1 /* 2 * raid1.c : Multiple Devices driver for Linux 3 * 4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat 5 * 6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman 7 * 8 * RAID-1 management functions. 9 * 10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000 11 * 12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk> 13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au> 14 * 15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support 16 * bitmapped intelligence in resync: 17 * 18 * - bitmap marked during normal i/o 19 * - bitmap used to skip nondirty blocks during sync 20 * 21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology: 22 * - persistent bitmap code 23 * 24 * This program is free software; you can redistribute it and/or modify 25 * it under the terms of the GNU General Public License as published by 26 * the Free Software Foundation; either version 2, or (at your option) 27 * any later version. 28 * 29 * You should have received a copy of the GNU General Public License 30 * (for example /usr/src/linux/COPYING); if not, write to the Free 31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 32 */ 33 34 #include <linux/slab.h> 35 #include <linux/delay.h> 36 #include <linux/blkdev.h> 37 #include <linux/module.h> 38 #include <linux/seq_file.h> 39 #include <linux/ratelimit.h> 40 #include "md.h" 41 #include "raid1.h" 42 #include "bitmap.h" 43 44 /* 45 * Number of guaranteed r1bios in case of extreme VM load: 46 */ 47 #define NR_RAID1_BIOS 256 48 49 /* When there are this many requests queue to be written by 50 * the raid1 thread, we become 'congested' to provide back-pressure 51 * for writeback. 52 */ 53 static int max_queued_requests = 1024; 54 55 static void allow_barrier(struct r1conf *conf); 56 static void lower_barrier(struct r1conf *conf); 57 58 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data) 59 { 60 struct pool_info *pi = data; 61 int size = offsetof(struct r1bio, bios[pi->raid_disks]); 62 63 /* allocate a r1bio with room for raid_disks entries in the bios array */ 64 return kzalloc(size, gfp_flags); 65 } 66 67 static void r1bio_pool_free(void *r1_bio, void *data) 68 { 69 kfree(r1_bio); 70 } 71 72 #define RESYNC_BLOCK_SIZE (64*1024) 73 //#define RESYNC_BLOCK_SIZE PAGE_SIZE 74 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9) 75 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE) 76 #define RESYNC_WINDOW (2048*1024) 77 78 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data) 79 { 80 struct pool_info *pi = data; 81 struct page *page; 82 struct r1bio *r1_bio; 83 struct bio *bio; 84 int i, j; 85 86 r1_bio = r1bio_pool_alloc(gfp_flags, pi); 87 if (!r1_bio) 88 return NULL; 89 90 /* 91 * Allocate bios : 1 for reading, n-1 for writing 92 */ 93 for (j = pi->raid_disks ; j-- ; ) { 94 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES); 95 if (!bio) 96 goto out_free_bio; 97 r1_bio->bios[j] = bio; 98 } 99 /* 100 * Allocate RESYNC_PAGES data pages and attach them to 101 * the first bio. 102 * If this is a user-requested check/repair, allocate 103 * RESYNC_PAGES for each bio. 104 */ 105 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) 106 j = pi->raid_disks; 107 else 108 j = 1; 109 while(j--) { 110 bio = r1_bio->bios[j]; 111 for (i = 0; i < RESYNC_PAGES; i++) { 112 page = alloc_page(gfp_flags); 113 if (unlikely(!page)) 114 goto out_free_pages; 115 116 bio->bi_io_vec[i].bv_page = page; 117 bio->bi_vcnt = i+1; 118 } 119 } 120 /* If not user-requests, copy the page pointers to all bios */ 121 if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) { 122 for (i=0; i<RESYNC_PAGES ; i++) 123 for (j=1; j<pi->raid_disks; j++) 124 r1_bio->bios[j]->bi_io_vec[i].bv_page = 125 r1_bio->bios[0]->bi_io_vec[i].bv_page; 126 } 127 128 r1_bio->master_bio = NULL; 129 130 return r1_bio; 131 132 out_free_pages: 133 for (j=0 ; j < pi->raid_disks; j++) 134 for (i=0; i < r1_bio->bios[j]->bi_vcnt ; i++) 135 put_page(r1_bio->bios[j]->bi_io_vec[i].bv_page); 136 j = -1; 137 out_free_bio: 138 while (++j < pi->raid_disks) 139 bio_put(r1_bio->bios[j]); 140 r1bio_pool_free(r1_bio, data); 141 return NULL; 142 } 143 144 static void r1buf_pool_free(void *__r1_bio, void *data) 145 { 146 struct pool_info *pi = data; 147 int i,j; 148 struct r1bio *r1bio = __r1_bio; 149 150 for (i = 0; i < RESYNC_PAGES; i++) 151 for (j = pi->raid_disks; j-- ;) { 152 if (j == 0 || 153 r1bio->bios[j]->bi_io_vec[i].bv_page != 154 r1bio->bios[0]->bi_io_vec[i].bv_page) 155 safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page); 156 } 157 for (i=0 ; i < pi->raid_disks; i++) 158 bio_put(r1bio->bios[i]); 159 160 r1bio_pool_free(r1bio, data); 161 } 162 163 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio) 164 { 165 int i; 166 167 for (i = 0; i < conf->raid_disks * 2; i++) { 168 struct bio **bio = r1_bio->bios + i; 169 if (!BIO_SPECIAL(*bio)) 170 bio_put(*bio); 171 *bio = NULL; 172 } 173 } 174 175 static void free_r1bio(struct r1bio *r1_bio) 176 { 177 struct r1conf *conf = r1_bio->mddev->private; 178 179 put_all_bios(conf, r1_bio); 180 mempool_free(r1_bio, conf->r1bio_pool); 181 } 182 183 static void put_buf(struct r1bio *r1_bio) 184 { 185 struct r1conf *conf = r1_bio->mddev->private; 186 int i; 187 188 for (i = 0; i < conf->raid_disks * 2; i++) { 189 struct bio *bio = r1_bio->bios[i]; 190 if (bio->bi_end_io) 191 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev); 192 } 193 194 mempool_free(r1_bio, conf->r1buf_pool); 195 196 lower_barrier(conf); 197 } 198 199 static void reschedule_retry(struct r1bio *r1_bio) 200 { 201 unsigned long flags; 202 struct mddev *mddev = r1_bio->mddev; 203 struct r1conf *conf = mddev->private; 204 205 spin_lock_irqsave(&conf->device_lock, flags); 206 list_add(&r1_bio->retry_list, &conf->retry_list); 207 conf->nr_queued ++; 208 spin_unlock_irqrestore(&conf->device_lock, flags); 209 210 wake_up(&conf->wait_barrier); 211 md_wakeup_thread(mddev->thread); 212 } 213 214 /* 215 * raid_end_bio_io() is called when we have finished servicing a mirrored 216 * operation and are ready to return a success/failure code to the buffer 217 * cache layer. 218 */ 219 static void call_bio_endio(struct r1bio *r1_bio) 220 { 221 struct bio *bio = r1_bio->master_bio; 222 int done; 223 struct r1conf *conf = r1_bio->mddev->private; 224 225 if (bio->bi_phys_segments) { 226 unsigned long flags; 227 spin_lock_irqsave(&conf->device_lock, flags); 228 bio->bi_phys_segments--; 229 done = (bio->bi_phys_segments == 0); 230 spin_unlock_irqrestore(&conf->device_lock, flags); 231 } else 232 done = 1; 233 234 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) 235 clear_bit(BIO_UPTODATE, &bio->bi_flags); 236 if (done) { 237 bio_endio(bio, 0); 238 /* 239 * Wake up any possible resync thread that waits for the device 240 * to go idle. 241 */ 242 allow_barrier(conf); 243 } 244 } 245 246 static void raid_end_bio_io(struct r1bio *r1_bio) 247 { 248 struct bio *bio = r1_bio->master_bio; 249 250 /* if nobody has done the final endio yet, do it now */ 251 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) { 252 pr_debug("raid1: sync end %s on sectors %llu-%llu\n", 253 (bio_data_dir(bio) == WRITE) ? "write" : "read", 254 (unsigned long long) bio->bi_sector, 255 (unsigned long long) bio->bi_sector + 256 (bio->bi_size >> 9) - 1); 257 258 call_bio_endio(r1_bio); 259 } 260 free_r1bio(r1_bio); 261 } 262 263 /* 264 * Update disk head position estimator based on IRQ completion info. 265 */ 266 static inline void update_head_pos(int disk, struct r1bio *r1_bio) 267 { 268 struct r1conf *conf = r1_bio->mddev->private; 269 270 conf->mirrors[disk].head_position = 271 r1_bio->sector + (r1_bio->sectors); 272 } 273 274 /* 275 * Find the disk number which triggered given bio 276 */ 277 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio) 278 { 279 int mirror; 280 struct r1conf *conf = r1_bio->mddev->private; 281 int raid_disks = conf->raid_disks; 282 283 for (mirror = 0; mirror < raid_disks * 2; mirror++) 284 if (r1_bio->bios[mirror] == bio) 285 break; 286 287 BUG_ON(mirror == raid_disks * 2); 288 update_head_pos(mirror, r1_bio); 289 290 return mirror; 291 } 292 293 static void raid1_end_read_request(struct bio *bio, int error) 294 { 295 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 296 struct r1bio *r1_bio = bio->bi_private; 297 int mirror; 298 struct r1conf *conf = r1_bio->mddev->private; 299 300 mirror = r1_bio->read_disk; 301 /* 302 * this branch is our 'one mirror IO has finished' event handler: 303 */ 304 update_head_pos(mirror, r1_bio); 305 306 if (uptodate) 307 set_bit(R1BIO_Uptodate, &r1_bio->state); 308 else { 309 /* If all other devices have failed, we want to return 310 * the error upwards rather than fail the last device. 311 * Here we redefine "uptodate" to mean "Don't want to retry" 312 */ 313 unsigned long flags; 314 spin_lock_irqsave(&conf->device_lock, flags); 315 if (r1_bio->mddev->degraded == conf->raid_disks || 316 (r1_bio->mddev->degraded == conf->raid_disks-1 && 317 !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags))) 318 uptodate = 1; 319 spin_unlock_irqrestore(&conf->device_lock, flags); 320 } 321 322 if (uptodate) 323 raid_end_bio_io(r1_bio); 324 else { 325 /* 326 * oops, read error: 327 */ 328 char b[BDEVNAME_SIZE]; 329 printk_ratelimited( 330 KERN_ERR "md/raid1:%s: %s: " 331 "rescheduling sector %llu\n", 332 mdname(conf->mddev), 333 bdevname(conf->mirrors[mirror].rdev->bdev, 334 b), 335 (unsigned long long)r1_bio->sector); 336 set_bit(R1BIO_ReadError, &r1_bio->state); 337 reschedule_retry(r1_bio); 338 } 339 340 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev); 341 } 342 343 static void close_write(struct r1bio *r1_bio) 344 { 345 /* it really is the end of this request */ 346 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) { 347 /* free extra copy of the data pages */ 348 int i = r1_bio->behind_page_count; 349 while (i--) 350 safe_put_page(r1_bio->behind_bvecs[i].bv_page); 351 kfree(r1_bio->behind_bvecs); 352 r1_bio->behind_bvecs = NULL; 353 } 354 /* clear the bitmap if all writes complete successfully */ 355 bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector, 356 r1_bio->sectors, 357 !test_bit(R1BIO_Degraded, &r1_bio->state), 358 test_bit(R1BIO_BehindIO, &r1_bio->state)); 359 md_write_end(r1_bio->mddev); 360 } 361 362 static void r1_bio_write_done(struct r1bio *r1_bio) 363 { 364 if (!atomic_dec_and_test(&r1_bio->remaining)) 365 return; 366 367 if (test_bit(R1BIO_WriteError, &r1_bio->state)) 368 reschedule_retry(r1_bio); 369 else { 370 close_write(r1_bio); 371 if (test_bit(R1BIO_MadeGood, &r1_bio->state)) 372 reschedule_retry(r1_bio); 373 else 374 raid_end_bio_io(r1_bio); 375 } 376 } 377 378 static void raid1_end_write_request(struct bio *bio, int error) 379 { 380 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 381 struct r1bio *r1_bio = bio->bi_private; 382 int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state); 383 struct r1conf *conf = r1_bio->mddev->private; 384 struct bio *to_put = NULL; 385 386 mirror = find_bio_disk(r1_bio, bio); 387 388 /* 389 * 'one mirror IO has finished' event handler: 390 */ 391 if (!uptodate) { 392 set_bit(WriteErrorSeen, 393 &conf->mirrors[mirror].rdev->flags); 394 if (!test_and_set_bit(WantReplacement, 395 &conf->mirrors[mirror].rdev->flags)) 396 set_bit(MD_RECOVERY_NEEDED, & 397 conf->mddev->recovery); 398 399 set_bit(R1BIO_WriteError, &r1_bio->state); 400 } else { 401 /* 402 * Set R1BIO_Uptodate in our master bio, so that we 403 * will return a good error code for to the higher 404 * levels even if IO on some other mirrored buffer 405 * fails. 406 * 407 * The 'master' represents the composite IO operation 408 * to user-side. So if something waits for IO, then it 409 * will wait for the 'master' bio. 410 */ 411 sector_t first_bad; 412 int bad_sectors; 413 414 r1_bio->bios[mirror] = NULL; 415 to_put = bio; 416 set_bit(R1BIO_Uptodate, &r1_bio->state); 417 418 /* Maybe we can clear some bad blocks. */ 419 if (is_badblock(conf->mirrors[mirror].rdev, 420 r1_bio->sector, r1_bio->sectors, 421 &first_bad, &bad_sectors)) { 422 r1_bio->bios[mirror] = IO_MADE_GOOD; 423 set_bit(R1BIO_MadeGood, &r1_bio->state); 424 } 425 } 426 427 if (behind) { 428 if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags)) 429 atomic_dec(&r1_bio->behind_remaining); 430 431 /* 432 * In behind mode, we ACK the master bio once the I/O 433 * has safely reached all non-writemostly 434 * disks. Setting the Returned bit ensures that this 435 * gets done only once -- we don't ever want to return 436 * -EIO here, instead we'll wait 437 */ 438 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) && 439 test_bit(R1BIO_Uptodate, &r1_bio->state)) { 440 /* Maybe we can return now */ 441 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) { 442 struct bio *mbio = r1_bio->master_bio; 443 pr_debug("raid1: behind end write sectors" 444 " %llu-%llu\n", 445 (unsigned long long) mbio->bi_sector, 446 (unsigned long long) mbio->bi_sector + 447 (mbio->bi_size >> 9) - 1); 448 call_bio_endio(r1_bio); 449 } 450 } 451 } 452 if (r1_bio->bios[mirror] == NULL) 453 rdev_dec_pending(conf->mirrors[mirror].rdev, 454 conf->mddev); 455 456 /* 457 * Let's see if all mirrored write operations have finished 458 * already. 459 */ 460 r1_bio_write_done(r1_bio); 461 462 if (to_put) 463 bio_put(to_put); 464 } 465 466 467 /* 468 * This routine returns the disk from which the requested read should 469 * be done. There is a per-array 'next expected sequential IO' sector 470 * number - if this matches on the next IO then we use the last disk. 471 * There is also a per-disk 'last know head position' sector that is 472 * maintained from IRQ contexts, both the normal and the resync IO 473 * completion handlers update this position correctly. If there is no 474 * perfect sequential match then we pick the disk whose head is closest. 475 * 476 * If there are 2 mirrors in the same 2 devices, performance degrades 477 * because position is mirror, not device based. 478 * 479 * The rdev for the device selected will have nr_pending incremented. 480 */ 481 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors) 482 { 483 const sector_t this_sector = r1_bio->sector; 484 int sectors; 485 int best_good_sectors; 486 int start_disk; 487 int best_disk; 488 int i; 489 sector_t best_dist; 490 struct md_rdev *rdev; 491 int choose_first; 492 493 rcu_read_lock(); 494 /* 495 * Check if we can balance. We can balance on the whole 496 * device if no resync is going on, or below the resync window. 497 * We take the first readable disk when above the resync window. 498 */ 499 retry: 500 sectors = r1_bio->sectors; 501 best_disk = -1; 502 best_dist = MaxSector; 503 best_good_sectors = 0; 504 505 if (conf->mddev->recovery_cp < MaxSector && 506 (this_sector + sectors >= conf->next_resync)) { 507 choose_first = 1; 508 start_disk = 0; 509 } else { 510 choose_first = 0; 511 start_disk = conf->last_used; 512 } 513 514 for (i = 0 ; i < conf->raid_disks * 2 ; i++) { 515 sector_t dist; 516 sector_t first_bad; 517 int bad_sectors; 518 519 int disk = start_disk + i; 520 if (disk >= conf->raid_disks) 521 disk -= conf->raid_disks; 522 523 rdev = rcu_dereference(conf->mirrors[disk].rdev); 524 if (r1_bio->bios[disk] == IO_BLOCKED 525 || rdev == NULL 526 || test_bit(Unmerged, &rdev->flags) 527 || test_bit(Faulty, &rdev->flags)) 528 continue; 529 if (!test_bit(In_sync, &rdev->flags) && 530 rdev->recovery_offset < this_sector + sectors) 531 continue; 532 if (test_bit(WriteMostly, &rdev->flags)) { 533 /* Don't balance among write-mostly, just 534 * use the first as a last resort */ 535 if (best_disk < 0) { 536 if (is_badblock(rdev, this_sector, sectors, 537 &first_bad, &bad_sectors)) { 538 if (first_bad < this_sector) 539 /* Cannot use this */ 540 continue; 541 best_good_sectors = first_bad - this_sector; 542 } else 543 best_good_sectors = sectors; 544 best_disk = disk; 545 } 546 continue; 547 } 548 /* This is a reasonable device to use. It might 549 * even be best. 550 */ 551 if (is_badblock(rdev, this_sector, sectors, 552 &first_bad, &bad_sectors)) { 553 if (best_dist < MaxSector) 554 /* already have a better device */ 555 continue; 556 if (first_bad <= this_sector) { 557 /* cannot read here. If this is the 'primary' 558 * device, then we must not read beyond 559 * bad_sectors from another device.. 560 */ 561 bad_sectors -= (this_sector - first_bad); 562 if (choose_first && sectors > bad_sectors) 563 sectors = bad_sectors; 564 if (best_good_sectors > sectors) 565 best_good_sectors = sectors; 566 567 } else { 568 sector_t good_sectors = first_bad - this_sector; 569 if (good_sectors > best_good_sectors) { 570 best_good_sectors = good_sectors; 571 best_disk = disk; 572 } 573 if (choose_first) 574 break; 575 } 576 continue; 577 } else 578 best_good_sectors = sectors; 579 580 dist = abs(this_sector - conf->mirrors[disk].head_position); 581 if (choose_first 582 /* Don't change to another disk for sequential reads */ 583 || conf->next_seq_sect == this_sector 584 || dist == 0 585 /* If device is idle, use it */ 586 || atomic_read(&rdev->nr_pending) == 0) { 587 best_disk = disk; 588 break; 589 } 590 if (dist < best_dist) { 591 best_dist = dist; 592 best_disk = disk; 593 } 594 } 595 596 if (best_disk >= 0) { 597 rdev = rcu_dereference(conf->mirrors[best_disk].rdev); 598 if (!rdev) 599 goto retry; 600 atomic_inc(&rdev->nr_pending); 601 if (test_bit(Faulty, &rdev->flags)) { 602 /* cannot risk returning a device that failed 603 * before we inc'ed nr_pending 604 */ 605 rdev_dec_pending(rdev, conf->mddev); 606 goto retry; 607 } 608 sectors = best_good_sectors; 609 conf->next_seq_sect = this_sector + sectors; 610 conf->last_used = best_disk; 611 } 612 rcu_read_unlock(); 613 *max_sectors = sectors; 614 615 return best_disk; 616 } 617 618 static int raid1_mergeable_bvec(struct request_queue *q, 619 struct bvec_merge_data *bvm, 620 struct bio_vec *biovec) 621 { 622 struct mddev *mddev = q->queuedata; 623 struct r1conf *conf = mddev->private; 624 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev); 625 int max = biovec->bv_len; 626 627 if (mddev->merge_check_needed) { 628 int disk; 629 rcu_read_lock(); 630 for (disk = 0; disk < conf->raid_disks * 2; disk++) { 631 struct md_rdev *rdev = rcu_dereference( 632 conf->mirrors[disk].rdev); 633 if (rdev && !test_bit(Faulty, &rdev->flags)) { 634 struct request_queue *q = 635 bdev_get_queue(rdev->bdev); 636 if (q->merge_bvec_fn) { 637 bvm->bi_sector = sector + 638 rdev->data_offset; 639 bvm->bi_bdev = rdev->bdev; 640 max = min(max, q->merge_bvec_fn( 641 q, bvm, biovec)); 642 } 643 } 644 } 645 rcu_read_unlock(); 646 } 647 return max; 648 649 } 650 651 int md_raid1_congested(struct mddev *mddev, int bits) 652 { 653 struct r1conf *conf = mddev->private; 654 int i, ret = 0; 655 656 if ((bits & (1 << BDI_async_congested)) && 657 conf->pending_count >= max_queued_requests) 658 return 1; 659 660 rcu_read_lock(); 661 for (i = 0; i < conf->raid_disks * 2; i++) { 662 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 663 if (rdev && !test_bit(Faulty, &rdev->flags)) { 664 struct request_queue *q = bdev_get_queue(rdev->bdev); 665 666 BUG_ON(!q); 667 668 /* Note the '|| 1' - when read_balance prefers 669 * non-congested targets, it can be removed 670 */ 671 if ((bits & (1<<BDI_async_congested)) || 1) 672 ret |= bdi_congested(&q->backing_dev_info, bits); 673 else 674 ret &= bdi_congested(&q->backing_dev_info, bits); 675 } 676 } 677 rcu_read_unlock(); 678 return ret; 679 } 680 EXPORT_SYMBOL_GPL(md_raid1_congested); 681 682 static int raid1_congested(void *data, int bits) 683 { 684 struct mddev *mddev = data; 685 686 return mddev_congested(mddev, bits) || 687 md_raid1_congested(mddev, bits); 688 } 689 690 static void flush_pending_writes(struct r1conf *conf) 691 { 692 /* Any writes that have been queued but are awaiting 693 * bitmap updates get flushed here. 694 */ 695 spin_lock_irq(&conf->device_lock); 696 697 if (conf->pending_bio_list.head) { 698 struct bio *bio; 699 bio = bio_list_get(&conf->pending_bio_list); 700 conf->pending_count = 0; 701 spin_unlock_irq(&conf->device_lock); 702 /* flush any pending bitmap writes to 703 * disk before proceeding w/ I/O */ 704 bitmap_unplug(conf->mddev->bitmap); 705 wake_up(&conf->wait_barrier); 706 707 while (bio) { /* submit pending writes */ 708 struct bio *next = bio->bi_next; 709 bio->bi_next = NULL; 710 generic_make_request(bio); 711 bio = next; 712 } 713 } else 714 spin_unlock_irq(&conf->device_lock); 715 } 716 717 /* Barriers.... 718 * Sometimes we need to suspend IO while we do something else, 719 * either some resync/recovery, or reconfigure the array. 720 * To do this we raise a 'barrier'. 721 * The 'barrier' is a counter that can be raised multiple times 722 * to count how many activities are happening which preclude 723 * normal IO. 724 * We can only raise the barrier if there is no pending IO. 725 * i.e. if nr_pending == 0. 726 * We choose only to raise the barrier if no-one is waiting for the 727 * barrier to go down. This means that as soon as an IO request 728 * is ready, no other operations which require a barrier will start 729 * until the IO request has had a chance. 730 * 731 * So: regular IO calls 'wait_barrier'. When that returns there 732 * is no backgroup IO happening, It must arrange to call 733 * allow_barrier when it has finished its IO. 734 * backgroup IO calls must call raise_barrier. Once that returns 735 * there is no normal IO happeing. It must arrange to call 736 * lower_barrier when the particular background IO completes. 737 */ 738 #define RESYNC_DEPTH 32 739 740 static void raise_barrier(struct r1conf *conf) 741 { 742 spin_lock_irq(&conf->resync_lock); 743 744 /* Wait until no block IO is waiting */ 745 wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting, 746 conf->resync_lock, ); 747 748 /* block any new IO from starting */ 749 conf->barrier++; 750 751 /* Now wait for all pending IO to complete */ 752 wait_event_lock_irq(conf->wait_barrier, 753 !conf->nr_pending && conf->barrier < RESYNC_DEPTH, 754 conf->resync_lock, ); 755 756 spin_unlock_irq(&conf->resync_lock); 757 } 758 759 static void lower_barrier(struct r1conf *conf) 760 { 761 unsigned long flags; 762 BUG_ON(conf->barrier <= 0); 763 spin_lock_irqsave(&conf->resync_lock, flags); 764 conf->barrier--; 765 spin_unlock_irqrestore(&conf->resync_lock, flags); 766 wake_up(&conf->wait_barrier); 767 } 768 769 static void wait_barrier(struct r1conf *conf) 770 { 771 spin_lock_irq(&conf->resync_lock); 772 if (conf->barrier) { 773 conf->nr_waiting++; 774 /* Wait for the barrier to drop. 775 * However if there are already pending 776 * requests (preventing the barrier from 777 * rising completely), and the 778 * pre-process bio queue isn't empty, 779 * then don't wait, as we need to empty 780 * that queue to get the nr_pending 781 * count down. 782 */ 783 wait_event_lock_irq(conf->wait_barrier, 784 !conf->barrier || 785 (conf->nr_pending && 786 current->bio_list && 787 !bio_list_empty(current->bio_list)), 788 conf->resync_lock, 789 ); 790 conf->nr_waiting--; 791 } 792 conf->nr_pending++; 793 spin_unlock_irq(&conf->resync_lock); 794 } 795 796 static void allow_barrier(struct r1conf *conf) 797 { 798 unsigned long flags; 799 spin_lock_irqsave(&conf->resync_lock, flags); 800 conf->nr_pending--; 801 spin_unlock_irqrestore(&conf->resync_lock, flags); 802 wake_up(&conf->wait_barrier); 803 } 804 805 static void freeze_array(struct r1conf *conf) 806 { 807 /* stop syncio and normal IO and wait for everything to 808 * go quite. 809 * We increment barrier and nr_waiting, and then 810 * wait until nr_pending match nr_queued+1 811 * This is called in the context of one normal IO request 812 * that has failed. Thus any sync request that might be pending 813 * will be blocked by nr_pending, and we need to wait for 814 * pending IO requests to complete or be queued for re-try. 815 * Thus the number queued (nr_queued) plus this request (1) 816 * must match the number of pending IOs (nr_pending) before 817 * we continue. 818 */ 819 spin_lock_irq(&conf->resync_lock); 820 conf->barrier++; 821 conf->nr_waiting++; 822 wait_event_lock_irq(conf->wait_barrier, 823 conf->nr_pending == conf->nr_queued+1, 824 conf->resync_lock, 825 flush_pending_writes(conf)); 826 spin_unlock_irq(&conf->resync_lock); 827 } 828 static void unfreeze_array(struct r1conf *conf) 829 { 830 /* reverse the effect of the freeze */ 831 spin_lock_irq(&conf->resync_lock); 832 conf->barrier--; 833 conf->nr_waiting--; 834 wake_up(&conf->wait_barrier); 835 spin_unlock_irq(&conf->resync_lock); 836 } 837 838 839 /* duplicate the data pages for behind I/O 840 */ 841 static void alloc_behind_pages(struct bio *bio, struct r1bio *r1_bio) 842 { 843 int i; 844 struct bio_vec *bvec; 845 struct bio_vec *bvecs = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec), 846 GFP_NOIO); 847 if (unlikely(!bvecs)) 848 return; 849 850 bio_for_each_segment(bvec, bio, i) { 851 bvecs[i] = *bvec; 852 bvecs[i].bv_page = alloc_page(GFP_NOIO); 853 if (unlikely(!bvecs[i].bv_page)) 854 goto do_sync_io; 855 memcpy(kmap(bvecs[i].bv_page) + bvec->bv_offset, 856 kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len); 857 kunmap(bvecs[i].bv_page); 858 kunmap(bvec->bv_page); 859 } 860 r1_bio->behind_bvecs = bvecs; 861 r1_bio->behind_page_count = bio->bi_vcnt; 862 set_bit(R1BIO_BehindIO, &r1_bio->state); 863 return; 864 865 do_sync_io: 866 for (i = 0; i < bio->bi_vcnt; i++) 867 if (bvecs[i].bv_page) 868 put_page(bvecs[i].bv_page); 869 kfree(bvecs); 870 pr_debug("%dB behind alloc failed, doing sync I/O\n", bio->bi_size); 871 } 872 873 static void make_request(struct mddev *mddev, struct bio * bio) 874 { 875 struct r1conf *conf = mddev->private; 876 struct mirror_info *mirror; 877 struct r1bio *r1_bio; 878 struct bio *read_bio; 879 int i, disks; 880 struct bitmap *bitmap; 881 unsigned long flags; 882 const int rw = bio_data_dir(bio); 883 const unsigned long do_sync = (bio->bi_rw & REQ_SYNC); 884 const unsigned long do_flush_fua = (bio->bi_rw & (REQ_FLUSH | REQ_FUA)); 885 struct md_rdev *blocked_rdev; 886 int plugged; 887 int first_clone; 888 int sectors_handled; 889 int max_sectors; 890 891 /* 892 * Register the new request and wait if the reconstruction 893 * thread has put up a bar for new requests. 894 * Continue immediately if no resync is active currently. 895 */ 896 897 md_write_start(mddev, bio); /* wait on superblock update early */ 898 899 if (bio_data_dir(bio) == WRITE && 900 bio->bi_sector + bio->bi_size/512 > mddev->suspend_lo && 901 bio->bi_sector < mddev->suspend_hi) { 902 /* As the suspend_* range is controlled by 903 * userspace, we want an interruptible 904 * wait. 905 */ 906 DEFINE_WAIT(w); 907 for (;;) { 908 flush_signals(current); 909 prepare_to_wait(&conf->wait_barrier, 910 &w, TASK_INTERRUPTIBLE); 911 if (bio->bi_sector + bio->bi_size/512 <= mddev->suspend_lo || 912 bio->bi_sector >= mddev->suspend_hi) 913 break; 914 schedule(); 915 } 916 finish_wait(&conf->wait_barrier, &w); 917 } 918 919 wait_barrier(conf); 920 921 bitmap = mddev->bitmap; 922 923 /* 924 * make_request() can abort the operation when READA is being 925 * used and no empty request is available. 926 * 927 */ 928 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO); 929 930 r1_bio->master_bio = bio; 931 r1_bio->sectors = bio->bi_size >> 9; 932 r1_bio->state = 0; 933 r1_bio->mddev = mddev; 934 r1_bio->sector = bio->bi_sector; 935 936 /* We might need to issue multiple reads to different 937 * devices if there are bad blocks around, so we keep 938 * track of the number of reads in bio->bi_phys_segments. 939 * If this is 0, there is only one r1_bio and no locking 940 * will be needed when requests complete. If it is 941 * non-zero, then it is the number of not-completed requests. 942 */ 943 bio->bi_phys_segments = 0; 944 clear_bit(BIO_SEG_VALID, &bio->bi_flags); 945 946 if (rw == READ) { 947 /* 948 * read balancing logic: 949 */ 950 int rdisk; 951 952 read_again: 953 rdisk = read_balance(conf, r1_bio, &max_sectors); 954 955 if (rdisk < 0) { 956 /* couldn't find anywhere to read from */ 957 raid_end_bio_io(r1_bio); 958 return; 959 } 960 mirror = conf->mirrors + rdisk; 961 962 if (test_bit(WriteMostly, &mirror->rdev->flags) && 963 bitmap) { 964 /* Reading from a write-mostly device must 965 * take care not to over-take any writes 966 * that are 'behind' 967 */ 968 wait_event(bitmap->behind_wait, 969 atomic_read(&bitmap->behind_writes) == 0); 970 } 971 r1_bio->read_disk = rdisk; 972 973 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev); 974 md_trim_bio(read_bio, r1_bio->sector - bio->bi_sector, 975 max_sectors); 976 977 r1_bio->bios[rdisk] = read_bio; 978 979 read_bio->bi_sector = r1_bio->sector + mirror->rdev->data_offset; 980 read_bio->bi_bdev = mirror->rdev->bdev; 981 read_bio->bi_end_io = raid1_end_read_request; 982 read_bio->bi_rw = READ | do_sync; 983 read_bio->bi_private = r1_bio; 984 985 if (max_sectors < r1_bio->sectors) { 986 /* could not read all from this device, so we will 987 * need another r1_bio. 988 */ 989 990 sectors_handled = (r1_bio->sector + max_sectors 991 - bio->bi_sector); 992 r1_bio->sectors = max_sectors; 993 spin_lock_irq(&conf->device_lock); 994 if (bio->bi_phys_segments == 0) 995 bio->bi_phys_segments = 2; 996 else 997 bio->bi_phys_segments++; 998 spin_unlock_irq(&conf->device_lock); 999 /* Cannot call generic_make_request directly 1000 * as that will be queued in __make_request 1001 * and subsequent mempool_alloc might block waiting 1002 * for it. So hand bio over to raid1d. 1003 */ 1004 reschedule_retry(r1_bio); 1005 1006 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO); 1007 1008 r1_bio->master_bio = bio; 1009 r1_bio->sectors = (bio->bi_size >> 9) - sectors_handled; 1010 r1_bio->state = 0; 1011 r1_bio->mddev = mddev; 1012 r1_bio->sector = bio->bi_sector + sectors_handled; 1013 goto read_again; 1014 } else 1015 generic_make_request(read_bio); 1016 return; 1017 } 1018 1019 /* 1020 * WRITE: 1021 */ 1022 if (conf->pending_count >= max_queued_requests) { 1023 md_wakeup_thread(mddev->thread); 1024 wait_event(conf->wait_barrier, 1025 conf->pending_count < max_queued_requests); 1026 } 1027 /* first select target devices under rcu_lock and 1028 * inc refcount on their rdev. Record them by setting 1029 * bios[x] to bio 1030 * If there are known/acknowledged bad blocks on any device on 1031 * which we have seen a write error, we want to avoid writing those 1032 * blocks. 1033 * This potentially requires several writes to write around 1034 * the bad blocks. Each set of writes gets it's own r1bio 1035 * with a set of bios attached. 1036 */ 1037 plugged = mddev_check_plugged(mddev); 1038 1039 disks = conf->raid_disks * 2; 1040 retry_write: 1041 blocked_rdev = NULL; 1042 rcu_read_lock(); 1043 max_sectors = r1_bio->sectors; 1044 for (i = 0; i < disks; i++) { 1045 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 1046 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) { 1047 atomic_inc(&rdev->nr_pending); 1048 blocked_rdev = rdev; 1049 break; 1050 } 1051 r1_bio->bios[i] = NULL; 1052 if (!rdev || test_bit(Faulty, &rdev->flags) 1053 || test_bit(Unmerged, &rdev->flags)) { 1054 if (i < conf->raid_disks) 1055 set_bit(R1BIO_Degraded, &r1_bio->state); 1056 continue; 1057 } 1058 1059 atomic_inc(&rdev->nr_pending); 1060 if (test_bit(WriteErrorSeen, &rdev->flags)) { 1061 sector_t first_bad; 1062 int bad_sectors; 1063 int is_bad; 1064 1065 is_bad = is_badblock(rdev, r1_bio->sector, 1066 max_sectors, 1067 &first_bad, &bad_sectors); 1068 if (is_bad < 0) { 1069 /* mustn't write here until the bad block is 1070 * acknowledged*/ 1071 set_bit(BlockedBadBlocks, &rdev->flags); 1072 blocked_rdev = rdev; 1073 break; 1074 } 1075 if (is_bad && first_bad <= r1_bio->sector) { 1076 /* Cannot write here at all */ 1077 bad_sectors -= (r1_bio->sector - first_bad); 1078 if (bad_sectors < max_sectors) 1079 /* mustn't write more than bad_sectors 1080 * to other devices yet 1081 */ 1082 max_sectors = bad_sectors; 1083 rdev_dec_pending(rdev, mddev); 1084 /* We don't set R1BIO_Degraded as that 1085 * only applies if the disk is 1086 * missing, so it might be re-added, 1087 * and we want to know to recover this 1088 * chunk. 1089 * In this case the device is here, 1090 * and the fact that this chunk is not 1091 * in-sync is recorded in the bad 1092 * block log 1093 */ 1094 continue; 1095 } 1096 if (is_bad) { 1097 int good_sectors = first_bad - r1_bio->sector; 1098 if (good_sectors < max_sectors) 1099 max_sectors = good_sectors; 1100 } 1101 } 1102 r1_bio->bios[i] = bio; 1103 } 1104 rcu_read_unlock(); 1105 1106 if (unlikely(blocked_rdev)) { 1107 /* Wait for this device to become unblocked */ 1108 int j; 1109 1110 for (j = 0; j < i; j++) 1111 if (r1_bio->bios[j]) 1112 rdev_dec_pending(conf->mirrors[j].rdev, mddev); 1113 r1_bio->state = 0; 1114 allow_barrier(conf); 1115 md_wait_for_blocked_rdev(blocked_rdev, mddev); 1116 wait_barrier(conf); 1117 goto retry_write; 1118 } 1119 1120 if (max_sectors < r1_bio->sectors) { 1121 /* We are splitting this write into multiple parts, so 1122 * we need to prepare for allocating another r1_bio. 1123 */ 1124 r1_bio->sectors = max_sectors; 1125 spin_lock_irq(&conf->device_lock); 1126 if (bio->bi_phys_segments == 0) 1127 bio->bi_phys_segments = 2; 1128 else 1129 bio->bi_phys_segments++; 1130 spin_unlock_irq(&conf->device_lock); 1131 } 1132 sectors_handled = r1_bio->sector + max_sectors - bio->bi_sector; 1133 1134 atomic_set(&r1_bio->remaining, 1); 1135 atomic_set(&r1_bio->behind_remaining, 0); 1136 1137 first_clone = 1; 1138 for (i = 0; i < disks; i++) { 1139 struct bio *mbio; 1140 if (!r1_bio->bios[i]) 1141 continue; 1142 1143 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev); 1144 md_trim_bio(mbio, r1_bio->sector - bio->bi_sector, max_sectors); 1145 1146 if (first_clone) { 1147 /* do behind I/O ? 1148 * Not if there are too many, or cannot 1149 * allocate memory, or a reader on WriteMostly 1150 * is waiting for behind writes to flush */ 1151 if (bitmap && 1152 (atomic_read(&bitmap->behind_writes) 1153 < mddev->bitmap_info.max_write_behind) && 1154 !waitqueue_active(&bitmap->behind_wait)) 1155 alloc_behind_pages(mbio, r1_bio); 1156 1157 bitmap_startwrite(bitmap, r1_bio->sector, 1158 r1_bio->sectors, 1159 test_bit(R1BIO_BehindIO, 1160 &r1_bio->state)); 1161 first_clone = 0; 1162 } 1163 if (r1_bio->behind_bvecs) { 1164 struct bio_vec *bvec; 1165 int j; 1166 1167 /* Yes, I really want the '__' version so that 1168 * we clear any unused pointer in the io_vec, rather 1169 * than leave them unchanged. This is important 1170 * because when we come to free the pages, we won't 1171 * know the original bi_idx, so we just free 1172 * them all 1173 */ 1174 __bio_for_each_segment(bvec, mbio, j, 0) 1175 bvec->bv_page = r1_bio->behind_bvecs[j].bv_page; 1176 if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags)) 1177 atomic_inc(&r1_bio->behind_remaining); 1178 } 1179 1180 r1_bio->bios[i] = mbio; 1181 1182 mbio->bi_sector = (r1_bio->sector + 1183 conf->mirrors[i].rdev->data_offset); 1184 mbio->bi_bdev = conf->mirrors[i].rdev->bdev; 1185 mbio->bi_end_io = raid1_end_write_request; 1186 mbio->bi_rw = WRITE | do_flush_fua | do_sync; 1187 mbio->bi_private = r1_bio; 1188 1189 atomic_inc(&r1_bio->remaining); 1190 spin_lock_irqsave(&conf->device_lock, flags); 1191 bio_list_add(&conf->pending_bio_list, mbio); 1192 conf->pending_count++; 1193 spin_unlock_irqrestore(&conf->device_lock, flags); 1194 } 1195 /* Mustn't call r1_bio_write_done before this next test, 1196 * as it could result in the bio being freed. 1197 */ 1198 if (sectors_handled < (bio->bi_size >> 9)) { 1199 r1_bio_write_done(r1_bio); 1200 /* We need another r1_bio. It has already been counted 1201 * in bio->bi_phys_segments 1202 */ 1203 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO); 1204 r1_bio->master_bio = bio; 1205 r1_bio->sectors = (bio->bi_size >> 9) - sectors_handled; 1206 r1_bio->state = 0; 1207 r1_bio->mddev = mddev; 1208 r1_bio->sector = bio->bi_sector + sectors_handled; 1209 goto retry_write; 1210 } 1211 1212 r1_bio_write_done(r1_bio); 1213 1214 /* In case raid1d snuck in to freeze_array */ 1215 wake_up(&conf->wait_barrier); 1216 1217 if (do_sync || !bitmap || !plugged) 1218 md_wakeup_thread(mddev->thread); 1219 } 1220 1221 static void status(struct seq_file *seq, struct mddev *mddev) 1222 { 1223 struct r1conf *conf = mddev->private; 1224 int i; 1225 1226 seq_printf(seq, " [%d/%d] [", conf->raid_disks, 1227 conf->raid_disks - mddev->degraded); 1228 rcu_read_lock(); 1229 for (i = 0; i < conf->raid_disks; i++) { 1230 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 1231 seq_printf(seq, "%s", 1232 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_"); 1233 } 1234 rcu_read_unlock(); 1235 seq_printf(seq, "]"); 1236 } 1237 1238 1239 static void error(struct mddev *mddev, struct md_rdev *rdev) 1240 { 1241 char b[BDEVNAME_SIZE]; 1242 struct r1conf *conf = mddev->private; 1243 1244 /* 1245 * If it is not operational, then we have already marked it as dead 1246 * else if it is the last working disks, ignore the error, let the 1247 * next level up know. 1248 * else mark the drive as failed 1249 */ 1250 if (test_bit(In_sync, &rdev->flags) 1251 && (conf->raid_disks - mddev->degraded) == 1) { 1252 /* 1253 * Don't fail the drive, act as though we were just a 1254 * normal single drive. 1255 * However don't try a recovery from this drive as 1256 * it is very likely to fail. 1257 */ 1258 conf->recovery_disabled = mddev->recovery_disabled; 1259 return; 1260 } 1261 set_bit(Blocked, &rdev->flags); 1262 if (test_and_clear_bit(In_sync, &rdev->flags)) { 1263 unsigned long flags; 1264 spin_lock_irqsave(&conf->device_lock, flags); 1265 mddev->degraded++; 1266 set_bit(Faulty, &rdev->flags); 1267 spin_unlock_irqrestore(&conf->device_lock, flags); 1268 /* 1269 * if recovery is running, make sure it aborts. 1270 */ 1271 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 1272 } else 1273 set_bit(Faulty, &rdev->flags); 1274 set_bit(MD_CHANGE_DEVS, &mddev->flags); 1275 printk(KERN_ALERT 1276 "md/raid1:%s: Disk failure on %s, disabling device.\n" 1277 "md/raid1:%s: Operation continuing on %d devices.\n", 1278 mdname(mddev), bdevname(rdev->bdev, b), 1279 mdname(mddev), conf->raid_disks - mddev->degraded); 1280 } 1281 1282 static void print_conf(struct r1conf *conf) 1283 { 1284 int i; 1285 1286 printk(KERN_DEBUG "RAID1 conf printout:\n"); 1287 if (!conf) { 1288 printk(KERN_DEBUG "(!conf)\n"); 1289 return; 1290 } 1291 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded, 1292 conf->raid_disks); 1293 1294 rcu_read_lock(); 1295 for (i = 0; i < conf->raid_disks; i++) { 1296 char b[BDEVNAME_SIZE]; 1297 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 1298 if (rdev) 1299 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n", 1300 i, !test_bit(In_sync, &rdev->flags), 1301 !test_bit(Faulty, &rdev->flags), 1302 bdevname(rdev->bdev,b)); 1303 } 1304 rcu_read_unlock(); 1305 } 1306 1307 static void close_sync(struct r1conf *conf) 1308 { 1309 wait_barrier(conf); 1310 allow_barrier(conf); 1311 1312 mempool_destroy(conf->r1buf_pool); 1313 conf->r1buf_pool = NULL; 1314 } 1315 1316 static int raid1_spare_active(struct mddev *mddev) 1317 { 1318 int i; 1319 struct r1conf *conf = mddev->private; 1320 int count = 0; 1321 unsigned long flags; 1322 1323 /* 1324 * Find all failed disks within the RAID1 configuration 1325 * and mark them readable. 1326 * Called under mddev lock, so rcu protection not needed. 1327 */ 1328 for (i = 0; i < conf->raid_disks; i++) { 1329 struct md_rdev *rdev = conf->mirrors[i].rdev; 1330 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev; 1331 if (repl 1332 && repl->recovery_offset == MaxSector 1333 && !test_bit(Faulty, &repl->flags) 1334 && !test_and_set_bit(In_sync, &repl->flags)) { 1335 /* replacement has just become active */ 1336 if (!rdev || 1337 !test_and_clear_bit(In_sync, &rdev->flags)) 1338 count++; 1339 if (rdev) { 1340 /* Replaced device not technically 1341 * faulty, but we need to be sure 1342 * it gets removed and never re-added 1343 */ 1344 set_bit(Faulty, &rdev->flags); 1345 sysfs_notify_dirent_safe( 1346 rdev->sysfs_state); 1347 } 1348 } 1349 if (rdev 1350 && !test_bit(Faulty, &rdev->flags) 1351 && !test_and_set_bit(In_sync, &rdev->flags)) { 1352 count++; 1353 sysfs_notify_dirent_safe(rdev->sysfs_state); 1354 } 1355 } 1356 spin_lock_irqsave(&conf->device_lock, flags); 1357 mddev->degraded -= count; 1358 spin_unlock_irqrestore(&conf->device_lock, flags); 1359 1360 print_conf(conf); 1361 return count; 1362 } 1363 1364 1365 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev) 1366 { 1367 struct r1conf *conf = mddev->private; 1368 int err = -EEXIST; 1369 int mirror = 0; 1370 struct mirror_info *p; 1371 int first = 0; 1372 int last = conf->raid_disks - 1; 1373 struct request_queue *q = bdev_get_queue(rdev->bdev); 1374 1375 if (mddev->recovery_disabled == conf->recovery_disabled) 1376 return -EBUSY; 1377 1378 if (rdev->raid_disk >= 0) 1379 first = last = rdev->raid_disk; 1380 1381 if (q->merge_bvec_fn) { 1382 set_bit(Unmerged, &rdev->flags); 1383 mddev->merge_check_needed = 1; 1384 } 1385 1386 for (mirror = first; mirror <= last; mirror++) { 1387 p = conf->mirrors+mirror; 1388 if (!p->rdev) { 1389 1390 disk_stack_limits(mddev->gendisk, rdev->bdev, 1391 rdev->data_offset << 9); 1392 1393 p->head_position = 0; 1394 rdev->raid_disk = mirror; 1395 err = 0; 1396 /* As all devices are equivalent, we don't need a full recovery 1397 * if this was recently any drive of the array 1398 */ 1399 if (rdev->saved_raid_disk < 0) 1400 conf->fullsync = 1; 1401 rcu_assign_pointer(p->rdev, rdev); 1402 break; 1403 } 1404 if (test_bit(WantReplacement, &p->rdev->flags) && 1405 p[conf->raid_disks].rdev == NULL) { 1406 /* Add this device as a replacement */ 1407 clear_bit(In_sync, &rdev->flags); 1408 set_bit(Replacement, &rdev->flags); 1409 rdev->raid_disk = mirror; 1410 err = 0; 1411 conf->fullsync = 1; 1412 rcu_assign_pointer(p[conf->raid_disks].rdev, rdev); 1413 break; 1414 } 1415 } 1416 if (err == 0 && test_bit(Unmerged, &rdev->flags)) { 1417 /* Some requests might not have seen this new 1418 * merge_bvec_fn. We must wait for them to complete 1419 * before merging the device fully. 1420 * First we make sure any code which has tested 1421 * our function has submitted the request, then 1422 * we wait for all outstanding requests to complete. 1423 */ 1424 synchronize_sched(); 1425 raise_barrier(conf); 1426 lower_barrier(conf); 1427 clear_bit(Unmerged, &rdev->flags); 1428 } 1429 md_integrity_add_rdev(rdev, mddev); 1430 print_conf(conf); 1431 return err; 1432 } 1433 1434 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev) 1435 { 1436 struct r1conf *conf = mddev->private; 1437 int err = 0; 1438 int number = rdev->raid_disk; 1439 struct mirror_info *p = conf->mirrors+ number; 1440 1441 if (rdev != p->rdev) 1442 p = conf->mirrors + conf->raid_disks + number; 1443 1444 print_conf(conf); 1445 if (rdev == p->rdev) { 1446 if (test_bit(In_sync, &rdev->flags) || 1447 atomic_read(&rdev->nr_pending)) { 1448 err = -EBUSY; 1449 goto abort; 1450 } 1451 /* Only remove non-faulty devices if recovery 1452 * is not possible. 1453 */ 1454 if (!test_bit(Faulty, &rdev->flags) && 1455 mddev->recovery_disabled != conf->recovery_disabled && 1456 mddev->degraded < conf->raid_disks) { 1457 err = -EBUSY; 1458 goto abort; 1459 } 1460 p->rdev = NULL; 1461 synchronize_rcu(); 1462 if (atomic_read(&rdev->nr_pending)) { 1463 /* lost the race, try later */ 1464 err = -EBUSY; 1465 p->rdev = rdev; 1466 goto abort; 1467 } else if (conf->mirrors[conf->raid_disks + number].rdev) { 1468 /* We just removed a device that is being replaced. 1469 * Move down the replacement. We drain all IO before 1470 * doing this to avoid confusion. 1471 */ 1472 struct md_rdev *repl = 1473 conf->mirrors[conf->raid_disks + number].rdev; 1474 raise_barrier(conf); 1475 clear_bit(Replacement, &repl->flags); 1476 p->rdev = repl; 1477 conf->mirrors[conf->raid_disks + number].rdev = NULL; 1478 lower_barrier(conf); 1479 clear_bit(WantReplacement, &rdev->flags); 1480 } else 1481 clear_bit(WantReplacement, &rdev->flags); 1482 err = md_integrity_register(mddev); 1483 } 1484 abort: 1485 1486 print_conf(conf); 1487 return err; 1488 } 1489 1490 1491 static void end_sync_read(struct bio *bio, int error) 1492 { 1493 struct r1bio *r1_bio = bio->bi_private; 1494 1495 update_head_pos(r1_bio->read_disk, r1_bio); 1496 1497 /* 1498 * we have read a block, now it needs to be re-written, 1499 * or re-read if the read failed. 1500 * We don't do much here, just schedule handling by raid1d 1501 */ 1502 if (test_bit(BIO_UPTODATE, &bio->bi_flags)) 1503 set_bit(R1BIO_Uptodate, &r1_bio->state); 1504 1505 if (atomic_dec_and_test(&r1_bio->remaining)) 1506 reschedule_retry(r1_bio); 1507 } 1508 1509 static void end_sync_write(struct bio *bio, int error) 1510 { 1511 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 1512 struct r1bio *r1_bio = bio->bi_private; 1513 struct mddev *mddev = r1_bio->mddev; 1514 struct r1conf *conf = mddev->private; 1515 int mirror=0; 1516 sector_t first_bad; 1517 int bad_sectors; 1518 1519 mirror = find_bio_disk(r1_bio, bio); 1520 1521 if (!uptodate) { 1522 sector_t sync_blocks = 0; 1523 sector_t s = r1_bio->sector; 1524 long sectors_to_go = r1_bio->sectors; 1525 /* make sure these bits doesn't get cleared. */ 1526 do { 1527 bitmap_end_sync(mddev->bitmap, s, 1528 &sync_blocks, 1); 1529 s += sync_blocks; 1530 sectors_to_go -= sync_blocks; 1531 } while (sectors_to_go > 0); 1532 set_bit(WriteErrorSeen, 1533 &conf->mirrors[mirror].rdev->flags); 1534 if (!test_and_set_bit(WantReplacement, 1535 &conf->mirrors[mirror].rdev->flags)) 1536 set_bit(MD_RECOVERY_NEEDED, & 1537 mddev->recovery); 1538 set_bit(R1BIO_WriteError, &r1_bio->state); 1539 } else if (is_badblock(conf->mirrors[mirror].rdev, 1540 r1_bio->sector, 1541 r1_bio->sectors, 1542 &first_bad, &bad_sectors) && 1543 !is_badblock(conf->mirrors[r1_bio->read_disk].rdev, 1544 r1_bio->sector, 1545 r1_bio->sectors, 1546 &first_bad, &bad_sectors) 1547 ) 1548 set_bit(R1BIO_MadeGood, &r1_bio->state); 1549 1550 if (atomic_dec_and_test(&r1_bio->remaining)) { 1551 int s = r1_bio->sectors; 1552 if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 1553 test_bit(R1BIO_WriteError, &r1_bio->state)) 1554 reschedule_retry(r1_bio); 1555 else { 1556 put_buf(r1_bio); 1557 md_done_sync(mddev, s, uptodate); 1558 } 1559 } 1560 } 1561 1562 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector, 1563 int sectors, struct page *page, int rw) 1564 { 1565 if (sync_page_io(rdev, sector, sectors << 9, page, rw, false)) 1566 /* success */ 1567 return 1; 1568 if (rw == WRITE) { 1569 set_bit(WriteErrorSeen, &rdev->flags); 1570 if (!test_and_set_bit(WantReplacement, 1571 &rdev->flags)) 1572 set_bit(MD_RECOVERY_NEEDED, & 1573 rdev->mddev->recovery); 1574 } 1575 /* need to record an error - either for the block or the device */ 1576 if (!rdev_set_badblocks(rdev, sector, sectors, 0)) 1577 md_error(rdev->mddev, rdev); 1578 return 0; 1579 } 1580 1581 static int fix_sync_read_error(struct r1bio *r1_bio) 1582 { 1583 /* Try some synchronous reads of other devices to get 1584 * good data, much like with normal read errors. Only 1585 * read into the pages we already have so we don't 1586 * need to re-issue the read request. 1587 * We don't need to freeze the array, because being in an 1588 * active sync request, there is no normal IO, and 1589 * no overlapping syncs. 1590 * We don't need to check is_badblock() again as we 1591 * made sure that anything with a bad block in range 1592 * will have bi_end_io clear. 1593 */ 1594 struct mddev *mddev = r1_bio->mddev; 1595 struct r1conf *conf = mddev->private; 1596 struct bio *bio = r1_bio->bios[r1_bio->read_disk]; 1597 sector_t sect = r1_bio->sector; 1598 int sectors = r1_bio->sectors; 1599 int idx = 0; 1600 1601 while(sectors) { 1602 int s = sectors; 1603 int d = r1_bio->read_disk; 1604 int success = 0; 1605 struct md_rdev *rdev; 1606 int start; 1607 1608 if (s > (PAGE_SIZE>>9)) 1609 s = PAGE_SIZE >> 9; 1610 do { 1611 if (r1_bio->bios[d]->bi_end_io == end_sync_read) { 1612 /* No rcu protection needed here devices 1613 * can only be removed when no resync is 1614 * active, and resync is currently active 1615 */ 1616 rdev = conf->mirrors[d].rdev; 1617 if (sync_page_io(rdev, sect, s<<9, 1618 bio->bi_io_vec[idx].bv_page, 1619 READ, false)) { 1620 success = 1; 1621 break; 1622 } 1623 } 1624 d++; 1625 if (d == conf->raid_disks * 2) 1626 d = 0; 1627 } while (!success && d != r1_bio->read_disk); 1628 1629 if (!success) { 1630 char b[BDEVNAME_SIZE]; 1631 int abort = 0; 1632 /* Cannot read from anywhere, this block is lost. 1633 * Record a bad block on each device. If that doesn't 1634 * work just disable and interrupt the recovery. 1635 * Don't fail devices as that won't really help. 1636 */ 1637 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error" 1638 " for block %llu\n", 1639 mdname(mddev), 1640 bdevname(bio->bi_bdev, b), 1641 (unsigned long long)r1_bio->sector); 1642 for (d = 0; d < conf->raid_disks * 2; d++) { 1643 rdev = conf->mirrors[d].rdev; 1644 if (!rdev || test_bit(Faulty, &rdev->flags)) 1645 continue; 1646 if (!rdev_set_badblocks(rdev, sect, s, 0)) 1647 abort = 1; 1648 } 1649 if (abort) { 1650 conf->recovery_disabled = 1651 mddev->recovery_disabled; 1652 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 1653 md_done_sync(mddev, r1_bio->sectors, 0); 1654 put_buf(r1_bio); 1655 return 0; 1656 } 1657 /* Try next page */ 1658 sectors -= s; 1659 sect += s; 1660 idx++; 1661 continue; 1662 } 1663 1664 start = d; 1665 /* write it back and re-read */ 1666 while (d != r1_bio->read_disk) { 1667 if (d == 0) 1668 d = conf->raid_disks * 2; 1669 d--; 1670 if (r1_bio->bios[d]->bi_end_io != end_sync_read) 1671 continue; 1672 rdev = conf->mirrors[d].rdev; 1673 if (r1_sync_page_io(rdev, sect, s, 1674 bio->bi_io_vec[idx].bv_page, 1675 WRITE) == 0) { 1676 r1_bio->bios[d]->bi_end_io = NULL; 1677 rdev_dec_pending(rdev, mddev); 1678 } 1679 } 1680 d = start; 1681 while (d != r1_bio->read_disk) { 1682 if (d == 0) 1683 d = conf->raid_disks * 2; 1684 d--; 1685 if (r1_bio->bios[d]->bi_end_io != end_sync_read) 1686 continue; 1687 rdev = conf->mirrors[d].rdev; 1688 if (r1_sync_page_io(rdev, sect, s, 1689 bio->bi_io_vec[idx].bv_page, 1690 READ) != 0) 1691 atomic_add(s, &rdev->corrected_errors); 1692 } 1693 sectors -= s; 1694 sect += s; 1695 idx ++; 1696 } 1697 set_bit(R1BIO_Uptodate, &r1_bio->state); 1698 set_bit(BIO_UPTODATE, &bio->bi_flags); 1699 return 1; 1700 } 1701 1702 static int process_checks(struct r1bio *r1_bio) 1703 { 1704 /* We have read all readable devices. If we haven't 1705 * got the block, then there is no hope left. 1706 * If we have, then we want to do a comparison 1707 * and skip the write if everything is the same. 1708 * If any blocks failed to read, then we need to 1709 * attempt an over-write 1710 */ 1711 struct mddev *mddev = r1_bio->mddev; 1712 struct r1conf *conf = mddev->private; 1713 int primary; 1714 int i; 1715 int vcnt; 1716 1717 for (primary = 0; primary < conf->raid_disks * 2; primary++) 1718 if (r1_bio->bios[primary]->bi_end_io == end_sync_read && 1719 test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) { 1720 r1_bio->bios[primary]->bi_end_io = NULL; 1721 rdev_dec_pending(conf->mirrors[primary].rdev, mddev); 1722 break; 1723 } 1724 r1_bio->read_disk = primary; 1725 vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9); 1726 for (i = 0; i < conf->raid_disks * 2; i++) { 1727 int j; 1728 struct bio *pbio = r1_bio->bios[primary]; 1729 struct bio *sbio = r1_bio->bios[i]; 1730 int size; 1731 1732 if (r1_bio->bios[i]->bi_end_io != end_sync_read) 1733 continue; 1734 1735 if (test_bit(BIO_UPTODATE, &sbio->bi_flags)) { 1736 for (j = vcnt; j-- ; ) { 1737 struct page *p, *s; 1738 p = pbio->bi_io_vec[j].bv_page; 1739 s = sbio->bi_io_vec[j].bv_page; 1740 if (memcmp(page_address(p), 1741 page_address(s), 1742 sbio->bi_io_vec[j].bv_len)) 1743 break; 1744 } 1745 } else 1746 j = 0; 1747 if (j >= 0) 1748 mddev->resync_mismatches += r1_bio->sectors; 1749 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery) 1750 && test_bit(BIO_UPTODATE, &sbio->bi_flags))) { 1751 /* No need to write to this device. */ 1752 sbio->bi_end_io = NULL; 1753 rdev_dec_pending(conf->mirrors[i].rdev, mddev); 1754 continue; 1755 } 1756 /* fixup the bio for reuse */ 1757 sbio->bi_vcnt = vcnt; 1758 sbio->bi_size = r1_bio->sectors << 9; 1759 sbio->bi_idx = 0; 1760 sbio->bi_phys_segments = 0; 1761 sbio->bi_flags &= ~(BIO_POOL_MASK - 1); 1762 sbio->bi_flags |= 1 << BIO_UPTODATE; 1763 sbio->bi_next = NULL; 1764 sbio->bi_sector = r1_bio->sector + 1765 conf->mirrors[i].rdev->data_offset; 1766 sbio->bi_bdev = conf->mirrors[i].rdev->bdev; 1767 size = sbio->bi_size; 1768 for (j = 0; j < vcnt ; j++) { 1769 struct bio_vec *bi; 1770 bi = &sbio->bi_io_vec[j]; 1771 bi->bv_offset = 0; 1772 if (size > PAGE_SIZE) 1773 bi->bv_len = PAGE_SIZE; 1774 else 1775 bi->bv_len = size; 1776 size -= PAGE_SIZE; 1777 memcpy(page_address(bi->bv_page), 1778 page_address(pbio->bi_io_vec[j].bv_page), 1779 PAGE_SIZE); 1780 } 1781 } 1782 return 0; 1783 } 1784 1785 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio) 1786 { 1787 struct r1conf *conf = mddev->private; 1788 int i; 1789 int disks = conf->raid_disks * 2; 1790 struct bio *bio, *wbio; 1791 1792 bio = r1_bio->bios[r1_bio->read_disk]; 1793 1794 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) 1795 /* ouch - failed to read all of that. */ 1796 if (!fix_sync_read_error(r1_bio)) 1797 return; 1798 1799 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 1800 if (process_checks(r1_bio) < 0) 1801 return; 1802 /* 1803 * schedule writes 1804 */ 1805 atomic_set(&r1_bio->remaining, 1); 1806 for (i = 0; i < disks ; i++) { 1807 wbio = r1_bio->bios[i]; 1808 if (wbio->bi_end_io == NULL || 1809 (wbio->bi_end_io == end_sync_read && 1810 (i == r1_bio->read_disk || 1811 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery)))) 1812 continue; 1813 1814 wbio->bi_rw = WRITE; 1815 wbio->bi_end_io = end_sync_write; 1816 atomic_inc(&r1_bio->remaining); 1817 md_sync_acct(conf->mirrors[i].rdev->bdev, wbio->bi_size >> 9); 1818 1819 generic_make_request(wbio); 1820 } 1821 1822 if (atomic_dec_and_test(&r1_bio->remaining)) { 1823 /* if we're here, all write(s) have completed, so clean up */ 1824 md_done_sync(mddev, r1_bio->sectors, 1); 1825 put_buf(r1_bio); 1826 } 1827 } 1828 1829 /* 1830 * This is a kernel thread which: 1831 * 1832 * 1. Retries failed read operations on working mirrors. 1833 * 2. Updates the raid superblock when problems encounter. 1834 * 3. Performs writes following reads for array synchronising. 1835 */ 1836 1837 static void fix_read_error(struct r1conf *conf, int read_disk, 1838 sector_t sect, int sectors) 1839 { 1840 struct mddev *mddev = conf->mddev; 1841 while(sectors) { 1842 int s = sectors; 1843 int d = read_disk; 1844 int success = 0; 1845 int start; 1846 struct md_rdev *rdev; 1847 1848 if (s > (PAGE_SIZE>>9)) 1849 s = PAGE_SIZE >> 9; 1850 1851 do { 1852 /* Note: no rcu protection needed here 1853 * as this is synchronous in the raid1d thread 1854 * which is the thread that might remove 1855 * a device. If raid1d ever becomes multi-threaded.... 1856 */ 1857 sector_t first_bad; 1858 int bad_sectors; 1859 1860 rdev = conf->mirrors[d].rdev; 1861 if (rdev && 1862 test_bit(In_sync, &rdev->flags) && 1863 is_badblock(rdev, sect, s, 1864 &first_bad, &bad_sectors) == 0 && 1865 sync_page_io(rdev, sect, s<<9, 1866 conf->tmppage, READ, false)) 1867 success = 1; 1868 else { 1869 d++; 1870 if (d == conf->raid_disks * 2) 1871 d = 0; 1872 } 1873 } while (!success && d != read_disk); 1874 1875 if (!success) { 1876 /* Cannot read from anywhere - mark it bad */ 1877 struct md_rdev *rdev = conf->mirrors[read_disk].rdev; 1878 if (!rdev_set_badblocks(rdev, sect, s, 0)) 1879 md_error(mddev, rdev); 1880 break; 1881 } 1882 /* write it back and re-read */ 1883 start = d; 1884 while (d != read_disk) { 1885 if (d==0) 1886 d = conf->raid_disks * 2; 1887 d--; 1888 rdev = conf->mirrors[d].rdev; 1889 if (rdev && 1890 test_bit(In_sync, &rdev->flags)) 1891 r1_sync_page_io(rdev, sect, s, 1892 conf->tmppage, WRITE); 1893 } 1894 d = start; 1895 while (d != read_disk) { 1896 char b[BDEVNAME_SIZE]; 1897 if (d==0) 1898 d = conf->raid_disks * 2; 1899 d--; 1900 rdev = conf->mirrors[d].rdev; 1901 if (rdev && 1902 test_bit(In_sync, &rdev->flags)) { 1903 if (r1_sync_page_io(rdev, sect, s, 1904 conf->tmppage, READ)) { 1905 atomic_add(s, &rdev->corrected_errors); 1906 printk(KERN_INFO 1907 "md/raid1:%s: read error corrected " 1908 "(%d sectors at %llu on %s)\n", 1909 mdname(mddev), s, 1910 (unsigned long long)(sect + 1911 rdev->data_offset), 1912 bdevname(rdev->bdev, b)); 1913 } 1914 } 1915 } 1916 sectors -= s; 1917 sect += s; 1918 } 1919 } 1920 1921 static void bi_complete(struct bio *bio, int error) 1922 { 1923 complete((struct completion *)bio->bi_private); 1924 } 1925 1926 static int submit_bio_wait(int rw, struct bio *bio) 1927 { 1928 struct completion event; 1929 rw |= REQ_SYNC; 1930 1931 init_completion(&event); 1932 bio->bi_private = &event; 1933 bio->bi_end_io = bi_complete; 1934 submit_bio(rw, bio); 1935 wait_for_completion(&event); 1936 1937 return test_bit(BIO_UPTODATE, &bio->bi_flags); 1938 } 1939 1940 static int narrow_write_error(struct r1bio *r1_bio, int i) 1941 { 1942 struct mddev *mddev = r1_bio->mddev; 1943 struct r1conf *conf = mddev->private; 1944 struct md_rdev *rdev = conf->mirrors[i].rdev; 1945 int vcnt, idx; 1946 struct bio_vec *vec; 1947 1948 /* bio has the data to be written to device 'i' where 1949 * we just recently had a write error. 1950 * We repeatedly clone the bio and trim down to one block, 1951 * then try the write. Where the write fails we record 1952 * a bad block. 1953 * It is conceivable that the bio doesn't exactly align with 1954 * blocks. We must handle this somehow. 1955 * 1956 * We currently own a reference on the rdev. 1957 */ 1958 1959 int block_sectors; 1960 sector_t sector; 1961 int sectors; 1962 int sect_to_write = r1_bio->sectors; 1963 int ok = 1; 1964 1965 if (rdev->badblocks.shift < 0) 1966 return 0; 1967 1968 block_sectors = 1 << rdev->badblocks.shift; 1969 sector = r1_bio->sector; 1970 sectors = ((sector + block_sectors) 1971 & ~(sector_t)(block_sectors - 1)) 1972 - sector; 1973 1974 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) { 1975 vcnt = r1_bio->behind_page_count; 1976 vec = r1_bio->behind_bvecs; 1977 idx = 0; 1978 while (vec[idx].bv_page == NULL) 1979 idx++; 1980 } else { 1981 vcnt = r1_bio->master_bio->bi_vcnt; 1982 vec = r1_bio->master_bio->bi_io_vec; 1983 idx = r1_bio->master_bio->bi_idx; 1984 } 1985 while (sect_to_write) { 1986 struct bio *wbio; 1987 if (sectors > sect_to_write) 1988 sectors = sect_to_write; 1989 /* Write at 'sector' for 'sectors'*/ 1990 1991 wbio = bio_alloc_mddev(GFP_NOIO, vcnt, mddev); 1992 memcpy(wbio->bi_io_vec, vec, vcnt * sizeof(struct bio_vec)); 1993 wbio->bi_sector = r1_bio->sector; 1994 wbio->bi_rw = WRITE; 1995 wbio->bi_vcnt = vcnt; 1996 wbio->bi_size = r1_bio->sectors << 9; 1997 wbio->bi_idx = idx; 1998 1999 md_trim_bio(wbio, sector - r1_bio->sector, sectors); 2000 wbio->bi_sector += rdev->data_offset; 2001 wbio->bi_bdev = rdev->bdev; 2002 if (submit_bio_wait(WRITE, wbio) == 0) 2003 /* failure! */ 2004 ok = rdev_set_badblocks(rdev, sector, 2005 sectors, 0) 2006 && ok; 2007 2008 bio_put(wbio); 2009 sect_to_write -= sectors; 2010 sector += sectors; 2011 sectors = block_sectors; 2012 } 2013 return ok; 2014 } 2015 2016 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio) 2017 { 2018 int m; 2019 int s = r1_bio->sectors; 2020 for (m = 0; m < conf->raid_disks * 2 ; m++) { 2021 struct md_rdev *rdev = conf->mirrors[m].rdev; 2022 struct bio *bio = r1_bio->bios[m]; 2023 if (bio->bi_end_io == NULL) 2024 continue; 2025 if (test_bit(BIO_UPTODATE, &bio->bi_flags) && 2026 test_bit(R1BIO_MadeGood, &r1_bio->state)) { 2027 rdev_clear_badblocks(rdev, r1_bio->sector, s); 2028 } 2029 if (!test_bit(BIO_UPTODATE, &bio->bi_flags) && 2030 test_bit(R1BIO_WriteError, &r1_bio->state)) { 2031 if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0)) 2032 md_error(conf->mddev, rdev); 2033 } 2034 } 2035 put_buf(r1_bio); 2036 md_done_sync(conf->mddev, s, 1); 2037 } 2038 2039 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio) 2040 { 2041 int m; 2042 for (m = 0; m < conf->raid_disks * 2 ; m++) 2043 if (r1_bio->bios[m] == IO_MADE_GOOD) { 2044 struct md_rdev *rdev = conf->mirrors[m].rdev; 2045 rdev_clear_badblocks(rdev, 2046 r1_bio->sector, 2047 r1_bio->sectors); 2048 rdev_dec_pending(rdev, conf->mddev); 2049 } else if (r1_bio->bios[m] != NULL) { 2050 /* This drive got a write error. We need to 2051 * narrow down and record precise write 2052 * errors. 2053 */ 2054 if (!narrow_write_error(r1_bio, m)) { 2055 md_error(conf->mddev, 2056 conf->mirrors[m].rdev); 2057 /* an I/O failed, we can't clear the bitmap */ 2058 set_bit(R1BIO_Degraded, &r1_bio->state); 2059 } 2060 rdev_dec_pending(conf->mirrors[m].rdev, 2061 conf->mddev); 2062 } 2063 if (test_bit(R1BIO_WriteError, &r1_bio->state)) 2064 close_write(r1_bio); 2065 raid_end_bio_io(r1_bio); 2066 } 2067 2068 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio) 2069 { 2070 int disk; 2071 int max_sectors; 2072 struct mddev *mddev = conf->mddev; 2073 struct bio *bio; 2074 char b[BDEVNAME_SIZE]; 2075 struct md_rdev *rdev; 2076 2077 clear_bit(R1BIO_ReadError, &r1_bio->state); 2078 /* we got a read error. Maybe the drive is bad. Maybe just 2079 * the block and we can fix it. 2080 * We freeze all other IO, and try reading the block from 2081 * other devices. When we find one, we re-write 2082 * and check it that fixes the read error. 2083 * This is all done synchronously while the array is 2084 * frozen 2085 */ 2086 if (mddev->ro == 0) { 2087 freeze_array(conf); 2088 fix_read_error(conf, r1_bio->read_disk, 2089 r1_bio->sector, r1_bio->sectors); 2090 unfreeze_array(conf); 2091 } else 2092 md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev); 2093 2094 bio = r1_bio->bios[r1_bio->read_disk]; 2095 bdevname(bio->bi_bdev, b); 2096 read_more: 2097 disk = read_balance(conf, r1_bio, &max_sectors); 2098 if (disk == -1) { 2099 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O" 2100 " read error for block %llu\n", 2101 mdname(mddev), b, (unsigned long long)r1_bio->sector); 2102 raid_end_bio_io(r1_bio); 2103 } else { 2104 const unsigned long do_sync 2105 = r1_bio->master_bio->bi_rw & REQ_SYNC; 2106 if (bio) { 2107 r1_bio->bios[r1_bio->read_disk] = 2108 mddev->ro ? IO_BLOCKED : NULL; 2109 bio_put(bio); 2110 } 2111 r1_bio->read_disk = disk; 2112 bio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev); 2113 md_trim_bio(bio, r1_bio->sector - bio->bi_sector, max_sectors); 2114 r1_bio->bios[r1_bio->read_disk] = bio; 2115 rdev = conf->mirrors[disk].rdev; 2116 printk_ratelimited(KERN_ERR 2117 "md/raid1:%s: redirecting sector %llu" 2118 " to other mirror: %s\n", 2119 mdname(mddev), 2120 (unsigned long long)r1_bio->sector, 2121 bdevname(rdev->bdev, b)); 2122 bio->bi_sector = r1_bio->sector + rdev->data_offset; 2123 bio->bi_bdev = rdev->bdev; 2124 bio->bi_end_io = raid1_end_read_request; 2125 bio->bi_rw = READ | do_sync; 2126 bio->bi_private = r1_bio; 2127 if (max_sectors < r1_bio->sectors) { 2128 /* Drat - have to split this up more */ 2129 struct bio *mbio = r1_bio->master_bio; 2130 int sectors_handled = (r1_bio->sector + max_sectors 2131 - mbio->bi_sector); 2132 r1_bio->sectors = max_sectors; 2133 spin_lock_irq(&conf->device_lock); 2134 if (mbio->bi_phys_segments == 0) 2135 mbio->bi_phys_segments = 2; 2136 else 2137 mbio->bi_phys_segments++; 2138 spin_unlock_irq(&conf->device_lock); 2139 generic_make_request(bio); 2140 bio = NULL; 2141 2142 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO); 2143 2144 r1_bio->master_bio = mbio; 2145 r1_bio->sectors = (mbio->bi_size >> 9) 2146 - sectors_handled; 2147 r1_bio->state = 0; 2148 set_bit(R1BIO_ReadError, &r1_bio->state); 2149 r1_bio->mddev = mddev; 2150 r1_bio->sector = mbio->bi_sector + sectors_handled; 2151 2152 goto read_more; 2153 } else 2154 generic_make_request(bio); 2155 } 2156 } 2157 2158 static void raid1d(struct mddev *mddev) 2159 { 2160 struct r1bio *r1_bio; 2161 unsigned long flags; 2162 struct r1conf *conf = mddev->private; 2163 struct list_head *head = &conf->retry_list; 2164 struct blk_plug plug; 2165 2166 md_check_recovery(mddev); 2167 2168 blk_start_plug(&plug); 2169 for (;;) { 2170 2171 if (atomic_read(&mddev->plug_cnt) == 0) 2172 flush_pending_writes(conf); 2173 2174 spin_lock_irqsave(&conf->device_lock, flags); 2175 if (list_empty(head)) { 2176 spin_unlock_irqrestore(&conf->device_lock, flags); 2177 break; 2178 } 2179 r1_bio = list_entry(head->prev, struct r1bio, retry_list); 2180 list_del(head->prev); 2181 conf->nr_queued--; 2182 spin_unlock_irqrestore(&conf->device_lock, flags); 2183 2184 mddev = r1_bio->mddev; 2185 conf = mddev->private; 2186 if (test_bit(R1BIO_IsSync, &r1_bio->state)) { 2187 if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 2188 test_bit(R1BIO_WriteError, &r1_bio->state)) 2189 handle_sync_write_finished(conf, r1_bio); 2190 else 2191 sync_request_write(mddev, r1_bio); 2192 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 2193 test_bit(R1BIO_WriteError, &r1_bio->state)) 2194 handle_write_finished(conf, r1_bio); 2195 else if (test_bit(R1BIO_ReadError, &r1_bio->state)) 2196 handle_read_error(conf, r1_bio); 2197 else 2198 /* just a partial read to be scheduled from separate 2199 * context 2200 */ 2201 generic_make_request(r1_bio->bios[r1_bio->read_disk]); 2202 2203 cond_resched(); 2204 if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) 2205 md_check_recovery(mddev); 2206 } 2207 blk_finish_plug(&plug); 2208 } 2209 2210 2211 static int init_resync(struct r1conf *conf) 2212 { 2213 int buffs; 2214 2215 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE; 2216 BUG_ON(conf->r1buf_pool); 2217 conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free, 2218 conf->poolinfo); 2219 if (!conf->r1buf_pool) 2220 return -ENOMEM; 2221 conf->next_resync = 0; 2222 return 0; 2223 } 2224 2225 /* 2226 * perform a "sync" on one "block" 2227 * 2228 * We need to make sure that no normal I/O request - particularly write 2229 * requests - conflict with active sync requests. 2230 * 2231 * This is achieved by tracking pending requests and a 'barrier' concept 2232 * that can be installed to exclude normal IO requests. 2233 */ 2234 2235 static sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster) 2236 { 2237 struct r1conf *conf = mddev->private; 2238 struct r1bio *r1_bio; 2239 struct bio *bio; 2240 sector_t max_sector, nr_sectors; 2241 int disk = -1; 2242 int i; 2243 int wonly = -1; 2244 int write_targets = 0, read_targets = 0; 2245 sector_t sync_blocks; 2246 int still_degraded = 0; 2247 int good_sectors = RESYNC_SECTORS; 2248 int min_bad = 0; /* number of sectors that are bad in all devices */ 2249 2250 if (!conf->r1buf_pool) 2251 if (init_resync(conf)) 2252 return 0; 2253 2254 max_sector = mddev->dev_sectors; 2255 if (sector_nr >= max_sector) { 2256 /* If we aborted, we need to abort the 2257 * sync on the 'current' bitmap chunk (there will 2258 * only be one in raid1 resync. 2259 * We can find the current addess in mddev->curr_resync 2260 */ 2261 if (mddev->curr_resync < max_sector) /* aborted */ 2262 bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 2263 &sync_blocks, 1); 2264 else /* completed sync */ 2265 conf->fullsync = 0; 2266 2267 bitmap_close_sync(mddev->bitmap); 2268 close_sync(conf); 2269 return 0; 2270 } 2271 2272 if (mddev->bitmap == NULL && 2273 mddev->recovery_cp == MaxSector && 2274 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 2275 conf->fullsync == 0) { 2276 *skipped = 1; 2277 return max_sector - sector_nr; 2278 } 2279 /* before building a request, check if we can skip these blocks.. 2280 * This call the bitmap_start_sync doesn't actually record anything 2281 */ 2282 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) && 2283 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 2284 /* We can skip this block, and probably several more */ 2285 *skipped = 1; 2286 return sync_blocks; 2287 } 2288 /* 2289 * If there is non-resync activity waiting for a turn, 2290 * and resync is going fast enough, 2291 * then let it though before starting on this new sync request. 2292 */ 2293 if (!go_faster && conf->nr_waiting) 2294 msleep_interruptible(1000); 2295 2296 bitmap_cond_end_sync(mddev->bitmap, sector_nr); 2297 r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO); 2298 raise_barrier(conf); 2299 2300 conf->next_resync = sector_nr; 2301 2302 rcu_read_lock(); 2303 /* 2304 * If we get a correctably read error during resync or recovery, 2305 * we might want to read from a different device. So we 2306 * flag all drives that could conceivably be read from for READ, 2307 * and any others (which will be non-In_sync devices) for WRITE. 2308 * If a read fails, we try reading from something else for which READ 2309 * is OK. 2310 */ 2311 2312 r1_bio->mddev = mddev; 2313 r1_bio->sector = sector_nr; 2314 r1_bio->state = 0; 2315 set_bit(R1BIO_IsSync, &r1_bio->state); 2316 2317 for (i = 0; i < conf->raid_disks * 2; i++) { 2318 struct md_rdev *rdev; 2319 bio = r1_bio->bios[i]; 2320 2321 /* take from bio_init */ 2322 bio->bi_next = NULL; 2323 bio->bi_flags &= ~(BIO_POOL_MASK-1); 2324 bio->bi_flags |= 1 << BIO_UPTODATE; 2325 bio->bi_rw = READ; 2326 bio->bi_vcnt = 0; 2327 bio->bi_idx = 0; 2328 bio->bi_phys_segments = 0; 2329 bio->bi_size = 0; 2330 bio->bi_end_io = NULL; 2331 bio->bi_private = NULL; 2332 2333 rdev = rcu_dereference(conf->mirrors[i].rdev); 2334 if (rdev == NULL || 2335 test_bit(Faulty, &rdev->flags)) { 2336 if (i < conf->raid_disks) 2337 still_degraded = 1; 2338 } else if (!test_bit(In_sync, &rdev->flags)) { 2339 bio->bi_rw = WRITE; 2340 bio->bi_end_io = end_sync_write; 2341 write_targets ++; 2342 } else { 2343 /* may need to read from here */ 2344 sector_t first_bad = MaxSector; 2345 int bad_sectors; 2346 2347 if (is_badblock(rdev, sector_nr, good_sectors, 2348 &first_bad, &bad_sectors)) { 2349 if (first_bad > sector_nr) 2350 good_sectors = first_bad - sector_nr; 2351 else { 2352 bad_sectors -= (sector_nr - first_bad); 2353 if (min_bad == 0 || 2354 min_bad > bad_sectors) 2355 min_bad = bad_sectors; 2356 } 2357 } 2358 if (sector_nr < first_bad) { 2359 if (test_bit(WriteMostly, &rdev->flags)) { 2360 if (wonly < 0) 2361 wonly = i; 2362 } else { 2363 if (disk < 0) 2364 disk = i; 2365 } 2366 bio->bi_rw = READ; 2367 bio->bi_end_io = end_sync_read; 2368 read_targets++; 2369 } 2370 } 2371 if (bio->bi_end_io) { 2372 atomic_inc(&rdev->nr_pending); 2373 bio->bi_sector = sector_nr + rdev->data_offset; 2374 bio->bi_bdev = rdev->bdev; 2375 bio->bi_private = r1_bio; 2376 } 2377 } 2378 rcu_read_unlock(); 2379 if (disk < 0) 2380 disk = wonly; 2381 r1_bio->read_disk = disk; 2382 2383 if (read_targets == 0 && min_bad > 0) { 2384 /* These sectors are bad on all InSync devices, so we 2385 * need to mark them bad on all write targets 2386 */ 2387 int ok = 1; 2388 for (i = 0 ; i < conf->raid_disks * 2 ; i++) 2389 if (r1_bio->bios[i]->bi_end_io == end_sync_write) { 2390 struct md_rdev *rdev = conf->mirrors[i].rdev; 2391 ok = rdev_set_badblocks(rdev, sector_nr, 2392 min_bad, 0 2393 ) && ok; 2394 } 2395 set_bit(MD_CHANGE_DEVS, &mddev->flags); 2396 *skipped = 1; 2397 put_buf(r1_bio); 2398 2399 if (!ok) { 2400 /* Cannot record the badblocks, so need to 2401 * abort the resync. 2402 * If there are multiple read targets, could just 2403 * fail the really bad ones ??? 2404 */ 2405 conf->recovery_disabled = mddev->recovery_disabled; 2406 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 2407 return 0; 2408 } else 2409 return min_bad; 2410 2411 } 2412 if (min_bad > 0 && min_bad < good_sectors) { 2413 /* only resync enough to reach the next bad->good 2414 * transition */ 2415 good_sectors = min_bad; 2416 } 2417 2418 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0) 2419 /* extra read targets are also write targets */ 2420 write_targets += read_targets-1; 2421 2422 if (write_targets == 0 || read_targets == 0) { 2423 /* There is nowhere to write, so all non-sync 2424 * drives must be failed - so we are finished 2425 */ 2426 sector_t rv = max_sector - sector_nr; 2427 *skipped = 1; 2428 put_buf(r1_bio); 2429 return rv; 2430 } 2431 2432 if (max_sector > mddev->resync_max) 2433 max_sector = mddev->resync_max; /* Don't do IO beyond here */ 2434 if (max_sector > sector_nr + good_sectors) 2435 max_sector = sector_nr + good_sectors; 2436 nr_sectors = 0; 2437 sync_blocks = 0; 2438 do { 2439 struct page *page; 2440 int len = PAGE_SIZE; 2441 if (sector_nr + (len>>9) > max_sector) 2442 len = (max_sector - sector_nr) << 9; 2443 if (len == 0) 2444 break; 2445 if (sync_blocks == 0) { 2446 if (!bitmap_start_sync(mddev->bitmap, sector_nr, 2447 &sync_blocks, still_degraded) && 2448 !conf->fullsync && 2449 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 2450 break; 2451 BUG_ON(sync_blocks < (PAGE_SIZE>>9)); 2452 if ((len >> 9) > sync_blocks) 2453 len = sync_blocks<<9; 2454 } 2455 2456 for (i = 0 ; i < conf->raid_disks * 2; i++) { 2457 bio = r1_bio->bios[i]; 2458 if (bio->bi_end_io) { 2459 page = bio->bi_io_vec[bio->bi_vcnt].bv_page; 2460 if (bio_add_page(bio, page, len, 0) == 0) { 2461 /* stop here */ 2462 bio->bi_io_vec[bio->bi_vcnt].bv_page = page; 2463 while (i > 0) { 2464 i--; 2465 bio = r1_bio->bios[i]; 2466 if (bio->bi_end_io==NULL) 2467 continue; 2468 /* remove last page from this bio */ 2469 bio->bi_vcnt--; 2470 bio->bi_size -= len; 2471 bio->bi_flags &= ~(1<< BIO_SEG_VALID); 2472 } 2473 goto bio_full; 2474 } 2475 } 2476 } 2477 nr_sectors += len>>9; 2478 sector_nr += len>>9; 2479 sync_blocks -= (len>>9); 2480 } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES); 2481 bio_full: 2482 r1_bio->sectors = nr_sectors; 2483 2484 /* For a user-requested sync, we read all readable devices and do a 2485 * compare 2486 */ 2487 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 2488 atomic_set(&r1_bio->remaining, read_targets); 2489 for (i = 0; i < conf->raid_disks * 2; i++) { 2490 bio = r1_bio->bios[i]; 2491 if (bio->bi_end_io == end_sync_read) { 2492 md_sync_acct(bio->bi_bdev, nr_sectors); 2493 generic_make_request(bio); 2494 } 2495 } 2496 } else { 2497 atomic_set(&r1_bio->remaining, 1); 2498 bio = r1_bio->bios[r1_bio->read_disk]; 2499 md_sync_acct(bio->bi_bdev, nr_sectors); 2500 generic_make_request(bio); 2501 2502 } 2503 return nr_sectors; 2504 } 2505 2506 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks) 2507 { 2508 if (sectors) 2509 return sectors; 2510 2511 return mddev->dev_sectors; 2512 } 2513 2514 static struct r1conf *setup_conf(struct mddev *mddev) 2515 { 2516 struct r1conf *conf; 2517 int i; 2518 struct mirror_info *disk; 2519 struct md_rdev *rdev; 2520 int err = -ENOMEM; 2521 2522 conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL); 2523 if (!conf) 2524 goto abort; 2525 2526 conf->mirrors = kzalloc(sizeof(struct mirror_info) 2527 * mddev->raid_disks * 2, 2528 GFP_KERNEL); 2529 if (!conf->mirrors) 2530 goto abort; 2531 2532 conf->tmppage = alloc_page(GFP_KERNEL); 2533 if (!conf->tmppage) 2534 goto abort; 2535 2536 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL); 2537 if (!conf->poolinfo) 2538 goto abort; 2539 conf->poolinfo->raid_disks = mddev->raid_disks * 2; 2540 conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc, 2541 r1bio_pool_free, 2542 conf->poolinfo); 2543 if (!conf->r1bio_pool) 2544 goto abort; 2545 2546 conf->poolinfo->mddev = mddev; 2547 2548 err = -EINVAL; 2549 spin_lock_init(&conf->device_lock); 2550 rdev_for_each(rdev, mddev) { 2551 int disk_idx = rdev->raid_disk; 2552 if (disk_idx >= mddev->raid_disks 2553 || disk_idx < 0) 2554 continue; 2555 if (test_bit(Replacement, &rdev->flags)) 2556 disk = conf->mirrors + conf->raid_disks + disk_idx; 2557 else 2558 disk = conf->mirrors + disk_idx; 2559 2560 if (disk->rdev) 2561 goto abort; 2562 disk->rdev = rdev; 2563 2564 disk->head_position = 0; 2565 } 2566 conf->raid_disks = mddev->raid_disks; 2567 conf->mddev = mddev; 2568 INIT_LIST_HEAD(&conf->retry_list); 2569 2570 spin_lock_init(&conf->resync_lock); 2571 init_waitqueue_head(&conf->wait_barrier); 2572 2573 bio_list_init(&conf->pending_bio_list); 2574 conf->pending_count = 0; 2575 conf->recovery_disabled = mddev->recovery_disabled - 1; 2576 2577 err = -EIO; 2578 conf->last_used = -1; 2579 for (i = 0; i < conf->raid_disks * 2; i++) { 2580 2581 disk = conf->mirrors + i; 2582 2583 if (i < conf->raid_disks && 2584 disk[conf->raid_disks].rdev) { 2585 /* This slot has a replacement. */ 2586 if (!disk->rdev) { 2587 /* No original, just make the replacement 2588 * a recovering spare 2589 */ 2590 disk->rdev = 2591 disk[conf->raid_disks].rdev; 2592 disk[conf->raid_disks].rdev = NULL; 2593 } else if (!test_bit(In_sync, &disk->rdev->flags)) 2594 /* Original is not in_sync - bad */ 2595 goto abort; 2596 } 2597 2598 if (!disk->rdev || 2599 !test_bit(In_sync, &disk->rdev->flags)) { 2600 disk->head_position = 0; 2601 if (disk->rdev) 2602 conf->fullsync = 1; 2603 } else if (conf->last_used < 0) 2604 /* 2605 * The first working device is used as a 2606 * starting point to read balancing. 2607 */ 2608 conf->last_used = i; 2609 } 2610 2611 if (conf->last_used < 0) { 2612 printk(KERN_ERR "md/raid1:%s: no operational mirrors\n", 2613 mdname(mddev)); 2614 goto abort; 2615 } 2616 err = -ENOMEM; 2617 conf->thread = md_register_thread(raid1d, mddev, NULL); 2618 if (!conf->thread) { 2619 printk(KERN_ERR 2620 "md/raid1:%s: couldn't allocate thread\n", 2621 mdname(mddev)); 2622 goto abort; 2623 } 2624 2625 return conf; 2626 2627 abort: 2628 if (conf) { 2629 if (conf->r1bio_pool) 2630 mempool_destroy(conf->r1bio_pool); 2631 kfree(conf->mirrors); 2632 safe_put_page(conf->tmppage); 2633 kfree(conf->poolinfo); 2634 kfree(conf); 2635 } 2636 return ERR_PTR(err); 2637 } 2638 2639 static int stop(struct mddev *mddev); 2640 static int run(struct mddev *mddev) 2641 { 2642 struct r1conf *conf; 2643 int i; 2644 struct md_rdev *rdev; 2645 int ret; 2646 2647 if (mddev->level != 1) { 2648 printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n", 2649 mdname(mddev), mddev->level); 2650 return -EIO; 2651 } 2652 if (mddev->reshape_position != MaxSector) { 2653 printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n", 2654 mdname(mddev)); 2655 return -EIO; 2656 } 2657 /* 2658 * copy the already verified devices into our private RAID1 2659 * bookkeeping area. [whatever we allocate in run(), 2660 * should be freed in stop()] 2661 */ 2662 if (mddev->private == NULL) 2663 conf = setup_conf(mddev); 2664 else 2665 conf = mddev->private; 2666 2667 if (IS_ERR(conf)) 2668 return PTR_ERR(conf); 2669 2670 rdev_for_each(rdev, mddev) { 2671 if (!mddev->gendisk) 2672 continue; 2673 disk_stack_limits(mddev->gendisk, rdev->bdev, 2674 rdev->data_offset << 9); 2675 } 2676 2677 mddev->degraded = 0; 2678 for (i=0; i < conf->raid_disks; i++) 2679 if (conf->mirrors[i].rdev == NULL || 2680 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) || 2681 test_bit(Faulty, &conf->mirrors[i].rdev->flags)) 2682 mddev->degraded++; 2683 2684 if (conf->raid_disks - mddev->degraded == 1) 2685 mddev->recovery_cp = MaxSector; 2686 2687 if (mddev->recovery_cp != MaxSector) 2688 printk(KERN_NOTICE "md/raid1:%s: not clean" 2689 " -- starting background reconstruction\n", 2690 mdname(mddev)); 2691 printk(KERN_INFO 2692 "md/raid1:%s: active with %d out of %d mirrors\n", 2693 mdname(mddev), mddev->raid_disks - mddev->degraded, 2694 mddev->raid_disks); 2695 2696 /* 2697 * Ok, everything is just fine now 2698 */ 2699 mddev->thread = conf->thread; 2700 conf->thread = NULL; 2701 mddev->private = conf; 2702 2703 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0)); 2704 2705 if (mddev->queue) { 2706 mddev->queue->backing_dev_info.congested_fn = raid1_congested; 2707 mddev->queue->backing_dev_info.congested_data = mddev; 2708 blk_queue_merge_bvec(mddev->queue, raid1_mergeable_bvec); 2709 } 2710 2711 ret = md_integrity_register(mddev); 2712 if (ret) 2713 stop(mddev); 2714 return ret; 2715 } 2716 2717 static int stop(struct mddev *mddev) 2718 { 2719 struct r1conf *conf = mddev->private; 2720 struct bitmap *bitmap = mddev->bitmap; 2721 2722 /* wait for behind writes to complete */ 2723 if (bitmap && atomic_read(&bitmap->behind_writes) > 0) { 2724 printk(KERN_INFO "md/raid1:%s: behind writes in progress - waiting to stop.\n", 2725 mdname(mddev)); 2726 /* need to kick something here to make sure I/O goes? */ 2727 wait_event(bitmap->behind_wait, 2728 atomic_read(&bitmap->behind_writes) == 0); 2729 } 2730 2731 raise_barrier(conf); 2732 lower_barrier(conf); 2733 2734 md_unregister_thread(&mddev->thread); 2735 if (conf->r1bio_pool) 2736 mempool_destroy(conf->r1bio_pool); 2737 kfree(conf->mirrors); 2738 kfree(conf->poolinfo); 2739 kfree(conf); 2740 mddev->private = NULL; 2741 return 0; 2742 } 2743 2744 static int raid1_resize(struct mddev *mddev, sector_t sectors) 2745 { 2746 /* no resync is happening, and there is enough space 2747 * on all devices, so we can resize. 2748 * We need to make sure resync covers any new space. 2749 * If the array is shrinking we should possibly wait until 2750 * any io in the removed space completes, but it hardly seems 2751 * worth it. 2752 */ 2753 md_set_array_sectors(mddev, raid1_size(mddev, sectors, 0)); 2754 if (mddev->array_sectors > raid1_size(mddev, sectors, 0)) 2755 return -EINVAL; 2756 set_capacity(mddev->gendisk, mddev->array_sectors); 2757 revalidate_disk(mddev->gendisk); 2758 if (sectors > mddev->dev_sectors && 2759 mddev->recovery_cp > mddev->dev_sectors) { 2760 mddev->recovery_cp = mddev->dev_sectors; 2761 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 2762 } 2763 mddev->dev_sectors = sectors; 2764 mddev->resync_max_sectors = sectors; 2765 return 0; 2766 } 2767 2768 static int raid1_reshape(struct mddev *mddev) 2769 { 2770 /* We need to: 2771 * 1/ resize the r1bio_pool 2772 * 2/ resize conf->mirrors 2773 * 2774 * We allocate a new r1bio_pool if we can. 2775 * Then raise a device barrier and wait until all IO stops. 2776 * Then resize conf->mirrors and swap in the new r1bio pool. 2777 * 2778 * At the same time, we "pack" the devices so that all the missing 2779 * devices have the higher raid_disk numbers. 2780 */ 2781 mempool_t *newpool, *oldpool; 2782 struct pool_info *newpoolinfo; 2783 struct mirror_info *newmirrors; 2784 struct r1conf *conf = mddev->private; 2785 int cnt, raid_disks; 2786 unsigned long flags; 2787 int d, d2, err; 2788 2789 /* Cannot change chunk_size, layout, or level */ 2790 if (mddev->chunk_sectors != mddev->new_chunk_sectors || 2791 mddev->layout != mddev->new_layout || 2792 mddev->level != mddev->new_level) { 2793 mddev->new_chunk_sectors = mddev->chunk_sectors; 2794 mddev->new_layout = mddev->layout; 2795 mddev->new_level = mddev->level; 2796 return -EINVAL; 2797 } 2798 2799 err = md_allow_write(mddev); 2800 if (err) 2801 return err; 2802 2803 raid_disks = mddev->raid_disks + mddev->delta_disks; 2804 2805 if (raid_disks < conf->raid_disks) { 2806 cnt=0; 2807 for (d= 0; d < conf->raid_disks; d++) 2808 if (conf->mirrors[d].rdev) 2809 cnt++; 2810 if (cnt > raid_disks) 2811 return -EBUSY; 2812 } 2813 2814 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL); 2815 if (!newpoolinfo) 2816 return -ENOMEM; 2817 newpoolinfo->mddev = mddev; 2818 newpoolinfo->raid_disks = raid_disks * 2; 2819 2820 newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc, 2821 r1bio_pool_free, newpoolinfo); 2822 if (!newpool) { 2823 kfree(newpoolinfo); 2824 return -ENOMEM; 2825 } 2826 newmirrors = kzalloc(sizeof(struct mirror_info) * raid_disks * 2, 2827 GFP_KERNEL); 2828 if (!newmirrors) { 2829 kfree(newpoolinfo); 2830 mempool_destroy(newpool); 2831 return -ENOMEM; 2832 } 2833 2834 raise_barrier(conf); 2835 2836 /* ok, everything is stopped */ 2837 oldpool = conf->r1bio_pool; 2838 conf->r1bio_pool = newpool; 2839 2840 for (d = d2 = 0; d < conf->raid_disks; d++) { 2841 struct md_rdev *rdev = conf->mirrors[d].rdev; 2842 if (rdev && rdev->raid_disk != d2) { 2843 sysfs_unlink_rdev(mddev, rdev); 2844 rdev->raid_disk = d2; 2845 sysfs_unlink_rdev(mddev, rdev); 2846 if (sysfs_link_rdev(mddev, rdev)) 2847 printk(KERN_WARNING 2848 "md/raid1:%s: cannot register rd%d\n", 2849 mdname(mddev), rdev->raid_disk); 2850 } 2851 if (rdev) 2852 newmirrors[d2++].rdev = rdev; 2853 } 2854 kfree(conf->mirrors); 2855 conf->mirrors = newmirrors; 2856 kfree(conf->poolinfo); 2857 conf->poolinfo = newpoolinfo; 2858 2859 spin_lock_irqsave(&conf->device_lock, flags); 2860 mddev->degraded += (raid_disks - conf->raid_disks); 2861 spin_unlock_irqrestore(&conf->device_lock, flags); 2862 conf->raid_disks = mddev->raid_disks = raid_disks; 2863 mddev->delta_disks = 0; 2864 2865 conf->last_used = 0; /* just make sure it is in-range */ 2866 lower_barrier(conf); 2867 2868 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 2869 md_wakeup_thread(mddev->thread); 2870 2871 mempool_destroy(oldpool); 2872 return 0; 2873 } 2874 2875 static void raid1_quiesce(struct mddev *mddev, int state) 2876 { 2877 struct r1conf *conf = mddev->private; 2878 2879 switch(state) { 2880 case 2: /* wake for suspend */ 2881 wake_up(&conf->wait_barrier); 2882 break; 2883 case 1: 2884 raise_barrier(conf); 2885 break; 2886 case 0: 2887 lower_barrier(conf); 2888 break; 2889 } 2890 } 2891 2892 static void *raid1_takeover(struct mddev *mddev) 2893 { 2894 /* raid1 can take over: 2895 * raid5 with 2 devices, any layout or chunk size 2896 */ 2897 if (mddev->level == 5 && mddev->raid_disks == 2) { 2898 struct r1conf *conf; 2899 mddev->new_level = 1; 2900 mddev->new_layout = 0; 2901 mddev->new_chunk_sectors = 0; 2902 conf = setup_conf(mddev); 2903 if (!IS_ERR(conf)) 2904 conf->barrier = 1; 2905 return conf; 2906 } 2907 return ERR_PTR(-EINVAL); 2908 } 2909 2910 static struct md_personality raid1_personality = 2911 { 2912 .name = "raid1", 2913 .level = 1, 2914 .owner = THIS_MODULE, 2915 .make_request = make_request, 2916 .run = run, 2917 .stop = stop, 2918 .status = status, 2919 .error_handler = error, 2920 .hot_add_disk = raid1_add_disk, 2921 .hot_remove_disk= raid1_remove_disk, 2922 .spare_active = raid1_spare_active, 2923 .sync_request = sync_request, 2924 .resize = raid1_resize, 2925 .size = raid1_size, 2926 .check_reshape = raid1_reshape, 2927 .quiesce = raid1_quiesce, 2928 .takeover = raid1_takeover, 2929 }; 2930 2931 static int __init raid_init(void) 2932 { 2933 return register_md_personality(&raid1_personality); 2934 } 2935 2936 static void raid_exit(void) 2937 { 2938 unregister_md_personality(&raid1_personality); 2939 } 2940 2941 module_init(raid_init); 2942 module_exit(raid_exit); 2943 MODULE_LICENSE("GPL"); 2944 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD"); 2945 MODULE_ALIAS("md-personality-3"); /* RAID1 */ 2946 MODULE_ALIAS("md-raid1"); 2947 MODULE_ALIAS("md-level-1"); 2948 2949 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR); 2950