)r1_bio->sector);
1642 			for (d = 0; d < conf->raid_disks * 2; d++) {
1643 				rdev = conf->mirrors[d].rdev;
1644 				if (!rdev || test_bit(Faulty, &rdev->flags))
1645 					continue;
1646 				if (!rdev_set_badblocks(rdev, sect, s, 0))
1647 					abort = 1;
1648 			}
1649 			if (abort) {
1650 				conf->recovery_disabled =
1651 					mddev->recovery_disabled;
1652 				set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1653 				md_done_sync(mddev, r1_bio->sectors, 0);
1654 				put_buf(r1_bio);
1655 				return 0;
1656 			}
1657 			/* Try next page */
1658 			sectors -= s;
1659 			sect += s;
1660 			idx++;
1661 			continue;
1662 		}
1663 
1664 		start = d;
1665 		/* write it back and re-read */
1666 		while (d != r1_bio->read_disk) {
1667 			if (d == 0)
1668 				d = conf->raid_disks * 2;
1669 			d--;
1670 			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1671 				continue;
1672 			rdev = conf->mirrors[d].rdev;
1673 			if (r1_sync_page_io(rdev, sect, s,
1674 					    bio->bi_io_vec[idx].bv_page,
1675 					    WRITE) == 0) {
1676 				r1_bio->bios[d]->bi_end_io = NULL;
1677 				rdev_dec_pending(rdev, mddev);
1678 			}
1679 		}
1680 		d = start;
1681 		while (d != r1_bio->read_disk) {
1682 			if (d == 0)
1683 				d = conf->raid_disks * 2;
1684 			d--;
1685 			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1686 				continue;
1687 			rdev = conf->mirrors[d].rdev;
1688 			if (r1_sync_page_io(rdev, sect, s,
1689 					    bio->bi_io_vec[idx].bv_page,
1690 					    READ) != 0)
1691 				atomic_add(s, &rdev->corrected_errors);
1692 		}
1693 		sectors -= s;
1694 		sect += s;
1695 		idx ++;
1696 	}
1697 	set_bit(R1BIO_Uptodate, &r1_bio->state);
1698 	set_bit(BIO_UPTODATE, &bio->bi_flags);
1699 	return 1;
1700 }
1701 
1702 static int process_checks(struct r1bio *r1_bio)
1703 {
1704 	/* We have read all readable devices.  If we haven't
1705 	 * got the block, then there is no hope left.
1706 	 * If we have, then we want to do a comparison
1707 	 * and skip the write if everything is the same.
1708 	 * If any blocks failed to read, then we need to
1709 	 * attempt an over-write
1710 	 */
1711 	struct mddev *mddev = r1_bio->mddev;
1712 	struct r1conf *conf = mddev->private;
1713 	int primary;
1714 	int i;
1715 	int vcnt;
1716 
1717 	for (primary = 0; primary < conf->raid_disks * 2; primary++)
1718 		if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
1719 		    test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) {
1720 			r1_bio->bios[primary]->bi_end_io = NULL;
1721 			rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
1722 			break;
1723 		}
1724 	r1_bio->read_disk = primary;
1725 	vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
1726 	for (i = 0; i < conf->raid_disks * 2; i++) {
1727 		int j;
1728 		struct bio *pbio = r1_bio->bios[primary];
1729 		struct bio *sbio = r1_bio->bios[i];
1730 		int size;
1731 
1732 		if (r1_bio->bios[i]->bi_end_io != end_sync_read)
1733 			continue;
1734 
1735 		if (test_bit(BIO_UPTODATE, &sbio->bi_flags)) {
1736 			for (j = vcnt; j-- ; ) {
1737 				struct page *p, *s;
1738 				p = pbio->bi_io_vec[j].bv_page;
1739 				s = sbio->bi_io_vec[j].bv_page;
1740 				if (memcmp(page_address(p),
1741 					   page_address(s),
1742 					   sbio->bi_io_vec[j].bv_len))
1743 					break;
1744 			}
1745 		} else
1746 			j = 0;
1747 		if (j >= 0)
1748 			mddev->resync_mismatches += r1_bio->sectors;
1749 		if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
1750 			      && test_bit(BIO_UPTODATE, &sbio->bi_flags))) {
1751 			/* No need to write to this device. */
1752 			sbio->bi_end_io = NULL;
1753 			rdev_dec_pending(conf->mirrors[i].rdev, mddev);
1754 			continue;
1755 		}
1756 		/* fixup the bio for reuse */
1757 		sbio->bi_vcnt = vcnt;
1758 		sbio->bi_size = r1_bio->sectors << 9;
1759 		sbio->bi_idx = 0;
1760 		sbio->bi_phys_segments = 0;
1761 		sbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1762 		sbio->bi_flags |= 1 << BIO_UPTODATE;
1763 		sbio->bi_next = NULL;
1764 		sbio->bi_sector = r1_bio->sector +
1765 			conf->mirrors[i].rdev->data_offset;
1766 		sbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1767 		size = sbio->bi_size;
1768 		for (j = 0; j < vcnt ; j++) {
1769 			struct bio_vec *bi;
1770 			bi = &sbio->bi_io_vec[j];
1771 			bi->bv_offset = 0;
1772 			if (size > PAGE_SIZE)
1773 				bi->bv_len = PAGE_SIZE;
1774 			else
1775 				bi->bv_len = size;
1776 			size -= PAGE_SIZE;
1777 			memcpy(page_address(bi->bv_page),
1778 			       page_address(pbio->bi_io_vec[j].bv_page),
1779 			       PAGE_SIZE);
1780 		}
1781 	}
1782 	return 0;
1783 }
1784 
1785 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
1786 {
1787 	struct r1conf *conf = mddev->private;
1788 	int i;
1789 	int disks = conf->raid_disks * 2;
1790 	struct bio *bio, *wbio;
1791 
1792 	bio = r1_bio->bios[r1_bio->read_disk];
1793 
1794 	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
1795 		/* ouch - failed to read all of that. */
1796 		if (!fix_sync_read_error(r1_bio))
1797 			return;
1798 
1799 	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
1800 		if (process_checks(r1_bio) < 0)
1801 			return;
1802 	/*
1803 	 * schedule writes
1804 	 */
1805 	atomic_set(&r1_bio->remaining, 1);
1806 	for (i = 0; i < disks ; i++) {
1807 		wbio = r1_bio->bios[i];
1808 		if (wbio->bi_end_io == NULL ||
1809 		    (wbio->bi_end_io == end_sync_read &&
1810 		     (i == r1_bio->read_disk ||
1811 		      !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
1812 			continue;
1813 
1814 		wbio->bi_rw = WRITE;
1815 		wbio->bi_end_io = end_sync_write;
1816 		atomic_inc(&r1_bio->remaining);
1817 		md_sync_acct(conf->mirrors[i].rdev->bdev, wbio->bi_size >> 9);
1818 
1819 		generic_make_request(wbio);
1820 	}
1821 
1822 	if (atomic_dec_and_test(&r1_bio->remaining)) {
1823 		/* if we're here, all write(s) have completed, so clean up */
1824 		md_done_sync(mddev, r1_bio->sectors, 1);
1825 		put_buf(r1_bio);
1826 	}
1827 }
1828 
1829 /*
1830  * This is a kernel thread which:
1831  *
1832  *	1.	Retries failed read operations on working mirrors.
1833  *	2.	Updates the raid superblock when problems encounter.
1834  *	3.	Performs writes following reads for array synchronising.
1835  */
1836 
1837 static void fix_read_error(struct r1conf *conf, int read_disk,
1838 			   sector_t sect, int sectors)
1839 {
1840 	struct mddev *mddev = conf->mddev;
1841 	while(sectors) {
1842 		int s = sectors;
1843 		int d = read_disk;
1844 		int success = 0;
1845 		int start;
1846 		struct md_rdev *rdev;
1847 
1848 		if (s > (PAGE_SIZE>>9))
1849 			s = PAGE_SIZE >> 9;
1850 
1851 		do {
1852 			/* Note: no rcu protection needed here
1853 			 * as this is synchronous in the raid1d thread
1854 			 * which is the thread that might remove
1855 			 * a device.  If raid1d ever becomes multi-threaded....
1856 			 */
1857 			sector_t first_bad;
1858 			int bad_sectors;
1859 
1860 			rdev = conf->mirrors[d].rdev;
1861 			if (rdev &&
1862 			    test_bit(In_sync, &rdev->flags) &&
1863 			    is_badblock(rdev, sect, s,
1864 					&first_bad, &bad_sectors) == 0 &&
1865 			    sync_page_io(rdev, sect, s<<9,
1866 					 conf->tmppage, READ, false))
1867 				success = 1;
1868 			else {
1869 				d++;
1870 				if (d == conf->raid_disks * 2)
1871 					d = 0;
1872 			}
1873 		} while (!success && d != read_disk);
1874 
1875 		if (!success) {
1876 			/* Cannot read from anywhere - mark it bad */
1877 			struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
1878 			if (!rdev_set_badblocks(rdev, sect, s, 0))
1879 				md_error(mddev, rdev);
1880 			break;
1881 		}
1882 		/* write it back and re-read */
1883 		start = d;
1884 		while (d != read_disk) {
1885 			if (d==0)
1886 				d = conf->raid_disks * 2;
1887 			d--;
1888 			rdev = conf->mirrors[d].rdev;
1889 			if (rdev &&
1890 			    test_bit(In_sync, &rdev->flags))
1891 				r1_sync_page_io(rdev, sect, s,
1892 						conf->tmppage, WRITE);
1893 		}
1894 		d = start;
1895 		while (d != read_disk) {
1896 			char b[BDEVNAME_SIZE];
1897 			if (d==0)
1898 				d = conf->raid_disks * 2;
1899 			d--;
1900 			rdev = conf->mirrors[d].rdev;
1901 			if (rdev &&
1902 			    test_bit(In_sync, &rdev->flags)) {
1903 				if (r1_sync_page_io(rdev, sect, s,
1904 						    conf->tmppage, READ)) {
1905 					atomic_add(s, &rdev->corrected_errors);
1906 					printk(KERN_INFO
1907 					       "md/raid1:%s: read error corrected "
1908 					       "(%d sectors at %llu on %s)\n",
1909 					       mdname(mddev), s,
1910 					       (unsigned long long)(sect +
1911 					           rdev->data_offset),
1912 					       bdevname(rdev->bdev, b));
1913 				}
1914 			}
1915 		}
1916 		sectors -= s;
1917 		sect += s;
1918 	}
1919 }
1920 
1921 static void bi_complete(struct bio *bio, int error)
1922 {
1923 	complete((struct completion *)bio->bi_private);
1924 }
1925 
1926 static int submit_bio_wait(int rw, struct bio *bio)
1927 {
1928 	struct completion event;
1929 	rw |= REQ_SYNC;
1930 
1931 	init_completion(&event);
1932 	bio->bi_private = &event;
1933 	bio->bi_end_io = bi_complete;
1934 	submit_bio(rw, bio);
1935 	wait_for_completion(&event);
1936 
1937 	return test_bit(BIO_UPTODATE, &bio->bi_flags);
1938 }
1939 
1940 static int narrow_write_error(struct r1bio *r1_bio, int i)
1941 {
1942 	struct mddev *mddev = r1_bio->mddev;
1943 	struct r1conf *conf = mddev->private;
1944 	struct md_rdev *rdev = conf->mirrors[i].rdev;
1945 	int vcnt, idx;
1946 	struct bio_vec *vec;
1947 
1948 	/* bio has the data to be written to device 'i' where
1949 	 * we just recently had a write error.
1950 	 * We repeatedly clone the bio and trim down to one block,
1951 	 * then try the write.  Where the write fails we record
1952 	 * a bad block.
1953 	 * It is conceivable that the bio doesn't exactly align with
1954 	 * blocks.  We must handle this somehow.
1955 	 *
1956 	 * We currently own a reference on the rdev.
1957 	 */
1958 
1959 	int block_sectors;
1960 	sector_t sector;
1961 	int sectors;
1962 	int sect_to_write = r1_bio->sectors;
1963 	int ok = 1;
1964 
1965 	if (rdev->badblocks.shift < 0)
1966 		return 0;
1967 
1968 	block_sectors = 1 << rdev->badblocks.shift;
1969 	sector = r1_bio->sector;
1970 	sectors = ((sector + block_sectors)
1971 		   & ~(sector_t)(block_sectors - 1))
1972 		- sector;
1973 
1974 	if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
1975 		vcnt = r1_bio->behind_page_count;
1976 		vec = r1_bio->behind_bvecs;
1977 		idx = 0;
1978 		while (vec[idx].bv_page == NULL)
1979 			idx++;
1980 	} else {
1981 		vcnt = r1_bio->master_bio->bi_vcnt;
1982 		vec = r1_bio->master_bio->bi_io_vec;
1983 		idx = r1_bio->master_bio->bi_idx;
1984 	}
1985 	while (sect_to_write) {
1986 		struct bio *wbio;
1987 		if (sectors > sect_to_write)
1988 			sectors = sect_to_write;
1989 		/* Write at 'sector' for 'sectors'*/
1990 
1991 		wbio = bio_alloc_mddev(GFP_NOIO, vcnt, mddev);
1992 		memcpy(wbio->bi_io_vec, vec, vcnt * sizeof(struct bio_vec));
1993 		wbio->bi_sector = r1_bio->sector;
1994 		wbio->bi_rw = WRITE;
1995 		wbio->bi_vcnt = vcnt;
1996 		wbio->bi_size = r1_bio->sectors << 9;
1997 		wbio->bi_idx = idx;
1998 
1999 		md_trim_bio(wbio, sector - r1_bio->sector, sectors);
2000 		wbio->bi_sector += rdev->data_offset;
2001 		wbio->bi_bdev = rdev->bdev;
2002 		if (submit_bio_wait(WRITE, wbio) == 0)
2003 			/* failure! */
2004 			ok = rdev_set_badblocks(rdev, sector,
2005 						sectors, 0)
2006 				&& ok;
2007 
2008 		bio_put(wbio);
2009 		sect_to_write -= sectors;
2010 		sector += sectors;
2011 		sectors = block_sectors;
2012 	}
2013 	return ok;
2014 }
2015 
2016 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2017 {
2018 	int m;
2019 	int s = r1_bio->sectors;
2020 	for (m = 0; m < conf->raid_disks * 2 ; m++) {
2021 		struct md_rdev *rdev = conf->mirrors[m].rdev;
2022 		struct bio *bio = r1_bio->bios[m];
2023 		if (bio->bi_end_io == NULL)
2024 			continue;
2025 		if (test_bit(BIO_UPTODATE, &bio->bi_flags) &&
2026 		    test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2027 			rdev_clear_badblocks(rdev, r1_bio->sector, s);
2028 		}
2029 		if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
2030 		    test_bit(R1BIO_WriteError, &r1_bio->state)) {
2031 			if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2032 				md_error(conf->mddev, rdev);
2033 		}
2034 	}
2035 	put_buf(r1_bio);
2036 	md_done_sync(conf->mddev, s, 1);
2037 }
2038 
2039 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2040 {
2041 	int m;
2042 	for (m = 0; m < conf->raid_disks * 2 ; m++)
2043 		if (r1_bio->bios[m] == IO_MADE_GOOD) {
2044 			struct md_rdev *rdev = conf->mirrors[m].rdev;
2045 			rdev_clear_badblocks(rdev,
2046 					     r1_bio->sector,
2047 					     r1_bio->sectors);
2048 			rdev_dec_pending(rdev, conf->mddev);
2049 		} else if (r1_bio->bios[m] != NULL) {
2050 			/* This drive got a write error.  We need to
2051 			 * narrow down and record precise write
2052 			 * errors.
2053 			 */
2054 			if (!narrow_write_error(r1_bio, m)) {
2055 				md_error(conf->mddev,
2056 					 conf->mirrors[m].rdev);
2057 				/* an I/O failed, we can't clear the bitmap */
2058 				set_bit(R1BIO_Degraded, &r1_bio->state);
2059 			}
2060 			rdev_dec_pending(conf->mirrors[m].rdev,
2061 					 conf->mddev);
2062 		}
2063 	if (test_bit(R1BIO_WriteError, &r1_bio->state))
2064 		close_write(r1_bio);
2065 	raid_end_bio_io(r1_bio);
2066 }
2067 
2068 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2069 {
2070 	int disk;
2071 	int max_sectors;
2072 	struct mddev *mddev = conf->mddev;
2073 	struct bio *bio;
2074 	char b[BDEVNAME_SIZE];
2075 	struct md_rdev *rdev;
2076 
2077 	clear_bit(R1BIO_ReadError, &r1_bio->state);
2078 	/* we got a read error. Maybe the drive is bad.  Maybe just
2079 	 * the block and we can fix it.
2080 	 * We freeze all other IO, and try reading the block from
2081 	 * other devices.  When we find one, we re-write
2082 	 * and check it that fixes the read error.
2083 	 * This is all done synchronously while the array is
2084 	 * frozen
2085 	 */
2086 	if (mddev->ro == 0) {
2087 		freeze_array(conf);
2088 		fix_read_error(conf, r1_bio->read_disk,
2089 			       r1_bio->sector, r1_bio->sectors);
2090 		unfreeze_array(conf);
2091 	} else
2092 		md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
2093 
2094 	bio = r1_bio->bios[r1_bio->read_disk];
2095 	bdevname(bio->bi_bdev, b);
2096 read_more:
2097 	disk = read_balance(conf, r1_bio, &max_sectors);
2098 	if (disk == -1) {
2099 		printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O"
2100 		       " read error for block %llu\n",
2101 		       mdname(mddev), b, (unsigned long long)r1_bio->sector);
2102 		raid_end_bio_io(r1_bio);
2103 	} else {
2104 		const unsigned long do_sync
2105 			= r1_bio->master_bio->bi_rw & REQ_SYNC;
2106 		if (bio) {
2107 			r1_bio->bios[r1_bio->read_disk] =
2108 				mddev->ro ? IO_BLOCKED : NULL;
2109 			bio_put(bio);
2110 		}
2111 		r1_bio->read_disk = disk;
2112 		bio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2113 		md_trim_bio(bio, r1_bio->sector - bio->bi_sector, max_sectors);
2114 		r1_bio->bios[r1_bio->read_disk] = bio;
2115 		rdev = conf->mirrors[disk].rdev;
2116 		printk_ratelimited(KERN_ERR
2117 				   "md/raid1:%s: redirecting sector %llu"
2118 				   " to other mirror: %s\n",
2119 				   mdname(mddev),
2120 				   (unsigned long long)r1_bio->sector,
2121 				   bdevname(rdev->bdev, b));
2122 		bio->bi_sector = r1_bio->sector + rdev->data_offset;
2123 		bio->bi_bdev = rdev->bdev;
2124 		bio->bi_end_io = raid1_end_read_request;
2125 		bio->bi_rw = READ | do_sync;
2126 		bio->bi_private = r1_bio;
2127 		if (max_sectors < r1_bio->sectors) {
2128 			/* Drat - have to split this up more */
2129 			struct bio *mbio = r1_bio->master_bio;
2130 			int sectors_handled = (r1_bio->sector + max_sectors
2131 					       - mbio->bi_sector);
2132 			r1_bio->sectors = max_sectors;
2133 			spin_lock_irq(&conf->device_lock);
2134 			if (mbio->bi_phys_segments == 0)
2135 				mbio->bi_phys_segments = 2;
2136 			else
2137 				mbio->bi_phys_segments++;
2138 			spin_unlock_irq(&conf->device_lock);
2139 			generic_make_request(bio);
2140 			bio = NULL;
2141 
2142 			r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
2143 
2144 			r1_bio->master_bio = mbio;
2145 			r1_bio->sectors = (mbio->bi_size >> 9)
2146 					  - sectors_handled;
2147 			r1_bio->state = 0;
2148 			set_bit(R1BIO_ReadError, &r1_bio->state);
2149 			r1_bio->mddev = mddev;
2150 			r1_bio->sector = mbio->bi_sector + sectors_handled;
2151 
2152 			goto read_more;
2153 		} else
2154 			generic_make_request(bio);
2155 	}
2156 }
2157 
2158 static void raid1d(struct mddev *mddev)
2159 {
2160 	struct r1bio *r1_bio;
2161 	unsigned long flags;
2162 	struct r1conf *conf = mddev->private;
2163 	struct list_head *head = &conf->retry_list;
2164 	struct blk_plug plug;
2165 
2166 	md_check_recovery(mddev);
2167 
2168 	blk_start_plug(&plug);
2169 	for (;;) {
2170 
2171 		if (atomic_read(&mddev->plug_cnt) == 0)
2172 			flush_pending_writes(conf);
2173 
2174 		spin_lock_irqsave(&conf->device_lock, flags);
2175 		if (list_empty(head)) {
2176 			spin_unlock_irqrestore(&conf->device_lock, flags);
2177 			break;
2178 		}
2179 		r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2180 		list_del(head->prev);
2181 		conf->nr_queued--;
2182 		spin_unlock_irqrestore(&conf->device_lock, flags);
2183 
2184 		mddev = r1_bio->mddev;
2185 		conf = mddev->private;
2186 		if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2187 			if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2188 			    test_bit(R1BIO_WriteError, &r1_bio->state))
2189 				handle_sync_write_finished(conf, r1_bio);
2190 			else
2191 				sync_request_write(mddev, r1_bio);
2192 		} else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2193 			   test_bit(R1BIO_WriteError, &r1_bio->state))
2194 			handle_write_finished(conf, r1_bio);
2195 		else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2196 			handle_read_error(conf, r1_bio);
2197 		else
2198 			/* just a partial read to be scheduled from separate
2199 			 * context
2200 			 */
2201 			generic_make_request(r1_bio->bios[r1_bio->read_disk]);
2202 
2203 		cond_resched();
2204 		if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2205 			md_check_recovery(mddev);
2206 	}
2207 	blk_finish_plug(&plug);
2208 }
2209 
2210 
2211 static int init_resync(struct r1conf *conf)
2212 {
2213 	int buffs;
2214 
2215 	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2216 	BUG_ON(conf->r1buf_pool);
2217 	conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2218 					  conf->poolinfo);
2219 	if (!conf->r1buf_pool)
2220 		return -ENOMEM;
2221 	conf->next_resync = 0;
2222 	return 0;
2223 }
2224 
2225 /*
2226  * perform a "sync" on one "block"
2227  *
2228  * We need to make sure that no normal I/O request - particularly write
2229  * requests - conflict with active sync requests.
2230  *
2231  * This is achieved by tracking pending requests and a 'barrier' concept
2232  * that can be installed to exclude normal IO requests.
2233  */
2234 
2235 static sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
2236 {
2237 	struct r1conf *conf = mddev->private;
2238 	struct r1bio *r1_bio;
2239 	struct bio *bio;
2240 	sector_t max_sector, nr_sectors;
2241 	int disk = -1;
2242 	int i;
2243 	int wonly = -1;
2244 	int write_targets = 0, read_targets = 0;
2245 	sector_t sync_blocks;
2246 	int still_degraded = 0;
2247 	int good_sectors = RESYNC_SECTORS;
2248 	int min_bad = 0; /* number of sectors that are bad in all devices */
2249 
2250 	if (!conf->r1buf_pool)
2251 		if (init_resync(conf))
2252 			return 0;
2253 
2254 	max_sector = mddev->dev_sectors;
2255 	if (sector_nr >= max_sector) {
2256 		/* If we aborted, we need to abort the
2257 		 * sync on the 'current' bitmap chunk (there will
2258 		 * only be one in raid1 resync.
2259 		 * We can find the current addess in mddev->curr_resync
2260 		 */
2261 		if (mddev->curr_resync < max_sector) /* aborted */
2262 			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2263 						&sync_blocks, 1);
2264 		else /* completed sync */
2265 			conf->fullsync = 0;
2266 
2267 		bitmap_close_sync(mddev->bitmap);
2268 		close_sync(conf);
2269 		return 0;
2270 	}
2271 
2272 	if (mddev->bitmap == NULL &&
2273 	    mddev->recovery_cp == MaxSector &&
2274 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2275 	    conf->fullsync == 0) {
2276 		*skipped = 1;
2277 		return max_sector - sector_nr;
2278 	}
2279 	/* before building a request, check if we can skip these blocks..
2280 	 * This call the bitmap_start_sync doesn't actually record anything
2281 	 */
2282 	if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2283 	    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2284 		/* We can skip this block, and probably several more */
2285 		*skipped = 1;
2286 		return sync_blocks;
2287 	}
2288 	/*
2289 	 * If there is non-resync activity waiting for a turn,
2290 	 * and resync is going fast enough,
2291 	 * then let it though before starting on this new sync request.
2292 	 */
2293 	if (!go_faster && conf->nr_waiting)
2294 		msleep_interruptible(1000);
2295 
2296 	bitmap_cond_end_sync(mddev->bitmap, sector_nr);
2297 	r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
2298 	raise_barrier(conf);
2299 
2300 	conf->next_resync = sector_nr;
2301 
2302 	rcu_read_lock();
2303 	/*
2304 	 * If we get a correctably read error during resync or recovery,
2305 	 * we might want to read from a different device.  So we
2306 	 * flag all drives that could conceivably be read from for READ,
2307 	 * and any others (which will be non-In_sync devices) for WRITE.
2308 	 * If a read fails, we try reading from something else for which READ
2309 	 * is OK.
2310 	 */
2311 
2312 	r1_bio->mddev = mddev;
2313 	r1_bio->sector = sector_nr;
2314 	r1_bio->state = 0;
2315 	set_bit(R1BIO_IsSync, &r1_bio->state);
2316 
2317 	for (i = 0; i < conf->raid_disks * 2; i++) {
2318 		struct md_rdev *rdev;
2319 		bio = r1_bio->bios[i];
2320 
2321 		/* take from bio_init */
2322 		bio->bi_next = NULL;
2323 		bio->bi_flags &= ~(BIO_POOL_MASK-1);
2324 		bio->bi_flags |= 1 << BIO_UPTODATE;
2325 		bio->bi_rw = READ;
2326 		bio->bi_vcnt = 0;
2327 		bio->bi_idx = 0;
2328 		bio->bi_phys_segments = 0;
2329 		bio->bi_size = 0;
2330 		bio->bi_end_io = NULL;
2331 		bio->bi_private = NULL;
2332 
2333 		rdev = rcu_dereference(conf->mirrors[i].rdev);
2334 		if (rdev == NULL ||
2335 		    test_bit(Faulty, &rdev->flags)) {
2336 			if (i < conf->raid_disks)
2337 				still_degraded = 1;
2338 		} else if (!test_bit(In_sync, &rdev->flags)) {
2339 			bio->bi_rw = WRITE;
2340 			bio->bi_end_io = end_sync_write;
2341 			write_targets ++;
2342 		} else {
2343 			/* may need to read from here */
2344 			sector_t first_bad = MaxSector;
2345 			int bad_sectors;
2346 
2347 			if (is_badblock(rdev, sector_nr, good_sectors,
2348 					&first_bad, &bad_sectors)) {
2349 				if (first_bad > sector_nr)
2350 					good_sectors = first_bad - sector_nr;
2351 				else {
2352 					bad_sectors -= (sector_nr - first_bad);
2353 					if (min_bad == 0 ||
2354 					    min_bad > bad_sectors)
2355 						min_bad = bad_sectors;
2356 				}
2357 			}
2358 			if (sector_nr < first_bad) {
2359 				if (test_bit(WriteMostly, &rdev->flags)) {
2360 					if (wonly < 0)
2361 						wonly = i;
2362 				} else {
2363 					if (disk < 0)
2364 						disk = i;
2365 				}
2366 				bio->bi_rw = READ;
2367 				bio->bi_end_io = end_sync_read;
2368 				read_targets++;
2369 			}
2370 		}
2371 		if (bio->bi_end_io) {
2372 			atomic_inc(&rdev->nr_pending);
2373 			bio->bi_sector = sector_nr + rdev->data_offset;
2374 			bio->bi_bdev = rdev->bdev;
2375 			bio->bi_private = r1_bio;
2376 		}
2377 	}
2378 	rcu_read_unlock();
2379 	if (disk < 0)
2380 		disk = wonly;
2381 	r1_bio->read_disk = disk;
2382 
2383 	if (read_targets == 0 && min_bad > 0) {
2384 		/* These sectors are bad on all InSync devices, so we
2385 		 * need to mark them bad on all write targets
2386 		 */
2387 		int ok = 1;
2388 		for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2389 			if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2390 				struct md_rdev *rdev = conf->mirrors[i].rdev;
2391 				ok = rdev_set_badblocks(rdev, sector_nr,
2392 							min_bad, 0
2393 					) && ok;
2394 			}
2395 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
2396 		*skipped = 1;
2397 		put_buf(r1_bio);
2398 
2399 		if (!ok) {
2400 			/* Cannot record the badblocks, so need to
2401 			 * abort the resync.
2402 			 * If there are multiple read targets, could just
2403 			 * fail the really bad ones ???
2404 			 */
2405 			conf->recovery_disabled = mddev->recovery_disabled;
2406 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2407 			return 0;
2408 		} else
2409 			return min_bad;
2410 
2411 	}
2412 	if (min_bad > 0 && min_bad < good_sectors) {
2413 		/* only resync enough to reach the next bad->good
2414 		 * transition */
2415 		good_sectors = min_bad;
2416 	}
2417 
2418 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2419 		/* extra read targets are also write targets */
2420 		write_targets += read_targets-1;
2421 
2422 	if (write_targets == 0 || read_targets == 0) {
2423 		/* There is nowhere to write, so all non-sync
2424 		 * drives must be failed - so we are finished
2425 		 */
2426 		sector_t rv = max_sector - sector_nr;
2427 		*skipped = 1;
2428 		put_buf(r1_bio);
2429 		return rv;
2430 	}
2431 
2432 	if (max_sector > mddev->resync_max)
2433 		max_sector = mddev->resync_max; /* Don't do IO beyond here */
2434 	if (max_sector > sector_nr + good_sectors)
2435 		max_sector = sector_nr + good_sectors;
2436 	nr_sectors = 0;
2437 	sync_blocks = 0;
2438 	do {
2439 		struct page *page;
2440 		int len = PAGE_SIZE;
2441 		if (sector_nr + (len>>9) > max_sector)
2442 			len = (max_sector - sector_nr) << 9;
2443 		if (len == 0)
2444 			break;
2445 		if (sync_blocks == 0) {
2446 			if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2447 					       &sync_blocks, still_degraded) &&
2448 			    !conf->fullsync &&
2449 			    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2450 				break;
2451 			BUG_ON(sync_blocks < (PAGE_SIZE>>9));
2452 			if ((len >> 9) > sync_blocks)
2453 				len = sync_blocks<<9;
2454 		}
2455 
2456 		for (i = 0 ; i < conf->raid_disks * 2; i++) {
2457 			bio = r1_bio->bios[i];
2458 			if (bio->bi_end_io) {
2459 				page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
2460 				if (bio_add_page(bio, page, len, 0) == 0) {
2461 					/* stop here */
2462 					bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
2463 					while (i > 0) {
2464 						i--;
2465 						bio = r1_bio->bios[i];
2466 						if (bio->bi_end_io==NULL)
2467 							continue;
2468 						/* remove last page from this bio */
2469 						bio->bi_vcnt--;
2470 						bio->bi_size -= len;
2471 						bio->bi_flags &= ~(1<< BIO_SEG_VALID);
2472 					}
2473 					goto bio_full;
2474 				}
2475 			}
2476 		}
2477 		nr_sectors += len>>9;
2478 		sector_nr += len>>9;
2479 		sync_blocks -= (len>>9);
2480 	} while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
2481  bio_full:
2482 	r1_bio->sectors = nr_sectors;
2483 
2484 	/* For a user-requested sync, we read all readable devices and do a
2485 	 * compare
2486 	 */
2487 	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2488 		atomic_set(&r1_bio->remaining, read_targets);
2489 		for (i = 0; i < conf->raid_disks * 2; i++) {
2490 			bio = r1_bio->bios[i];
2491 			if (bio->bi_end_io == end_sync_read) {
2492 				md_sync_acct(bio->bi_bdev, nr_sectors);
2493 				generic_make_request(bio);
2494 			}
2495 		}
2496 	} else {
2497 		atomic_set(&r1_bio->remaining, 1);
2498 		bio = r1_bio->bios[r1_bio->read_disk];
2499 		md_sync_acct(bio->bi_bdev, nr_sectors);
2500 		generic_make_request(bio);
2501 
2502 	}
2503 	return nr_sectors;
2504 }
2505 
2506 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2507 {
2508 	if (sectors)
2509 		return sectors;
2510 
2511 	return mddev->dev_sectors;
2512 }
2513 
2514 static struct r1conf *setup_conf(struct mddev *mddev)
2515 {
2516 	struct r1conf *conf;
2517 	int i;
2518 	struct mirror_info *disk;
2519 	struct md_rdev *rdev;
2520 	int err = -ENOMEM;
2521 
2522 	conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2523 	if (!conf)
2524 		goto abort;
2525 
2526 	conf->mirrors = kzalloc(sizeof(struct mirror_info)
2527 				* mddev->raid_disks * 2,
2528 				 GFP_KERNEL);
2529 	if (!conf->mirrors)
2530 		goto abort;
2531 
2532 	conf->tmppage = alloc_page(GFP_KERNEL);
2533 	if (!conf->tmppage)
2534 		goto abort;
2535 
2536 	conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
2537 	if (!conf->poolinfo)
2538 		goto abort;
2539 	conf->poolinfo->raid_disks = mddev->raid_disks * 2;
2540 	conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2541 					  r1bio_pool_free,
2542 					  conf->poolinfo);
2543 	if (!conf->r1bio_pool)
2544 		goto abort;
2545 
2546 	conf->poolinfo->mddev = mddev;
2547 
2548 	err = -EINVAL;
2549 	spin_lock_init(&conf->device_lock);
2550 	rdev_for_each(rdev, mddev) {
2551 		int disk_idx = rdev->raid_disk;
2552 		if (disk_idx >= mddev->raid_disks
2553 		    || disk_idx < 0)
2554 			continue;
2555 		if (test_bit(Replacement, &rdev->flags))
2556 			disk = conf->mirrors + conf->raid_disks + disk_idx;
2557 		else
2558 			disk = conf->mirrors + disk_idx;
2559 
2560 		if (disk->rdev)
2561 			goto abort;
2562 		disk->rdev = rdev;
2563 
2564 		disk->head_position = 0;
2565 	}
2566 	conf->raid_disks = mddev->raid_disks;
2567 	conf->mddev = mddev;
2568 	INIT_LIST_HEAD(&conf->retry_list);
2569 
2570 	spin_lock_init(&conf->resync_lock);
2571 	init_waitqueue_head(&conf->wait_barrier);
2572 
2573 	bio_list_init(&conf->pending_bio_list);
2574 	conf->pending_count = 0;
2575 	conf->recovery_disabled = mddev->recovery_disabled - 1;
2576 
2577 	err = -EIO;
2578 	conf->last_used = -1;
2579 	for (i = 0; i < conf->raid_disks * 2; i++) {
2580 
2581 		disk = conf->mirrors + i;
2582 
2583 		if (i < conf->raid_disks &&
2584 		    disk[conf->raid_disks].rdev) {
2585 			/* This slot has a replacement. */
2586 			if (!disk->rdev) {
2587 				/* No original, just make the replacement
2588 				 * a recovering spare
2589 				 */
2590 				disk->rdev =
2591 					disk[conf->raid_disks].rdev;
2592 				disk[conf->raid_disks].rdev = NULL;
2593 			} else if (!test_bit(In_sync, &disk->rdev->flags))
2594 				/* Original is not in_sync - bad */
2595 				goto abort;
2596 		}
2597 
2598 		if (!disk->rdev ||
2599 		    !test_bit(In_sync, &disk->rdev->flags)) {
2600 			disk->head_position = 0;
2601 			if (disk->rdev)
2602 				conf->fullsync = 1;
2603 		} else if (conf->last_used < 0)
2604 			/*
2605 			 * The first working device is used as a
2606 			 * starting point to read balancing.
2607 			 */
2608 			conf->last_used = i;
2609 	}
2610 
2611 	if (conf->last_used < 0) {
2612 		printk(KERN_ERR "md/raid1:%s: no operational mirrors\n",
2613 		       mdname(mddev));
2614 		goto abort;
2615 	}
2616 	err = -ENOMEM;
2617 	conf->thread = md_register_thread(raid1d, mddev, NULL);
2618 	if (!conf->thread) {
2619 		printk(KERN_ERR
2620 		       "md/raid1:%s: couldn't allocate thread\n",
2621 		       mdname(mddev));
2622 		goto abort;
2623 	}
2624 
2625 	return conf;
2626 
2627  abort:
2628 	if (conf) {
2629 		if (conf->r1bio_pool)
2630 			mempool_destroy(conf->r1bio_pool);
2631 		kfree(conf->mirrors);
2632 		safe_put_page(conf->tmppage);
2633 		kfree(conf->poolinfo);
2634 		kfree(conf);
2635 	}
2636 	return ERR_PTR(err);
2637 }
2638 
2639 static int stop(struct mddev *mddev);
2640 static int run(struct mddev *mddev)
2641 {
2642 	struct r1conf *conf;
2643 	int i;
2644 	struct md_rdev *rdev;
2645 	int ret;
2646 
2647 	if (mddev->level != 1) {
2648 		printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n",
2649 		       mdname(mddev), mddev->level);
2650 		return -EIO;
2651 	}
2652 	if (mddev->reshape_position != MaxSector) {
2653 		printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n",
2654 		       mdname(mddev));
2655 		return -EIO;
2656 	}
2657 	/*
2658 	 * copy the already verified devices into our private RAID1
2659 	 * bookkeeping area. [whatever we allocate in run(),
2660 	 * should be freed in stop()]
2661 	 */
2662 	if (mddev->private == NULL)
2663 		conf = setup_conf(mddev);
2664 	else
2665 		conf = mddev->private;
2666 
2667 	if (IS_ERR(conf))
2668 		return PTR_ERR(conf);
2669 
2670 	rdev_for_each(rdev, mddev) {
2671 		if (!mddev->gendisk)
2672 			continue;
2673 		disk_stack_limits(mddev->gendisk, rdev->bdev,
2674 				  rdev->data_offset << 9);
2675 	}
2676 
2677 	mddev->degraded = 0;
2678 	for (i=0; i < conf->raid_disks; i++)
2679 		if (conf->mirrors[i].rdev == NULL ||
2680 		    !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
2681 		    test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2682 			mddev->degraded++;
2683 
2684 	if (conf->raid_disks - mddev->degraded == 1)
2685 		mddev->recovery_cp = MaxSector;
2686 
2687 	if (mddev->recovery_cp != MaxSector)
2688 		printk(KERN_NOTICE "md/raid1:%s: not clean"
2689 		       " -- starting background reconstruction\n",
2690 		       mdname(mddev));
2691 	printk(KERN_INFO
2692 		"md/raid1:%s: active with %d out of %d mirrors\n",
2693 		mdname(mddev), mddev->raid_disks - mddev->degraded,
2694 		mddev->raid_disks);
2695 
2696 	/*
2697 	 * Ok, everything is just fine now
2698 	 */
2699 	mddev->thread = conf->thread;
2700 	conf->thread = NULL;
2701 	mddev->private = conf;
2702 
2703 	md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
2704 
2705 	if (mddev->queue) {
2706 		mddev->queue->backing_dev_info.congested_fn = raid1_congested;
2707 		mddev->queue->backing_dev_info.congested_data = mddev;
2708 		blk_queue_merge_bvec(mddev->queue, raid1_mergeable_bvec);
2709 	}
2710 
2711 	ret =  md_integrity_register(mddev);
2712 	if (ret)
2713 		stop(mddev);
2714 	return ret;
2715 }
2716 
2717 static int stop(struct mddev *mddev)
2718 {
2719 	struct r1conf *conf = mddev->private;
2720 	struct bitmap *bitmap = mddev->bitmap;
2721 
2722 	/* wait for behind writes to complete */
2723 	if (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
2724 		printk(KERN_INFO "md/raid1:%s: behind writes in progress - waiting to stop.\n",
2725 		       mdname(mddev));
2726 		/* need to kick something here to make sure I/O goes? */
2727 		wait_event(bitmap->behind_wait,
2728 			   atomic_read(&bitmap->behind_writes) == 0);
2729 	}
2730 
2731 	raise_barrier(conf);
2732 	lower_barrier(conf);
2733 
2734 	md_unregister_thread(&mddev->thread);
2735 	if (conf->r1bio_pool)
2736 		mempool_destroy(conf->r1bio_pool);
2737 	kfree(conf->mirrors);
2738 	kfree(conf->poolinfo);
2739 	kfree(conf);
2740 	mddev->private = NULL;
2741 	return 0;
2742 }
2743 
2744 static int raid1_resize(struct mddev *mddev, sector_t sectors)
2745 {
2746 	/* no resync is happening, and there is enough space
2747 	 * on all devices, so we can resize.
2748 	 * We need to make sure resync covers any new space.
2749 	 * If the array is shrinking we should possibly wait until
2750 	 * any io in the removed space completes, but it hardly seems
2751 	 * worth it.
2752 	 */
2753 	md_set_array_sectors(mddev, raid1_size(mddev, sectors, 0));
2754 	if (mddev->array_sectors > raid1_size(mddev, sectors, 0))
2755 		return -EINVAL;
2756 	set_capacity(mddev->gendisk, mddev->array_sectors);
2757 	revalidate_disk(mddev->gendisk);
2758 	if (sectors > mddev->dev_sectors &&
2759 	    mddev->recovery_cp > mddev->dev_sectors) {
2760 		mddev->recovery_cp = mddev->dev_sectors;
2761 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2762 	}
2763 	mddev->dev_sectors = sectors;
2764 	mddev->resync_max_sectors = sectors;
2765 	return 0;
2766 }
2767 
2768 static int raid1_reshape(struct mddev *mddev)
2769 {
2770 	/* We need to:
2771 	 * 1/ resize the r1bio_pool
2772 	 * 2/ resize conf->mirrors
2773 	 *
2774 	 * We allocate a new r1bio_pool if we can.
2775 	 * Then raise a device barrier and wait until all IO stops.
2776 	 * Then resize conf->mirrors and swap in the new r1bio pool.
2777 	 *
2778 	 * At the same time, we "pack" the devices so that all the missing
2779 	 * devices have the higher raid_disk numbers.
2780 	 */
2781 	mempool_t *newpool, *oldpool;
2782 	struct pool_info *newpoolinfo;
2783 	struct mirror_info *newmirrors;
2784 	struct r1conf *conf = mddev->private;
2785 	int cnt, raid_disks;
2786 	unsigned long flags;
2787 	int d, d2, err;
2788 
2789 	/* Cannot change chunk_size, layout, or level */
2790 	if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
2791 	    mddev->layout != mddev->new_layout ||
2792 	    mddev->level != mddev->new_level) {
2793 		mddev->new_chunk_sectors = mddev->chunk_sectors;
2794 		mddev->new_layout = mddev->layout;
2795 		mddev->new_level = mddev->level;
2796 		return -EINVAL;
2797 	}
2798 
2799 	err = md_allow_write(mddev);
2800 	if (err)
2801 		return err;
2802 
2803 	raid_disks = mddev->raid_disks + mddev->delta_disks;
2804 
2805 	if (raid_disks < conf->raid_disks) {
2806 		cnt=0;
2807 		for (d= 0; d < conf->raid_disks; d++)
2808 			if (conf->mirrors[d].rdev)
2809 				cnt++;
2810 		if (cnt > raid_disks)
2811 			return -EBUSY;
2812 	}
2813 
2814 	newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
2815 	if (!newpoolinfo)
2816 		return -ENOMEM;
2817 	newpoolinfo->mddev = mddev;
2818 	newpoolinfo->raid_disks = raid_disks * 2;
2819 
2820 	newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2821 				 r1bio_pool_free, newpoolinfo);
2822 	if (!newpool) {
2823 		kfree(newpoolinfo);
2824 		return -ENOMEM;
2825 	}
2826 	newmirrors = kzalloc(sizeof(struct mirror_info) * raid_disks * 2,
2827 			     GFP_KERNEL);
2828 	if (!newmirrors) {
2829 		kfree(newpoolinfo);
2830 		mempool_destroy(newpool);
2831 		return -ENOMEM;
2832 	}
2833 
2834 	raise_barrier(conf);
2835 
2836 	/* ok, everything is stopped */
2837 	oldpool = conf->r1bio_pool;
2838 	conf->r1bio_pool = newpool;
2839 
2840 	for (d = d2 = 0; d < conf->raid_disks; d++) {
2841 		struct md_rdev *rdev = conf->mirrors[d].rdev;
2842 		if (rdev && rdev->raid_disk != d2) {
2843 			sysfs_unlink_rdev(mddev, rdev);
2844 			rdev->raid_disk = d2;
2845 			sysfs_unlink_rdev(mddev, rdev);
2846 			if (sysfs_link_rdev(mddev, rdev))
2847 				printk(KERN_WARNING
2848 				       "md/raid1:%s: cannot register rd%d\n",
2849 				       mdname(mddev), rdev->raid_disk);
2850 		}
2851 		if (rdev)
2852 			newmirrors[d2++].rdev = rdev;
2853 	}
2854 	kfree(conf->mirrors);
2855 	conf->mirrors = newmirrors;
2856 	kfree(conf->poolinfo);
2857 	conf->poolinfo = newpoolinfo;
2858 
2859 	spin_lock_irqsave(&conf->device_lock, flags);
2860 	mddev->degraded += (raid_disks - conf->raid_disks);
2861 	spin_unlock_irqrestore(&conf->device_lock, flags);
2862 	conf->raid_disks = mddev->raid_disks = raid_disks;
2863 	mddev->delta_disks = 0;
2864 
2865 	conf->last_used = 0; /* just make sure it is in-range */
2866 	lower_barrier(conf);
2867 
2868 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2869 	md_wakeup_thread(mddev->thread);
2870 
2871 	mempool_destroy(oldpool);
2872 	return 0;
2873 }
2874 
2875 static void raid1_quiesce(struct mddev *mddev, int state)
2876 {
2877 	struct r1conf *conf = mddev->private;
2878 
2879 	switch(state) {
2880 	case 2: /* wake for suspend */
2881 		wake_up(&conf->wait_barrier);
2882 		break;
2883 	case 1:
2884 		raise_barrier(conf);
2885 		break;
2886 	case 0:
2887 		lower_barrier(conf);
2888 		break;
2889 	}
2890 }
2891 
2892 static void *raid1_takeover(struct mddev *mddev)
2893 {
2894 	/* raid1 can take over:
2895 	 *  raid5 with 2 devices, any layout or chunk size
2896 	 */
2897 	if (mddev->level == 5 && mddev->raid_disks == 2) {
2898 		struct r1conf *conf;
2899 		mddev->new_level = 1;
2900 		mddev->new_layout = 0;
2901 		mddev->new_chunk_sectors = 0;
2902 		conf = setup_conf(mddev);
2903 		if (!IS_ERR(conf))
2904 			conf->barrier = 1;
2905 		return conf;
2906 	}
2907 	return ERR_PTR(-EINVAL);
2908 }
2909 
2910 static struct md_personality raid1_personality =
2911 {
2912 	.name		= "raid1",
2913 	.level		= 1,
2914 	.owner		= THIS_MODULE,
2915 	.make_request	= make_request,
2916 	.run		= run,
2917 	.stop		= stop,
2918 	.status		= status,
2919 	.error_handler	= error,
2920 	.hot_add_disk	= raid1_add_disk,
2921 	.hot_remove_disk= raid1_remove_disk,
2922 	.spare_active	= raid1_spare_active,
2923 	.sync_request	= sync_request,
2924 	.resize		= raid1_resize,
2925 	.size		= raid1_size,
2926 	.check_reshape	= raid1_reshape,
2927 	.quiesce	= raid1_quiesce,
2928 	.takeover	= raid1_takeover,
2929 };
2930 
2931 static int __init raid_init(void)
2932 {
2933 	return register_md_personality(&raid1_personality);
2934 }
2935 
2936 static void raid_exit(void)
2937 {
2938 	unregister_md_personality(&raid1_personality);
2939 }
2940 
2941 module_init(raid_init);
2942 module_exit(raid_exit);
2943 MODULE_LICENSE("GPL");
2944 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
2945 MODULE_ALIAS("md-personality-3"); /* RAID1 */
2946 MODULE_ALIAS("md-raid1");
2947 MODULE_ALIAS("md-level-1");
2948 
2949 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
2950