1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * raid1.c : Multiple Devices driver for Linux 4 * 5 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat 6 * 7 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman 8 * 9 * RAID-1 management functions. 10 * 11 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000 12 * 13 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk> 14 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au> 15 * 16 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support 17 * bitmapped intelligence in resync: 18 * 19 * - bitmap marked during normal i/o 20 * - bitmap used to skip nondirty blocks during sync 21 * 22 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology: 23 * - persistent bitmap code 24 */ 25 26 #include <linux/slab.h> 27 #include <linux/delay.h> 28 #include <linux/blkdev.h> 29 #include <linux/module.h> 30 #include <linux/seq_file.h> 31 #include <linux/ratelimit.h> 32 33 #include <trace/events/block.h> 34 35 #include "md.h" 36 #include "raid1.h" 37 #include "md-bitmap.h" 38 39 #define UNSUPPORTED_MDDEV_FLAGS \ 40 ((1L << MD_HAS_JOURNAL) | \ 41 (1L << MD_JOURNAL_CLEAN) | \ 42 (1L << MD_HAS_PPL) | \ 43 (1L << MD_HAS_MULTIPLE_PPLS)) 44 45 static void allow_barrier(struct r1conf *conf, sector_t sector_nr); 46 static void lower_barrier(struct r1conf *conf, sector_t sector_nr); 47 48 #define raid1_log(md, fmt, args...) \ 49 do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid1 " fmt, ##args); } while (0) 50 51 #include "raid1-10.c" 52 53 static int check_and_add_wb(struct md_rdev *rdev, sector_t lo, sector_t hi) 54 { 55 struct wb_info *wi, *temp_wi; 56 unsigned long flags; 57 int ret = 0; 58 struct mddev *mddev = rdev->mddev; 59 60 wi = mempool_alloc(mddev->wb_info_pool, GFP_NOIO); 61 62 spin_lock_irqsave(&rdev->wb_list_lock, flags); 63 list_for_each_entry(temp_wi, &rdev->wb_list, list) { 64 /* collision happened */ 65 if (hi > temp_wi->lo && lo < temp_wi->hi) { 66 ret = -EBUSY; 67 break; 68 } 69 } 70 71 if (!ret) { 72 wi->lo = lo; 73 wi->hi = hi; 74 list_add(&wi->list, &rdev->wb_list); 75 } else 76 mempool_free(wi, mddev->wb_info_pool); 77 spin_unlock_irqrestore(&rdev->wb_list_lock, flags); 78 79 return ret; 80 } 81 82 static void remove_wb(struct md_rdev *rdev, sector_t lo, sector_t hi) 83 { 84 struct wb_info *wi; 85 unsigned long flags; 86 int found = 0; 87 struct mddev *mddev = rdev->mddev; 88 89 spin_lock_irqsave(&rdev->wb_list_lock, flags); 90 list_for_each_entry(wi, &rdev->wb_list, list) 91 if (hi == wi->hi && lo == wi->lo) { 92 list_del(&wi->list); 93 mempool_free(wi, mddev->wb_info_pool); 94 found = 1; 95 break; 96 } 97 98 if (!found) 99 WARN(1, "The write behind IO is not recorded\n"); 100 spin_unlock_irqrestore(&rdev->wb_list_lock, flags); 101 wake_up(&rdev->wb_io_wait); 102 } 103 104 /* 105 * for resync bio, r1bio pointer can be retrieved from the per-bio 106 * 'struct resync_pages'. 107 */ 108 static inline struct r1bio *get_resync_r1bio(struct bio *bio) 109 { 110 return get_resync_pages(bio)->raid_bio; 111 } 112 113 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data) 114 { 115 struct pool_info *pi = data; 116 int size = offsetof(struct r1bio, bios[pi->raid_disks]); 117 118 /* allocate a r1bio with room for raid_disks entries in the bios array */ 119 return kzalloc(size, gfp_flags); 120 } 121 122 #define RESYNC_DEPTH 32 123 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9) 124 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH) 125 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9) 126 #define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW) 127 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9) 128 129 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data) 130 { 131 struct pool_info *pi = data; 132 struct r1bio *r1_bio; 133 struct bio *bio; 134 int need_pages; 135 int j; 136 struct resync_pages *rps; 137 138 r1_bio = r1bio_pool_alloc(gfp_flags, pi); 139 if (!r1_bio) 140 return NULL; 141 142 rps = kmalloc_array(pi->raid_disks, sizeof(struct resync_pages), 143 gfp_flags); 144 if (!rps) 145 goto out_free_r1bio; 146 147 /* 148 * Allocate bios : 1 for reading, n-1 for writing 149 */ 150 for (j = pi->raid_disks ; j-- ; ) { 151 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES); 152 if (!bio) 153 goto out_free_bio; 154 r1_bio->bios[j] = bio; 155 } 156 /* 157 * Allocate RESYNC_PAGES data pages and attach them to 158 * the first bio. 159 * If this is a user-requested check/repair, allocate 160 * RESYNC_PAGES for each bio. 161 */ 162 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) 163 need_pages = pi->raid_disks; 164 else 165 need_pages = 1; 166 for (j = 0; j < pi->raid_disks; j++) { 167 struct resync_pages *rp = &rps[j]; 168 169 bio = r1_bio->bios[j]; 170 171 if (j < need_pages) { 172 if (resync_alloc_pages(rp, gfp_flags)) 173 goto out_free_pages; 174 } else { 175 memcpy(rp, &rps[0], sizeof(*rp)); 176 resync_get_all_pages(rp); 177 } 178 179 rp->raid_bio = r1_bio; 180 bio->bi_private = rp; 181 } 182 183 r1_bio->master_bio = NULL; 184 185 return r1_bio; 186 187 out_free_pages: 188 while (--j >= 0) 189 resync_free_pages(&rps[j]); 190 191 out_free_bio: 192 while (++j < pi->raid_disks) 193 bio_put(r1_bio->bios[j]); 194 kfree(rps); 195 196 out_free_r1bio: 197 rbio_pool_free(r1_bio, data); 198 return NULL; 199 } 200 201 static void r1buf_pool_free(void *__r1_bio, void *data) 202 { 203 struct pool_info *pi = data; 204 int i; 205 struct r1bio *r1bio = __r1_bio; 206 struct resync_pages *rp = NULL; 207 208 for (i = pi->raid_disks; i--; ) { 209 rp = get_resync_pages(r1bio->bios[i]); 210 resync_free_pages(rp); 211 bio_put(r1bio->bios[i]); 212 } 213 214 /* resync pages array stored in the 1st bio's .bi_private */ 215 kfree(rp); 216 217 rbio_pool_free(r1bio, data); 218 } 219 220 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio) 221 { 222 int i; 223 224 for (i = 0; i < conf->raid_disks * 2; i++) { 225 struct bio **bio = r1_bio->bios + i; 226 if (!BIO_SPECIAL(*bio)) 227 bio_put(*bio); 228 *bio = NULL; 229 } 230 } 231 232 static void free_r1bio(struct r1bio *r1_bio) 233 { 234 struct r1conf *conf = r1_bio->mddev->private; 235 236 put_all_bios(conf, r1_bio); 237 mempool_free(r1_bio, &conf->r1bio_pool); 238 } 239 240 static void put_buf(struct r1bio *r1_bio) 241 { 242 struct r1conf *conf = r1_bio->mddev->private; 243 sector_t sect = r1_bio->sector; 244 int i; 245 246 for (i = 0; i < conf->raid_disks * 2; i++) { 247 struct bio *bio = r1_bio->bios[i]; 248 if (bio->bi_end_io) 249 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev); 250 } 251 252 mempool_free(r1_bio, &conf->r1buf_pool); 253 254 lower_barrier(conf, sect); 255 } 256 257 static void reschedule_retry(struct r1bio *r1_bio) 258 { 259 unsigned long flags; 260 struct mddev *mddev = r1_bio->mddev; 261 struct r1conf *conf = mddev->private; 262 int idx; 263 264 idx = sector_to_idx(r1_bio->sector); 265 spin_lock_irqsave(&conf->device_lock, flags); 266 list_add(&r1_bio->retry_list, &conf->retry_list); 267 atomic_inc(&conf->nr_queued[idx]); 268 spin_unlock_irqrestore(&conf->device_lock, flags); 269 270 wake_up(&conf->wait_barrier); 271 md_wakeup_thread(mddev->thread); 272 } 273 274 /* 275 * raid_end_bio_io() is called when we have finished servicing a mirrored 276 * operation and are ready to return a success/failure code to the buffer 277 * cache layer. 278 */ 279 static void call_bio_endio(struct r1bio *r1_bio) 280 { 281 struct bio *bio = r1_bio->master_bio; 282 struct r1conf *conf = r1_bio->mddev->private; 283 284 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) 285 bio->bi_status = BLK_STS_IOERR; 286 287 bio_endio(bio); 288 /* 289 * Wake up any possible resync thread that waits for the device 290 * to go idle. 291 */ 292 allow_barrier(conf, r1_bio->sector); 293 } 294 295 static void raid_end_bio_io(struct r1bio *r1_bio) 296 { 297 struct bio *bio = r1_bio->master_bio; 298 299 /* if nobody has done the final endio yet, do it now */ 300 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) { 301 pr_debug("raid1: sync end %s on sectors %llu-%llu\n", 302 (bio_data_dir(bio) == WRITE) ? "write" : "read", 303 (unsigned long long) bio->bi_iter.bi_sector, 304 (unsigned long long) bio_end_sector(bio) - 1); 305 306 call_bio_endio(r1_bio); 307 } 308 free_r1bio(r1_bio); 309 } 310 311 /* 312 * Update disk head position estimator based on IRQ completion info. 313 */ 314 static inline void update_head_pos(int disk, struct r1bio *r1_bio) 315 { 316 struct r1conf *conf = r1_bio->mddev->private; 317 318 conf->mirrors[disk].head_position = 319 r1_bio->sector + (r1_bio->sectors); 320 } 321 322 /* 323 * Find the disk number which triggered given bio 324 */ 325 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio) 326 { 327 int mirror; 328 struct r1conf *conf = r1_bio->mddev->private; 329 int raid_disks = conf->raid_disks; 330 331 for (mirror = 0; mirror < raid_disks * 2; mirror++) 332 if (r1_bio->bios[mirror] == bio) 333 break; 334 335 BUG_ON(mirror == raid_disks * 2); 336 update_head_pos(mirror, r1_bio); 337 338 return mirror; 339 } 340 341 static void raid1_end_read_request(struct bio *bio) 342 { 343 int uptodate = !bio->bi_status; 344 struct r1bio *r1_bio = bio->bi_private; 345 struct r1conf *conf = r1_bio->mddev->private; 346 struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev; 347 348 /* 349 * this branch is our 'one mirror IO has finished' event handler: 350 */ 351 update_head_pos(r1_bio->read_disk, r1_bio); 352 353 if (uptodate) 354 set_bit(R1BIO_Uptodate, &r1_bio->state); 355 else if (test_bit(FailFast, &rdev->flags) && 356 test_bit(R1BIO_FailFast, &r1_bio->state)) 357 /* This was a fail-fast read so we definitely 358 * want to retry */ 359 ; 360 else { 361 /* If all other devices have failed, we want to return 362 * the error upwards rather than fail the last device. 363 * Here we redefine "uptodate" to mean "Don't want to retry" 364 */ 365 unsigned long flags; 366 spin_lock_irqsave(&conf->device_lock, flags); 367 if (r1_bio->mddev->degraded == conf->raid_disks || 368 (r1_bio->mddev->degraded == conf->raid_disks-1 && 369 test_bit(In_sync, &rdev->flags))) 370 uptodate = 1; 371 spin_unlock_irqrestore(&conf->device_lock, flags); 372 } 373 374 if (uptodate) { 375 raid_end_bio_io(r1_bio); 376 rdev_dec_pending(rdev, conf->mddev); 377 } else { 378 /* 379 * oops, read error: 380 */ 381 char b[BDEVNAME_SIZE]; 382 pr_err_ratelimited("md/raid1:%s: %s: rescheduling sector %llu\n", 383 mdname(conf->mddev), 384 bdevname(rdev->bdev, b), 385 (unsigned long long)r1_bio->sector); 386 set_bit(R1BIO_ReadError, &r1_bio->state); 387 reschedule_retry(r1_bio); 388 /* don't drop the reference on read_disk yet */ 389 } 390 } 391 392 static void close_write(struct r1bio *r1_bio) 393 { 394 /* it really is the end of this request */ 395 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) { 396 bio_free_pages(r1_bio->behind_master_bio); 397 bio_put(r1_bio->behind_master_bio); 398 r1_bio->behind_master_bio = NULL; 399 } 400 /* clear the bitmap if all writes complete successfully */ 401 md_bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector, 402 r1_bio->sectors, 403 !test_bit(R1BIO_Degraded, &r1_bio->state), 404 test_bit(R1BIO_BehindIO, &r1_bio->state)); 405 md_write_end(r1_bio->mddev); 406 } 407 408 static void r1_bio_write_done(struct r1bio *r1_bio) 409 { 410 if (!atomic_dec_and_test(&r1_bio->remaining)) 411 return; 412 413 if (test_bit(R1BIO_WriteError, &r1_bio->state)) 414 reschedule_retry(r1_bio); 415 else { 416 close_write(r1_bio); 417 if (test_bit(R1BIO_MadeGood, &r1_bio->state)) 418 reschedule_retry(r1_bio); 419 else 420 raid_end_bio_io(r1_bio); 421 } 422 } 423 424 static void raid1_end_write_request(struct bio *bio) 425 { 426 struct r1bio *r1_bio = bio->bi_private; 427 int behind = test_bit(R1BIO_BehindIO, &r1_bio->state); 428 struct r1conf *conf = r1_bio->mddev->private; 429 struct bio *to_put = NULL; 430 int mirror = find_bio_disk(r1_bio, bio); 431 struct md_rdev *rdev = conf->mirrors[mirror].rdev; 432 bool discard_error; 433 434 discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD; 435 436 /* 437 * 'one mirror IO has finished' event handler: 438 */ 439 if (bio->bi_status && !discard_error) { 440 set_bit(WriteErrorSeen, &rdev->flags); 441 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 442 set_bit(MD_RECOVERY_NEEDED, & 443 conf->mddev->recovery); 444 445 if (test_bit(FailFast, &rdev->flags) && 446 (bio->bi_opf & MD_FAILFAST) && 447 /* We never try FailFast to WriteMostly devices */ 448 !test_bit(WriteMostly, &rdev->flags)) { 449 md_error(r1_bio->mddev, rdev); 450 if (!test_bit(Faulty, &rdev->flags)) 451 /* This is the only remaining device, 452 * We need to retry the write without 453 * FailFast 454 */ 455 set_bit(R1BIO_WriteError, &r1_bio->state); 456 else { 457 /* Finished with this branch */ 458 r1_bio->bios[mirror] = NULL; 459 to_put = bio; 460 } 461 } else 462 set_bit(R1BIO_WriteError, &r1_bio->state); 463 } else { 464 /* 465 * Set R1BIO_Uptodate in our master bio, so that we 466 * will return a good error code for to the higher 467 * levels even if IO on some other mirrored buffer 468 * fails. 469 * 470 * The 'master' represents the composite IO operation 471 * to user-side. So if something waits for IO, then it 472 * will wait for the 'master' bio. 473 */ 474 sector_t first_bad; 475 int bad_sectors; 476 477 r1_bio->bios[mirror] = NULL; 478 to_put = bio; 479 /* 480 * Do not set R1BIO_Uptodate if the current device is 481 * rebuilding or Faulty. This is because we cannot use 482 * such device for properly reading the data back (we could 483 * potentially use it, if the current write would have felt 484 * before rdev->recovery_offset, but for simplicity we don't 485 * check this here. 486 */ 487 if (test_bit(In_sync, &rdev->flags) && 488 !test_bit(Faulty, &rdev->flags)) 489 set_bit(R1BIO_Uptodate, &r1_bio->state); 490 491 /* Maybe we can clear some bad blocks. */ 492 if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors, 493 &first_bad, &bad_sectors) && !discard_error) { 494 r1_bio->bios[mirror] = IO_MADE_GOOD; 495 set_bit(R1BIO_MadeGood, &r1_bio->state); 496 } 497 } 498 499 if (behind) { 500 if (test_bit(WBCollisionCheck, &rdev->flags)) { 501 sector_t lo = r1_bio->sector; 502 sector_t hi = r1_bio->sector + r1_bio->sectors; 503 504 remove_wb(rdev, lo, hi); 505 } 506 if (test_bit(WriteMostly, &rdev->flags)) 507 atomic_dec(&r1_bio->behind_remaining); 508 509 /* 510 * In behind mode, we ACK the master bio once the I/O 511 * has safely reached all non-writemostly 512 * disks. Setting the Returned bit ensures that this 513 * gets done only once -- we don't ever want to return 514 * -EIO here, instead we'll wait 515 */ 516 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) && 517 test_bit(R1BIO_Uptodate, &r1_bio->state)) { 518 /* Maybe we can return now */ 519 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) { 520 struct bio *mbio = r1_bio->master_bio; 521 pr_debug("raid1: behind end write sectors" 522 " %llu-%llu\n", 523 (unsigned long long) mbio->bi_iter.bi_sector, 524 (unsigned long long) bio_end_sector(mbio) - 1); 525 call_bio_endio(r1_bio); 526 } 527 } 528 } 529 if (r1_bio->bios[mirror] == NULL) 530 rdev_dec_pending(rdev, conf->mddev); 531 532 /* 533 * Let's see if all mirrored write operations have finished 534 * already. 535 */ 536 r1_bio_write_done(r1_bio); 537 538 if (to_put) 539 bio_put(to_put); 540 } 541 542 static sector_t align_to_barrier_unit_end(sector_t start_sector, 543 sector_t sectors) 544 { 545 sector_t len; 546 547 WARN_ON(sectors == 0); 548 /* 549 * len is the number of sectors from start_sector to end of the 550 * barrier unit which start_sector belongs to. 551 */ 552 len = round_up(start_sector + 1, BARRIER_UNIT_SECTOR_SIZE) - 553 start_sector; 554 555 if (len > sectors) 556 len = sectors; 557 558 return len; 559 } 560 561 /* 562 * This routine returns the disk from which the requested read should 563 * be done. There is a per-array 'next expected sequential IO' sector 564 * number - if this matches on the next IO then we use the last disk. 565 * There is also a per-disk 'last know head position' sector that is 566 * maintained from IRQ contexts, both the normal and the resync IO 567 * completion handlers update this position correctly. If there is no 568 * perfect sequential match then we pick the disk whose head is closest. 569 * 570 * If there are 2 mirrors in the same 2 devices, performance degrades 571 * because position is mirror, not device based. 572 * 573 * The rdev for the device selected will have nr_pending incremented. 574 */ 575 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors) 576 { 577 const sector_t this_sector = r1_bio->sector; 578 int sectors; 579 int best_good_sectors; 580 int best_disk, best_dist_disk, best_pending_disk; 581 int has_nonrot_disk; 582 int disk; 583 sector_t best_dist; 584 unsigned int min_pending; 585 struct md_rdev *rdev; 586 int choose_first; 587 int choose_next_idle; 588 589 rcu_read_lock(); 590 /* 591 * Check if we can balance. We can balance on the whole 592 * device if no resync is going on, or below the resync window. 593 * We take the first readable disk when above the resync window. 594 */ 595 retry: 596 sectors = r1_bio->sectors; 597 best_disk = -1; 598 best_dist_disk = -1; 599 best_dist = MaxSector; 600 best_pending_disk = -1; 601 min_pending = UINT_MAX; 602 best_good_sectors = 0; 603 has_nonrot_disk = 0; 604 choose_next_idle = 0; 605 clear_bit(R1BIO_FailFast, &r1_bio->state); 606 607 if ((conf->mddev->recovery_cp < this_sector + sectors) || 608 (mddev_is_clustered(conf->mddev) && 609 md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector, 610 this_sector + sectors))) 611 choose_first = 1; 612 else 613 choose_first = 0; 614 615 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) { 616 sector_t dist; 617 sector_t first_bad; 618 int bad_sectors; 619 unsigned int pending; 620 bool nonrot; 621 622 rdev = rcu_dereference(conf->mirrors[disk].rdev); 623 if (r1_bio->bios[disk] == IO_BLOCKED 624 || rdev == NULL 625 || test_bit(Faulty, &rdev->flags)) 626 continue; 627 if (!test_bit(In_sync, &rdev->flags) && 628 rdev->recovery_offset < this_sector + sectors) 629 continue; 630 if (test_bit(WriteMostly, &rdev->flags)) { 631 /* Don't balance among write-mostly, just 632 * use the first as a last resort */ 633 if (best_dist_disk < 0) { 634 if (is_badblock(rdev, this_sector, sectors, 635 &first_bad, &bad_sectors)) { 636 if (first_bad <= this_sector) 637 /* Cannot use this */ 638 continue; 639 best_good_sectors = first_bad - this_sector; 640 } else 641 best_good_sectors = sectors; 642 best_dist_disk = disk; 643 best_pending_disk = disk; 644 } 645 continue; 646 } 647 /* This is a reasonable device to use. It might 648 * even be best. 649 */ 650 if (is_badblock(rdev, this_sector, sectors, 651 &first_bad, &bad_sectors)) { 652 if (best_dist < MaxSector) 653 /* already have a better device */ 654 continue; 655 if (first_bad <= this_sector) { 656 /* cannot read here. If this is the 'primary' 657 * device, then we must not read beyond 658 * bad_sectors from another device.. 659 */ 660 bad_sectors -= (this_sector - first_bad); 661 if (choose_first && sectors > bad_sectors) 662 sectors = bad_sectors; 663 if (best_good_sectors > sectors) 664 best_good_sectors = sectors; 665 666 } else { 667 sector_t good_sectors = first_bad - this_sector; 668 if (good_sectors > best_good_sectors) { 669 best_good_sectors = good_sectors; 670 best_disk = disk; 671 } 672 if (choose_first) 673 break; 674 } 675 continue; 676 } else { 677 if ((sectors > best_good_sectors) && (best_disk >= 0)) 678 best_disk = -1; 679 best_good_sectors = sectors; 680 } 681 682 if (best_disk >= 0) 683 /* At least two disks to choose from so failfast is OK */ 684 set_bit(R1BIO_FailFast, &r1_bio->state); 685 686 nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev)); 687 has_nonrot_disk |= nonrot; 688 pending = atomic_read(&rdev->nr_pending); 689 dist = abs(this_sector - conf->mirrors[disk].head_position); 690 if (choose_first) { 691 best_disk = disk; 692 break; 693 } 694 /* Don't change to another disk for sequential reads */ 695 if (conf->mirrors[disk].next_seq_sect == this_sector 696 || dist == 0) { 697 int opt_iosize = bdev_io_opt(rdev->bdev) >> 9; 698 struct raid1_info *mirror = &conf->mirrors[disk]; 699 700 best_disk = disk; 701 /* 702 * If buffered sequential IO size exceeds optimal 703 * iosize, check if there is idle disk. If yes, choose 704 * the idle disk. read_balance could already choose an 705 * idle disk before noticing it's a sequential IO in 706 * this disk. This doesn't matter because this disk 707 * will idle, next time it will be utilized after the 708 * first disk has IO size exceeds optimal iosize. In 709 * this way, iosize of the first disk will be optimal 710 * iosize at least. iosize of the second disk might be 711 * small, but not a big deal since when the second disk 712 * starts IO, the first disk is likely still busy. 713 */ 714 if (nonrot && opt_iosize > 0 && 715 mirror->seq_start != MaxSector && 716 mirror->next_seq_sect > opt_iosize && 717 mirror->next_seq_sect - opt_iosize >= 718 mirror->seq_start) { 719 choose_next_idle = 1; 720 continue; 721 } 722 break; 723 } 724 725 if (choose_next_idle) 726 continue; 727 728 if (min_pending > pending) { 729 min_pending = pending; 730 best_pending_disk = disk; 731 } 732 733 if (dist < best_dist) { 734 best_dist = dist; 735 best_dist_disk = disk; 736 } 737 } 738 739 /* 740 * If all disks are rotational, choose the closest disk. If any disk is 741 * non-rotational, choose the disk with less pending request even the 742 * disk is rotational, which might/might not be optimal for raids with 743 * mixed ratation/non-rotational disks depending on workload. 744 */ 745 if (best_disk == -1) { 746 if (has_nonrot_disk || min_pending == 0) 747 best_disk = best_pending_disk; 748 else 749 best_disk = best_dist_disk; 750 } 751 752 if (best_disk >= 0) { 753 rdev = rcu_dereference(conf->mirrors[best_disk].rdev); 754 if (!rdev) 755 goto retry; 756 atomic_inc(&rdev->nr_pending); 757 sectors = best_good_sectors; 758 759 if (conf->mirrors[best_disk].next_seq_sect != this_sector) 760 conf->mirrors[best_disk].seq_start = this_sector; 761 762 conf->mirrors[best_disk].next_seq_sect = this_sector + sectors; 763 } 764 rcu_read_unlock(); 765 *max_sectors = sectors; 766 767 return best_disk; 768 } 769 770 static int raid1_congested(struct mddev *mddev, int bits) 771 { 772 struct r1conf *conf = mddev->private; 773 int i, ret = 0; 774 775 if ((bits & (1 << WB_async_congested)) && 776 conf->pending_count >= max_queued_requests) 777 return 1; 778 779 rcu_read_lock(); 780 for (i = 0; i < conf->raid_disks * 2; i++) { 781 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 782 if (rdev && !test_bit(Faulty, &rdev->flags)) { 783 struct request_queue *q = bdev_get_queue(rdev->bdev); 784 785 BUG_ON(!q); 786 787 /* Note the '|| 1' - when read_balance prefers 788 * non-congested targets, it can be removed 789 */ 790 if ((bits & (1 << WB_async_congested)) || 1) 791 ret |= bdi_congested(q->backing_dev_info, bits); 792 else 793 ret &= bdi_congested(q->backing_dev_info, bits); 794 } 795 } 796 rcu_read_unlock(); 797 return ret; 798 } 799 800 static void flush_bio_list(struct r1conf *conf, struct bio *bio) 801 { 802 /* flush any pending bitmap writes to disk before proceeding w/ I/O */ 803 md_bitmap_unplug(conf->mddev->bitmap); 804 wake_up(&conf->wait_barrier); 805 806 while (bio) { /* submit pending writes */ 807 struct bio *next = bio->bi_next; 808 struct md_rdev *rdev = (void *)bio->bi_disk; 809 bio->bi_next = NULL; 810 bio_set_dev(bio, rdev->bdev); 811 if (test_bit(Faulty, &rdev->flags)) { 812 bio_io_error(bio); 813 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) && 814 !blk_queue_discard(bio->bi_disk->queue))) 815 /* Just ignore it */ 816 bio_endio(bio); 817 else 818 generic_make_request(bio); 819 bio = next; 820 } 821 } 822 823 static void flush_pending_writes(struct r1conf *conf) 824 { 825 /* Any writes that have been queued but are awaiting 826 * bitmap updates get flushed here. 827 */ 828 spin_lock_irq(&conf->device_lock); 829 830 if (conf->pending_bio_list.head) { 831 struct blk_plug plug; 832 struct bio *bio; 833 834 bio = bio_list_get(&conf->pending_bio_list); 835 conf->pending_count = 0; 836 spin_unlock_irq(&conf->device_lock); 837 838 /* 839 * As this is called in a wait_event() loop (see freeze_array), 840 * current->state might be TASK_UNINTERRUPTIBLE which will 841 * cause a warning when we prepare to wait again. As it is 842 * rare that this path is taken, it is perfectly safe to force 843 * us to go around the wait_event() loop again, so the warning 844 * is a false-positive. Silence the warning by resetting 845 * thread state 846 */ 847 __set_current_state(TASK_RUNNING); 848 blk_start_plug(&plug); 849 flush_bio_list(conf, bio); 850 blk_finish_plug(&plug); 851 } else 852 spin_unlock_irq(&conf->device_lock); 853 } 854 855 /* Barriers.... 856 * Sometimes we need to suspend IO while we do something else, 857 * either some resync/recovery, or reconfigure the array. 858 * To do this we raise a 'barrier'. 859 * The 'barrier' is a counter that can be raised multiple times 860 * to count how many activities are happening which preclude 861 * normal IO. 862 * We can only raise the barrier if there is no pending IO. 863 * i.e. if nr_pending == 0. 864 * We choose only to raise the barrier if no-one is waiting for the 865 * barrier to go down. This means that as soon as an IO request 866 * is ready, no other operations which require a barrier will start 867 * until the IO request has had a chance. 868 * 869 * So: regular IO calls 'wait_barrier'. When that returns there 870 * is no backgroup IO happening, It must arrange to call 871 * allow_barrier when it has finished its IO. 872 * backgroup IO calls must call raise_barrier. Once that returns 873 * there is no normal IO happeing. It must arrange to call 874 * lower_barrier when the particular background IO completes. 875 */ 876 static sector_t raise_barrier(struct r1conf *conf, sector_t sector_nr) 877 { 878 int idx = sector_to_idx(sector_nr); 879 880 spin_lock_irq(&conf->resync_lock); 881 882 /* Wait until no block IO is waiting */ 883 wait_event_lock_irq(conf->wait_barrier, 884 !atomic_read(&conf->nr_waiting[idx]), 885 conf->resync_lock); 886 887 /* block any new IO from starting */ 888 atomic_inc(&conf->barrier[idx]); 889 /* 890 * In raise_barrier() we firstly increase conf->barrier[idx] then 891 * check conf->nr_pending[idx]. In _wait_barrier() we firstly 892 * increase conf->nr_pending[idx] then check conf->barrier[idx]. 893 * A memory barrier here to make sure conf->nr_pending[idx] won't 894 * be fetched before conf->barrier[idx] is increased. Otherwise 895 * there will be a race between raise_barrier() and _wait_barrier(). 896 */ 897 smp_mb__after_atomic(); 898 899 /* For these conditions we must wait: 900 * A: while the array is in frozen state 901 * B: while conf->nr_pending[idx] is not 0, meaning regular I/O 902 * existing in corresponding I/O barrier bucket. 903 * C: while conf->barrier[idx] >= RESYNC_DEPTH, meaning reaches 904 * max resync count which allowed on current I/O barrier bucket. 905 */ 906 wait_event_lock_irq(conf->wait_barrier, 907 (!conf->array_frozen && 908 !atomic_read(&conf->nr_pending[idx]) && 909 atomic_read(&conf->barrier[idx]) < RESYNC_DEPTH) || 910 test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery), 911 conf->resync_lock); 912 913 if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) { 914 atomic_dec(&conf->barrier[idx]); 915 spin_unlock_irq(&conf->resync_lock); 916 wake_up(&conf->wait_barrier); 917 return -EINTR; 918 } 919 920 atomic_inc(&conf->nr_sync_pending); 921 spin_unlock_irq(&conf->resync_lock); 922 923 return 0; 924 } 925 926 static void lower_barrier(struct r1conf *conf, sector_t sector_nr) 927 { 928 int idx = sector_to_idx(sector_nr); 929 930 BUG_ON(atomic_read(&conf->barrier[idx]) <= 0); 931 932 atomic_dec(&conf->barrier[idx]); 933 atomic_dec(&conf->nr_sync_pending); 934 wake_up(&conf->wait_barrier); 935 } 936 937 static void _wait_barrier(struct r1conf *conf, int idx) 938 { 939 /* 940 * We need to increase conf->nr_pending[idx] very early here, 941 * then raise_barrier() can be blocked when it waits for 942 * conf->nr_pending[idx] to be 0. Then we can avoid holding 943 * conf->resync_lock when there is no barrier raised in same 944 * barrier unit bucket. Also if the array is frozen, I/O 945 * should be blocked until array is unfrozen. 946 */ 947 atomic_inc(&conf->nr_pending[idx]); 948 /* 949 * In _wait_barrier() we firstly increase conf->nr_pending[idx], then 950 * check conf->barrier[idx]. In raise_barrier() we firstly increase 951 * conf->barrier[idx], then check conf->nr_pending[idx]. A memory 952 * barrier is necessary here to make sure conf->barrier[idx] won't be 953 * fetched before conf->nr_pending[idx] is increased. Otherwise there 954 * will be a race between _wait_barrier() and raise_barrier(). 955 */ 956 smp_mb__after_atomic(); 957 958 /* 959 * Don't worry about checking two atomic_t variables at same time 960 * here. If during we check conf->barrier[idx], the array is 961 * frozen (conf->array_frozen is 1), and chonf->barrier[idx] is 962 * 0, it is safe to return and make the I/O continue. Because the 963 * array is frozen, all I/O returned here will eventually complete 964 * or be queued, no race will happen. See code comment in 965 * frozen_array(). 966 */ 967 if (!READ_ONCE(conf->array_frozen) && 968 !atomic_read(&conf->barrier[idx])) 969 return; 970 971 /* 972 * After holding conf->resync_lock, conf->nr_pending[idx] 973 * should be decreased before waiting for barrier to drop. 974 * Otherwise, we may encounter a race condition because 975 * raise_barrer() might be waiting for conf->nr_pending[idx] 976 * to be 0 at same time. 977 */ 978 spin_lock_irq(&conf->resync_lock); 979 atomic_inc(&conf->nr_waiting[idx]); 980 atomic_dec(&conf->nr_pending[idx]); 981 /* 982 * In case freeze_array() is waiting for 983 * get_unqueued_pending() == extra 984 */ 985 wake_up(&conf->wait_barrier); 986 /* Wait for the barrier in same barrier unit bucket to drop. */ 987 wait_event_lock_irq(conf->wait_barrier, 988 !conf->array_frozen && 989 !atomic_read(&conf->barrier[idx]), 990 conf->resync_lock); 991 atomic_inc(&conf->nr_pending[idx]); 992 atomic_dec(&conf->nr_waiting[idx]); 993 spin_unlock_irq(&conf->resync_lock); 994 } 995 996 static void wait_read_barrier(struct r1conf *conf, sector_t sector_nr) 997 { 998 int idx = sector_to_idx(sector_nr); 999 1000 /* 1001 * Very similar to _wait_barrier(). The difference is, for read 1002 * I/O we don't need wait for sync I/O, but if the whole array 1003 * is frozen, the read I/O still has to wait until the array is 1004 * unfrozen. Since there is no ordering requirement with 1005 * conf->barrier[idx] here, memory barrier is unnecessary as well. 1006 */ 1007 atomic_inc(&conf->nr_pending[idx]); 1008 1009 if (!READ_ONCE(conf->array_frozen)) 1010 return; 1011 1012 spin_lock_irq(&conf->resync_lock); 1013 atomic_inc(&conf->nr_waiting[idx]); 1014 atomic_dec(&conf->nr_pending[idx]); 1015 /* 1016 * In case freeze_array() is waiting for 1017 * get_unqueued_pending() == extra 1018 */ 1019 wake_up(&conf->wait_barrier); 1020 /* Wait for array to be unfrozen */ 1021 wait_event_lock_irq(conf->wait_barrier, 1022 !conf->array_frozen, 1023 conf->resync_lock); 1024 atomic_inc(&conf->nr_pending[idx]); 1025 atomic_dec(&conf->nr_waiting[idx]); 1026 spin_unlock_irq(&conf->resync_lock); 1027 } 1028 1029 static void wait_barrier(struct r1conf *conf, sector_t sector_nr) 1030 { 1031 int idx = sector_to_idx(sector_nr); 1032 1033 _wait_barrier(conf, idx); 1034 } 1035 1036 static void _allow_barrier(struct r1conf *conf, int idx) 1037 { 1038 atomic_dec(&conf->nr_pending[idx]); 1039 wake_up(&conf->wait_barrier); 1040 } 1041 1042 static void allow_barrier(struct r1conf *conf, sector_t sector_nr) 1043 { 1044 int idx = sector_to_idx(sector_nr); 1045 1046 _allow_barrier(conf, idx); 1047 } 1048 1049 /* conf->resync_lock should be held */ 1050 static int get_unqueued_pending(struct r1conf *conf) 1051 { 1052 int idx, ret; 1053 1054 ret = atomic_read(&conf->nr_sync_pending); 1055 for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++) 1056 ret += atomic_read(&conf->nr_pending[idx]) - 1057 atomic_read(&conf->nr_queued[idx]); 1058 1059 return ret; 1060 } 1061 1062 static void freeze_array(struct r1conf *conf, int extra) 1063 { 1064 /* Stop sync I/O and normal I/O and wait for everything to 1065 * go quiet. 1066 * This is called in two situations: 1067 * 1) management command handlers (reshape, remove disk, quiesce). 1068 * 2) one normal I/O request failed. 1069 1070 * After array_frozen is set to 1, new sync IO will be blocked at 1071 * raise_barrier(), and new normal I/O will blocked at _wait_barrier() 1072 * or wait_read_barrier(). The flying I/Os will either complete or be 1073 * queued. When everything goes quite, there are only queued I/Os left. 1074 1075 * Every flying I/O contributes to a conf->nr_pending[idx], idx is the 1076 * barrier bucket index which this I/O request hits. When all sync and 1077 * normal I/O are queued, sum of all conf->nr_pending[] will match sum 1078 * of all conf->nr_queued[]. But normal I/O failure is an exception, 1079 * in handle_read_error(), we may call freeze_array() before trying to 1080 * fix the read error. In this case, the error read I/O is not queued, 1081 * so get_unqueued_pending() == 1. 1082 * 1083 * Therefore before this function returns, we need to wait until 1084 * get_unqueued_pendings(conf) gets equal to extra. For 1085 * normal I/O context, extra is 1, in rested situations extra is 0. 1086 */ 1087 spin_lock_irq(&conf->resync_lock); 1088 conf->array_frozen = 1; 1089 raid1_log(conf->mddev, "wait freeze"); 1090 wait_event_lock_irq_cmd( 1091 conf->wait_barrier, 1092 get_unqueued_pending(conf) == extra, 1093 conf->resync_lock, 1094 flush_pending_writes(conf)); 1095 spin_unlock_irq(&conf->resync_lock); 1096 } 1097 static void unfreeze_array(struct r1conf *conf) 1098 { 1099 /* reverse the effect of the freeze */ 1100 spin_lock_irq(&conf->resync_lock); 1101 conf->array_frozen = 0; 1102 spin_unlock_irq(&conf->resync_lock); 1103 wake_up(&conf->wait_barrier); 1104 } 1105 1106 static void alloc_behind_master_bio(struct r1bio *r1_bio, 1107 struct bio *bio) 1108 { 1109 int size = bio->bi_iter.bi_size; 1110 unsigned vcnt = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; 1111 int i = 0; 1112 struct bio *behind_bio = NULL; 1113 1114 behind_bio = bio_alloc_mddev(GFP_NOIO, vcnt, r1_bio->mddev); 1115 if (!behind_bio) 1116 return; 1117 1118 /* discard op, we don't support writezero/writesame yet */ 1119 if (!bio_has_data(bio)) { 1120 behind_bio->bi_iter.bi_size = size; 1121 goto skip_copy; 1122 } 1123 1124 behind_bio->bi_write_hint = bio->bi_write_hint; 1125 1126 while (i < vcnt && size) { 1127 struct page *page; 1128 int len = min_t(int, PAGE_SIZE, size); 1129 1130 page = alloc_page(GFP_NOIO); 1131 if (unlikely(!page)) 1132 goto free_pages; 1133 1134 bio_add_page(behind_bio, page, len, 0); 1135 1136 size -= len; 1137 i++; 1138 } 1139 1140 bio_copy_data(behind_bio, bio); 1141 skip_copy: 1142 r1_bio->behind_master_bio = behind_bio; 1143 set_bit(R1BIO_BehindIO, &r1_bio->state); 1144 1145 return; 1146 1147 free_pages: 1148 pr_debug("%dB behind alloc failed, doing sync I/O\n", 1149 bio->bi_iter.bi_size); 1150 bio_free_pages(behind_bio); 1151 bio_put(behind_bio); 1152 } 1153 1154 struct raid1_plug_cb { 1155 struct blk_plug_cb cb; 1156 struct bio_list pending; 1157 int pending_cnt; 1158 }; 1159 1160 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule) 1161 { 1162 struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb, 1163 cb); 1164 struct mddev *mddev = plug->cb.data; 1165 struct r1conf *conf = mddev->private; 1166 struct bio *bio; 1167 1168 if (from_schedule || current->bio_list) { 1169 spin_lock_irq(&conf->device_lock); 1170 bio_list_merge(&conf->pending_bio_list, &plug->pending); 1171 conf->pending_count += plug->pending_cnt; 1172 spin_unlock_irq(&conf->device_lock); 1173 wake_up(&conf->wait_barrier); 1174 md_wakeup_thread(mddev->thread); 1175 kfree(plug); 1176 return; 1177 } 1178 1179 /* we aren't scheduling, so we can do the write-out directly. */ 1180 bio = bio_list_get(&plug->pending); 1181 flush_bio_list(conf, bio); 1182 kfree(plug); 1183 } 1184 1185 static void init_r1bio(struct r1bio *r1_bio, struct mddev *mddev, struct bio *bio) 1186 { 1187 r1_bio->master_bio = bio; 1188 r1_bio->sectors = bio_sectors(bio); 1189 r1_bio->state = 0; 1190 r1_bio->mddev = mddev; 1191 r1_bio->sector = bio->bi_iter.bi_sector; 1192 } 1193 1194 static inline struct r1bio * 1195 alloc_r1bio(struct mddev *mddev, struct bio *bio) 1196 { 1197 struct r1conf *conf = mddev->private; 1198 struct r1bio *r1_bio; 1199 1200 r1_bio = mempool_alloc(&conf->r1bio_pool, GFP_NOIO); 1201 /* Ensure no bio records IO_BLOCKED */ 1202 memset(r1_bio->bios, 0, conf->raid_disks * sizeof(r1_bio->bios[0])); 1203 init_r1bio(r1_bio, mddev, bio); 1204 return r1_bio; 1205 } 1206 1207 static void raid1_read_request(struct mddev *mddev, struct bio *bio, 1208 int max_read_sectors, struct r1bio *r1_bio) 1209 { 1210 struct r1conf *conf = mddev->private; 1211 struct raid1_info *mirror; 1212 struct bio *read_bio; 1213 struct bitmap *bitmap = mddev->bitmap; 1214 const int op = bio_op(bio); 1215 const unsigned long do_sync = (bio->bi_opf & REQ_SYNC); 1216 int max_sectors; 1217 int rdisk; 1218 bool print_msg = !!r1_bio; 1219 char b[BDEVNAME_SIZE]; 1220 1221 /* 1222 * If r1_bio is set, we are blocking the raid1d thread 1223 * so there is a tiny risk of deadlock. So ask for 1224 * emergency memory if needed. 1225 */ 1226 gfp_t gfp = r1_bio ? (GFP_NOIO | __GFP_HIGH) : GFP_NOIO; 1227 1228 if (print_msg) { 1229 /* Need to get the block device name carefully */ 1230 struct md_rdev *rdev; 1231 rcu_read_lock(); 1232 rdev = rcu_dereference(conf->mirrors[r1_bio->read_disk].rdev); 1233 if (rdev) 1234 bdevname(rdev->bdev, b); 1235 else 1236 strcpy(b, "???"); 1237 rcu_read_unlock(); 1238 } 1239 1240 /* 1241 * Still need barrier for READ in case that whole 1242 * array is frozen. 1243 */ 1244 wait_read_barrier(conf, bio->bi_iter.bi_sector); 1245 1246 if (!r1_bio) 1247 r1_bio = alloc_r1bio(mddev, bio); 1248 else 1249 init_r1bio(r1_bio, mddev, bio); 1250 r1_bio->sectors = max_read_sectors; 1251 1252 /* 1253 * make_request() can abort the operation when read-ahead is being 1254 * used and no empty request is available. 1255 */ 1256 rdisk = read_balance(conf, r1_bio, &max_sectors); 1257 1258 if (rdisk < 0) { 1259 /* couldn't find anywhere to read from */ 1260 if (print_msg) { 1261 pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n", 1262 mdname(mddev), 1263 b, 1264 (unsigned long long)r1_bio->sector); 1265 } 1266 raid_end_bio_io(r1_bio); 1267 return; 1268 } 1269 mirror = conf->mirrors + rdisk; 1270 1271 if (print_msg) 1272 pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %s\n", 1273 mdname(mddev), 1274 (unsigned long long)r1_bio->sector, 1275 bdevname(mirror->rdev->bdev, b)); 1276 1277 if (test_bit(WriteMostly, &mirror->rdev->flags) && 1278 bitmap) { 1279 /* 1280 * Reading from a write-mostly device must take care not to 1281 * over-take any writes that are 'behind' 1282 */ 1283 raid1_log(mddev, "wait behind writes"); 1284 wait_event(bitmap->behind_wait, 1285 atomic_read(&bitmap->behind_writes) == 0); 1286 } 1287 1288 if (max_sectors < bio_sectors(bio)) { 1289 struct bio *split = bio_split(bio, max_sectors, 1290 gfp, &conf->bio_split); 1291 bio_chain(split, bio); 1292 generic_make_request(bio); 1293 bio = split; 1294 r1_bio->master_bio = bio; 1295 r1_bio->sectors = max_sectors; 1296 } 1297 1298 r1_bio->read_disk = rdisk; 1299 1300 read_bio = bio_clone_fast(bio, gfp, &mddev->bio_set); 1301 1302 r1_bio->bios[rdisk] = read_bio; 1303 1304 read_bio->bi_iter.bi_sector = r1_bio->sector + 1305 mirror->rdev->data_offset; 1306 bio_set_dev(read_bio, mirror->rdev->bdev); 1307 read_bio->bi_end_io = raid1_end_read_request; 1308 bio_set_op_attrs(read_bio, op, do_sync); 1309 if (test_bit(FailFast, &mirror->rdev->flags) && 1310 test_bit(R1BIO_FailFast, &r1_bio->state)) 1311 read_bio->bi_opf |= MD_FAILFAST; 1312 read_bio->bi_private = r1_bio; 1313 1314 if (mddev->gendisk) 1315 trace_block_bio_remap(read_bio->bi_disk->queue, read_bio, 1316 disk_devt(mddev->gendisk), r1_bio->sector); 1317 1318 generic_make_request(read_bio); 1319 } 1320 1321 static void raid1_write_request(struct mddev *mddev, struct bio *bio, 1322 int max_write_sectors) 1323 { 1324 struct r1conf *conf = mddev->private; 1325 struct r1bio *r1_bio; 1326 int i, disks; 1327 struct bitmap *bitmap = mddev->bitmap; 1328 unsigned long flags; 1329 struct md_rdev *blocked_rdev; 1330 struct blk_plug_cb *cb; 1331 struct raid1_plug_cb *plug = NULL; 1332 int first_clone; 1333 int max_sectors; 1334 1335 if (mddev_is_clustered(mddev) && 1336 md_cluster_ops->area_resyncing(mddev, WRITE, 1337 bio->bi_iter.bi_sector, bio_end_sector(bio))) { 1338 1339 DEFINE_WAIT(w); 1340 for (;;) { 1341 prepare_to_wait(&conf->wait_barrier, 1342 &w, TASK_IDLE); 1343 if (!md_cluster_ops->area_resyncing(mddev, WRITE, 1344 bio->bi_iter.bi_sector, 1345 bio_end_sector(bio))) 1346 break; 1347 schedule(); 1348 } 1349 finish_wait(&conf->wait_barrier, &w); 1350 } 1351 1352 /* 1353 * Register the new request and wait if the reconstruction 1354 * thread has put up a bar for new requests. 1355 * Continue immediately if no resync is active currently. 1356 */ 1357 wait_barrier(conf, bio->bi_iter.bi_sector); 1358 1359 r1_bio = alloc_r1bio(mddev, bio); 1360 r1_bio->sectors = max_write_sectors; 1361 1362 if (conf->pending_count >= max_queued_requests) { 1363 md_wakeup_thread(mddev->thread); 1364 raid1_log(mddev, "wait queued"); 1365 wait_event(conf->wait_barrier, 1366 conf->pending_count < max_queued_requests); 1367 } 1368 /* first select target devices under rcu_lock and 1369 * inc refcount on their rdev. Record them by setting 1370 * bios[x] to bio 1371 * If there are known/acknowledged bad blocks on any device on 1372 * which we have seen a write error, we want to avoid writing those 1373 * blocks. 1374 * This potentially requires several writes to write around 1375 * the bad blocks. Each set of writes gets it's own r1bio 1376 * with a set of bios attached. 1377 */ 1378 1379 disks = conf->raid_disks * 2; 1380 retry_write: 1381 blocked_rdev = NULL; 1382 rcu_read_lock(); 1383 max_sectors = r1_bio->sectors; 1384 for (i = 0; i < disks; i++) { 1385 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 1386 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) { 1387 atomic_inc(&rdev->nr_pending); 1388 blocked_rdev = rdev; 1389 break; 1390 } 1391 r1_bio->bios[i] = NULL; 1392 if (!rdev || test_bit(Faulty, &rdev->flags)) { 1393 if (i < conf->raid_disks) 1394 set_bit(R1BIO_Degraded, &r1_bio->state); 1395 continue; 1396 } 1397 1398 atomic_inc(&rdev->nr_pending); 1399 if (test_bit(WriteErrorSeen, &rdev->flags)) { 1400 sector_t first_bad; 1401 int bad_sectors; 1402 int is_bad; 1403 1404 is_bad = is_badblock(rdev, r1_bio->sector, max_sectors, 1405 &first_bad, &bad_sectors); 1406 if (is_bad < 0) { 1407 /* mustn't write here until the bad block is 1408 * acknowledged*/ 1409 set_bit(BlockedBadBlocks, &rdev->flags); 1410 blocked_rdev = rdev; 1411 break; 1412 } 1413 if (is_bad && first_bad <= r1_bio->sector) { 1414 /* Cannot write here at all */ 1415 bad_sectors -= (r1_bio->sector - first_bad); 1416 if (bad_sectors < max_sectors) 1417 /* mustn't write more than bad_sectors 1418 * to other devices yet 1419 */ 1420 max_sectors = bad_sectors; 1421 rdev_dec_pending(rdev, mddev); 1422 /* We don't set R1BIO_Degraded as that 1423 * only applies if the disk is 1424 * missing, so it might be re-added, 1425 * and we want to know to recover this 1426 * chunk. 1427 * In this case the device is here, 1428 * and the fact that this chunk is not 1429 * in-sync is recorded in the bad 1430 * block log 1431 */ 1432 continue; 1433 } 1434 if (is_bad) { 1435 int good_sectors = first_bad - r1_bio->sector; 1436 if (good_sectors < max_sectors) 1437 max_sectors = good_sectors; 1438 } 1439 } 1440 r1_bio->bios[i] = bio; 1441 } 1442 rcu_read_unlock(); 1443 1444 if (unlikely(blocked_rdev)) { 1445 /* Wait for this device to become unblocked */ 1446 int j; 1447 1448 for (j = 0; j < i; j++) 1449 if (r1_bio->bios[j]) 1450 rdev_dec_pending(conf->mirrors[j].rdev, mddev); 1451 r1_bio->state = 0; 1452 allow_barrier(conf, bio->bi_iter.bi_sector); 1453 raid1_log(mddev, "wait rdev %d blocked", blocked_rdev->raid_disk); 1454 md_wait_for_blocked_rdev(blocked_rdev, mddev); 1455 wait_barrier(conf, bio->bi_iter.bi_sector); 1456 goto retry_write; 1457 } 1458 1459 if (max_sectors < bio_sectors(bio)) { 1460 struct bio *split = bio_split(bio, max_sectors, 1461 GFP_NOIO, &conf->bio_split); 1462 bio_chain(split, bio); 1463 generic_make_request(bio); 1464 bio = split; 1465 r1_bio->master_bio = bio; 1466 r1_bio->sectors = max_sectors; 1467 } 1468 1469 atomic_set(&r1_bio->remaining, 1); 1470 atomic_set(&r1_bio->behind_remaining, 0); 1471 1472 first_clone = 1; 1473 1474 for (i = 0; i < disks; i++) { 1475 struct bio *mbio = NULL; 1476 if (!r1_bio->bios[i]) 1477 continue; 1478 1479 if (first_clone) { 1480 /* do behind I/O ? 1481 * Not if there are too many, or cannot 1482 * allocate memory, or a reader on WriteMostly 1483 * is waiting for behind writes to flush */ 1484 if (bitmap && 1485 (atomic_read(&bitmap->behind_writes) 1486 < mddev->bitmap_info.max_write_behind) && 1487 !waitqueue_active(&bitmap->behind_wait)) { 1488 alloc_behind_master_bio(r1_bio, bio); 1489 } 1490 1491 md_bitmap_startwrite(bitmap, r1_bio->sector, r1_bio->sectors, 1492 test_bit(R1BIO_BehindIO, &r1_bio->state)); 1493 first_clone = 0; 1494 } 1495 1496 if (r1_bio->behind_master_bio) 1497 mbio = bio_clone_fast(r1_bio->behind_master_bio, 1498 GFP_NOIO, &mddev->bio_set); 1499 else 1500 mbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set); 1501 1502 if (r1_bio->behind_master_bio) { 1503 struct md_rdev *rdev = conf->mirrors[i].rdev; 1504 1505 if (test_bit(WBCollisionCheck, &rdev->flags)) { 1506 sector_t lo = r1_bio->sector; 1507 sector_t hi = r1_bio->sector + r1_bio->sectors; 1508 1509 wait_event(rdev->wb_io_wait, 1510 check_and_add_wb(rdev, lo, hi) == 0); 1511 } 1512 if (test_bit(WriteMostly, &rdev->flags)) 1513 atomic_inc(&r1_bio->behind_remaining); 1514 } 1515 1516 r1_bio->bios[i] = mbio; 1517 1518 mbio->bi_iter.bi_sector = (r1_bio->sector + 1519 conf->mirrors[i].rdev->data_offset); 1520 bio_set_dev(mbio, conf->mirrors[i].rdev->bdev); 1521 mbio->bi_end_io = raid1_end_write_request; 1522 mbio->bi_opf = bio_op(bio) | (bio->bi_opf & (REQ_SYNC | REQ_FUA)); 1523 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags) && 1524 !test_bit(WriteMostly, &conf->mirrors[i].rdev->flags) && 1525 conf->raid_disks - mddev->degraded > 1) 1526 mbio->bi_opf |= MD_FAILFAST; 1527 mbio->bi_private = r1_bio; 1528 1529 atomic_inc(&r1_bio->remaining); 1530 1531 if (mddev->gendisk) 1532 trace_block_bio_remap(mbio->bi_disk->queue, 1533 mbio, disk_devt(mddev->gendisk), 1534 r1_bio->sector); 1535 /* flush_pending_writes() needs access to the rdev so...*/ 1536 mbio->bi_disk = (void *)conf->mirrors[i].rdev; 1537 1538 cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug)); 1539 if (cb) 1540 plug = container_of(cb, struct raid1_plug_cb, cb); 1541 else 1542 plug = NULL; 1543 if (plug) { 1544 bio_list_add(&plug->pending, mbio); 1545 plug->pending_cnt++; 1546 } else { 1547 spin_lock_irqsave(&conf->device_lock, flags); 1548 bio_list_add(&conf->pending_bio_list, mbio); 1549 conf->pending_count++; 1550 spin_unlock_irqrestore(&conf->device_lock, flags); 1551 md_wakeup_thread(mddev->thread); 1552 } 1553 } 1554 1555 r1_bio_write_done(r1_bio); 1556 1557 /* In case raid1d snuck in to freeze_array */ 1558 wake_up(&conf->wait_barrier); 1559 } 1560 1561 static bool raid1_make_request(struct mddev *mddev, struct bio *bio) 1562 { 1563 sector_t sectors; 1564 1565 if (unlikely(bio->bi_opf & REQ_PREFLUSH)) { 1566 md_flush_request(mddev, bio); 1567 return true; 1568 } 1569 1570 /* 1571 * There is a limit to the maximum size, but 1572 * the read/write handler might find a lower limit 1573 * due to bad blocks. To avoid multiple splits, 1574 * we pass the maximum number of sectors down 1575 * and let the lower level perform the split. 1576 */ 1577 sectors = align_to_barrier_unit_end( 1578 bio->bi_iter.bi_sector, bio_sectors(bio)); 1579 1580 if (bio_data_dir(bio) == READ) 1581 raid1_read_request(mddev, bio, sectors, NULL); 1582 else { 1583 if (!md_write_start(mddev,bio)) 1584 return false; 1585 raid1_write_request(mddev, bio, sectors); 1586 } 1587 return true; 1588 } 1589 1590 static void raid1_status(struct seq_file *seq, struct mddev *mddev) 1591 { 1592 struct r1conf *conf = mddev->private; 1593 int i; 1594 1595 seq_printf(seq, " [%d/%d] [", conf->raid_disks, 1596 conf->raid_disks - mddev->degraded); 1597 rcu_read_lock(); 1598 for (i = 0; i < conf->raid_disks; i++) { 1599 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 1600 seq_printf(seq, "%s", 1601 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_"); 1602 } 1603 rcu_read_unlock(); 1604 seq_printf(seq, "]"); 1605 } 1606 1607 static void raid1_error(struct mddev *mddev, struct md_rdev *rdev) 1608 { 1609 char b[BDEVNAME_SIZE]; 1610 struct r1conf *conf = mddev->private; 1611 unsigned long flags; 1612 1613 /* 1614 * If it is not operational, then we have already marked it as dead 1615 * else if it is the last working disks, ignore the error, let the 1616 * next level up know. 1617 * else mark the drive as failed 1618 */ 1619 spin_lock_irqsave(&conf->device_lock, flags); 1620 if (test_bit(In_sync, &rdev->flags) 1621 && (conf->raid_disks - mddev->degraded) == 1) { 1622 /* 1623 * Don't fail the drive, act as though we were just a 1624 * normal single drive. 1625 * However don't try a recovery from this drive as 1626 * it is very likely to fail. 1627 */ 1628 conf->recovery_disabled = mddev->recovery_disabled; 1629 spin_unlock_irqrestore(&conf->device_lock, flags); 1630 return; 1631 } 1632 set_bit(Blocked, &rdev->flags); 1633 if (test_and_clear_bit(In_sync, &rdev->flags)) 1634 mddev->degraded++; 1635 set_bit(Faulty, &rdev->flags); 1636 spin_unlock_irqrestore(&conf->device_lock, flags); 1637 /* 1638 * if recovery is running, make sure it aborts. 1639 */ 1640 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 1641 set_mask_bits(&mddev->sb_flags, 0, 1642 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING)); 1643 pr_crit("md/raid1:%s: Disk failure on %s, disabling device.\n" 1644 "md/raid1:%s: Operation continuing on %d devices.\n", 1645 mdname(mddev), bdevname(rdev->bdev, b), 1646 mdname(mddev), conf->raid_disks - mddev->degraded); 1647 } 1648 1649 static void print_conf(struct r1conf *conf) 1650 { 1651 int i; 1652 1653 pr_debug("RAID1 conf printout:\n"); 1654 if (!conf) { 1655 pr_debug("(!conf)\n"); 1656 return; 1657 } 1658 pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded, 1659 conf->raid_disks); 1660 1661 rcu_read_lock(); 1662 for (i = 0; i < conf->raid_disks; i++) { 1663 char b[BDEVNAME_SIZE]; 1664 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 1665 if (rdev) 1666 pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n", 1667 i, !test_bit(In_sync, &rdev->flags), 1668 !test_bit(Faulty, &rdev->flags), 1669 bdevname(rdev->bdev,b)); 1670 } 1671 rcu_read_unlock(); 1672 } 1673 1674 static void close_sync(struct r1conf *conf) 1675 { 1676 int idx; 1677 1678 for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++) { 1679 _wait_barrier(conf, idx); 1680 _allow_barrier(conf, idx); 1681 } 1682 1683 mempool_exit(&conf->r1buf_pool); 1684 } 1685 1686 static int raid1_spare_active(struct mddev *mddev) 1687 { 1688 int i; 1689 struct r1conf *conf = mddev->private; 1690 int count = 0; 1691 unsigned long flags; 1692 1693 /* 1694 * Find all failed disks within the RAID1 configuration 1695 * and mark them readable. 1696 * Called under mddev lock, so rcu protection not needed. 1697 * device_lock used to avoid races with raid1_end_read_request 1698 * which expects 'In_sync' flags and ->degraded to be consistent. 1699 */ 1700 spin_lock_irqsave(&conf->device_lock, flags); 1701 for (i = 0; i < conf->raid_disks; i++) { 1702 struct md_rdev *rdev = conf->mirrors[i].rdev; 1703 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev; 1704 if (repl 1705 && !test_bit(Candidate, &repl->flags) 1706 && repl->recovery_offset == MaxSector 1707 && !test_bit(Faulty, &repl->flags) 1708 && !test_and_set_bit(In_sync, &repl->flags)) { 1709 /* replacement has just become active */ 1710 if (!rdev || 1711 !test_and_clear_bit(In_sync, &rdev->flags)) 1712 count++; 1713 if (rdev) { 1714 /* Replaced device not technically 1715 * faulty, but we need to be sure 1716 * it gets removed and never re-added 1717 */ 1718 set_bit(Faulty, &rdev->flags); 1719 sysfs_notify_dirent_safe( 1720 rdev->sysfs_state); 1721 } 1722 } 1723 if (rdev 1724 && rdev->recovery_offset == MaxSector 1725 && !test_bit(Faulty, &rdev->flags) 1726 && !test_and_set_bit(In_sync, &rdev->flags)) { 1727 count++; 1728 sysfs_notify_dirent_safe(rdev->sysfs_state); 1729 } 1730 } 1731 mddev->degraded -= count; 1732 spin_unlock_irqrestore(&conf->device_lock, flags); 1733 1734 print_conf(conf); 1735 return count; 1736 } 1737 1738 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev) 1739 { 1740 struct r1conf *conf = mddev->private; 1741 int err = -EEXIST; 1742 int mirror = 0; 1743 struct raid1_info *p; 1744 int first = 0; 1745 int last = conf->raid_disks - 1; 1746 1747 if (mddev->recovery_disabled == conf->recovery_disabled) 1748 return -EBUSY; 1749 1750 if (md_integrity_add_rdev(rdev, mddev)) 1751 return -ENXIO; 1752 1753 if (rdev->raid_disk >= 0) 1754 first = last = rdev->raid_disk; 1755 1756 /* 1757 * find the disk ... but prefer rdev->saved_raid_disk 1758 * if possible. 1759 */ 1760 if (rdev->saved_raid_disk >= 0 && 1761 rdev->saved_raid_disk >= first && 1762 rdev->saved_raid_disk < conf->raid_disks && 1763 conf->mirrors[rdev->saved_raid_disk].rdev == NULL) 1764 first = last = rdev->saved_raid_disk; 1765 1766 for (mirror = first; mirror <= last; mirror++) { 1767 p = conf->mirrors + mirror; 1768 if (!p->rdev) { 1769 if (mddev->gendisk) 1770 disk_stack_limits(mddev->gendisk, rdev->bdev, 1771 rdev->data_offset << 9); 1772 1773 p->head_position = 0; 1774 rdev->raid_disk = mirror; 1775 err = 0; 1776 /* As all devices are equivalent, we don't need a full recovery 1777 * if this was recently any drive of the array 1778 */ 1779 if (rdev->saved_raid_disk < 0) 1780 conf->fullsync = 1; 1781 rcu_assign_pointer(p->rdev, rdev); 1782 break; 1783 } 1784 if (test_bit(WantReplacement, &p->rdev->flags) && 1785 p[conf->raid_disks].rdev == NULL) { 1786 /* Add this device as a replacement */ 1787 clear_bit(In_sync, &rdev->flags); 1788 set_bit(Replacement, &rdev->flags); 1789 rdev->raid_disk = mirror; 1790 err = 0; 1791 conf->fullsync = 1; 1792 rcu_assign_pointer(p[conf->raid_disks].rdev, rdev); 1793 break; 1794 } 1795 } 1796 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev))) 1797 blk_queue_flag_set(QUEUE_FLAG_DISCARD, mddev->queue); 1798 print_conf(conf); 1799 return err; 1800 } 1801 1802 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev) 1803 { 1804 struct r1conf *conf = mddev->private; 1805 int err = 0; 1806 int number = rdev->raid_disk; 1807 struct raid1_info *p = conf->mirrors + number; 1808 1809 if (rdev != p->rdev) 1810 p = conf->mirrors + conf->raid_disks + number; 1811 1812 print_conf(conf); 1813 if (rdev == p->rdev) { 1814 if (test_bit(In_sync, &rdev->flags) || 1815 atomic_read(&rdev->nr_pending)) { 1816 err = -EBUSY; 1817 goto abort; 1818 } 1819 /* Only remove non-faulty devices if recovery 1820 * is not possible. 1821 */ 1822 if (!test_bit(Faulty, &rdev->flags) && 1823 mddev->recovery_disabled != conf->recovery_disabled && 1824 mddev->degraded < conf->raid_disks) { 1825 err = -EBUSY; 1826 goto abort; 1827 } 1828 p->rdev = NULL; 1829 if (!test_bit(RemoveSynchronized, &rdev->flags)) { 1830 synchronize_rcu(); 1831 if (atomic_read(&rdev->nr_pending)) { 1832 /* lost the race, try later */ 1833 err = -EBUSY; 1834 p->rdev = rdev; 1835 goto abort; 1836 } 1837 } 1838 if (conf->mirrors[conf->raid_disks + number].rdev) { 1839 /* We just removed a device that is being replaced. 1840 * Move down the replacement. We drain all IO before 1841 * doing this to avoid confusion. 1842 */ 1843 struct md_rdev *repl = 1844 conf->mirrors[conf->raid_disks + number].rdev; 1845 freeze_array(conf, 0); 1846 if (atomic_read(&repl->nr_pending)) { 1847 /* It means that some queued IO of retry_list 1848 * hold repl. Thus, we cannot set replacement 1849 * as NULL, avoiding rdev NULL pointer 1850 * dereference in sync_request_write and 1851 * handle_write_finished. 1852 */ 1853 err = -EBUSY; 1854 unfreeze_array(conf); 1855 goto abort; 1856 } 1857 clear_bit(Replacement, &repl->flags); 1858 p->rdev = repl; 1859 conf->mirrors[conf->raid_disks + number].rdev = NULL; 1860 unfreeze_array(conf); 1861 } 1862 1863 clear_bit(WantReplacement, &rdev->flags); 1864 err = md_integrity_register(mddev); 1865 } 1866 abort: 1867 1868 print_conf(conf); 1869 return err; 1870 } 1871 1872 static void end_sync_read(struct bio *bio) 1873 { 1874 struct r1bio *r1_bio = get_resync_r1bio(bio); 1875 1876 update_head_pos(r1_bio->read_disk, r1_bio); 1877 1878 /* 1879 * we have read a block, now it needs to be re-written, 1880 * or re-read if the read failed. 1881 * We don't do much here, just schedule handling by raid1d 1882 */ 1883 if (!bio->bi_status) 1884 set_bit(R1BIO_Uptodate, &r1_bio->state); 1885 1886 if (atomic_dec_and_test(&r1_bio->remaining)) 1887 reschedule_retry(r1_bio); 1888 } 1889 1890 static void abort_sync_write(struct mddev *mddev, struct r1bio *r1_bio) 1891 { 1892 sector_t sync_blocks = 0; 1893 sector_t s = r1_bio->sector; 1894 long sectors_to_go = r1_bio->sectors; 1895 1896 /* make sure these bits don't get cleared. */ 1897 do { 1898 md_bitmap_end_sync(mddev->bitmap, s, &sync_blocks, 1); 1899 s += sync_blocks; 1900 sectors_to_go -= sync_blocks; 1901 } while (sectors_to_go > 0); 1902 } 1903 1904 static void end_sync_write(struct bio *bio) 1905 { 1906 int uptodate = !bio->bi_status; 1907 struct r1bio *r1_bio = get_resync_r1bio(bio); 1908 struct mddev *mddev = r1_bio->mddev; 1909 struct r1conf *conf = mddev->private; 1910 sector_t first_bad; 1911 int bad_sectors; 1912 struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev; 1913 1914 if (!uptodate) { 1915 abort_sync_write(mddev, r1_bio); 1916 set_bit(WriteErrorSeen, &rdev->flags); 1917 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 1918 set_bit(MD_RECOVERY_NEEDED, & 1919 mddev->recovery); 1920 set_bit(R1BIO_WriteError, &r1_bio->state); 1921 } else if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors, 1922 &first_bad, &bad_sectors) && 1923 !is_badblock(conf->mirrors[r1_bio->read_disk].rdev, 1924 r1_bio->sector, 1925 r1_bio->sectors, 1926 &first_bad, &bad_sectors) 1927 ) 1928 set_bit(R1BIO_MadeGood, &r1_bio->state); 1929 1930 if (atomic_dec_and_test(&r1_bio->remaining)) { 1931 int s = r1_bio->sectors; 1932 if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 1933 test_bit(R1BIO_WriteError, &r1_bio->state)) 1934 reschedule_retry(r1_bio); 1935 else { 1936 put_buf(r1_bio); 1937 md_done_sync(mddev, s, uptodate); 1938 } 1939 } 1940 } 1941 1942 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector, 1943 int sectors, struct page *page, int rw) 1944 { 1945 if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false)) 1946 /* success */ 1947 return 1; 1948 if (rw == WRITE) { 1949 set_bit(WriteErrorSeen, &rdev->flags); 1950 if (!test_and_set_bit(WantReplacement, 1951 &rdev->flags)) 1952 set_bit(MD_RECOVERY_NEEDED, & 1953 rdev->mddev->recovery); 1954 } 1955 /* need to record an error - either for the block or the device */ 1956 if (!rdev_set_badblocks(rdev, sector, sectors, 0)) 1957 md_error(rdev->mddev, rdev); 1958 return 0; 1959 } 1960 1961 static int fix_sync_read_error(struct r1bio *r1_bio) 1962 { 1963 /* Try some synchronous reads of other devices to get 1964 * good data, much like with normal read errors. Only 1965 * read into the pages we already have so we don't 1966 * need to re-issue the read request. 1967 * We don't need to freeze the array, because being in an 1968 * active sync request, there is no normal IO, and 1969 * no overlapping syncs. 1970 * We don't need to check is_badblock() again as we 1971 * made sure that anything with a bad block in range 1972 * will have bi_end_io clear. 1973 */ 1974 struct mddev *mddev = r1_bio->mddev; 1975 struct r1conf *conf = mddev->private; 1976 struct bio *bio = r1_bio->bios[r1_bio->read_disk]; 1977 struct page **pages = get_resync_pages(bio)->pages; 1978 sector_t sect = r1_bio->sector; 1979 int sectors = r1_bio->sectors; 1980 int idx = 0; 1981 struct md_rdev *rdev; 1982 1983 rdev = conf->mirrors[r1_bio->read_disk].rdev; 1984 if (test_bit(FailFast, &rdev->flags)) { 1985 /* Don't try recovering from here - just fail it 1986 * ... unless it is the last working device of course */ 1987 md_error(mddev, rdev); 1988 if (test_bit(Faulty, &rdev->flags)) 1989 /* Don't try to read from here, but make sure 1990 * put_buf does it's thing 1991 */ 1992 bio->bi_end_io = end_sync_write; 1993 } 1994 1995 while(sectors) { 1996 int s = sectors; 1997 int d = r1_bio->read_disk; 1998 int success = 0; 1999 int start; 2000 2001 if (s > (PAGE_SIZE>>9)) 2002 s = PAGE_SIZE >> 9; 2003 do { 2004 if (r1_bio->bios[d]->bi_end_io == end_sync_read) { 2005 /* No rcu protection needed here devices 2006 * can only be removed when no resync is 2007 * active, and resync is currently active 2008 */ 2009 rdev = conf->mirrors[d].rdev; 2010 if (sync_page_io(rdev, sect, s<<9, 2011 pages[idx], 2012 REQ_OP_READ, 0, false)) { 2013 success = 1; 2014 break; 2015 } 2016 } 2017 d++; 2018 if (d == conf->raid_disks * 2) 2019 d = 0; 2020 } while (!success && d != r1_bio->read_disk); 2021 2022 if (!success) { 2023 char b[BDEVNAME_SIZE]; 2024 int abort = 0; 2025 /* Cannot read from anywhere, this block is lost. 2026 * Record a bad block on each device. If that doesn't 2027 * work just disable and interrupt the recovery. 2028 * Don't fail devices as that won't really help. 2029 */ 2030 pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n", 2031 mdname(mddev), bio_devname(bio, b), 2032 (unsigned long long)r1_bio->sector); 2033 for (d = 0; d < conf->raid_disks * 2; d++) { 2034 rdev = conf->mirrors[d].rdev; 2035 if (!rdev || test_bit(Faulty, &rdev->flags)) 2036 continue; 2037 if (!rdev_set_badblocks(rdev, sect, s, 0)) 2038 abort = 1; 2039 } 2040 if (abort) { 2041 conf->recovery_disabled = 2042 mddev->recovery_disabled; 2043 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 2044 md_done_sync(mddev, r1_bio->sectors, 0); 2045 put_buf(r1_bio); 2046 return 0; 2047 } 2048 /* Try next page */ 2049 sectors -= s; 2050 sect += s; 2051 idx++; 2052 continue; 2053 } 2054 2055 start = d; 2056 /* write it back and re-read */ 2057 while (d != r1_bio->read_disk) { 2058 if (d == 0) 2059 d = conf->raid_disks * 2; 2060 d--; 2061 if (r1_bio->bios[d]->bi_end_io != end_sync_read) 2062 continue; 2063 rdev = conf->mirrors[d].rdev; 2064 if (r1_sync_page_io(rdev, sect, s, 2065 pages[idx], 2066 WRITE) == 0) { 2067 r1_bio->bios[d]->bi_end_io = NULL; 2068 rdev_dec_pending(rdev, mddev); 2069 } 2070 } 2071 d = start; 2072 while (d != r1_bio->read_disk) { 2073 if (d == 0) 2074 d = conf->raid_disks * 2; 2075 d--; 2076 if (r1_bio->bios[d]->bi_end_io != end_sync_read) 2077 continue; 2078 rdev = conf->mirrors[d].rdev; 2079 if (r1_sync_page_io(rdev, sect, s, 2080 pages[idx], 2081 READ) != 0) 2082 atomic_add(s, &rdev->corrected_errors); 2083 } 2084 sectors -= s; 2085 sect += s; 2086 idx ++; 2087 } 2088 set_bit(R1BIO_Uptodate, &r1_bio->state); 2089 bio->bi_status = 0; 2090 return 1; 2091 } 2092 2093 static void process_checks(struct r1bio *r1_bio) 2094 { 2095 /* We have read all readable devices. If we haven't 2096 * got the block, then there is no hope left. 2097 * If we have, then we want to do a comparison 2098 * and skip the write if everything is the same. 2099 * If any blocks failed to read, then we need to 2100 * attempt an over-write 2101 */ 2102 struct mddev *mddev = r1_bio->mddev; 2103 struct r1conf *conf = mddev->private; 2104 int primary; 2105 int i; 2106 int vcnt; 2107 2108 /* Fix variable parts of all bios */ 2109 vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9); 2110 for (i = 0; i < conf->raid_disks * 2; i++) { 2111 blk_status_t status; 2112 struct bio *b = r1_bio->bios[i]; 2113 struct resync_pages *rp = get_resync_pages(b); 2114 if (b->bi_end_io != end_sync_read) 2115 continue; 2116 /* fixup the bio for reuse, but preserve errno */ 2117 status = b->bi_status; 2118 bio_reset(b); 2119 b->bi_status = status; 2120 b->bi_iter.bi_sector = r1_bio->sector + 2121 conf->mirrors[i].rdev->data_offset; 2122 bio_set_dev(b, conf->mirrors[i].rdev->bdev); 2123 b->bi_end_io = end_sync_read; 2124 rp->raid_bio = r1_bio; 2125 b->bi_private = rp; 2126 2127 /* initialize bvec table again */ 2128 md_bio_reset_resync_pages(b, rp, r1_bio->sectors << 9); 2129 } 2130 for (primary = 0; primary < conf->raid_disks * 2; primary++) 2131 if (r1_bio->bios[primary]->bi_end_io == end_sync_read && 2132 !r1_bio->bios[primary]->bi_status) { 2133 r1_bio->bios[primary]->bi_end_io = NULL; 2134 rdev_dec_pending(conf->mirrors[primary].rdev, mddev); 2135 break; 2136 } 2137 r1_bio->read_disk = primary; 2138 for (i = 0; i < conf->raid_disks * 2; i++) { 2139 int j = 0; 2140 struct bio *pbio = r1_bio->bios[primary]; 2141 struct bio *sbio = r1_bio->bios[i]; 2142 blk_status_t status = sbio->bi_status; 2143 struct page **ppages = get_resync_pages(pbio)->pages; 2144 struct page **spages = get_resync_pages(sbio)->pages; 2145 struct bio_vec *bi; 2146 int page_len[RESYNC_PAGES] = { 0 }; 2147 struct bvec_iter_all iter_all; 2148 2149 if (sbio->bi_end_io != end_sync_read) 2150 continue; 2151 /* Now we can 'fixup' the error value */ 2152 sbio->bi_status = 0; 2153 2154 bio_for_each_segment_all(bi, sbio, iter_all) 2155 page_len[j++] = bi->bv_len; 2156 2157 if (!status) { 2158 for (j = vcnt; j-- ; ) { 2159 if (memcmp(page_address(ppages[j]), 2160 page_address(spages[j]), 2161 page_len[j])) 2162 break; 2163 } 2164 } else 2165 j = 0; 2166 if (j >= 0) 2167 atomic64_add(r1_bio->sectors, &mddev->resync_mismatches); 2168 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery) 2169 && !status)) { 2170 /* No need to write to this device. */ 2171 sbio->bi_end_io = NULL; 2172 rdev_dec_pending(conf->mirrors[i].rdev, mddev); 2173 continue; 2174 } 2175 2176 bio_copy_data(sbio, pbio); 2177 } 2178 } 2179 2180 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio) 2181 { 2182 struct r1conf *conf = mddev->private; 2183 int i; 2184 int disks = conf->raid_disks * 2; 2185 struct bio *wbio; 2186 2187 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) 2188 /* ouch - failed to read all of that. */ 2189 if (!fix_sync_read_error(r1_bio)) 2190 return; 2191 2192 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 2193 process_checks(r1_bio); 2194 2195 /* 2196 * schedule writes 2197 */ 2198 atomic_set(&r1_bio->remaining, 1); 2199 for (i = 0; i < disks ; i++) { 2200 wbio = r1_bio->bios[i]; 2201 if (wbio->bi_end_io == NULL || 2202 (wbio->bi_end_io == end_sync_read && 2203 (i == r1_bio->read_disk || 2204 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery)))) 2205 continue; 2206 if (test_bit(Faulty, &conf->mirrors[i].rdev->flags)) { 2207 abort_sync_write(mddev, r1_bio); 2208 continue; 2209 } 2210 2211 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0); 2212 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags)) 2213 wbio->bi_opf |= MD_FAILFAST; 2214 2215 wbio->bi_end_io = end_sync_write; 2216 atomic_inc(&r1_bio->remaining); 2217 md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio)); 2218 2219 generic_make_request(wbio); 2220 } 2221 2222 if (atomic_dec_and_test(&r1_bio->remaining)) { 2223 /* if we're here, all write(s) have completed, so clean up */ 2224 int s = r1_bio->sectors; 2225 if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 2226 test_bit(R1BIO_WriteError, &r1_bio->state)) 2227 reschedule_retry(r1_bio); 2228 else { 2229 put_buf(r1_bio); 2230 md_done_sync(mddev, s, 1); 2231 } 2232 } 2233 } 2234 2235 /* 2236 * This is a kernel thread which: 2237 * 2238 * 1. Retries failed read operations on working mirrors. 2239 * 2. Updates the raid superblock when problems encounter. 2240 * 3. Performs writes following reads for array synchronising. 2241 */ 2242 2243 static void fix_read_error(struct r1conf *conf, int read_disk, 2244 sector_t sect, int sectors) 2245 { 2246 struct mddev *mddev = conf->mddev; 2247 while(sectors) { 2248 int s = sectors; 2249 int d = read_disk; 2250 int success = 0; 2251 int start; 2252 struct md_rdev *rdev; 2253 2254 if (s > (PAGE_SIZE>>9)) 2255 s = PAGE_SIZE >> 9; 2256 2257 do { 2258 sector_t first_bad; 2259 int bad_sectors; 2260 2261 rcu_read_lock(); 2262 rdev = rcu_dereference(conf->mirrors[d].rdev); 2263 if (rdev && 2264 (test_bit(In_sync, &rdev->flags) || 2265 (!test_bit(Faulty, &rdev->flags) && 2266 rdev->recovery_offset >= sect + s)) && 2267 is_badblock(rdev, sect, s, 2268 &first_bad, &bad_sectors) == 0) { 2269 atomic_inc(&rdev->nr_pending); 2270 rcu_read_unlock(); 2271 if (sync_page_io(rdev, sect, s<<9, 2272 conf->tmppage, REQ_OP_READ, 0, false)) 2273 success = 1; 2274 rdev_dec_pending(rdev, mddev); 2275 if (success) 2276 break; 2277 } else 2278 rcu_read_unlock(); 2279 d++; 2280 if (d == conf->raid_disks * 2) 2281 d = 0; 2282 } while (!success && d != read_disk); 2283 2284 if (!success) { 2285 /* Cannot read from anywhere - mark it bad */ 2286 struct md_rdev *rdev = conf->mirrors[read_disk].rdev; 2287 if (!rdev_set_badblocks(rdev, sect, s, 0)) 2288 md_error(mddev, rdev); 2289 break; 2290 } 2291 /* write it back and re-read */ 2292 start = d; 2293 while (d != read_disk) { 2294 if (d==0) 2295 d = conf->raid_disks * 2; 2296 d--; 2297 rcu_read_lock(); 2298 rdev = rcu_dereference(conf->mirrors[d].rdev); 2299 if (rdev && 2300 !test_bit(Faulty, &rdev->flags)) { 2301 atomic_inc(&rdev->nr_pending); 2302 rcu_read_unlock(); 2303 r1_sync_page_io(rdev, sect, s, 2304 conf->tmppage, WRITE); 2305 rdev_dec_pending(rdev, mddev); 2306 } else 2307 rcu_read_unlock(); 2308 } 2309 d = start; 2310 while (d != read_disk) { 2311 char b[BDEVNAME_SIZE]; 2312 if (d==0) 2313 d = conf->raid_disks * 2; 2314 d--; 2315 rcu_read_lock(); 2316 rdev = rcu_dereference(conf->mirrors[d].rdev); 2317 if (rdev && 2318 !test_bit(Faulty, &rdev->flags)) { 2319 atomic_inc(&rdev->nr_pending); 2320 rcu_read_unlock(); 2321 if (r1_sync_page_io(rdev, sect, s, 2322 conf->tmppage, READ)) { 2323 atomic_add(s, &rdev->corrected_errors); 2324 pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %s)\n", 2325 mdname(mddev), s, 2326 (unsigned long long)(sect + 2327 rdev->data_offset), 2328 bdevname(rdev->bdev, b)); 2329 } 2330 rdev_dec_pending(rdev, mddev); 2331 } else 2332 rcu_read_unlock(); 2333 } 2334 sectors -= s; 2335 sect += s; 2336 } 2337 } 2338 2339 static int narrow_write_error(struct r1bio *r1_bio, int i) 2340 { 2341 struct mddev *mddev = r1_bio->mddev; 2342 struct r1conf *conf = mddev->private; 2343 struct md_rdev *rdev = conf->mirrors[i].rdev; 2344 2345 /* bio has the data to be written to device 'i' where 2346 * we just recently had a write error. 2347 * We repeatedly clone the bio and trim down to one block, 2348 * then try the write. Where the write fails we record 2349 * a bad block. 2350 * It is conceivable that the bio doesn't exactly align with 2351 * blocks. We must handle this somehow. 2352 * 2353 * We currently own a reference on the rdev. 2354 */ 2355 2356 int block_sectors; 2357 sector_t sector; 2358 int sectors; 2359 int sect_to_write = r1_bio->sectors; 2360 int ok = 1; 2361 2362 if (rdev->badblocks.shift < 0) 2363 return 0; 2364 2365 block_sectors = roundup(1 << rdev->badblocks.shift, 2366 bdev_logical_block_size(rdev->bdev) >> 9); 2367 sector = r1_bio->sector; 2368 sectors = ((sector + block_sectors) 2369 & ~(sector_t)(block_sectors - 1)) 2370 - sector; 2371 2372 while (sect_to_write) { 2373 struct bio *wbio; 2374 if (sectors > sect_to_write) 2375 sectors = sect_to_write; 2376 /* Write at 'sector' for 'sectors'*/ 2377 2378 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) { 2379 wbio = bio_clone_fast(r1_bio->behind_master_bio, 2380 GFP_NOIO, 2381 &mddev->bio_set); 2382 } else { 2383 wbio = bio_clone_fast(r1_bio->master_bio, GFP_NOIO, 2384 &mddev->bio_set); 2385 } 2386 2387 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0); 2388 wbio->bi_iter.bi_sector = r1_bio->sector; 2389 wbio->bi_iter.bi_size = r1_bio->sectors << 9; 2390 2391 bio_trim(wbio, sector - r1_bio->sector, sectors); 2392 wbio->bi_iter.bi_sector += rdev->data_offset; 2393 bio_set_dev(wbio, rdev->bdev); 2394 2395 if (submit_bio_wait(wbio) < 0) 2396 /* failure! */ 2397 ok = rdev_set_badblocks(rdev, sector, 2398 sectors, 0) 2399 && ok; 2400 2401 bio_put(wbio); 2402 sect_to_write -= sectors; 2403 sector += sectors; 2404 sectors = block_sectors; 2405 } 2406 return ok; 2407 } 2408 2409 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio) 2410 { 2411 int m; 2412 int s = r1_bio->sectors; 2413 for (m = 0; m < conf->raid_disks * 2 ; m++) { 2414 struct md_rdev *rdev = conf->mirrors[m].rdev; 2415 struct bio *bio = r1_bio->bios[m]; 2416 if (bio->bi_end_io == NULL) 2417 continue; 2418 if (!bio->bi_status && 2419 test_bit(R1BIO_MadeGood, &r1_bio->state)) { 2420 rdev_clear_badblocks(rdev, r1_bio->sector, s, 0); 2421 } 2422 if (bio->bi_status && 2423 test_bit(R1BIO_WriteError, &r1_bio->state)) { 2424 if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0)) 2425 md_error(conf->mddev, rdev); 2426 } 2427 } 2428 put_buf(r1_bio); 2429 md_done_sync(conf->mddev, s, 1); 2430 } 2431 2432 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio) 2433 { 2434 int m, idx; 2435 bool fail = false; 2436 2437 for (m = 0; m < conf->raid_disks * 2 ; m++) 2438 if (r1_bio->bios[m] == IO_MADE_GOOD) { 2439 struct md_rdev *rdev = conf->mirrors[m].rdev; 2440 rdev_clear_badblocks(rdev, 2441 r1_bio->sector, 2442 r1_bio->sectors, 0); 2443 rdev_dec_pending(rdev, conf->mddev); 2444 } else if (r1_bio->bios[m] != NULL) { 2445 /* This drive got a write error. We need to 2446 * narrow down and record precise write 2447 * errors. 2448 */ 2449 fail = true; 2450 if (!narrow_write_error(r1_bio, m)) { 2451 md_error(conf->mddev, 2452 conf->mirrors[m].rdev); 2453 /* an I/O failed, we can't clear the bitmap */ 2454 set_bit(R1BIO_Degraded, &r1_bio->state); 2455 } 2456 rdev_dec_pending(conf->mirrors[m].rdev, 2457 conf->mddev); 2458 } 2459 if (fail) { 2460 spin_lock_irq(&conf->device_lock); 2461 list_add(&r1_bio->retry_list, &conf->bio_end_io_list); 2462 idx = sector_to_idx(r1_bio->sector); 2463 atomic_inc(&conf->nr_queued[idx]); 2464 spin_unlock_irq(&conf->device_lock); 2465 /* 2466 * In case freeze_array() is waiting for condition 2467 * get_unqueued_pending() == extra to be true. 2468 */ 2469 wake_up(&conf->wait_barrier); 2470 md_wakeup_thread(conf->mddev->thread); 2471 } else { 2472 if (test_bit(R1BIO_WriteError, &r1_bio->state)) 2473 close_write(r1_bio); 2474 raid_end_bio_io(r1_bio); 2475 } 2476 } 2477 2478 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio) 2479 { 2480 struct mddev *mddev = conf->mddev; 2481 struct bio *bio; 2482 struct md_rdev *rdev; 2483 2484 clear_bit(R1BIO_ReadError, &r1_bio->state); 2485 /* we got a read error. Maybe the drive is bad. Maybe just 2486 * the block and we can fix it. 2487 * We freeze all other IO, and try reading the block from 2488 * other devices. When we find one, we re-write 2489 * and check it that fixes the read error. 2490 * This is all done synchronously while the array is 2491 * frozen 2492 */ 2493 2494 bio = r1_bio->bios[r1_bio->read_disk]; 2495 bio_put(bio); 2496 r1_bio->bios[r1_bio->read_disk] = NULL; 2497 2498 rdev = conf->mirrors[r1_bio->read_disk].rdev; 2499 if (mddev->ro == 0 2500 && !test_bit(FailFast, &rdev->flags)) { 2501 freeze_array(conf, 1); 2502 fix_read_error(conf, r1_bio->read_disk, 2503 r1_bio->sector, r1_bio->sectors); 2504 unfreeze_array(conf); 2505 } else if (mddev->ro == 0 && test_bit(FailFast, &rdev->flags)) { 2506 md_error(mddev, rdev); 2507 } else { 2508 r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED; 2509 } 2510 2511 rdev_dec_pending(rdev, conf->mddev); 2512 allow_barrier(conf, r1_bio->sector); 2513 bio = r1_bio->master_bio; 2514 2515 /* Reuse the old r1_bio so that the IO_BLOCKED settings are preserved */ 2516 r1_bio->state = 0; 2517 raid1_read_request(mddev, bio, r1_bio->sectors, r1_bio); 2518 } 2519 2520 static void raid1d(struct md_thread *thread) 2521 { 2522 struct mddev *mddev = thread->mddev; 2523 struct r1bio *r1_bio; 2524 unsigned long flags; 2525 struct r1conf *conf = mddev->private; 2526 struct list_head *head = &conf->retry_list; 2527 struct blk_plug plug; 2528 int idx; 2529 2530 md_check_recovery(mddev); 2531 2532 if (!list_empty_careful(&conf->bio_end_io_list) && 2533 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) { 2534 LIST_HEAD(tmp); 2535 spin_lock_irqsave(&conf->device_lock, flags); 2536 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) 2537 list_splice_init(&conf->bio_end_io_list, &tmp); 2538 spin_unlock_irqrestore(&conf->device_lock, flags); 2539 while (!list_empty(&tmp)) { 2540 r1_bio = list_first_entry(&tmp, struct r1bio, 2541 retry_list); 2542 list_del(&r1_bio->retry_list); 2543 idx = sector_to_idx(r1_bio->sector); 2544 atomic_dec(&conf->nr_queued[idx]); 2545 if (mddev->degraded) 2546 set_bit(R1BIO_Degraded, &r1_bio->state); 2547 if (test_bit(R1BIO_WriteError, &r1_bio->state)) 2548 close_write(r1_bio); 2549 raid_end_bio_io(r1_bio); 2550 } 2551 } 2552 2553 blk_start_plug(&plug); 2554 for (;;) { 2555 2556 flush_pending_writes(conf); 2557 2558 spin_lock_irqsave(&conf->device_lock, flags); 2559 if (list_empty(head)) { 2560 spin_unlock_irqrestore(&conf->device_lock, flags); 2561 break; 2562 } 2563 r1_bio = list_entry(head->prev, struct r1bio, retry_list); 2564 list_del(head->prev); 2565 idx = sector_to_idx(r1_bio->sector); 2566 atomic_dec(&conf->nr_queued[idx]); 2567 spin_unlock_irqrestore(&conf->device_lock, flags); 2568 2569 mddev = r1_bio->mddev; 2570 conf = mddev->private; 2571 if (test_bit(R1BIO_IsSync, &r1_bio->state)) { 2572 if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 2573 test_bit(R1BIO_WriteError, &r1_bio->state)) 2574 handle_sync_write_finished(conf, r1_bio); 2575 else 2576 sync_request_write(mddev, r1_bio); 2577 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 2578 test_bit(R1BIO_WriteError, &r1_bio->state)) 2579 handle_write_finished(conf, r1_bio); 2580 else if (test_bit(R1BIO_ReadError, &r1_bio->state)) 2581 handle_read_error(conf, r1_bio); 2582 else 2583 WARN_ON_ONCE(1); 2584 2585 cond_resched(); 2586 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING)) 2587 md_check_recovery(mddev); 2588 } 2589 blk_finish_plug(&plug); 2590 } 2591 2592 static int init_resync(struct r1conf *conf) 2593 { 2594 int buffs; 2595 2596 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE; 2597 BUG_ON(mempool_initialized(&conf->r1buf_pool)); 2598 2599 return mempool_init(&conf->r1buf_pool, buffs, r1buf_pool_alloc, 2600 r1buf_pool_free, conf->poolinfo); 2601 } 2602 2603 static struct r1bio *raid1_alloc_init_r1buf(struct r1conf *conf) 2604 { 2605 struct r1bio *r1bio = mempool_alloc(&conf->r1buf_pool, GFP_NOIO); 2606 struct resync_pages *rps; 2607 struct bio *bio; 2608 int i; 2609 2610 for (i = conf->poolinfo->raid_disks; i--; ) { 2611 bio = r1bio->bios[i]; 2612 rps = bio->bi_private; 2613 bio_reset(bio); 2614 bio->bi_private = rps; 2615 } 2616 r1bio->master_bio = NULL; 2617 return r1bio; 2618 } 2619 2620 /* 2621 * perform a "sync" on one "block" 2622 * 2623 * We need to make sure that no normal I/O request - particularly write 2624 * requests - conflict with active sync requests. 2625 * 2626 * This is achieved by tracking pending requests and a 'barrier' concept 2627 * that can be installed to exclude normal IO requests. 2628 */ 2629 2630 static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr, 2631 int *skipped) 2632 { 2633 struct r1conf *conf = mddev->private; 2634 struct r1bio *r1_bio; 2635 struct bio *bio; 2636 sector_t max_sector, nr_sectors; 2637 int disk = -1; 2638 int i; 2639 int wonly = -1; 2640 int write_targets = 0, read_targets = 0; 2641 sector_t sync_blocks; 2642 int still_degraded = 0; 2643 int good_sectors = RESYNC_SECTORS; 2644 int min_bad = 0; /* number of sectors that are bad in all devices */ 2645 int idx = sector_to_idx(sector_nr); 2646 int page_idx = 0; 2647 2648 if (!mempool_initialized(&conf->r1buf_pool)) 2649 if (init_resync(conf)) 2650 return 0; 2651 2652 max_sector = mddev->dev_sectors; 2653 if (sector_nr >= max_sector) { 2654 /* If we aborted, we need to abort the 2655 * sync on the 'current' bitmap chunk (there will 2656 * only be one in raid1 resync. 2657 * We can find the current addess in mddev->curr_resync 2658 */ 2659 if (mddev->curr_resync < max_sector) /* aborted */ 2660 md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 2661 &sync_blocks, 1); 2662 else /* completed sync */ 2663 conf->fullsync = 0; 2664 2665 md_bitmap_close_sync(mddev->bitmap); 2666 close_sync(conf); 2667 2668 if (mddev_is_clustered(mddev)) { 2669 conf->cluster_sync_low = 0; 2670 conf->cluster_sync_high = 0; 2671 } 2672 return 0; 2673 } 2674 2675 if (mddev->bitmap == NULL && 2676 mddev->recovery_cp == MaxSector && 2677 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 2678 conf->fullsync == 0) { 2679 *skipped = 1; 2680 return max_sector - sector_nr; 2681 } 2682 /* before building a request, check if we can skip these blocks.. 2683 * This call the bitmap_start_sync doesn't actually record anything 2684 */ 2685 if (!md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) && 2686 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 2687 /* We can skip this block, and probably several more */ 2688 *skipped = 1; 2689 return sync_blocks; 2690 } 2691 2692 /* 2693 * If there is non-resync activity waiting for a turn, then let it 2694 * though before starting on this new sync request. 2695 */ 2696 if (atomic_read(&conf->nr_waiting[idx])) 2697 schedule_timeout_uninterruptible(1); 2698 2699 /* we are incrementing sector_nr below. To be safe, we check against 2700 * sector_nr + two times RESYNC_SECTORS 2701 */ 2702 2703 md_bitmap_cond_end_sync(mddev->bitmap, sector_nr, 2704 mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high)); 2705 2706 2707 if (raise_barrier(conf, sector_nr)) 2708 return 0; 2709 2710 r1_bio = raid1_alloc_init_r1buf(conf); 2711 2712 rcu_read_lock(); 2713 /* 2714 * If we get a correctably read error during resync or recovery, 2715 * we might want to read from a different device. So we 2716 * flag all drives that could conceivably be read from for READ, 2717 * and any others (which will be non-In_sync devices) for WRITE. 2718 * If a read fails, we try reading from something else for which READ 2719 * is OK. 2720 */ 2721 2722 r1_bio->mddev = mddev; 2723 r1_bio->sector = sector_nr; 2724 r1_bio->state = 0; 2725 set_bit(R1BIO_IsSync, &r1_bio->state); 2726 /* make sure good_sectors won't go across barrier unit boundary */ 2727 good_sectors = align_to_barrier_unit_end(sector_nr, good_sectors); 2728 2729 for (i = 0; i < conf->raid_disks * 2; i++) { 2730 struct md_rdev *rdev; 2731 bio = r1_bio->bios[i]; 2732 2733 rdev = rcu_dereference(conf->mirrors[i].rdev); 2734 if (rdev == NULL || 2735 test_bit(Faulty, &rdev->flags)) { 2736 if (i < conf->raid_disks) 2737 still_degraded = 1; 2738 } else if (!test_bit(In_sync, &rdev->flags)) { 2739 bio_set_op_attrs(bio, REQ_OP_WRITE, 0); 2740 bio->bi_end_io = end_sync_write; 2741 write_targets ++; 2742 } else { 2743 /* may need to read from here */ 2744 sector_t first_bad = MaxSector; 2745 int bad_sectors; 2746 2747 if (is_badblock(rdev, sector_nr, good_sectors, 2748 &first_bad, &bad_sectors)) { 2749 if (first_bad > sector_nr) 2750 good_sectors = first_bad - sector_nr; 2751 else { 2752 bad_sectors -= (sector_nr - first_bad); 2753 if (min_bad == 0 || 2754 min_bad > bad_sectors) 2755 min_bad = bad_sectors; 2756 } 2757 } 2758 if (sector_nr < first_bad) { 2759 if (test_bit(WriteMostly, &rdev->flags)) { 2760 if (wonly < 0) 2761 wonly = i; 2762 } else { 2763 if (disk < 0) 2764 disk = i; 2765 } 2766 bio_set_op_attrs(bio, REQ_OP_READ, 0); 2767 bio->bi_end_io = end_sync_read; 2768 read_targets++; 2769 } else if (!test_bit(WriteErrorSeen, &rdev->flags) && 2770 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && 2771 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) { 2772 /* 2773 * The device is suitable for reading (InSync), 2774 * but has bad block(s) here. Let's try to correct them, 2775 * if we are doing resync or repair. Otherwise, leave 2776 * this device alone for this sync request. 2777 */ 2778 bio_set_op_attrs(bio, REQ_OP_WRITE, 0); 2779 bio->bi_end_io = end_sync_write; 2780 write_targets++; 2781 } 2782 } 2783 if (bio->bi_end_io) { 2784 atomic_inc(&rdev->nr_pending); 2785 bio->bi_iter.bi_sector = sector_nr + rdev->data_offset; 2786 bio_set_dev(bio, rdev->bdev); 2787 if (test_bit(FailFast, &rdev->flags)) 2788 bio->bi_opf |= MD_FAILFAST; 2789 } 2790 } 2791 rcu_read_unlock(); 2792 if (disk < 0) 2793 disk = wonly; 2794 r1_bio->read_disk = disk; 2795 2796 if (read_targets == 0 && min_bad > 0) { 2797 /* These sectors are bad on all InSync devices, so we 2798 * need to mark them bad on all write targets 2799 */ 2800 int ok = 1; 2801 for (i = 0 ; i < conf->raid_disks * 2 ; i++) 2802 if (r1_bio->bios[i]->bi_end_io == end_sync_write) { 2803 struct md_rdev *rdev = conf->mirrors[i].rdev; 2804 ok = rdev_set_badblocks(rdev, sector_nr, 2805 min_bad, 0 2806 ) && ok; 2807 } 2808 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2809 *skipped = 1; 2810 put_buf(r1_bio); 2811 2812 if (!ok) { 2813 /* Cannot record the badblocks, so need to 2814 * abort the resync. 2815 * If there are multiple read targets, could just 2816 * fail the really bad ones ??? 2817 */ 2818 conf->recovery_disabled = mddev->recovery_disabled; 2819 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 2820 return 0; 2821 } else 2822 return min_bad; 2823 2824 } 2825 if (min_bad > 0 && min_bad < good_sectors) { 2826 /* only resync enough to reach the next bad->good 2827 * transition */ 2828 good_sectors = min_bad; 2829 } 2830 2831 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0) 2832 /* extra read targets are also write targets */ 2833 write_targets += read_targets-1; 2834 2835 if (write_targets == 0 || read_targets == 0) { 2836 /* There is nowhere to write, so all non-sync 2837 * drives must be failed - so we are finished 2838 */ 2839 sector_t rv; 2840 if (min_bad > 0) 2841 max_sector = sector_nr + min_bad; 2842 rv = max_sector - sector_nr; 2843 *skipped = 1; 2844 put_buf(r1_bio); 2845 return rv; 2846 } 2847 2848 if (max_sector > mddev->resync_max) 2849 max_sector = mddev->resync_max; /* Don't do IO beyond here */ 2850 if (max_sector > sector_nr + good_sectors) 2851 max_sector = sector_nr + good_sectors; 2852 nr_sectors = 0; 2853 sync_blocks = 0; 2854 do { 2855 struct page *page; 2856 int len = PAGE_SIZE; 2857 if (sector_nr + (len>>9) > max_sector) 2858 len = (max_sector - sector_nr) << 9; 2859 if (len == 0) 2860 break; 2861 if (sync_blocks == 0) { 2862 if (!md_bitmap_start_sync(mddev->bitmap, sector_nr, 2863 &sync_blocks, still_degraded) && 2864 !conf->fullsync && 2865 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 2866 break; 2867 if ((len >> 9) > sync_blocks) 2868 len = sync_blocks<<9; 2869 } 2870 2871 for (i = 0 ; i < conf->raid_disks * 2; i++) { 2872 struct resync_pages *rp; 2873 2874 bio = r1_bio->bios[i]; 2875 rp = get_resync_pages(bio); 2876 if (bio->bi_end_io) { 2877 page = resync_fetch_page(rp, page_idx); 2878 2879 /* 2880 * won't fail because the vec table is big 2881 * enough to hold all these pages 2882 */ 2883 bio_add_page(bio, page, len, 0); 2884 } 2885 } 2886 nr_sectors += len>>9; 2887 sector_nr += len>>9; 2888 sync_blocks -= (len>>9); 2889 } while (++page_idx < RESYNC_PAGES); 2890 2891 r1_bio->sectors = nr_sectors; 2892 2893 if (mddev_is_clustered(mddev) && 2894 conf->cluster_sync_high < sector_nr + nr_sectors) { 2895 conf->cluster_sync_low = mddev->curr_resync_completed; 2896 conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS; 2897 /* Send resync message */ 2898 md_cluster_ops->resync_info_update(mddev, 2899 conf->cluster_sync_low, 2900 conf->cluster_sync_high); 2901 } 2902 2903 /* For a user-requested sync, we read all readable devices and do a 2904 * compare 2905 */ 2906 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 2907 atomic_set(&r1_bio->remaining, read_targets); 2908 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) { 2909 bio = r1_bio->bios[i]; 2910 if (bio->bi_end_io == end_sync_read) { 2911 read_targets--; 2912 md_sync_acct_bio(bio, nr_sectors); 2913 if (read_targets == 1) 2914 bio->bi_opf &= ~MD_FAILFAST; 2915 generic_make_request(bio); 2916 } 2917 } 2918 } else { 2919 atomic_set(&r1_bio->remaining, 1); 2920 bio = r1_bio->bios[r1_bio->read_disk]; 2921 md_sync_acct_bio(bio, nr_sectors); 2922 if (read_targets == 1) 2923 bio->bi_opf &= ~MD_FAILFAST; 2924 generic_make_request(bio); 2925 } 2926 return nr_sectors; 2927 } 2928 2929 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks) 2930 { 2931 if (sectors) 2932 return sectors; 2933 2934 return mddev->dev_sectors; 2935 } 2936 2937 static struct r1conf *setup_conf(struct mddev *mddev) 2938 { 2939 struct r1conf *conf; 2940 int i; 2941 struct raid1_info *disk; 2942 struct md_rdev *rdev; 2943 int err = -ENOMEM; 2944 2945 conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL); 2946 if (!conf) 2947 goto abort; 2948 2949 conf->nr_pending = kcalloc(BARRIER_BUCKETS_NR, 2950 sizeof(atomic_t), GFP_KERNEL); 2951 if (!conf->nr_pending) 2952 goto abort; 2953 2954 conf->nr_waiting = kcalloc(BARRIER_BUCKETS_NR, 2955 sizeof(atomic_t), GFP_KERNEL); 2956 if (!conf->nr_waiting) 2957 goto abort; 2958 2959 conf->nr_queued = kcalloc(BARRIER_BUCKETS_NR, 2960 sizeof(atomic_t), GFP_KERNEL); 2961 if (!conf->nr_queued) 2962 goto abort; 2963 2964 conf->barrier = kcalloc(BARRIER_BUCKETS_NR, 2965 sizeof(atomic_t), GFP_KERNEL); 2966 if (!conf->barrier) 2967 goto abort; 2968 2969 conf->mirrors = kzalloc(array3_size(sizeof(struct raid1_info), 2970 mddev->raid_disks, 2), 2971 GFP_KERNEL); 2972 if (!conf->mirrors) 2973 goto abort; 2974 2975 conf->tmppage = alloc_page(GFP_KERNEL); 2976 if (!conf->tmppage) 2977 goto abort; 2978 2979 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL); 2980 if (!conf->poolinfo) 2981 goto abort; 2982 conf->poolinfo->raid_disks = mddev->raid_disks * 2; 2983 err = mempool_init(&conf->r1bio_pool, NR_RAID_BIOS, r1bio_pool_alloc, 2984 rbio_pool_free, conf->poolinfo); 2985 if (err) 2986 goto abort; 2987 2988 err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0); 2989 if (err) 2990 goto abort; 2991 2992 conf->poolinfo->mddev = mddev; 2993 2994 err = -EINVAL; 2995 spin_lock_init(&conf->device_lock); 2996 rdev_for_each(rdev, mddev) { 2997 int disk_idx = rdev->raid_disk; 2998 if (disk_idx >= mddev->raid_disks 2999 || disk_idx < 0) 3000 continue; 3001 if (test_bit(Replacement, &rdev->flags)) 3002 disk = conf->mirrors + mddev->raid_disks + disk_idx; 3003 else 3004 disk = conf->mirrors + disk_idx; 3005 3006 if (disk->rdev) 3007 goto abort; 3008 disk->rdev = rdev; 3009 disk->head_position = 0; 3010 disk->seq_start = MaxSector; 3011 } 3012 conf->raid_disks = mddev->raid_disks; 3013 conf->mddev = mddev; 3014 INIT_LIST_HEAD(&conf->retry_list); 3015 INIT_LIST_HEAD(&conf->bio_end_io_list); 3016 3017 spin_lock_init(&conf->resync_lock); 3018 init_waitqueue_head(&conf->wait_barrier); 3019 3020 bio_list_init(&conf->pending_bio_list); 3021 conf->pending_count = 0; 3022 conf->recovery_disabled = mddev->recovery_disabled - 1; 3023 3024 err = -EIO; 3025 for (i = 0; i < conf->raid_disks * 2; i++) { 3026 3027 disk = conf->mirrors + i; 3028 3029 if (i < conf->raid_disks && 3030 disk[conf->raid_disks].rdev) { 3031 /* This slot has a replacement. */ 3032 if (!disk->rdev) { 3033 /* No original, just make the replacement 3034 * a recovering spare 3035 */ 3036 disk->rdev = 3037 disk[conf->raid_disks].rdev; 3038 disk[conf->raid_disks].rdev = NULL; 3039 } else if (!test_bit(In_sync, &disk->rdev->flags)) 3040 /* Original is not in_sync - bad */ 3041 goto abort; 3042 } 3043 3044 if (!disk->rdev || 3045 !test_bit(In_sync, &disk->rdev->flags)) { 3046 disk->head_position = 0; 3047 if (disk->rdev && 3048 (disk->rdev->saved_raid_disk < 0)) 3049 conf->fullsync = 1; 3050 } 3051 } 3052 3053 err = -ENOMEM; 3054 conf->thread = md_register_thread(raid1d, mddev, "raid1"); 3055 if (!conf->thread) 3056 goto abort; 3057 3058 return conf; 3059 3060 abort: 3061 if (conf) { 3062 mempool_exit(&conf->r1bio_pool); 3063 kfree(conf->mirrors); 3064 safe_put_page(conf->tmppage); 3065 kfree(conf->poolinfo); 3066 kfree(conf->nr_pending); 3067 kfree(conf->nr_waiting); 3068 kfree(conf->nr_queued); 3069 kfree(conf->barrier); 3070 bioset_exit(&conf->bio_split); 3071 kfree(conf); 3072 } 3073 return ERR_PTR(err); 3074 } 3075 3076 static void raid1_free(struct mddev *mddev, void *priv); 3077 static int raid1_run(struct mddev *mddev) 3078 { 3079 struct r1conf *conf; 3080 int i; 3081 struct md_rdev *rdev; 3082 int ret; 3083 bool discard_supported = false; 3084 3085 if (mddev->level != 1) { 3086 pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n", 3087 mdname(mddev), mddev->level); 3088 return -EIO; 3089 } 3090 if (mddev->reshape_position != MaxSector) { 3091 pr_warn("md/raid1:%s: reshape_position set but not supported\n", 3092 mdname(mddev)); 3093 return -EIO; 3094 } 3095 if (mddev_init_writes_pending(mddev) < 0) 3096 return -ENOMEM; 3097 /* 3098 * copy the already verified devices into our private RAID1 3099 * bookkeeping area. [whatever we allocate in run(), 3100 * should be freed in raid1_free()] 3101 */ 3102 if (mddev->private == NULL) 3103 conf = setup_conf(mddev); 3104 else 3105 conf = mddev->private; 3106 3107 if (IS_ERR(conf)) 3108 return PTR_ERR(conf); 3109 3110 if (mddev->queue) { 3111 blk_queue_max_write_same_sectors(mddev->queue, 0); 3112 blk_queue_max_write_zeroes_sectors(mddev->queue, 0); 3113 } 3114 3115 rdev_for_each(rdev, mddev) { 3116 if (!mddev->gendisk) 3117 continue; 3118 disk_stack_limits(mddev->gendisk, rdev->bdev, 3119 rdev->data_offset << 9); 3120 if (blk_queue_discard(bdev_get_queue(rdev->bdev))) 3121 discard_supported = true; 3122 } 3123 3124 mddev->degraded = 0; 3125 for (i = 0; i < conf->raid_disks; i++) 3126 if (conf->mirrors[i].rdev == NULL || 3127 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) || 3128 test_bit(Faulty, &conf->mirrors[i].rdev->flags)) 3129 mddev->degraded++; 3130 3131 if (conf->raid_disks - mddev->degraded == 1) 3132 mddev->recovery_cp = MaxSector; 3133 3134 if (mddev->recovery_cp != MaxSector) 3135 pr_info("md/raid1:%s: not clean -- starting background reconstruction\n", 3136 mdname(mddev)); 3137 pr_info("md/raid1:%s: active with %d out of %d mirrors\n", 3138 mdname(mddev), mddev->raid_disks - mddev->degraded, 3139 mddev->raid_disks); 3140 3141 /* 3142 * Ok, everything is just fine now 3143 */ 3144 mddev->thread = conf->thread; 3145 conf->thread = NULL; 3146 mddev->private = conf; 3147 set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags); 3148 3149 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0)); 3150 3151 if (mddev->queue) { 3152 if (discard_supported) 3153 blk_queue_flag_set(QUEUE_FLAG_DISCARD, 3154 mddev->queue); 3155 else 3156 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, 3157 mddev->queue); 3158 } 3159 3160 ret = md_integrity_register(mddev); 3161 if (ret) { 3162 md_unregister_thread(&mddev->thread); 3163 raid1_free(mddev, conf); 3164 } 3165 return ret; 3166 } 3167 3168 static void raid1_free(struct mddev *mddev, void *priv) 3169 { 3170 struct r1conf *conf = priv; 3171 3172 mempool_exit(&conf->r1bio_pool); 3173 kfree(conf->mirrors); 3174 safe_put_page(conf->tmppage); 3175 kfree(conf->poolinfo); 3176 kfree(conf->nr_pending); 3177 kfree(conf->nr_waiting); 3178 kfree(conf->nr_queued); 3179 kfree(conf->barrier); 3180 bioset_exit(&conf->bio_split); 3181 kfree(conf); 3182 } 3183 3184 static int raid1_resize(struct mddev *mddev, sector_t sectors) 3185 { 3186 /* no resync is happening, and there is enough space 3187 * on all devices, so we can resize. 3188 * We need to make sure resync covers any new space. 3189 * If the array is shrinking we should possibly wait until 3190 * any io in the removed space completes, but it hardly seems 3191 * worth it. 3192 */ 3193 sector_t newsize = raid1_size(mddev, sectors, 0); 3194 if (mddev->external_size && 3195 mddev->array_sectors > newsize) 3196 return -EINVAL; 3197 if (mddev->bitmap) { 3198 int ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0); 3199 if (ret) 3200 return ret; 3201 } 3202 md_set_array_sectors(mddev, newsize); 3203 if (sectors > mddev->dev_sectors && 3204 mddev->recovery_cp > mddev->dev_sectors) { 3205 mddev->recovery_cp = mddev->dev_sectors; 3206 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3207 } 3208 mddev->dev_sectors = sectors; 3209 mddev->resync_max_sectors = sectors; 3210 return 0; 3211 } 3212 3213 static int raid1_reshape(struct mddev *mddev) 3214 { 3215 /* We need to: 3216 * 1/ resize the r1bio_pool 3217 * 2/ resize conf->mirrors 3218 * 3219 * We allocate a new r1bio_pool if we can. 3220 * Then raise a device barrier and wait until all IO stops. 3221 * Then resize conf->mirrors and swap in the new r1bio pool. 3222 * 3223 * At the same time, we "pack" the devices so that all the missing 3224 * devices have the higher raid_disk numbers. 3225 */ 3226 mempool_t newpool, oldpool; 3227 struct pool_info *newpoolinfo; 3228 struct raid1_info *newmirrors; 3229 struct r1conf *conf = mddev->private; 3230 int cnt, raid_disks; 3231 unsigned long flags; 3232 int d, d2; 3233 int ret; 3234 3235 memset(&newpool, 0, sizeof(newpool)); 3236 memset(&oldpool, 0, sizeof(oldpool)); 3237 3238 /* Cannot change chunk_size, layout, or level */ 3239 if (mddev->chunk_sectors != mddev->new_chunk_sectors || 3240 mddev->layout != mddev->new_layout || 3241 mddev->level != mddev->new_level) { 3242 mddev->new_chunk_sectors = mddev->chunk_sectors; 3243 mddev->new_layout = mddev->layout; 3244 mddev->new_level = mddev->level; 3245 return -EINVAL; 3246 } 3247 3248 if (!mddev_is_clustered(mddev)) 3249 md_allow_write(mddev); 3250 3251 raid_disks = mddev->raid_disks + mddev->delta_disks; 3252 3253 if (raid_disks < conf->raid_disks) { 3254 cnt=0; 3255 for (d= 0; d < conf->raid_disks; d++) 3256 if (conf->mirrors[d].rdev) 3257 cnt++; 3258 if (cnt > raid_disks) 3259 return -EBUSY; 3260 } 3261 3262 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL); 3263 if (!newpoolinfo) 3264 return -ENOMEM; 3265 newpoolinfo->mddev = mddev; 3266 newpoolinfo->raid_disks = raid_disks * 2; 3267 3268 ret = mempool_init(&newpool, NR_RAID_BIOS, r1bio_pool_alloc, 3269 rbio_pool_free, newpoolinfo); 3270 if (ret) { 3271 kfree(newpoolinfo); 3272 return ret; 3273 } 3274 newmirrors = kzalloc(array3_size(sizeof(struct raid1_info), 3275 raid_disks, 2), 3276 GFP_KERNEL); 3277 if (!newmirrors) { 3278 kfree(newpoolinfo); 3279 mempool_exit(&newpool); 3280 return -ENOMEM; 3281 } 3282 3283 freeze_array(conf, 0); 3284 3285 /* ok, everything is stopped */ 3286 oldpool = conf->r1bio_pool; 3287 conf->r1bio_pool = newpool; 3288 3289 for (d = d2 = 0; d < conf->raid_disks; d++) { 3290 struct md_rdev *rdev = conf->mirrors[d].rdev; 3291 if (rdev && rdev->raid_disk != d2) { 3292 sysfs_unlink_rdev(mddev, rdev); 3293 rdev->raid_disk = d2; 3294 sysfs_unlink_rdev(mddev, rdev); 3295 if (sysfs_link_rdev(mddev, rdev)) 3296 pr_warn("md/raid1:%s: cannot register rd%d\n", 3297 mdname(mddev), rdev->raid_disk); 3298 } 3299 if (rdev) 3300 newmirrors[d2++].rdev = rdev; 3301 } 3302 kfree(conf->mirrors); 3303 conf->mirrors = newmirrors; 3304 kfree(conf->poolinfo); 3305 conf->poolinfo = newpoolinfo; 3306 3307 spin_lock_irqsave(&conf->device_lock, flags); 3308 mddev->degraded += (raid_disks - conf->raid_disks); 3309 spin_unlock_irqrestore(&conf->device_lock, flags); 3310 conf->raid_disks = mddev->raid_disks = raid_disks; 3311 mddev->delta_disks = 0; 3312 3313 unfreeze_array(conf); 3314 3315 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 3316 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3317 md_wakeup_thread(mddev->thread); 3318 3319 mempool_exit(&oldpool); 3320 return 0; 3321 } 3322 3323 static void raid1_quiesce(struct mddev *mddev, int quiesce) 3324 { 3325 struct r1conf *conf = mddev->private; 3326 3327 if (quiesce) 3328 freeze_array(conf, 0); 3329 else 3330 unfreeze_array(conf); 3331 } 3332 3333 static void *raid1_takeover(struct mddev *mddev) 3334 { 3335 /* raid1 can take over: 3336 * raid5 with 2 devices, any layout or chunk size 3337 */ 3338 if (mddev->level == 5 && mddev->raid_disks == 2) { 3339 struct r1conf *conf; 3340 mddev->new_level = 1; 3341 mddev->new_layout = 0; 3342 mddev->new_chunk_sectors = 0; 3343 conf = setup_conf(mddev); 3344 if (!IS_ERR(conf)) { 3345 /* Array must appear to be quiesced */ 3346 conf->array_frozen = 1; 3347 mddev_clear_unsupported_flags(mddev, 3348 UNSUPPORTED_MDDEV_FLAGS); 3349 } 3350 return conf; 3351 } 3352 return ERR_PTR(-EINVAL); 3353 } 3354 3355 static struct md_personality raid1_personality = 3356 { 3357 .name = "raid1", 3358 .level = 1, 3359 .owner = THIS_MODULE, 3360 .make_request = raid1_make_request, 3361 .run = raid1_run, 3362 .free = raid1_free, 3363 .status = raid1_status, 3364 .error_handler = raid1_error, 3365 .hot_add_disk = raid1_add_disk, 3366 .hot_remove_disk= raid1_remove_disk, 3367 .spare_active = raid1_spare_active, 3368 .sync_request = raid1_sync_request, 3369 .resize = raid1_resize, 3370 .size = raid1_size, 3371 .check_reshape = raid1_reshape, 3372 .quiesce = raid1_quiesce, 3373 .takeover = raid1_takeover, 3374 .congested = raid1_congested, 3375 }; 3376 3377 static int __init raid_init(void) 3378 { 3379 return register_md_personality(&raid1_personality); 3380 } 3381 3382 static void raid_exit(void) 3383 { 3384 unregister_md_personality(&raid1_personality); 3385 } 3386 3387 module_init(raid_init); 3388 module_exit(raid_exit); 3389 MODULE_LICENSE("GPL"); 3390 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD"); 3391 MODULE_ALIAS("md-personality-3"); /* RAID1 */ 3392 MODULE_ALIAS("md-raid1"); 3393 MODULE_ALIAS("md-level-1"); 3394 3395 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR); 3396