xref: /openbmc/linux/drivers/md/raid1.c (revision 5c675f83)
1 /*
2  * raid1.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5  *
6  * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7  *
8  * RAID-1 management functions.
9  *
10  * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11  *
12  * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
13  * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14  *
15  * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16  * bitmapped intelligence in resync:
17  *
18  *      - bitmap marked during normal i/o
19  *      - bitmap used to skip nondirty blocks during sync
20  *
21  * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22  * - persistent bitmap code
23  *
24  * This program is free software; you can redistribute it and/or modify
25  * it under the terms of the GNU General Public License as published by
26  * the Free Software Foundation; either version 2, or (at your option)
27  * any later version.
28  *
29  * You should have received a copy of the GNU General Public License
30  * (for example /usr/src/linux/COPYING); if not, write to the Free
31  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32  */
33 
34 #include <linux/slab.h>
35 #include <linux/delay.h>
36 #include <linux/blkdev.h>
37 #include <linux/module.h>
38 #include <linux/seq_file.h>
39 #include <linux/ratelimit.h>
40 #include "md.h"
41 #include "raid1.h"
42 #include "bitmap.h"
43 
44 /*
45  * Number of guaranteed r1bios in case of extreme VM load:
46  */
47 #define	NR_RAID1_BIOS 256
48 
49 /* when we get a read error on a read-only array, we redirect to another
50  * device without failing the first device, or trying to over-write to
51  * correct the read error.  To keep track of bad blocks on a per-bio
52  * level, we store IO_BLOCKED in the appropriate 'bios' pointer
53  */
54 #define IO_BLOCKED ((struct bio *)1)
55 /* When we successfully write to a known bad-block, we need to remove the
56  * bad-block marking which must be done from process context.  So we record
57  * the success by setting devs[n].bio to IO_MADE_GOOD
58  */
59 #define IO_MADE_GOOD ((struct bio *)2)
60 
61 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
62 
63 /* When there are this many requests queue to be written by
64  * the raid1 thread, we become 'congested' to provide back-pressure
65  * for writeback.
66  */
67 static int max_queued_requests = 1024;
68 
69 static void allow_barrier(struct r1conf *conf, sector_t start_next_window,
70 			  sector_t bi_sector);
71 static void lower_barrier(struct r1conf *conf);
72 
73 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
74 {
75 	struct pool_info *pi = data;
76 	int size = offsetof(struct r1bio, bios[pi->raid_disks]);
77 
78 	/* allocate a r1bio with room for raid_disks entries in the bios array */
79 	return kzalloc(size, gfp_flags);
80 }
81 
82 static void r1bio_pool_free(void *r1_bio, void *data)
83 {
84 	kfree(r1_bio);
85 }
86 
87 #define RESYNC_BLOCK_SIZE (64*1024)
88 #define RESYNC_DEPTH 32
89 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
90 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
91 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
92 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
93 #define NEXT_NORMALIO_DISTANCE (3 * RESYNC_WINDOW_SECTORS)
94 
95 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
96 {
97 	struct pool_info *pi = data;
98 	struct r1bio *r1_bio;
99 	struct bio *bio;
100 	int need_pages;
101 	int i, j;
102 
103 	r1_bio = r1bio_pool_alloc(gfp_flags, pi);
104 	if (!r1_bio)
105 		return NULL;
106 
107 	/*
108 	 * Allocate bios : 1 for reading, n-1 for writing
109 	 */
110 	for (j = pi->raid_disks ; j-- ; ) {
111 		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
112 		if (!bio)
113 			goto out_free_bio;
114 		r1_bio->bios[j] = bio;
115 	}
116 	/*
117 	 * Allocate RESYNC_PAGES data pages and attach them to
118 	 * the first bio.
119 	 * If this is a user-requested check/repair, allocate
120 	 * RESYNC_PAGES for each bio.
121 	 */
122 	if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
123 		need_pages = pi->raid_disks;
124 	else
125 		need_pages = 1;
126 	for (j = 0; j < need_pages; j++) {
127 		bio = r1_bio->bios[j];
128 		bio->bi_vcnt = RESYNC_PAGES;
129 
130 		if (bio_alloc_pages(bio, gfp_flags))
131 			goto out_free_pages;
132 	}
133 	/* If not user-requests, copy the page pointers to all bios */
134 	if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
135 		for (i=0; i<RESYNC_PAGES ; i++)
136 			for (j=1; j<pi->raid_disks; j++)
137 				r1_bio->bios[j]->bi_io_vec[i].bv_page =
138 					r1_bio->bios[0]->bi_io_vec[i].bv_page;
139 	}
140 
141 	r1_bio->master_bio = NULL;
142 
143 	return r1_bio;
144 
145 out_free_pages:
146 	while (--j >= 0) {
147 		struct bio_vec *bv;
148 
149 		bio_for_each_segment_all(bv, r1_bio->bios[j], i)
150 			__free_page(bv->bv_page);
151 	}
152 
153 out_free_bio:
154 	while (++j < pi->raid_disks)
155 		bio_put(r1_bio->bios[j]);
156 	r1bio_pool_free(r1_bio, data);
157 	return NULL;
158 }
159 
160 static void r1buf_pool_free(void *__r1_bio, void *data)
161 {
162 	struct pool_info *pi = data;
163 	int i,j;
164 	struct r1bio *r1bio = __r1_bio;
165 
166 	for (i = 0; i < RESYNC_PAGES; i++)
167 		for (j = pi->raid_disks; j-- ;) {
168 			if (j == 0 ||
169 			    r1bio->bios[j]->bi_io_vec[i].bv_page !=
170 			    r1bio->bios[0]->bi_io_vec[i].bv_page)
171 				safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
172 		}
173 	for (i=0 ; i < pi->raid_disks; i++)
174 		bio_put(r1bio->bios[i]);
175 
176 	r1bio_pool_free(r1bio, data);
177 }
178 
179 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
180 {
181 	int i;
182 
183 	for (i = 0; i < conf->raid_disks * 2; i++) {
184 		struct bio **bio = r1_bio->bios + i;
185 		if (!BIO_SPECIAL(*bio))
186 			bio_put(*bio);
187 		*bio = NULL;
188 	}
189 }
190 
191 static void free_r1bio(struct r1bio *r1_bio)
192 {
193 	struct r1conf *conf = r1_bio->mddev->private;
194 
195 	put_all_bios(conf, r1_bio);
196 	mempool_free(r1_bio, conf->r1bio_pool);
197 }
198 
199 static void put_buf(struct r1bio *r1_bio)
200 {
201 	struct r1conf *conf = r1_bio->mddev->private;
202 	int i;
203 
204 	for (i = 0; i < conf->raid_disks * 2; i++) {
205 		struct bio *bio = r1_bio->bios[i];
206 		if (bio->bi_end_io)
207 			rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
208 	}
209 
210 	mempool_free(r1_bio, conf->r1buf_pool);
211 
212 	lower_barrier(conf);
213 }
214 
215 static void reschedule_retry(struct r1bio *r1_bio)
216 {
217 	unsigned long flags;
218 	struct mddev *mddev = r1_bio->mddev;
219 	struct r1conf *conf = mddev->private;
220 
221 	spin_lock_irqsave(&conf->device_lock, flags);
222 	list_add(&r1_bio->retry_list, &conf->retry_list);
223 	conf->nr_queued ++;
224 	spin_unlock_irqrestore(&conf->device_lock, flags);
225 
226 	wake_up(&conf->wait_barrier);
227 	md_wakeup_thread(mddev->thread);
228 }
229 
230 /*
231  * raid_end_bio_io() is called when we have finished servicing a mirrored
232  * operation and are ready to return a success/failure code to the buffer
233  * cache layer.
234  */
235 static void call_bio_endio(struct r1bio *r1_bio)
236 {
237 	struct bio *bio = r1_bio->master_bio;
238 	int done;
239 	struct r1conf *conf = r1_bio->mddev->private;
240 	sector_t start_next_window = r1_bio->start_next_window;
241 	sector_t bi_sector = bio->bi_iter.bi_sector;
242 
243 	if (bio->bi_phys_segments) {
244 		unsigned long flags;
245 		spin_lock_irqsave(&conf->device_lock, flags);
246 		bio->bi_phys_segments--;
247 		done = (bio->bi_phys_segments == 0);
248 		spin_unlock_irqrestore(&conf->device_lock, flags);
249 		/*
250 		 * make_request() might be waiting for
251 		 * bi_phys_segments to decrease
252 		 */
253 		wake_up(&conf->wait_barrier);
254 	} else
255 		done = 1;
256 
257 	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
258 		clear_bit(BIO_UPTODATE, &bio->bi_flags);
259 	if (done) {
260 		bio_endio(bio, 0);
261 		/*
262 		 * Wake up any possible resync thread that waits for the device
263 		 * to go idle.
264 		 */
265 		allow_barrier(conf, start_next_window, bi_sector);
266 	}
267 }
268 
269 static void raid_end_bio_io(struct r1bio *r1_bio)
270 {
271 	struct bio *bio = r1_bio->master_bio;
272 
273 	/* if nobody has done the final endio yet, do it now */
274 	if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
275 		pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
276 			 (bio_data_dir(bio) == WRITE) ? "write" : "read",
277 			 (unsigned long long) bio->bi_iter.bi_sector,
278 			 (unsigned long long) bio_end_sector(bio) - 1);
279 
280 		call_bio_endio(r1_bio);
281 	}
282 	free_r1bio(r1_bio);
283 }
284 
285 /*
286  * Update disk head position estimator based on IRQ completion info.
287  */
288 static inline void update_head_pos(int disk, struct r1bio *r1_bio)
289 {
290 	struct r1conf *conf = r1_bio->mddev->private;
291 
292 	conf->mirrors[disk].head_position =
293 		r1_bio->sector + (r1_bio->sectors);
294 }
295 
296 /*
297  * Find the disk number which triggered given bio
298  */
299 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
300 {
301 	int mirror;
302 	struct r1conf *conf = r1_bio->mddev->private;
303 	int raid_disks = conf->raid_disks;
304 
305 	for (mirror = 0; mirror < raid_disks * 2; mirror++)
306 		if (r1_bio->bios[mirror] == bio)
307 			break;
308 
309 	BUG_ON(mirror == raid_disks * 2);
310 	update_head_pos(mirror, r1_bio);
311 
312 	return mirror;
313 }
314 
315 static void raid1_end_read_request(struct bio *bio, int error)
316 {
317 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
318 	struct r1bio *r1_bio = bio->bi_private;
319 	int mirror;
320 	struct r1conf *conf = r1_bio->mddev->private;
321 
322 	mirror = r1_bio->read_disk;
323 	/*
324 	 * this branch is our 'one mirror IO has finished' event handler:
325 	 */
326 	update_head_pos(mirror, r1_bio);
327 
328 	if (uptodate)
329 		set_bit(R1BIO_Uptodate, &r1_bio->state);
330 	else {
331 		/* If all other devices have failed, we want to return
332 		 * the error upwards rather than fail the last device.
333 		 * Here we redefine "uptodate" to mean "Don't want to retry"
334 		 */
335 		unsigned long flags;
336 		spin_lock_irqsave(&conf->device_lock, flags);
337 		if (r1_bio->mddev->degraded == conf->raid_disks ||
338 		    (r1_bio->mddev->degraded == conf->raid_disks-1 &&
339 		     !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags)))
340 			uptodate = 1;
341 		spin_unlock_irqrestore(&conf->device_lock, flags);
342 	}
343 
344 	if (uptodate) {
345 		raid_end_bio_io(r1_bio);
346 		rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
347 	} else {
348 		/*
349 		 * oops, read error:
350 		 */
351 		char b[BDEVNAME_SIZE];
352 		printk_ratelimited(
353 			KERN_ERR "md/raid1:%s: %s: "
354 			"rescheduling sector %llu\n",
355 			mdname(conf->mddev),
356 			bdevname(conf->mirrors[mirror].rdev->bdev,
357 				 b),
358 			(unsigned long long)r1_bio->sector);
359 		set_bit(R1BIO_ReadError, &r1_bio->state);
360 		reschedule_retry(r1_bio);
361 		/* don't drop the reference on read_disk yet */
362 	}
363 }
364 
365 static void close_write(struct r1bio *r1_bio)
366 {
367 	/* it really is the end of this request */
368 	if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
369 		/* free extra copy of the data pages */
370 		int i = r1_bio->behind_page_count;
371 		while (i--)
372 			safe_put_page(r1_bio->behind_bvecs[i].bv_page);
373 		kfree(r1_bio->behind_bvecs);
374 		r1_bio->behind_bvecs = NULL;
375 	}
376 	/* clear the bitmap if all writes complete successfully */
377 	bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
378 			r1_bio->sectors,
379 			!test_bit(R1BIO_Degraded, &r1_bio->state),
380 			test_bit(R1BIO_BehindIO, &r1_bio->state));
381 	md_write_end(r1_bio->mddev);
382 }
383 
384 static void r1_bio_write_done(struct r1bio *r1_bio)
385 {
386 	if (!atomic_dec_and_test(&r1_bio->remaining))
387 		return;
388 
389 	if (test_bit(R1BIO_WriteError, &r1_bio->state))
390 		reschedule_retry(r1_bio);
391 	else {
392 		close_write(r1_bio);
393 		if (test_bit(R1BIO_MadeGood, &r1_bio->state))
394 			reschedule_retry(r1_bio);
395 		else
396 			raid_end_bio_io(r1_bio);
397 	}
398 }
399 
400 static void raid1_end_write_request(struct bio *bio, int error)
401 {
402 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
403 	struct r1bio *r1_bio = bio->bi_private;
404 	int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
405 	struct r1conf *conf = r1_bio->mddev->private;
406 	struct bio *to_put = NULL;
407 
408 	mirror = find_bio_disk(r1_bio, bio);
409 
410 	/*
411 	 * 'one mirror IO has finished' event handler:
412 	 */
413 	if (!uptodate) {
414 		set_bit(WriteErrorSeen,
415 			&conf->mirrors[mirror].rdev->flags);
416 		if (!test_and_set_bit(WantReplacement,
417 				      &conf->mirrors[mirror].rdev->flags))
418 			set_bit(MD_RECOVERY_NEEDED, &
419 				conf->mddev->recovery);
420 
421 		set_bit(R1BIO_WriteError, &r1_bio->state);
422 	} else {
423 		/*
424 		 * Set R1BIO_Uptodate in our master bio, so that we
425 		 * will return a good error code for to the higher
426 		 * levels even if IO on some other mirrored buffer
427 		 * fails.
428 		 *
429 		 * The 'master' represents the composite IO operation
430 		 * to user-side. So if something waits for IO, then it
431 		 * will wait for the 'master' bio.
432 		 */
433 		sector_t first_bad;
434 		int bad_sectors;
435 
436 		r1_bio->bios[mirror] = NULL;
437 		to_put = bio;
438 		/*
439 		 * Do not set R1BIO_Uptodate if the current device is
440 		 * rebuilding or Faulty. This is because we cannot use
441 		 * such device for properly reading the data back (we could
442 		 * potentially use it, if the current write would have felt
443 		 * before rdev->recovery_offset, but for simplicity we don't
444 		 * check this here.
445 		 */
446 		if (test_bit(In_sync, &conf->mirrors[mirror].rdev->flags) &&
447 		    !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags))
448 			set_bit(R1BIO_Uptodate, &r1_bio->state);
449 
450 		/* Maybe we can clear some bad blocks. */
451 		if (is_badblock(conf->mirrors[mirror].rdev,
452 				r1_bio->sector, r1_bio->sectors,
453 				&first_bad, &bad_sectors)) {
454 			r1_bio->bios[mirror] = IO_MADE_GOOD;
455 			set_bit(R1BIO_MadeGood, &r1_bio->state);
456 		}
457 	}
458 
459 	if (behind) {
460 		if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
461 			atomic_dec(&r1_bio->behind_remaining);
462 
463 		/*
464 		 * In behind mode, we ACK the master bio once the I/O
465 		 * has safely reached all non-writemostly
466 		 * disks. Setting the Returned bit ensures that this
467 		 * gets done only once -- we don't ever want to return
468 		 * -EIO here, instead we'll wait
469 		 */
470 		if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
471 		    test_bit(R1BIO_Uptodate, &r1_bio->state)) {
472 			/* Maybe we can return now */
473 			if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
474 				struct bio *mbio = r1_bio->master_bio;
475 				pr_debug("raid1: behind end write sectors"
476 					 " %llu-%llu\n",
477 					 (unsigned long long) mbio->bi_iter.bi_sector,
478 					 (unsigned long long) bio_end_sector(mbio) - 1);
479 				call_bio_endio(r1_bio);
480 			}
481 		}
482 	}
483 	if (r1_bio->bios[mirror] == NULL)
484 		rdev_dec_pending(conf->mirrors[mirror].rdev,
485 				 conf->mddev);
486 
487 	/*
488 	 * Let's see if all mirrored write operations have finished
489 	 * already.
490 	 */
491 	r1_bio_write_done(r1_bio);
492 
493 	if (to_put)
494 		bio_put(to_put);
495 }
496 
497 /*
498  * This routine returns the disk from which the requested read should
499  * be done. There is a per-array 'next expected sequential IO' sector
500  * number - if this matches on the next IO then we use the last disk.
501  * There is also a per-disk 'last know head position' sector that is
502  * maintained from IRQ contexts, both the normal and the resync IO
503  * completion handlers update this position correctly. If there is no
504  * perfect sequential match then we pick the disk whose head is closest.
505  *
506  * If there are 2 mirrors in the same 2 devices, performance degrades
507  * because position is mirror, not device based.
508  *
509  * The rdev for the device selected will have nr_pending incremented.
510  */
511 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
512 {
513 	const sector_t this_sector = r1_bio->sector;
514 	int sectors;
515 	int best_good_sectors;
516 	int best_disk, best_dist_disk, best_pending_disk;
517 	int has_nonrot_disk;
518 	int disk;
519 	sector_t best_dist;
520 	unsigned int min_pending;
521 	struct md_rdev *rdev;
522 	int choose_first;
523 	int choose_next_idle;
524 
525 	rcu_read_lock();
526 	/*
527 	 * Check if we can balance. We can balance on the whole
528 	 * device if no resync is going on, or below the resync window.
529 	 * We take the first readable disk when above the resync window.
530 	 */
531  retry:
532 	sectors = r1_bio->sectors;
533 	best_disk = -1;
534 	best_dist_disk = -1;
535 	best_dist = MaxSector;
536 	best_pending_disk = -1;
537 	min_pending = UINT_MAX;
538 	best_good_sectors = 0;
539 	has_nonrot_disk = 0;
540 	choose_next_idle = 0;
541 
542 	choose_first = (conf->mddev->recovery_cp < this_sector + sectors);
543 
544 	for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
545 		sector_t dist;
546 		sector_t first_bad;
547 		int bad_sectors;
548 		unsigned int pending;
549 		bool nonrot;
550 
551 		rdev = rcu_dereference(conf->mirrors[disk].rdev);
552 		if (r1_bio->bios[disk] == IO_BLOCKED
553 		    || rdev == NULL
554 		    || test_bit(Unmerged, &rdev->flags)
555 		    || test_bit(Faulty, &rdev->flags))
556 			continue;
557 		if (!test_bit(In_sync, &rdev->flags) &&
558 		    rdev->recovery_offset < this_sector + sectors)
559 			continue;
560 		if (test_bit(WriteMostly, &rdev->flags)) {
561 			/* Don't balance among write-mostly, just
562 			 * use the first as a last resort */
563 			if (best_disk < 0) {
564 				if (is_badblock(rdev, this_sector, sectors,
565 						&first_bad, &bad_sectors)) {
566 					if (first_bad < this_sector)
567 						/* Cannot use this */
568 						continue;
569 					best_good_sectors = first_bad - this_sector;
570 				} else
571 					best_good_sectors = sectors;
572 				best_disk = disk;
573 			}
574 			continue;
575 		}
576 		/* This is a reasonable device to use.  It might
577 		 * even be best.
578 		 */
579 		if (is_badblock(rdev, this_sector, sectors,
580 				&first_bad, &bad_sectors)) {
581 			if (best_dist < MaxSector)
582 				/* already have a better device */
583 				continue;
584 			if (first_bad <= this_sector) {
585 				/* cannot read here. If this is the 'primary'
586 				 * device, then we must not read beyond
587 				 * bad_sectors from another device..
588 				 */
589 				bad_sectors -= (this_sector - first_bad);
590 				if (choose_first && sectors > bad_sectors)
591 					sectors = bad_sectors;
592 				if (best_good_sectors > sectors)
593 					best_good_sectors = sectors;
594 
595 			} else {
596 				sector_t good_sectors = first_bad - this_sector;
597 				if (good_sectors > best_good_sectors) {
598 					best_good_sectors = good_sectors;
599 					best_disk = disk;
600 				}
601 				if (choose_first)
602 					break;
603 			}
604 			continue;
605 		} else
606 			best_good_sectors = sectors;
607 
608 		nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
609 		has_nonrot_disk |= nonrot;
610 		pending = atomic_read(&rdev->nr_pending);
611 		dist = abs(this_sector - conf->mirrors[disk].head_position);
612 		if (choose_first) {
613 			best_disk = disk;
614 			break;
615 		}
616 		/* Don't change to another disk for sequential reads */
617 		if (conf->mirrors[disk].next_seq_sect == this_sector
618 		    || dist == 0) {
619 			int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
620 			struct raid1_info *mirror = &conf->mirrors[disk];
621 
622 			best_disk = disk;
623 			/*
624 			 * If buffered sequential IO size exceeds optimal
625 			 * iosize, check if there is idle disk. If yes, choose
626 			 * the idle disk. read_balance could already choose an
627 			 * idle disk before noticing it's a sequential IO in
628 			 * this disk. This doesn't matter because this disk
629 			 * will idle, next time it will be utilized after the
630 			 * first disk has IO size exceeds optimal iosize. In
631 			 * this way, iosize of the first disk will be optimal
632 			 * iosize at least. iosize of the second disk might be
633 			 * small, but not a big deal since when the second disk
634 			 * starts IO, the first disk is likely still busy.
635 			 */
636 			if (nonrot && opt_iosize > 0 &&
637 			    mirror->seq_start != MaxSector &&
638 			    mirror->next_seq_sect > opt_iosize &&
639 			    mirror->next_seq_sect - opt_iosize >=
640 			    mirror->seq_start) {
641 				choose_next_idle = 1;
642 				continue;
643 			}
644 			break;
645 		}
646 		/* If device is idle, use it */
647 		if (pending == 0) {
648 			best_disk = disk;
649 			break;
650 		}
651 
652 		if (choose_next_idle)
653 			continue;
654 
655 		if (min_pending > pending) {
656 			min_pending = pending;
657 			best_pending_disk = disk;
658 		}
659 
660 		if (dist < best_dist) {
661 			best_dist = dist;
662 			best_dist_disk = disk;
663 		}
664 	}
665 
666 	/*
667 	 * If all disks are rotational, choose the closest disk. If any disk is
668 	 * non-rotational, choose the disk with less pending request even the
669 	 * disk is rotational, which might/might not be optimal for raids with
670 	 * mixed ratation/non-rotational disks depending on workload.
671 	 */
672 	if (best_disk == -1) {
673 		if (has_nonrot_disk)
674 			best_disk = best_pending_disk;
675 		else
676 			best_disk = best_dist_disk;
677 	}
678 
679 	if (best_disk >= 0) {
680 		rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
681 		if (!rdev)
682 			goto retry;
683 		atomic_inc(&rdev->nr_pending);
684 		if (test_bit(Faulty, &rdev->flags)) {
685 			/* cannot risk returning a device that failed
686 			 * before we inc'ed nr_pending
687 			 */
688 			rdev_dec_pending(rdev, conf->mddev);
689 			goto retry;
690 		}
691 		sectors = best_good_sectors;
692 
693 		if (conf->mirrors[best_disk].next_seq_sect != this_sector)
694 			conf->mirrors[best_disk].seq_start = this_sector;
695 
696 		conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
697 	}
698 	rcu_read_unlock();
699 	*max_sectors = sectors;
700 
701 	return best_disk;
702 }
703 
704 static int raid1_mergeable_bvec(struct request_queue *q,
705 				struct bvec_merge_data *bvm,
706 				struct bio_vec *biovec)
707 {
708 	struct mddev *mddev = q->queuedata;
709 	struct r1conf *conf = mddev->private;
710 	sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
711 	int max = biovec->bv_len;
712 
713 	if (mddev->merge_check_needed) {
714 		int disk;
715 		rcu_read_lock();
716 		for (disk = 0; disk < conf->raid_disks * 2; disk++) {
717 			struct md_rdev *rdev = rcu_dereference(
718 				conf->mirrors[disk].rdev);
719 			if (rdev && !test_bit(Faulty, &rdev->flags)) {
720 				struct request_queue *q =
721 					bdev_get_queue(rdev->bdev);
722 				if (q->merge_bvec_fn) {
723 					bvm->bi_sector = sector +
724 						rdev->data_offset;
725 					bvm->bi_bdev = rdev->bdev;
726 					max = min(max, q->merge_bvec_fn(
727 							  q, bvm, biovec));
728 				}
729 			}
730 		}
731 		rcu_read_unlock();
732 	}
733 	return max;
734 
735 }
736 
737 static int raid1_congested(struct mddev *mddev, int bits)
738 {
739 	struct r1conf *conf = mddev->private;
740 	int i, ret = 0;
741 
742 	if ((bits & (1 << BDI_async_congested)) &&
743 	    conf->pending_count >= max_queued_requests)
744 		return 1;
745 
746 	rcu_read_lock();
747 	for (i = 0; i < conf->raid_disks * 2; i++) {
748 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
749 		if (rdev && !test_bit(Faulty, &rdev->flags)) {
750 			struct request_queue *q = bdev_get_queue(rdev->bdev);
751 
752 			BUG_ON(!q);
753 
754 			/* Note the '|| 1' - when read_balance prefers
755 			 * non-congested targets, it can be removed
756 			 */
757 			if ((bits & (1<<BDI_async_congested)) || 1)
758 				ret |= bdi_congested(&q->backing_dev_info, bits);
759 			else
760 				ret &= bdi_congested(&q->backing_dev_info, bits);
761 		}
762 	}
763 	rcu_read_unlock();
764 	return ret;
765 }
766 
767 static void flush_pending_writes(struct r1conf *conf)
768 {
769 	/* Any writes that have been queued but are awaiting
770 	 * bitmap updates get flushed here.
771 	 */
772 	spin_lock_irq(&conf->device_lock);
773 
774 	if (conf->pending_bio_list.head) {
775 		struct bio *bio;
776 		bio = bio_list_get(&conf->pending_bio_list);
777 		conf->pending_count = 0;
778 		spin_unlock_irq(&conf->device_lock);
779 		/* flush any pending bitmap writes to
780 		 * disk before proceeding w/ I/O */
781 		bitmap_unplug(conf->mddev->bitmap);
782 		wake_up(&conf->wait_barrier);
783 
784 		while (bio) { /* submit pending writes */
785 			struct bio *next = bio->bi_next;
786 			bio->bi_next = NULL;
787 			if (unlikely((bio->bi_rw & REQ_DISCARD) &&
788 			    !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
789 				/* Just ignore it */
790 				bio_endio(bio, 0);
791 			else
792 				generic_make_request(bio);
793 			bio = next;
794 		}
795 	} else
796 		spin_unlock_irq(&conf->device_lock);
797 }
798 
799 /* Barriers....
800  * Sometimes we need to suspend IO while we do something else,
801  * either some resync/recovery, or reconfigure the array.
802  * To do this we raise a 'barrier'.
803  * The 'barrier' is a counter that can be raised multiple times
804  * to count how many activities are happening which preclude
805  * normal IO.
806  * We can only raise the barrier if there is no pending IO.
807  * i.e. if nr_pending == 0.
808  * We choose only to raise the barrier if no-one is waiting for the
809  * barrier to go down.  This means that as soon as an IO request
810  * is ready, no other operations which require a barrier will start
811  * until the IO request has had a chance.
812  *
813  * So: regular IO calls 'wait_barrier'.  When that returns there
814  *    is no backgroup IO happening,  It must arrange to call
815  *    allow_barrier when it has finished its IO.
816  * backgroup IO calls must call raise_barrier.  Once that returns
817  *    there is no normal IO happeing.  It must arrange to call
818  *    lower_barrier when the particular background IO completes.
819  */
820 static void raise_barrier(struct r1conf *conf, sector_t sector_nr)
821 {
822 	spin_lock_irq(&conf->resync_lock);
823 
824 	/* Wait until no block IO is waiting */
825 	wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
826 			    conf->resync_lock);
827 
828 	/* block any new IO from starting */
829 	conf->barrier++;
830 	conf->next_resync = sector_nr;
831 
832 	/* For these conditions we must wait:
833 	 * A: while the array is in frozen state
834 	 * B: while barrier >= RESYNC_DEPTH, meaning resync reach
835 	 *    the max count which allowed.
836 	 * C: next_resync + RESYNC_SECTORS > start_next_window, meaning
837 	 *    next resync will reach to the window which normal bios are
838 	 *    handling.
839 	 * D: while there are any active requests in the current window.
840 	 */
841 	wait_event_lock_irq(conf->wait_barrier,
842 			    !conf->array_frozen &&
843 			    conf->barrier < RESYNC_DEPTH &&
844 			    conf->current_window_requests == 0 &&
845 			    (conf->start_next_window >=
846 			     conf->next_resync + RESYNC_SECTORS),
847 			    conf->resync_lock);
848 
849 	conf->nr_pending++;
850 	spin_unlock_irq(&conf->resync_lock);
851 }
852 
853 static void lower_barrier(struct r1conf *conf)
854 {
855 	unsigned long flags;
856 	BUG_ON(conf->barrier <= 0);
857 	spin_lock_irqsave(&conf->resync_lock, flags);
858 	conf->barrier--;
859 	conf->nr_pending--;
860 	spin_unlock_irqrestore(&conf->resync_lock, flags);
861 	wake_up(&conf->wait_barrier);
862 }
863 
864 static bool need_to_wait_for_sync(struct r1conf *conf, struct bio *bio)
865 {
866 	bool wait = false;
867 
868 	if (conf->array_frozen || !bio)
869 		wait = true;
870 	else if (conf->barrier && bio_data_dir(bio) == WRITE) {
871 		if ((conf->mddev->curr_resync_completed
872 		     >= bio_end_sector(bio)) ||
873 		    (conf->next_resync + NEXT_NORMALIO_DISTANCE
874 		     <= bio->bi_iter.bi_sector))
875 			wait = false;
876 		else
877 			wait = true;
878 	}
879 
880 	return wait;
881 }
882 
883 static sector_t wait_barrier(struct r1conf *conf, struct bio *bio)
884 {
885 	sector_t sector = 0;
886 
887 	spin_lock_irq(&conf->resync_lock);
888 	if (need_to_wait_for_sync(conf, bio)) {
889 		conf->nr_waiting++;
890 		/* Wait for the barrier to drop.
891 		 * However if there are already pending
892 		 * requests (preventing the barrier from
893 		 * rising completely), and the
894 		 * per-process bio queue isn't empty,
895 		 * then don't wait, as we need to empty
896 		 * that queue to allow conf->start_next_window
897 		 * to increase.
898 		 */
899 		wait_event_lock_irq(conf->wait_barrier,
900 				    !conf->array_frozen &&
901 				    (!conf->barrier ||
902 				     ((conf->start_next_window <
903 				       conf->next_resync + RESYNC_SECTORS) &&
904 				      current->bio_list &&
905 				      !bio_list_empty(current->bio_list))),
906 				    conf->resync_lock);
907 		conf->nr_waiting--;
908 	}
909 
910 	if (bio && bio_data_dir(bio) == WRITE) {
911 		if (bio->bi_iter.bi_sector >=
912 		    conf->mddev->curr_resync_completed) {
913 			if (conf->start_next_window == MaxSector)
914 				conf->start_next_window =
915 					conf->next_resync +
916 					NEXT_NORMALIO_DISTANCE;
917 
918 			if ((conf->start_next_window + NEXT_NORMALIO_DISTANCE)
919 			    <= bio->bi_iter.bi_sector)
920 				conf->next_window_requests++;
921 			else
922 				conf->current_window_requests++;
923 			sector = conf->start_next_window;
924 		}
925 	}
926 
927 	conf->nr_pending++;
928 	spin_unlock_irq(&conf->resync_lock);
929 	return sector;
930 }
931 
932 static void allow_barrier(struct r1conf *conf, sector_t start_next_window,
933 			  sector_t bi_sector)
934 {
935 	unsigned long flags;
936 
937 	spin_lock_irqsave(&conf->resync_lock, flags);
938 	conf->nr_pending--;
939 	if (start_next_window) {
940 		if (start_next_window == conf->start_next_window) {
941 			if (conf->start_next_window + NEXT_NORMALIO_DISTANCE
942 			    <= bi_sector)
943 				conf->next_window_requests--;
944 			else
945 				conf->current_window_requests--;
946 		} else
947 			conf->current_window_requests--;
948 
949 		if (!conf->current_window_requests) {
950 			if (conf->next_window_requests) {
951 				conf->current_window_requests =
952 					conf->next_window_requests;
953 				conf->next_window_requests = 0;
954 				conf->start_next_window +=
955 					NEXT_NORMALIO_DISTANCE;
956 			} else
957 				conf->start_next_window = MaxSector;
958 		}
959 	}
960 	spin_unlock_irqrestore(&conf->resync_lock, flags);
961 	wake_up(&conf->wait_barrier);
962 }
963 
964 static void freeze_array(struct r1conf *conf, int extra)
965 {
966 	/* stop syncio and normal IO and wait for everything to
967 	 * go quite.
968 	 * We wait until nr_pending match nr_queued+extra
969 	 * This is called in the context of one normal IO request
970 	 * that has failed. Thus any sync request that might be pending
971 	 * will be blocked by nr_pending, and we need to wait for
972 	 * pending IO requests to complete or be queued for re-try.
973 	 * Thus the number queued (nr_queued) plus this request (extra)
974 	 * must match the number of pending IOs (nr_pending) before
975 	 * we continue.
976 	 */
977 	spin_lock_irq(&conf->resync_lock);
978 	conf->array_frozen = 1;
979 	wait_event_lock_irq_cmd(conf->wait_barrier,
980 				conf->nr_pending == conf->nr_queued+extra,
981 				conf->resync_lock,
982 				flush_pending_writes(conf));
983 	spin_unlock_irq(&conf->resync_lock);
984 }
985 static void unfreeze_array(struct r1conf *conf)
986 {
987 	/* reverse the effect of the freeze */
988 	spin_lock_irq(&conf->resync_lock);
989 	conf->array_frozen = 0;
990 	wake_up(&conf->wait_barrier);
991 	spin_unlock_irq(&conf->resync_lock);
992 }
993 
994 /* duplicate the data pages for behind I/O
995  */
996 static void alloc_behind_pages(struct bio *bio, struct r1bio *r1_bio)
997 {
998 	int i;
999 	struct bio_vec *bvec;
1000 	struct bio_vec *bvecs = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec),
1001 					GFP_NOIO);
1002 	if (unlikely(!bvecs))
1003 		return;
1004 
1005 	bio_for_each_segment_all(bvec, bio, i) {
1006 		bvecs[i] = *bvec;
1007 		bvecs[i].bv_page = alloc_page(GFP_NOIO);
1008 		if (unlikely(!bvecs[i].bv_page))
1009 			goto do_sync_io;
1010 		memcpy(kmap(bvecs[i].bv_page) + bvec->bv_offset,
1011 		       kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
1012 		kunmap(bvecs[i].bv_page);
1013 		kunmap(bvec->bv_page);
1014 	}
1015 	r1_bio->behind_bvecs = bvecs;
1016 	r1_bio->behind_page_count = bio->bi_vcnt;
1017 	set_bit(R1BIO_BehindIO, &r1_bio->state);
1018 	return;
1019 
1020 do_sync_io:
1021 	for (i = 0; i < bio->bi_vcnt; i++)
1022 		if (bvecs[i].bv_page)
1023 			put_page(bvecs[i].bv_page);
1024 	kfree(bvecs);
1025 	pr_debug("%dB behind alloc failed, doing sync I/O\n",
1026 		 bio->bi_iter.bi_size);
1027 }
1028 
1029 struct raid1_plug_cb {
1030 	struct blk_plug_cb	cb;
1031 	struct bio_list		pending;
1032 	int			pending_cnt;
1033 };
1034 
1035 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1036 {
1037 	struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1038 						  cb);
1039 	struct mddev *mddev = plug->cb.data;
1040 	struct r1conf *conf = mddev->private;
1041 	struct bio *bio;
1042 
1043 	if (from_schedule || current->bio_list) {
1044 		spin_lock_irq(&conf->device_lock);
1045 		bio_list_merge(&conf->pending_bio_list, &plug->pending);
1046 		conf->pending_count += plug->pending_cnt;
1047 		spin_unlock_irq(&conf->device_lock);
1048 		wake_up(&conf->wait_barrier);
1049 		md_wakeup_thread(mddev->thread);
1050 		kfree(plug);
1051 		return;
1052 	}
1053 
1054 	/* we aren't scheduling, so we can do the write-out directly. */
1055 	bio = bio_list_get(&plug->pending);
1056 	bitmap_unplug(mddev->bitmap);
1057 	wake_up(&conf->wait_barrier);
1058 
1059 	while (bio) { /* submit pending writes */
1060 		struct bio *next = bio->bi_next;
1061 		bio->bi_next = NULL;
1062 		if (unlikely((bio->bi_rw & REQ_DISCARD) &&
1063 		    !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
1064 			/* Just ignore it */
1065 			bio_endio(bio, 0);
1066 		else
1067 			generic_make_request(bio);
1068 		bio = next;
1069 	}
1070 	kfree(plug);
1071 }
1072 
1073 static void make_request(struct mddev *mddev, struct bio * bio)
1074 {
1075 	struct r1conf *conf = mddev->private;
1076 	struct raid1_info *mirror;
1077 	struct r1bio *r1_bio;
1078 	struct bio *read_bio;
1079 	int i, disks;
1080 	struct bitmap *bitmap;
1081 	unsigned long flags;
1082 	const int rw = bio_data_dir(bio);
1083 	const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
1084 	const unsigned long do_flush_fua = (bio->bi_rw & (REQ_FLUSH | REQ_FUA));
1085 	const unsigned long do_discard = (bio->bi_rw
1086 					  & (REQ_DISCARD | REQ_SECURE));
1087 	const unsigned long do_same = (bio->bi_rw & REQ_WRITE_SAME);
1088 	struct md_rdev *blocked_rdev;
1089 	struct blk_plug_cb *cb;
1090 	struct raid1_plug_cb *plug = NULL;
1091 	int first_clone;
1092 	int sectors_handled;
1093 	int max_sectors;
1094 	sector_t start_next_window;
1095 
1096 	/*
1097 	 * Register the new request and wait if the reconstruction
1098 	 * thread has put up a bar for new requests.
1099 	 * Continue immediately if no resync is active currently.
1100 	 */
1101 
1102 	md_write_start(mddev, bio); /* wait on superblock update early */
1103 
1104 	if (bio_data_dir(bio) == WRITE &&
1105 	    bio_end_sector(bio) > mddev->suspend_lo &&
1106 	    bio->bi_iter.bi_sector < mddev->suspend_hi) {
1107 		/* As the suspend_* range is controlled by
1108 		 * userspace, we want an interruptible
1109 		 * wait.
1110 		 */
1111 		DEFINE_WAIT(w);
1112 		for (;;) {
1113 			flush_signals(current);
1114 			prepare_to_wait(&conf->wait_barrier,
1115 					&w, TASK_INTERRUPTIBLE);
1116 			if (bio_end_sector(bio) <= mddev->suspend_lo ||
1117 			    bio->bi_iter.bi_sector >= mddev->suspend_hi)
1118 				break;
1119 			schedule();
1120 		}
1121 		finish_wait(&conf->wait_barrier, &w);
1122 	}
1123 
1124 	start_next_window = wait_barrier(conf, bio);
1125 
1126 	bitmap = mddev->bitmap;
1127 
1128 	/*
1129 	 * make_request() can abort the operation when READA is being
1130 	 * used and no empty request is available.
1131 	 *
1132 	 */
1133 	r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1134 
1135 	r1_bio->master_bio = bio;
1136 	r1_bio->sectors = bio_sectors(bio);
1137 	r1_bio->state = 0;
1138 	r1_bio->mddev = mddev;
1139 	r1_bio->sector = bio->bi_iter.bi_sector;
1140 
1141 	/* We might need to issue multiple reads to different
1142 	 * devices if there are bad blocks around, so we keep
1143 	 * track of the number of reads in bio->bi_phys_segments.
1144 	 * If this is 0, there is only one r1_bio and no locking
1145 	 * will be needed when requests complete.  If it is
1146 	 * non-zero, then it is the number of not-completed requests.
1147 	 */
1148 	bio->bi_phys_segments = 0;
1149 	clear_bit(BIO_SEG_VALID, &bio->bi_flags);
1150 
1151 	if (rw == READ) {
1152 		/*
1153 		 * read balancing logic:
1154 		 */
1155 		int rdisk;
1156 
1157 read_again:
1158 		rdisk = read_balance(conf, r1_bio, &max_sectors);
1159 
1160 		if (rdisk < 0) {
1161 			/* couldn't find anywhere to read from */
1162 			raid_end_bio_io(r1_bio);
1163 			return;
1164 		}
1165 		mirror = conf->mirrors + rdisk;
1166 
1167 		if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1168 		    bitmap) {
1169 			/* Reading from a write-mostly device must
1170 			 * take care not to over-take any writes
1171 			 * that are 'behind'
1172 			 */
1173 			wait_event(bitmap->behind_wait,
1174 				   atomic_read(&bitmap->behind_writes) == 0);
1175 		}
1176 		r1_bio->read_disk = rdisk;
1177 		r1_bio->start_next_window = 0;
1178 
1179 		read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1180 		bio_trim(read_bio, r1_bio->sector - bio->bi_iter.bi_sector,
1181 			 max_sectors);
1182 
1183 		r1_bio->bios[rdisk] = read_bio;
1184 
1185 		read_bio->bi_iter.bi_sector = r1_bio->sector +
1186 			mirror->rdev->data_offset;
1187 		read_bio->bi_bdev = mirror->rdev->bdev;
1188 		read_bio->bi_end_io = raid1_end_read_request;
1189 		read_bio->bi_rw = READ | do_sync;
1190 		read_bio->bi_private = r1_bio;
1191 
1192 		if (max_sectors < r1_bio->sectors) {
1193 			/* could not read all from this device, so we will
1194 			 * need another r1_bio.
1195 			 */
1196 
1197 			sectors_handled = (r1_bio->sector + max_sectors
1198 					   - bio->bi_iter.bi_sector);
1199 			r1_bio->sectors = max_sectors;
1200 			spin_lock_irq(&conf->device_lock);
1201 			if (bio->bi_phys_segments == 0)
1202 				bio->bi_phys_segments = 2;
1203 			else
1204 				bio->bi_phys_segments++;
1205 			spin_unlock_irq(&conf->device_lock);
1206 			/* Cannot call generic_make_request directly
1207 			 * as that will be queued in __make_request
1208 			 * and subsequent mempool_alloc might block waiting
1209 			 * for it.  So hand bio over to raid1d.
1210 			 */
1211 			reschedule_retry(r1_bio);
1212 
1213 			r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1214 
1215 			r1_bio->master_bio = bio;
1216 			r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1217 			r1_bio->state = 0;
1218 			r1_bio->mddev = mddev;
1219 			r1_bio->sector = bio->bi_iter.bi_sector +
1220 				sectors_handled;
1221 			goto read_again;
1222 		} else
1223 			generic_make_request(read_bio);
1224 		return;
1225 	}
1226 
1227 	/*
1228 	 * WRITE:
1229 	 */
1230 	if (conf->pending_count >= max_queued_requests) {
1231 		md_wakeup_thread(mddev->thread);
1232 		wait_event(conf->wait_barrier,
1233 			   conf->pending_count < max_queued_requests);
1234 	}
1235 	/* first select target devices under rcu_lock and
1236 	 * inc refcount on their rdev.  Record them by setting
1237 	 * bios[x] to bio
1238 	 * If there are known/acknowledged bad blocks on any device on
1239 	 * which we have seen a write error, we want to avoid writing those
1240 	 * blocks.
1241 	 * This potentially requires several writes to write around
1242 	 * the bad blocks.  Each set of writes gets it's own r1bio
1243 	 * with a set of bios attached.
1244 	 */
1245 
1246 	disks = conf->raid_disks * 2;
1247  retry_write:
1248 	r1_bio->start_next_window = start_next_window;
1249 	blocked_rdev = NULL;
1250 	rcu_read_lock();
1251 	max_sectors = r1_bio->sectors;
1252 	for (i = 0;  i < disks; i++) {
1253 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1254 		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1255 			atomic_inc(&rdev->nr_pending);
1256 			blocked_rdev = rdev;
1257 			break;
1258 		}
1259 		r1_bio->bios[i] = NULL;
1260 		if (!rdev || test_bit(Faulty, &rdev->flags)
1261 		    || test_bit(Unmerged, &rdev->flags)) {
1262 			if (i < conf->raid_disks)
1263 				set_bit(R1BIO_Degraded, &r1_bio->state);
1264 			continue;
1265 		}
1266 
1267 		atomic_inc(&rdev->nr_pending);
1268 		if (test_bit(WriteErrorSeen, &rdev->flags)) {
1269 			sector_t first_bad;
1270 			int bad_sectors;
1271 			int is_bad;
1272 
1273 			is_bad = is_badblock(rdev, r1_bio->sector,
1274 					     max_sectors,
1275 					     &first_bad, &bad_sectors);
1276 			if (is_bad < 0) {
1277 				/* mustn't write here until the bad block is
1278 				 * acknowledged*/
1279 				set_bit(BlockedBadBlocks, &rdev->flags);
1280 				blocked_rdev = rdev;
1281 				break;
1282 			}
1283 			if (is_bad && first_bad <= r1_bio->sector) {
1284 				/* Cannot write here at all */
1285 				bad_sectors -= (r1_bio->sector - first_bad);
1286 				if (bad_sectors < max_sectors)
1287 					/* mustn't write more than bad_sectors
1288 					 * to other devices yet
1289 					 */
1290 					max_sectors = bad_sectors;
1291 				rdev_dec_pending(rdev, mddev);
1292 				/* We don't set R1BIO_Degraded as that
1293 				 * only applies if the disk is
1294 				 * missing, so it might be re-added,
1295 				 * and we want to know to recover this
1296 				 * chunk.
1297 				 * In this case the device is here,
1298 				 * and the fact that this chunk is not
1299 				 * in-sync is recorded in the bad
1300 				 * block log
1301 				 */
1302 				continue;
1303 			}
1304 			if (is_bad) {
1305 				int good_sectors = first_bad - r1_bio->sector;
1306 				if (good_sectors < max_sectors)
1307 					max_sectors = good_sectors;
1308 			}
1309 		}
1310 		r1_bio->bios[i] = bio;
1311 	}
1312 	rcu_read_unlock();
1313 
1314 	if (unlikely(blocked_rdev)) {
1315 		/* Wait for this device to become unblocked */
1316 		int j;
1317 		sector_t old = start_next_window;
1318 
1319 		for (j = 0; j < i; j++)
1320 			if (r1_bio->bios[j])
1321 				rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1322 		r1_bio->state = 0;
1323 		allow_barrier(conf, start_next_window, bio->bi_iter.bi_sector);
1324 		md_wait_for_blocked_rdev(blocked_rdev, mddev);
1325 		start_next_window = wait_barrier(conf, bio);
1326 		/*
1327 		 * We must make sure the multi r1bios of bio have
1328 		 * the same value of bi_phys_segments
1329 		 */
1330 		if (bio->bi_phys_segments && old &&
1331 		    old != start_next_window)
1332 			/* Wait for the former r1bio(s) to complete */
1333 			wait_event(conf->wait_barrier,
1334 				   bio->bi_phys_segments == 1);
1335 		goto retry_write;
1336 	}
1337 
1338 	if (max_sectors < r1_bio->sectors) {
1339 		/* We are splitting this write into multiple parts, so
1340 		 * we need to prepare for allocating another r1_bio.
1341 		 */
1342 		r1_bio->sectors = max_sectors;
1343 		spin_lock_irq(&conf->device_lock);
1344 		if (bio->bi_phys_segments == 0)
1345 			bio->bi_phys_segments = 2;
1346 		else
1347 			bio->bi_phys_segments++;
1348 		spin_unlock_irq(&conf->device_lock);
1349 	}
1350 	sectors_handled = r1_bio->sector + max_sectors - bio->bi_iter.bi_sector;
1351 
1352 	atomic_set(&r1_bio->remaining, 1);
1353 	atomic_set(&r1_bio->behind_remaining, 0);
1354 
1355 	first_clone = 1;
1356 	for (i = 0; i < disks; i++) {
1357 		struct bio *mbio;
1358 		if (!r1_bio->bios[i])
1359 			continue;
1360 
1361 		mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1362 		bio_trim(mbio, r1_bio->sector - bio->bi_iter.bi_sector, max_sectors);
1363 
1364 		if (first_clone) {
1365 			/* do behind I/O ?
1366 			 * Not if there are too many, or cannot
1367 			 * allocate memory, or a reader on WriteMostly
1368 			 * is waiting for behind writes to flush */
1369 			if (bitmap &&
1370 			    (atomic_read(&bitmap->behind_writes)
1371 			     < mddev->bitmap_info.max_write_behind) &&
1372 			    !waitqueue_active(&bitmap->behind_wait))
1373 				alloc_behind_pages(mbio, r1_bio);
1374 
1375 			bitmap_startwrite(bitmap, r1_bio->sector,
1376 					  r1_bio->sectors,
1377 					  test_bit(R1BIO_BehindIO,
1378 						   &r1_bio->state));
1379 			first_clone = 0;
1380 		}
1381 		if (r1_bio->behind_bvecs) {
1382 			struct bio_vec *bvec;
1383 			int j;
1384 
1385 			/*
1386 			 * We trimmed the bio, so _all is legit
1387 			 */
1388 			bio_for_each_segment_all(bvec, mbio, j)
1389 				bvec->bv_page = r1_bio->behind_bvecs[j].bv_page;
1390 			if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1391 				atomic_inc(&r1_bio->behind_remaining);
1392 		}
1393 
1394 		r1_bio->bios[i] = mbio;
1395 
1396 		mbio->bi_iter.bi_sector	= (r1_bio->sector +
1397 				   conf->mirrors[i].rdev->data_offset);
1398 		mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1399 		mbio->bi_end_io	= raid1_end_write_request;
1400 		mbio->bi_rw =
1401 			WRITE | do_flush_fua | do_sync | do_discard | do_same;
1402 		mbio->bi_private = r1_bio;
1403 
1404 		atomic_inc(&r1_bio->remaining);
1405 
1406 		cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1407 		if (cb)
1408 			plug = container_of(cb, struct raid1_plug_cb, cb);
1409 		else
1410 			plug = NULL;
1411 		spin_lock_irqsave(&conf->device_lock, flags);
1412 		if (plug) {
1413 			bio_list_add(&plug->pending, mbio);
1414 			plug->pending_cnt++;
1415 		} else {
1416 			bio_list_add(&conf->pending_bio_list, mbio);
1417 			conf->pending_count++;
1418 		}
1419 		spin_unlock_irqrestore(&conf->device_lock, flags);
1420 		if (!plug)
1421 			md_wakeup_thread(mddev->thread);
1422 	}
1423 	/* Mustn't call r1_bio_write_done before this next test,
1424 	 * as it could result in the bio being freed.
1425 	 */
1426 	if (sectors_handled < bio_sectors(bio)) {
1427 		r1_bio_write_done(r1_bio);
1428 		/* We need another r1_bio.  It has already been counted
1429 		 * in bio->bi_phys_segments
1430 		 */
1431 		r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1432 		r1_bio->master_bio = bio;
1433 		r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1434 		r1_bio->state = 0;
1435 		r1_bio->mddev = mddev;
1436 		r1_bio->sector = bio->bi_iter.bi_sector + sectors_handled;
1437 		goto retry_write;
1438 	}
1439 
1440 	r1_bio_write_done(r1_bio);
1441 
1442 	/* In case raid1d snuck in to freeze_array */
1443 	wake_up(&conf->wait_barrier);
1444 }
1445 
1446 static void status(struct seq_file *seq, struct mddev *mddev)
1447 {
1448 	struct r1conf *conf = mddev->private;
1449 	int i;
1450 
1451 	seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1452 		   conf->raid_disks - mddev->degraded);
1453 	rcu_read_lock();
1454 	for (i = 0; i < conf->raid_disks; i++) {
1455 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1456 		seq_printf(seq, "%s",
1457 			   rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1458 	}
1459 	rcu_read_unlock();
1460 	seq_printf(seq, "]");
1461 }
1462 
1463 static void error(struct mddev *mddev, struct md_rdev *rdev)
1464 {
1465 	char b[BDEVNAME_SIZE];
1466 	struct r1conf *conf = mddev->private;
1467 
1468 	/*
1469 	 * If it is not operational, then we have already marked it as dead
1470 	 * else if it is the last working disks, ignore the error, let the
1471 	 * next level up know.
1472 	 * else mark the drive as failed
1473 	 */
1474 	if (test_bit(In_sync, &rdev->flags)
1475 	    && (conf->raid_disks - mddev->degraded) == 1) {
1476 		/*
1477 		 * Don't fail the drive, act as though we were just a
1478 		 * normal single drive.
1479 		 * However don't try a recovery from this drive as
1480 		 * it is very likely to fail.
1481 		 */
1482 		conf->recovery_disabled = mddev->recovery_disabled;
1483 		return;
1484 	}
1485 	set_bit(Blocked, &rdev->flags);
1486 	if (test_and_clear_bit(In_sync, &rdev->flags)) {
1487 		unsigned long flags;
1488 		spin_lock_irqsave(&conf->device_lock, flags);
1489 		mddev->degraded++;
1490 		set_bit(Faulty, &rdev->flags);
1491 		spin_unlock_irqrestore(&conf->device_lock, flags);
1492 	} else
1493 		set_bit(Faulty, &rdev->flags);
1494 	/*
1495 	 * if recovery is running, make sure it aborts.
1496 	 */
1497 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1498 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
1499 	printk(KERN_ALERT
1500 	       "md/raid1:%s: Disk failure on %s, disabling device.\n"
1501 	       "md/raid1:%s: Operation continuing on %d devices.\n",
1502 	       mdname(mddev), bdevname(rdev->bdev, b),
1503 	       mdname(mddev), conf->raid_disks - mddev->degraded);
1504 }
1505 
1506 static void print_conf(struct r1conf *conf)
1507 {
1508 	int i;
1509 
1510 	printk(KERN_DEBUG "RAID1 conf printout:\n");
1511 	if (!conf) {
1512 		printk(KERN_DEBUG "(!conf)\n");
1513 		return;
1514 	}
1515 	printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1516 		conf->raid_disks);
1517 
1518 	rcu_read_lock();
1519 	for (i = 0; i < conf->raid_disks; i++) {
1520 		char b[BDEVNAME_SIZE];
1521 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1522 		if (rdev)
1523 			printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1524 			       i, !test_bit(In_sync, &rdev->flags),
1525 			       !test_bit(Faulty, &rdev->flags),
1526 			       bdevname(rdev->bdev,b));
1527 	}
1528 	rcu_read_unlock();
1529 }
1530 
1531 static void close_sync(struct r1conf *conf)
1532 {
1533 	wait_barrier(conf, NULL);
1534 	allow_barrier(conf, 0, 0);
1535 
1536 	mempool_destroy(conf->r1buf_pool);
1537 	conf->r1buf_pool = NULL;
1538 
1539 	spin_lock_irq(&conf->resync_lock);
1540 	conf->next_resync = 0;
1541 	conf->start_next_window = MaxSector;
1542 	conf->current_window_requests +=
1543 		conf->next_window_requests;
1544 	conf->next_window_requests = 0;
1545 	spin_unlock_irq(&conf->resync_lock);
1546 }
1547 
1548 static int raid1_spare_active(struct mddev *mddev)
1549 {
1550 	int i;
1551 	struct r1conf *conf = mddev->private;
1552 	int count = 0;
1553 	unsigned long flags;
1554 
1555 	/*
1556 	 * Find all failed disks within the RAID1 configuration
1557 	 * and mark them readable.
1558 	 * Called under mddev lock, so rcu protection not needed.
1559 	 */
1560 	for (i = 0; i < conf->raid_disks; i++) {
1561 		struct md_rdev *rdev = conf->mirrors[i].rdev;
1562 		struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1563 		if (repl
1564 		    && repl->recovery_offset == MaxSector
1565 		    && !test_bit(Faulty, &repl->flags)
1566 		    && !test_and_set_bit(In_sync, &repl->flags)) {
1567 			/* replacement has just become active */
1568 			if (!rdev ||
1569 			    !test_and_clear_bit(In_sync, &rdev->flags))
1570 				count++;
1571 			if (rdev) {
1572 				/* Replaced device not technically
1573 				 * faulty, but we need to be sure
1574 				 * it gets removed and never re-added
1575 				 */
1576 				set_bit(Faulty, &rdev->flags);
1577 				sysfs_notify_dirent_safe(
1578 					rdev->sysfs_state);
1579 			}
1580 		}
1581 		if (rdev
1582 		    && rdev->recovery_offset == MaxSector
1583 		    && !test_bit(Faulty, &rdev->flags)
1584 		    && !test_and_set_bit(In_sync, &rdev->flags)) {
1585 			count++;
1586 			sysfs_notify_dirent_safe(rdev->sysfs_state);
1587 		}
1588 	}
1589 	spin_lock_irqsave(&conf->device_lock, flags);
1590 	mddev->degraded -= count;
1591 	spin_unlock_irqrestore(&conf->device_lock, flags);
1592 
1593 	print_conf(conf);
1594 	return count;
1595 }
1596 
1597 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1598 {
1599 	struct r1conf *conf = mddev->private;
1600 	int err = -EEXIST;
1601 	int mirror = 0;
1602 	struct raid1_info *p;
1603 	int first = 0;
1604 	int last = conf->raid_disks - 1;
1605 	struct request_queue *q = bdev_get_queue(rdev->bdev);
1606 
1607 	if (mddev->recovery_disabled == conf->recovery_disabled)
1608 		return -EBUSY;
1609 
1610 	if (rdev->raid_disk >= 0)
1611 		first = last = rdev->raid_disk;
1612 
1613 	if (q->merge_bvec_fn) {
1614 		set_bit(Unmerged, &rdev->flags);
1615 		mddev->merge_check_needed = 1;
1616 	}
1617 
1618 	for (mirror = first; mirror <= last; mirror++) {
1619 		p = conf->mirrors+mirror;
1620 		if (!p->rdev) {
1621 
1622 			if (mddev->gendisk)
1623 				disk_stack_limits(mddev->gendisk, rdev->bdev,
1624 						  rdev->data_offset << 9);
1625 
1626 			p->head_position = 0;
1627 			rdev->raid_disk = mirror;
1628 			err = 0;
1629 			/* As all devices are equivalent, we don't need a full recovery
1630 			 * if this was recently any drive of the array
1631 			 */
1632 			if (rdev->saved_raid_disk < 0)
1633 				conf->fullsync = 1;
1634 			rcu_assign_pointer(p->rdev, rdev);
1635 			break;
1636 		}
1637 		if (test_bit(WantReplacement, &p->rdev->flags) &&
1638 		    p[conf->raid_disks].rdev == NULL) {
1639 			/* Add this device as a replacement */
1640 			clear_bit(In_sync, &rdev->flags);
1641 			set_bit(Replacement, &rdev->flags);
1642 			rdev->raid_disk = mirror;
1643 			err = 0;
1644 			conf->fullsync = 1;
1645 			rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1646 			break;
1647 		}
1648 	}
1649 	if (err == 0 && test_bit(Unmerged, &rdev->flags)) {
1650 		/* Some requests might not have seen this new
1651 		 * merge_bvec_fn.  We must wait for them to complete
1652 		 * before merging the device fully.
1653 		 * First we make sure any code which has tested
1654 		 * our function has submitted the request, then
1655 		 * we wait for all outstanding requests to complete.
1656 		 */
1657 		synchronize_sched();
1658 		freeze_array(conf, 0);
1659 		unfreeze_array(conf);
1660 		clear_bit(Unmerged, &rdev->flags);
1661 	}
1662 	md_integrity_add_rdev(rdev, mddev);
1663 	if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1664 		queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1665 	print_conf(conf);
1666 	return err;
1667 }
1668 
1669 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1670 {
1671 	struct r1conf *conf = mddev->private;
1672 	int err = 0;
1673 	int number = rdev->raid_disk;
1674 	struct raid1_info *p = conf->mirrors + number;
1675 
1676 	if (rdev != p->rdev)
1677 		p = conf->mirrors + conf->raid_disks + number;
1678 
1679 	print_conf(conf);
1680 	if (rdev == p->rdev) {
1681 		if (test_bit(In_sync, &rdev->flags) ||
1682 		    atomic_read(&rdev->nr_pending)) {
1683 			err = -EBUSY;
1684 			goto abort;
1685 		}
1686 		/* Only remove non-faulty devices if recovery
1687 		 * is not possible.
1688 		 */
1689 		if (!test_bit(Faulty, &rdev->flags) &&
1690 		    mddev->recovery_disabled != conf->recovery_disabled &&
1691 		    mddev->degraded < conf->raid_disks) {
1692 			err = -EBUSY;
1693 			goto abort;
1694 		}
1695 		p->rdev = NULL;
1696 		synchronize_rcu();
1697 		if (atomic_read(&rdev->nr_pending)) {
1698 			/* lost the race, try later */
1699 			err = -EBUSY;
1700 			p->rdev = rdev;
1701 			goto abort;
1702 		} else if (conf->mirrors[conf->raid_disks + number].rdev) {
1703 			/* We just removed a device that is being replaced.
1704 			 * Move down the replacement.  We drain all IO before
1705 			 * doing this to avoid confusion.
1706 			 */
1707 			struct md_rdev *repl =
1708 				conf->mirrors[conf->raid_disks + number].rdev;
1709 			freeze_array(conf, 0);
1710 			clear_bit(Replacement, &repl->flags);
1711 			p->rdev = repl;
1712 			conf->mirrors[conf->raid_disks + number].rdev = NULL;
1713 			unfreeze_array(conf);
1714 			clear_bit(WantReplacement, &rdev->flags);
1715 		} else
1716 			clear_bit(WantReplacement, &rdev->flags);
1717 		err = md_integrity_register(mddev);
1718 	}
1719 abort:
1720 
1721 	print_conf(conf);
1722 	return err;
1723 }
1724 
1725 static void end_sync_read(struct bio *bio, int error)
1726 {
1727 	struct r1bio *r1_bio = bio->bi_private;
1728 
1729 	update_head_pos(r1_bio->read_disk, r1_bio);
1730 
1731 	/*
1732 	 * we have read a block, now it needs to be re-written,
1733 	 * or re-read if the read failed.
1734 	 * We don't do much here, just schedule handling by raid1d
1735 	 */
1736 	if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1737 		set_bit(R1BIO_Uptodate, &r1_bio->state);
1738 
1739 	if (atomic_dec_and_test(&r1_bio->remaining))
1740 		reschedule_retry(r1_bio);
1741 }
1742 
1743 static void end_sync_write(struct bio *bio, int error)
1744 {
1745 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1746 	struct r1bio *r1_bio = bio->bi_private;
1747 	struct mddev *mddev = r1_bio->mddev;
1748 	struct r1conf *conf = mddev->private;
1749 	int mirror=0;
1750 	sector_t first_bad;
1751 	int bad_sectors;
1752 
1753 	mirror = find_bio_disk(r1_bio, bio);
1754 
1755 	if (!uptodate) {
1756 		sector_t sync_blocks = 0;
1757 		sector_t s = r1_bio->sector;
1758 		long sectors_to_go = r1_bio->sectors;
1759 		/* make sure these bits doesn't get cleared. */
1760 		do {
1761 			bitmap_end_sync(mddev->bitmap, s,
1762 					&sync_blocks, 1);
1763 			s += sync_blocks;
1764 			sectors_to_go -= sync_blocks;
1765 		} while (sectors_to_go > 0);
1766 		set_bit(WriteErrorSeen,
1767 			&conf->mirrors[mirror].rdev->flags);
1768 		if (!test_and_set_bit(WantReplacement,
1769 				      &conf->mirrors[mirror].rdev->flags))
1770 			set_bit(MD_RECOVERY_NEEDED, &
1771 				mddev->recovery);
1772 		set_bit(R1BIO_WriteError, &r1_bio->state);
1773 	} else if (is_badblock(conf->mirrors[mirror].rdev,
1774 			       r1_bio->sector,
1775 			       r1_bio->sectors,
1776 			       &first_bad, &bad_sectors) &&
1777 		   !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1778 				r1_bio->sector,
1779 				r1_bio->sectors,
1780 				&first_bad, &bad_sectors)
1781 		)
1782 		set_bit(R1BIO_MadeGood, &r1_bio->state);
1783 
1784 	if (atomic_dec_and_test(&r1_bio->remaining)) {
1785 		int s = r1_bio->sectors;
1786 		if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1787 		    test_bit(R1BIO_WriteError, &r1_bio->state))
1788 			reschedule_retry(r1_bio);
1789 		else {
1790 			put_buf(r1_bio);
1791 			md_done_sync(mddev, s, uptodate);
1792 		}
1793 	}
1794 }
1795 
1796 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1797 			    int sectors, struct page *page, int rw)
1798 {
1799 	if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
1800 		/* success */
1801 		return 1;
1802 	if (rw == WRITE) {
1803 		set_bit(WriteErrorSeen, &rdev->flags);
1804 		if (!test_and_set_bit(WantReplacement,
1805 				      &rdev->flags))
1806 			set_bit(MD_RECOVERY_NEEDED, &
1807 				rdev->mddev->recovery);
1808 	}
1809 	/* need to record an error - either for the block or the device */
1810 	if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1811 		md_error(rdev->mddev, rdev);
1812 	return 0;
1813 }
1814 
1815 static int fix_sync_read_error(struct r1bio *r1_bio)
1816 {
1817 	/* Try some synchronous reads of other devices to get
1818 	 * good data, much like with normal read errors.  Only
1819 	 * read into the pages we already have so we don't
1820 	 * need to re-issue the read request.
1821 	 * We don't need to freeze the array, because being in an
1822 	 * active sync request, there is no normal IO, and
1823 	 * no overlapping syncs.
1824 	 * We don't need to check is_badblock() again as we
1825 	 * made sure that anything with a bad block in range
1826 	 * will have bi_end_io clear.
1827 	 */
1828 	struct mddev *mddev = r1_bio->mddev;
1829 	struct r1conf *conf = mddev->private;
1830 	struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1831 	sector_t sect = r1_bio->sector;
1832 	int sectors = r1_bio->sectors;
1833 	int idx = 0;
1834 
1835 	while(sectors) {
1836 		int s = sectors;
1837 		int d = r1_bio->read_disk;
1838 		int success = 0;
1839 		struct md_rdev *rdev;
1840 		int start;
1841 
1842 		if (s > (PAGE_SIZE>>9))
1843 			s = PAGE_SIZE >> 9;
1844 		do {
1845 			if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1846 				/* No rcu protection needed here devices
1847 				 * can only be removed when no resync is
1848 				 * active, and resync is currently active
1849 				 */
1850 				rdev = conf->mirrors[d].rdev;
1851 				if (sync_page_io(rdev, sect, s<<9,
1852 						 bio->bi_io_vec[idx].bv_page,
1853 						 READ, false)) {
1854 					success = 1;
1855 					break;
1856 				}
1857 			}
1858 			d++;
1859 			if (d == conf->raid_disks * 2)
1860 				d = 0;
1861 		} while (!success && d != r1_bio->read_disk);
1862 
1863 		if (!success) {
1864 			char b[BDEVNAME_SIZE];
1865 			int abort = 0;
1866 			/* Cannot read from anywhere, this block is lost.
1867 			 * Record a bad block on each device.  If that doesn't
1868 			 * work just disable and interrupt the recovery.
1869 			 * Don't fail devices as that won't really help.
1870 			 */
1871 			printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error"
1872 			       " for block %llu\n",
1873 			       mdname(mddev),
1874 			       bdevname(bio->bi_bdev, b),
1875 			       (unsigned long long)r1_bio->sector);
1876 			for (d = 0; d < conf->raid_disks * 2; d++) {
1877 				rdev = conf->mirrors[d].rdev;
1878 				if (!rdev || test_bit(Faulty, &rdev->flags))
1879 					continue;
1880 				if (!rdev_set_badblocks(rdev, sect, s, 0))
1881 					abort = 1;
1882 			}
1883 			if (abort) {
1884 				conf->recovery_disabled =
1885 					mddev->recovery_disabled;
1886 				set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1887 				md_done_sync(mddev, r1_bio->sectors, 0);
1888 				put_buf(r1_bio);
1889 				return 0;
1890 			}
1891 			/* Try next page */
1892 			sectors -= s;
1893 			sect += s;
1894 			idx++;
1895 			continue;
1896 		}
1897 
1898 		start = d;
1899 		/* write it back and re-read */
1900 		while (d != r1_bio->read_disk) {
1901 			if (d == 0)
1902 				d = conf->raid_disks * 2;
1903 			d--;
1904 			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1905 				continue;
1906 			rdev = conf->mirrors[d].rdev;
1907 			if (r1_sync_page_io(rdev, sect, s,
1908 					    bio->bi_io_vec[idx].bv_page,
1909 					    WRITE) == 0) {
1910 				r1_bio->bios[d]->bi_end_io = NULL;
1911 				rdev_dec_pending(rdev, mddev);
1912 			}
1913 		}
1914 		d = start;
1915 		while (d != r1_bio->read_disk) {
1916 			if (d == 0)
1917 				d = conf->raid_disks * 2;
1918 			d--;
1919 			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1920 				continue;
1921 			rdev = conf->mirrors[d].rdev;
1922 			if (r1_sync_page_io(rdev, sect, s,
1923 					    bio->bi_io_vec[idx].bv_page,
1924 					    READ) != 0)
1925 				atomic_add(s, &rdev->corrected_errors);
1926 		}
1927 		sectors -= s;
1928 		sect += s;
1929 		idx ++;
1930 	}
1931 	set_bit(R1BIO_Uptodate, &r1_bio->state);
1932 	set_bit(BIO_UPTODATE, &bio->bi_flags);
1933 	return 1;
1934 }
1935 
1936 static void process_checks(struct r1bio *r1_bio)
1937 {
1938 	/* We have read all readable devices.  If we haven't
1939 	 * got the block, then there is no hope left.
1940 	 * If we have, then we want to do a comparison
1941 	 * and skip the write if everything is the same.
1942 	 * If any blocks failed to read, then we need to
1943 	 * attempt an over-write
1944 	 */
1945 	struct mddev *mddev = r1_bio->mddev;
1946 	struct r1conf *conf = mddev->private;
1947 	int primary;
1948 	int i;
1949 	int vcnt;
1950 
1951 	/* Fix variable parts of all bios */
1952 	vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
1953 	for (i = 0; i < conf->raid_disks * 2; i++) {
1954 		int j;
1955 		int size;
1956 		int uptodate;
1957 		struct bio *b = r1_bio->bios[i];
1958 		if (b->bi_end_io != end_sync_read)
1959 			continue;
1960 		/* fixup the bio for reuse, but preserve BIO_UPTODATE */
1961 		uptodate = test_bit(BIO_UPTODATE, &b->bi_flags);
1962 		bio_reset(b);
1963 		if (!uptodate)
1964 			clear_bit(BIO_UPTODATE, &b->bi_flags);
1965 		b->bi_vcnt = vcnt;
1966 		b->bi_iter.bi_size = r1_bio->sectors << 9;
1967 		b->bi_iter.bi_sector = r1_bio->sector +
1968 			conf->mirrors[i].rdev->data_offset;
1969 		b->bi_bdev = conf->mirrors[i].rdev->bdev;
1970 		b->bi_end_io = end_sync_read;
1971 		b->bi_private = r1_bio;
1972 
1973 		size = b->bi_iter.bi_size;
1974 		for (j = 0; j < vcnt ; j++) {
1975 			struct bio_vec *bi;
1976 			bi = &b->bi_io_vec[j];
1977 			bi->bv_offset = 0;
1978 			if (size > PAGE_SIZE)
1979 				bi->bv_len = PAGE_SIZE;
1980 			else
1981 				bi->bv_len = size;
1982 			size -= PAGE_SIZE;
1983 		}
1984 	}
1985 	for (primary = 0; primary < conf->raid_disks * 2; primary++)
1986 		if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
1987 		    test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) {
1988 			r1_bio->bios[primary]->bi_end_io = NULL;
1989 			rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
1990 			break;
1991 		}
1992 	r1_bio->read_disk = primary;
1993 	for (i = 0; i < conf->raid_disks * 2; i++) {
1994 		int j;
1995 		struct bio *pbio = r1_bio->bios[primary];
1996 		struct bio *sbio = r1_bio->bios[i];
1997 		int uptodate = test_bit(BIO_UPTODATE, &sbio->bi_flags);
1998 
1999 		if (sbio->bi_end_io != end_sync_read)
2000 			continue;
2001 		/* Now we can 'fixup' the BIO_UPTODATE flag */
2002 		set_bit(BIO_UPTODATE, &sbio->bi_flags);
2003 
2004 		if (uptodate) {
2005 			for (j = vcnt; j-- ; ) {
2006 				struct page *p, *s;
2007 				p = pbio->bi_io_vec[j].bv_page;
2008 				s = sbio->bi_io_vec[j].bv_page;
2009 				if (memcmp(page_address(p),
2010 					   page_address(s),
2011 					   sbio->bi_io_vec[j].bv_len))
2012 					break;
2013 			}
2014 		} else
2015 			j = 0;
2016 		if (j >= 0)
2017 			atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
2018 		if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
2019 			      && uptodate)) {
2020 			/* No need to write to this device. */
2021 			sbio->bi_end_io = NULL;
2022 			rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2023 			continue;
2024 		}
2025 
2026 		bio_copy_data(sbio, pbio);
2027 	}
2028 }
2029 
2030 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
2031 {
2032 	struct r1conf *conf = mddev->private;
2033 	int i;
2034 	int disks = conf->raid_disks * 2;
2035 	struct bio *bio, *wbio;
2036 
2037 	bio = r1_bio->bios[r1_bio->read_disk];
2038 
2039 	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2040 		/* ouch - failed to read all of that. */
2041 		if (!fix_sync_read_error(r1_bio))
2042 			return;
2043 
2044 	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2045 		process_checks(r1_bio);
2046 
2047 	/*
2048 	 * schedule writes
2049 	 */
2050 	atomic_set(&r1_bio->remaining, 1);
2051 	for (i = 0; i < disks ; i++) {
2052 		wbio = r1_bio->bios[i];
2053 		if (wbio->bi_end_io == NULL ||
2054 		    (wbio->bi_end_io == end_sync_read &&
2055 		     (i == r1_bio->read_disk ||
2056 		      !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2057 			continue;
2058 
2059 		wbio->bi_rw = WRITE;
2060 		wbio->bi_end_io = end_sync_write;
2061 		atomic_inc(&r1_bio->remaining);
2062 		md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
2063 
2064 		generic_make_request(wbio);
2065 	}
2066 
2067 	if (atomic_dec_and_test(&r1_bio->remaining)) {
2068 		/* if we're here, all write(s) have completed, so clean up */
2069 		int s = r1_bio->sectors;
2070 		if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2071 		    test_bit(R1BIO_WriteError, &r1_bio->state))
2072 			reschedule_retry(r1_bio);
2073 		else {
2074 			put_buf(r1_bio);
2075 			md_done_sync(mddev, s, 1);
2076 		}
2077 	}
2078 }
2079 
2080 /*
2081  * This is a kernel thread which:
2082  *
2083  *	1.	Retries failed read operations on working mirrors.
2084  *	2.	Updates the raid superblock when problems encounter.
2085  *	3.	Performs writes following reads for array synchronising.
2086  */
2087 
2088 static void fix_read_error(struct r1conf *conf, int read_disk,
2089 			   sector_t sect, int sectors)
2090 {
2091 	struct mddev *mddev = conf->mddev;
2092 	while(sectors) {
2093 		int s = sectors;
2094 		int d = read_disk;
2095 		int success = 0;
2096 		int start;
2097 		struct md_rdev *rdev;
2098 
2099 		if (s > (PAGE_SIZE>>9))
2100 			s = PAGE_SIZE >> 9;
2101 
2102 		do {
2103 			/* Note: no rcu protection needed here
2104 			 * as this is synchronous in the raid1d thread
2105 			 * which is the thread that might remove
2106 			 * a device.  If raid1d ever becomes multi-threaded....
2107 			 */
2108 			sector_t first_bad;
2109 			int bad_sectors;
2110 
2111 			rdev = conf->mirrors[d].rdev;
2112 			if (rdev &&
2113 			    (test_bit(In_sync, &rdev->flags) ||
2114 			     (!test_bit(Faulty, &rdev->flags) &&
2115 			      rdev->recovery_offset >= sect + s)) &&
2116 			    is_badblock(rdev, sect, s,
2117 					&first_bad, &bad_sectors) == 0 &&
2118 			    sync_page_io(rdev, sect, s<<9,
2119 					 conf->tmppage, READ, false))
2120 				success = 1;
2121 			else {
2122 				d++;
2123 				if (d == conf->raid_disks * 2)
2124 					d = 0;
2125 			}
2126 		} while (!success && d != read_disk);
2127 
2128 		if (!success) {
2129 			/* Cannot read from anywhere - mark it bad */
2130 			struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2131 			if (!rdev_set_badblocks(rdev, sect, s, 0))
2132 				md_error(mddev, rdev);
2133 			break;
2134 		}
2135 		/* write it back and re-read */
2136 		start = d;
2137 		while (d != read_disk) {
2138 			if (d==0)
2139 				d = conf->raid_disks * 2;
2140 			d--;
2141 			rdev = conf->mirrors[d].rdev;
2142 			if (rdev &&
2143 			    !test_bit(Faulty, &rdev->flags))
2144 				r1_sync_page_io(rdev, sect, s,
2145 						conf->tmppage, WRITE);
2146 		}
2147 		d = start;
2148 		while (d != read_disk) {
2149 			char b[BDEVNAME_SIZE];
2150 			if (d==0)
2151 				d = conf->raid_disks * 2;
2152 			d--;
2153 			rdev = conf->mirrors[d].rdev;
2154 			if (rdev &&
2155 			    !test_bit(Faulty, &rdev->flags)) {
2156 				if (r1_sync_page_io(rdev, sect, s,
2157 						    conf->tmppage, READ)) {
2158 					atomic_add(s, &rdev->corrected_errors);
2159 					printk(KERN_INFO
2160 					       "md/raid1:%s: read error corrected "
2161 					       "(%d sectors at %llu on %s)\n",
2162 					       mdname(mddev), s,
2163 					       (unsigned long long)(sect +
2164 					           rdev->data_offset),
2165 					       bdevname(rdev->bdev, b));
2166 				}
2167 			}
2168 		}
2169 		sectors -= s;
2170 		sect += s;
2171 	}
2172 }
2173 
2174 static int narrow_write_error(struct r1bio *r1_bio, int i)
2175 {
2176 	struct mddev *mddev = r1_bio->mddev;
2177 	struct r1conf *conf = mddev->private;
2178 	struct md_rdev *rdev = conf->mirrors[i].rdev;
2179 
2180 	/* bio has the data to be written to device 'i' where
2181 	 * we just recently had a write error.
2182 	 * We repeatedly clone the bio and trim down to one block,
2183 	 * then try the write.  Where the write fails we record
2184 	 * a bad block.
2185 	 * It is conceivable that the bio doesn't exactly align with
2186 	 * blocks.  We must handle this somehow.
2187 	 *
2188 	 * We currently own a reference on the rdev.
2189 	 */
2190 
2191 	int block_sectors;
2192 	sector_t sector;
2193 	int sectors;
2194 	int sect_to_write = r1_bio->sectors;
2195 	int ok = 1;
2196 
2197 	if (rdev->badblocks.shift < 0)
2198 		return 0;
2199 
2200 	block_sectors = 1 << rdev->badblocks.shift;
2201 	sector = r1_bio->sector;
2202 	sectors = ((sector + block_sectors)
2203 		   & ~(sector_t)(block_sectors - 1))
2204 		- sector;
2205 
2206 	while (sect_to_write) {
2207 		struct bio *wbio;
2208 		if (sectors > sect_to_write)
2209 			sectors = sect_to_write;
2210 		/* Write at 'sector' for 'sectors'*/
2211 
2212 		if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2213 			unsigned vcnt = r1_bio->behind_page_count;
2214 			struct bio_vec *vec = r1_bio->behind_bvecs;
2215 
2216 			while (!vec->bv_page) {
2217 				vec++;
2218 				vcnt--;
2219 			}
2220 
2221 			wbio = bio_alloc_mddev(GFP_NOIO, vcnt, mddev);
2222 			memcpy(wbio->bi_io_vec, vec, vcnt * sizeof(struct bio_vec));
2223 
2224 			wbio->bi_vcnt = vcnt;
2225 		} else {
2226 			wbio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2227 		}
2228 
2229 		wbio->bi_rw = WRITE;
2230 		wbio->bi_iter.bi_sector = r1_bio->sector;
2231 		wbio->bi_iter.bi_size = r1_bio->sectors << 9;
2232 
2233 		bio_trim(wbio, sector - r1_bio->sector, sectors);
2234 		wbio->bi_iter.bi_sector += rdev->data_offset;
2235 		wbio->bi_bdev = rdev->bdev;
2236 		if (submit_bio_wait(WRITE, wbio) == 0)
2237 			/* failure! */
2238 			ok = rdev_set_badblocks(rdev, sector,
2239 						sectors, 0)
2240 				&& ok;
2241 
2242 		bio_put(wbio);
2243 		sect_to_write -= sectors;
2244 		sector += sectors;
2245 		sectors = block_sectors;
2246 	}
2247 	return ok;
2248 }
2249 
2250 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2251 {
2252 	int m;
2253 	int s = r1_bio->sectors;
2254 	for (m = 0; m < conf->raid_disks * 2 ; m++) {
2255 		struct md_rdev *rdev = conf->mirrors[m].rdev;
2256 		struct bio *bio = r1_bio->bios[m];
2257 		if (bio->bi_end_io == NULL)
2258 			continue;
2259 		if (test_bit(BIO_UPTODATE, &bio->bi_flags) &&
2260 		    test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2261 			rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2262 		}
2263 		if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
2264 		    test_bit(R1BIO_WriteError, &r1_bio->state)) {
2265 			if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2266 				md_error(conf->mddev, rdev);
2267 		}
2268 	}
2269 	put_buf(r1_bio);
2270 	md_done_sync(conf->mddev, s, 1);
2271 }
2272 
2273 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2274 {
2275 	int m;
2276 	for (m = 0; m < conf->raid_disks * 2 ; m++)
2277 		if (r1_bio->bios[m] == IO_MADE_GOOD) {
2278 			struct md_rdev *rdev = conf->mirrors[m].rdev;
2279 			rdev_clear_badblocks(rdev,
2280 					     r1_bio->sector,
2281 					     r1_bio->sectors, 0);
2282 			rdev_dec_pending(rdev, conf->mddev);
2283 		} else if (r1_bio->bios[m] != NULL) {
2284 			/* This drive got a write error.  We need to
2285 			 * narrow down and record precise write
2286 			 * errors.
2287 			 */
2288 			if (!narrow_write_error(r1_bio, m)) {
2289 				md_error(conf->mddev,
2290 					 conf->mirrors[m].rdev);
2291 				/* an I/O failed, we can't clear the bitmap */
2292 				set_bit(R1BIO_Degraded, &r1_bio->state);
2293 			}
2294 			rdev_dec_pending(conf->mirrors[m].rdev,
2295 					 conf->mddev);
2296 		}
2297 	if (test_bit(R1BIO_WriteError, &r1_bio->state))
2298 		close_write(r1_bio);
2299 	raid_end_bio_io(r1_bio);
2300 }
2301 
2302 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2303 {
2304 	int disk;
2305 	int max_sectors;
2306 	struct mddev *mddev = conf->mddev;
2307 	struct bio *bio;
2308 	char b[BDEVNAME_SIZE];
2309 	struct md_rdev *rdev;
2310 
2311 	clear_bit(R1BIO_ReadError, &r1_bio->state);
2312 	/* we got a read error. Maybe the drive is bad.  Maybe just
2313 	 * the block and we can fix it.
2314 	 * We freeze all other IO, and try reading the block from
2315 	 * other devices.  When we find one, we re-write
2316 	 * and check it that fixes the read error.
2317 	 * This is all done synchronously while the array is
2318 	 * frozen
2319 	 */
2320 	if (mddev->ro == 0) {
2321 		freeze_array(conf, 1);
2322 		fix_read_error(conf, r1_bio->read_disk,
2323 			       r1_bio->sector, r1_bio->sectors);
2324 		unfreeze_array(conf);
2325 	} else
2326 		md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
2327 	rdev_dec_pending(conf->mirrors[r1_bio->read_disk].rdev, conf->mddev);
2328 
2329 	bio = r1_bio->bios[r1_bio->read_disk];
2330 	bdevname(bio->bi_bdev, b);
2331 read_more:
2332 	disk = read_balance(conf, r1_bio, &max_sectors);
2333 	if (disk == -1) {
2334 		printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O"
2335 		       " read error for block %llu\n",
2336 		       mdname(mddev), b, (unsigned long long)r1_bio->sector);
2337 		raid_end_bio_io(r1_bio);
2338 	} else {
2339 		const unsigned long do_sync
2340 			= r1_bio->master_bio->bi_rw & REQ_SYNC;
2341 		if (bio) {
2342 			r1_bio->bios[r1_bio->read_disk] =
2343 				mddev->ro ? IO_BLOCKED : NULL;
2344 			bio_put(bio);
2345 		}
2346 		r1_bio->read_disk = disk;
2347 		bio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2348 		bio_trim(bio, r1_bio->sector - bio->bi_iter.bi_sector,
2349 			 max_sectors);
2350 		r1_bio->bios[r1_bio->read_disk] = bio;
2351 		rdev = conf->mirrors[disk].rdev;
2352 		printk_ratelimited(KERN_ERR
2353 				   "md/raid1:%s: redirecting sector %llu"
2354 				   " to other mirror: %s\n",
2355 				   mdname(mddev),
2356 				   (unsigned long long)r1_bio->sector,
2357 				   bdevname(rdev->bdev, b));
2358 		bio->bi_iter.bi_sector = r1_bio->sector + rdev->data_offset;
2359 		bio->bi_bdev = rdev->bdev;
2360 		bio->bi_end_io = raid1_end_read_request;
2361 		bio->bi_rw = READ | do_sync;
2362 		bio->bi_private = r1_bio;
2363 		if (max_sectors < r1_bio->sectors) {
2364 			/* Drat - have to split this up more */
2365 			struct bio *mbio = r1_bio->master_bio;
2366 			int sectors_handled = (r1_bio->sector + max_sectors
2367 					       - mbio->bi_iter.bi_sector);
2368 			r1_bio->sectors = max_sectors;
2369 			spin_lock_irq(&conf->device_lock);
2370 			if (mbio->bi_phys_segments == 0)
2371 				mbio->bi_phys_segments = 2;
2372 			else
2373 				mbio->bi_phys_segments++;
2374 			spin_unlock_irq(&conf->device_lock);
2375 			generic_make_request(bio);
2376 			bio = NULL;
2377 
2378 			r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
2379 
2380 			r1_bio->master_bio = mbio;
2381 			r1_bio->sectors = bio_sectors(mbio) - sectors_handled;
2382 			r1_bio->state = 0;
2383 			set_bit(R1BIO_ReadError, &r1_bio->state);
2384 			r1_bio->mddev = mddev;
2385 			r1_bio->sector = mbio->bi_iter.bi_sector +
2386 				sectors_handled;
2387 
2388 			goto read_more;
2389 		} else
2390 			generic_make_request(bio);
2391 	}
2392 }
2393 
2394 static void raid1d(struct md_thread *thread)
2395 {
2396 	struct mddev *mddev = thread->mddev;
2397 	struct r1bio *r1_bio;
2398 	unsigned long flags;
2399 	struct r1conf *conf = mddev->private;
2400 	struct list_head *head = &conf->retry_list;
2401 	struct blk_plug plug;
2402 
2403 	md_check_recovery(mddev);
2404 
2405 	blk_start_plug(&plug);
2406 	for (;;) {
2407 
2408 		flush_pending_writes(conf);
2409 
2410 		spin_lock_irqsave(&conf->device_lock, flags);
2411 		if (list_empty(head)) {
2412 			spin_unlock_irqrestore(&conf->device_lock, flags);
2413 			break;
2414 		}
2415 		r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2416 		list_del(head->prev);
2417 		conf->nr_queued--;
2418 		spin_unlock_irqrestore(&conf->device_lock, flags);
2419 
2420 		mddev = r1_bio->mddev;
2421 		conf = mddev->private;
2422 		if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2423 			if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2424 			    test_bit(R1BIO_WriteError, &r1_bio->state))
2425 				handle_sync_write_finished(conf, r1_bio);
2426 			else
2427 				sync_request_write(mddev, r1_bio);
2428 		} else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2429 			   test_bit(R1BIO_WriteError, &r1_bio->state))
2430 			handle_write_finished(conf, r1_bio);
2431 		else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2432 			handle_read_error(conf, r1_bio);
2433 		else
2434 			/* just a partial read to be scheduled from separate
2435 			 * context
2436 			 */
2437 			generic_make_request(r1_bio->bios[r1_bio->read_disk]);
2438 
2439 		cond_resched();
2440 		if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2441 			md_check_recovery(mddev);
2442 	}
2443 	blk_finish_plug(&plug);
2444 }
2445 
2446 static int init_resync(struct r1conf *conf)
2447 {
2448 	int buffs;
2449 
2450 	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2451 	BUG_ON(conf->r1buf_pool);
2452 	conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2453 					  conf->poolinfo);
2454 	if (!conf->r1buf_pool)
2455 		return -ENOMEM;
2456 	conf->next_resync = 0;
2457 	return 0;
2458 }
2459 
2460 /*
2461  * perform a "sync" on one "block"
2462  *
2463  * We need to make sure that no normal I/O request - particularly write
2464  * requests - conflict with active sync requests.
2465  *
2466  * This is achieved by tracking pending requests and a 'barrier' concept
2467  * that can be installed to exclude normal IO requests.
2468  */
2469 
2470 static sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
2471 {
2472 	struct r1conf *conf = mddev->private;
2473 	struct r1bio *r1_bio;
2474 	struct bio *bio;
2475 	sector_t max_sector, nr_sectors;
2476 	int disk = -1;
2477 	int i;
2478 	int wonly = -1;
2479 	int write_targets = 0, read_targets = 0;
2480 	sector_t sync_blocks;
2481 	int still_degraded = 0;
2482 	int good_sectors = RESYNC_SECTORS;
2483 	int min_bad = 0; /* number of sectors that are bad in all devices */
2484 
2485 	if (!conf->r1buf_pool)
2486 		if (init_resync(conf))
2487 			return 0;
2488 
2489 	max_sector = mddev->dev_sectors;
2490 	if (sector_nr >= max_sector) {
2491 		/* If we aborted, we need to abort the
2492 		 * sync on the 'current' bitmap chunk (there will
2493 		 * only be one in raid1 resync.
2494 		 * We can find the current addess in mddev->curr_resync
2495 		 */
2496 		if (mddev->curr_resync < max_sector) /* aborted */
2497 			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2498 						&sync_blocks, 1);
2499 		else /* completed sync */
2500 			conf->fullsync = 0;
2501 
2502 		bitmap_close_sync(mddev->bitmap);
2503 		close_sync(conf);
2504 		return 0;
2505 	}
2506 
2507 	if (mddev->bitmap == NULL &&
2508 	    mddev->recovery_cp == MaxSector &&
2509 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2510 	    conf->fullsync == 0) {
2511 		*skipped = 1;
2512 		return max_sector - sector_nr;
2513 	}
2514 	/* before building a request, check if we can skip these blocks..
2515 	 * This call the bitmap_start_sync doesn't actually record anything
2516 	 */
2517 	if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2518 	    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2519 		/* We can skip this block, and probably several more */
2520 		*skipped = 1;
2521 		return sync_blocks;
2522 	}
2523 	/*
2524 	 * If there is non-resync activity waiting for a turn,
2525 	 * and resync is going fast enough,
2526 	 * then let it though before starting on this new sync request.
2527 	 */
2528 	if (!go_faster && conf->nr_waiting)
2529 		msleep_interruptible(1000);
2530 
2531 	bitmap_cond_end_sync(mddev->bitmap, sector_nr);
2532 	r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
2533 
2534 	raise_barrier(conf, sector_nr);
2535 
2536 	rcu_read_lock();
2537 	/*
2538 	 * If we get a correctably read error during resync or recovery,
2539 	 * we might want to read from a different device.  So we
2540 	 * flag all drives that could conceivably be read from for READ,
2541 	 * and any others (which will be non-In_sync devices) for WRITE.
2542 	 * If a read fails, we try reading from something else for which READ
2543 	 * is OK.
2544 	 */
2545 
2546 	r1_bio->mddev = mddev;
2547 	r1_bio->sector = sector_nr;
2548 	r1_bio->state = 0;
2549 	set_bit(R1BIO_IsSync, &r1_bio->state);
2550 
2551 	for (i = 0; i < conf->raid_disks * 2; i++) {
2552 		struct md_rdev *rdev;
2553 		bio = r1_bio->bios[i];
2554 		bio_reset(bio);
2555 
2556 		rdev = rcu_dereference(conf->mirrors[i].rdev);
2557 		if (rdev == NULL ||
2558 		    test_bit(Faulty, &rdev->flags)) {
2559 			if (i < conf->raid_disks)
2560 				still_degraded = 1;
2561 		} else if (!test_bit(In_sync, &rdev->flags)) {
2562 			bio->bi_rw = WRITE;
2563 			bio->bi_end_io = end_sync_write;
2564 			write_targets ++;
2565 		} else {
2566 			/* may need to read from here */
2567 			sector_t first_bad = MaxSector;
2568 			int bad_sectors;
2569 
2570 			if (is_badblock(rdev, sector_nr, good_sectors,
2571 					&first_bad, &bad_sectors)) {
2572 				if (first_bad > sector_nr)
2573 					good_sectors = first_bad - sector_nr;
2574 				else {
2575 					bad_sectors -= (sector_nr - first_bad);
2576 					if (min_bad == 0 ||
2577 					    min_bad > bad_sectors)
2578 						min_bad = bad_sectors;
2579 				}
2580 			}
2581 			if (sector_nr < first_bad) {
2582 				if (test_bit(WriteMostly, &rdev->flags)) {
2583 					if (wonly < 0)
2584 						wonly = i;
2585 				} else {
2586 					if (disk < 0)
2587 						disk = i;
2588 				}
2589 				bio->bi_rw = READ;
2590 				bio->bi_end_io = end_sync_read;
2591 				read_targets++;
2592 			} else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2593 				test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2594 				!test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2595 				/*
2596 				 * The device is suitable for reading (InSync),
2597 				 * but has bad block(s) here. Let's try to correct them,
2598 				 * if we are doing resync or repair. Otherwise, leave
2599 				 * this device alone for this sync request.
2600 				 */
2601 				bio->bi_rw = WRITE;
2602 				bio->bi_end_io = end_sync_write;
2603 				write_targets++;
2604 			}
2605 		}
2606 		if (bio->bi_end_io) {
2607 			atomic_inc(&rdev->nr_pending);
2608 			bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
2609 			bio->bi_bdev = rdev->bdev;
2610 			bio->bi_private = r1_bio;
2611 		}
2612 	}
2613 	rcu_read_unlock();
2614 	if (disk < 0)
2615 		disk = wonly;
2616 	r1_bio->read_disk = disk;
2617 
2618 	if (read_targets == 0 && min_bad > 0) {
2619 		/* These sectors are bad on all InSync devices, so we
2620 		 * need to mark them bad on all write targets
2621 		 */
2622 		int ok = 1;
2623 		for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2624 			if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2625 				struct md_rdev *rdev = conf->mirrors[i].rdev;
2626 				ok = rdev_set_badblocks(rdev, sector_nr,
2627 							min_bad, 0
2628 					) && ok;
2629 			}
2630 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
2631 		*skipped = 1;
2632 		put_buf(r1_bio);
2633 
2634 		if (!ok) {
2635 			/* Cannot record the badblocks, so need to
2636 			 * abort the resync.
2637 			 * If there are multiple read targets, could just
2638 			 * fail the really bad ones ???
2639 			 */
2640 			conf->recovery_disabled = mddev->recovery_disabled;
2641 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2642 			return 0;
2643 		} else
2644 			return min_bad;
2645 
2646 	}
2647 	if (min_bad > 0 && min_bad < good_sectors) {
2648 		/* only resync enough to reach the next bad->good
2649 		 * transition */
2650 		good_sectors = min_bad;
2651 	}
2652 
2653 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2654 		/* extra read targets are also write targets */
2655 		write_targets += read_targets-1;
2656 
2657 	if (write_targets == 0 || read_targets == 0) {
2658 		/* There is nowhere to write, so all non-sync
2659 		 * drives must be failed - so we are finished
2660 		 */
2661 		sector_t rv;
2662 		if (min_bad > 0)
2663 			max_sector = sector_nr + min_bad;
2664 		rv = max_sector - sector_nr;
2665 		*skipped = 1;
2666 		put_buf(r1_bio);
2667 		return rv;
2668 	}
2669 
2670 	if (max_sector > mddev->resync_max)
2671 		max_sector = mddev->resync_max; /* Don't do IO beyond here */
2672 	if (max_sector > sector_nr + good_sectors)
2673 		max_sector = sector_nr + good_sectors;
2674 	nr_sectors = 0;
2675 	sync_blocks = 0;
2676 	do {
2677 		struct page *page;
2678 		int len = PAGE_SIZE;
2679 		if (sector_nr + (len>>9) > max_sector)
2680 			len = (max_sector - sector_nr) << 9;
2681 		if (len == 0)
2682 			break;
2683 		if (sync_blocks == 0) {
2684 			if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2685 					       &sync_blocks, still_degraded) &&
2686 			    !conf->fullsync &&
2687 			    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2688 				break;
2689 			BUG_ON(sync_blocks < (PAGE_SIZE>>9));
2690 			if ((len >> 9) > sync_blocks)
2691 				len = sync_blocks<<9;
2692 		}
2693 
2694 		for (i = 0 ; i < conf->raid_disks * 2; i++) {
2695 			bio = r1_bio->bios[i];
2696 			if (bio->bi_end_io) {
2697 				page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
2698 				if (bio_add_page(bio, page, len, 0) == 0) {
2699 					/* stop here */
2700 					bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
2701 					while (i > 0) {
2702 						i--;
2703 						bio = r1_bio->bios[i];
2704 						if (bio->bi_end_io==NULL)
2705 							continue;
2706 						/* remove last page from this bio */
2707 						bio->bi_vcnt--;
2708 						bio->bi_iter.bi_size -= len;
2709 						__clear_bit(BIO_SEG_VALID, &bio->bi_flags);
2710 					}
2711 					goto bio_full;
2712 				}
2713 			}
2714 		}
2715 		nr_sectors += len>>9;
2716 		sector_nr += len>>9;
2717 		sync_blocks -= (len>>9);
2718 	} while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
2719  bio_full:
2720 	r1_bio->sectors = nr_sectors;
2721 
2722 	/* For a user-requested sync, we read all readable devices and do a
2723 	 * compare
2724 	 */
2725 	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2726 		atomic_set(&r1_bio->remaining, read_targets);
2727 		for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2728 			bio = r1_bio->bios[i];
2729 			if (bio->bi_end_io == end_sync_read) {
2730 				read_targets--;
2731 				md_sync_acct(bio->bi_bdev, nr_sectors);
2732 				generic_make_request(bio);
2733 			}
2734 		}
2735 	} else {
2736 		atomic_set(&r1_bio->remaining, 1);
2737 		bio = r1_bio->bios[r1_bio->read_disk];
2738 		md_sync_acct(bio->bi_bdev, nr_sectors);
2739 		generic_make_request(bio);
2740 
2741 	}
2742 	return nr_sectors;
2743 }
2744 
2745 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2746 {
2747 	if (sectors)
2748 		return sectors;
2749 
2750 	return mddev->dev_sectors;
2751 }
2752 
2753 static struct r1conf *setup_conf(struct mddev *mddev)
2754 {
2755 	struct r1conf *conf;
2756 	int i;
2757 	struct raid1_info *disk;
2758 	struct md_rdev *rdev;
2759 	int err = -ENOMEM;
2760 
2761 	conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2762 	if (!conf)
2763 		goto abort;
2764 
2765 	conf->mirrors = kzalloc(sizeof(struct raid1_info)
2766 				* mddev->raid_disks * 2,
2767 				 GFP_KERNEL);
2768 	if (!conf->mirrors)
2769 		goto abort;
2770 
2771 	conf->tmppage = alloc_page(GFP_KERNEL);
2772 	if (!conf->tmppage)
2773 		goto abort;
2774 
2775 	conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
2776 	if (!conf->poolinfo)
2777 		goto abort;
2778 	conf->poolinfo->raid_disks = mddev->raid_disks * 2;
2779 	conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2780 					  r1bio_pool_free,
2781 					  conf->poolinfo);
2782 	if (!conf->r1bio_pool)
2783 		goto abort;
2784 
2785 	conf->poolinfo->mddev = mddev;
2786 
2787 	err = -EINVAL;
2788 	spin_lock_init(&conf->device_lock);
2789 	rdev_for_each(rdev, mddev) {
2790 		struct request_queue *q;
2791 		int disk_idx = rdev->raid_disk;
2792 		if (disk_idx >= mddev->raid_disks
2793 		    || disk_idx < 0)
2794 			continue;
2795 		if (test_bit(Replacement, &rdev->flags))
2796 			disk = conf->mirrors + mddev->raid_disks + disk_idx;
2797 		else
2798 			disk = conf->mirrors + disk_idx;
2799 
2800 		if (disk->rdev)
2801 			goto abort;
2802 		disk->rdev = rdev;
2803 		q = bdev_get_queue(rdev->bdev);
2804 		if (q->merge_bvec_fn)
2805 			mddev->merge_check_needed = 1;
2806 
2807 		disk->head_position = 0;
2808 		disk->seq_start = MaxSector;
2809 	}
2810 	conf->raid_disks = mddev->raid_disks;
2811 	conf->mddev = mddev;
2812 	INIT_LIST_HEAD(&conf->retry_list);
2813 
2814 	spin_lock_init(&conf->resync_lock);
2815 	init_waitqueue_head(&conf->wait_barrier);
2816 
2817 	bio_list_init(&conf->pending_bio_list);
2818 	conf->pending_count = 0;
2819 	conf->recovery_disabled = mddev->recovery_disabled - 1;
2820 
2821 	conf->start_next_window = MaxSector;
2822 	conf->current_window_requests = conf->next_window_requests = 0;
2823 
2824 	err = -EIO;
2825 	for (i = 0; i < conf->raid_disks * 2; i++) {
2826 
2827 		disk = conf->mirrors + i;
2828 
2829 		if (i < conf->raid_disks &&
2830 		    disk[conf->raid_disks].rdev) {
2831 			/* This slot has a replacement. */
2832 			if (!disk->rdev) {
2833 				/* No original, just make the replacement
2834 				 * a recovering spare
2835 				 */
2836 				disk->rdev =
2837 					disk[conf->raid_disks].rdev;
2838 				disk[conf->raid_disks].rdev = NULL;
2839 			} else if (!test_bit(In_sync, &disk->rdev->flags))
2840 				/* Original is not in_sync - bad */
2841 				goto abort;
2842 		}
2843 
2844 		if (!disk->rdev ||
2845 		    !test_bit(In_sync, &disk->rdev->flags)) {
2846 			disk->head_position = 0;
2847 			if (disk->rdev &&
2848 			    (disk->rdev->saved_raid_disk < 0))
2849 				conf->fullsync = 1;
2850 		}
2851 	}
2852 
2853 	err = -ENOMEM;
2854 	conf->thread = md_register_thread(raid1d, mddev, "raid1");
2855 	if (!conf->thread) {
2856 		printk(KERN_ERR
2857 		       "md/raid1:%s: couldn't allocate thread\n",
2858 		       mdname(mddev));
2859 		goto abort;
2860 	}
2861 
2862 	return conf;
2863 
2864  abort:
2865 	if (conf) {
2866 		if (conf->r1bio_pool)
2867 			mempool_destroy(conf->r1bio_pool);
2868 		kfree(conf->mirrors);
2869 		safe_put_page(conf->tmppage);
2870 		kfree(conf->poolinfo);
2871 		kfree(conf);
2872 	}
2873 	return ERR_PTR(err);
2874 }
2875 
2876 static int stop(struct mddev *mddev);
2877 static int run(struct mddev *mddev)
2878 {
2879 	struct r1conf *conf;
2880 	int i;
2881 	struct md_rdev *rdev;
2882 	int ret;
2883 	bool discard_supported = false;
2884 
2885 	if (mddev->level != 1) {
2886 		printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n",
2887 		       mdname(mddev), mddev->level);
2888 		return -EIO;
2889 	}
2890 	if (mddev->reshape_position != MaxSector) {
2891 		printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n",
2892 		       mdname(mddev));
2893 		return -EIO;
2894 	}
2895 	/*
2896 	 * copy the already verified devices into our private RAID1
2897 	 * bookkeeping area. [whatever we allocate in run(),
2898 	 * should be freed in stop()]
2899 	 */
2900 	if (mddev->private == NULL)
2901 		conf = setup_conf(mddev);
2902 	else
2903 		conf = mddev->private;
2904 
2905 	if (IS_ERR(conf))
2906 		return PTR_ERR(conf);
2907 
2908 	if (mddev->queue)
2909 		blk_queue_max_write_same_sectors(mddev->queue, 0);
2910 
2911 	rdev_for_each(rdev, mddev) {
2912 		if (!mddev->gendisk)
2913 			continue;
2914 		disk_stack_limits(mddev->gendisk, rdev->bdev,
2915 				  rdev->data_offset << 9);
2916 		if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
2917 			discard_supported = true;
2918 	}
2919 
2920 	mddev->degraded = 0;
2921 	for (i=0; i < conf->raid_disks; i++)
2922 		if (conf->mirrors[i].rdev == NULL ||
2923 		    !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
2924 		    test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2925 			mddev->degraded++;
2926 
2927 	if (conf->raid_disks - mddev->degraded == 1)
2928 		mddev->recovery_cp = MaxSector;
2929 
2930 	if (mddev->recovery_cp != MaxSector)
2931 		printk(KERN_NOTICE "md/raid1:%s: not clean"
2932 		       " -- starting background reconstruction\n",
2933 		       mdname(mddev));
2934 	printk(KERN_INFO
2935 		"md/raid1:%s: active with %d out of %d mirrors\n",
2936 		mdname(mddev), mddev->raid_disks - mddev->degraded,
2937 		mddev->raid_disks);
2938 
2939 	/*
2940 	 * Ok, everything is just fine now
2941 	 */
2942 	mddev->thread = conf->thread;
2943 	conf->thread = NULL;
2944 	mddev->private = conf;
2945 
2946 	md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
2947 
2948 	if (mddev->queue) {
2949 		blk_queue_merge_bvec(mddev->queue, raid1_mergeable_bvec);
2950 
2951 		if (discard_supported)
2952 			queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
2953 						mddev->queue);
2954 		else
2955 			queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
2956 						  mddev->queue);
2957 	}
2958 
2959 	ret =  md_integrity_register(mddev);
2960 	if (ret)
2961 		stop(mddev);
2962 	return ret;
2963 }
2964 
2965 static int stop(struct mddev *mddev)
2966 {
2967 	struct r1conf *conf = mddev->private;
2968 	struct bitmap *bitmap = mddev->bitmap;
2969 
2970 	/* wait for behind writes to complete */
2971 	if (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
2972 		printk(KERN_INFO "md/raid1:%s: behind writes in progress - waiting to stop.\n",
2973 		       mdname(mddev));
2974 		/* need to kick something here to make sure I/O goes? */
2975 		wait_event(bitmap->behind_wait,
2976 			   atomic_read(&bitmap->behind_writes) == 0);
2977 	}
2978 
2979 	freeze_array(conf, 0);
2980 	unfreeze_array(conf);
2981 
2982 	md_unregister_thread(&mddev->thread);
2983 	if (conf->r1bio_pool)
2984 		mempool_destroy(conf->r1bio_pool);
2985 	kfree(conf->mirrors);
2986 	safe_put_page(conf->tmppage);
2987 	kfree(conf->poolinfo);
2988 	kfree(conf);
2989 	mddev->private = NULL;
2990 	return 0;
2991 }
2992 
2993 static int raid1_resize(struct mddev *mddev, sector_t sectors)
2994 {
2995 	/* no resync is happening, and there is enough space
2996 	 * on all devices, so we can resize.
2997 	 * We need to make sure resync covers any new space.
2998 	 * If the array is shrinking we should possibly wait until
2999 	 * any io in the removed space completes, but it hardly seems
3000 	 * worth it.
3001 	 */
3002 	sector_t newsize = raid1_size(mddev, sectors, 0);
3003 	if (mddev->external_size &&
3004 	    mddev->array_sectors > newsize)
3005 		return -EINVAL;
3006 	if (mddev->bitmap) {
3007 		int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0);
3008 		if (ret)
3009 			return ret;
3010 	}
3011 	md_set_array_sectors(mddev, newsize);
3012 	set_capacity(mddev->gendisk, mddev->array_sectors);
3013 	revalidate_disk(mddev->gendisk);
3014 	if (sectors > mddev->dev_sectors &&
3015 	    mddev->recovery_cp > mddev->dev_sectors) {
3016 		mddev->recovery_cp = mddev->dev_sectors;
3017 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3018 	}
3019 	mddev->dev_sectors = sectors;
3020 	mddev->resync_max_sectors = sectors;
3021 	return 0;
3022 }
3023 
3024 static int raid1_reshape(struct mddev *mddev)
3025 {
3026 	/* We need to:
3027 	 * 1/ resize the r1bio_pool
3028 	 * 2/ resize conf->mirrors
3029 	 *
3030 	 * We allocate a new r1bio_pool if we can.
3031 	 * Then raise a device barrier and wait until all IO stops.
3032 	 * Then resize conf->mirrors and swap in the new r1bio pool.
3033 	 *
3034 	 * At the same time, we "pack" the devices so that all the missing
3035 	 * devices have the higher raid_disk numbers.
3036 	 */
3037 	mempool_t *newpool, *oldpool;
3038 	struct pool_info *newpoolinfo;
3039 	struct raid1_info *newmirrors;
3040 	struct r1conf *conf = mddev->private;
3041 	int cnt, raid_disks;
3042 	unsigned long flags;
3043 	int d, d2, err;
3044 
3045 	/* Cannot change chunk_size, layout, or level */
3046 	if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3047 	    mddev->layout != mddev->new_layout ||
3048 	    mddev->level != mddev->new_level) {
3049 		mddev->new_chunk_sectors = mddev->chunk_sectors;
3050 		mddev->new_layout = mddev->layout;
3051 		mddev->new_level = mddev->level;
3052 		return -EINVAL;
3053 	}
3054 
3055 	err = md_allow_write(mddev);
3056 	if (err)
3057 		return err;
3058 
3059 	raid_disks = mddev->raid_disks + mddev->delta_disks;
3060 
3061 	if (raid_disks < conf->raid_disks) {
3062 		cnt=0;
3063 		for (d= 0; d < conf->raid_disks; d++)
3064 			if (conf->mirrors[d].rdev)
3065 				cnt++;
3066 		if (cnt > raid_disks)
3067 			return -EBUSY;
3068 	}
3069 
3070 	newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3071 	if (!newpoolinfo)
3072 		return -ENOMEM;
3073 	newpoolinfo->mddev = mddev;
3074 	newpoolinfo->raid_disks = raid_disks * 2;
3075 
3076 	newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
3077 				 r1bio_pool_free, newpoolinfo);
3078 	if (!newpool) {
3079 		kfree(newpoolinfo);
3080 		return -ENOMEM;
3081 	}
3082 	newmirrors = kzalloc(sizeof(struct raid1_info) * raid_disks * 2,
3083 			     GFP_KERNEL);
3084 	if (!newmirrors) {
3085 		kfree(newpoolinfo);
3086 		mempool_destroy(newpool);
3087 		return -ENOMEM;
3088 	}
3089 
3090 	freeze_array(conf, 0);
3091 
3092 	/* ok, everything is stopped */
3093 	oldpool = conf->r1bio_pool;
3094 	conf->r1bio_pool = newpool;
3095 
3096 	for (d = d2 = 0; d < conf->raid_disks; d++) {
3097 		struct md_rdev *rdev = conf->mirrors[d].rdev;
3098 		if (rdev && rdev->raid_disk != d2) {
3099 			sysfs_unlink_rdev(mddev, rdev);
3100 			rdev->raid_disk = d2;
3101 			sysfs_unlink_rdev(mddev, rdev);
3102 			if (sysfs_link_rdev(mddev, rdev))
3103 				printk(KERN_WARNING
3104 				       "md/raid1:%s: cannot register rd%d\n",
3105 				       mdname(mddev), rdev->raid_disk);
3106 		}
3107 		if (rdev)
3108 			newmirrors[d2++].rdev = rdev;
3109 	}
3110 	kfree(conf->mirrors);
3111 	conf->mirrors = newmirrors;
3112 	kfree(conf->poolinfo);
3113 	conf->poolinfo = newpoolinfo;
3114 
3115 	spin_lock_irqsave(&conf->device_lock, flags);
3116 	mddev->degraded += (raid_disks - conf->raid_disks);
3117 	spin_unlock_irqrestore(&conf->device_lock, flags);
3118 	conf->raid_disks = mddev->raid_disks = raid_disks;
3119 	mddev->delta_disks = 0;
3120 
3121 	unfreeze_array(conf);
3122 
3123 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3124 	md_wakeup_thread(mddev->thread);
3125 
3126 	mempool_destroy(oldpool);
3127 	return 0;
3128 }
3129 
3130 static void raid1_quiesce(struct mddev *mddev, int state)
3131 {
3132 	struct r1conf *conf = mddev->private;
3133 
3134 	switch(state) {
3135 	case 2: /* wake for suspend */
3136 		wake_up(&conf->wait_barrier);
3137 		break;
3138 	case 1:
3139 		freeze_array(conf, 0);
3140 		break;
3141 	case 0:
3142 		unfreeze_array(conf);
3143 		break;
3144 	}
3145 }
3146 
3147 static void *raid1_takeover(struct mddev *mddev)
3148 {
3149 	/* raid1 can take over:
3150 	 *  raid5 with 2 devices, any layout or chunk size
3151 	 */
3152 	if (mddev->level == 5 && mddev->raid_disks == 2) {
3153 		struct r1conf *conf;
3154 		mddev->new_level = 1;
3155 		mddev->new_layout = 0;
3156 		mddev->new_chunk_sectors = 0;
3157 		conf = setup_conf(mddev);
3158 		if (!IS_ERR(conf))
3159 			/* Array must appear to be quiesced */
3160 			conf->array_frozen = 1;
3161 		return conf;
3162 	}
3163 	return ERR_PTR(-EINVAL);
3164 }
3165 
3166 static struct md_personality raid1_personality =
3167 {
3168 	.name		= "raid1",
3169 	.level		= 1,
3170 	.owner		= THIS_MODULE,
3171 	.make_request	= make_request,
3172 	.run		= run,
3173 	.stop		= stop,
3174 	.status		= status,
3175 	.error_handler	= error,
3176 	.hot_add_disk	= raid1_add_disk,
3177 	.hot_remove_disk= raid1_remove_disk,
3178 	.spare_active	= raid1_spare_active,
3179 	.sync_request	= sync_request,
3180 	.resize		= raid1_resize,
3181 	.size		= raid1_size,
3182 	.check_reshape	= raid1_reshape,
3183 	.quiesce	= raid1_quiesce,
3184 	.takeover	= raid1_takeover,
3185 	.congested	= raid1_congested,
3186 };
3187 
3188 static int __init raid_init(void)
3189 {
3190 	return register_md_personality(&raid1_personality);
3191 }
3192 
3193 static void raid_exit(void)
3194 {
3195 	unregister_md_personality(&raid1_personality);
3196 }
3197 
3198 module_init(raid_init);
3199 module_exit(raid_exit);
3200 MODULE_LICENSE("GPL");
3201 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3202 MODULE_ALIAS("md-personality-3"); /* RAID1 */
3203 MODULE_ALIAS("md-raid1");
3204 MODULE_ALIAS("md-level-1");
3205 
3206 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
3207