xref: /openbmc/linux/drivers/md/raid1.c (revision 5e2c7a36)
1 /*
2  * raid1.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5  *
6  * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7  *
8  * RAID-1 management functions.
9  *
10  * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11  *
12  * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
13  * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14  *
15  * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16  * bitmapped intelligence in resync:
17  *
18  *      - bitmap marked during normal i/o
19  *      - bitmap used to skip nondirty blocks during sync
20  *
21  * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22  * - persistent bitmap code
23  *
24  * This program is free software; you can redistribute it and/or modify
25  * it under the terms of the GNU General Public License as published by
26  * the Free Software Foundation; either version 2, or (at your option)
27  * any later version.
28  *
29  * You should have received a copy of the GNU General Public License
30  * (for example /usr/src/linux/COPYING); if not, write to the Free
31  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32  */
33 
34 #include <linux/slab.h>
35 #include <linux/delay.h>
36 #include <linux/blkdev.h>
37 #include <linux/module.h>
38 #include <linux/seq_file.h>
39 #include <linux/ratelimit.h>
40 #include "md.h"
41 #include "raid1.h"
42 #include "bitmap.h"
43 
44 /*
45  * Number of guaranteed r1bios in case of extreme VM load:
46  */
47 #define	NR_RAID1_BIOS 256
48 
49 /* when we get a read error on a read-only array, we redirect to another
50  * device without failing the first device, or trying to over-write to
51  * correct the read error.  To keep track of bad blocks on a per-bio
52  * level, we store IO_BLOCKED in the appropriate 'bios' pointer
53  */
54 #define IO_BLOCKED ((struct bio *)1)
55 /* When we successfully write to a known bad-block, we need to remove the
56  * bad-block marking which must be done from process context.  So we record
57  * the success by setting devs[n].bio to IO_MADE_GOOD
58  */
59 #define IO_MADE_GOOD ((struct bio *)2)
60 
61 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
62 
63 /* When there are this many requests queue to be written by
64  * the raid1 thread, we become 'congested' to provide back-pressure
65  * for writeback.
66  */
67 static int max_queued_requests = 1024;
68 
69 static void allow_barrier(struct r1conf *conf, sector_t start_next_window,
70 			  sector_t bi_sector);
71 static void lower_barrier(struct r1conf *conf);
72 
73 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
74 {
75 	struct pool_info *pi = data;
76 	int size = offsetof(struct r1bio, bios[pi->raid_disks]);
77 
78 	/* allocate a r1bio with room for raid_disks entries in the bios array */
79 	return kzalloc(size, gfp_flags);
80 }
81 
82 static void r1bio_pool_free(void *r1_bio, void *data)
83 {
84 	kfree(r1_bio);
85 }
86 
87 #define RESYNC_BLOCK_SIZE (64*1024)
88 #define RESYNC_DEPTH 32
89 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
90 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
91 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
92 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
93 #define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
94 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
95 #define NEXT_NORMALIO_DISTANCE (3 * RESYNC_WINDOW_SECTORS)
96 
97 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
98 {
99 	struct pool_info *pi = data;
100 	struct r1bio *r1_bio;
101 	struct bio *bio;
102 	int need_pages;
103 	int i, j;
104 
105 	r1_bio = r1bio_pool_alloc(gfp_flags, pi);
106 	if (!r1_bio)
107 		return NULL;
108 
109 	/*
110 	 * Allocate bios : 1 for reading, n-1 for writing
111 	 */
112 	for (j = pi->raid_disks ; j-- ; ) {
113 		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
114 		if (!bio)
115 			goto out_free_bio;
116 		r1_bio->bios[j] = bio;
117 	}
118 	/*
119 	 * Allocate RESYNC_PAGES data pages and attach them to
120 	 * the first bio.
121 	 * If this is a user-requested check/repair, allocate
122 	 * RESYNC_PAGES for each bio.
123 	 */
124 	if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
125 		need_pages = pi->raid_disks;
126 	else
127 		need_pages = 1;
128 	for (j = 0; j < need_pages; j++) {
129 		bio = r1_bio->bios[j];
130 		bio->bi_vcnt = RESYNC_PAGES;
131 
132 		if (bio_alloc_pages(bio, gfp_flags))
133 			goto out_free_pages;
134 	}
135 	/* If not user-requests, copy the page pointers to all bios */
136 	if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
137 		for (i=0; i<RESYNC_PAGES ; i++)
138 			for (j=1; j<pi->raid_disks; j++)
139 				r1_bio->bios[j]->bi_io_vec[i].bv_page =
140 					r1_bio->bios[0]->bi_io_vec[i].bv_page;
141 	}
142 
143 	r1_bio->master_bio = NULL;
144 
145 	return r1_bio;
146 
147 out_free_pages:
148 	while (--j >= 0)
149 		bio_free_pages(r1_bio->bios[j]);
150 
151 out_free_bio:
152 	while (++j < pi->raid_disks)
153 		bio_put(r1_bio->bios[j]);
154 	r1bio_pool_free(r1_bio, data);
155 	return NULL;
156 }
157 
158 static void r1buf_pool_free(void *__r1_bio, void *data)
159 {
160 	struct pool_info *pi = data;
161 	int i,j;
162 	struct r1bio *r1bio = __r1_bio;
163 
164 	for (i = 0; i < RESYNC_PAGES; i++)
165 		for (j = pi->raid_disks; j-- ;) {
166 			if (j == 0 ||
167 			    r1bio->bios[j]->bi_io_vec[i].bv_page !=
168 			    r1bio->bios[0]->bi_io_vec[i].bv_page)
169 				safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
170 		}
171 	for (i=0 ; i < pi->raid_disks; i++)
172 		bio_put(r1bio->bios[i]);
173 
174 	r1bio_pool_free(r1bio, data);
175 }
176 
177 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
178 {
179 	int i;
180 
181 	for (i = 0; i < conf->raid_disks * 2; i++) {
182 		struct bio **bio = r1_bio->bios + i;
183 		if (!BIO_SPECIAL(*bio))
184 			bio_put(*bio);
185 		*bio = NULL;
186 	}
187 }
188 
189 static void free_r1bio(struct r1bio *r1_bio)
190 {
191 	struct r1conf *conf = r1_bio->mddev->private;
192 
193 	put_all_bios(conf, r1_bio);
194 	mempool_free(r1_bio, conf->r1bio_pool);
195 }
196 
197 static void put_buf(struct r1bio *r1_bio)
198 {
199 	struct r1conf *conf = r1_bio->mddev->private;
200 	int i;
201 
202 	for (i = 0; i < conf->raid_disks * 2; i++) {
203 		struct bio *bio = r1_bio->bios[i];
204 		if (bio->bi_end_io)
205 			rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
206 	}
207 
208 	mempool_free(r1_bio, conf->r1buf_pool);
209 
210 	lower_barrier(conf);
211 }
212 
213 static void reschedule_retry(struct r1bio *r1_bio)
214 {
215 	unsigned long flags;
216 	struct mddev *mddev = r1_bio->mddev;
217 	struct r1conf *conf = mddev->private;
218 
219 	spin_lock_irqsave(&conf->device_lock, flags);
220 	list_add(&r1_bio->retry_list, &conf->retry_list);
221 	conf->nr_queued ++;
222 	spin_unlock_irqrestore(&conf->device_lock, flags);
223 
224 	wake_up(&conf->wait_barrier);
225 	md_wakeup_thread(mddev->thread);
226 }
227 
228 /*
229  * raid_end_bio_io() is called when we have finished servicing a mirrored
230  * operation and are ready to return a success/failure code to the buffer
231  * cache layer.
232  */
233 static void call_bio_endio(struct r1bio *r1_bio)
234 {
235 	struct bio *bio = r1_bio->master_bio;
236 	int done;
237 	struct r1conf *conf = r1_bio->mddev->private;
238 	sector_t start_next_window = r1_bio->start_next_window;
239 	sector_t bi_sector = bio->bi_iter.bi_sector;
240 
241 	if (bio->bi_phys_segments) {
242 		unsigned long flags;
243 		spin_lock_irqsave(&conf->device_lock, flags);
244 		bio->bi_phys_segments--;
245 		done = (bio->bi_phys_segments == 0);
246 		spin_unlock_irqrestore(&conf->device_lock, flags);
247 		/*
248 		 * make_request() might be waiting for
249 		 * bi_phys_segments to decrease
250 		 */
251 		wake_up(&conf->wait_barrier);
252 	} else
253 		done = 1;
254 
255 	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
256 		bio->bi_error = -EIO;
257 
258 	if (done) {
259 		bio_endio(bio);
260 		/*
261 		 * Wake up any possible resync thread that waits for the device
262 		 * to go idle.
263 		 */
264 		allow_barrier(conf, start_next_window, bi_sector);
265 	}
266 }
267 
268 static void raid_end_bio_io(struct r1bio *r1_bio)
269 {
270 	struct bio *bio = r1_bio->master_bio;
271 
272 	/* if nobody has done the final endio yet, do it now */
273 	if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
274 		pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
275 			 (bio_data_dir(bio) == WRITE) ? "write" : "read",
276 			 (unsigned long long) bio->bi_iter.bi_sector,
277 			 (unsigned long long) bio_end_sector(bio) - 1);
278 
279 		call_bio_endio(r1_bio);
280 	}
281 	free_r1bio(r1_bio);
282 }
283 
284 /*
285  * Update disk head position estimator based on IRQ completion info.
286  */
287 static inline void update_head_pos(int disk, struct r1bio *r1_bio)
288 {
289 	struct r1conf *conf = r1_bio->mddev->private;
290 
291 	conf->mirrors[disk].head_position =
292 		r1_bio->sector + (r1_bio->sectors);
293 }
294 
295 /*
296  * Find the disk number which triggered given bio
297  */
298 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
299 {
300 	int mirror;
301 	struct r1conf *conf = r1_bio->mddev->private;
302 	int raid_disks = conf->raid_disks;
303 
304 	for (mirror = 0; mirror < raid_disks * 2; mirror++)
305 		if (r1_bio->bios[mirror] == bio)
306 			break;
307 
308 	BUG_ON(mirror == raid_disks * 2);
309 	update_head_pos(mirror, r1_bio);
310 
311 	return mirror;
312 }
313 
314 static void raid1_end_read_request(struct bio *bio)
315 {
316 	int uptodate = !bio->bi_error;
317 	struct r1bio *r1_bio = bio->bi_private;
318 	struct r1conf *conf = r1_bio->mddev->private;
319 	struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev;
320 
321 	/*
322 	 * this branch is our 'one mirror IO has finished' event handler:
323 	 */
324 	update_head_pos(r1_bio->read_disk, r1_bio);
325 
326 	if (uptodate)
327 		set_bit(R1BIO_Uptodate, &r1_bio->state);
328 	else {
329 		/* If all other devices have failed, we want to return
330 		 * the error upwards rather than fail the last device.
331 		 * Here we redefine "uptodate" to mean "Don't want to retry"
332 		 */
333 		unsigned long flags;
334 		spin_lock_irqsave(&conf->device_lock, flags);
335 		if (r1_bio->mddev->degraded == conf->raid_disks ||
336 		    (r1_bio->mddev->degraded == conf->raid_disks-1 &&
337 		     test_bit(In_sync, &rdev->flags)))
338 			uptodate = 1;
339 		spin_unlock_irqrestore(&conf->device_lock, flags);
340 	}
341 
342 	if (uptodate) {
343 		raid_end_bio_io(r1_bio);
344 		rdev_dec_pending(rdev, conf->mddev);
345 	} else {
346 		/*
347 		 * oops, read error:
348 		 */
349 		char b[BDEVNAME_SIZE];
350 		pr_err_ratelimited("md/raid1:%s: %s: rescheduling sector %llu\n",
351 				   mdname(conf->mddev),
352 				   bdevname(rdev->bdev, b),
353 				   (unsigned long long)r1_bio->sector);
354 		set_bit(R1BIO_ReadError, &r1_bio->state);
355 		reschedule_retry(r1_bio);
356 		/* don't drop the reference on read_disk yet */
357 	}
358 }
359 
360 static void close_write(struct r1bio *r1_bio)
361 {
362 	/* it really is the end of this request */
363 	if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
364 		/* free extra copy of the data pages */
365 		int i = r1_bio->behind_page_count;
366 		while (i--)
367 			safe_put_page(r1_bio->behind_bvecs[i].bv_page);
368 		kfree(r1_bio->behind_bvecs);
369 		r1_bio->behind_bvecs = NULL;
370 	}
371 	/* clear the bitmap if all writes complete successfully */
372 	bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
373 			r1_bio->sectors,
374 			!test_bit(R1BIO_Degraded, &r1_bio->state),
375 			test_bit(R1BIO_BehindIO, &r1_bio->state));
376 	md_write_end(r1_bio->mddev);
377 }
378 
379 static void r1_bio_write_done(struct r1bio *r1_bio)
380 {
381 	if (!atomic_dec_and_test(&r1_bio->remaining))
382 		return;
383 
384 	if (test_bit(R1BIO_WriteError, &r1_bio->state))
385 		reschedule_retry(r1_bio);
386 	else {
387 		close_write(r1_bio);
388 		if (test_bit(R1BIO_MadeGood, &r1_bio->state))
389 			reschedule_retry(r1_bio);
390 		else
391 			raid_end_bio_io(r1_bio);
392 	}
393 }
394 
395 static void raid1_end_write_request(struct bio *bio)
396 {
397 	struct r1bio *r1_bio = bio->bi_private;
398 	int behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
399 	struct r1conf *conf = r1_bio->mddev->private;
400 	struct bio *to_put = NULL;
401 	int mirror = find_bio_disk(r1_bio, bio);
402 	struct md_rdev *rdev = conf->mirrors[mirror].rdev;
403 	bool discard_error;
404 
405 	discard_error = bio->bi_error && bio_op(bio) == REQ_OP_DISCARD;
406 
407 	/*
408 	 * 'one mirror IO has finished' event handler:
409 	 */
410 	if (bio->bi_error && !discard_error) {
411 		set_bit(WriteErrorSeen,	&rdev->flags);
412 		if (!test_and_set_bit(WantReplacement, &rdev->flags))
413 			set_bit(MD_RECOVERY_NEEDED, &
414 				conf->mddev->recovery);
415 
416 		set_bit(R1BIO_WriteError, &r1_bio->state);
417 	} else {
418 		/*
419 		 * Set R1BIO_Uptodate in our master bio, so that we
420 		 * will return a good error code for to the higher
421 		 * levels even if IO on some other mirrored buffer
422 		 * fails.
423 		 *
424 		 * The 'master' represents the composite IO operation
425 		 * to user-side. So if something waits for IO, then it
426 		 * will wait for the 'master' bio.
427 		 */
428 		sector_t first_bad;
429 		int bad_sectors;
430 
431 		r1_bio->bios[mirror] = NULL;
432 		to_put = bio;
433 		/*
434 		 * Do not set R1BIO_Uptodate if the current device is
435 		 * rebuilding or Faulty. This is because we cannot use
436 		 * such device for properly reading the data back (we could
437 		 * potentially use it, if the current write would have felt
438 		 * before rdev->recovery_offset, but for simplicity we don't
439 		 * check this here.
440 		 */
441 		if (test_bit(In_sync, &rdev->flags) &&
442 		    !test_bit(Faulty, &rdev->flags))
443 			set_bit(R1BIO_Uptodate, &r1_bio->state);
444 
445 		/* Maybe we can clear some bad blocks. */
446 		if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
447 				&first_bad, &bad_sectors) && !discard_error) {
448 			r1_bio->bios[mirror] = IO_MADE_GOOD;
449 			set_bit(R1BIO_MadeGood, &r1_bio->state);
450 		}
451 	}
452 
453 	if (behind) {
454 		if (test_bit(WriteMostly, &rdev->flags))
455 			atomic_dec(&r1_bio->behind_remaining);
456 
457 		/*
458 		 * In behind mode, we ACK the master bio once the I/O
459 		 * has safely reached all non-writemostly
460 		 * disks. Setting the Returned bit ensures that this
461 		 * gets done only once -- we don't ever want to return
462 		 * -EIO here, instead we'll wait
463 		 */
464 		if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
465 		    test_bit(R1BIO_Uptodate, &r1_bio->state)) {
466 			/* Maybe we can return now */
467 			if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
468 				struct bio *mbio = r1_bio->master_bio;
469 				pr_debug("raid1: behind end write sectors"
470 					 " %llu-%llu\n",
471 					 (unsigned long long) mbio->bi_iter.bi_sector,
472 					 (unsigned long long) bio_end_sector(mbio) - 1);
473 				call_bio_endio(r1_bio);
474 			}
475 		}
476 	}
477 	if (r1_bio->bios[mirror] == NULL)
478 		rdev_dec_pending(rdev, conf->mddev);
479 
480 	/*
481 	 * Let's see if all mirrored write operations have finished
482 	 * already.
483 	 */
484 	r1_bio_write_done(r1_bio);
485 
486 	if (to_put)
487 		bio_put(to_put);
488 }
489 
490 /*
491  * This routine returns the disk from which the requested read should
492  * be done. There is a per-array 'next expected sequential IO' sector
493  * number - if this matches on the next IO then we use the last disk.
494  * There is also a per-disk 'last know head position' sector that is
495  * maintained from IRQ contexts, both the normal and the resync IO
496  * completion handlers update this position correctly. If there is no
497  * perfect sequential match then we pick the disk whose head is closest.
498  *
499  * If there are 2 mirrors in the same 2 devices, performance degrades
500  * because position is mirror, not device based.
501  *
502  * The rdev for the device selected will have nr_pending incremented.
503  */
504 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
505 {
506 	const sector_t this_sector = r1_bio->sector;
507 	int sectors;
508 	int best_good_sectors;
509 	int best_disk, best_dist_disk, best_pending_disk;
510 	int has_nonrot_disk;
511 	int disk;
512 	sector_t best_dist;
513 	unsigned int min_pending;
514 	struct md_rdev *rdev;
515 	int choose_first;
516 	int choose_next_idle;
517 
518 	rcu_read_lock();
519 	/*
520 	 * Check if we can balance. We can balance on the whole
521 	 * device if no resync is going on, or below the resync window.
522 	 * We take the first readable disk when above the resync window.
523 	 */
524  retry:
525 	sectors = r1_bio->sectors;
526 	best_disk = -1;
527 	best_dist_disk = -1;
528 	best_dist = MaxSector;
529 	best_pending_disk = -1;
530 	min_pending = UINT_MAX;
531 	best_good_sectors = 0;
532 	has_nonrot_disk = 0;
533 	choose_next_idle = 0;
534 
535 	if ((conf->mddev->recovery_cp < this_sector + sectors) ||
536 	    (mddev_is_clustered(conf->mddev) &&
537 	    md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
538 		    this_sector + sectors)))
539 		choose_first = 1;
540 	else
541 		choose_first = 0;
542 
543 	for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
544 		sector_t dist;
545 		sector_t first_bad;
546 		int bad_sectors;
547 		unsigned int pending;
548 		bool nonrot;
549 
550 		rdev = rcu_dereference(conf->mirrors[disk].rdev);
551 		if (r1_bio->bios[disk] == IO_BLOCKED
552 		    || rdev == NULL
553 		    || test_bit(Faulty, &rdev->flags))
554 			continue;
555 		if (!test_bit(In_sync, &rdev->flags) &&
556 		    rdev->recovery_offset < this_sector + sectors)
557 			continue;
558 		if (test_bit(WriteMostly, &rdev->flags)) {
559 			/* Don't balance among write-mostly, just
560 			 * use the first as a last resort */
561 			if (best_dist_disk < 0) {
562 				if (is_badblock(rdev, this_sector, sectors,
563 						&first_bad, &bad_sectors)) {
564 					if (first_bad <= this_sector)
565 						/* Cannot use this */
566 						continue;
567 					best_good_sectors = first_bad - this_sector;
568 				} else
569 					best_good_sectors = sectors;
570 				best_dist_disk = disk;
571 				best_pending_disk = disk;
572 			}
573 			continue;
574 		}
575 		/* This is a reasonable device to use.  It might
576 		 * even be best.
577 		 */
578 		if (is_badblock(rdev, this_sector, sectors,
579 				&first_bad, &bad_sectors)) {
580 			if (best_dist < MaxSector)
581 				/* already have a better device */
582 				continue;
583 			if (first_bad <= this_sector) {
584 				/* cannot read here. If this is the 'primary'
585 				 * device, then we must not read beyond
586 				 * bad_sectors from another device..
587 				 */
588 				bad_sectors -= (this_sector - first_bad);
589 				if (choose_first && sectors > bad_sectors)
590 					sectors = bad_sectors;
591 				if (best_good_sectors > sectors)
592 					best_good_sectors = sectors;
593 
594 			} else {
595 				sector_t good_sectors = first_bad - this_sector;
596 				if (good_sectors > best_good_sectors) {
597 					best_good_sectors = good_sectors;
598 					best_disk = disk;
599 				}
600 				if (choose_first)
601 					break;
602 			}
603 			continue;
604 		} else
605 			best_good_sectors = sectors;
606 
607 		nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
608 		has_nonrot_disk |= nonrot;
609 		pending = atomic_read(&rdev->nr_pending);
610 		dist = abs(this_sector - conf->mirrors[disk].head_position);
611 		if (choose_first) {
612 			best_disk = disk;
613 			break;
614 		}
615 		/* Don't change to another disk for sequential reads */
616 		if (conf->mirrors[disk].next_seq_sect == this_sector
617 		    || dist == 0) {
618 			int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
619 			struct raid1_info *mirror = &conf->mirrors[disk];
620 
621 			best_disk = disk;
622 			/*
623 			 * If buffered sequential IO size exceeds optimal
624 			 * iosize, check if there is idle disk. If yes, choose
625 			 * the idle disk. read_balance could already choose an
626 			 * idle disk before noticing it's a sequential IO in
627 			 * this disk. This doesn't matter because this disk
628 			 * will idle, next time it will be utilized after the
629 			 * first disk has IO size exceeds optimal iosize. In
630 			 * this way, iosize of the first disk will be optimal
631 			 * iosize at least. iosize of the second disk might be
632 			 * small, but not a big deal since when the second disk
633 			 * starts IO, the first disk is likely still busy.
634 			 */
635 			if (nonrot && opt_iosize > 0 &&
636 			    mirror->seq_start != MaxSector &&
637 			    mirror->next_seq_sect > opt_iosize &&
638 			    mirror->next_seq_sect - opt_iosize >=
639 			    mirror->seq_start) {
640 				choose_next_idle = 1;
641 				continue;
642 			}
643 			break;
644 		}
645 		/* If device is idle, use it */
646 		if (pending == 0) {
647 			best_disk = disk;
648 			break;
649 		}
650 
651 		if (choose_next_idle)
652 			continue;
653 
654 		if (min_pending > pending) {
655 			min_pending = pending;
656 			best_pending_disk = disk;
657 		}
658 
659 		if (dist < best_dist) {
660 			best_dist = dist;
661 			best_dist_disk = disk;
662 		}
663 	}
664 
665 	/*
666 	 * If all disks are rotational, choose the closest disk. If any disk is
667 	 * non-rotational, choose the disk with less pending request even the
668 	 * disk is rotational, which might/might not be optimal for raids with
669 	 * mixed ratation/non-rotational disks depending on workload.
670 	 */
671 	if (best_disk == -1) {
672 		if (has_nonrot_disk)
673 			best_disk = best_pending_disk;
674 		else
675 			best_disk = best_dist_disk;
676 	}
677 
678 	if (best_disk >= 0) {
679 		rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
680 		if (!rdev)
681 			goto retry;
682 		atomic_inc(&rdev->nr_pending);
683 		sectors = best_good_sectors;
684 
685 		if (conf->mirrors[best_disk].next_seq_sect != this_sector)
686 			conf->mirrors[best_disk].seq_start = this_sector;
687 
688 		conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
689 	}
690 	rcu_read_unlock();
691 	*max_sectors = sectors;
692 
693 	return best_disk;
694 }
695 
696 static int raid1_congested(struct mddev *mddev, int bits)
697 {
698 	struct r1conf *conf = mddev->private;
699 	int i, ret = 0;
700 
701 	if ((bits & (1 << WB_async_congested)) &&
702 	    conf->pending_count >= max_queued_requests)
703 		return 1;
704 
705 	rcu_read_lock();
706 	for (i = 0; i < conf->raid_disks * 2; i++) {
707 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
708 		if (rdev && !test_bit(Faulty, &rdev->flags)) {
709 			struct request_queue *q = bdev_get_queue(rdev->bdev);
710 
711 			BUG_ON(!q);
712 
713 			/* Note the '|| 1' - when read_balance prefers
714 			 * non-congested targets, it can be removed
715 			 */
716 			if ((bits & (1 << WB_async_congested)) || 1)
717 				ret |= bdi_congested(&q->backing_dev_info, bits);
718 			else
719 				ret &= bdi_congested(&q->backing_dev_info, bits);
720 		}
721 	}
722 	rcu_read_unlock();
723 	return ret;
724 }
725 
726 static void flush_pending_writes(struct r1conf *conf)
727 {
728 	/* Any writes that have been queued but are awaiting
729 	 * bitmap updates get flushed here.
730 	 */
731 	spin_lock_irq(&conf->device_lock);
732 
733 	if (conf->pending_bio_list.head) {
734 		struct bio *bio;
735 		bio = bio_list_get(&conf->pending_bio_list);
736 		conf->pending_count = 0;
737 		spin_unlock_irq(&conf->device_lock);
738 		/* flush any pending bitmap writes to
739 		 * disk before proceeding w/ I/O */
740 		bitmap_unplug(conf->mddev->bitmap);
741 		wake_up(&conf->wait_barrier);
742 
743 		while (bio) { /* submit pending writes */
744 			struct bio *next = bio->bi_next;
745 			struct md_rdev *rdev = (void*)bio->bi_bdev;
746 			bio->bi_next = NULL;
747 			bio->bi_bdev = rdev->bdev;
748 			if (test_bit(Faulty, &rdev->flags)) {
749 				bio->bi_error = -EIO;
750 				bio_endio(bio);
751 			} else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
752 					    !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
753 				/* Just ignore it */
754 				bio_endio(bio);
755 			else
756 				generic_make_request(bio);
757 			bio = next;
758 		}
759 	} else
760 		spin_unlock_irq(&conf->device_lock);
761 }
762 
763 /* Barriers....
764  * Sometimes we need to suspend IO while we do something else,
765  * either some resync/recovery, or reconfigure the array.
766  * To do this we raise a 'barrier'.
767  * The 'barrier' is a counter that can be raised multiple times
768  * to count how many activities are happening which preclude
769  * normal IO.
770  * We can only raise the barrier if there is no pending IO.
771  * i.e. if nr_pending == 0.
772  * We choose only to raise the barrier if no-one is waiting for the
773  * barrier to go down.  This means that as soon as an IO request
774  * is ready, no other operations which require a barrier will start
775  * until the IO request has had a chance.
776  *
777  * So: regular IO calls 'wait_barrier'.  When that returns there
778  *    is no backgroup IO happening,  It must arrange to call
779  *    allow_barrier when it has finished its IO.
780  * backgroup IO calls must call raise_barrier.  Once that returns
781  *    there is no normal IO happeing.  It must arrange to call
782  *    lower_barrier when the particular background IO completes.
783  */
784 static void raise_barrier(struct r1conf *conf, sector_t sector_nr)
785 {
786 	spin_lock_irq(&conf->resync_lock);
787 
788 	/* Wait until no block IO is waiting */
789 	wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
790 			    conf->resync_lock);
791 
792 	/* block any new IO from starting */
793 	conf->barrier++;
794 	conf->next_resync = sector_nr;
795 
796 	/* For these conditions we must wait:
797 	 * A: while the array is in frozen state
798 	 * B: while barrier >= RESYNC_DEPTH, meaning resync reach
799 	 *    the max count which allowed.
800 	 * C: next_resync + RESYNC_SECTORS > start_next_window, meaning
801 	 *    next resync will reach to the window which normal bios are
802 	 *    handling.
803 	 * D: while there are any active requests in the current window.
804 	 */
805 	wait_event_lock_irq(conf->wait_barrier,
806 			    !conf->array_frozen &&
807 			    conf->barrier < RESYNC_DEPTH &&
808 			    conf->current_window_requests == 0 &&
809 			    (conf->start_next_window >=
810 			     conf->next_resync + RESYNC_SECTORS),
811 			    conf->resync_lock);
812 
813 	conf->nr_pending++;
814 	spin_unlock_irq(&conf->resync_lock);
815 }
816 
817 static void lower_barrier(struct r1conf *conf)
818 {
819 	unsigned long flags;
820 	BUG_ON(conf->barrier <= 0);
821 	spin_lock_irqsave(&conf->resync_lock, flags);
822 	conf->barrier--;
823 	conf->nr_pending--;
824 	spin_unlock_irqrestore(&conf->resync_lock, flags);
825 	wake_up(&conf->wait_barrier);
826 }
827 
828 static bool need_to_wait_for_sync(struct r1conf *conf, struct bio *bio)
829 {
830 	bool wait = false;
831 
832 	if (conf->array_frozen || !bio)
833 		wait = true;
834 	else if (conf->barrier && bio_data_dir(bio) == WRITE) {
835 		if ((conf->mddev->curr_resync_completed
836 		     >= bio_end_sector(bio)) ||
837 		    (conf->next_resync + NEXT_NORMALIO_DISTANCE
838 		     <= bio->bi_iter.bi_sector))
839 			wait = false;
840 		else
841 			wait = true;
842 	}
843 
844 	return wait;
845 }
846 
847 static sector_t wait_barrier(struct r1conf *conf, struct bio *bio)
848 {
849 	sector_t sector = 0;
850 
851 	spin_lock_irq(&conf->resync_lock);
852 	if (need_to_wait_for_sync(conf, bio)) {
853 		conf->nr_waiting++;
854 		/* Wait for the barrier to drop.
855 		 * However if there are already pending
856 		 * requests (preventing the barrier from
857 		 * rising completely), and the
858 		 * per-process bio queue isn't empty,
859 		 * then don't wait, as we need to empty
860 		 * that queue to allow conf->start_next_window
861 		 * to increase.
862 		 */
863 		wait_event_lock_irq(conf->wait_barrier,
864 				    !conf->array_frozen &&
865 				    (!conf->barrier ||
866 				     ((conf->start_next_window <
867 				       conf->next_resync + RESYNC_SECTORS) &&
868 				      current->bio_list &&
869 				      !bio_list_empty(current->bio_list))),
870 				    conf->resync_lock);
871 		conf->nr_waiting--;
872 	}
873 
874 	if (bio && bio_data_dir(bio) == WRITE) {
875 		if (bio->bi_iter.bi_sector >= conf->next_resync) {
876 			if (conf->start_next_window == MaxSector)
877 				conf->start_next_window =
878 					conf->next_resync +
879 					NEXT_NORMALIO_DISTANCE;
880 
881 			if ((conf->start_next_window + NEXT_NORMALIO_DISTANCE)
882 			    <= bio->bi_iter.bi_sector)
883 				conf->next_window_requests++;
884 			else
885 				conf->current_window_requests++;
886 			sector = conf->start_next_window;
887 		}
888 	}
889 
890 	conf->nr_pending++;
891 	spin_unlock_irq(&conf->resync_lock);
892 	return sector;
893 }
894 
895 static void allow_barrier(struct r1conf *conf, sector_t start_next_window,
896 			  sector_t bi_sector)
897 {
898 	unsigned long flags;
899 
900 	spin_lock_irqsave(&conf->resync_lock, flags);
901 	conf->nr_pending--;
902 	if (start_next_window) {
903 		if (start_next_window == conf->start_next_window) {
904 			if (conf->start_next_window + NEXT_NORMALIO_DISTANCE
905 			    <= bi_sector)
906 				conf->next_window_requests--;
907 			else
908 				conf->current_window_requests--;
909 		} else
910 			conf->current_window_requests--;
911 
912 		if (!conf->current_window_requests) {
913 			if (conf->next_window_requests) {
914 				conf->current_window_requests =
915 					conf->next_window_requests;
916 				conf->next_window_requests = 0;
917 				conf->start_next_window +=
918 					NEXT_NORMALIO_DISTANCE;
919 			} else
920 				conf->start_next_window = MaxSector;
921 		}
922 	}
923 	spin_unlock_irqrestore(&conf->resync_lock, flags);
924 	wake_up(&conf->wait_barrier);
925 }
926 
927 static void freeze_array(struct r1conf *conf, int extra)
928 {
929 	/* stop syncio and normal IO and wait for everything to
930 	 * go quite.
931 	 * We wait until nr_pending match nr_queued+extra
932 	 * This is called in the context of one normal IO request
933 	 * that has failed. Thus any sync request that might be pending
934 	 * will be blocked by nr_pending, and we need to wait for
935 	 * pending IO requests to complete or be queued for re-try.
936 	 * Thus the number queued (nr_queued) plus this request (extra)
937 	 * must match the number of pending IOs (nr_pending) before
938 	 * we continue.
939 	 */
940 	spin_lock_irq(&conf->resync_lock);
941 	conf->array_frozen = 1;
942 	wait_event_lock_irq_cmd(conf->wait_barrier,
943 				conf->nr_pending == conf->nr_queued+extra,
944 				conf->resync_lock,
945 				flush_pending_writes(conf));
946 	spin_unlock_irq(&conf->resync_lock);
947 }
948 static void unfreeze_array(struct r1conf *conf)
949 {
950 	/* reverse the effect of the freeze */
951 	spin_lock_irq(&conf->resync_lock);
952 	conf->array_frozen = 0;
953 	wake_up(&conf->wait_barrier);
954 	spin_unlock_irq(&conf->resync_lock);
955 }
956 
957 /* duplicate the data pages for behind I/O
958  */
959 static void alloc_behind_pages(struct bio *bio, struct r1bio *r1_bio)
960 {
961 	int i;
962 	struct bio_vec *bvec;
963 	struct bio_vec *bvecs = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec),
964 					GFP_NOIO);
965 	if (unlikely(!bvecs))
966 		return;
967 
968 	bio_for_each_segment_all(bvec, bio, i) {
969 		bvecs[i] = *bvec;
970 		bvecs[i].bv_page = alloc_page(GFP_NOIO);
971 		if (unlikely(!bvecs[i].bv_page))
972 			goto do_sync_io;
973 		memcpy(kmap(bvecs[i].bv_page) + bvec->bv_offset,
974 		       kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
975 		kunmap(bvecs[i].bv_page);
976 		kunmap(bvec->bv_page);
977 	}
978 	r1_bio->behind_bvecs = bvecs;
979 	r1_bio->behind_page_count = bio->bi_vcnt;
980 	set_bit(R1BIO_BehindIO, &r1_bio->state);
981 	return;
982 
983 do_sync_io:
984 	for (i = 0; i < bio->bi_vcnt; i++)
985 		if (bvecs[i].bv_page)
986 			put_page(bvecs[i].bv_page);
987 	kfree(bvecs);
988 	pr_debug("%dB behind alloc failed, doing sync I/O\n",
989 		 bio->bi_iter.bi_size);
990 }
991 
992 struct raid1_plug_cb {
993 	struct blk_plug_cb	cb;
994 	struct bio_list		pending;
995 	int			pending_cnt;
996 };
997 
998 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
999 {
1000 	struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1001 						  cb);
1002 	struct mddev *mddev = plug->cb.data;
1003 	struct r1conf *conf = mddev->private;
1004 	struct bio *bio;
1005 
1006 	if (from_schedule || current->bio_list) {
1007 		spin_lock_irq(&conf->device_lock);
1008 		bio_list_merge(&conf->pending_bio_list, &plug->pending);
1009 		conf->pending_count += plug->pending_cnt;
1010 		spin_unlock_irq(&conf->device_lock);
1011 		wake_up(&conf->wait_barrier);
1012 		md_wakeup_thread(mddev->thread);
1013 		kfree(plug);
1014 		return;
1015 	}
1016 
1017 	/* we aren't scheduling, so we can do the write-out directly. */
1018 	bio = bio_list_get(&plug->pending);
1019 	bitmap_unplug(mddev->bitmap);
1020 	wake_up(&conf->wait_barrier);
1021 
1022 	while (bio) { /* submit pending writes */
1023 		struct bio *next = bio->bi_next;
1024 		struct md_rdev *rdev = (void*)bio->bi_bdev;
1025 		bio->bi_next = NULL;
1026 		bio->bi_bdev = rdev->bdev;
1027 		if (test_bit(Faulty, &rdev->flags)) {
1028 			bio->bi_error = -EIO;
1029 			bio_endio(bio);
1030 		} else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
1031 				    !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
1032 			/* Just ignore it */
1033 			bio_endio(bio);
1034 		else
1035 			generic_make_request(bio);
1036 		bio = next;
1037 	}
1038 	kfree(plug);
1039 }
1040 
1041 static void raid1_make_request(struct mddev *mddev, struct bio * bio)
1042 {
1043 	struct r1conf *conf = mddev->private;
1044 	struct raid1_info *mirror;
1045 	struct r1bio *r1_bio;
1046 	struct bio *read_bio;
1047 	int i, disks;
1048 	struct bitmap *bitmap;
1049 	unsigned long flags;
1050 	const int op = bio_op(bio);
1051 	const int rw = bio_data_dir(bio);
1052 	const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1053 	const unsigned long do_flush_fua = (bio->bi_opf &
1054 						(REQ_PREFLUSH | REQ_FUA));
1055 	struct md_rdev *blocked_rdev;
1056 	struct blk_plug_cb *cb;
1057 	struct raid1_plug_cb *plug = NULL;
1058 	int first_clone;
1059 	int sectors_handled;
1060 	int max_sectors;
1061 	sector_t start_next_window;
1062 
1063 	/*
1064 	 * Register the new request and wait if the reconstruction
1065 	 * thread has put up a bar for new requests.
1066 	 * Continue immediately if no resync is active currently.
1067 	 */
1068 
1069 	md_write_start(mddev, bio); /* wait on superblock update early */
1070 
1071 	if (bio_data_dir(bio) == WRITE &&
1072 	    ((bio_end_sector(bio) > mddev->suspend_lo &&
1073 	    bio->bi_iter.bi_sector < mddev->suspend_hi) ||
1074 	    (mddev_is_clustered(mddev) &&
1075 	     md_cluster_ops->area_resyncing(mddev, WRITE,
1076 		     bio->bi_iter.bi_sector, bio_end_sector(bio))))) {
1077 		/* As the suspend_* range is controlled by
1078 		 * userspace, we want an interruptible
1079 		 * wait.
1080 		 */
1081 		DEFINE_WAIT(w);
1082 		for (;;) {
1083 			flush_signals(current);
1084 			prepare_to_wait(&conf->wait_barrier,
1085 					&w, TASK_INTERRUPTIBLE);
1086 			if (bio_end_sector(bio) <= mddev->suspend_lo ||
1087 			    bio->bi_iter.bi_sector >= mddev->suspend_hi ||
1088 			    (mddev_is_clustered(mddev) &&
1089 			     !md_cluster_ops->area_resyncing(mddev, WRITE,
1090 				     bio->bi_iter.bi_sector, bio_end_sector(bio))))
1091 				break;
1092 			schedule();
1093 		}
1094 		finish_wait(&conf->wait_barrier, &w);
1095 	}
1096 
1097 	start_next_window = wait_barrier(conf, bio);
1098 
1099 	bitmap = mddev->bitmap;
1100 
1101 	/*
1102 	 * make_request() can abort the operation when read-ahead is being
1103 	 * used and no empty request is available.
1104 	 *
1105 	 */
1106 	r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1107 
1108 	r1_bio->master_bio = bio;
1109 	r1_bio->sectors = bio_sectors(bio);
1110 	r1_bio->state = 0;
1111 	r1_bio->mddev = mddev;
1112 	r1_bio->sector = bio->bi_iter.bi_sector;
1113 
1114 	/* We might need to issue multiple reads to different
1115 	 * devices if there are bad blocks around, so we keep
1116 	 * track of the number of reads in bio->bi_phys_segments.
1117 	 * If this is 0, there is only one r1_bio and no locking
1118 	 * will be needed when requests complete.  If it is
1119 	 * non-zero, then it is the number of not-completed requests.
1120 	 */
1121 	bio->bi_phys_segments = 0;
1122 	bio_clear_flag(bio, BIO_SEG_VALID);
1123 
1124 	if (rw == READ) {
1125 		/*
1126 		 * read balancing logic:
1127 		 */
1128 		int rdisk;
1129 
1130 read_again:
1131 		rdisk = read_balance(conf, r1_bio, &max_sectors);
1132 
1133 		if (rdisk < 0) {
1134 			/* couldn't find anywhere to read from */
1135 			raid_end_bio_io(r1_bio);
1136 			return;
1137 		}
1138 		mirror = conf->mirrors + rdisk;
1139 
1140 		if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1141 		    bitmap) {
1142 			/* Reading from a write-mostly device must
1143 			 * take care not to over-take any writes
1144 			 * that are 'behind'
1145 			 */
1146 			wait_event(bitmap->behind_wait,
1147 				   atomic_read(&bitmap->behind_writes) == 0);
1148 		}
1149 		r1_bio->read_disk = rdisk;
1150 		r1_bio->start_next_window = 0;
1151 
1152 		read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1153 		bio_trim(read_bio, r1_bio->sector - bio->bi_iter.bi_sector,
1154 			 max_sectors);
1155 
1156 		r1_bio->bios[rdisk] = read_bio;
1157 
1158 		read_bio->bi_iter.bi_sector = r1_bio->sector +
1159 			mirror->rdev->data_offset;
1160 		read_bio->bi_bdev = mirror->rdev->bdev;
1161 		read_bio->bi_end_io = raid1_end_read_request;
1162 		bio_set_op_attrs(read_bio, op, do_sync);
1163 		read_bio->bi_private = r1_bio;
1164 
1165 		if (max_sectors < r1_bio->sectors) {
1166 			/* could not read all from this device, so we will
1167 			 * need another r1_bio.
1168 			 */
1169 
1170 			sectors_handled = (r1_bio->sector + max_sectors
1171 					   - bio->bi_iter.bi_sector);
1172 			r1_bio->sectors = max_sectors;
1173 			spin_lock_irq(&conf->device_lock);
1174 			if (bio->bi_phys_segments == 0)
1175 				bio->bi_phys_segments = 2;
1176 			else
1177 				bio->bi_phys_segments++;
1178 			spin_unlock_irq(&conf->device_lock);
1179 			/* Cannot call generic_make_request directly
1180 			 * as that will be queued in __make_request
1181 			 * and subsequent mempool_alloc might block waiting
1182 			 * for it.  So hand bio over to raid1d.
1183 			 */
1184 			reschedule_retry(r1_bio);
1185 
1186 			r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1187 
1188 			r1_bio->master_bio = bio;
1189 			r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1190 			r1_bio->state = 0;
1191 			r1_bio->mddev = mddev;
1192 			r1_bio->sector = bio->bi_iter.bi_sector +
1193 				sectors_handled;
1194 			goto read_again;
1195 		} else
1196 			generic_make_request(read_bio);
1197 		return;
1198 	}
1199 
1200 	/*
1201 	 * WRITE:
1202 	 */
1203 	if (conf->pending_count >= max_queued_requests) {
1204 		md_wakeup_thread(mddev->thread);
1205 		wait_event(conf->wait_barrier,
1206 			   conf->pending_count < max_queued_requests);
1207 	}
1208 	/* first select target devices under rcu_lock and
1209 	 * inc refcount on their rdev.  Record them by setting
1210 	 * bios[x] to bio
1211 	 * If there are known/acknowledged bad blocks on any device on
1212 	 * which we have seen a write error, we want to avoid writing those
1213 	 * blocks.
1214 	 * This potentially requires several writes to write around
1215 	 * the bad blocks.  Each set of writes gets it's own r1bio
1216 	 * with a set of bios attached.
1217 	 */
1218 
1219 	disks = conf->raid_disks * 2;
1220  retry_write:
1221 	r1_bio->start_next_window = start_next_window;
1222 	blocked_rdev = NULL;
1223 	rcu_read_lock();
1224 	max_sectors = r1_bio->sectors;
1225 	for (i = 0;  i < disks; i++) {
1226 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1227 		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1228 			atomic_inc(&rdev->nr_pending);
1229 			blocked_rdev = rdev;
1230 			break;
1231 		}
1232 		r1_bio->bios[i] = NULL;
1233 		if (!rdev || test_bit(Faulty, &rdev->flags)) {
1234 			if (i < conf->raid_disks)
1235 				set_bit(R1BIO_Degraded, &r1_bio->state);
1236 			continue;
1237 		}
1238 
1239 		atomic_inc(&rdev->nr_pending);
1240 		if (test_bit(WriteErrorSeen, &rdev->flags)) {
1241 			sector_t first_bad;
1242 			int bad_sectors;
1243 			int is_bad;
1244 
1245 			is_bad = is_badblock(rdev, r1_bio->sector,
1246 					     max_sectors,
1247 					     &first_bad, &bad_sectors);
1248 			if (is_bad < 0) {
1249 				/* mustn't write here until the bad block is
1250 				 * acknowledged*/
1251 				set_bit(BlockedBadBlocks, &rdev->flags);
1252 				blocked_rdev = rdev;
1253 				break;
1254 			}
1255 			if (is_bad && first_bad <= r1_bio->sector) {
1256 				/* Cannot write here at all */
1257 				bad_sectors -= (r1_bio->sector - first_bad);
1258 				if (bad_sectors < max_sectors)
1259 					/* mustn't write more than bad_sectors
1260 					 * to other devices yet
1261 					 */
1262 					max_sectors = bad_sectors;
1263 				rdev_dec_pending(rdev, mddev);
1264 				/* We don't set R1BIO_Degraded as that
1265 				 * only applies if the disk is
1266 				 * missing, so it might be re-added,
1267 				 * and we want to know to recover this
1268 				 * chunk.
1269 				 * In this case the device is here,
1270 				 * and the fact that this chunk is not
1271 				 * in-sync is recorded in the bad
1272 				 * block log
1273 				 */
1274 				continue;
1275 			}
1276 			if (is_bad) {
1277 				int good_sectors = first_bad - r1_bio->sector;
1278 				if (good_sectors < max_sectors)
1279 					max_sectors = good_sectors;
1280 			}
1281 		}
1282 		r1_bio->bios[i] = bio;
1283 	}
1284 	rcu_read_unlock();
1285 
1286 	if (unlikely(blocked_rdev)) {
1287 		/* Wait for this device to become unblocked */
1288 		int j;
1289 		sector_t old = start_next_window;
1290 
1291 		for (j = 0; j < i; j++)
1292 			if (r1_bio->bios[j])
1293 				rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1294 		r1_bio->state = 0;
1295 		allow_barrier(conf, start_next_window, bio->bi_iter.bi_sector);
1296 		md_wait_for_blocked_rdev(blocked_rdev, mddev);
1297 		start_next_window = wait_barrier(conf, bio);
1298 		/*
1299 		 * We must make sure the multi r1bios of bio have
1300 		 * the same value of bi_phys_segments
1301 		 */
1302 		if (bio->bi_phys_segments && old &&
1303 		    old != start_next_window)
1304 			/* Wait for the former r1bio(s) to complete */
1305 			wait_event(conf->wait_barrier,
1306 				   bio->bi_phys_segments == 1);
1307 		goto retry_write;
1308 	}
1309 
1310 	if (max_sectors < r1_bio->sectors) {
1311 		/* We are splitting this write into multiple parts, so
1312 		 * we need to prepare for allocating another r1_bio.
1313 		 */
1314 		r1_bio->sectors = max_sectors;
1315 		spin_lock_irq(&conf->device_lock);
1316 		if (bio->bi_phys_segments == 0)
1317 			bio->bi_phys_segments = 2;
1318 		else
1319 			bio->bi_phys_segments++;
1320 		spin_unlock_irq(&conf->device_lock);
1321 	}
1322 	sectors_handled = r1_bio->sector + max_sectors - bio->bi_iter.bi_sector;
1323 
1324 	atomic_set(&r1_bio->remaining, 1);
1325 	atomic_set(&r1_bio->behind_remaining, 0);
1326 
1327 	first_clone = 1;
1328 	for (i = 0; i < disks; i++) {
1329 		struct bio *mbio;
1330 		if (!r1_bio->bios[i])
1331 			continue;
1332 
1333 		mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1334 		bio_trim(mbio, r1_bio->sector - bio->bi_iter.bi_sector, max_sectors);
1335 
1336 		if (first_clone) {
1337 			/* do behind I/O ?
1338 			 * Not if there are too many, or cannot
1339 			 * allocate memory, or a reader on WriteMostly
1340 			 * is waiting for behind writes to flush */
1341 			if (bitmap &&
1342 			    (atomic_read(&bitmap->behind_writes)
1343 			     < mddev->bitmap_info.max_write_behind) &&
1344 			    !waitqueue_active(&bitmap->behind_wait))
1345 				alloc_behind_pages(mbio, r1_bio);
1346 
1347 			bitmap_startwrite(bitmap, r1_bio->sector,
1348 					  r1_bio->sectors,
1349 					  test_bit(R1BIO_BehindIO,
1350 						   &r1_bio->state));
1351 			first_clone = 0;
1352 		}
1353 		if (r1_bio->behind_bvecs) {
1354 			struct bio_vec *bvec;
1355 			int j;
1356 
1357 			/*
1358 			 * We trimmed the bio, so _all is legit
1359 			 */
1360 			bio_for_each_segment_all(bvec, mbio, j)
1361 				bvec->bv_page = r1_bio->behind_bvecs[j].bv_page;
1362 			if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1363 				atomic_inc(&r1_bio->behind_remaining);
1364 		}
1365 
1366 		r1_bio->bios[i] = mbio;
1367 
1368 		mbio->bi_iter.bi_sector	= (r1_bio->sector +
1369 				   conf->mirrors[i].rdev->data_offset);
1370 		mbio->bi_bdev = (void*)conf->mirrors[i].rdev;
1371 		mbio->bi_end_io	= raid1_end_write_request;
1372 		bio_set_op_attrs(mbio, op, do_flush_fua | do_sync);
1373 		mbio->bi_private = r1_bio;
1374 
1375 		atomic_inc(&r1_bio->remaining);
1376 
1377 		cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1378 		if (cb)
1379 			plug = container_of(cb, struct raid1_plug_cb, cb);
1380 		else
1381 			plug = NULL;
1382 		spin_lock_irqsave(&conf->device_lock, flags);
1383 		if (plug) {
1384 			bio_list_add(&plug->pending, mbio);
1385 			plug->pending_cnt++;
1386 		} else {
1387 			bio_list_add(&conf->pending_bio_list, mbio);
1388 			conf->pending_count++;
1389 		}
1390 		spin_unlock_irqrestore(&conf->device_lock, flags);
1391 		if (!plug)
1392 			md_wakeup_thread(mddev->thread);
1393 	}
1394 	/* Mustn't call r1_bio_write_done before this next test,
1395 	 * as it could result in the bio being freed.
1396 	 */
1397 	if (sectors_handled < bio_sectors(bio)) {
1398 		r1_bio_write_done(r1_bio);
1399 		/* We need another r1_bio.  It has already been counted
1400 		 * in bio->bi_phys_segments
1401 		 */
1402 		r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1403 		r1_bio->master_bio = bio;
1404 		r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1405 		r1_bio->state = 0;
1406 		r1_bio->mddev = mddev;
1407 		r1_bio->sector = bio->bi_iter.bi_sector + sectors_handled;
1408 		goto retry_write;
1409 	}
1410 
1411 	r1_bio_write_done(r1_bio);
1412 
1413 	/* In case raid1d snuck in to freeze_array */
1414 	wake_up(&conf->wait_barrier);
1415 }
1416 
1417 static void raid1_status(struct seq_file *seq, struct mddev *mddev)
1418 {
1419 	struct r1conf *conf = mddev->private;
1420 	int i;
1421 
1422 	seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1423 		   conf->raid_disks - mddev->degraded);
1424 	rcu_read_lock();
1425 	for (i = 0; i < conf->raid_disks; i++) {
1426 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1427 		seq_printf(seq, "%s",
1428 			   rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1429 	}
1430 	rcu_read_unlock();
1431 	seq_printf(seq, "]");
1432 }
1433 
1434 static void raid1_error(struct mddev *mddev, struct md_rdev *rdev)
1435 {
1436 	char b[BDEVNAME_SIZE];
1437 	struct r1conf *conf = mddev->private;
1438 	unsigned long flags;
1439 
1440 	/*
1441 	 * If it is not operational, then we have already marked it as dead
1442 	 * else if it is the last working disks, ignore the error, let the
1443 	 * next level up know.
1444 	 * else mark the drive as failed
1445 	 */
1446 	if (test_bit(In_sync, &rdev->flags)
1447 	    && (conf->raid_disks - mddev->degraded) == 1) {
1448 		/*
1449 		 * Don't fail the drive, act as though we were just a
1450 		 * normal single drive.
1451 		 * However don't try a recovery from this drive as
1452 		 * it is very likely to fail.
1453 		 */
1454 		conf->recovery_disabled = mddev->recovery_disabled;
1455 		return;
1456 	}
1457 	set_bit(Blocked, &rdev->flags);
1458 	spin_lock_irqsave(&conf->device_lock, flags);
1459 	if (test_and_clear_bit(In_sync, &rdev->flags)) {
1460 		mddev->degraded++;
1461 		set_bit(Faulty, &rdev->flags);
1462 	} else
1463 		set_bit(Faulty, &rdev->flags);
1464 	spin_unlock_irqrestore(&conf->device_lock, flags);
1465 	/*
1466 	 * if recovery is running, make sure it aborts.
1467 	 */
1468 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1469 	set_mask_bits(&mddev->flags, 0,
1470 		      BIT(MD_CHANGE_DEVS) | BIT(MD_CHANGE_PENDING));
1471 	pr_crit("md/raid1:%s: Disk failure on %s, disabling device.\n"
1472 		"md/raid1:%s: Operation continuing on %d devices.\n",
1473 		mdname(mddev), bdevname(rdev->bdev, b),
1474 		mdname(mddev), conf->raid_disks - mddev->degraded);
1475 }
1476 
1477 static void print_conf(struct r1conf *conf)
1478 {
1479 	int i;
1480 
1481 	pr_debug("RAID1 conf printout:\n");
1482 	if (!conf) {
1483 		pr_debug("(!conf)\n");
1484 		return;
1485 	}
1486 	pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1487 		 conf->raid_disks);
1488 
1489 	rcu_read_lock();
1490 	for (i = 0; i < conf->raid_disks; i++) {
1491 		char b[BDEVNAME_SIZE];
1492 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1493 		if (rdev)
1494 			pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
1495 				 i, !test_bit(In_sync, &rdev->flags),
1496 				 !test_bit(Faulty, &rdev->flags),
1497 				 bdevname(rdev->bdev,b));
1498 	}
1499 	rcu_read_unlock();
1500 }
1501 
1502 static void close_sync(struct r1conf *conf)
1503 {
1504 	wait_barrier(conf, NULL);
1505 	allow_barrier(conf, 0, 0);
1506 
1507 	mempool_destroy(conf->r1buf_pool);
1508 	conf->r1buf_pool = NULL;
1509 
1510 	spin_lock_irq(&conf->resync_lock);
1511 	conf->next_resync = MaxSector - 2 * NEXT_NORMALIO_DISTANCE;
1512 	conf->start_next_window = MaxSector;
1513 	conf->current_window_requests +=
1514 		conf->next_window_requests;
1515 	conf->next_window_requests = 0;
1516 	spin_unlock_irq(&conf->resync_lock);
1517 }
1518 
1519 static int raid1_spare_active(struct mddev *mddev)
1520 {
1521 	int i;
1522 	struct r1conf *conf = mddev->private;
1523 	int count = 0;
1524 	unsigned long flags;
1525 
1526 	/*
1527 	 * Find all failed disks within the RAID1 configuration
1528 	 * and mark them readable.
1529 	 * Called under mddev lock, so rcu protection not needed.
1530 	 * device_lock used to avoid races with raid1_end_read_request
1531 	 * which expects 'In_sync' flags and ->degraded to be consistent.
1532 	 */
1533 	spin_lock_irqsave(&conf->device_lock, flags);
1534 	for (i = 0; i < conf->raid_disks; i++) {
1535 		struct md_rdev *rdev = conf->mirrors[i].rdev;
1536 		struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1537 		if (repl
1538 		    && !test_bit(Candidate, &repl->flags)
1539 		    && repl->recovery_offset == MaxSector
1540 		    && !test_bit(Faulty, &repl->flags)
1541 		    && !test_and_set_bit(In_sync, &repl->flags)) {
1542 			/* replacement has just become active */
1543 			if (!rdev ||
1544 			    !test_and_clear_bit(In_sync, &rdev->flags))
1545 				count++;
1546 			if (rdev) {
1547 				/* Replaced device not technically
1548 				 * faulty, but we need to be sure
1549 				 * it gets removed and never re-added
1550 				 */
1551 				set_bit(Faulty, &rdev->flags);
1552 				sysfs_notify_dirent_safe(
1553 					rdev->sysfs_state);
1554 			}
1555 		}
1556 		if (rdev
1557 		    && rdev->recovery_offset == MaxSector
1558 		    && !test_bit(Faulty, &rdev->flags)
1559 		    && !test_and_set_bit(In_sync, &rdev->flags)) {
1560 			count++;
1561 			sysfs_notify_dirent_safe(rdev->sysfs_state);
1562 		}
1563 	}
1564 	mddev->degraded -= count;
1565 	spin_unlock_irqrestore(&conf->device_lock, flags);
1566 
1567 	print_conf(conf);
1568 	return count;
1569 }
1570 
1571 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1572 {
1573 	struct r1conf *conf = mddev->private;
1574 	int err = -EEXIST;
1575 	int mirror = 0;
1576 	struct raid1_info *p;
1577 	int first = 0;
1578 	int last = conf->raid_disks - 1;
1579 
1580 	if (mddev->recovery_disabled == conf->recovery_disabled)
1581 		return -EBUSY;
1582 
1583 	if (md_integrity_add_rdev(rdev, mddev))
1584 		return -ENXIO;
1585 
1586 	if (rdev->raid_disk >= 0)
1587 		first = last = rdev->raid_disk;
1588 
1589 	/*
1590 	 * find the disk ... but prefer rdev->saved_raid_disk
1591 	 * if possible.
1592 	 */
1593 	if (rdev->saved_raid_disk >= 0 &&
1594 	    rdev->saved_raid_disk >= first &&
1595 	    conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1596 		first = last = rdev->saved_raid_disk;
1597 
1598 	for (mirror = first; mirror <= last; mirror++) {
1599 		p = conf->mirrors+mirror;
1600 		if (!p->rdev) {
1601 
1602 			if (mddev->gendisk)
1603 				disk_stack_limits(mddev->gendisk, rdev->bdev,
1604 						  rdev->data_offset << 9);
1605 
1606 			p->head_position = 0;
1607 			rdev->raid_disk = mirror;
1608 			err = 0;
1609 			/* As all devices are equivalent, we don't need a full recovery
1610 			 * if this was recently any drive of the array
1611 			 */
1612 			if (rdev->saved_raid_disk < 0)
1613 				conf->fullsync = 1;
1614 			rcu_assign_pointer(p->rdev, rdev);
1615 			break;
1616 		}
1617 		if (test_bit(WantReplacement, &p->rdev->flags) &&
1618 		    p[conf->raid_disks].rdev == NULL) {
1619 			/* Add this device as a replacement */
1620 			clear_bit(In_sync, &rdev->flags);
1621 			set_bit(Replacement, &rdev->flags);
1622 			rdev->raid_disk = mirror;
1623 			err = 0;
1624 			conf->fullsync = 1;
1625 			rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1626 			break;
1627 		}
1628 	}
1629 	if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1630 		queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1631 	print_conf(conf);
1632 	return err;
1633 }
1634 
1635 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1636 {
1637 	struct r1conf *conf = mddev->private;
1638 	int err = 0;
1639 	int number = rdev->raid_disk;
1640 	struct raid1_info *p = conf->mirrors + number;
1641 
1642 	if (rdev != p->rdev)
1643 		p = conf->mirrors + conf->raid_disks + number;
1644 
1645 	print_conf(conf);
1646 	if (rdev == p->rdev) {
1647 		if (test_bit(In_sync, &rdev->flags) ||
1648 		    atomic_read(&rdev->nr_pending)) {
1649 			err = -EBUSY;
1650 			goto abort;
1651 		}
1652 		/* Only remove non-faulty devices if recovery
1653 		 * is not possible.
1654 		 */
1655 		if (!test_bit(Faulty, &rdev->flags) &&
1656 		    mddev->recovery_disabled != conf->recovery_disabled &&
1657 		    mddev->degraded < conf->raid_disks) {
1658 			err = -EBUSY;
1659 			goto abort;
1660 		}
1661 		p->rdev = NULL;
1662 		if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1663 			synchronize_rcu();
1664 			if (atomic_read(&rdev->nr_pending)) {
1665 				/* lost the race, try later */
1666 				err = -EBUSY;
1667 				p->rdev = rdev;
1668 				goto abort;
1669 			}
1670 		}
1671 		if (conf->mirrors[conf->raid_disks + number].rdev) {
1672 			/* We just removed a device that is being replaced.
1673 			 * Move down the replacement.  We drain all IO before
1674 			 * doing this to avoid confusion.
1675 			 */
1676 			struct md_rdev *repl =
1677 				conf->mirrors[conf->raid_disks + number].rdev;
1678 			freeze_array(conf, 0);
1679 			clear_bit(Replacement, &repl->flags);
1680 			p->rdev = repl;
1681 			conf->mirrors[conf->raid_disks + number].rdev = NULL;
1682 			unfreeze_array(conf);
1683 			clear_bit(WantReplacement, &rdev->flags);
1684 		} else
1685 			clear_bit(WantReplacement, &rdev->flags);
1686 		err = md_integrity_register(mddev);
1687 	}
1688 abort:
1689 
1690 	print_conf(conf);
1691 	return err;
1692 }
1693 
1694 static void end_sync_read(struct bio *bio)
1695 {
1696 	struct r1bio *r1_bio = bio->bi_private;
1697 
1698 	update_head_pos(r1_bio->read_disk, r1_bio);
1699 
1700 	/*
1701 	 * we have read a block, now it needs to be re-written,
1702 	 * or re-read if the read failed.
1703 	 * We don't do much here, just schedule handling by raid1d
1704 	 */
1705 	if (!bio->bi_error)
1706 		set_bit(R1BIO_Uptodate, &r1_bio->state);
1707 
1708 	if (atomic_dec_and_test(&r1_bio->remaining))
1709 		reschedule_retry(r1_bio);
1710 }
1711 
1712 static void end_sync_write(struct bio *bio)
1713 {
1714 	int uptodate = !bio->bi_error;
1715 	struct r1bio *r1_bio = bio->bi_private;
1716 	struct mddev *mddev = r1_bio->mddev;
1717 	struct r1conf *conf = mddev->private;
1718 	sector_t first_bad;
1719 	int bad_sectors;
1720 	struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev;
1721 
1722 	if (!uptodate) {
1723 		sector_t sync_blocks = 0;
1724 		sector_t s = r1_bio->sector;
1725 		long sectors_to_go = r1_bio->sectors;
1726 		/* make sure these bits doesn't get cleared. */
1727 		do {
1728 			bitmap_end_sync(mddev->bitmap, s,
1729 					&sync_blocks, 1);
1730 			s += sync_blocks;
1731 			sectors_to_go -= sync_blocks;
1732 		} while (sectors_to_go > 0);
1733 		set_bit(WriteErrorSeen, &rdev->flags);
1734 		if (!test_and_set_bit(WantReplacement, &rdev->flags))
1735 			set_bit(MD_RECOVERY_NEEDED, &
1736 				mddev->recovery);
1737 		set_bit(R1BIO_WriteError, &r1_bio->state);
1738 	} else if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
1739 			       &first_bad, &bad_sectors) &&
1740 		   !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1741 				r1_bio->sector,
1742 				r1_bio->sectors,
1743 				&first_bad, &bad_sectors)
1744 		)
1745 		set_bit(R1BIO_MadeGood, &r1_bio->state);
1746 
1747 	if (atomic_dec_and_test(&r1_bio->remaining)) {
1748 		int s = r1_bio->sectors;
1749 		if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1750 		    test_bit(R1BIO_WriteError, &r1_bio->state))
1751 			reschedule_retry(r1_bio);
1752 		else {
1753 			put_buf(r1_bio);
1754 			md_done_sync(mddev, s, uptodate);
1755 		}
1756 	}
1757 }
1758 
1759 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1760 			    int sectors, struct page *page, int rw)
1761 {
1762 	if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
1763 		/* success */
1764 		return 1;
1765 	if (rw == WRITE) {
1766 		set_bit(WriteErrorSeen, &rdev->flags);
1767 		if (!test_and_set_bit(WantReplacement,
1768 				      &rdev->flags))
1769 			set_bit(MD_RECOVERY_NEEDED, &
1770 				rdev->mddev->recovery);
1771 	}
1772 	/* need to record an error - either for the block or the device */
1773 	if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1774 		md_error(rdev->mddev, rdev);
1775 	return 0;
1776 }
1777 
1778 static int fix_sync_read_error(struct r1bio *r1_bio)
1779 {
1780 	/* Try some synchronous reads of other devices to get
1781 	 * good data, much like with normal read errors.  Only
1782 	 * read into the pages we already have so we don't
1783 	 * need to re-issue the read request.
1784 	 * We don't need to freeze the array, because being in an
1785 	 * active sync request, there is no normal IO, and
1786 	 * no overlapping syncs.
1787 	 * We don't need to check is_badblock() again as we
1788 	 * made sure that anything with a bad block in range
1789 	 * will have bi_end_io clear.
1790 	 */
1791 	struct mddev *mddev = r1_bio->mddev;
1792 	struct r1conf *conf = mddev->private;
1793 	struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1794 	sector_t sect = r1_bio->sector;
1795 	int sectors = r1_bio->sectors;
1796 	int idx = 0;
1797 
1798 	while(sectors) {
1799 		int s = sectors;
1800 		int d = r1_bio->read_disk;
1801 		int success = 0;
1802 		struct md_rdev *rdev;
1803 		int start;
1804 
1805 		if (s > (PAGE_SIZE>>9))
1806 			s = PAGE_SIZE >> 9;
1807 		do {
1808 			if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1809 				/* No rcu protection needed here devices
1810 				 * can only be removed when no resync is
1811 				 * active, and resync is currently active
1812 				 */
1813 				rdev = conf->mirrors[d].rdev;
1814 				if (sync_page_io(rdev, sect, s<<9,
1815 						 bio->bi_io_vec[idx].bv_page,
1816 						 REQ_OP_READ, 0, false)) {
1817 					success = 1;
1818 					break;
1819 				}
1820 			}
1821 			d++;
1822 			if (d == conf->raid_disks * 2)
1823 				d = 0;
1824 		} while (!success && d != r1_bio->read_disk);
1825 
1826 		if (!success) {
1827 			char b[BDEVNAME_SIZE];
1828 			int abort = 0;
1829 			/* Cannot read from anywhere, this block is lost.
1830 			 * Record a bad block on each device.  If that doesn't
1831 			 * work just disable and interrupt the recovery.
1832 			 * Don't fail devices as that won't really help.
1833 			 */
1834 			pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
1835 					    mdname(mddev),
1836 					    bdevname(bio->bi_bdev, b),
1837 					    (unsigned long long)r1_bio->sector);
1838 			for (d = 0; d < conf->raid_disks * 2; d++) {
1839 				rdev = conf->mirrors[d].rdev;
1840 				if (!rdev || test_bit(Faulty, &rdev->flags))
1841 					continue;
1842 				if (!rdev_set_badblocks(rdev, sect, s, 0))
1843 					abort = 1;
1844 			}
1845 			if (abort) {
1846 				conf->recovery_disabled =
1847 					mddev->recovery_disabled;
1848 				set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1849 				md_done_sync(mddev, r1_bio->sectors, 0);
1850 				put_buf(r1_bio);
1851 				return 0;
1852 			}
1853 			/* Try next page */
1854 			sectors -= s;
1855 			sect += s;
1856 			idx++;
1857 			continue;
1858 		}
1859 
1860 		start = d;
1861 		/* write it back and re-read */
1862 		while (d != r1_bio->read_disk) {
1863 			if (d == 0)
1864 				d = conf->raid_disks * 2;
1865 			d--;
1866 			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1867 				continue;
1868 			rdev = conf->mirrors[d].rdev;
1869 			if (r1_sync_page_io(rdev, sect, s,
1870 					    bio->bi_io_vec[idx].bv_page,
1871 					    WRITE) == 0) {
1872 				r1_bio->bios[d]->bi_end_io = NULL;
1873 				rdev_dec_pending(rdev, mddev);
1874 			}
1875 		}
1876 		d = start;
1877 		while (d != r1_bio->read_disk) {
1878 			if (d == 0)
1879 				d = conf->raid_disks * 2;
1880 			d--;
1881 			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1882 				continue;
1883 			rdev = conf->mirrors[d].rdev;
1884 			if (r1_sync_page_io(rdev, sect, s,
1885 					    bio->bi_io_vec[idx].bv_page,
1886 					    READ) != 0)
1887 				atomic_add(s, &rdev->corrected_errors);
1888 		}
1889 		sectors -= s;
1890 		sect += s;
1891 		idx ++;
1892 	}
1893 	set_bit(R1BIO_Uptodate, &r1_bio->state);
1894 	bio->bi_error = 0;
1895 	return 1;
1896 }
1897 
1898 static void process_checks(struct r1bio *r1_bio)
1899 {
1900 	/* We have read all readable devices.  If we haven't
1901 	 * got the block, then there is no hope left.
1902 	 * If we have, then we want to do a comparison
1903 	 * and skip the write if everything is the same.
1904 	 * If any blocks failed to read, then we need to
1905 	 * attempt an over-write
1906 	 */
1907 	struct mddev *mddev = r1_bio->mddev;
1908 	struct r1conf *conf = mddev->private;
1909 	int primary;
1910 	int i;
1911 	int vcnt;
1912 
1913 	/* Fix variable parts of all bios */
1914 	vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
1915 	for (i = 0; i < conf->raid_disks * 2; i++) {
1916 		int j;
1917 		int size;
1918 		int error;
1919 		struct bio *b = r1_bio->bios[i];
1920 		if (b->bi_end_io != end_sync_read)
1921 			continue;
1922 		/* fixup the bio for reuse, but preserve errno */
1923 		error = b->bi_error;
1924 		bio_reset(b);
1925 		b->bi_error = error;
1926 		b->bi_vcnt = vcnt;
1927 		b->bi_iter.bi_size = r1_bio->sectors << 9;
1928 		b->bi_iter.bi_sector = r1_bio->sector +
1929 			conf->mirrors[i].rdev->data_offset;
1930 		b->bi_bdev = conf->mirrors[i].rdev->bdev;
1931 		b->bi_end_io = end_sync_read;
1932 		b->bi_private = r1_bio;
1933 
1934 		size = b->bi_iter.bi_size;
1935 		for (j = 0; j < vcnt ; j++) {
1936 			struct bio_vec *bi;
1937 			bi = &b->bi_io_vec[j];
1938 			bi->bv_offset = 0;
1939 			if (size > PAGE_SIZE)
1940 				bi->bv_len = PAGE_SIZE;
1941 			else
1942 				bi->bv_len = size;
1943 			size -= PAGE_SIZE;
1944 		}
1945 	}
1946 	for (primary = 0; primary < conf->raid_disks * 2; primary++)
1947 		if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
1948 		    !r1_bio->bios[primary]->bi_error) {
1949 			r1_bio->bios[primary]->bi_end_io = NULL;
1950 			rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
1951 			break;
1952 		}
1953 	r1_bio->read_disk = primary;
1954 	for (i = 0; i < conf->raid_disks * 2; i++) {
1955 		int j;
1956 		struct bio *pbio = r1_bio->bios[primary];
1957 		struct bio *sbio = r1_bio->bios[i];
1958 		int error = sbio->bi_error;
1959 
1960 		if (sbio->bi_end_io != end_sync_read)
1961 			continue;
1962 		/* Now we can 'fixup' the error value */
1963 		sbio->bi_error = 0;
1964 
1965 		if (!error) {
1966 			for (j = vcnt; j-- ; ) {
1967 				struct page *p, *s;
1968 				p = pbio->bi_io_vec[j].bv_page;
1969 				s = sbio->bi_io_vec[j].bv_page;
1970 				if (memcmp(page_address(p),
1971 					   page_address(s),
1972 					   sbio->bi_io_vec[j].bv_len))
1973 					break;
1974 			}
1975 		} else
1976 			j = 0;
1977 		if (j >= 0)
1978 			atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
1979 		if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
1980 			      && !error)) {
1981 			/* No need to write to this device. */
1982 			sbio->bi_end_io = NULL;
1983 			rdev_dec_pending(conf->mirrors[i].rdev, mddev);
1984 			continue;
1985 		}
1986 
1987 		bio_copy_data(sbio, pbio);
1988 	}
1989 }
1990 
1991 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
1992 {
1993 	struct r1conf *conf = mddev->private;
1994 	int i;
1995 	int disks = conf->raid_disks * 2;
1996 	struct bio *bio, *wbio;
1997 
1998 	bio = r1_bio->bios[r1_bio->read_disk];
1999 
2000 	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2001 		/* ouch - failed to read all of that. */
2002 		if (!fix_sync_read_error(r1_bio))
2003 			return;
2004 
2005 	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2006 		process_checks(r1_bio);
2007 
2008 	/*
2009 	 * schedule writes
2010 	 */
2011 	atomic_set(&r1_bio->remaining, 1);
2012 	for (i = 0; i < disks ; i++) {
2013 		wbio = r1_bio->bios[i];
2014 		if (wbio->bi_end_io == NULL ||
2015 		    (wbio->bi_end_io == end_sync_read &&
2016 		     (i == r1_bio->read_disk ||
2017 		      !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2018 			continue;
2019 
2020 		bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2021 		wbio->bi_end_io = end_sync_write;
2022 		atomic_inc(&r1_bio->remaining);
2023 		md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
2024 
2025 		generic_make_request(wbio);
2026 	}
2027 
2028 	if (atomic_dec_and_test(&r1_bio->remaining)) {
2029 		/* if we're here, all write(s) have completed, so clean up */
2030 		int s = r1_bio->sectors;
2031 		if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2032 		    test_bit(R1BIO_WriteError, &r1_bio->state))
2033 			reschedule_retry(r1_bio);
2034 		else {
2035 			put_buf(r1_bio);
2036 			md_done_sync(mddev, s, 1);
2037 		}
2038 	}
2039 }
2040 
2041 /*
2042  * This is a kernel thread which:
2043  *
2044  *	1.	Retries failed read operations on working mirrors.
2045  *	2.	Updates the raid superblock when problems encounter.
2046  *	3.	Performs writes following reads for array synchronising.
2047  */
2048 
2049 static void fix_read_error(struct r1conf *conf, int read_disk,
2050 			   sector_t sect, int sectors)
2051 {
2052 	struct mddev *mddev = conf->mddev;
2053 	while(sectors) {
2054 		int s = sectors;
2055 		int d = read_disk;
2056 		int success = 0;
2057 		int start;
2058 		struct md_rdev *rdev;
2059 
2060 		if (s > (PAGE_SIZE>>9))
2061 			s = PAGE_SIZE >> 9;
2062 
2063 		do {
2064 			sector_t first_bad;
2065 			int bad_sectors;
2066 
2067 			rcu_read_lock();
2068 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2069 			if (rdev &&
2070 			    (test_bit(In_sync, &rdev->flags) ||
2071 			     (!test_bit(Faulty, &rdev->flags) &&
2072 			      rdev->recovery_offset >= sect + s)) &&
2073 			    is_badblock(rdev, sect, s,
2074 					&first_bad, &bad_sectors) == 0) {
2075 				atomic_inc(&rdev->nr_pending);
2076 				rcu_read_unlock();
2077 				if (sync_page_io(rdev, sect, s<<9,
2078 					 conf->tmppage, REQ_OP_READ, 0, false))
2079 					success = 1;
2080 				rdev_dec_pending(rdev, mddev);
2081 				if (success)
2082 					break;
2083 			} else
2084 				rcu_read_unlock();
2085 			d++;
2086 			if (d == conf->raid_disks * 2)
2087 				d = 0;
2088 		} while (!success && d != read_disk);
2089 
2090 		if (!success) {
2091 			/* Cannot read from anywhere - mark it bad */
2092 			struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2093 			if (!rdev_set_badblocks(rdev, sect, s, 0))
2094 				md_error(mddev, rdev);
2095 			break;
2096 		}
2097 		/* write it back and re-read */
2098 		start = d;
2099 		while (d != read_disk) {
2100 			if (d==0)
2101 				d = conf->raid_disks * 2;
2102 			d--;
2103 			rcu_read_lock();
2104 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2105 			if (rdev &&
2106 			    !test_bit(Faulty, &rdev->flags)) {
2107 				atomic_inc(&rdev->nr_pending);
2108 				rcu_read_unlock();
2109 				r1_sync_page_io(rdev, sect, s,
2110 						conf->tmppage, WRITE);
2111 				rdev_dec_pending(rdev, mddev);
2112 			} else
2113 				rcu_read_unlock();
2114 		}
2115 		d = start;
2116 		while (d != read_disk) {
2117 			char b[BDEVNAME_SIZE];
2118 			if (d==0)
2119 				d = conf->raid_disks * 2;
2120 			d--;
2121 			rcu_read_lock();
2122 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2123 			if (rdev &&
2124 			    !test_bit(Faulty, &rdev->flags)) {
2125 				atomic_inc(&rdev->nr_pending);
2126 				rcu_read_unlock();
2127 				if (r1_sync_page_io(rdev, sect, s,
2128 						    conf->tmppage, READ)) {
2129 					atomic_add(s, &rdev->corrected_errors);
2130 					pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %s)\n",
2131 						mdname(mddev), s,
2132 						(unsigned long long)(sect +
2133 								     rdev->data_offset),
2134 						bdevname(rdev->bdev, b));
2135 				}
2136 				rdev_dec_pending(rdev, mddev);
2137 			} else
2138 				rcu_read_unlock();
2139 		}
2140 		sectors -= s;
2141 		sect += s;
2142 	}
2143 }
2144 
2145 static int narrow_write_error(struct r1bio *r1_bio, int i)
2146 {
2147 	struct mddev *mddev = r1_bio->mddev;
2148 	struct r1conf *conf = mddev->private;
2149 	struct md_rdev *rdev = conf->mirrors[i].rdev;
2150 
2151 	/* bio has the data to be written to device 'i' where
2152 	 * we just recently had a write error.
2153 	 * We repeatedly clone the bio and trim down to one block,
2154 	 * then try the write.  Where the write fails we record
2155 	 * a bad block.
2156 	 * It is conceivable that the bio doesn't exactly align with
2157 	 * blocks.  We must handle this somehow.
2158 	 *
2159 	 * We currently own a reference on the rdev.
2160 	 */
2161 
2162 	int block_sectors;
2163 	sector_t sector;
2164 	int sectors;
2165 	int sect_to_write = r1_bio->sectors;
2166 	int ok = 1;
2167 
2168 	if (rdev->badblocks.shift < 0)
2169 		return 0;
2170 
2171 	block_sectors = roundup(1 << rdev->badblocks.shift,
2172 				bdev_logical_block_size(rdev->bdev) >> 9);
2173 	sector = r1_bio->sector;
2174 	sectors = ((sector + block_sectors)
2175 		   & ~(sector_t)(block_sectors - 1))
2176 		- sector;
2177 
2178 	while (sect_to_write) {
2179 		struct bio *wbio;
2180 		if (sectors > sect_to_write)
2181 			sectors = sect_to_write;
2182 		/* Write at 'sector' for 'sectors'*/
2183 
2184 		if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2185 			unsigned vcnt = r1_bio->behind_page_count;
2186 			struct bio_vec *vec = r1_bio->behind_bvecs;
2187 
2188 			while (!vec->bv_page) {
2189 				vec++;
2190 				vcnt--;
2191 			}
2192 
2193 			wbio = bio_alloc_mddev(GFP_NOIO, vcnt, mddev);
2194 			memcpy(wbio->bi_io_vec, vec, vcnt * sizeof(struct bio_vec));
2195 
2196 			wbio->bi_vcnt = vcnt;
2197 		} else {
2198 			wbio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2199 		}
2200 
2201 		bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2202 		wbio->bi_iter.bi_sector = r1_bio->sector;
2203 		wbio->bi_iter.bi_size = r1_bio->sectors << 9;
2204 
2205 		bio_trim(wbio, sector - r1_bio->sector, sectors);
2206 		wbio->bi_iter.bi_sector += rdev->data_offset;
2207 		wbio->bi_bdev = rdev->bdev;
2208 
2209 		if (submit_bio_wait(wbio) < 0)
2210 			/* failure! */
2211 			ok = rdev_set_badblocks(rdev, sector,
2212 						sectors, 0)
2213 				&& ok;
2214 
2215 		bio_put(wbio);
2216 		sect_to_write -= sectors;
2217 		sector += sectors;
2218 		sectors = block_sectors;
2219 	}
2220 	return ok;
2221 }
2222 
2223 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2224 {
2225 	int m;
2226 	int s = r1_bio->sectors;
2227 	for (m = 0; m < conf->raid_disks * 2 ; m++) {
2228 		struct md_rdev *rdev = conf->mirrors[m].rdev;
2229 		struct bio *bio = r1_bio->bios[m];
2230 		if (bio->bi_end_io == NULL)
2231 			continue;
2232 		if (!bio->bi_error &&
2233 		    test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2234 			rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2235 		}
2236 		if (bio->bi_error &&
2237 		    test_bit(R1BIO_WriteError, &r1_bio->state)) {
2238 			if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2239 				md_error(conf->mddev, rdev);
2240 		}
2241 	}
2242 	put_buf(r1_bio);
2243 	md_done_sync(conf->mddev, s, 1);
2244 }
2245 
2246 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2247 {
2248 	int m;
2249 	bool fail = false;
2250 	for (m = 0; m < conf->raid_disks * 2 ; m++)
2251 		if (r1_bio->bios[m] == IO_MADE_GOOD) {
2252 			struct md_rdev *rdev = conf->mirrors[m].rdev;
2253 			rdev_clear_badblocks(rdev,
2254 					     r1_bio->sector,
2255 					     r1_bio->sectors, 0);
2256 			rdev_dec_pending(rdev, conf->mddev);
2257 		} else if (r1_bio->bios[m] != NULL) {
2258 			/* This drive got a write error.  We need to
2259 			 * narrow down and record precise write
2260 			 * errors.
2261 			 */
2262 			fail = true;
2263 			if (!narrow_write_error(r1_bio, m)) {
2264 				md_error(conf->mddev,
2265 					 conf->mirrors[m].rdev);
2266 				/* an I/O failed, we can't clear the bitmap */
2267 				set_bit(R1BIO_Degraded, &r1_bio->state);
2268 			}
2269 			rdev_dec_pending(conf->mirrors[m].rdev,
2270 					 conf->mddev);
2271 		}
2272 	if (fail) {
2273 		spin_lock_irq(&conf->device_lock);
2274 		list_add(&r1_bio->retry_list, &conf->bio_end_io_list);
2275 		conf->nr_queued++;
2276 		spin_unlock_irq(&conf->device_lock);
2277 		md_wakeup_thread(conf->mddev->thread);
2278 	} else {
2279 		if (test_bit(R1BIO_WriteError, &r1_bio->state))
2280 			close_write(r1_bio);
2281 		raid_end_bio_io(r1_bio);
2282 	}
2283 }
2284 
2285 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2286 {
2287 	int disk;
2288 	int max_sectors;
2289 	struct mddev *mddev = conf->mddev;
2290 	struct bio *bio;
2291 	char b[BDEVNAME_SIZE];
2292 	struct md_rdev *rdev;
2293 
2294 	clear_bit(R1BIO_ReadError, &r1_bio->state);
2295 	/* we got a read error. Maybe the drive is bad.  Maybe just
2296 	 * the block and we can fix it.
2297 	 * We freeze all other IO, and try reading the block from
2298 	 * other devices.  When we find one, we re-write
2299 	 * and check it that fixes the read error.
2300 	 * This is all done synchronously while the array is
2301 	 * frozen
2302 	 */
2303 
2304 	bio = r1_bio->bios[r1_bio->read_disk];
2305 	bdevname(bio->bi_bdev, b);
2306 	bio_put(bio);
2307 	r1_bio->bios[r1_bio->read_disk] = NULL;
2308 
2309 	if (mddev->ro == 0) {
2310 		freeze_array(conf, 1);
2311 		fix_read_error(conf, r1_bio->read_disk,
2312 			       r1_bio->sector, r1_bio->sectors);
2313 		unfreeze_array(conf);
2314 	} else {
2315 		r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED;
2316 	}
2317 
2318 	rdev_dec_pending(conf->mirrors[r1_bio->read_disk].rdev, conf->mddev);
2319 
2320 read_more:
2321 	disk = read_balance(conf, r1_bio, &max_sectors);
2322 	if (disk == -1) {
2323 		pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
2324 				    mdname(mddev), b, (unsigned long long)r1_bio->sector);
2325 		raid_end_bio_io(r1_bio);
2326 	} else {
2327 		const unsigned long do_sync
2328 			= r1_bio->master_bio->bi_opf & REQ_SYNC;
2329 		r1_bio->read_disk = disk;
2330 		bio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2331 		bio_trim(bio, r1_bio->sector - bio->bi_iter.bi_sector,
2332 			 max_sectors);
2333 		r1_bio->bios[r1_bio->read_disk] = bio;
2334 		rdev = conf->mirrors[disk].rdev;
2335 		pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %s\n",
2336 				    mdname(mddev),
2337 				    (unsigned long long)r1_bio->sector,
2338 				    bdevname(rdev->bdev, b));
2339 		bio->bi_iter.bi_sector = r1_bio->sector + rdev->data_offset;
2340 		bio->bi_bdev = rdev->bdev;
2341 		bio->bi_end_io = raid1_end_read_request;
2342 		bio_set_op_attrs(bio, REQ_OP_READ, do_sync);
2343 		bio->bi_private = r1_bio;
2344 		if (max_sectors < r1_bio->sectors) {
2345 			/* Drat - have to split this up more */
2346 			struct bio *mbio = r1_bio->master_bio;
2347 			int sectors_handled = (r1_bio->sector + max_sectors
2348 					       - mbio->bi_iter.bi_sector);
2349 			r1_bio->sectors = max_sectors;
2350 			spin_lock_irq(&conf->device_lock);
2351 			if (mbio->bi_phys_segments == 0)
2352 				mbio->bi_phys_segments = 2;
2353 			else
2354 				mbio->bi_phys_segments++;
2355 			spin_unlock_irq(&conf->device_lock);
2356 			generic_make_request(bio);
2357 			bio = NULL;
2358 
2359 			r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
2360 
2361 			r1_bio->master_bio = mbio;
2362 			r1_bio->sectors = bio_sectors(mbio) - sectors_handled;
2363 			r1_bio->state = 0;
2364 			set_bit(R1BIO_ReadError, &r1_bio->state);
2365 			r1_bio->mddev = mddev;
2366 			r1_bio->sector = mbio->bi_iter.bi_sector +
2367 				sectors_handled;
2368 
2369 			goto read_more;
2370 		} else
2371 			generic_make_request(bio);
2372 	}
2373 }
2374 
2375 static void raid1d(struct md_thread *thread)
2376 {
2377 	struct mddev *mddev = thread->mddev;
2378 	struct r1bio *r1_bio;
2379 	unsigned long flags;
2380 	struct r1conf *conf = mddev->private;
2381 	struct list_head *head = &conf->retry_list;
2382 	struct blk_plug plug;
2383 
2384 	md_check_recovery(mddev);
2385 
2386 	if (!list_empty_careful(&conf->bio_end_io_list) &&
2387 	    !test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
2388 		LIST_HEAD(tmp);
2389 		spin_lock_irqsave(&conf->device_lock, flags);
2390 		if (!test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
2391 			while (!list_empty(&conf->bio_end_io_list)) {
2392 				list_move(conf->bio_end_io_list.prev, &tmp);
2393 				conf->nr_queued--;
2394 			}
2395 		}
2396 		spin_unlock_irqrestore(&conf->device_lock, flags);
2397 		while (!list_empty(&tmp)) {
2398 			r1_bio = list_first_entry(&tmp, struct r1bio,
2399 						  retry_list);
2400 			list_del(&r1_bio->retry_list);
2401 			if (mddev->degraded)
2402 				set_bit(R1BIO_Degraded, &r1_bio->state);
2403 			if (test_bit(R1BIO_WriteError, &r1_bio->state))
2404 				close_write(r1_bio);
2405 			raid_end_bio_io(r1_bio);
2406 		}
2407 	}
2408 
2409 	blk_start_plug(&plug);
2410 	for (;;) {
2411 
2412 		flush_pending_writes(conf);
2413 
2414 		spin_lock_irqsave(&conf->device_lock, flags);
2415 		if (list_empty(head)) {
2416 			spin_unlock_irqrestore(&conf->device_lock, flags);
2417 			break;
2418 		}
2419 		r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2420 		list_del(head->prev);
2421 		conf->nr_queued--;
2422 		spin_unlock_irqrestore(&conf->device_lock, flags);
2423 
2424 		mddev = r1_bio->mddev;
2425 		conf = mddev->private;
2426 		if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2427 			if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2428 			    test_bit(R1BIO_WriteError, &r1_bio->state))
2429 				handle_sync_write_finished(conf, r1_bio);
2430 			else
2431 				sync_request_write(mddev, r1_bio);
2432 		} else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2433 			   test_bit(R1BIO_WriteError, &r1_bio->state))
2434 			handle_write_finished(conf, r1_bio);
2435 		else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2436 			handle_read_error(conf, r1_bio);
2437 		else
2438 			/* just a partial read to be scheduled from separate
2439 			 * context
2440 			 */
2441 			generic_make_request(r1_bio->bios[r1_bio->read_disk]);
2442 
2443 		cond_resched();
2444 		if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2445 			md_check_recovery(mddev);
2446 	}
2447 	blk_finish_plug(&plug);
2448 }
2449 
2450 static int init_resync(struct r1conf *conf)
2451 {
2452 	int buffs;
2453 
2454 	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2455 	BUG_ON(conf->r1buf_pool);
2456 	conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2457 					  conf->poolinfo);
2458 	if (!conf->r1buf_pool)
2459 		return -ENOMEM;
2460 	conf->next_resync = 0;
2461 	return 0;
2462 }
2463 
2464 /*
2465  * perform a "sync" on one "block"
2466  *
2467  * We need to make sure that no normal I/O request - particularly write
2468  * requests - conflict with active sync requests.
2469  *
2470  * This is achieved by tracking pending requests and a 'barrier' concept
2471  * that can be installed to exclude normal IO requests.
2472  */
2473 
2474 static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr,
2475 				   int *skipped)
2476 {
2477 	struct r1conf *conf = mddev->private;
2478 	struct r1bio *r1_bio;
2479 	struct bio *bio;
2480 	sector_t max_sector, nr_sectors;
2481 	int disk = -1;
2482 	int i;
2483 	int wonly = -1;
2484 	int write_targets = 0, read_targets = 0;
2485 	sector_t sync_blocks;
2486 	int still_degraded = 0;
2487 	int good_sectors = RESYNC_SECTORS;
2488 	int min_bad = 0; /* number of sectors that are bad in all devices */
2489 
2490 	if (!conf->r1buf_pool)
2491 		if (init_resync(conf))
2492 			return 0;
2493 
2494 	max_sector = mddev->dev_sectors;
2495 	if (sector_nr >= max_sector) {
2496 		/* If we aborted, we need to abort the
2497 		 * sync on the 'current' bitmap chunk (there will
2498 		 * only be one in raid1 resync.
2499 		 * We can find the current addess in mddev->curr_resync
2500 		 */
2501 		if (mddev->curr_resync < max_sector) /* aborted */
2502 			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2503 						&sync_blocks, 1);
2504 		else /* completed sync */
2505 			conf->fullsync = 0;
2506 
2507 		bitmap_close_sync(mddev->bitmap);
2508 		close_sync(conf);
2509 
2510 		if (mddev_is_clustered(mddev)) {
2511 			conf->cluster_sync_low = 0;
2512 			conf->cluster_sync_high = 0;
2513 		}
2514 		return 0;
2515 	}
2516 
2517 	if (mddev->bitmap == NULL &&
2518 	    mddev->recovery_cp == MaxSector &&
2519 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2520 	    conf->fullsync == 0) {
2521 		*skipped = 1;
2522 		return max_sector - sector_nr;
2523 	}
2524 	/* before building a request, check if we can skip these blocks..
2525 	 * This call the bitmap_start_sync doesn't actually record anything
2526 	 */
2527 	if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2528 	    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2529 		/* We can skip this block, and probably several more */
2530 		*skipped = 1;
2531 		return sync_blocks;
2532 	}
2533 
2534 	/*
2535 	 * If there is non-resync activity waiting for a turn, then let it
2536 	 * though before starting on this new sync request.
2537 	 */
2538 	if (conf->nr_waiting)
2539 		schedule_timeout_uninterruptible(1);
2540 
2541 	/* we are incrementing sector_nr below. To be safe, we check against
2542 	 * sector_nr + two times RESYNC_SECTORS
2543 	 */
2544 
2545 	bitmap_cond_end_sync(mddev->bitmap, sector_nr,
2546 		mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
2547 	r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
2548 
2549 	raise_barrier(conf, sector_nr);
2550 
2551 	rcu_read_lock();
2552 	/*
2553 	 * If we get a correctably read error during resync or recovery,
2554 	 * we might want to read from a different device.  So we
2555 	 * flag all drives that could conceivably be read from for READ,
2556 	 * and any others (which will be non-In_sync devices) for WRITE.
2557 	 * If a read fails, we try reading from something else for which READ
2558 	 * is OK.
2559 	 */
2560 
2561 	r1_bio->mddev = mddev;
2562 	r1_bio->sector = sector_nr;
2563 	r1_bio->state = 0;
2564 	set_bit(R1BIO_IsSync, &r1_bio->state);
2565 
2566 	for (i = 0; i < conf->raid_disks * 2; i++) {
2567 		struct md_rdev *rdev;
2568 		bio = r1_bio->bios[i];
2569 		bio_reset(bio);
2570 
2571 		rdev = rcu_dereference(conf->mirrors[i].rdev);
2572 		if (rdev == NULL ||
2573 		    test_bit(Faulty, &rdev->flags)) {
2574 			if (i < conf->raid_disks)
2575 				still_degraded = 1;
2576 		} else if (!test_bit(In_sync, &rdev->flags)) {
2577 			bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2578 			bio->bi_end_io = end_sync_write;
2579 			write_targets ++;
2580 		} else {
2581 			/* may need to read from here */
2582 			sector_t first_bad = MaxSector;
2583 			int bad_sectors;
2584 
2585 			if (is_badblock(rdev, sector_nr, good_sectors,
2586 					&first_bad, &bad_sectors)) {
2587 				if (first_bad > sector_nr)
2588 					good_sectors = first_bad - sector_nr;
2589 				else {
2590 					bad_sectors -= (sector_nr - first_bad);
2591 					if (min_bad == 0 ||
2592 					    min_bad > bad_sectors)
2593 						min_bad = bad_sectors;
2594 				}
2595 			}
2596 			if (sector_nr < first_bad) {
2597 				if (test_bit(WriteMostly, &rdev->flags)) {
2598 					if (wonly < 0)
2599 						wonly = i;
2600 				} else {
2601 					if (disk < 0)
2602 						disk = i;
2603 				}
2604 				bio_set_op_attrs(bio, REQ_OP_READ, 0);
2605 				bio->bi_end_io = end_sync_read;
2606 				read_targets++;
2607 			} else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2608 				test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2609 				!test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2610 				/*
2611 				 * The device is suitable for reading (InSync),
2612 				 * but has bad block(s) here. Let's try to correct them,
2613 				 * if we are doing resync or repair. Otherwise, leave
2614 				 * this device alone for this sync request.
2615 				 */
2616 				bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2617 				bio->bi_end_io = end_sync_write;
2618 				write_targets++;
2619 			}
2620 		}
2621 		if (bio->bi_end_io) {
2622 			atomic_inc(&rdev->nr_pending);
2623 			bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
2624 			bio->bi_bdev = rdev->bdev;
2625 			bio->bi_private = r1_bio;
2626 		}
2627 	}
2628 	rcu_read_unlock();
2629 	if (disk < 0)
2630 		disk = wonly;
2631 	r1_bio->read_disk = disk;
2632 
2633 	if (read_targets == 0 && min_bad > 0) {
2634 		/* These sectors are bad on all InSync devices, so we
2635 		 * need to mark them bad on all write targets
2636 		 */
2637 		int ok = 1;
2638 		for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2639 			if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2640 				struct md_rdev *rdev = conf->mirrors[i].rdev;
2641 				ok = rdev_set_badblocks(rdev, sector_nr,
2642 							min_bad, 0
2643 					) && ok;
2644 			}
2645 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
2646 		*skipped = 1;
2647 		put_buf(r1_bio);
2648 
2649 		if (!ok) {
2650 			/* Cannot record the badblocks, so need to
2651 			 * abort the resync.
2652 			 * If there are multiple read targets, could just
2653 			 * fail the really bad ones ???
2654 			 */
2655 			conf->recovery_disabled = mddev->recovery_disabled;
2656 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2657 			return 0;
2658 		} else
2659 			return min_bad;
2660 
2661 	}
2662 	if (min_bad > 0 && min_bad < good_sectors) {
2663 		/* only resync enough to reach the next bad->good
2664 		 * transition */
2665 		good_sectors = min_bad;
2666 	}
2667 
2668 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2669 		/* extra read targets are also write targets */
2670 		write_targets += read_targets-1;
2671 
2672 	if (write_targets == 0 || read_targets == 0) {
2673 		/* There is nowhere to write, so all non-sync
2674 		 * drives must be failed - so we are finished
2675 		 */
2676 		sector_t rv;
2677 		if (min_bad > 0)
2678 			max_sector = sector_nr + min_bad;
2679 		rv = max_sector - sector_nr;
2680 		*skipped = 1;
2681 		put_buf(r1_bio);
2682 		return rv;
2683 	}
2684 
2685 	if (max_sector > mddev->resync_max)
2686 		max_sector = mddev->resync_max; /* Don't do IO beyond here */
2687 	if (max_sector > sector_nr + good_sectors)
2688 		max_sector = sector_nr + good_sectors;
2689 	nr_sectors = 0;
2690 	sync_blocks = 0;
2691 	do {
2692 		struct page *page;
2693 		int len = PAGE_SIZE;
2694 		if (sector_nr + (len>>9) > max_sector)
2695 			len = (max_sector - sector_nr) << 9;
2696 		if (len == 0)
2697 			break;
2698 		if (sync_blocks == 0) {
2699 			if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2700 					       &sync_blocks, still_degraded) &&
2701 			    !conf->fullsync &&
2702 			    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2703 				break;
2704 			if ((len >> 9) > sync_blocks)
2705 				len = sync_blocks<<9;
2706 		}
2707 
2708 		for (i = 0 ; i < conf->raid_disks * 2; i++) {
2709 			bio = r1_bio->bios[i];
2710 			if (bio->bi_end_io) {
2711 				page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
2712 				if (bio_add_page(bio, page, len, 0) == 0) {
2713 					/* stop here */
2714 					bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
2715 					while (i > 0) {
2716 						i--;
2717 						bio = r1_bio->bios[i];
2718 						if (bio->bi_end_io==NULL)
2719 							continue;
2720 						/* remove last page from this bio */
2721 						bio->bi_vcnt--;
2722 						bio->bi_iter.bi_size -= len;
2723 						bio_clear_flag(bio, BIO_SEG_VALID);
2724 					}
2725 					goto bio_full;
2726 				}
2727 			}
2728 		}
2729 		nr_sectors += len>>9;
2730 		sector_nr += len>>9;
2731 		sync_blocks -= (len>>9);
2732 	} while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
2733  bio_full:
2734 	r1_bio->sectors = nr_sectors;
2735 
2736 	if (mddev_is_clustered(mddev) &&
2737 			conf->cluster_sync_high < sector_nr + nr_sectors) {
2738 		conf->cluster_sync_low = mddev->curr_resync_completed;
2739 		conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS;
2740 		/* Send resync message */
2741 		md_cluster_ops->resync_info_update(mddev,
2742 				conf->cluster_sync_low,
2743 				conf->cluster_sync_high);
2744 	}
2745 
2746 	/* For a user-requested sync, we read all readable devices and do a
2747 	 * compare
2748 	 */
2749 	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2750 		atomic_set(&r1_bio->remaining, read_targets);
2751 		for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2752 			bio = r1_bio->bios[i];
2753 			if (bio->bi_end_io == end_sync_read) {
2754 				read_targets--;
2755 				md_sync_acct(bio->bi_bdev, nr_sectors);
2756 				generic_make_request(bio);
2757 			}
2758 		}
2759 	} else {
2760 		atomic_set(&r1_bio->remaining, 1);
2761 		bio = r1_bio->bios[r1_bio->read_disk];
2762 		md_sync_acct(bio->bi_bdev, nr_sectors);
2763 		generic_make_request(bio);
2764 
2765 	}
2766 	return nr_sectors;
2767 }
2768 
2769 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2770 {
2771 	if (sectors)
2772 		return sectors;
2773 
2774 	return mddev->dev_sectors;
2775 }
2776 
2777 static struct r1conf *setup_conf(struct mddev *mddev)
2778 {
2779 	struct r1conf *conf;
2780 	int i;
2781 	struct raid1_info *disk;
2782 	struct md_rdev *rdev;
2783 	int err = -ENOMEM;
2784 
2785 	conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2786 	if (!conf)
2787 		goto abort;
2788 
2789 	conf->mirrors = kzalloc(sizeof(struct raid1_info)
2790 				* mddev->raid_disks * 2,
2791 				 GFP_KERNEL);
2792 	if (!conf->mirrors)
2793 		goto abort;
2794 
2795 	conf->tmppage = alloc_page(GFP_KERNEL);
2796 	if (!conf->tmppage)
2797 		goto abort;
2798 
2799 	conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
2800 	if (!conf->poolinfo)
2801 		goto abort;
2802 	conf->poolinfo->raid_disks = mddev->raid_disks * 2;
2803 	conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2804 					  r1bio_pool_free,
2805 					  conf->poolinfo);
2806 	if (!conf->r1bio_pool)
2807 		goto abort;
2808 
2809 	conf->poolinfo->mddev = mddev;
2810 
2811 	err = -EINVAL;
2812 	spin_lock_init(&conf->device_lock);
2813 	rdev_for_each(rdev, mddev) {
2814 		struct request_queue *q;
2815 		int disk_idx = rdev->raid_disk;
2816 		if (disk_idx >= mddev->raid_disks
2817 		    || disk_idx < 0)
2818 			continue;
2819 		if (test_bit(Replacement, &rdev->flags))
2820 			disk = conf->mirrors + mddev->raid_disks + disk_idx;
2821 		else
2822 			disk = conf->mirrors + disk_idx;
2823 
2824 		if (disk->rdev)
2825 			goto abort;
2826 		disk->rdev = rdev;
2827 		q = bdev_get_queue(rdev->bdev);
2828 
2829 		disk->head_position = 0;
2830 		disk->seq_start = MaxSector;
2831 	}
2832 	conf->raid_disks = mddev->raid_disks;
2833 	conf->mddev = mddev;
2834 	INIT_LIST_HEAD(&conf->retry_list);
2835 	INIT_LIST_HEAD(&conf->bio_end_io_list);
2836 
2837 	spin_lock_init(&conf->resync_lock);
2838 	init_waitqueue_head(&conf->wait_barrier);
2839 
2840 	bio_list_init(&conf->pending_bio_list);
2841 	conf->pending_count = 0;
2842 	conf->recovery_disabled = mddev->recovery_disabled - 1;
2843 
2844 	conf->start_next_window = MaxSector;
2845 	conf->current_window_requests = conf->next_window_requests = 0;
2846 
2847 	err = -EIO;
2848 	for (i = 0; i < conf->raid_disks * 2; i++) {
2849 
2850 		disk = conf->mirrors + i;
2851 
2852 		if (i < conf->raid_disks &&
2853 		    disk[conf->raid_disks].rdev) {
2854 			/* This slot has a replacement. */
2855 			if (!disk->rdev) {
2856 				/* No original, just make the replacement
2857 				 * a recovering spare
2858 				 */
2859 				disk->rdev =
2860 					disk[conf->raid_disks].rdev;
2861 				disk[conf->raid_disks].rdev = NULL;
2862 			} else if (!test_bit(In_sync, &disk->rdev->flags))
2863 				/* Original is not in_sync - bad */
2864 				goto abort;
2865 		}
2866 
2867 		if (!disk->rdev ||
2868 		    !test_bit(In_sync, &disk->rdev->flags)) {
2869 			disk->head_position = 0;
2870 			if (disk->rdev &&
2871 			    (disk->rdev->saved_raid_disk < 0))
2872 				conf->fullsync = 1;
2873 		}
2874 	}
2875 
2876 	err = -ENOMEM;
2877 	conf->thread = md_register_thread(raid1d, mddev, "raid1");
2878 	if (!conf->thread)
2879 		goto abort;
2880 
2881 	return conf;
2882 
2883  abort:
2884 	if (conf) {
2885 		mempool_destroy(conf->r1bio_pool);
2886 		kfree(conf->mirrors);
2887 		safe_put_page(conf->tmppage);
2888 		kfree(conf->poolinfo);
2889 		kfree(conf);
2890 	}
2891 	return ERR_PTR(err);
2892 }
2893 
2894 static void raid1_free(struct mddev *mddev, void *priv);
2895 static int raid1_run(struct mddev *mddev)
2896 {
2897 	struct r1conf *conf;
2898 	int i;
2899 	struct md_rdev *rdev;
2900 	int ret;
2901 	bool discard_supported = false;
2902 
2903 	if (mddev->level != 1) {
2904 		pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n",
2905 			mdname(mddev), mddev->level);
2906 		return -EIO;
2907 	}
2908 	if (mddev->reshape_position != MaxSector) {
2909 		pr_warn("md/raid1:%s: reshape_position set but not supported\n",
2910 			mdname(mddev));
2911 		return -EIO;
2912 	}
2913 	/*
2914 	 * copy the already verified devices into our private RAID1
2915 	 * bookkeeping area. [whatever we allocate in run(),
2916 	 * should be freed in raid1_free()]
2917 	 */
2918 	if (mddev->private == NULL)
2919 		conf = setup_conf(mddev);
2920 	else
2921 		conf = mddev->private;
2922 
2923 	if (IS_ERR(conf))
2924 		return PTR_ERR(conf);
2925 
2926 	if (mddev->queue)
2927 		blk_queue_max_write_same_sectors(mddev->queue, 0);
2928 
2929 	rdev_for_each(rdev, mddev) {
2930 		if (!mddev->gendisk)
2931 			continue;
2932 		disk_stack_limits(mddev->gendisk, rdev->bdev,
2933 				  rdev->data_offset << 9);
2934 		if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
2935 			discard_supported = true;
2936 	}
2937 
2938 	mddev->degraded = 0;
2939 	for (i=0; i < conf->raid_disks; i++)
2940 		if (conf->mirrors[i].rdev == NULL ||
2941 		    !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
2942 		    test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2943 			mddev->degraded++;
2944 
2945 	if (conf->raid_disks - mddev->degraded == 1)
2946 		mddev->recovery_cp = MaxSector;
2947 
2948 	if (mddev->recovery_cp != MaxSector)
2949 		pr_info("md/raid1:%s: not clean -- starting background reconstruction\n",
2950 			mdname(mddev));
2951 	pr_info("md/raid1:%s: active with %d out of %d mirrors\n",
2952 		mdname(mddev), mddev->raid_disks - mddev->degraded,
2953 		mddev->raid_disks);
2954 
2955 	/*
2956 	 * Ok, everything is just fine now
2957 	 */
2958 	mddev->thread = conf->thread;
2959 	conf->thread = NULL;
2960 	mddev->private = conf;
2961 
2962 	md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
2963 
2964 	if (mddev->queue) {
2965 		if (discard_supported)
2966 			queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
2967 						mddev->queue);
2968 		else
2969 			queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
2970 						  mddev->queue);
2971 	}
2972 
2973 	ret =  md_integrity_register(mddev);
2974 	if (ret) {
2975 		md_unregister_thread(&mddev->thread);
2976 		raid1_free(mddev, conf);
2977 	}
2978 	return ret;
2979 }
2980 
2981 static void raid1_free(struct mddev *mddev, void *priv)
2982 {
2983 	struct r1conf *conf = priv;
2984 
2985 	mempool_destroy(conf->r1bio_pool);
2986 	kfree(conf->mirrors);
2987 	safe_put_page(conf->tmppage);
2988 	kfree(conf->poolinfo);
2989 	kfree(conf);
2990 }
2991 
2992 static int raid1_resize(struct mddev *mddev, sector_t sectors)
2993 {
2994 	/* no resync is happening, and there is enough space
2995 	 * on all devices, so we can resize.
2996 	 * We need to make sure resync covers any new space.
2997 	 * If the array is shrinking we should possibly wait until
2998 	 * any io in the removed space completes, but it hardly seems
2999 	 * worth it.
3000 	 */
3001 	sector_t newsize = raid1_size(mddev, sectors, 0);
3002 	if (mddev->external_size &&
3003 	    mddev->array_sectors > newsize)
3004 		return -EINVAL;
3005 	if (mddev->bitmap) {
3006 		int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0);
3007 		if (ret)
3008 			return ret;
3009 	}
3010 	md_set_array_sectors(mddev, newsize);
3011 	set_capacity(mddev->gendisk, mddev->array_sectors);
3012 	revalidate_disk(mddev->gendisk);
3013 	if (sectors > mddev->dev_sectors &&
3014 	    mddev->recovery_cp > mddev->dev_sectors) {
3015 		mddev->recovery_cp = mddev->dev_sectors;
3016 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3017 	}
3018 	mddev->dev_sectors = sectors;
3019 	mddev->resync_max_sectors = sectors;
3020 	return 0;
3021 }
3022 
3023 static int raid1_reshape(struct mddev *mddev)
3024 {
3025 	/* We need to:
3026 	 * 1/ resize the r1bio_pool
3027 	 * 2/ resize conf->mirrors
3028 	 *
3029 	 * We allocate a new r1bio_pool if we can.
3030 	 * Then raise a device barrier and wait until all IO stops.
3031 	 * Then resize conf->mirrors and swap in the new r1bio pool.
3032 	 *
3033 	 * At the same time, we "pack" the devices so that all the missing
3034 	 * devices have the higher raid_disk numbers.
3035 	 */
3036 	mempool_t *newpool, *oldpool;
3037 	struct pool_info *newpoolinfo;
3038 	struct raid1_info *newmirrors;
3039 	struct r1conf *conf = mddev->private;
3040 	int cnt, raid_disks;
3041 	unsigned long flags;
3042 	int d, d2, err;
3043 
3044 	/* Cannot change chunk_size, layout, or level */
3045 	if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3046 	    mddev->layout != mddev->new_layout ||
3047 	    mddev->level != mddev->new_level) {
3048 		mddev->new_chunk_sectors = mddev->chunk_sectors;
3049 		mddev->new_layout = mddev->layout;
3050 		mddev->new_level = mddev->level;
3051 		return -EINVAL;
3052 	}
3053 
3054 	if (!mddev_is_clustered(mddev)) {
3055 		err = md_allow_write(mddev);
3056 		if (err)
3057 			return err;
3058 	}
3059 
3060 	raid_disks = mddev->raid_disks + mddev->delta_disks;
3061 
3062 	if (raid_disks < conf->raid_disks) {
3063 		cnt=0;
3064 		for (d= 0; d < conf->raid_disks; d++)
3065 			if (conf->mirrors[d].rdev)
3066 				cnt++;
3067 		if (cnt > raid_disks)
3068 			return -EBUSY;
3069 	}
3070 
3071 	newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3072 	if (!newpoolinfo)
3073 		return -ENOMEM;
3074 	newpoolinfo->mddev = mddev;
3075 	newpoolinfo->raid_disks = raid_disks * 2;
3076 
3077 	newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
3078 				 r1bio_pool_free, newpoolinfo);
3079 	if (!newpool) {
3080 		kfree(newpoolinfo);
3081 		return -ENOMEM;
3082 	}
3083 	newmirrors = kzalloc(sizeof(struct raid1_info) * raid_disks * 2,
3084 			     GFP_KERNEL);
3085 	if (!newmirrors) {
3086 		kfree(newpoolinfo);
3087 		mempool_destroy(newpool);
3088 		return -ENOMEM;
3089 	}
3090 
3091 	freeze_array(conf, 0);
3092 
3093 	/* ok, everything is stopped */
3094 	oldpool = conf->r1bio_pool;
3095 	conf->r1bio_pool = newpool;
3096 
3097 	for (d = d2 = 0; d < conf->raid_disks; d++) {
3098 		struct md_rdev *rdev = conf->mirrors[d].rdev;
3099 		if (rdev && rdev->raid_disk != d2) {
3100 			sysfs_unlink_rdev(mddev, rdev);
3101 			rdev->raid_disk = d2;
3102 			sysfs_unlink_rdev(mddev, rdev);
3103 			if (sysfs_link_rdev(mddev, rdev))
3104 				pr_warn("md/raid1:%s: cannot register rd%d\n",
3105 					mdname(mddev), rdev->raid_disk);
3106 		}
3107 		if (rdev)
3108 			newmirrors[d2++].rdev = rdev;
3109 	}
3110 	kfree(conf->mirrors);
3111 	conf->mirrors = newmirrors;
3112 	kfree(conf->poolinfo);
3113 	conf->poolinfo = newpoolinfo;
3114 
3115 	spin_lock_irqsave(&conf->device_lock, flags);
3116 	mddev->degraded += (raid_disks - conf->raid_disks);
3117 	spin_unlock_irqrestore(&conf->device_lock, flags);
3118 	conf->raid_disks = mddev->raid_disks = raid_disks;
3119 	mddev->delta_disks = 0;
3120 
3121 	unfreeze_array(conf);
3122 
3123 	set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3124 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3125 	md_wakeup_thread(mddev->thread);
3126 
3127 	mempool_destroy(oldpool);
3128 	return 0;
3129 }
3130 
3131 static void raid1_quiesce(struct mddev *mddev, int state)
3132 {
3133 	struct r1conf *conf = mddev->private;
3134 
3135 	switch(state) {
3136 	case 2: /* wake for suspend */
3137 		wake_up(&conf->wait_barrier);
3138 		break;
3139 	case 1:
3140 		freeze_array(conf, 0);
3141 		break;
3142 	case 0:
3143 		unfreeze_array(conf);
3144 		break;
3145 	}
3146 }
3147 
3148 static void *raid1_takeover(struct mddev *mddev)
3149 {
3150 	/* raid1 can take over:
3151 	 *  raid5 with 2 devices, any layout or chunk size
3152 	 */
3153 	if (mddev->level == 5 && mddev->raid_disks == 2) {
3154 		struct r1conf *conf;
3155 		mddev->new_level = 1;
3156 		mddev->new_layout = 0;
3157 		mddev->new_chunk_sectors = 0;
3158 		conf = setup_conf(mddev);
3159 		if (!IS_ERR(conf))
3160 			/* Array must appear to be quiesced */
3161 			conf->array_frozen = 1;
3162 		return conf;
3163 	}
3164 	return ERR_PTR(-EINVAL);
3165 }
3166 
3167 static struct md_personality raid1_personality =
3168 {
3169 	.name		= "raid1",
3170 	.level		= 1,
3171 	.owner		= THIS_MODULE,
3172 	.make_request	= raid1_make_request,
3173 	.run		= raid1_run,
3174 	.free		= raid1_free,
3175 	.status		= raid1_status,
3176 	.error_handler	= raid1_error,
3177 	.hot_add_disk	= raid1_add_disk,
3178 	.hot_remove_disk= raid1_remove_disk,
3179 	.spare_active	= raid1_spare_active,
3180 	.sync_request	= raid1_sync_request,
3181 	.resize		= raid1_resize,
3182 	.size		= raid1_size,
3183 	.check_reshape	= raid1_reshape,
3184 	.quiesce	= raid1_quiesce,
3185 	.takeover	= raid1_takeover,
3186 	.congested	= raid1_congested,
3187 };
3188 
3189 static int __init raid_init(void)
3190 {
3191 	return register_md_personality(&raid1_personality);
3192 }
3193 
3194 static void raid_exit(void)
3195 {
3196 	unregister_md_personality(&raid1_personality);
3197 }
3198 
3199 module_init(raid_init);
3200 module_exit(raid_exit);
3201 MODULE_LICENSE("GPL");
3202 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3203 MODULE_ALIAS("md-personality-3"); /* RAID1 */
3204 MODULE_ALIAS("md-raid1");
3205 MODULE_ALIAS("md-level-1");
3206 
3207 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
3208