1 /* 2 * raid1.c : Multiple Devices driver for Linux 3 * 4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat 5 * 6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman 7 * 8 * RAID-1 management functions. 9 * 10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000 11 * 12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk> 13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au> 14 * 15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support 16 * bitmapped intelligence in resync: 17 * 18 * - bitmap marked during normal i/o 19 * - bitmap used to skip nondirty blocks during sync 20 * 21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology: 22 * - persistent bitmap code 23 * 24 * This program is free software; you can redistribute it and/or modify 25 * it under the terms of the GNU General Public License as published by 26 * the Free Software Foundation; either version 2, or (at your option) 27 * any later version. 28 * 29 * You should have received a copy of the GNU General Public License 30 * (for example /usr/src/linux/COPYING); if not, write to the Free 31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 32 */ 33 34 #include <linux/slab.h> 35 #include <linux/delay.h> 36 #include <linux/blkdev.h> 37 #include <linux/module.h> 38 #include <linux/seq_file.h> 39 #include <linux/ratelimit.h> 40 #include "md.h" 41 #include "raid1.h" 42 #include "bitmap.h" 43 44 /* 45 * Number of guaranteed r1bios in case of extreme VM load: 46 */ 47 #define NR_RAID1_BIOS 256 48 49 /* when we get a read error on a read-only array, we redirect to another 50 * device without failing the first device, or trying to over-write to 51 * correct the read error. To keep track of bad blocks on a per-bio 52 * level, we store IO_BLOCKED in the appropriate 'bios' pointer 53 */ 54 #define IO_BLOCKED ((struct bio *)1) 55 /* When we successfully write to a known bad-block, we need to remove the 56 * bad-block marking which must be done from process context. So we record 57 * the success by setting devs[n].bio to IO_MADE_GOOD 58 */ 59 #define IO_MADE_GOOD ((struct bio *)2) 60 61 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2) 62 63 /* When there are this many requests queue to be written by 64 * the raid1 thread, we become 'congested' to provide back-pressure 65 * for writeback. 66 */ 67 static int max_queued_requests = 1024; 68 69 static void allow_barrier(struct r1conf *conf, sector_t start_next_window, 70 sector_t bi_sector); 71 static void lower_barrier(struct r1conf *conf); 72 73 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data) 74 { 75 struct pool_info *pi = data; 76 int size = offsetof(struct r1bio, bios[pi->raid_disks]); 77 78 /* allocate a r1bio with room for raid_disks entries in the bios array */ 79 return kzalloc(size, gfp_flags); 80 } 81 82 static void r1bio_pool_free(void *r1_bio, void *data) 83 { 84 kfree(r1_bio); 85 } 86 87 #define RESYNC_BLOCK_SIZE (64*1024) 88 #define RESYNC_DEPTH 32 89 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9) 90 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE) 91 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH) 92 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9) 93 #define NEXT_NORMALIO_DISTANCE (3 * RESYNC_WINDOW_SECTORS) 94 95 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data) 96 { 97 struct pool_info *pi = data; 98 struct r1bio *r1_bio; 99 struct bio *bio; 100 int i, j; 101 102 r1_bio = r1bio_pool_alloc(gfp_flags, pi); 103 if (!r1_bio) 104 return NULL; 105 106 /* 107 * Allocate bios : 1 for reading, n-1 for writing 108 */ 109 for (j = pi->raid_disks ; j-- ; ) { 110 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES); 111 if (!bio) 112 goto out_free_bio; 113 r1_bio->bios[j] = bio; 114 } 115 /* 116 * Allocate RESYNC_PAGES data pages and attach them to 117 * the first bio. 118 * If this is a user-requested check/repair, allocate 119 * RESYNC_PAGES for each bio. 120 */ 121 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) 122 j = pi->raid_disks; 123 else 124 j = 1; 125 while(j--) { 126 bio = r1_bio->bios[j]; 127 bio->bi_vcnt = RESYNC_PAGES; 128 129 if (bio_alloc_pages(bio, gfp_flags)) 130 goto out_free_bio; 131 } 132 /* If not user-requests, copy the page pointers to all bios */ 133 if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) { 134 for (i=0; i<RESYNC_PAGES ; i++) 135 for (j=1; j<pi->raid_disks; j++) 136 r1_bio->bios[j]->bi_io_vec[i].bv_page = 137 r1_bio->bios[0]->bi_io_vec[i].bv_page; 138 } 139 140 r1_bio->master_bio = NULL; 141 142 return r1_bio; 143 144 out_free_bio: 145 while (++j < pi->raid_disks) 146 bio_put(r1_bio->bios[j]); 147 r1bio_pool_free(r1_bio, data); 148 return NULL; 149 } 150 151 static void r1buf_pool_free(void *__r1_bio, void *data) 152 { 153 struct pool_info *pi = data; 154 int i,j; 155 struct r1bio *r1bio = __r1_bio; 156 157 for (i = 0; i < RESYNC_PAGES; i++) 158 for (j = pi->raid_disks; j-- ;) { 159 if (j == 0 || 160 r1bio->bios[j]->bi_io_vec[i].bv_page != 161 r1bio->bios[0]->bi_io_vec[i].bv_page) 162 safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page); 163 } 164 for (i=0 ; i < pi->raid_disks; i++) 165 bio_put(r1bio->bios[i]); 166 167 r1bio_pool_free(r1bio, data); 168 } 169 170 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio) 171 { 172 int i; 173 174 for (i = 0; i < conf->raid_disks * 2; i++) { 175 struct bio **bio = r1_bio->bios + i; 176 if (!BIO_SPECIAL(*bio)) 177 bio_put(*bio); 178 *bio = NULL; 179 } 180 } 181 182 static void free_r1bio(struct r1bio *r1_bio) 183 { 184 struct r1conf *conf = r1_bio->mddev->private; 185 186 put_all_bios(conf, r1_bio); 187 mempool_free(r1_bio, conf->r1bio_pool); 188 } 189 190 static void put_buf(struct r1bio *r1_bio) 191 { 192 struct r1conf *conf = r1_bio->mddev->private; 193 int i; 194 195 for (i = 0; i < conf->raid_disks * 2; i++) { 196 struct bio *bio = r1_bio->bios[i]; 197 if (bio->bi_end_io) 198 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev); 199 } 200 201 mempool_free(r1_bio, conf->r1buf_pool); 202 203 lower_barrier(conf); 204 } 205 206 static void reschedule_retry(struct r1bio *r1_bio) 207 { 208 unsigned long flags; 209 struct mddev *mddev = r1_bio->mddev; 210 struct r1conf *conf = mddev->private; 211 212 spin_lock_irqsave(&conf->device_lock, flags); 213 list_add(&r1_bio->retry_list, &conf->retry_list); 214 conf->nr_queued ++; 215 spin_unlock_irqrestore(&conf->device_lock, flags); 216 217 wake_up(&conf->wait_barrier); 218 md_wakeup_thread(mddev->thread); 219 } 220 221 /* 222 * raid_end_bio_io() is called when we have finished servicing a mirrored 223 * operation and are ready to return a success/failure code to the buffer 224 * cache layer. 225 */ 226 static void call_bio_endio(struct r1bio *r1_bio) 227 { 228 struct bio *bio = r1_bio->master_bio; 229 int done; 230 struct r1conf *conf = r1_bio->mddev->private; 231 sector_t start_next_window = r1_bio->start_next_window; 232 sector_t bi_sector = bio->bi_iter.bi_sector; 233 234 if (bio->bi_phys_segments) { 235 unsigned long flags; 236 spin_lock_irqsave(&conf->device_lock, flags); 237 bio->bi_phys_segments--; 238 done = (bio->bi_phys_segments == 0); 239 spin_unlock_irqrestore(&conf->device_lock, flags); 240 /* 241 * make_request() might be waiting for 242 * bi_phys_segments to decrease 243 */ 244 wake_up(&conf->wait_barrier); 245 } else 246 done = 1; 247 248 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) 249 clear_bit(BIO_UPTODATE, &bio->bi_flags); 250 if (done) { 251 bio_endio(bio, 0); 252 /* 253 * Wake up any possible resync thread that waits for the device 254 * to go idle. 255 */ 256 allow_barrier(conf, start_next_window, bi_sector); 257 } 258 } 259 260 static void raid_end_bio_io(struct r1bio *r1_bio) 261 { 262 struct bio *bio = r1_bio->master_bio; 263 264 /* if nobody has done the final endio yet, do it now */ 265 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) { 266 pr_debug("raid1: sync end %s on sectors %llu-%llu\n", 267 (bio_data_dir(bio) == WRITE) ? "write" : "read", 268 (unsigned long long) bio->bi_iter.bi_sector, 269 (unsigned long long) bio_end_sector(bio) - 1); 270 271 call_bio_endio(r1_bio); 272 } 273 free_r1bio(r1_bio); 274 } 275 276 /* 277 * Update disk head position estimator based on IRQ completion info. 278 */ 279 static inline void update_head_pos(int disk, struct r1bio *r1_bio) 280 { 281 struct r1conf *conf = r1_bio->mddev->private; 282 283 conf->mirrors[disk].head_position = 284 r1_bio->sector + (r1_bio->sectors); 285 } 286 287 /* 288 * Find the disk number which triggered given bio 289 */ 290 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio) 291 { 292 int mirror; 293 struct r1conf *conf = r1_bio->mddev->private; 294 int raid_disks = conf->raid_disks; 295 296 for (mirror = 0; mirror < raid_disks * 2; mirror++) 297 if (r1_bio->bios[mirror] == bio) 298 break; 299 300 BUG_ON(mirror == raid_disks * 2); 301 update_head_pos(mirror, r1_bio); 302 303 return mirror; 304 } 305 306 static void raid1_end_read_request(struct bio *bio, int error) 307 { 308 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 309 struct r1bio *r1_bio = bio->bi_private; 310 int mirror; 311 struct r1conf *conf = r1_bio->mddev->private; 312 313 mirror = r1_bio->read_disk; 314 /* 315 * this branch is our 'one mirror IO has finished' event handler: 316 */ 317 update_head_pos(mirror, r1_bio); 318 319 if (uptodate) 320 set_bit(R1BIO_Uptodate, &r1_bio->state); 321 else { 322 /* If all other devices have failed, we want to return 323 * the error upwards rather than fail the last device. 324 * Here we redefine "uptodate" to mean "Don't want to retry" 325 */ 326 unsigned long flags; 327 spin_lock_irqsave(&conf->device_lock, flags); 328 if (r1_bio->mddev->degraded == conf->raid_disks || 329 (r1_bio->mddev->degraded == conf->raid_disks-1 && 330 !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags))) 331 uptodate = 1; 332 spin_unlock_irqrestore(&conf->device_lock, flags); 333 } 334 335 if (uptodate) { 336 raid_end_bio_io(r1_bio); 337 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev); 338 } else { 339 /* 340 * oops, read error: 341 */ 342 char b[BDEVNAME_SIZE]; 343 printk_ratelimited( 344 KERN_ERR "md/raid1:%s: %s: " 345 "rescheduling sector %llu\n", 346 mdname(conf->mddev), 347 bdevname(conf->mirrors[mirror].rdev->bdev, 348 b), 349 (unsigned long long)r1_bio->sector); 350 set_bit(R1BIO_ReadError, &r1_bio->state); 351 reschedule_retry(r1_bio); 352 /* don't drop the reference on read_disk yet */ 353 } 354 } 355 356 static void close_write(struct r1bio *r1_bio) 357 { 358 /* it really is the end of this request */ 359 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) { 360 /* free extra copy of the data pages */ 361 int i = r1_bio->behind_page_count; 362 while (i--) 363 safe_put_page(r1_bio->behind_bvecs[i].bv_page); 364 kfree(r1_bio->behind_bvecs); 365 r1_bio->behind_bvecs = NULL; 366 } 367 /* clear the bitmap if all writes complete successfully */ 368 bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector, 369 r1_bio->sectors, 370 !test_bit(R1BIO_Degraded, &r1_bio->state), 371 test_bit(R1BIO_BehindIO, &r1_bio->state)); 372 md_write_end(r1_bio->mddev); 373 } 374 375 static void r1_bio_write_done(struct r1bio *r1_bio) 376 { 377 if (!atomic_dec_and_test(&r1_bio->remaining)) 378 return; 379 380 if (test_bit(R1BIO_WriteError, &r1_bio->state)) 381 reschedule_retry(r1_bio); 382 else { 383 close_write(r1_bio); 384 if (test_bit(R1BIO_MadeGood, &r1_bio->state)) 385 reschedule_retry(r1_bio); 386 else 387 raid_end_bio_io(r1_bio); 388 } 389 } 390 391 static void raid1_end_write_request(struct bio *bio, int error) 392 { 393 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 394 struct r1bio *r1_bio = bio->bi_private; 395 int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state); 396 struct r1conf *conf = r1_bio->mddev->private; 397 struct bio *to_put = NULL; 398 399 mirror = find_bio_disk(r1_bio, bio); 400 401 /* 402 * 'one mirror IO has finished' event handler: 403 */ 404 if (!uptodate) { 405 set_bit(WriteErrorSeen, 406 &conf->mirrors[mirror].rdev->flags); 407 if (!test_and_set_bit(WantReplacement, 408 &conf->mirrors[mirror].rdev->flags)) 409 set_bit(MD_RECOVERY_NEEDED, & 410 conf->mddev->recovery); 411 412 set_bit(R1BIO_WriteError, &r1_bio->state); 413 } else { 414 /* 415 * Set R1BIO_Uptodate in our master bio, so that we 416 * will return a good error code for to the higher 417 * levels even if IO on some other mirrored buffer 418 * fails. 419 * 420 * The 'master' represents the composite IO operation 421 * to user-side. So if something waits for IO, then it 422 * will wait for the 'master' bio. 423 */ 424 sector_t first_bad; 425 int bad_sectors; 426 427 r1_bio->bios[mirror] = NULL; 428 to_put = bio; 429 /* 430 * Do not set R1BIO_Uptodate if the current device is 431 * rebuilding or Faulty. This is because we cannot use 432 * such device for properly reading the data back (we could 433 * potentially use it, if the current write would have felt 434 * before rdev->recovery_offset, but for simplicity we don't 435 * check this here. 436 */ 437 if (test_bit(In_sync, &conf->mirrors[mirror].rdev->flags) && 438 !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags)) 439 set_bit(R1BIO_Uptodate, &r1_bio->state); 440 441 /* Maybe we can clear some bad blocks. */ 442 if (is_badblock(conf->mirrors[mirror].rdev, 443 r1_bio->sector, r1_bio->sectors, 444 &first_bad, &bad_sectors)) { 445 r1_bio->bios[mirror] = IO_MADE_GOOD; 446 set_bit(R1BIO_MadeGood, &r1_bio->state); 447 } 448 } 449 450 if (behind) { 451 if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags)) 452 atomic_dec(&r1_bio->behind_remaining); 453 454 /* 455 * In behind mode, we ACK the master bio once the I/O 456 * has safely reached all non-writemostly 457 * disks. Setting the Returned bit ensures that this 458 * gets done only once -- we don't ever want to return 459 * -EIO here, instead we'll wait 460 */ 461 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) && 462 test_bit(R1BIO_Uptodate, &r1_bio->state)) { 463 /* Maybe we can return now */ 464 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) { 465 struct bio *mbio = r1_bio->master_bio; 466 pr_debug("raid1: behind end write sectors" 467 " %llu-%llu\n", 468 (unsigned long long) mbio->bi_iter.bi_sector, 469 (unsigned long long) bio_end_sector(mbio) - 1); 470 call_bio_endio(r1_bio); 471 } 472 } 473 } 474 if (r1_bio->bios[mirror] == NULL) 475 rdev_dec_pending(conf->mirrors[mirror].rdev, 476 conf->mddev); 477 478 /* 479 * Let's see if all mirrored write operations have finished 480 * already. 481 */ 482 r1_bio_write_done(r1_bio); 483 484 if (to_put) 485 bio_put(to_put); 486 } 487 488 489 /* 490 * This routine returns the disk from which the requested read should 491 * be done. There is a per-array 'next expected sequential IO' sector 492 * number - if this matches on the next IO then we use the last disk. 493 * There is also a per-disk 'last know head position' sector that is 494 * maintained from IRQ contexts, both the normal and the resync IO 495 * completion handlers update this position correctly. If there is no 496 * perfect sequential match then we pick the disk whose head is closest. 497 * 498 * If there are 2 mirrors in the same 2 devices, performance degrades 499 * because position is mirror, not device based. 500 * 501 * The rdev for the device selected will have nr_pending incremented. 502 */ 503 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors) 504 { 505 const sector_t this_sector = r1_bio->sector; 506 int sectors; 507 int best_good_sectors; 508 int best_disk, best_dist_disk, best_pending_disk; 509 int has_nonrot_disk; 510 int disk; 511 sector_t best_dist; 512 unsigned int min_pending; 513 struct md_rdev *rdev; 514 int choose_first; 515 int choose_next_idle; 516 517 rcu_read_lock(); 518 /* 519 * Check if we can balance. We can balance on the whole 520 * device if no resync is going on, or below the resync window. 521 * We take the first readable disk when above the resync window. 522 */ 523 retry: 524 sectors = r1_bio->sectors; 525 best_disk = -1; 526 best_dist_disk = -1; 527 best_dist = MaxSector; 528 best_pending_disk = -1; 529 min_pending = UINT_MAX; 530 best_good_sectors = 0; 531 has_nonrot_disk = 0; 532 choose_next_idle = 0; 533 534 if (conf->mddev->recovery_cp < MaxSector && 535 (this_sector + sectors >= conf->next_resync)) 536 choose_first = 1; 537 else 538 choose_first = 0; 539 540 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) { 541 sector_t dist; 542 sector_t first_bad; 543 int bad_sectors; 544 unsigned int pending; 545 bool nonrot; 546 547 rdev = rcu_dereference(conf->mirrors[disk].rdev); 548 if (r1_bio->bios[disk] == IO_BLOCKED 549 || rdev == NULL 550 || test_bit(Unmerged, &rdev->flags) 551 || test_bit(Faulty, &rdev->flags)) 552 continue; 553 if (!test_bit(In_sync, &rdev->flags) && 554 rdev->recovery_offset < this_sector + sectors) 555 continue; 556 if (test_bit(WriteMostly, &rdev->flags)) { 557 /* Don't balance among write-mostly, just 558 * use the first as a last resort */ 559 if (best_disk < 0) { 560 if (is_badblock(rdev, this_sector, sectors, 561 &first_bad, &bad_sectors)) { 562 if (first_bad < this_sector) 563 /* Cannot use this */ 564 continue; 565 best_good_sectors = first_bad - this_sector; 566 } else 567 best_good_sectors = sectors; 568 best_disk = disk; 569 } 570 continue; 571 } 572 /* This is a reasonable device to use. It might 573 * even be best. 574 */ 575 if (is_badblock(rdev, this_sector, sectors, 576 &first_bad, &bad_sectors)) { 577 if (best_dist < MaxSector) 578 /* already have a better device */ 579 continue; 580 if (first_bad <= this_sector) { 581 /* cannot read here. If this is the 'primary' 582 * device, then we must not read beyond 583 * bad_sectors from another device.. 584 */ 585 bad_sectors -= (this_sector - first_bad); 586 if (choose_first && sectors > bad_sectors) 587 sectors = bad_sectors; 588 if (best_good_sectors > sectors) 589 best_good_sectors = sectors; 590 591 } else { 592 sector_t good_sectors = first_bad - this_sector; 593 if (good_sectors > best_good_sectors) { 594 best_good_sectors = good_sectors; 595 best_disk = disk; 596 } 597 if (choose_first) 598 break; 599 } 600 continue; 601 } else 602 best_good_sectors = sectors; 603 604 nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev)); 605 has_nonrot_disk |= nonrot; 606 pending = atomic_read(&rdev->nr_pending); 607 dist = abs(this_sector - conf->mirrors[disk].head_position); 608 if (choose_first) { 609 best_disk = disk; 610 break; 611 } 612 /* Don't change to another disk for sequential reads */ 613 if (conf->mirrors[disk].next_seq_sect == this_sector 614 || dist == 0) { 615 int opt_iosize = bdev_io_opt(rdev->bdev) >> 9; 616 struct raid1_info *mirror = &conf->mirrors[disk]; 617 618 best_disk = disk; 619 /* 620 * If buffered sequential IO size exceeds optimal 621 * iosize, check if there is idle disk. If yes, choose 622 * the idle disk. read_balance could already choose an 623 * idle disk before noticing it's a sequential IO in 624 * this disk. This doesn't matter because this disk 625 * will idle, next time it will be utilized after the 626 * first disk has IO size exceeds optimal iosize. In 627 * this way, iosize of the first disk will be optimal 628 * iosize at least. iosize of the second disk might be 629 * small, but not a big deal since when the second disk 630 * starts IO, the first disk is likely still busy. 631 */ 632 if (nonrot && opt_iosize > 0 && 633 mirror->seq_start != MaxSector && 634 mirror->next_seq_sect > opt_iosize && 635 mirror->next_seq_sect - opt_iosize >= 636 mirror->seq_start) { 637 choose_next_idle = 1; 638 continue; 639 } 640 break; 641 } 642 /* If device is idle, use it */ 643 if (pending == 0) { 644 best_disk = disk; 645 break; 646 } 647 648 if (choose_next_idle) 649 continue; 650 651 if (min_pending > pending) { 652 min_pending = pending; 653 best_pending_disk = disk; 654 } 655 656 if (dist < best_dist) { 657 best_dist = dist; 658 best_dist_disk = disk; 659 } 660 } 661 662 /* 663 * If all disks are rotational, choose the closest disk. If any disk is 664 * non-rotational, choose the disk with less pending request even the 665 * disk is rotational, which might/might not be optimal for raids with 666 * mixed ratation/non-rotational disks depending on workload. 667 */ 668 if (best_disk == -1) { 669 if (has_nonrot_disk) 670 best_disk = best_pending_disk; 671 else 672 best_disk = best_dist_disk; 673 } 674 675 if (best_disk >= 0) { 676 rdev = rcu_dereference(conf->mirrors[best_disk].rdev); 677 if (!rdev) 678 goto retry; 679 atomic_inc(&rdev->nr_pending); 680 if (test_bit(Faulty, &rdev->flags)) { 681 /* cannot risk returning a device that failed 682 * before we inc'ed nr_pending 683 */ 684 rdev_dec_pending(rdev, conf->mddev); 685 goto retry; 686 } 687 sectors = best_good_sectors; 688 689 if (conf->mirrors[best_disk].next_seq_sect != this_sector) 690 conf->mirrors[best_disk].seq_start = this_sector; 691 692 conf->mirrors[best_disk].next_seq_sect = this_sector + sectors; 693 } 694 rcu_read_unlock(); 695 *max_sectors = sectors; 696 697 return best_disk; 698 } 699 700 static int raid1_mergeable_bvec(struct request_queue *q, 701 struct bvec_merge_data *bvm, 702 struct bio_vec *biovec) 703 { 704 struct mddev *mddev = q->queuedata; 705 struct r1conf *conf = mddev->private; 706 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev); 707 int max = biovec->bv_len; 708 709 if (mddev->merge_check_needed) { 710 int disk; 711 rcu_read_lock(); 712 for (disk = 0; disk < conf->raid_disks * 2; disk++) { 713 struct md_rdev *rdev = rcu_dereference( 714 conf->mirrors[disk].rdev); 715 if (rdev && !test_bit(Faulty, &rdev->flags)) { 716 struct request_queue *q = 717 bdev_get_queue(rdev->bdev); 718 if (q->merge_bvec_fn) { 719 bvm->bi_sector = sector + 720 rdev->data_offset; 721 bvm->bi_bdev = rdev->bdev; 722 max = min(max, q->merge_bvec_fn( 723 q, bvm, biovec)); 724 } 725 } 726 } 727 rcu_read_unlock(); 728 } 729 return max; 730 731 } 732 733 int md_raid1_congested(struct mddev *mddev, int bits) 734 { 735 struct r1conf *conf = mddev->private; 736 int i, ret = 0; 737 738 if ((bits & (1 << BDI_async_congested)) && 739 conf->pending_count >= max_queued_requests) 740 return 1; 741 742 rcu_read_lock(); 743 for (i = 0; i < conf->raid_disks * 2; i++) { 744 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 745 if (rdev && !test_bit(Faulty, &rdev->flags)) { 746 struct request_queue *q = bdev_get_queue(rdev->bdev); 747 748 BUG_ON(!q); 749 750 /* Note the '|| 1' - when read_balance prefers 751 * non-congested targets, it can be removed 752 */ 753 if ((bits & (1<<BDI_async_congested)) || 1) 754 ret |= bdi_congested(&q->backing_dev_info, bits); 755 else 756 ret &= bdi_congested(&q->backing_dev_info, bits); 757 } 758 } 759 rcu_read_unlock(); 760 return ret; 761 } 762 EXPORT_SYMBOL_GPL(md_raid1_congested); 763 764 static int raid1_congested(void *data, int bits) 765 { 766 struct mddev *mddev = data; 767 768 return mddev_congested(mddev, bits) || 769 md_raid1_congested(mddev, bits); 770 } 771 772 static void flush_pending_writes(struct r1conf *conf) 773 { 774 /* Any writes that have been queued but are awaiting 775 * bitmap updates get flushed here. 776 */ 777 spin_lock_irq(&conf->device_lock); 778 779 if (conf->pending_bio_list.head) { 780 struct bio *bio; 781 bio = bio_list_get(&conf->pending_bio_list); 782 conf->pending_count = 0; 783 spin_unlock_irq(&conf->device_lock); 784 /* flush any pending bitmap writes to 785 * disk before proceeding w/ I/O */ 786 bitmap_unplug(conf->mddev->bitmap); 787 wake_up(&conf->wait_barrier); 788 789 while (bio) { /* submit pending writes */ 790 struct bio *next = bio->bi_next; 791 bio->bi_next = NULL; 792 if (unlikely((bio->bi_rw & REQ_DISCARD) && 793 !blk_queue_discard(bdev_get_queue(bio->bi_bdev)))) 794 /* Just ignore it */ 795 bio_endio(bio, 0); 796 else 797 generic_make_request(bio); 798 bio = next; 799 } 800 } else 801 spin_unlock_irq(&conf->device_lock); 802 } 803 804 /* Barriers.... 805 * Sometimes we need to suspend IO while we do something else, 806 * either some resync/recovery, or reconfigure the array. 807 * To do this we raise a 'barrier'. 808 * The 'barrier' is a counter that can be raised multiple times 809 * to count how many activities are happening which preclude 810 * normal IO. 811 * We can only raise the barrier if there is no pending IO. 812 * i.e. if nr_pending == 0. 813 * We choose only to raise the barrier if no-one is waiting for the 814 * barrier to go down. This means that as soon as an IO request 815 * is ready, no other operations which require a barrier will start 816 * until the IO request has had a chance. 817 * 818 * So: regular IO calls 'wait_barrier'. When that returns there 819 * is no backgroup IO happening, It must arrange to call 820 * allow_barrier when it has finished its IO. 821 * backgroup IO calls must call raise_barrier. Once that returns 822 * there is no normal IO happeing. It must arrange to call 823 * lower_barrier when the particular background IO completes. 824 */ 825 static void raise_barrier(struct r1conf *conf) 826 { 827 spin_lock_irq(&conf->resync_lock); 828 829 /* Wait until no block IO is waiting */ 830 wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting, 831 conf->resync_lock); 832 833 /* block any new IO from starting */ 834 conf->barrier++; 835 836 /* For these conditions we must wait: 837 * A: while the array is in frozen state 838 * B: while barrier >= RESYNC_DEPTH, meaning resync reach 839 * the max count which allowed. 840 * C: next_resync + RESYNC_SECTORS > start_next_window, meaning 841 * next resync will reach to the window which normal bios are 842 * handling. 843 */ 844 wait_event_lock_irq(conf->wait_barrier, 845 !conf->array_frozen && 846 conf->barrier < RESYNC_DEPTH && 847 (conf->start_next_window >= 848 conf->next_resync + RESYNC_SECTORS), 849 conf->resync_lock); 850 851 spin_unlock_irq(&conf->resync_lock); 852 } 853 854 static void lower_barrier(struct r1conf *conf) 855 { 856 unsigned long flags; 857 BUG_ON(conf->barrier <= 0); 858 spin_lock_irqsave(&conf->resync_lock, flags); 859 conf->barrier--; 860 spin_unlock_irqrestore(&conf->resync_lock, flags); 861 wake_up(&conf->wait_barrier); 862 } 863 864 static bool need_to_wait_for_sync(struct r1conf *conf, struct bio *bio) 865 { 866 bool wait = false; 867 868 if (conf->array_frozen || !bio) 869 wait = true; 870 else if (conf->barrier && bio_data_dir(bio) == WRITE) { 871 if (conf->next_resync < RESYNC_WINDOW_SECTORS) 872 wait = true; 873 else if ((conf->next_resync - RESYNC_WINDOW_SECTORS 874 >= bio_end_sector(bio)) || 875 (conf->next_resync + NEXT_NORMALIO_DISTANCE 876 <= bio->bi_iter.bi_sector)) 877 wait = false; 878 else 879 wait = true; 880 } 881 882 return wait; 883 } 884 885 static sector_t wait_barrier(struct r1conf *conf, struct bio *bio) 886 { 887 sector_t sector = 0; 888 889 spin_lock_irq(&conf->resync_lock); 890 if (need_to_wait_for_sync(conf, bio)) { 891 conf->nr_waiting++; 892 /* Wait for the barrier to drop. 893 * However if there are already pending 894 * requests (preventing the barrier from 895 * rising completely), and the 896 * pre-process bio queue isn't empty, 897 * then don't wait, as we need to empty 898 * that queue to get the nr_pending 899 * count down. 900 */ 901 wait_event_lock_irq(conf->wait_barrier, 902 !conf->array_frozen && 903 (!conf->barrier || 904 ((conf->start_next_window < 905 conf->next_resync + RESYNC_SECTORS) && 906 current->bio_list && 907 !bio_list_empty(current->bio_list))), 908 conf->resync_lock); 909 conf->nr_waiting--; 910 } 911 912 if (bio && bio_data_dir(bio) == WRITE) { 913 if (conf->next_resync + NEXT_NORMALIO_DISTANCE 914 <= bio->bi_iter.bi_sector) { 915 if (conf->start_next_window == MaxSector) 916 conf->start_next_window = 917 conf->next_resync + 918 NEXT_NORMALIO_DISTANCE; 919 920 if ((conf->start_next_window + NEXT_NORMALIO_DISTANCE) 921 <= bio->bi_iter.bi_sector) 922 conf->next_window_requests++; 923 else 924 conf->current_window_requests++; 925 sector = conf->start_next_window; 926 } 927 } 928 929 conf->nr_pending++; 930 spin_unlock_irq(&conf->resync_lock); 931 return sector; 932 } 933 934 static void allow_barrier(struct r1conf *conf, sector_t start_next_window, 935 sector_t bi_sector) 936 { 937 unsigned long flags; 938 939 spin_lock_irqsave(&conf->resync_lock, flags); 940 conf->nr_pending--; 941 if (start_next_window) { 942 if (start_next_window == conf->start_next_window) { 943 if (conf->start_next_window + NEXT_NORMALIO_DISTANCE 944 <= bi_sector) 945 conf->next_window_requests--; 946 else 947 conf->current_window_requests--; 948 } else 949 conf->current_window_requests--; 950 951 if (!conf->current_window_requests) { 952 if (conf->next_window_requests) { 953 conf->current_window_requests = 954 conf->next_window_requests; 955 conf->next_window_requests = 0; 956 conf->start_next_window += 957 NEXT_NORMALIO_DISTANCE; 958 } else 959 conf->start_next_window = MaxSector; 960 } 961 } 962 spin_unlock_irqrestore(&conf->resync_lock, flags); 963 wake_up(&conf->wait_barrier); 964 } 965 966 static void freeze_array(struct r1conf *conf, int extra) 967 { 968 /* stop syncio and normal IO and wait for everything to 969 * go quite. 970 * We wait until nr_pending match nr_queued+extra 971 * This is called in the context of one normal IO request 972 * that has failed. Thus any sync request that might be pending 973 * will be blocked by nr_pending, and we need to wait for 974 * pending IO requests to complete or be queued for re-try. 975 * Thus the number queued (nr_queued) plus this request (extra) 976 * must match the number of pending IOs (nr_pending) before 977 * we continue. 978 */ 979 spin_lock_irq(&conf->resync_lock); 980 conf->array_frozen = 1; 981 wait_event_lock_irq_cmd(conf->wait_barrier, 982 conf->nr_pending == conf->nr_queued+extra, 983 conf->resync_lock, 984 flush_pending_writes(conf)); 985 spin_unlock_irq(&conf->resync_lock); 986 } 987 static void unfreeze_array(struct r1conf *conf) 988 { 989 /* reverse the effect of the freeze */ 990 spin_lock_irq(&conf->resync_lock); 991 conf->array_frozen = 0; 992 wake_up(&conf->wait_barrier); 993 spin_unlock_irq(&conf->resync_lock); 994 } 995 996 997 /* duplicate the data pages for behind I/O 998 */ 999 static void alloc_behind_pages(struct bio *bio, struct r1bio *r1_bio) 1000 { 1001 int i; 1002 struct bio_vec *bvec; 1003 struct bio_vec *bvecs = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec), 1004 GFP_NOIO); 1005 if (unlikely(!bvecs)) 1006 return; 1007 1008 bio_for_each_segment_all(bvec, bio, i) { 1009 bvecs[i] = *bvec; 1010 bvecs[i].bv_page = alloc_page(GFP_NOIO); 1011 if (unlikely(!bvecs[i].bv_page)) 1012 goto do_sync_io; 1013 memcpy(kmap(bvecs[i].bv_page) + bvec->bv_offset, 1014 kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len); 1015 kunmap(bvecs[i].bv_page); 1016 kunmap(bvec->bv_page); 1017 } 1018 r1_bio->behind_bvecs = bvecs; 1019 r1_bio->behind_page_count = bio->bi_vcnt; 1020 set_bit(R1BIO_BehindIO, &r1_bio->state); 1021 return; 1022 1023 do_sync_io: 1024 for (i = 0; i < bio->bi_vcnt; i++) 1025 if (bvecs[i].bv_page) 1026 put_page(bvecs[i].bv_page); 1027 kfree(bvecs); 1028 pr_debug("%dB behind alloc failed, doing sync I/O\n", 1029 bio->bi_iter.bi_size); 1030 } 1031 1032 struct raid1_plug_cb { 1033 struct blk_plug_cb cb; 1034 struct bio_list pending; 1035 int pending_cnt; 1036 }; 1037 1038 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule) 1039 { 1040 struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb, 1041 cb); 1042 struct mddev *mddev = plug->cb.data; 1043 struct r1conf *conf = mddev->private; 1044 struct bio *bio; 1045 1046 if (from_schedule || current->bio_list) { 1047 spin_lock_irq(&conf->device_lock); 1048 bio_list_merge(&conf->pending_bio_list, &plug->pending); 1049 conf->pending_count += plug->pending_cnt; 1050 spin_unlock_irq(&conf->device_lock); 1051 wake_up(&conf->wait_barrier); 1052 md_wakeup_thread(mddev->thread); 1053 kfree(plug); 1054 return; 1055 } 1056 1057 /* we aren't scheduling, so we can do the write-out directly. */ 1058 bio = bio_list_get(&plug->pending); 1059 bitmap_unplug(mddev->bitmap); 1060 wake_up(&conf->wait_barrier); 1061 1062 while (bio) { /* submit pending writes */ 1063 struct bio *next = bio->bi_next; 1064 bio->bi_next = NULL; 1065 if (unlikely((bio->bi_rw & REQ_DISCARD) && 1066 !blk_queue_discard(bdev_get_queue(bio->bi_bdev)))) 1067 /* Just ignore it */ 1068 bio_endio(bio, 0); 1069 else 1070 generic_make_request(bio); 1071 bio = next; 1072 } 1073 kfree(plug); 1074 } 1075 1076 static void make_request(struct mddev *mddev, struct bio * bio) 1077 { 1078 struct r1conf *conf = mddev->private; 1079 struct raid1_info *mirror; 1080 struct r1bio *r1_bio; 1081 struct bio *read_bio; 1082 int i, disks; 1083 struct bitmap *bitmap; 1084 unsigned long flags; 1085 const int rw = bio_data_dir(bio); 1086 const unsigned long do_sync = (bio->bi_rw & REQ_SYNC); 1087 const unsigned long do_flush_fua = (bio->bi_rw & (REQ_FLUSH | REQ_FUA)); 1088 const unsigned long do_discard = (bio->bi_rw 1089 & (REQ_DISCARD | REQ_SECURE)); 1090 const unsigned long do_same = (bio->bi_rw & REQ_WRITE_SAME); 1091 struct md_rdev *blocked_rdev; 1092 struct blk_plug_cb *cb; 1093 struct raid1_plug_cb *plug = NULL; 1094 int first_clone; 1095 int sectors_handled; 1096 int max_sectors; 1097 sector_t start_next_window; 1098 1099 /* 1100 * Register the new request and wait if the reconstruction 1101 * thread has put up a bar for new requests. 1102 * Continue immediately if no resync is active currently. 1103 */ 1104 1105 md_write_start(mddev, bio); /* wait on superblock update early */ 1106 1107 if (bio_data_dir(bio) == WRITE && 1108 bio_end_sector(bio) > mddev->suspend_lo && 1109 bio->bi_iter.bi_sector < mddev->suspend_hi) { 1110 /* As the suspend_* range is controlled by 1111 * userspace, we want an interruptible 1112 * wait. 1113 */ 1114 DEFINE_WAIT(w); 1115 for (;;) { 1116 flush_signals(current); 1117 prepare_to_wait(&conf->wait_barrier, 1118 &w, TASK_INTERRUPTIBLE); 1119 if (bio_end_sector(bio) <= mddev->suspend_lo || 1120 bio->bi_iter.bi_sector >= mddev->suspend_hi) 1121 break; 1122 schedule(); 1123 } 1124 finish_wait(&conf->wait_barrier, &w); 1125 } 1126 1127 start_next_window = wait_barrier(conf, bio); 1128 1129 bitmap = mddev->bitmap; 1130 1131 /* 1132 * make_request() can abort the operation when READA is being 1133 * used and no empty request is available. 1134 * 1135 */ 1136 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO); 1137 1138 r1_bio->master_bio = bio; 1139 r1_bio->sectors = bio_sectors(bio); 1140 r1_bio->state = 0; 1141 r1_bio->mddev = mddev; 1142 r1_bio->sector = bio->bi_iter.bi_sector; 1143 1144 /* We might need to issue multiple reads to different 1145 * devices if there are bad blocks around, so we keep 1146 * track of the number of reads in bio->bi_phys_segments. 1147 * If this is 0, there is only one r1_bio and no locking 1148 * will be needed when requests complete. If it is 1149 * non-zero, then it is the number of not-completed requests. 1150 */ 1151 bio->bi_phys_segments = 0; 1152 clear_bit(BIO_SEG_VALID, &bio->bi_flags); 1153 1154 if (rw == READ) { 1155 /* 1156 * read balancing logic: 1157 */ 1158 int rdisk; 1159 1160 read_again: 1161 rdisk = read_balance(conf, r1_bio, &max_sectors); 1162 1163 if (rdisk < 0) { 1164 /* couldn't find anywhere to read from */ 1165 raid_end_bio_io(r1_bio); 1166 return; 1167 } 1168 mirror = conf->mirrors + rdisk; 1169 1170 if (test_bit(WriteMostly, &mirror->rdev->flags) && 1171 bitmap) { 1172 /* Reading from a write-mostly device must 1173 * take care not to over-take any writes 1174 * that are 'behind' 1175 */ 1176 wait_event(bitmap->behind_wait, 1177 atomic_read(&bitmap->behind_writes) == 0); 1178 } 1179 r1_bio->read_disk = rdisk; 1180 1181 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev); 1182 bio_trim(read_bio, r1_bio->sector - bio->bi_iter.bi_sector, 1183 max_sectors); 1184 1185 r1_bio->bios[rdisk] = read_bio; 1186 1187 read_bio->bi_iter.bi_sector = r1_bio->sector + 1188 mirror->rdev->data_offset; 1189 read_bio->bi_bdev = mirror->rdev->bdev; 1190 read_bio->bi_end_io = raid1_end_read_request; 1191 read_bio->bi_rw = READ | do_sync; 1192 read_bio->bi_private = r1_bio; 1193 1194 if (max_sectors < r1_bio->sectors) { 1195 /* could not read all from this device, so we will 1196 * need another r1_bio. 1197 */ 1198 1199 sectors_handled = (r1_bio->sector + max_sectors 1200 - bio->bi_iter.bi_sector); 1201 r1_bio->sectors = max_sectors; 1202 spin_lock_irq(&conf->device_lock); 1203 if (bio->bi_phys_segments == 0) 1204 bio->bi_phys_segments = 2; 1205 else 1206 bio->bi_phys_segments++; 1207 spin_unlock_irq(&conf->device_lock); 1208 /* Cannot call generic_make_request directly 1209 * as that will be queued in __make_request 1210 * and subsequent mempool_alloc might block waiting 1211 * for it. So hand bio over to raid1d. 1212 */ 1213 reschedule_retry(r1_bio); 1214 1215 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO); 1216 1217 r1_bio->master_bio = bio; 1218 r1_bio->sectors = bio_sectors(bio) - sectors_handled; 1219 r1_bio->state = 0; 1220 r1_bio->mddev = mddev; 1221 r1_bio->sector = bio->bi_iter.bi_sector + 1222 sectors_handled; 1223 goto read_again; 1224 } else 1225 generic_make_request(read_bio); 1226 return; 1227 } 1228 1229 /* 1230 * WRITE: 1231 */ 1232 if (conf->pending_count >= max_queued_requests) { 1233 md_wakeup_thread(mddev->thread); 1234 wait_event(conf->wait_barrier, 1235 conf->pending_count < max_queued_requests); 1236 } 1237 /* first select target devices under rcu_lock and 1238 * inc refcount on their rdev. Record them by setting 1239 * bios[x] to bio 1240 * If there are known/acknowledged bad blocks on any device on 1241 * which we have seen a write error, we want to avoid writing those 1242 * blocks. 1243 * This potentially requires several writes to write around 1244 * the bad blocks. Each set of writes gets it's own r1bio 1245 * with a set of bios attached. 1246 */ 1247 1248 disks = conf->raid_disks * 2; 1249 retry_write: 1250 r1_bio->start_next_window = start_next_window; 1251 blocked_rdev = NULL; 1252 rcu_read_lock(); 1253 max_sectors = r1_bio->sectors; 1254 for (i = 0; i < disks; i++) { 1255 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 1256 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) { 1257 atomic_inc(&rdev->nr_pending); 1258 blocked_rdev = rdev; 1259 break; 1260 } 1261 r1_bio->bios[i] = NULL; 1262 if (!rdev || test_bit(Faulty, &rdev->flags) 1263 || test_bit(Unmerged, &rdev->flags)) { 1264 if (i < conf->raid_disks) 1265 set_bit(R1BIO_Degraded, &r1_bio->state); 1266 continue; 1267 } 1268 1269 atomic_inc(&rdev->nr_pending); 1270 if (test_bit(WriteErrorSeen, &rdev->flags)) { 1271 sector_t first_bad; 1272 int bad_sectors; 1273 int is_bad; 1274 1275 is_bad = is_badblock(rdev, r1_bio->sector, 1276 max_sectors, 1277 &first_bad, &bad_sectors); 1278 if (is_bad < 0) { 1279 /* mustn't write here until the bad block is 1280 * acknowledged*/ 1281 set_bit(BlockedBadBlocks, &rdev->flags); 1282 blocked_rdev = rdev; 1283 break; 1284 } 1285 if (is_bad && first_bad <= r1_bio->sector) { 1286 /* Cannot write here at all */ 1287 bad_sectors -= (r1_bio->sector - first_bad); 1288 if (bad_sectors < max_sectors) 1289 /* mustn't write more than bad_sectors 1290 * to other devices yet 1291 */ 1292 max_sectors = bad_sectors; 1293 rdev_dec_pending(rdev, mddev); 1294 /* We don't set R1BIO_Degraded as that 1295 * only applies if the disk is 1296 * missing, so it might be re-added, 1297 * and we want to know to recover this 1298 * chunk. 1299 * In this case the device is here, 1300 * and the fact that this chunk is not 1301 * in-sync is recorded in the bad 1302 * block log 1303 */ 1304 continue; 1305 } 1306 if (is_bad) { 1307 int good_sectors = first_bad - r1_bio->sector; 1308 if (good_sectors < max_sectors) 1309 max_sectors = good_sectors; 1310 } 1311 } 1312 r1_bio->bios[i] = bio; 1313 } 1314 rcu_read_unlock(); 1315 1316 if (unlikely(blocked_rdev)) { 1317 /* Wait for this device to become unblocked */ 1318 int j; 1319 sector_t old = start_next_window; 1320 1321 for (j = 0; j < i; j++) 1322 if (r1_bio->bios[j]) 1323 rdev_dec_pending(conf->mirrors[j].rdev, mddev); 1324 r1_bio->state = 0; 1325 allow_barrier(conf, start_next_window, bio->bi_iter.bi_sector); 1326 md_wait_for_blocked_rdev(blocked_rdev, mddev); 1327 start_next_window = wait_barrier(conf, bio); 1328 /* 1329 * We must make sure the multi r1bios of bio have 1330 * the same value of bi_phys_segments 1331 */ 1332 if (bio->bi_phys_segments && old && 1333 old != start_next_window) 1334 /* Wait for the former r1bio(s) to complete */ 1335 wait_event(conf->wait_barrier, 1336 bio->bi_phys_segments == 1); 1337 goto retry_write; 1338 } 1339 1340 if (max_sectors < r1_bio->sectors) { 1341 /* We are splitting this write into multiple parts, so 1342 * we need to prepare for allocating another r1_bio. 1343 */ 1344 r1_bio->sectors = max_sectors; 1345 spin_lock_irq(&conf->device_lock); 1346 if (bio->bi_phys_segments == 0) 1347 bio->bi_phys_segments = 2; 1348 else 1349 bio->bi_phys_segments++; 1350 spin_unlock_irq(&conf->device_lock); 1351 } 1352 sectors_handled = r1_bio->sector + max_sectors - bio->bi_iter.bi_sector; 1353 1354 atomic_set(&r1_bio->remaining, 1); 1355 atomic_set(&r1_bio->behind_remaining, 0); 1356 1357 first_clone = 1; 1358 for (i = 0; i < disks; i++) { 1359 struct bio *mbio; 1360 if (!r1_bio->bios[i]) 1361 continue; 1362 1363 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev); 1364 bio_trim(mbio, r1_bio->sector - bio->bi_iter.bi_sector, max_sectors); 1365 1366 if (first_clone) { 1367 /* do behind I/O ? 1368 * Not if there are too many, or cannot 1369 * allocate memory, or a reader on WriteMostly 1370 * is waiting for behind writes to flush */ 1371 if (bitmap && 1372 (atomic_read(&bitmap->behind_writes) 1373 < mddev->bitmap_info.max_write_behind) && 1374 !waitqueue_active(&bitmap->behind_wait)) 1375 alloc_behind_pages(mbio, r1_bio); 1376 1377 bitmap_startwrite(bitmap, r1_bio->sector, 1378 r1_bio->sectors, 1379 test_bit(R1BIO_BehindIO, 1380 &r1_bio->state)); 1381 first_clone = 0; 1382 } 1383 if (r1_bio->behind_bvecs) { 1384 struct bio_vec *bvec; 1385 int j; 1386 1387 /* 1388 * We trimmed the bio, so _all is legit 1389 */ 1390 bio_for_each_segment_all(bvec, mbio, j) 1391 bvec->bv_page = r1_bio->behind_bvecs[j].bv_page; 1392 if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags)) 1393 atomic_inc(&r1_bio->behind_remaining); 1394 } 1395 1396 r1_bio->bios[i] = mbio; 1397 1398 mbio->bi_iter.bi_sector = (r1_bio->sector + 1399 conf->mirrors[i].rdev->data_offset); 1400 mbio->bi_bdev = conf->mirrors[i].rdev->bdev; 1401 mbio->bi_end_io = raid1_end_write_request; 1402 mbio->bi_rw = 1403 WRITE | do_flush_fua | do_sync | do_discard | do_same; 1404 mbio->bi_private = r1_bio; 1405 1406 atomic_inc(&r1_bio->remaining); 1407 1408 cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug)); 1409 if (cb) 1410 plug = container_of(cb, struct raid1_plug_cb, cb); 1411 else 1412 plug = NULL; 1413 spin_lock_irqsave(&conf->device_lock, flags); 1414 if (plug) { 1415 bio_list_add(&plug->pending, mbio); 1416 plug->pending_cnt++; 1417 } else { 1418 bio_list_add(&conf->pending_bio_list, mbio); 1419 conf->pending_count++; 1420 } 1421 spin_unlock_irqrestore(&conf->device_lock, flags); 1422 if (!plug) 1423 md_wakeup_thread(mddev->thread); 1424 } 1425 /* Mustn't call r1_bio_write_done before this next test, 1426 * as it could result in the bio being freed. 1427 */ 1428 if (sectors_handled < bio_sectors(bio)) { 1429 r1_bio_write_done(r1_bio); 1430 /* We need another r1_bio. It has already been counted 1431 * in bio->bi_phys_segments 1432 */ 1433 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO); 1434 r1_bio->master_bio = bio; 1435 r1_bio->sectors = bio_sectors(bio) - sectors_handled; 1436 r1_bio->state = 0; 1437 r1_bio->mddev = mddev; 1438 r1_bio->sector = bio->bi_iter.bi_sector + sectors_handled; 1439 goto retry_write; 1440 } 1441 1442 r1_bio_write_done(r1_bio); 1443 1444 /* In case raid1d snuck in to freeze_array */ 1445 wake_up(&conf->wait_barrier); 1446 } 1447 1448 static void status(struct seq_file *seq, struct mddev *mddev) 1449 { 1450 struct r1conf *conf = mddev->private; 1451 int i; 1452 1453 seq_printf(seq, " [%d/%d] [", conf->raid_disks, 1454 conf->raid_disks - mddev->degraded); 1455 rcu_read_lock(); 1456 for (i = 0; i < conf->raid_disks; i++) { 1457 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 1458 seq_printf(seq, "%s", 1459 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_"); 1460 } 1461 rcu_read_unlock(); 1462 seq_printf(seq, "]"); 1463 } 1464 1465 1466 static void error(struct mddev *mddev, struct md_rdev *rdev) 1467 { 1468 char b[BDEVNAME_SIZE]; 1469 struct r1conf *conf = mddev->private; 1470 1471 /* 1472 * If it is not operational, then we have already marked it as dead 1473 * else if it is the last working disks, ignore the error, let the 1474 * next level up know. 1475 * else mark the drive as failed 1476 */ 1477 if (test_bit(In_sync, &rdev->flags) 1478 && (conf->raid_disks - mddev->degraded) == 1) { 1479 /* 1480 * Don't fail the drive, act as though we were just a 1481 * normal single drive. 1482 * However don't try a recovery from this drive as 1483 * it is very likely to fail. 1484 */ 1485 conf->recovery_disabled = mddev->recovery_disabled; 1486 return; 1487 } 1488 set_bit(Blocked, &rdev->flags); 1489 if (test_and_clear_bit(In_sync, &rdev->flags)) { 1490 unsigned long flags; 1491 spin_lock_irqsave(&conf->device_lock, flags); 1492 mddev->degraded++; 1493 set_bit(Faulty, &rdev->flags); 1494 spin_unlock_irqrestore(&conf->device_lock, flags); 1495 /* 1496 * if recovery is running, make sure it aborts. 1497 */ 1498 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 1499 } else 1500 set_bit(Faulty, &rdev->flags); 1501 set_bit(MD_CHANGE_DEVS, &mddev->flags); 1502 printk(KERN_ALERT 1503 "md/raid1:%s: Disk failure on %s, disabling device.\n" 1504 "md/raid1:%s: Operation continuing on %d devices.\n", 1505 mdname(mddev), bdevname(rdev->bdev, b), 1506 mdname(mddev), conf->raid_disks - mddev->degraded); 1507 } 1508 1509 static void print_conf(struct r1conf *conf) 1510 { 1511 int i; 1512 1513 printk(KERN_DEBUG "RAID1 conf printout:\n"); 1514 if (!conf) { 1515 printk(KERN_DEBUG "(!conf)\n"); 1516 return; 1517 } 1518 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded, 1519 conf->raid_disks); 1520 1521 rcu_read_lock(); 1522 for (i = 0; i < conf->raid_disks; i++) { 1523 char b[BDEVNAME_SIZE]; 1524 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 1525 if (rdev) 1526 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n", 1527 i, !test_bit(In_sync, &rdev->flags), 1528 !test_bit(Faulty, &rdev->flags), 1529 bdevname(rdev->bdev,b)); 1530 } 1531 rcu_read_unlock(); 1532 } 1533 1534 static void close_sync(struct r1conf *conf) 1535 { 1536 wait_barrier(conf, NULL); 1537 allow_barrier(conf, 0, 0); 1538 1539 mempool_destroy(conf->r1buf_pool); 1540 conf->r1buf_pool = NULL; 1541 1542 conf->next_resync = 0; 1543 conf->start_next_window = MaxSector; 1544 } 1545 1546 static int raid1_spare_active(struct mddev *mddev) 1547 { 1548 int i; 1549 struct r1conf *conf = mddev->private; 1550 int count = 0; 1551 unsigned long flags; 1552 1553 /* 1554 * Find all failed disks within the RAID1 configuration 1555 * and mark them readable. 1556 * Called under mddev lock, so rcu protection not needed. 1557 */ 1558 for (i = 0; i < conf->raid_disks; i++) { 1559 struct md_rdev *rdev = conf->mirrors[i].rdev; 1560 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev; 1561 if (repl 1562 && repl->recovery_offset == MaxSector 1563 && !test_bit(Faulty, &repl->flags) 1564 && !test_and_set_bit(In_sync, &repl->flags)) { 1565 /* replacement has just become active */ 1566 if (!rdev || 1567 !test_and_clear_bit(In_sync, &rdev->flags)) 1568 count++; 1569 if (rdev) { 1570 /* Replaced device not technically 1571 * faulty, but we need to be sure 1572 * it gets removed and never re-added 1573 */ 1574 set_bit(Faulty, &rdev->flags); 1575 sysfs_notify_dirent_safe( 1576 rdev->sysfs_state); 1577 } 1578 } 1579 if (rdev 1580 && rdev->recovery_offset == MaxSector 1581 && !test_bit(Faulty, &rdev->flags) 1582 && !test_and_set_bit(In_sync, &rdev->flags)) { 1583 count++; 1584 sysfs_notify_dirent_safe(rdev->sysfs_state); 1585 } 1586 } 1587 spin_lock_irqsave(&conf->device_lock, flags); 1588 mddev->degraded -= count; 1589 spin_unlock_irqrestore(&conf->device_lock, flags); 1590 1591 print_conf(conf); 1592 return count; 1593 } 1594 1595 1596 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev) 1597 { 1598 struct r1conf *conf = mddev->private; 1599 int err = -EEXIST; 1600 int mirror = 0; 1601 struct raid1_info *p; 1602 int first = 0; 1603 int last = conf->raid_disks - 1; 1604 struct request_queue *q = bdev_get_queue(rdev->bdev); 1605 1606 if (mddev->recovery_disabled == conf->recovery_disabled) 1607 return -EBUSY; 1608 1609 if (rdev->raid_disk >= 0) 1610 first = last = rdev->raid_disk; 1611 1612 if (q->merge_bvec_fn) { 1613 set_bit(Unmerged, &rdev->flags); 1614 mddev->merge_check_needed = 1; 1615 } 1616 1617 for (mirror = first; mirror <= last; mirror++) { 1618 p = conf->mirrors+mirror; 1619 if (!p->rdev) { 1620 1621 if (mddev->gendisk) 1622 disk_stack_limits(mddev->gendisk, rdev->bdev, 1623 rdev->data_offset << 9); 1624 1625 p->head_position = 0; 1626 rdev->raid_disk = mirror; 1627 err = 0; 1628 /* As all devices are equivalent, we don't need a full recovery 1629 * if this was recently any drive of the array 1630 */ 1631 if (rdev->saved_raid_disk < 0) 1632 conf->fullsync = 1; 1633 rcu_assign_pointer(p->rdev, rdev); 1634 break; 1635 } 1636 if (test_bit(WantReplacement, &p->rdev->flags) && 1637 p[conf->raid_disks].rdev == NULL) { 1638 /* Add this device as a replacement */ 1639 clear_bit(In_sync, &rdev->flags); 1640 set_bit(Replacement, &rdev->flags); 1641 rdev->raid_disk = mirror; 1642 err = 0; 1643 conf->fullsync = 1; 1644 rcu_assign_pointer(p[conf->raid_disks].rdev, rdev); 1645 break; 1646 } 1647 } 1648 if (err == 0 && test_bit(Unmerged, &rdev->flags)) { 1649 /* Some requests might not have seen this new 1650 * merge_bvec_fn. We must wait for them to complete 1651 * before merging the device fully. 1652 * First we make sure any code which has tested 1653 * our function has submitted the request, then 1654 * we wait for all outstanding requests to complete. 1655 */ 1656 synchronize_sched(); 1657 freeze_array(conf, 0); 1658 unfreeze_array(conf); 1659 clear_bit(Unmerged, &rdev->flags); 1660 } 1661 md_integrity_add_rdev(rdev, mddev); 1662 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev))) 1663 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue); 1664 print_conf(conf); 1665 return err; 1666 } 1667 1668 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev) 1669 { 1670 struct r1conf *conf = mddev->private; 1671 int err = 0; 1672 int number = rdev->raid_disk; 1673 struct raid1_info *p = conf->mirrors + number; 1674 1675 if (rdev != p->rdev) 1676 p = conf->mirrors + conf->raid_disks + number; 1677 1678 print_conf(conf); 1679 if (rdev == p->rdev) { 1680 if (test_bit(In_sync, &rdev->flags) || 1681 atomic_read(&rdev->nr_pending)) { 1682 err = -EBUSY; 1683 goto abort; 1684 } 1685 /* Only remove non-faulty devices if recovery 1686 * is not possible. 1687 */ 1688 if (!test_bit(Faulty, &rdev->flags) && 1689 mddev->recovery_disabled != conf->recovery_disabled && 1690 mddev->degraded < conf->raid_disks) { 1691 err = -EBUSY; 1692 goto abort; 1693 } 1694 p->rdev = NULL; 1695 synchronize_rcu(); 1696 if (atomic_read(&rdev->nr_pending)) { 1697 /* lost the race, try later */ 1698 err = -EBUSY; 1699 p->rdev = rdev; 1700 goto abort; 1701 } else if (conf->mirrors[conf->raid_disks + number].rdev) { 1702 /* We just removed a device that is being replaced. 1703 * Move down the replacement. We drain all IO before 1704 * doing this to avoid confusion. 1705 */ 1706 struct md_rdev *repl = 1707 conf->mirrors[conf->raid_disks + number].rdev; 1708 freeze_array(conf, 0); 1709 clear_bit(Replacement, &repl->flags); 1710 p->rdev = repl; 1711 conf->mirrors[conf->raid_disks + number].rdev = NULL; 1712 unfreeze_array(conf); 1713 clear_bit(WantReplacement, &rdev->flags); 1714 } else 1715 clear_bit(WantReplacement, &rdev->flags); 1716 err = md_integrity_register(mddev); 1717 } 1718 abort: 1719 1720 print_conf(conf); 1721 return err; 1722 } 1723 1724 1725 static void end_sync_read(struct bio *bio, int error) 1726 { 1727 struct r1bio *r1_bio = bio->bi_private; 1728 1729 update_head_pos(r1_bio->read_disk, r1_bio); 1730 1731 /* 1732 * we have read a block, now it needs to be re-written, 1733 * or re-read if the read failed. 1734 * We don't do much here, just schedule handling by raid1d 1735 */ 1736 if (test_bit(BIO_UPTODATE, &bio->bi_flags)) 1737 set_bit(R1BIO_Uptodate, &r1_bio->state); 1738 1739 if (atomic_dec_and_test(&r1_bio->remaining)) 1740 reschedule_retry(r1_bio); 1741 } 1742 1743 static void end_sync_write(struct bio *bio, int error) 1744 { 1745 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 1746 struct r1bio *r1_bio = bio->bi_private; 1747 struct mddev *mddev = r1_bio->mddev; 1748 struct r1conf *conf = mddev->private; 1749 int mirror=0; 1750 sector_t first_bad; 1751 int bad_sectors; 1752 1753 mirror = find_bio_disk(r1_bio, bio); 1754 1755 if (!uptodate) { 1756 sector_t sync_blocks = 0; 1757 sector_t s = r1_bio->sector; 1758 long sectors_to_go = r1_bio->sectors; 1759 /* make sure these bits doesn't get cleared. */ 1760 do { 1761 bitmap_end_sync(mddev->bitmap, s, 1762 &sync_blocks, 1); 1763 s += sync_blocks; 1764 sectors_to_go -= sync_blocks; 1765 } while (sectors_to_go > 0); 1766 set_bit(WriteErrorSeen, 1767 &conf->mirrors[mirror].rdev->flags); 1768 if (!test_and_set_bit(WantReplacement, 1769 &conf->mirrors[mirror].rdev->flags)) 1770 set_bit(MD_RECOVERY_NEEDED, & 1771 mddev->recovery); 1772 set_bit(R1BIO_WriteError, &r1_bio->state); 1773 } else if (is_badblock(conf->mirrors[mirror].rdev, 1774 r1_bio->sector, 1775 r1_bio->sectors, 1776 &first_bad, &bad_sectors) && 1777 !is_badblock(conf->mirrors[r1_bio->read_disk].rdev, 1778 r1_bio->sector, 1779 r1_bio->sectors, 1780 &first_bad, &bad_sectors) 1781 ) 1782 set_bit(R1BIO_MadeGood, &r1_bio->state); 1783 1784 if (atomic_dec_and_test(&r1_bio->remaining)) { 1785 int s = r1_bio->sectors; 1786 if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 1787 test_bit(R1BIO_WriteError, &r1_bio->state)) 1788 reschedule_retry(r1_bio); 1789 else { 1790 put_buf(r1_bio); 1791 md_done_sync(mddev, s, uptodate); 1792 } 1793 } 1794 } 1795 1796 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector, 1797 int sectors, struct page *page, int rw) 1798 { 1799 if (sync_page_io(rdev, sector, sectors << 9, page, rw, false)) 1800 /* success */ 1801 return 1; 1802 if (rw == WRITE) { 1803 set_bit(WriteErrorSeen, &rdev->flags); 1804 if (!test_and_set_bit(WantReplacement, 1805 &rdev->flags)) 1806 set_bit(MD_RECOVERY_NEEDED, & 1807 rdev->mddev->recovery); 1808 } 1809 /* need to record an error - either for the block or the device */ 1810 if (!rdev_set_badblocks(rdev, sector, sectors, 0)) 1811 md_error(rdev->mddev, rdev); 1812 return 0; 1813 } 1814 1815 static int fix_sync_read_error(struct r1bio *r1_bio) 1816 { 1817 /* Try some synchronous reads of other devices to get 1818 * good data, much like with normal read errors. Only 1819 * read into the pages we already have so we don't 1820 * need to re-issue the read request. 1821 * We don't need to freeze the array, because being in an 1822 * active sync request, there is no normal IO, and 1823 * no overlapping syncs. 1824 * We don't need to check is_badblock() again as we 1825 * made sure that anything with a bad block in range 1826 * will have bi_end_io clear. 1827 */ 1828 struct mddev *mddev = r1_bio->mddev; 1829 struct r1conf *conf = mddev->private; 1830 struct bio *bio = r1_bio->bios[r1_bio->read_disk]; 1831 sector_t sect = r1_bio->sector; 1832 int sectors = r1_bio->sectors; 1833 int idx = 0; 1834 1835 while(sectors) { 1836 int s = sectors; 1837 int d = r1_bio->read_disk; 1838 int success = 0; 1839 struct md_rdev *rdev; 1840 int start; 1841 1842 if (s > (PAGE_SIZE>>9)) 1843 s = PAGE_SIZE >> 9; 1844 do { 1845 if (r1_bio->bios[d]->bi_end_io == end_sync_read) { 1846 /* No rcu protection needed here devices 1847 * can only be removed when no resync is 1848 * active, and resync is currently active 1849 */ 1850 rdev = conf->mirrors[d].rdev; 1851 if (sync_page_io(rdev, sect, s<<9, 1852 bio->bi_io_vec[idx].bv_page, 1853 READ, false)) { 1854 success = 1; 1855 break; 1856 } 1857 } 1858 d++; 1859 if (d == conf->raid_disks * 2) 1860 d = 0; 1861 } while (!success && d != r1_bio->read_disk); 1862 1863 if (!success) { 1864 char b[BDEVNAME_SIZE]; 1865 int abort = 0; 1866 /* Cannot read from anywhere, this block is lost. 1867 * Record a bad block on each device. If that doesn't 1868 * work just disable and interrupt the recovery. 1869 * Don't fail devices as that won't really help. 1870 */ 1871 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error" 1872 " for block %llu\n", 1873 mdname(mddev), 1874 bdevname(bio->bi_bdev, b), 1875 (unsigned long long)r1_bio->sector); 1876 for (d = 0; d < conf->raid_disks * 2; d++) { 1877 rdev = conf->mirrors[d].rdev; 1878 if (!rdev || test_bit(Faulty, &rdev->flags)) 1879 continue; 1880 if (!rdev_set_badblocks(rdev, sect, s, 0)) 1881 abort = 1; 1882 } 1883 if (abort) { 1884 conf->recovery_disabled = 1885 mddev->recovery_disabled; 1886 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 1887 md_done_sync(mddev, r1_bio->sectors, 0); 1888 put_buf(r1_bio); 1889 return 0; 1890 } 1891 /* Try next page */ 1892 sectors -= s; 1893 sect += s; 1894 idx++; 1895 continue; 1896 } 1897 1898 start = d; 1899 /* write it back and re-read */ 1900 while (d != r1_bio->read_disk) { 1901 if (d == 0) 1902 d = conf->raid_disks * 2; 1903 d--; 1904 if (r1_bio->bios[d]->bi_end_io != end_sync_read) 1905 continue; 1906 rdev = conf->mirrors[d].rdev; 1907 if (r1_sync_page_io(rdev, sect, s, 1908 bio->bi_io_vec[idx].bv_page, 1909 WRITE) == 0) { 1910 r1_bio->bios[d]->bi_end_io = NULL; 1911 rdev_dec_pending(rdev, mddev); 1912 } 1913 } 1914 d = start; 1915 while (d != r1_bio->read_disk) { 1916 if (d == 0) 1917 d = conf->raid_disks * 2; 1918 d--; 1919 if (r1_bio->bios[d]->bi_end_io != end_sync_read) 1920 continue; 1921 rdev = conf->mirrors[d].rdev; 1922 if (r1_sync_page_io(rdev, sect, s, 1923 bio->bi_io_vec[idx].bv_page, 1924 READ) != 0) 1925 atomic_add(s, &rdev->corrected_errors); 1926 } 1927 sectors -= s; 1928 sect += s; 1929 idx ++; 1930 } 1931 set_bit(R1BIO_Uptodate, &r1_bio->state); 1932 set_bit(BIO_UPTODATE, &bio->bi_flags); 1933 return 1; 1934 } 1935 1936 static int process_checks(struct r1bio *r1_bio) 1937 { 1938 /* We have read all readable devices. If we haven't 1939 * got the block, then there is no hope left. 1940 * If we have, then we want to do a comparison 1941 * and skip the write if everything is the same. 1942 * If any blocks failed to read, then we need to 1943 * attempt an over-write 1944 */ 1945 struct mddev *mddev = r1_bio->mddev; 1946 struct r1conf *conf = mddev->private; 1947 int primary; 1948 int i; 1949 int vcnt; 1950 1951 /* Fix variable parts of all bios */ 1952 vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9); 1953 for (i = 0; i < conf->raid_disks * 2; i++) { 1954 int j; 1955 int size; 1956 struct bio *b = r1_bio->bios[i]; 1957 if (b->bi_end_io != end_sync_read) 1958 continue; 1959 /* fixup the bio for reuse */ 1960 bio_reset(b); 1961 b->bi_vcnt = vcnt; 1962 b->bi_iter.bi_size = r1_bio->sectors << 9; 1963 b->bi_iter.bi_sector = r1_bio->sector + 1964 conf->mirrors[i].rdev->data_offset; 1965 b->bi_bdev = conf->mirrors[i].rdev->bdev; 1966 b->bi_end_io = end_sync_read; 1967 b->bi_private = r1_bio; 1968 1969 size = b->bi_iter.bi_size; 1970 for (j = 0; j < vcnt ; j++) { 1971 struct bio_vec *bi; 1972 bi = &b->bi_io_vec[j]; 1973 bi->bv_offset = 0; 1974 if (size > PAGE_SIZE) 1975 bi->bv_len = PAGE_SIZE; 1976 else 1977 bi->bv_len = size; 1978 size -= PAGE_SIZE; 1979 } 1980 } 1981 for (primary = 0; primary < conf->raid_disks * 2; primary++) 1982 if (r1_bio->bios[primary]->bi_end_io == end_sync_read && 1983 test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) { 1984 r1_bio->bios[primary]->bi_end_io = NULL; 1985 rdev_dec_pending(conf->mirrors[primary].rdev, mddev); 1986 break; 1987 } 1988 r1_bio->read_disk = primary; 1989 for (i = 0; i < conf->raid_disks * 2; i++) { 1990 int j; 1991 struct bio *pbio = r1_bio->bios[primary]; 1992 struct bio *sbio = r1_bio->bios[i]; 1993 1994 if (sbio->bi_end_io != end_sync_read) 1995 continue; 1996 1997 if (test_bit(BIO_UPTODATE, &sbio->bi_flags)) { 1998 for (j = vcnt; j-- ; ) { 1999 struct page *p, *s; 2000 p = pbio->bi_io_vec[j].bv_page; 2001 s = sbio->bi_io_vec[j].bv_page; 2002 if (memcmp(page_address(p), 2003 page_address(s), 2004 sbio->bi_io_vec[j].bv_len)) 2005 break; 2006 } 2007 } else 2008 j = 0; 2009 if (j >= 0) 2010 atomic64_add(r1_bio->sectors, &mddev->resync_mismatches); 2011 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery) 2012 && test_bit(BIO_UPTODATE, &sbio->bi_flags))) { 2013 /* No need to write to this device. */ 2014 sbio->bi_end_io = NULL; 2015 rdev_dec_pending(conf->mirrors[i].rdev, mddev); 2016 continue; 2017 } 2018 2019 bio_copy_data(sbio, pbio); 2020 } 2021 return 0; 2022 } 2023 2024 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio) 2025 { 2026 struct r1conf *conf = mddev->private; 2027 int i; 2028 int disks = conf->raid_disks * 2; 2029 struct bio *bio, *wbio; 2030 2031 bio = r1_bio->bios[r1_bio->read_disk]; 2032 2033 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) 2034 /* ouch - failed to read all of that. */ 2035 if (!fix_sync_read_error(r1_bio)) 2036 return; 2037 2038 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 2039 if (process_checks(r1_bio) < 0) 2040 return; 2041 /* 2042 * schedule writes 2043 */ 2044 atomic_set(&r1_bio->remaining, 1); 2045 for (i = 0; i < disks ; i++) { 2046 wbio = r1_bio->bios[i]; 2047 if (wbio->bi_end_io == NULL || 2048 (wbio->bi_end_io == end_sync_read && 2049 (i == r1_bio->read_disk || 2050 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery)))) 2051 continue; 2052 2053 wbio->bi_rw = WRITE; 2054 wbio->bi_end_io = end_sync_write; 2055 atomic_inc(&r1_bio->remaining); 2056 md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio)); 2057 2058 generic_make_request(wbio); 2059 } 2060 2061 if (atomic_dec_and_test(&r1_bio->remaining)) { 2062 /* if we're here, all write(s) have completed, so clean up */ 2063 int s = r1_bio->sectors; 2064 if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 2065 test_bit(R1BIO_WriteError, &r1_bio->state)) 2066 reschedule_retry(r1_bio); 2067 else { 2068 put_buf(r1_bio); 2069 md_done_sync(mddev, s, 1); 2070 } 2071 } 2072 } 2073 2074 /* 2075 * This is a kernel thread which: 2076 * 2077 * 1. Retries failed read operations on working mirrors. 2078 * 2. Updates the raid superblock when problems encounter. 2079 * 3. Performs writes following reads for array synchronising. 2080 */ 2081 2082 static void fix_read_error(struct r1conf *conf, int read_disk, 2083 sector_t sect, int sectors) 2084 { 2085 struct mddev *mddev = conf->mddev; 2086 while(sectors) { 2087 int s = sectors; 2088 int d = read_disk; 2089 int success = 0; 2090 int start; 2091 struct md_rdev *rdev; 2092 2093 if (s > (PAGE_SIZE>>9)) 2094 s = PAGE_SIZE >> 9; 2095 2096 do { 2097 /* Note: no rcu protection needed here 2098 * as this is synchronous in the raid1d thread 2099 * which is the thread that might remove 2100 * a device. If raid1d ever becomes multi-threaded.... 2101 */ 2102 sector_t first_bad; 2103 int bad_sectors; 2104 2105 rdev = conf->mirrors[d].rdev; 2106 if (rdev && 2107 (test_bit(In_sync, &rdev->flags) || 2108 (!test_bit(Faulty, &rdev->flags) && 2109 rdev->recovery_offset >= sect + s)) && 2110 is_badblock(rdev, sect, s, 2111 &first_bad, &bad_sectors) == 0 && 2112 sync_page_io(rdev, sect, s<<9, 2113 conf->tmppage, READ, false)) 2114 success = 1; 2115 else { 2116 d++; 2117 if (d == conf->raid_disks * 2) 2118 d = 0; 2119 } 2120 } while (!success && d != read_disk); 2121 2122 if (!success) { 2123 /* Cannot read from anywhere - mark it bad */ 2124 struct md_rdev *rdev = conf->mirrors[read_disk].rdev; 2125 if (!rdev_set_badblocks(rdev, sect, s, 0)) 2126 md_error(mddev, rdev); 2127 break; 2128 } 2129 /* write it back and re-read */ 2130 start = d; 2131 while (d != read_disk) { 2132 if (d==0) 2133 d = conf->raid_disks * 2; 2134 d--; 2135 rdev = conf->mirrors[d].rdev; 2136 if (rdev && 2137 test_bit(In_sync, &rdev->flags)) 2138 r1_sync_page_io(rdev, sect, s, 2139 conf->tmppage, WRITE); 2140 } 2141 d = start; 2142 while (d != read_disk) { 2143 char b[BDEVNAME_SIZE]; 2144 if (d==0) 2145 d = conf->raid_disks * 2; 2146 d--; 2147 rdev = conf->mirrors[d].rdev; 2148 if (rdev && 2149 test_bit(In_sync, &rdev->flags)) { 2150 if (r1_sync_page_io(rdev, sect, s, 2151 conf->tmppage, READ)) { 2152 atomic_add(s, &rdev->corrected_errors); 2153 printk(KERN_INFO 2154 "md/raid1:%s: read error corrected " 2155 "(%d sectors at %llu on %s)\n", 2156 mdname(mddev), s, 2157 (unsigned long long)(sect + 2158 rdev->data_offset), 2159 bdevname(rdev->bdev, b)); 2160 } 2161 } 2162 } 2163 sectors -= s; 2164 sect += s; 2165 } 2166 } 2167 2168 static int narrow_write_error(struct r1bio *r1_bio, int i) 2169 { 2170 struct mddev *mddev = r1_bio->mddev; 2171 struct r1conf *conf = mddev->private; 2172 struct md_rdev *rdev = conf->mirrors[i].rdev; 2173 2174 /* bio has the data to be written to device 'i' where 2175 * we just recently had a write error. 2176 * We repeatedly clone the bio and trim down to one block, 2177 * then try the write. Where the write fails we record 2178 * a bad block. 2179 * It is conceivable that the bio doesn't exactly align with 2180 * blocks. We must handle this somehow. 2181 * 2182 * We currently own a reference on the rdev. 2183 */ 2184 2185 int block_sectors; 2186 sector_t sector; 2187 int sectors; 2188 int sect_to_write = r1_bio->sectors; 2189 int ok = 1; 2190 2191 if (rdev->badblocks.shift < 0) 2192 return 0; 2193 2194 block_sectors = 1 << rdev->badblocks.shift; 2195 sector = r1_bio->sector; 2196 sectors = ((sector + block_sectors) 2197 & ~(sector_t)(block_sectors - 1)) 2198 - sector; 2199 2200 while (sect_to_write) { 2201 struct bio *wbio; 2202 if (sectors > sect_to_write) 2203 sectors = sect_to_write; 2204 /* Write at 'sector' for 'sectors'*/ 2205 2206 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) { 2207 unsigned vcnt = r1_bio->behind_page_count; 2208 struct bio_vec *vec = r1_bio->behind_bvecs; 2209 2210 while (!vec->bv_page) { 2211 vec++; 2212 vcnt--; 2213 } 2214 2215 wbio = bio_alloc_mddev(GFP_NOIO, vcnt, mddev); 2216 memcpy(wbio->bi_io_vec, vec, vcnt * sizeof(struct bio_vec)); 2217 2218 wbio->bi_vcnt = vcnt; 2219 } else { 2220 wbio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev); 2221 } 2222 2223 wbio->bi_rw = WRITE; 2224 wbio->bi_iter.bi_sector = r1_bio->sector; 2225 wbio->bi_iter.bi_size = r1_bio->sectors << 9; 2226 2227 bio_trim(wbio, sector - r1_bio->sector, sectors); 2228 wbio->bi_iter.bi_sector += rdev->data_offset; 2229 wbio->bi_bdev = rdev->bdev; 2230 if (submit_bio_wait(WRITE, wbio) == 0) 2231 /* failure! */ 2232 ok = rdev_set_badblocks(rdev, sector, 2233 sectors, 0) 2234 && ok; 2235 2236 bio_put(wbio); 2237 sect_to_write -= sectors; 2238 sector += sectors; 2239 sectors = block_sectors; 2240 } 2241 return ok; 2242 } 2243 2244 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio) 2245 { 2246 int m; 2247 int s = r1_bio->sectors; 2248 for (m = 0; m < conf->raid_disks * 2 ; m++) { 2249 struct md_rdev *rdev = conf->mirrors[m].rdev; 2250 struct bio *bio = r1_bio->bios[m]; 2251 if (bio->bi_end_io == NULL) 2252 continue; 2253 if (test_bit(BIO_UPTODATE, &bio->bi_flags) && 2254 test_bit(R1BIO_MadeGood, &r1_bio->state)) { 2255 rdev_clear_badblocks(rdev, r1_bio->sector, s, 0); 2256 } 2257 if (!test_bit(BIO_UPTODATE, &bio->bi_flags) && 2258 test_bit(R1BIO_WriteError, &r1_bio->state)) { 2259 if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0)) 2260 md_error(conf->mddev, rdev); 2261 } 2262 } 2263 put_buf(r1_bio); 2264 md_done_sync(conf->mddev, s, 1); 2265 } 2266 2267 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio) 2268 { 2269 int m; 2270 for (m = 0; m < conf->raid_disks * 2 ; m++) 2271 if (r1_bio->bios[m] == IO_MADE_GOOD) { 2272 struct md_rdev *rdev = conf->mirrors[m].rdev; 2273 rdev_clear_badblocks(rdev, 2274 r1_bio->sector, 2275 r1_bio->sectors, 0); 2276 rdev_dec_pending(rdev, conf->mddev); 2277 } else if (r1_bio->bios[m] != NULL) { 2278 /* This drive got a write error. We need to 2279 * narrow down and record precise write 2280 * errors. 2281 */ 2282 if (!narrow_write_error(r1_bio, m)) { 2283 md_error(conf->mddev, 2284 conf->mirrors[m].rdev); 2285 /* an I/O failed, we can't clear the bitmap */ 2286 set_bit(R1BIO_Degraded, &r1_bio->state); 2287 } 2288 rdev_dec_pending(conf->mirrors[m].rdev, 2289 conf->mddev); 2290 } 2291 if (test_bit(R1BIO_WriteError, &r1_bio->state)) 2292 close_write(r1_bio); 2293 raid_end_bio_io(r1_bio); 2294 } 2295 2296 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio) 2297 { 2298 int disk; 2299 int max_sectors; 2300 struct mddev *mddev = conf->mddev; 2301 struct bio *bio; 2302 char b[BDEVNAME_SIZE]; 2303 struct md_rdev *rdev; 2304 2305 clear_bit(R1BIO_ReadError, &r1_bio->state); 2306 /* we got a read error. Maybe the drive is bad. Maybe just 2307 * the block and we can fix it. 2308 * We freeze all other IO, and try reading the block from 2309 * other devices. When we find one, we re-write 2310 * and check it that fixes the read error. 2311 * This is all done synchronously while the array is 2312 * frozen 2313 */ 2314 if (mddev->ro == 0) { 2315 freeze_array(conf, 1); 2316 fix_read_error(conf, r1_bio->read_disk, 2317 r1_bio->sector, r1_bio->sectors); 2318 unfreeze_array(conf); 2319 } else 2320 md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev); 2321 rdev_dec_pending(conf->mirrors[r1_bio->read_disk].rdev, conf->mddev); 2322 2323 bio = r1_bio->bios[r1_bio->read_disk]; 2324 bdevname(bio->bi_bdev, b); 2325 read_more: 2326 disk = read_balance(conf, r1_bio, &max_sectors); 2327 if (disk == -1) { 2328 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O" 2329 " read error for block %llu\n", 2330 mdname(mddev), b, (unsigned long long)r1_bio->sector); 2331 raid_end_bio_io(r1_bio); 2332 } else { 2333 const unsigned long do_sync 2334 = r1_bio->master_bio->bi_rw & REQ_SYNC; 2335 if (bio) { 2336 r1_bio->bios[r1_bio->read_disk] = 2337 mddev->ro ? IO_BLOCKED : NULL; 2338 bio_put(bio); 2339 } 2340 r1_bio->read_disk = disk; 2341 bio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev); 2342 bio_trim(bio, r1_bio->sector - bio->bi_iter.bi_sector, 2343 max_sectors); 2344 r1_bio->bios[r1_bio->read_disk] = bio; 2345 rdev = conf->mirrors[disk].rdev; 2346 printk_ratelimited(KERN_ERR 2347 "md/raid1:%s: redirecting sector %llu" 2348 " to other mirror: %s\n", 2349 mdname(mddev), 2350 (unsigned long long)r1_bio->sector, 2351 bdevname(rdev->bdev, b)); 2352 bio->bi_iter.bi_sector = r1_bio->sector + rdev->data_offset; 2353 bio->bi_bdev = rdev->bdev; 2354 bio->bi_end_io = raid1_end_read_request; 2355 bio->bi_rw = READ | do_sync; 2356 bio->bi_private = r1_bio; 2357 if (max_sectors < r1_bio->sectors) { 2358 /* Drat - have to split this up more */ 2359 struct bio *mbio = r1_bio->master_bio; 2360 int sectors_handled = (r1_bio->sector + max_sectors 2361 - mbio->bi_iter.bi_sector); 2362 r1_bio->sectors = max_sectors; 2363 spin_lock_irq(&conf->device_lock); 2364 if (mbio->bi_phys_segments == 0) 2365 mbio->bi_phys_segments = 2; 2366 else 2367 mbio->bi_phys_segments++; 2368 spin_unlock_irq(&conf->device_lock); 2369 generic_make_request(bio); 2370 bio = NULL; 2371 2372 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO); 2373 2374 r1_bio->master_bio = mbio; 2375 r1_bio->sectors = bio_sectors(mbio) - sectors_handled; 2376 r1_bio->state = 0; 2377 set_bit(R1BIO_ReadError, &r1_bio->state); 2378 r1_bio->mddev = mddev; 2379 r1_bio->sector = mbio->bi_iter.bi_sector + 2380 sectors_handled; 2381 2382 goto read_more; 2383 } else 2384 generic_make_request(bio); 2385 } 2386 } 2387 2388 static void raid1d(struct md_thread *thread) 2389 { 2390 struct mddev *mddev = thread->mddev; 2391 struct r1bio *r1_bio; 2392 unsigned long flags; 2393 struct r1conf *conf = mddev->private; 2394 struct list_head *head = &conf->retry_list; 2395 struct blk_plug plug; 2396 2397 md_check_recovery(mddev); 2398 2399 blk_start_plug(&plug); 2400 for (;;) { 2401 2402 flush_pending_writes(conf); 2403 2404 spin_lock_irqsave(&conf->device_lock, flags); 2405 if (list_empty(head)) { 2406 spin_unlock_irqrestore(&conf->device_lock, flags); 2407 break; 2408 } 2409 r1_bio = list_entry(head->prev, struct r1bio, retry_list); 2410 list_del(head->prev); 2411 conf->nr_queued--; 2412 spin_unlock_irqrestore(&conf->device_lock, flags); 2413 2414 mddev = r1_bio->mddev; 2415 conf = mddev->private; 2416 if (test_bit(R1BIO_IsSync, &r1_bio->state)) { 2417 if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 2418 test_bit(R1BIO_WriteError, &r1_bio->state)) 2419 handle_sync_write_finished(conf, r1_bio); 2420 else 2421 sync_request_write(mddev, r1_bio); 2422 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 2423 test_bit(R1BIO_WriteError, &r1_bio->state)) 2424 handle_write_finished(conf, r1_bio); 2425 else if (test_bit(R1BIO_ReadError, &r1_bio->state)) 2426 handle_read_error(conf, r1_bio); 2427 else 2428 /* just a partial read to be scheduled from separate 2429 * context 2430 */ 2431 generic_make_request(r1_bio->bios[r1_bio->read_disk]); 2432 2433 cond_resched(); 2434 if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) 2435 md_check_recovery(mddev); 2436 } 2437 blk_finish_plug(&plug); 2438 } 2439 2440 2441 static int init_resync(struct r1conf *conf) 2442 { 2443 int buffs; 2444 2445 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE; 2446 BUG_ON(conf->r1buf_pool); 2447 conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free, 2448 conf->poolinfo); 2449 if (!conf->r1buf_pool) 2450 return -ENOMEM; 2451 conf->next_resync = 0; 2452 return 0; 2453 } 2454 2455 /* 2456 * perform a "sync" on one "block" 2457 * 2458 * We need to make sure that no normal I/O request - particularly write 2459 * requests - conflict with active sync requests. 2460 * 2461 * This is achieved by tracking pending requests and a 'barrier' concept 2462 * that can be installed to exclude normal IO requests. 2463 */ 2464 2465 static sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster) 2466 { 2467 struct r1conf *conf = mddev->private; 2468 struct r1bio *r1_bio; 2469 struct bio *bio; 2470 sector_t max_sector, nr_sectors; 2471 int disk = -1; 2472 int i; 2473 int wonly = -1; 2474 int write_targets = 0, read_targets = 0; 2475 sector_t sync_blocks; 2476 int still_degraded = 0; 2477 int good_sectors = RESYNC_SECTORS; 2478 int min_bad = 0; /* number of sectors that are bad in all devices */ 2479 2480 if (!conf->r1buf_pool) 2481 if (init_resync(conf)) 2482 return 0; 2483 2484 max_sector = mddev->dev_sectors; 2485 if (sector_nr >= max_sector) { 2486 /* If we aborted, we need to abort the 2487 * sync on the 'current' bitmap chunk (there will 2488 * only be one in raid1 resync. 2489 * We can find the current addess in mddev->curr_resync 2490 */ 2491 if (mddev->curr_resync < max_sector) /* aborted */ 2492 bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 2493 &sync_blocks, 1); 2494 else /* completed sync */ 2495 conf->fullsync = 0; 2496 2497 bitmap_close_sync(mddev->bitmap); 2498 close_sync(conf); 2499 return 0; 2500 } 2501 2502 if (mddev->bitmap == NULL && 2503 mddev->recovery_cp == MaxSector && 2504 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 2505 conf->fullsync == 0) { 2506 *skipped = 1; 2507 return max_sector - sector_nr; 2508 } 2509 /* before building a request, check if we can skip these blocks.. 2510 * This call the bitmap_start_sync doesn't actually record anything 2511 */ 2512 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) && 2513 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 2514 /* We can skip this block, and probably several more */ 2515 *skipped = 1; 2516 return sync_blocks; 2517 } 2518 /* 2519 * If there is non-resync activity waiting for a turn, 2520 * and resync is going fast enough, 2521 * then let it though before starting on this new sync request. 2522 */ 2523 if (!go_faster && conf->nr_waiting) 2524 msleep_interruptible(1000); 2525 2526 bitmap_cond_end_sync(mddev->bitmap, sector_nr); 2527 r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO); 2528 raise_barrier(conf); 2529 2530 conf->next_resync = sector_nr; 2531 2532 rcu_read_lock(); 2533 /* 2534 * If we get a correctably read error during resync or recovery, 2535 * we might want to read from a different device. So we 2536 * flag all drives that could conceivably be read from for READ, 2537 * and any others (which will be non-In_sync devices) for WRITE. 2538 * If a read fails, we try reading from something else for which READ 2539 * is OK. 2540 */ 2541 2542 r1_bio->mddev = mddev; 2543 r1_bio->sector = sector_nr; 2544 r1_bio->state = 0; 2545 set_bit(R1BIO_IsSync, &r1_bio->state); 2546 2547 for (i = 0; i < conf->raid_disks * 2; i++) { 2548 struct md_rdev *rdev; 2549 bio = r1_bio->bios[i]; 2550 bio_reset(bio); 2551 2552 rdev = rcu_dereference(conf->mirrors[i].rdev); 2553 if (rdev == NULL || 2554 test_bit(Faulty, &rdev->flags)) { 2555 if (i < conf->raid_disks) 2556 still_degraded = 1; 2557 } else if (!test_bit(In_sync, &rdev->flags)) { 2558 bio->bi_rw = WRITE; 2559 bio->bi_end_io = end_sync_write; 2560 write_targets ++; 2561 } else { 2562 /* may need to read from here */ 2563 sector_t first_bad = MaxSector; 2564 int bad_sectors; 2565 2566 if (is_badblock(rdev, sector_nr, good_sectors, 2567 &first_bad, &bad_sectors)) { 2568 if (first_bad > sector_nr) 2569 good_sectors = first_bad - sector_nr; 2570 else { 2571 bad_sectors -= (sector_nr - first_bad); 2572 if (min_bad == 0 || 2573 min_bad > bad_sectors) 2574 min_bad = bad_sectors; 2575 } 2576 } 2577 if (sector_nr < first_bad) { 2578 if (test_bit(WriteMostly, &rdev->flags)) { 2579 if (wonly < 0) 2580 wonly = i; 2581 } else { 2582 if (disk < 0) 2583 disk = i; 2584 } 2585 bio->bi_rw = READ; 2586 bio->bi_end_io = end_sync_read; 2587 read_targets++; 2588 } else if (!test_bit(WriteErrorSeen, &rdev->flags) && 2589 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && 2590 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) { 2591 /* 2592 * The device is suitable for reading (InSync), 2593 * but has bad block(s) here. Let's try to correct them, 2594 * if we are doing resync or repair. Otherwise, leave 2595 * this device alone for this sync request. 2596 */ 2597 bio->bi_rw = WRITE; 2598 bio->bi_end_io = end_sync_write; 2599 write_targets++; 2600 } 2601 } 2602 if (bio->bi_end_io) { 2603 atomic_inc(&rdev->nr_pending); 2604 bio->bi_iter.bi_sector = sector_nr + rdev->data_offset; 2605 bio->bi_bdev = rdev->bdev; 2606 bio->bi_private = r1_bio; 2607 } 2608 } 2609 rcu_read_unlock(); 2610 if (disk < 0) 2611 disk = wonly; 2612 r1_bio->read_disk = disk; 2613 2614 if (read_targets == 0 && min_bad > 0) { 2615 /* These sectors are bad on all InSync devices, so we 2616 * need to mark them bad on all write targets 2617 */ 2618 int ok = 1; 2619 for (i = 0 ; i < conf->raid_disks * 2 ; i++) 2620 if (r1_bio->bios[i]->bi_end_io == end_sync_write) { 2621 struct md_rdev *rdev = conf->mirrors[i].rdev; 2622 ok = rdev_set_badblocks(rdev, sector_nr, 2623 min_bad, 0 2624 ) && ok; 2625 } 2626 set_bit(MD_CHANGE_DEVS, &mddev->flags); 2627 *skipped = 1; 2628 put_buf(r1_bio); 2629 2630 if (!ok) { 2631 /* Cannot record the badblocks, so need to 2632 * abort the resync. 2633 * If there are multiple read targets, could just 2634 * fail the really bad ones ??? 2635 */ 2636 conf->recovery_disabled = mddev->recovery_disabled; 2637 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 2638 return 0; 2639 } else 2640 return min_bad; 2641 2642 } 2643 if (min_bad > 0 && min_bad < good_sectors) { 2644 /* only resync enough to reach the next bad->good 2645 * transition */ 2646 good_sectors = min_bad; 2647 } 2648 2649 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0) 2650 /* extra read targets are also write targets */ 2651 write_targets += read_targets-1; 2652 2653 if (write_targets == 0 || read_targets == 0) { 2654 /* There is nowhere to write, so all non-sync 2655 * drives must be failed - so we are finished 2656 */ 2657 sector_t rv; 2658 if (min_bad > 0) 2659 max_sector = sector_nr + min_bad; 2660 rv = max_sector - sector_nr; 2661 *skipped = 1; 2662 put_buf(r1_bio); 2663 return rv; 2664 } 2665 2666 if (max_sector > mddev->resync_max) 2667 max_sector = mddev->resync_max; /* Don't do IO beyond here */ 2668 if (max_sector > sector_nr + good_sectors) 2669 max_sector = sector_nr + good_sectors; 2670 nr_sectors = 0; 2671 sync_blocks = 0; 2672 do { 2673 struct page *page; 2674 int len = PAGE_SIZE; 2675 if (sector_nr + (len>>9) > max_sector) 2676 len = (max_sector - sector_nr) << 9; 2677 if (len == 0) 2678 break; 2679 if (sync_blocks == 0) { 2680 if (!bitmap_start_sync(mddev->bitmap, sector_nr, 2681 &sync_blocks, still_degraded) && 2682 !conf->fullsync && 2683 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 2684 break; 2685 BUG_ON(sync_blocks < (PAGE_SIZE>>9)); 2686 if ((len >> 9) > sync_blocks) 2687 len = sync_blocks<<9; 2688 } 2689 2690 for (i = 0 ; i < conf->raid_disks * 2; i++) { 2691 bio = r1_bio->bios[i]; 2692 if (bio->bi_end_io) { 2693 page = bio->bi_io_vec[bio->bi_vcnt].bv_page; 2694 if (bio_add_page(bio, page, len, 0) == 0) { 2695 /* stop here */ 2696 bio->bi_io_vec[bio->bi_vcnt].bv_page = page; 2697 while (i > 0) { 2698 i--; 2699 bio = r1_bio->bios[i]; 2700 if (bio->bi_end_io==NULL) 2701 continue; 2702 /* remove last page from this bio */ 2703 bio->bi_vcnt--; 2704 bio->bi_iter.bi_size -= len; 2705 bio->bi_flags &= ~(1<< BIO_SEG_VALID); 2706 } 2707 goto bio_full; 2708 } 2709 } 2710 } 2711 nr_sectors += len>>9; 2712 sector_nr += len>>9; 2713 sync_blocks -= (len>>9); 2714 } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES); 2715 bio_full: 2716 r1_bio->sectors = nr_sectors; 2717 2718 /* For a user-requested sync, we read all readable devices and do a 2719 * compare 2720 */ 2721 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 2722 atomic_set(&r1_bio->remaining, read_targets); 2723 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) { 2724 bio = r1_bio->bios[i]; 2725 if (bio->bi_end_io == end_sync_read) { 2726 read_targets--; 2727 md_sync_acct(bio->bi_bdev, nr_sectors); 2728 generic_make_request(bio); 2729 } 2730 } 2731 } else { 2732 atomic_set(&r1_bio->remaining, 1); 2733 bio = r1_bio->bios[r1_bio->read_disk]; 2734 md_sync_acct(bio->bi_bdev, nr_sectors); 2735 generic_make_request(bio); 2736 2737 } 2738 return nr_sectors; 2739 } 2740 2741 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks) 2742 { 2743 if (sectors) 2744 return sectors; 2745 2746 return mddev->dev_sectors; 2747 } 2748 2749 static struct r1conf *setup_conf(struct mddev *mddev) 2750 { 2751 struct r1conf *conf; 2752 int i; 2753 struct raid1_info *disk; 2754 struct md_rdev *rdev; 2755 int err = -ENOMEM; 2756 2757 conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL); 2758 if (!conf) 2759 goto abort; 2760 2761 conf->mirrors = kzalloc(sizeof(struct raid1_info) 2762 * mddev->raid_disks * 2, 2763 GFP_KERNEL); 2764 if (!conf->mirrors) 2765 goto abort; 2766 2767 conf->tmppage = alloc_page(GFP_KERNEL); 2768 if (!conf->tmppage) 2769 goto abort; 2770 2771 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL); 2772 if (!conf->poolinfo) 2773 goto abort; 2774 conf->poolinfo->raid_disks = mddev->raid_disks * 2; 2775 conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc, 2776 r1bio_pool_free, 2777 conf->poolinfo); 2778 if (!conf->r1bio_pool) 2779 goto abort; 2780 2781 conf->poolinfo->mddev = mddev; 2782 2783 err = -EINVAL; 2784 spin_lock_init(&conf->device_lock); 2785 rdev_for_each(rdev, mddev) { 2786 struct request_queue *q; 2787 int disk_idx = rdev->raid_disk; 2788 if (disk_idx >= mddev->raid_disks 2789 || disk_idx < 0) 2790 continue; 2791 if (test_bit(Replacement, &rdev->flags)) 2792 disk = conf->mirrors + mddev->raid_disks + disk_idx; 2793 else 2794 disk = conf->mirrors + disk_idx; 2795 2796 if (disk->rdev) 2797 goto abort; 2798 disk->rdev = rdev; 2799 q = bdev_get_queue(rdev->bdev); 2800 if (q->merge_bvec_fn) 2801 mddev->merge_check_needed = 1; 2802 2803 disk->head_position = 0; 2804 disk->seq_start = MaxSector; 2805 } 2806 conf->raid_disks = mddev->raid_disks; 2807 conf->mddev = mddev; 2808 INIT_LIST_HEAD(&conf->retry_list); 2809 2810 spin_lock_init(&conf->resync_lock); 2811 init_waitqueue_head(&conf->wait_barrier); 2812 2813 bio_list_init(&conf->pending_bio_list); 2814 conf->pending_count = 0; 2815 conf->recovery_disabled = mddev->recovery_disabled - 1; 2816 2817 conf->start_next_window = MaxSector; 2818 conf->current_window_requests = conf->next_window_requests = 0; 2819 2820 err = -EIO; 2821 for (i = 0; i < conf->raid_disks * 2; i++) { 2822 2823 disk = conf->mirrors + i; 2824 2825 if (i < conf->raid_disks && 2826 disk[conf->raid_disks].rdev) { 2827 /* This slot has a replacement. */ 2828 if (!disk->rdev) { 2829 /* No original, just make the replacement 2830 * a recovering spare 2831 */ 2832 disk->rdev = 2833 disk[conf->raid_disks].rdev; 2834 disk[conf->raid_disks].rdev = NULL; 2835 } else if (!test_bit(In_sync, &disk->rdev->flags)) 2836 /* Original is not in_sync - bad */ 2837 goto abort; 2838 } 2839 2840 if (!disk->rdev || 2841 !test_bit(In_sync, &disk->rdev->flags)) { 2842 disk->head_position = 0; 2843 if (disk->rdev && 2844 (disk->rdev->saved_raid_disk < 0)) 2845 conf->fullsync = 1; 2846 } 2847 } 2848 2849 err = -ENOMEM; 2850 conf->thread = md_register_thread(raid1d, mddev, "raid1"); 2851 if (!conf->thread) { 2852 printk(KERN_ERR 2853 "md/raid1:%s: couldn't allocate thread\n", 2854 mdname(mddev)); 2855 goto abort; 2856 } 2857 2858 return conf; 2859 2860 abort: 2861 if (conf) { 2862 if (conf->r1bio_pool) 2863 mempool_destroy(conf->r1bio_pool); 2864 kfree(conf->mirrors); 2865 safe_put_page(conf->tmppage); 2866 kfree(conf->poolinfo); 2867 kfree(conf); 2868 } 2869 return ERR_PTR(err); 2870 } 2871 2872 static int stop(struct mddev *mddev); 2873 static int run(struct mddev *mddev) 2874 { 2875 struct r1conf *conf; 2876 int i; 2877 struct md_rdev *rdev; 2878 int ret; 2879 bool discard_supported = false; 2880 2881 if (mddev->level != 1) { 2882 printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n", 2883 mdname(mddev), mddev->level); 2884 return -EIO; 2885 } 2886 if (mddev->reshape_position != MaxSector) { 2887 printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n", 2888 mdname(mddev)); 2889 return -EIO; 2890 } 2891 /* 2892 * copy the already verified devices into our private RAID1 2893 * bookkeeping area. [whatever we allocate in run(), 2894 * should be freed in stop()] 2895 */ 2896 if (mddev->private == NULL) 2897 conf = setup_conf(mddev); 2898 else 2899 conf = mddev->private; 2900 2901 if (IS_ERR(conf)) 2902 return PTR_ERR(conf); 2903 2904 if (mddev->queue) 2905 blk_queue_max_write_same_sectors(mddev->queue, 0); 2906 2907 rdev_for_each(rdev, mddev) { 2908 if (!mddev->gendisk) 2909 continue; 2910 disk_stack_limits(mddev->gendisk, rdev->bdev, 2911 rdev->data_offset << 9); 2912 if (blk_queue_discard(bdev_get_queue(rdev->bdev))) 2913 discard_supported = true; 2914 } 2915 2916 mddev->degraded = 0; 2917 for (i=0; i < conf->raid_disks; i++) 2918 if (conf->mirrors[i].rdev == NULL || 2919 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) || 2920 test_bit(Faulty, &conf->mirrors[i].rdev->flags)) 2921 mddev->degraded++; 2922 2923 if (conf->raid_disks - mddev->degraded == 1) 2924 mddev->recovery_cp = MaxSector; 2925 2926 if (mddev->recovery_cp != MaxSector) 2927 printk(KERN_NOTICE "md/raid1:%s: not clean" 2928 " -- starting background reconstruction\n", 2929 mdname(mddev)); 2930 printk(KERN_INFO 2931 "md/raid1:%s: active with %d out of %d mirrors\n", 2932 mdname(mddev), mddev->raid_disks - mddev->degraded, 2933 mddev->raid_disks); 2934 2935 /* 2936 * Ok, everything is just fine now 2937 */ 2938 mddev->thread = conf->thread; 2939 conf->thread = NULL; 2940 mddev->private = conf; 2941 2942 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0)); 2943 2944 if (mddev->queue) { 2945 mddev->queue->backing_dev_info.congested_fn = raid1_congested; 2946 mddev->queue->backing_dev_info.congested_data = mddev; 2947 blk_queue_merge_bvec(mddev->queue, raid1_mergeable_bvec); 2948 2949 if (discard_supported) 2950 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, 2951 mddev->queue); 2952 else 2953 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, 2954 mddev->queue); 2955 } 2956 2957 ret = md_integrity_register(mddev); 2958 if (ret) 2959 stop(mddev); 2960 return ret; 2961 } 2962 2963 static int stop(struct mddev *mddev) 2964 { 2965 struct r1conf *conf = mddev->private; 2966 struct bitmap *bitmap = mddev->bitmap; 2967 2968 /* wait for behind writes to complete */ 2969 if (bitmap && atomic_read(&bitmap->behind_writes) > 0) { 2970 printk(KERN_INFO "md/raid1:%s: behind writes in progress - waiting to stop.\n", 2971 mdname(mddev)); 2972 /* need to kick something here to make sure I/O goes? */ 2973 wait_event(bitmap->behind_wait, 2974 atomic_read(&bitmap->behind_writes) == 0); 2975 } 2976 2977 freeze_array(conf, 0); 2978 unfreeze_array(conf); 2979 2980 md_unregister_thread(&mddev->thread); 2981 if (conf->r1bio_pool) 2982 mempool_destroy(conf->r1bio_pool); 2983 kfree(conf->mirrors); 2984 safe_put_page(conf->tmppage); 2985 kfree(conf->poolinfo); 2986 kfree(conf); 2987 mddev->private = NULL; 2988 return 0; 2989 } 2990 2991 static int raid1_resize(struct mddev *mddev, sector_t sectors) 2992 { 2993 /* no resync is happening, and there is enough space 2994 * on all devices, so we can resize. 2995 * We need to make sure resync covers any new space. 2996 * If the array is shrinking we should possibly wait until 2997 * any io in the removed space completes, but it hardly seems 2998 * worth it. 2999 */ 3000 sector_t newsize = raid1_size(mddev, sectors, 0); 3001 if (mddev->external_size && 3002 mddev->array_sectors > newsize) 3003 return -EINVAL; 3004 if (mddev->bitmap) { 3005 int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0); 3006 if (ret) 3007 return ret; 3008 } 3009 md_set_array_sectors(mddev, newsize); 3010 set_capacity(mddev->gendisk, mddev->array_sectors); 3011 revalidate_disk(mddev->gendisk); 3012 if (sectors > mddev->dev_sectors && 3013 mddev->recovery_cp > mddev->dev_sectors) { 3014 mddev->recovery_cp = mddev->dev_sectors; 3015 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3016 } 3017 mddev->dev_sectors = sectors; 3018 mddev->resync_max_sectors = sectors; 3019 return 0; 3020 } 3021 3022 static int raid1_reshape(struct mddev *mddev) 3023 { 3024 /* We need to: 3025 * 1/ resize the r1bio_pool 3026 * 2/ resize conf->mirrors 3027 * 3028 * We allocate a new r1bio_pool if we can. 3029 * Then raise a device barrier and wait until all IO stops. 3030 * Then resize conf->mirrors and swap in the new r1bio pool. 3031 * 3032 * At the same time, we "pack" the devices so that all the missing 3033 * devices have the higher raid_disk numbers. 3034 */ 3035 mempool_t *newpool, *oldpool; 3036 struct pool_info *newpoolinfo; 3037 struct raid1_info *newmirrors; 3038 struct r1conf *conf = mddev->private; 3039 int cnt, raid_disks; 3040 unsigned long flags; 3041 int d, d2, err; 3042 3043 /* Cannot change chunk_size, layout, or level */ 3044 if (mddev->chunk_sectors != mddev->new_chunk_sectors || 3045 mddev->layout != mddev->new_layout || 3046 mddev->level != mddev->new_level) { 3047 mddev->new_chunk_sectors = mddev->chunk_sectors; 3048 mddev->new_layout = mddev->layout; 3049 mddev->new_level = mddev->level; 3050 return -EINVAL; 3051 } 3052 3053 err = md_allow_write(mddev); 3054 if (err) 3055 return err; 3056 3057 raid_disks = mddev->raid_disks + mddev->delta_disks; 3058 3059 if (raid_disks < conf->raid_disks) { 3060 cnt=0; 3061 for (d= 0; d < conf->raid_disks; d++) 3062 if (conf->mirrors[d].rdev) 3063 cnt++; 3064 if (cnt > raid_disks) 3065 return -EBUSY; 3066 } 3067 3068 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL); 3069 if (!newpoolinfo) 3070 return -ENOMEM; 3071 newpoolinfo->mddev = mddev; 3072 newpoolinfo->raid_disks = raid_disks * 2; 3073 3074 newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc, 3075 r1bio_pool_free, newpoolinfo); 3076 if (!newpool) { 3077 kfree(newpoolinfo); 3078 return -ENOMEM; 3079 } 3080 newmirrors = kzalloc(sizeof(struct raid1_info) * raid_disks * 2, 3081 GFP_KERNEL); 3082 if (!newmirrors) { 3083 kfree(newpoolinfo); 3084 mempool_destroy(newpool); 3085 return -ENOMEM; 3086 } 3087 3088 freeze_array(conf, 0); 3089 3090 /* ok, everything is stopped */ 3091 oldpool = conf->r1bio_pool; 3092 conf->r1bio_pool = newpool; 3093 3094 for (d = d2 = 0; d < conf->raid_disks; d++) { 3095 struct md_rdev *rdev = conf->mirrors[d].rdev; 3096 if (rdev && rdev->raid_disk != d2) { 3097 sysfs_unlink_rdev(mddev, rdev); 3098 rdev->raid_disk = d2; 3099 sysfs_unlink_rdev(mddev, rdev); 3100 if (sysfs_link_rdev(mddev, rdev)) 3101 printk(KERN_WARNING 3102 "md/raid1:%s: cannot register rd%d\n", 3103 mdname(mddev), rdev->raid_disk); 3104 } 3105 if (rdev) 3106 newmirrors[d2++].rdev = rdev; 3107 } 3108 kfree(conf->mirrors); 3109 conf->mirrors = newmirrors; 3110 kfree(conf->poolinfo); 3111 conf->poolinfo = newpoolinfo; 3112 3113 spin_lock_irqsave(&conf->device_lock, flags); 3114 mddev->degraded += (raid_disks - conf->raid_disks); 3115 spin_unlock_irqrestore(&conf->device_lock, flags); 3116 conf->raid_disks = mddev->raid_disks = raid_disks; 3117 mddev->delta_disks = 0; 3118 3119 unfreeze_array(conf); 3120 3121 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3122 md_wakeup_thread(mddev->thread); 3123 3124 mempool_destroy(oldpool); 3125 return 0; 3126 } 3127 3128 static void raid1_quiesce(struct mddev *mddev, int state) 3129 { 3130 struct r1conf *conf = mddev->private; 3131 3132 switch(state) { 3133 case 2: /* wake for suspend */ 3134 wake_up(&conf->wait_barrier); 3135 break; 3136 case 1: 3137 freeze_array(conf, 0); 3138 break; 3139 case 0: 3140 unfreeze_array(conf); 3141 break; 3142 } 3143 } 3144 3145 static void *raid1_takeover(struct mddev *mddev) 3146 { 3147 /* raid1 can take over: 3148 * raid5 with 2 devices, any layout or chunk size 3149 */ 3150 if (mddev->level == 5 && mddev->raid_disks == 2) { 3151 struct r1conf *conf; 3152 mddev->new_level = 1; 3153 mddev->new_layout = 0; 3154 mddev->new_chunk_sectors = 0; 3155 conf = setup_conf(mddev); 3156 if (!IS_ERR(conf)) 3157 /* Array must appear to be quiesced */ 3158 conf->array_frozen = 1; 3159 return conf; 3160 } 3161 return ERR_PTR(-EINVAL); 3162 } 3163 3164 static struct md_personality raid1_personality = 3165 { 3166 .name = "raid1", 3167 .level = 1, 3168 .owner = THIS_MODULE, 3169 .make_request = make_request, 3170 .run = run, 3171 .stop = stop, 3172 .status = status, 3173 .error_handler = error, 3174 .hot_add_disk = raid1_add_disk, 3175 .hot_remove_disk= raid1_remove_disk, 3176 .spare_active = raid1_spare_active, 3177 .sync_request = sync_request, 3178 .resize = raid1_resize, 3179 .size = raid1_size, 3180 .check_reshape = raid1_reshape, 3181 .quiesce = raid1_quiesce, 3182 .takeover = raid1_takeover, 3183 }; 3184 3185 static int __init raid_init(void) 3186 { 3187 return register_md_personality(&raid1_personality); 3188 } 3189 3190 static void raid_exit(void) 3191 { 3192 unregister_md_personality(&raid1_personality); 3193 } 3194 3195 module_init(raid_init); 3196 module_exit(raid_exit); 3197 MODULE_LICENSE("GPL"); 3198 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD"); 3199 MODULE_ALIAS("md-personality-3"); /* RAID1 */ 3200 MODULE_ALIAS("md-raid1"); 3201 MODULE_ALIAS("md-level-1"); 3202 3203 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR); 3204